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ON THE ALGEBRAIC K-THEORY OF FORMAL POWER

SERIES

AYELET LINDENSTRAUSS AND RANDY MCCARTHY

Abstract. For R a discrete ring, and M a simplicial R-bimodule, we let
TR(M) denote the (derived) tensor algebra of M over R, and T π

R
(M) denote

the ring of formal (derived) power series in M over R. We define a natural

transformation of simplicial R-bimodules Φ : ΣK̃(R; ) → K̃(T π

R
( )) which

is closely related to Waldhausen’s equivalence K̃(Nil(R; ))
≃

→ K̃(TR( )).
We show that Φ induces an equivalence on any finite stage of the Goodwillie
Taylor towers of the functors at any simplicial bimodule. This is used to show

that there is an equivalence of functors ΣW (R; )
≃

→ holimnK̃(TR( )/In+1),

where W (R; ) is what the Goodwillie Taylor tower of K̃(R; ) converges to,

and for connected bimodules, also an equivalence ΣK̃(R; )
≃

→ K̃(TR( )).
Read in the opposite direction, the equivalence on the Taylor towers gives us

the values that the finite stages of the Goodwillie Taylor towers of the functor
of augmented R-algebras A 7→ K̃(A) take on augmented algebras which are of
the form TR(M) for a connected R-bimodule M .

1. Introduction

Throughout this paper, let R be a unital ring, and let M be a simplicial R bi-
module. We will relate the algebraic K-theory of parametrized endomorphisms (the
K theory of the category whose objects are pairs (P, f) with P a f.g. projective right
R-module and f : P → P ⊗R M a map of right R modules, with maps being maps
of the modules P which induce commutative diagrams) with the algebra T π

R (M) of
formal (derived) power series in M over R (and in the case of connected bimodules,
with the algebraic K-theory of the (derived) tensor algebra TR(M) which is weakly
equivalent to it).

The idea for the map we use to relate them came from Waldhausen [W1], where
he defines an equivalence

ΣK̃(Nil(R; ))
≃
→ K̃(TR( ))

One can model his K̃(Nil(R;M)) (see also [B]) as the algebraic K-theory of the full
subcategory of the category we used to define K(R;M) which consists of modules
P and maps m : P → P ⊗R M which are nilpotent, that is, for every p ∈ P some
power m⊗Ri vanishes on p (see equation (3.2) below for the meaning of m⊗Ri) .
In these terms, for a nilpotent map m : P → P ⊗R M , Waldhausen’s equivalence
sends

m 7→ (1 −m)−1 = Σ∞
i=0m

⊗Ri
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where the latter is extended TR(M)-linearly to be viewed as a map from P⊗RTR(M)
to itself, and the infinite sum makes sense because at every point in the domain of
the map, the infinite sum is in fact finite. This suggests that it would be interesting
to look at this map m 7→ (1 −m)−1 defined on the full K̃(R;M). Of course, the

map would not be able to land in K̃(TR(M)) anymore because of the problem of the
convergence of the infinite sum, but would land in some sort of (non-commutative,
unless R is commutative and M is symmetric with a single generator) localization
of it which inverts elements of the form 1−m from P ⊗R TR(M) to itself, and the
idea would be that one would get a diagram

ΣK̃(Nil(R;M))

incl∗

��

Waldhausen
// ΣK̃(TR(M))

��

K̃(R;M) // Appropriate localization of K̃(TR(M))

with the horizontal maps being weak equivalences.

Betley [B] began this program by showing that when R is a field andM a discrete

R-bimodule, the invariant we call K̃(R;M) is a localization in the sense of Neeman

and Ranicki [NR] of K̃(TR(M)), coming from inverting maps of the form 1−m in
the category of finitely generated projective TR(M) modules.

We will instead extend Waldhausen’s map by looking at formal power series
rather than at the tensor algebras. Thus for any unital ring R, we define a natural
transformation of simplicial R-bimodules

Φ : ΣK̃(R; )→ K̃(T π
R ( ))

and study its behavior on the Taylor towers in the sense of Goodwillie. The Good-
willie Taylor tower of the parametrized endomorphisms ΣK̃(R;M) can be described
(see [LMcC1]) as follows: we look at circular derived tensor products of i copies of
M ,

··
·

⊗̂
R

M ⊗̂R
M

⊗̂
R

M
⊗̂
R

M⊗̂R
M

⊗̂
R

where the cyclic group Ci acts by rotation. The n’th stage of the Goodwillie Taylor
tower of ΣK̃(R;M) is the homotopy inverse limit, taken over i ≤ n, of all the Ci

fixedpoints in the circular derived tensor product of i copies of M . When M = R,
this invariant was introduced in [BHM] and called TRn(R).

We obtain in Theorem 3.1 below that Φ induces equivalences

(1.1) Φn : ΣWn(R; )
≃
→ PnK̃(T π

R ( ))

for every n. When M is a connected simplicial bimodule, both of these Goodwillie
Taylor towers converge, resulting in Corollary 3.3 for connected M

Φ : ΣK̃(R;M)
≃
→ K̃(TR(M)).
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This is in keeping with the philosophy of extending Waldhausen’s map, as explained
above, since when M is connected the infinite sum Σ∞

i=0m
⊗Ri ‘homotopy converges’.

