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We present here a twisted version of Alexander polynomials of knots in S3. Associated
with each representation of the knot group, we can have a twisted Alexander polynomial for
the corresponding knot. The classical Alexander polynomial is the one associated with 1-
dimensional representations. We have examples of knots with the same Alexander polynomial
but different twisted Alexander polynomials associated with representations into SU(2,C).

We will use regular Seifert surfaces to define twisted Alexander polynomials for knots. A
Seifert surface of a knot is regular if it has a spine (call it regular) which, being thought of as a
bouquet of circles embedded in S3, is isotopic to the standard embedding. Certainly, a regular
Seifert surface is a free (unknotted) Seifert surface. But a free (unknotted) Seifert surface is
not necessarily regular.

Similarly to the fact that two Seifert surfaces of a knot are thus called S-equivalent, we
will show (Theorem 1.7) that two regular Seifert surfaces of a knot are regularly S-equivalent.
Stronger than S-equivalence via a sequence of regular Seifert surfaces, regular S-equivalence also
requires that one only uses unknotted handles to perform handle-addition or handle subtraction.
This fact that regular Seifert surfaces are regularly S-equivalent is used to prove that our
definition of twisted Alexander polynomials does not depend on the choices of regular Seifert
surfaces and therefore gives us knot invariants.

Our approach here leaves a lot of questions open. First of all, we are not yet able to overcome
the technical difficulties involved in generalizing the definition of twisted Alexander polynomials
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from knots to links. Without such a generalization, it seems to be very difficult to find any
relation between twisted Alexander polynomials and the HOMFLY polynomials [1]. Another
important question is how to generalize the definition of twisted Alexander polynomials to knots
in homology 3-spheres. A knot in a homology 3-sphere bounds an unknotted Seifert surface.
With an appropriate definition of regular Seifert surfaces, we expect that Theorem 1.7 is still
true in this setting. Noticing that an unknotted Seifert surface gives us a Heegard decomposition
of the ambient homology 3-sphere, it is reasonable to expect that a generalization of twisted
Alexander polynomials to homology 3-spheres will have something to do with Casson’s invariant
of homology 3-spheres (even in the generalized version of Cappell-Lee-Miller [2]).

Table of Contents:
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Section 2. Presentations of knot groups via regular Seifert surfaces

Section 3. Twisted Alexander modules
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Note This article appeared first in 1990 as a Columbia University preprint. Since then
further works on the topic discussed in this article have been published by several authors [3–
7]. As we have been receiving frequent requests for this unpublished article, we think it might
be worthwhile to have it published.

1 Regular Seifert Surfaces of a Knot

A knot in S3 is a tame embedding of S1 into S3. Let K be an oriented knot in S3. A Seifert
surface of K is a compact, connected and oriented surface S embedded in S3 such that ∂S = K.
There is a classical algorithm of constructing a Seifert surface for a knot via a regular plane
projection of that knot due to Seifert. Let us describe this algorithm briefly as follows.

Consider a regular plane projection P of a knot K. In a neighborhood of each crossing
of P , we change the diagram as shown in Figure 1.1 so that the resulting diagram consists of
finitely many disjoint oriented circles in the plane. These oriented circles are usually called
Seifert circles.

Each Seifert circle bounds an oriented disk in the plane. Let us imagine these disks are
stacked in different levels so that if one disk D1 is contained in the other disk D2 in the plane,
then D1 is stacked above D2. We then connect these disks by half-twisted bands in such a
way that it reverses the previous operation of changing the knot diagram to Seifert circles (see
Figure 1.2). The resulting compact, connected and oriented surface is a Seifert surface of the
knot K. We denote this Seifert surface by SP since it is completely determined by the regular
plane projection P .

The above construction has an important feature which we are going to explore. Suppose
N is a closed tubular neighborhood of SP . Then N is a handlebody with 2g handles, where
g = genus(SP ). It is easy to see that S3 \N is also a handlebody. In other words, SP is an
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unknotted Seifert surface.

Figure 1.1 Figure 1.2
Let Wn be a bouquet of n circles, i.e., the space obtained from a disjoint union of n circles

with the base points of each circle being identified with a single base point ∗. A spine of a
compact surface S is a bouquet of circles W ⊂ S such that it is a deformation retract of S.
It is easy to see that for the Seifert surface SP corresponding to the regular plane projection
P , there is a spine W whose embedding in S3 induced by SP ⊂ S3 is isotopic to the standard
embedding. These motivate the following definitions:

Definition 1.1 A Seifert surface S of a knot K is called free if (n(S), S3 \ n(S)) is a Heegard
splitting of S3. Here n(S) is a closed tubular neighborhood of S in S3.

Definition 1.2 A Seifert surface S of a knot K is called regular if it has a spine W whose
embedding in S3 induced by S ⊂ S3 is isotopic to the standard embedding.

So, for any regular plane projection P of the knot K, SP is a regular Seifert surface of K.
Of course, regular Seifert surfaces are also free Seifert surfaces. But a free Seifert surface is

not necessarily regular.
Let S be a Seifert surface of K. We can perform surgery on S to get new Seifert surfaces

for K. Let d be an oriented arc in S3 such that d∩ S = ∂d and the intersection consists of the
orientations of S and d. Add a tube to S along d. This operation gives us a new Seifert surface
S′. We say S′ is obtained from S by a handle-addition. On the other hand, S is obtained from
S′ by a handle-subtraction.

Two Seifert surfaces S and S′ of a knot K are S-equivalent if there is a sequence of Seifert
surfaces

S = S1, S2, . . . , Sm−1, Sm = S′

of K such that Si+1 is obtained from Si by either a handle-subtraction or a handle-addition.
We will think of isotopic Seifert surfaces as being the same. Then, a well-known fact (along with
a somehow straightforward proof) is that any two Seifert surfaces of a knot K are S-equivalent
(see [8]). We will have a more delicate version of this well-known fact.

Let S be a regular Seifert surface with a regular spine W . Let d be the arc in the definition
of a handle-addition. We may assume that the two endpoints of d are identified with the base
point of W .

Definition 1.3 A handle-addition on S is called regular if W ∪ d ⊂ S3 is isotopic to the
standard embedding. The inverse operation of a regular handle-addition is a regular handle-
subtraction.
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Lemma 1.4 Suppose that the regular spine W lies on a 2-sphere S2. Assume that the arc d is
a proper unknotted arc in S3\S2 with two of its end points sitting onW . Then a handle-addition
along d is regular.

Proof On the surface, move the end points of d monotonically to the base point of W along
different arcs of W . It is not hard to see that W ∪ d obtained in this way is isotopic to the
standard embedding of a bouquet of circles.

Lemma 1.5 If S′ is obtained from a regular Seifert surface by a regular handle-addition,
then S′ is also a regular.

Proof We can have a small disk D on S such that D only intersects W at its base point.
Then W ′ = W ∪ d ∪ ∂D is a spine of S′. It is easy to see that W ′ is isotopic to the standard
embedding.

Definition 1.6 Let S and S′ be two regular Seifert surfaces of a knot K. They are regularly
S-equivalent if there is a sequence of regular Seifert surfaces

S = S1, S2, . . . , Sm−1, Sm = S′

of K such that Si+1 is obtained from Si by either a regular handle-subtraction or a regular
handle-addition.

Theorem 1.7 Any two regular Seifert surfaces of a knot are regularly S-equivalent.

We prove this theorem in two steps. First, we show that any regular Seifert surface S of
a knot K is regularly S-equivalent to a regular Seifert surface of the form SP for a certain
regular plane projection P of the knot K. Then, we show that a Reidemeister move from a
regular plane projection P to another regular plane projection P ′ changes SP to SP ′ by either
an isotopy or a handle-addition or a handle-subtraction. This shows that if P and P ′ are two
regular plane projections of K, then SP and SP ′ are regularly S-equivalent since P ′ can be
obtained from P by a sequence of Reidemeister moves (see Figure 1.7).

Let S be a regular Seifert surface of a knot K. We need a certain normal form for S.

We consider regular plane projections of an embedding Wn ⊂ S3. Here Wn is a bouquet
of n circles with the base point ∗. Similarly to regular plane projection of knots, these plane
projections have only double points as singular points. In addition, we assume that the base
point ∗ of Wn is not a singular point.

For a regular plane projection of an embedding Wn ⊂ S3, we can associate it with a
compact, connected and orientable surface in the following way. We draw a disk D in the
projection plane as a neighborhood of the base point ∗ of Wn such that the projection has no
singular points in D. Then D ∩Wn is a bouquet of 2n arcs and there are n arcs outside of
D in the projection plane. Replace each of these n outside arcs with a narrow band, possibly
having some full twists. At a singular point of the projection, these bands are over-crossing or
under-crossing according to whether the corresponding singular point is an over-crossing point
or an under-crossing point. The union of D and these bands is a surface associated with the
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given regular plane projection of Wn ⊂ S3. See Figure 1.3.

For a regular Seifert surface S, let Wn be
a spine of S such that it is isotopic to the
standard embedding. Here n = 2g with g =
genus(S). Let a1, b1, . . ., ag, bg be the oriented
circles inWn such that they form a symplectic
basis of S. Then, we can assume that in a
neighborhood of the base point ∗ of Wn in
S, we see a bouquet of 4g arcs ordered and
oriented as shown in Figure 1.4.

Figure 1.3

Lemma 1.8 The induced embedding Wn ⊂ S3 has a regular plane projection shown in Figure
1.5, where σ is a braid of index 2n, such that the regular Seifert surface S is isotopic to an
associated surface of this projection.

Proof Begin with an arbitrary regular plane projection of the induced embedding Wn ⊂ S3

such that in a disk neighborhood D of the base point ∗ of Wn in the projection plane, the
arcs in Wn ∩ D are ordered and oriented in the same way as in a disk neighborhood of ∗ in
S. Then S is isotopic to an associated surface of this projection. Since the induced embedding
Wn ⊂ S3 is isotopic to the standard one, after switching the arcs in Wn ∩D appropriately, the
arcs outside of D are isotopic to the standard embedding. Record the switches by a braid σ of
index 2n and we have completed the proof.