For a general bimodule M , by comparing K̃(T π
R ( )) to the more tractable func-

tors K̃(TR( )/In+1), we obtain as Corollary 3.2 the formula

ΣW (R;M)
≃
→ holimnK̃(TR(M)/In+1).

Another motivation for the result of Corollary 3.3 comes from [CCGH], where
Carlsson et al. show in Theorem 3 that for a simplicial space X ,

A(ΣX) ≃ Σ
∨

n

[(SX)∧n]hCn
.

But by James Milnor splitting, for X connected A(ΣX) = K(Σ∞(ΩΣX+)) ≃
K(TSSX), while Tom-dieck splitting (as in [BHM] for the case R = M , and more
generally as in [I]) gives ΣW (S, SX) ≃ Σ

∨
n[(SX)∧n]hCn

. In these terms, then, the
[CCGH] result could be written for connected X as

ΣW (S, SX) ≃ K(TSSX),

which is an FSP version (which we do not prove) of our result of Corollary 3.3 for
R = S and M = SX .

Read in the opposite direction, if we are interested in understanding the K-theory
of augmented simplicial R-algebras rather than the K-theory of endomorphisms, the
equation (1.1) proved in Theorem 3.1 (applied to connected M where T π

R (M) ≃
TR(M)) tells us the finite stages of the Goodwillie Taylor tower of the functor

M 7→ K̃(TR(M)) on simplicial R-bimodules (since the stages of the Goodwillie
Taylor are determined by their values on connected spaces).

It would be very interesting to know the Goodwillie Taylor tower of the functor
A 7→ K̃(A) on the category of augmented simplicial R-algebras. While that cannot
be deduced from our result, it is interesting to note that the Goodwillie Taylor
tower of a functor F from augmented simplicial R-algebras to spectra, when ap-
plied to algebras of the form TR(M), coincides with the Goodwillie Taylor tower of
the functor F (TR( )) from simplicial R-bimodules to spectra. This is because the
functor M 7→ TR(M) from R-bimodules to augmented R-algebras sends the initial
and final object 0 to the initial and final object R, coproducts to coproducts, and
more generally: co-Cartesian cubes to co-Cartesian cubes. Recall (see [G3]) that
Goodwillie constructs PnF (X) = hocolimi(T

i
nF )(X), and the iterated maps Tn in-

volve taking homotopy limits of the functor in question over co-Cartesian diagrams
of coproducts of X with the initial and final object, so this construction would be
the same for F on R-algebras and for F (TR( )) on R-bimodules. Therefore, in this
paper we determine the values that the finite Goodwillie Taylor approximations
PnK̃ take on augmented R-algebras which are of the form TR(M).

In the case M = R, the results described above are older. It has been known
from work by Grayson [Gr] in 1977, at least at the level of homotopy groups, that
the K-theory of endomorphisms

K(R;R) ≃ ΩK̃((1 + xR[x])−1R[x]),

where the localization was straightforward because it is done on the level of the
underlying commutative ring, and of course R[x] is the same thing as TR(R). For
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M = R, the special version

TR(R) ≃ holimnΩK̃(R[x]/(x)n+1

of our Corollary 3.2 was proved by Hesselholt [H] in the commutative case, and
follows from the work of Betley and Schlichtkrull in [BS] for general R.

2. Preliminaries

For R a unital ring and M an R-bimodule we can look at the tensor algebra
(with derived tensor products) of M over R,

TR(M) = R⊕M ⊕M⊗∧
RM ⊕M⊗∧

RM⊗
∧
RM ⊕ · · · .

Then TR(M) is an augmented R-algebra, and we call its augmentation ideal I.
Note that if M is an R-bimodule which is flat either as a right R-module or as a
left R-module, then the tensoring down map M⊗∧

Rn →M⊗Rn is a weak equivalence
for every n. This makes TR(M) weakly equivalent to the usual tensor algebra for
such M , which we can denote by TR(M).

We let PR denote the category of projective finitely generated right R-modules,
and MR denote the category of finitely generated right R-modules. For an aug-

mented R-algebra A
η
→ R with augmentation ideal I and an element P ∈ PR, we

will set

IP (A) = HomMR
(P, P ⊗R I) ∼= ker(HomMR

(P, P ⊗R A)
η∗

→ HomMR
(P, P )).

Following the construction in section I.2.5 of [DGMcC], if we let 1P denote the
identity element in Hom(P, P ), we can view 1P+IP (A) as a subset of HomMR

(P⊗R

A,P ⊗R A) as follows: for α ∈ IP (A), let

(1P + α)(p⊗ a) = (p⊗ 1 + α(p))a = p⊗ a+ α(p)a.

Viewed inside HomMR
(P ⊗R A,P ⊗R A), we can compose elements of 1P + IP (A);

applying this to 1P + α and 1P + β will give the composition

(2.1) P
1P+α
−−→ P ⊗A

(1P+β)⊗1A
−−−→ P ⊗A⊗A

1P⊗multA−−−→ P ⊗A.

sending

p 7→ p⊗ 1 + α(p) + β(p) + β(α(p)),

where β(α(p)) is interpreted using A-linearity as above. Note that if α, β send
P to P ⊗ I, so does α + β + β(α), so 1P + IP (A) is closed under multiplication.
If there is some reason that for any α ∈ IP (A), 1P + α + α2 + · · · is defined
(such as the augmentation ideal being nilpotent or the infinite sum converging for
another reason), it is in fact a group. We look at its classifying space. We can by

[DGMcC] model the reduced (overR) K-theory spectrum K̃(A) using Waldhausen’s
S-construction

{n 7→
∨

P∈S(n)PR

B.(1P + IP (A))}.