Figure 1.4 Figure 1.5

Proof of Theorem 1.7 Let us identify the knot K with the boundary of an associated surface
S of the regular plane projection of Wn ⊂ S3 described in Lemma 1.8. The regular plane
projection of Wn induces a regular plane projection of ∂S = K. Denote this projection by P .
We certainly have S �= SP since S has a lot of band crossings. See Figure 1.6 where the ± signs
indicate the orientation of the surface S. There are essentially two types of band crossings: in a
type I band crossing, two bands have different signs; and in a type II band crossing, two bands
have the same sign. But one can always transform a type II band crossing to a type I one by
flipping (say) the underneath band over locally (see Figure 1.7).
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Figure 1.6

Figure 1.7

Let us change all type II band crossings of S to type I ones in the way shown in Figure
1.7. For a type I band crossing, we change S by a handle-addition as shown in Figure 1.8.
Also in Figure 1.8, we see that locally, the resulting surface S′ can be obtained by means of
Seifert circles. We need to verify that S′ is obtained from S by a regular handle-addition. In
Figure 1.9, we draw the spine of S and the arc d in a neighborhood of the crossing where the
handle-addition is performed. Back to the regular plane projection of Wn described in Lemma
1.8, we can connect the two endpoints of the arc d on S by sliding them down along the braid
σ until they join the base point of W . This certainly gives us an unknotted circle. So, S′ is
obtained from S by a regular handle-addition.

Figure 1.8

Now we add a handle at each band crossing of S (they are all of type I) as in Figure 1.8.
The resulting surface is exactly SP where P is the induced regular plane projection of ∂S = K.
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This shows that a regular Seifert surface of a knot K is regularly S-equivalent to SP for a
certain regular plane projection P of K.

Figure 1.9
Let us now recall Reidemeister moves among regular plane projections of a knot. There are

three types of moves (see Figure 1.10).
It is understood that these moves are to be performed locally on regular plane projections

and no other strands are presented locally other than these depicted in the moves. A well-known
fact is that two regular plane projections of a knot are related by a sequence of Reidemeister
moves (see [9]).

Figure 1.10
We want to see how SP changes if the regular plane projection P is changed by a Reide-

meister move.
Suppose P is changed by a Reidemeister move and the resulting new regular plane projection

is P ′.
Case 1 A type 1 move. It is quite clear in this case that SP ′ is isotopic to SP .
Case 2 A type 2 move. In this case, although one needs to analyze several different

situations, it is not hard to see by drawing pictures that SP ′ can be obtained from SP by an
isotopy or a regular handle-addition or a regular handle-subtraction.
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Case 3 A type 3 move. It seems to be a surprise that in this case, SP ′ is isotopic to SP .
In Figure 1.11 (b) (resp. (c)), c1, c2, c3 are arcs on the Seifert circles of Figure 1.11 (a)

(resp. (d)), and b1, b2, b3 are half-twisted bands used to build SP (resp. SP ′). By sliding b3 up
we can isotope (b) to (c). This shows that SP ′ is isotopic to SP .

Figure 1.11
Thus, we see that if P and P ′ are two regular plane projections of a knot K, then SP and

SP ′ are regularly S-equivalent as regular Seifert surfaces of K.
Combining the above two steps, we have shown that any two regular Seifert surfaces of a

knot are regularly S-equivalent. This finishes the proof of Theorem 1.7.

2 Presentations of Knot Groups via Regular Seifert Surfaces

Suppose S is a free Seifert surface of a knot K. LetW =Wn be a spine of S, where n = 2g with
g = genus(S). Denote the oriented circles in W by a1, b1, . . ., ag, bg. They form a symplectic
basis (in that order) of S. Moreover, we assume that W is in the interior of S. The base point
of W is denoted by ∗.

Let S × [−1, 1] be a bicollar of S given by the positive normal direction of S such that
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S = S × 0. Let W± = W × {±1}, a±i = ai × {±1} and b±i = bi × {±1}, i = 1, . . . , g.
On ∂(S × [−1, 1]), there is an arc connecting the base points of W± whose interior has no
intersection with W±. Up to an isotopy, such an arc is unique. Denote this arc by c.

Since S3 \ S × [−1, 1] is a handlebody, its fundamental group is a free group. Think of c
as the base point and choose a basis x1, . . ., x2g for π1(S3 \ S × [−1, 1]), where g = genus(S).
Then, a+i (resp. a−i ) determines a word αi (resp. βi) in x1, . . ., x2g for each i. Call these words,
{αi, βi ; i = 1, . . . , 2g}, a set of induced words of the spine W .

Lemma 2.1 The fundamental group π1(S3 \K) has a presentation

〈 x1, . . . , x2g , z ; zαiz
−1 = βi, i = 1, . . . , 2g 〉,

where z is represented by a meridian of K.

Proof Let K′ be a simple closed curve on S parallel to ∂S = K and disjoint with W . We can
identify the knots K′ and K and think of m = {∗} × [−1, 1] ∪ c as a meridian of K′ or K. Let
us identify the fundamental group of S3 \S with the free group F generated by x1, . . ., x2g and
let z ∈ π1(S3 \K′) be represented by m. Then it is quite easy to see that π1(S3 \K) has the
presentation described in the lemma.

We now discuss how a set of induced words depends on the choices of bases of π1(S3 \ S)
and spines of S for a fixed free Seifert surface S.

Suppose we choose another basis for π1(S3 \ S), say y1, . . ., y2g. The set of induced words
of W in terms of this basis is {α′

i, β
′
i ; i = 1, . . . , 2g}. Let F ′ be the free group generated by y1,

. . ., y2g.

Lemma 2.2 There is an isomorphism φ : F ′ → F such that φ(α′
i) = αi, φ(β′i) = βi for each

i = 1, . . . , 2g.

Proof The basis transformation from {x1, . . . , x2g} to {y1, . . . , y2g} gives us the desired iso-
morphism.

Suppose we choose another spine W ′ of S and the set of induced words of W ′ in terms of
the basis {x1, . . . , x2g} is {α′

i, β
′
i ; i = 1, . . . , 2g}. The deformation retraction S →W gives us a

map W ′ → W which induces an isomorphism between the corresponding fundamental groups.
Let us assume that W ′ and W have the same base point ∗ and the map W ′ → W preserves
the base point. The induced isomorphism, φ : π1(W ′, ∗) → π1(W, ∗), corresponds to a basis
transformation for the free group π1(W, ∗). We can think of φ as an isomorphism

φ : F (α′
1, . . . , α

′
2g) −→ F (α1, . . . , α2g)

as well as an isomorphism

φ : F (β′1, . . . , β
′
2g) −→ F (β1, . . . , β2g),

where F (· · ·) is the free group generated by the corresponding letters.
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Lemma 2.3 The diagrams

F (α′
1, . . . , α

′
2g) −→ F (x1, . . . , x2g)

φ

� ∥∥∥∥
F (α1, . . . , α2g) −→ F (x1, . . . , x2g)

and

F (β′1, . . . , β
′
2g) −→ F (x1, . . . , x2g)

φ

� ∥∥∥∥
F (β1, . . . , β2g) −→ F (x1, . . . , x2g)

commute. Here the horizontal arrows are homomorphisms given by the induced words of (S,W )
and (S,W ′) respectively.

Proof This is quite clear.

In the case where S is a regular Seifert surface, i.e. S has a regular spineW , the fundamental
group of S3 \ S has a more or less natural basis and we can interpret a set of induced words of
W geometrically in terms of this natural basis.

By definition, a regular spine W ⊂ S3 is isotopic to the standard embedding. Thus, the
oriented circles a1, b1, . . ., ag, bg in W bound the oriented disks D1, D2, . . ., D2g−1, D2g,

respectively, such thatDi∩Dj = {∗} for i �= j. We assume that these disks have no intersections
with the arc c. Denote this collection of disks spanned by W by D.

Let F = F (x1, x2, . . . , x2g−1, x2g). We can record the intersection of a+1 with the disks
in D by a word α1 ∈ F . Assume a+1 intersects the disks in D transversally at finitely many
points. We name each intersection point of a+1 with Di by xi or x−1

i , according to whether the
intersection number is 1 or −1. Write down all these intersection points on a+1 successively from
left to right, beginning with the first one after the base point of a+1 in the positive direction.
This gives us a word α1 ∈ F . Similarly, we get words α2, . . ., α2g−1, α2g from b+1 , . . ., a+g ,
b+g respectively. Also, we get words β1, β2, . . ., β2g−1, β2g in F from a−1 , b−1 , . . ., a−g , b−g
respectively. Call this set of words {α1, . . . , α2g, β1, . . . , β2g} a set of dual words of the regular
spine W . Of course, it is also a set of induced words of the spine W .

We need to understand how a set of dual words change when the regular Seifert surface S
is changed by a regular handle-addition resulting a new regular Seifert surface S.

Choose a regular spine W for S, and let {αi, βi ; i = 1, . . . , 2g} be a set of dual words of
(S,W ). We draw the unknotted handle added to S as in Figure 2.1. Let S be the new regular
Seifert surface. The union of W and the circles ag+1 and bg+1 depicted in Figure 2.1 gives us
a regular spine W for S̄ where g = genus(S).

Let {ᾱi, β̄i ; i = 1, . . . , 2g + 2} be a set of dual words of (S,W ). Notice that by adding
some full twists to the band associated with ag+1 if necessary, we can assume that a+g+1 and
a−g+1 have no intersections with the disk bounded by ag+1.
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Lemma 2.4 For i = 1, . . . , 2g, ᾱi and β̄i are
words in x1, . . ., x2g, x2g+1 and they reduce to
αi and βi respectively when we set x2g+1 = 1.
Moreover, we have ᾱ2g+1 = γx2g+2, ᾱ2g+2 = 1,
β̄2g+1 = δ and β̄2g+2 = x2g+1 where γ and δ are
words in x1, . . ., x2g.

Proof All these conclusions are quite easy to see
from Figure 2.1 and the assumption that a±g+1

have no intersections with the disk bounded by
ag+1. Figure 2.1

3 Twisted Alexander Modules

Let us first recall the definition of the Alexander module of a knot K (see [10]). Denote by
M the knot complement S3 \ K. Let M̃ → M be the infinite cyclic covering. Consider the
homology group H1(M̃) = H1(M̃ ;Z). Let

t : H1(M̃) −→ H1(M̃)

be the isomorphism induced by a generator of the deck transformations. Then we can think of
H1(M̃) as a Z[t, t−1]-module. This is the Alexander module of K which is denoted by A(K).