We will be looking at the augmented R-algebras TR(M)/In+1 and

T π
R (M) = limnTR(M)/In+1.

They both satisfy the condition that for any P ∈ PR and α ∈ IP (A), 1P+α+α2+· · ·
is defined in HomR(P, P ⊗R A).
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Proposition 2.1. The functor M 7→ K̃(TR(M)/In+1), as a functor from simplicial
R-bimodules to spectra,

1) commutes with realizations
2) satisfies the colimit axiom, that is: respects filtered colimits
3) preserves connectivity of maps
4) is -1-analytic

so K̃(TR(M)/In+1) = holimkPkK̃((TR(M)/In+1) for all simplicial R bimodules
M .

Proof. Condition 1) follows from chapter III of [DGMcC]. Conditions 2) and 3)
follow from the facts that by direct observation these properties are true for the
functor M 7→ TR(M)/In+1 and by [W2] they are true for the algebraic K-theory
of simplicial rings.

By taking resolutions if necessary and using the colimit axiom, to show 4) it
suffices to show that the functor of spaces

X 7→ K̃(TR(R̃[X+])/I
n+1)

is -1–analytic. To do this we’ll follow the process done for the case n = 1 in [McC]
(Proposition 3.2) which is essentially a modification of work by Goodwillie in [G2].

Let X be a strongly co-Cartesian S-cube of spaces. We may assume that the
natural maps are inclusions of sub-simplicial sets. Suppose that the maps X (∅)→
X ({s}) are ks–connected for each s ∈ S. We wish to show that the stabilization of
the cube of functors

∨

P∈PR

B.(1P + IP (TR(R̃[X+])/I
n+1))

∼=
∨

P∈PR

B.(1P +HomMR
(P, P ) ⊗Z Z̃[X+ ∨ X

2
+ ∨ · · · ∨ X

n
+ ])

is |S| − 1 + Σks Cartesian, since then the functor K̃(TR(R̃[X+])/I
n+1) will satisfy

E|S|−1(1 − |S|) and hence be −1 analytic. If we show that the cube B.(1P +

IP (TR(R̃[X+])/I
n+1)) is 2(|S| − 1) + (Σks) co-Cartesian for all P ∈ PR, then

since (homotopy) colimits commute and a q-reduced simplicial space of t-connected

spaces is (q + t)–connected,
∨

P∈S
(q)
• PR

B.(1P + IP (TR(R̃[X+])/I
n+1)) will be (q +

2(|S| − 1) + Σks)–co–Cartesian. By taking Ωq of these and the limit with respect
to q we will obtain a 2(|S| − 1) + Σks-co-Cartesian diagram of spectra which is
equivalent to a |S| − 1 + Σks–Cartesian diagram of spectra (see [G2], 1.19) and
hence the result.

We will prove that in general, for the S–cube X

B.(1P + IP (TR(R̃[X+])/I
n+1)) ∼= B.(1P +HomR(P, P )⊗Z Z̃[X+ ∨X

2
+ ∨ · · · ∨ X

n
+ ])

is 2(|S| − 1) +Σks co-Cartesian by induction on n. We recall that by Theorem 2.6
of [G2], to show an S-cube Y is 2(|S| − 1) + Σks–co-Cartesian is suffices to show

Induction Hypothesis 2.2. For each T 6= ∅ the T –cube ∂S−TY is 2(|T |−1)+Σt∈Tkt-
Cartesian.
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In proposition 3.2 of [McC] , the case for n = 1 was done. In particular, the cube

B.(1P +HomR(P, P )⊗Z Z̃[X+]) was shown to satisfy the induction hypothesis. We
have an extension of groups

(1P +HomMR
(P, P )⊗Z Z̃[Xn

+ ])

→ (1P +HomMR
(P, P )⊗Z Z̃[X+ ∨ X

2
+ ∨ · · · ∨ X

n
+])

π
→ (1P +HomMR

(P, P )⊗Z Z̃[X+ ∨ X
2
+ ∨ · · · ∨ X

(n−1)
+ ])

Taking the bar construction we obtain a Kan fibration of cubes. By induction,
the cube in the base satisfies the induction hypothesis, and so if the cube in the
fiber does also, then since homotopy pullbacks commute (and these are cubes of
connected spaces) the induction hypothesis will hold for the extension cube. The

cube B.(1P +HomMR
(P, P )⊗Z Z̃[Xn

+]) satisfies

B.(1P +HomMR
(P, P )⊗Z Z̃[Xn

+])
∼= B.(HomMR

(P, P )⊗Z Z̃[Xn
+])

∼= HomMR
(P, P ) ⊗Z B.(Z̃[Xn

+])
∼= HomMR

(P, P ) ⊗Z Z̃[(ΣX )n+].

Since ΣX is again a strongly co-Cartesian S–cube with the maps ΣX (∅)→ ΣX (s)
ks +1 connected for all s ∈ S, for all T 6= ∅, ∂S−TΣX is a T –strongly co-Cartesian
cube with kt+1 connectivity for all t ∈ T and so the induction hypothesis is satisfied
by example 4.4 of [G2] (for the functor X 7→ Z̃[Xn

+]). �

3. The Main Theorem and its Corollaries

Theorem 3.1. For R a unital ring, for every n there is a natural transformation
of functors of simplicial R-bimodules

Φn : ΣWn(R; )
≃
→ PnK̃(T π

R ( ))

such that Φn−1◦Σresn ≃ pn◦Φn, which is a homotopy equivalence at any simplicial
R-bimodule.

Note that for M which are flat on one side, making the tensoring down map
M⊗∧

Rn → M⊗Rn into a weak equivalence for every n, we get that TR(M) ≃
TR(M), so TR(M)/In+1 ≃ TR(M)/In+1 and T π

R (M) ≃ T π
R(M). Therefore by

[W2], K̃(TR(M)) ≃ K̃(TR(M)) and K̃(T π
R (M)) ≃ K̃(T π

R(M)).

For the definition and properties of the Wn, see [LMcC1]. It is the inverse limit
over all i ≤ n of the Ci fixedpoints in the cyclic derived tensor over R of i copies of
M which was described in the introduction. The map resn comes from restriction
of categories over which limits are taken from {1, 2, . . . , n} to {1, 2, . . . , n− 1}; pn
are the connecting maps of the Goodwillie tower of the functor.

In [LMcC1], it is shown that Wn(R; ) = PnK̃(R; ), from which it follows that

ΣWn(R; ) = Pn(ΣK̃(R; )). What Theorem 3.1 in fact shows is that there exists a
natural transformation inducing an equivalence between Goodwillie Taylor towers
of the functors ΣK̃(R; ) and K̃(T π

R ( )). Moreover, we can draw the following

Corollary 3.2. For any unital ring R, there is a natural equivalence of functors
of simplicial R-bimodules

ΣW (R; )→ holimnK̃(TR( )/In+1).
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Proof. (Of Corollary 3.2, given Theorem 3.1) We have, by Theorem 3.1 above, that
for any R-bimodule M ,

(3.1) ΣW (R;M)
def
= holimkΣWk(R;M) ≃ holimkPkK̃(T π

R (M))

def
= holimkPkK̃(holimnTR(M)/In+1).

But the Taylor tower of the functor K(holimnTR( )/In+1) can be determined by
applying it to M connected, where the map holimnTR(M)/In+1 → TR(M)/In0+1

can be as connected as we want it to be, and K̃ preserves connectivity of maps, so

PkK̃(holimnTR(M)/In+1) = holimnPkK̃(TR(M)/In+1),

which we can plug into equation (3.1) to get

ΣW (R;M) ≃ holimkholimnPkK̃(TR(M)/In+1)

≃ holimnholimkPkK̃(TR(M)/In+1) ≃ holimnK̃(TR(M)/In+1),

where the last equality is the convergence of the Taylor tower for K̃(TR( )/In+1)
fro Proposition 2.1 above. �

Corollary 3.3. If R is a unital ring, there is a natural equivalence of functors of
connected simplicial R-bimodules

Φ : ΣK̃(R; )→ K̃(TR( )).

Proof. (Of Corollary 3.3, given Theorem 3.1) The natural transformation Φ is that
introduced in the beginning of the proof of Theorem 3.1, which induces the Φn’s.
The point is that for connected M , both the Taylor tower of ΣK̃(R; ) converges

to ΣK̃(R;M) (since that of K̃(R; ) converges to K̃(R;M)), and the Taylor tower

of K̃(T π
R ( )) converges to K̃(T π

R (M)). Moreover, for connected M , the map

TR(M)→ T π
R (M)

is an equivalence. The fact that this map is an equivalence for connected M shows

that the map is order n for all n and hence PnK(TR( ))
≃
→ PnK(T π

R ( )) for all n,

so the convergence of the Taylor tower for K̃π(TR( )) for connected M is in fact

the convergence of the Taylor tower for K̃(TR( )) for such M .

The convergence of the Taylor tower for K̃(R; ) follows from Theorem 9.2 in

[LMcC1], which shows it for the special case of M = Ñ [X.] for X. connected,
N discrete. To go from that to the general case of M connected, observe that
K̃(R; ) ≃ K̃(R ⋉ Σ ) commutes with realizations by [W2]. The finite stages
of the Taylor tower Wn(R; ) commute with realizations as finite inverse limits
of the Ua(R; )Ca which are directly seen to commute with realizations, but for
M connected the map W (R;M) → Wn(R;M) is n-connected, that is, it can be
as connected as we like by taking n large enough, so W (R; ) commutes with
realizations for connected bimodules. We want to show that the map to the Taylor
tower K̃(R; )→ W (R; ) is an equivalence for any connected bimodule, and both
sides commute with realizations for such bimodules. But any connected bimodule
is homotopy equivalent to the realization of a bisimplicial set, assigning to each n
a simplicial set of the form covered by Theorem 9.2 in [LMcC1]: Given a general
connected simplicial R-bimodule M , we can first represent it by a reduced one
(that has only a single 0-simplex, the basepoint) by looking at the sub-simplicial
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bimodule M0 consisting of all the simplices in M all of whose vertices are at the
basepoint. The inclusion M0 →֒M is an equivalence on π0 by assumption, and on
all higher homotopy groups by the definition of the homotopy groups of a simplicial
abelian group. Then, replace M0 by its R⊗Rop-free simplicial resolution