Let us choose a regular Seifert surface S with a regular spine W for the knot K. Let
{αi, βi ; i = 1, . . . , 2g} be a set of dual words of (S,W ), where g = genus(S). Denote by vi,j
the sum of indices of xj in αi and ui,j the sum of indices of xj in βi. Then we have two 2g× 2g
matrices V = (vi,j) and U = (ui,j) with integer entries. The following facts are standard:

(1) V is the so-called Seifert matrix of the Seifert surface S;

(2) U = V T , where T stands for transpose;

(3) V − V T = diag
((

0 1

−1 0

))
, . . . ,

((
0 1

−1 0

))
; and,

(4) tV − V T is a presentation matrix of the Alexander module of K.

A generator of the order ideal of the Alexander module of K is called an Alexander polyno-
mial of K. We can take

�K(t) = det (tV − V T )

as an Alexander polynomial of K.

We need Fox’s free differential calculus to get a twisted version of Alexander modules and
Alexander polynomials (see [6]).

Let G be an arbitrary group, ZG the integer group ring of G. A derivation in ZG is an
additive homomorphism D : ZG→ ZG such that

D(g1g2) = D(g1) + g1D(g2)
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for any g1, g2 ∈ G. The set of all derivations in ZG can be thought of as a (left) ZG-module in
a natural manner. As for free groups, the structure of this module is quite clear.

Proposition 3.1 (Fox) Let F be the free group generated by x1, . . ., xn. Then all derivations
in ZF form a free ZF -module generated by n derivations ∂

∂xi
, i = 1, . . . , n which are uniquely

determined by the property
∂

∂xi
(xj) = δij , i, j = 1, . . . , n.

Here δij is the Kronecker symbol.

By Lemma 2.1, we have a presentation

π1(S3 \K) = 〈 x1, . . . , x2g , z ; zαiz
−1 = βi, i = 1, . . . , 2g 〉,

where
αi = αi(x1, . . . , x2g), βi = βi(x1, . . . , x2g), i = 1, . . . , 2g

are dual words of a regular Seifert surface of the knot K. We will consider the Jacobian matrices(
∂αi

∂xj

)
2g×2g

and
(
∂βi

∂xj

)
2g×2g

of the dual words.
Suppose ρ : π1(S3\K) → GL(n,C) is a representation. Such a representation is determined

by the matrices ρ(xi) for i = 1, . . . , 2g and ρ(z) and they should be subject to the relations in
π1(S3 \K). We denote by (

∂αi

∂xj

)ρ

and
(
∂βi

∂xj

)ρ

the 2ng × 2ng matrices obtained from the corresponding Jacobians by replacing each xi with
the n× n matrix ρ(xi). We construct a C[t, t−1]-module as follows:

Definition 3.2 The twisted Alexander module associated with a representation ρ of the knot
group π1(S3 \K) is a C[t, t−1]-module given by the presentation matrix

t · diag (ρ(z), . . . , ρ(z)) ·
(
∂αi

∂xj

)ρ

−
(
∂βi

∂xj

)ρ

.

We denote this module by A(K; ρ).

Theorem 3.3 The isomorphism class of the module A(K; ρ) is independent of the various
choices we made prior to Definition 3.2, i.e., A(K; ρ) is an invariant of the knot K.

Proof Let us first extend the definition of a twisted Alexander module to any free Seifert
surfaces by using their induced words. Let S be a free Seifert surface and W be a spine of S.
Choose a basis {x1, . . . , x2g} for π1(S3 \ S) and denote by {αi, βi ; i = 1, . . . , 2g} the set of
induced words. Then we can also consider the presentation matrix

t · diag (ρ(z), . . . , ρ(z)) ·
(
∂αi

∂xj

)ρ

−
(
∂βi

∂xj

)ρ

.
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Let us first consider a basis transformation in F (x1, . . . , x2g). Suppose the new basis is
{y1, . . . , y2g}. Then, we have (

∂αi

∂yj

)ρ

=
(
∂αi

∂xj

)ρ

·
(
∂xi

∂yj

)ρ

and (
∂βi

∂yj

)ρ

=
(
∂βi

∂xj

)ρ

·
(
∂xi

∂yj

)ρ

,

where
(

∂xi

∂yj

)ρ

is an invertible matrix. So this will not change the isomorphism class of A(K; ρ).
Next, we consider the case when the spine W is changed to another spine W ′. Using the

notations in Lemma 2.3, we have(
∂α′

i

∂xj

)ρ

=
(
∂α′

i

∂αj

)ρ

·
(
∂αi

∂xj

)ρ

and (
∂β′i
∂xj

)ρ

=
(
∂β′i
∂βj

)ρ

·
(
∂βi

∂xj

)ρ

.

Since the transformations from {α1, . . . , α2g} to {α′
1, . . . , α

′
2g} and from {β1, . . . , β2g} to {β′1, . . .,

β′2g} are the same and

ρ(z) · ρ(αi) · ρ(z−1) = ρ(βi), i = 1, . . . , 2g,

we have

diag (ρ(z), . . . , ρ(z)) ·
(
∂α′

i

∂αj

)ρ

· diag (ρ(z−1), . . . , ρ(z−1)
)
=
(
∂β′i
∂βj

)ρ

.

Thus, the isomorphism class of A(K; ρ) is also unchanged in this case.
At this moment, we can say that the isomorphism class of A(K; ρ) might only depend on

the choices of free Seifert surfaces. To prove that the isomorphism class of A(K; ρ) is invariant
under a regular handle-addition, we must use regular spines and their dual words.