˜R⊗Rop[M0] ←←
˜R⊗Rop[ ˜R⊗Rop[M0]]

←
←
←

˜R⊗Rop[ ˜R⊗Rop[ ˜R⊗Rop[M0]]] · · ·

in which each stage is of the form Ñ [X.] for N = R⊗Rop discrete and a connected
simplicial X..

The convergence of the Taylor tower for K̃(T π
R ( )) for M connected is due

to the following facts: by Proposition 2.1 above, the Taylor towers converge for
K̃(TR(M)/In+1), that is K̃(TR(M)/In+1) ≃ holimkPkK̃(TR(M)/In+1). The map
T π
R (M)→ TR(M)/In+1 is as connected as we want it to be for n large enough, and

since K̃( ) preserves connectivity of maps by [W2], we get that

K̃(T π
R (M)) ≃ holimnK̃(TR(M)/In+1) ≃ holimnholimkPkK̃(TR(M)/In+1)

≃ holimkholimnPkK̃(TR(M)/In+1) ≃ holimkPkK̃(T π
R (M)).

�

Proof. (Of Theorem 3.1) The augmentation ideal I for T π
R (M) → R for any M

is such that 1 + I is contained in the units of T π
R (M) and hence the fiber of the

map K(T π
R (M)) → K(R) can by section I.2.5 of [DGMcC] be modeled as the

stabilization in Waldhausen’s S-construction of the functor∨

P∈PR

B.(1P + IP (T
π
R (M))).

As before, IP (T π
R (M)) = HomMR

(P, P ⊗ I) is considered as the ideal given by the
kernel of the ring map HomMR

(P, P ⊗R T
π
R (M))→ HomMR

(P, P ).
We define a natural transformation

φ : ΣK̃(R;M)→ K̃(T π
R (M))

as the stablization of the natural transformation between the model of K̃(R;M) as

the stabilization of
∨

P∈PR
HomMR

(P, P⊗RM) and the above model of K̃(T π
R (M))

which for a map m ∈ HomMR
(P, P ⊗R M) sends

m 7→ (1 −m)−1 = Σ∞
i=0m

⊗Ri

The point is that 0-simplices in K̃(R;M) become 1-simplices in its suspension; each
such 1-simplex which comes from the 0-simplex m is mapped to a 1-simplex in the
classifying space corresponding to the element

Σ∞
i=0m

⊗Ri ∈ B1(1P + IP (T
π
R (M))) = 1P + IP (T

π
R (M)).

Note that, for example, the notation m⊗R2 means the composition

(3.2) P
m
→ P ⊗R M

m⊗1M−−→ P ⊗R M ⊗R M

and is therefore also in IP (T π
R ).

What we want to show is that this natural transformation φ induces an equiva-
lence of the Goodwillie Taylor towers at the basepoint ∗, and these are determined
by what they do on sufficiently connected spaces. Thus, the theorem will follow
once we show that φ induces an equivalence after one suspension. We would like to
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establish the result using analytic continuation as in [G3]. In order to do this we first

must observe that K̃(T π
R (B. )) commutes with realizations, has the limit axiom and

is -1–analytic. These are all true because the fact that T π
R (B. )→ TR(B. )/In+1

is n connected for all n implies K̃(T π
R (B. )) → K̃(TR(B. )/In+1) is n connected

for all n and these results hold for K(TR(B. )/In+1) for all n by Proposition 2.1
above.

Thus, we fix our M , which we may assume to be connected, and are interested
in the fibers of ΣK̃(R;M ⊕N)→ ΣK̃(R;M) and of K̃(T π

R (M ⊕N))→ K̃(T π
R (M))

in a 2n range when N is n–connected. Since we assume that M is connected,

TR(M)
≃
→ T π

R (M) and TR(M ⊕N)
≃
→ T π

R (M ⊕N) .

For the fiber of ΣK̃(R;M ⊕N)→ ΣK̃(R;M), we can describe it using [LMcC1]

which shows that for connected bimodules K̃(R, ) ≃W (R; ) (that is, for connected

bimodules the Taylor tower converges to K̃(R; )) together with the splitting of
Theorem 2.2 in [LMcC2] for W (R; ). We get that for M,N connected,

K̃(R;M ⊕N)

=
∞∨

a=1

∨

{f : {1,...,a}→{M,N} non periodic}/Ca

K̃(R; f(1)⊗∧
R · · · ⊗

∧
R f(a)),

where Ca acts on functions {1, . . . , a} → {M,N} by permuting {1, . . . , a} cyclically
before applying the function, and a function f is considered periodic if for some
b|a, the value of f(i) is determined by the remainder of i when divided by b, that
is: when if we write the values of f as a word of length a in M and N , that word is
a word of length b repeated a/b times. It follows from the discussion there that the

maps M →֒ M ⊕ N
p1
→ M embed K̃(R;M) as the direct summand corresponding

to the function from the set of one element 1 7→ M , so the homotopy fiber of the
projection map consists of all the other summands.