Suppose the regular Seifert surface S is altered by a regular handle-addition yielding a new
regular Seifert surface S. We use the notations in Lemma 2.4.

Since ᾱ2g+2 = 1 and β̄2g+2 = x2g+1, ρ(x2g+1) must be the identity matrix En. We then
have

(
∂ᾱi

∂xj

)ρ

=


∗ 0(

∂ᾱi

∂xj

)ρ

2g×2g

...
...

∗ 0
∗ · · · ∗ 0 ρ(γ)
0 · · · 0 0 0

 =


∗ 0(

∂αi

∂xj

)ρ

2g×2g

...
...

∗ 0
∗ · · · ∗ 0 ρ(γ)
0 · · · 0 0 0


and

(
∂β̄i

∂xj

)ρ

=



∗ 0(
∂β̄i

∂xj

)ρ

2g×2g

...
...

∗ 0
∗ · · · ∗ 0 0
0 · · · 0 En 0

 =


∗ 0(

∂βi

∂xj

)ρ

2g×2g

...
...

∗ 0
∗ · · · ∗ 0 0
0 · · · 0 En 0

 .
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From these equalities, it is quite easy to see that the isomorphism class of A(K; ρ) is invariant
under a regular handle-addition. Thus, by Theorem 1.7, A(K; ρ) is a knot invariant.

Notice that if two representations ρ and ρ′ of the knot group are conjugate, then A(K; ρ)
and A(K; ρ′) are isomorphic. Also, if ρ reduces to 1-dimensional representations, then A(K; ρ)
is a direct sum of n copies of the (complexified) Alexander module A(K) ⊗ C.

Now we can have a twisted version of Alexander polynomials of knots.

Definition 3.4 A twisted Alexander polynomial of a knot K associated with a representation
ρ : π1(S3 \ K) → GL(n) is a generator of the order ideal of the twisted Alexander module
A(K; ρ).

We can take

∆K(t; ρ) = det
(
t · diag(ρ(z), . . . , ρ(z)) ·

(
∂αi

∂xj

)ρ

−
(
∂βi

∂xj

)ρ)
as a twisted Alexander polynomial of K associated with the representation ρ.

We can also have a twisted version of the potential function of a knot K.

Definition 3.5 Suppose ρ : π(S3 \ K) → SL(n,C) is a representation. Then the twisted
potential function of K associated with ρ is defined to be

ΩK(s; ρ) = det
(
s · diag (ρ(z), . . . , ρ(z)) ·

(
∂αi

∂xj

)ρ

− s−1 ·
(
∂βi

∂xj

)ρ)
.

Theorem 3.6 The twisted potential function ΩK(s; ρ) is a well-defined knot invariant.

Proof The proof of this theorem is essentially the same as the proof of Theorem 3.3. So we
will only give an outline. Notice that the notations in the proof of Theorem 3.3 will be used in
the follow discussion.

First, let us consider a basis transformation from {x1, . . . , x2g} to {y1, . . . , y2g}. Notice that
ρ is a representation into SL(n,C). So we have

det
((
∂xi

∂yj

)ρ)
= 1.

Thus ΩK(s; ρ) is invariant in this case.
Next, suppose a spine is changed to another one. We need to consider only a basis trans-

formation from {β1, . . . , β2g} to {β′1, . . . , β′2g}. Then, we have

det
((
∂β′i
∂βj

)ρ)
= 1.

Again, ΩK(s; ρ) is invariant.
Finally, assume that we have changed a regular Seifert surface by a regular handle-addition

resulting a new regular Seifert surface. Since

det
(

0 sρ(zγ)
s−1En 0

)
= 1,
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we see that ΩK(s; ρ) remains the same under a regular handle-addition.

Thus, ΩK(s; ρ) is a well-defined knot invariant.

4 Metabelian Representations and Examples

The presentation of the knot group π1(S3 \ K) described in Lemma 2.1 has an interesting
consequence. Let us first have a notion about group representations.

Definition 4.1 Let ρ be a representation of a group G. We call ρ a metabelian representation
if ρ([G,G]) is abelian.

The following result is essentially due to Fox (see [11]):

Proposition 4.2 The number of conjugacy classes of irreducible metabelian representations
of π1(S3 \K) into SU(2,C) is

1
2

(|∆K(−1)| − 1) .

Proof Consider the presentation of π1(S3 \K) given by Lemma 2.1:

〈 x1, . . . , x2g , z ; zαiz
−1 = βi, i = 1, . . . , 2g 〉,

where αi’s and βi’s are dual words of a regular Seifert surface of K. It is not hard to see that
x1,. . ., x2g are all commutators of π1(S3 \K). Let ρ : π1(S3 \K) → SU(2,C) be an irreducible
metabelian representation. Up to a conjugation, we can assume that

ρ(xi) =
(
λi 0
0 λ̄i

)
, i = 1, . . . , 2g.

Since ρ(zxiz
−1) should also be a diagonal matrix, we must have

ρ(z) =
(

0 1
−1 0

)
and

ρ(zxiz
−1) =

(
λ̄i 0
0 λi

)
, i = 1, . . . , 2g.

Putting these matrices into the defining relations of π1(S3 \ K), we see that λ1, . . ., λ2g

must satisfy the following equations:

λ
wi,1
1 λ

wi,2
2 · · ·λwi,2g

2g = 1, i = 1, . . . , 2g, (∗)

where

(wi,j)2g×2g = V + V T .

On the other hand, a non-trivial solution {λ1, . . . , λ2g} of the equations (∗) will certainly
produce an irreducible metabelian representation of π1(S3 \K) into SU(2,C).



376 X. S. Lin

With some linear algebra, one can see that the number of non-trivial solutions of (∗) is∣∣det (V + V T )
∣∣− 1 = |∆K(−1)| − 1.

But if {λ1, . . . , λ2g} is a non-trivial solution of (∗), then {λ̄1, . . . , λ̄2g} is another non-trivial
solution of (∗). The irreducible metabelian representations given by these two solutions re-
spectively are conjugate. Moreover, that is the only situation when the irreducible metabelian
representations produced by the non-trivial solutions of (∗) are conjugate. So there are totally

1
2

(|∆K(−1)| − 1)

conjugacy classes of irreducible metabelian representations.

Let ρ : π1(S3 \K) → SU(2,C) be a metabelian representation. We can always assume that
ρ(z) =

(
0 1

−1 0

)
. Then ρ̄ is the conjugation of ρ by

(
0 1

−1 0

)
.

Proposition 4.3 If ρ is a metabelian representation of π1(S3 \K) into SU(2,C), then the
coefficients of ∆K(t; ρ) and ΩK(s; ρ) are all real.

Proof Conjugating the presentation matrix of A(K; ρ) by

diag
((

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

))
amounts to changing ρ to ρ̄. But

∆K(t; ρ) = ∆K(t; ρ̄) = ∆K(t; ρ).

Therefore, the coefficients of ∆K(t; ρ) are all real. Similarly, we can show that the coefficients
of ΩK(s; ρ) are all real.

Let us now calculate twisted Alexander polynomials associated with representations into
SU(2,C) for the trefoil knot.

Consider a class of knots K(p, q) with p, q ∈ Z and p, q �= 0 constructed as follows:

Begin with a standard punctured torus in S3 and specify a spine of it consisting of two
oriented circles a and b (see Figure 4.1 (1)). Add p full twists to the band associated with a and
q full twists to the band associated with b (see Figure 4.1 (2)). Denote the resulting surface by
S(p, q). Then

K(p, q) = ∂S(p, q).

Here the signs of p and q are determined so that K(1, 1) is the right trefoil knot. Thus,
K(−1,−1) is the left trefoil knot. In general, K(−p,−q) is the mirror image of K(p, q).

The Seifert form of K(p, q) is

V =
(−p 1

0 −q
)
.

So, one can easily get pq(1− t)2 + t as an Alexander polynomial of K(p, q).
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Figure 4.1

Notice that S(p, q) is a regular Seifert surface of the knot K(p, q) and W = a ∪ b is a
regular spine of S(p, q). We have disks Da and Db such that Da ∩ S(0, 0) = ∂Da = a and
Db ∩ S(0, 0) = ∂Db = b. We may choose {Da,Db} as the collection D of disks spanned by W .
The induced words of the triple (S(p, q),W,D) are

α1 = x−p
1 x2, α2 = x−q

2 , β1 = x−p
1 , β2 = x1x

−q
2 .

We consider the right trefoil knot K(1, 1). The corresponding Jacobians are given by(
∂αi

∂xj

)
=
(−x−1

1 x−1
1

0 −x−1
2

)
,

(
∂βi

∂xj

)
=
(−x−1

1 0
1 −x1x

−1
2

)
.

Let ρ be a representation of the knot group of K(1, 1). Then, we have

det
(
t · diag(ρ(z), ρ(z)) ·

(
∂αi

∂xj

)ρ

−
(
∂βi

∂xj

)ρ)
= det

(
t

(
ρ(z) 0
0 ρ(z)

)(−ρ(x−1
1 ) ρ(x−1

1 )
0 −ρ(x−1

2 )

)
−
(
ρ(x−1

1 ) 0
E2 −ρ(x1x

−1
2 )

))
= det

(−tρ(zx−1
1 ) + ρ(x−1

1 ) tρ(zx−1
1 )

−E2 −tρ(zx−1
2 ) + ρ(x1x

−1
2 )

)
= det

((−tρ(zx−1
1 ) + ρ(x−1

1 )
) (−tρ(zx−1

2 ) + ρ(x1x
−1
2 )
)
+ tρ(zx−1

1 )
)

= det
(
t2ρ(zx−1

1 z) − tρ(z) + E2

)
.

Here we used the relation zx−1
1 x2z

−1 = x−1
1 .

Let us assume that ρ is a representation into SU(2,C). Then, up to a conjugation, we can
assume

Z = ρ(z) =
(
λ 0
0 λ̄

)
.

Also, we can write

X1 = ρ(x1), X2 = ρ(x2).
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With these assumptions, one can easily calculate the determinant and get (with K = K(1, 1))

∆K(t; ρ) = t4 − tr(Z)t3 + (1 + tr(Z−2X1))t2 − tr(Z)t+ 1.

Here tr(·) stands for the trace of the corresponding matrix.

Lemma 4.4 We have tr(Z−2X1) = 1 if ρ is an irreducible representation.

Proof We will use the trace identity

tr(XY ) + tr(XY −1) = tr(X)tr(Y )

for any X,Y ∈ SU(2,C). For example, we have

tr(Z−2X1) = tr(Z)2 − tr(X1).