The fiber of K̃(TR(M ⊕ N)) → K̃(TR(M)) is exactly the algebraic K-theory
of TR(M ⊕ N) reduced over TR(M). We can compare this reduced algebraic K-
theory to that of another ring: Note that, by sending any terms with more than
one tensored entry in N to the basepoint, we have a 2n-connected multiplicative
map

TR(M ⊕N)
Ψ
→ TR(M)⋉ (TR(M)⊗∧

R N ⊗∧
R TR(M)).

We can put all this together in a commutative diagram

(3.3) ΣK̃(R;M)

φ

��

// ΣK̃(R;M ⊕N)

φ

��

// ΣK̃(R;N) ∨
∨
ΣK̃(R;⊗if(i))

α

��

K̃(TR(M))

=

��

// K̃(TR(M ⊕N))

Ψ∗

��

// K̃TR(M)(TR(M ⊕N))

β

��

K̃(TR(M)) // K̃(”TR(M)⋉N”) // K̃TR(M)(”TR(M)⋉N”)
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where

∨
ΣK̃(R;⊗if(i))

=

∞∨

a=2

∨

{f : {1,...,a}→{M,N} non periodic}/Ca

ΣK̃(R; f(1)⊗∧
R · · · ⊗

∧
R f(a))

and

”TR(M)⋉N” = TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)).

The left column maps to the center column by maps induced by the obvious inclu-
sions. Since the inclusions are all inclusions of retracts, the spectra in the center
column all split as the product of the spectrum on their left and the spectrum on
their right.

Our goal is to show that when N is n-connected, α is 2n-connected in equation
(3.3). This would mean that φ induces an equivalence of the Goodwillie differentials
at M . Since Ψ is 2n-connected, Ψ∗ and therefore also β are 2n-connected as well.
So our strategy will be to show that β ◦ α is 2n-connected, and deduce from that
that α is.

It is plausible that β ◦ α is 2n-connected, since we will now see that its target
and source have the same homotopy type in these dimensions. In the next sections,
we will see that β ◦ α actually induces a 2n-equivalence.

We can map

(3.4)

ΣK̃(R;N) ∨
∞∨

a=2

∨

{f : {1,...,a}→{M,N} non periodic}/Ca

ΣK̃(R; f(1)⊗∧
R · · · ⊗

∧
R f(a))

2n
→

∞∨

a=0

ΣK̃(R;M⊗∧

Ra ⊗∧
R N)

2n
→

∞∨

a=0

Σ ˜THH(R;M⊗∧

Ra ⊗∧
R N)

≃ THH(R; TR(M)⊗∧
R ΣN)

where the first map collapses all terms corresponding to f ’s which hit N more than
once, and since reduced K-theory sends 2n-connected bimodules to 2n-connected
spectra, it is 2n-connected; the second map is 2n-connected by [DMcC1], and the
last map is an equivalence by the linearity of THH in the bimodule variable and
since M is connected.

By [DMcC1],

K̃TR(M)(TR(M)⋉TR(M)⊗∧
RN⊗

∧
RTR(M) ≃ K(TR(M); ΣTR(M)⊗∧

RN⊗
∧
RTR(M))

2n
→ THH(TR(M); ΣTR(M)⊗∧

R N ⊗∧
R TR(M))

and by Lemma 4.2 below, there is a homotopy equivalence

THH(R; TR(M)⊗∧
R ΣN)

≃
→ THH(TR(M); TR(M)⊗∧

R ΣN ⊗∧
R TR(M)),

the same spectrum we ended up with in equation (3.4).
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4. Checking that the Equivalence is Induced by the Correct Map

This section is dedicated to finishing the proof of Theorem 3.1 by tracing the
maps in (3.3) to establish that β ◦ α in fact induces a 2n-equivalence for N n-
connected. We will first need some lemmas, which will all be proven in the last
section of the paper.

Lemma 4.1. Model K̃(R;M ⊕ N) by Waldhausen’s S-construction as the stabi-
lization of

∨

P∈S(n)PR

HomR(P, P⊗R(M⊕N)) ∼=
∨

P∈S(n)PR

(HomR(P, P⊗M)⊕HomR(P, P⊗N));

model, similarly,

K̃TR(M)(TR(M)⋉(TR(M)⊗∧
RN⊗

∧
RTR(M))) ≃ K̃(TR(M);B.(TR(M)⊗∧

RN⊗
∧
RTR(M)))

(this is the homotopy equivalence of [DMcC1]) as the stabilization of
∨

Q∈S(n)PTR(M)

HomTR(M)(Q,Q⊗TR(M) B.(TR(M)⊗∧
R N ⊗∧

R TR(M))).

Then if we start at the middle of the top row of diagram (3.3), follow the maps φ
and Ψ∗ down and then the map which goes right, the resulting map

K̃(R;M ⊕N)→ K̃TR(M)(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)))

≃ K̃(TR(M);B.(TR(M)⊗∧
R N ⊗∧

R TR(M)))

is induced by sending the suspension Σ(m,n) of each (m,n) ∈ HomR(P, P ⊗M)⊕
HomR(P, P ⊗N) to

(1P⊗RTR(M) −m)−1 ⊗ n

∈ HomTR(M)(P ⊗R TR(M), P ⊗R TR(M)⊗TR(M) TR(M)⊗∧
R N ⊗∧

R TR(M))

= HomTR(M)(P ⊗R TR(M), P ⊗R TR(M)⊗TR(M) B1(TR(M)⊗∧
R N ⊗∧

R TR(M)))

in the summand corresponding to Q = P ⊗R TR(M).

Lemma 4.2. Let R be a ring spectrum, and S an R-algebra. Let X be an S − R
bimodule. Then there is a homotopy equivalence

THH(R;X)
≃
→ THH(S;X ⊗∧

R S).

Lemma 4.3. Let R be a simplicial ring, S a simplicial R-algebra., and X a sim-
plicial S−R bimodule. Then if we construct THH(R;M) for an R-bimodule M via
the Waldhausen S-construction

{n 7→ ⊕P∈S(n)PR
HomS(n)MR

(P, P ⊗R M)},

the isomorphism

THH(R;X) ≃ THH(R;S ⊗∧
R X)

of Lemma 4.2 for the associated Eilenberg Mac Lane spectra is induced by the map

⊕P∈S(n)PR
HomS(n)MR

(P, P ⊗R X)→⊕Q∈S(n)PS
HomS(n)MS

(Q,Q⊗S (X ⊗∧
R S))

sending

α : P → P ⊗R X
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to

α⊗∧
R 1S : P ⊗∧

R S = P ⊗R S → P ⊗R S ⊗S X ⊗∧
R S ≃ P ⊗R X ⊗∧

R S.

Using these lemmas, we will be able to complete our proof of Theorem 3.1. The
[DMcC1] map

(4.1) K̃(TR(M);B.(TR(M)⊗∧
R N ⊗∧

R TR(M)))

2n
→ THH(TR(M);B.(TR(M)⊗∧

R N ⊗∧
R TR(M)))

is obtained simply by passing from
∨

to
⊕

,

∨

Q∈RTR(M)

HomTR(M)(Q,Q⊗TR(M) B.(TR(M)⊗∧
R N ⊗∧

R TR(M)))

→
⊕

Q∈RTR(M)

HomTR(M)(Q,Q⊗TR(M) B.(TR(M)⊗∧
R N ⊗∧

R TR(M))).

So by Lemma 4.1 above, the composition of Ψ∗ ◦ φ with the [DMcC1] linearization
map (4.1) sends the loop represented by the 1-simplex Σ(m,n) in the P summand
to something homotopic to the loop represented by the 1-simplex (1P⊗RTR(M) −
m)−1 ⊗ n in the P ⊗R TR(M) summand.

Alternatively, if we look at the map onto the cofiber on the top row of equation
(3.3) and then collapse to a point the terms with more than one N ,

(4.2) K̃(R;M ⊕N)

→ K̃(R : N) ∨
∞∨

a=2

∨

{f : {1,...,a}→{M,N} non periodic}/Ca

K̃(R; f(1)⊗∧
R · · · ⊗

∧
R f(a))

2n
→

∞∨

a=0

K̃(R;M⊗∧

Ra ⊗∧
R N) ≃

∞∏

a=0

K̃(R;M⊗∧

Ra ⊗∧
R N)

it is induced by the stabilization of the product of the maps
∨

P∈PR

(HomR(P, P ⊗M)⊕HomR(P, P ⊗N))→
∨

P∈PR

HomR(P, P ⊗M⊗∧

Ra⊗∧
RN)

sending

(m,n) 7→ m⊗a ⊗ n.

To see this, we use the fact that M is connected and N is n-connected for n which
we may assume to be at least 1, and therefore M ⊕N is connected as well. Then

(4.3) K̃(R;M ⊕N)
≃
→W (R;M ⊕N)

≃
∞∏

a=1

∨

{f : {1,...,a}→{M,N} non periodic}/Ca

W (R; f(1)⊗∧
R · · · ⊗

∧
R f(a))

2n
→W (R;M)×

∞∏

a=0

W (R;M⊗∧

Ra ⊗∧
R N)

≃
← K̃(R;M)×

∞∏

a=0

K̃(R;M⊗∧

Ra ⊗∧
R N)
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Here the first and last equivalences are by Theorem 9.2 in [LMcC1], the second
one is the splitting of Theorem 2.2 in [LMcC2], and the third map is 2n-connected
because if f hits N more than once, f(1) ⊗∧

R · · · ⊗
∧
R f(a) and therefore also W of

R with coefficients in it are 2n-connected.
We are, of course, quotienting this whole picture out by K̃(R;M). By following

the decomposition of Theorem 2.2 in [LMcC2] on the 0-dimensional part (as we did
before), we see that