The defining relations of the knot group of K(1, 1) is

zx−1
1 x2z

−1 = x−1
1 , zx−1

2 z
−1 = x1x

−1
2 .

Applying the trace function to these relations and using the trace identity, we find tr(X1) is
the solution of the equation

(x− 2)(x− tr(Z)2 + 1) = 0.

The solution x = 2 corresponds to the reducible representation with both X1 and X2 being the
identity matrix. So, for ρ to be irreducible, we must have

tr(X1) = tr(Z)2 − 1.

This finishes the proof.
Thus, we have

∆K(t; ρ) = t4 − tr(Z)t3 + 2t2 − tr(Z)t+ 1

with K the (right) trefoil knot and Z = ρ(z).
If ρ is an irreducible metabelian representation, we have tr(Z) = 0. So the associated

twisted Alexander polynomial becomes t4 + 2t2 + 1. On the other hand, if ρ is a reducible
representation with Z = ρ(z) =

(
λ 0

0 λ̄

)
, the associated “twisted” Alexander polynomial is

(λ2t2 − λt+ 1)(λ̄2 − λ̄t+ 1) = t4 − tr(Z)t3 + (tr(Z)2 − 1)t2 − tr(Z)t+ 1.

Finally, we notice that the identity

tr(X1) = tr(Z)2 − 1

in the proof of Lemma 4.4 shows that for ρ to be an irreducible representation, we must have

|tr(Z)| <
√

3.

Moreover, the space of conjugacy classes of irreducible representations π1(S3 \K) → SU(2,C)
with K = K(1, 1) the trefoil knot can be parameterized by tr(Z) with −√

3 < tr(Z) <
√

3.
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To see this, notice that the conjugacy classes of (X1,X2) with X1, X2 not simultaneously
diagonalizable are determined by tr(X1), tr(X2) and tr(X1X2), whereas all of them can be
expressed as functions of tr(Z). See Figure 4.2 where the vertical line segment corresponds to
the conjugacy classes of reducible representations and the semicircle to that of irreducible ones.

Figure 4.2 Figure 4.3
Let us now point out an example of a knot whose Alexander module is isomorphic to that

of the trefoil knot but whose twisted Alexander polynomial (associated with the only conjugacy
class of metabelian representations) is not the same as that of the trefoil knot.

The knot in our example is depicted in Figure 4.3 with an obvious regular Seifert surface.
It is quite easy to see that this knot and the trefoil knot have the same Seifert form.

We can write down the induced words as follows:

α1 = x1x
−1
2 x

−1
1 x

2
2x

−1
1 , β1 = x1x

−1
2 x

−1
1 x

2
2x

−1
1 x

−1
2 ,

α2 = x1x
−1
2 x

−1
1 x2x

−1
1 x

−1
2 x1, β2 = x1x

−1
2 .

We have calculated that the twisted Alexander polynomial associated with the only metabe-
lian representation is 4(1 + 2t2 + t4). Here one should notice that in this case, the twisted
Alexander module associated with the metabelian representation can be thought of as a module
over the ring Z[ω][t, t−1] with ω a primitive cubic root of the unit. Certainly, 4 ∈ Z[ω] is not
invertible. So, this is an example of two knots with the same Alexander module but different
twisted Alexander modules.

To finish this section, we show that twisted Alexander polynomials can be used to distinguish
K(p, q) and K(p′, q′) with pq = p′q′. Notice that such knots can not be distinguished by their
Alexander polynomials.

Similarly to the calculation in the case of p, q = 1, we have calculated that

∆K(p,q)(t; ρ) = ξpξ̄pζq ζ̄q(1 + 2t2 + t4),

for ρ, an irreducible metabelian representation into SU(2,C). Here(
ξp 0
0 ξ̄p

)
=

(
∂x−p

1

∂x1

)ρ

,

(
ζq 0
0 ζ̄q

)
=

(
∂x−q

2

∂x2

)ρ

.
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Denoting ξpξ̄pζq ζ̄q by cp,q = cp,q(ω) with ω4pq−1 = 1 and ω �= 1, we have

cp,q = (1 + ω + · · · + ω|p|−1)(1 + ω̄ + · · · + ω̄|p|−1)

· (1 + ω2|p| + · · · + ω2|p|(|q|−1))(1 + ω̄2|p| + · · · + ω̄2|p|(|q|−1)).

For example, we have

c1,4 = (1 + ω2 + ω4 + ω6)(1 + ω̄2 + ω̄4 + ω̄6)

= 4 + 3(ω2 + ω̄2) + 2(ω4 + ω̄4) + (ω6 + ω̄6)

and

c2,2 = (1 + ω)(1 + ω̄)(1 + ω4)(1 + ω̄4)

= 4 + 2(ω + ω̄) + (ω3 + ω̄3) + 2(ω4 + ω̄4) + (ω5 + ω̄5)

with ω15 = 1 and ω �= 1. ForK(1, 4) andK(2, 2) having the same twisted Alexander polynomial
in the ring Z[ω], the only possibility is that the two sets of real numbers {c1,4} and {c2,2} are
the same. This is certainly not the case.

Acknowledgment The author is grateful to Professor M. Freedman for discussions which
lead to some improvements of the argument in this revised version.
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