(m,n) ∈ HomR(P, P ⊗M)⊕HomR(P, P ⊗N)

in K̃(R;M ⊕ N) in the beginning of equation (4.3) lands in the same place in

W (R;M) ×
∏∞

a=0 W (R;M⊗∧

Ra ⊗∧
R N) as {m} ×

∏∞
a=0{m

⊗a ⊗ n} in K̃(R;M) ×∏∞
a=0 K̃(R;M⊗∧

Ra⊗∧
R N) on the right. Since the spectra we are looking at increase

in connectivity, we know that their sum
∨

is homotopy equivalent to their product.
In (3.3), we are using the suspension of the map of (4.2),

ΣK̃(R;M ⊕N)→ Σ
∞∨

a=0

K̃(R;M⊗∧

Ra ⊗∧
R N)

and want to compose it with

Σ

∞∨

a=0

K̃(R;M⊗∧

Ra ⊗∧
R N)

2n+1
−→ Σ

∞∨

a=0

THH(R;M⊗∧

Ra ⊗∧
R N)

≃ THH(R; Σ(

∞⊕

a=0

M⊗∧

Ra ⊗∧
R N) ≃ THH(R; ΣTR(M)⊗∧

R N),

where the first map is that of [DMcC1], and the second uses the linearity of THH
in the bimodule coordinate.

So the suspension of (m,n) ∈ HomR(P, P ⊗M)⊕HomR(P, P ⊗N) lands in the
1-simplex corresponding to

∞∑

a=0

m⊗a ⊗ n = (1P −m)−1 ⊗ n ∈ HomR(P, P ⊗R TR(M)⊗∧
R N).

When we went the Ψ∗ ◦ φ route, instead of getting

(1P −m)−1 ⊗ n ∈ HomR(P, P ⊗R TR(M)⊗∧
R N) ⊂ THH(R; TR(M)⊗∧

R N)

we got

(1P⊗RTR(M) −m)−1 ⊗ n

∈ HomTR(M)(P ⊗R TR(M), P ⊗R TR(M)⊗TR(M) TR(M)⊗∧
R N ⊗∧

R TR(M))

⊂ THH(TR(M); TR(M)⊗∧
R N ⊗∧

R TR(M)).

But by Lemmas 4.2 and 4.3 above, that is exactly what we need to assure ourselves
that up to homotopy, the map β ◦ α is the 2n-equivalence we were after. �

5. Proofs of the Technical Lemmas

Lemma 4.1
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Proof. The discussion will be done over PR, i.e. in the first stage of the Waldhausen
S-construction, but can be carried over to S(n)PR for any n.

The map

ΣK̃(R;M ⊕N)
φ
→ K̃(TR(M ⊕N))

was induced by stabilizing the map

Σ
∨

P∈PR
HomR(P, P ⊗R (M ⊕N))

≃

��

//
∨

P∈PR
B.(1P + IP (TR(M ⊕N)))

Σ
∨

P∈PR
(HomR(P, P ⊗M)⊕HomR(P, P ⊗N))

sending Σ(m,n) to the 1-simplex

1P + (m+ n) + (m+ n)⊗2 + (m+ n)⊗3 + · · · ∈ B1(1P + IP (TR(M ⊕N))).

Now Ψ∗ : K̃(TR(M ⊕N))→ K̃(TR(M)⋉ (TR(M)⊗∧
RN ⊗∧

R TR(M))) is induced by

Ψ∗ :
∨

P∈PR

B.(1P + IP (TR(M ⊕N)))

→
∨

P∈PR

B.(1P + IP (TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M))))

so the original 1-simplex Σ(m,n) will be further sent to the 1-simplex

1P +

∞∑

i=1

m⊗i +

∞∑

j,k=0

m⊗j ⊗ n⊗m⊗k

= (1P −m)−1 + (1P −m)−1 ⊗ n⊗ (1P −m)−1.

Until now, we have looked at K-theory of R algebras reduced over R, which
we can emphasize by writing K̃R( ). To get K̃TR(M)(TR(M) ⋉ (TR(M) ⊗∧

R N ⊗∧
R

TR(M))), we look at the homotopy fiber of the map

K̃R(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)))→ K̃R(TR(M)).

Since K̃R(TR(M)) is a direct summand in K̃R(TR(M)⋉(TR(M)⊗∧
RN⊗∧

RTR(M))),

so is the homotopy fiber of the map, and when we map K̃R(TR(M)⋉ (TR(M)⊗∧
R

N ⊗∧
R TR(M))) down to the homotopy fiber, the image of K̃R(TR(M)) is iden-

tified to a point. So on the pre-stabilized version,
∨

P∈PR
B.(1P + IP (TR(M) ⋉

(TR(M) ⊗∧
R N ⊗∧

R TR(M)))), we know that anything coming from K̃R(TR(M)),
that is

∨
P∈PR

B.(1P + IP (TR(M))), has to be identified to a point in the homo-
topy fiber.

But note that if we have a subgroupH ⊂ G and collapse the subspace BH ⊂ BG
to a point, in the quotient space BG/BH , for any h ∈ H , g ∈ G the 1-simplex
corresponding to hg is homotopic via the 2-simplex (h, g) (one of whose edges has
been collapsed to a point) to the 1-simplex corresponding to g.

Since

K̃R(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)))

≃ K̃R(TR(M))× K̃TR(M)(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M))),
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when we pass from K̃R to K̃TR(M), we are identifying K̃R(TR(M)) to a point, and
so at each level of the stabilization, the image of our original 1-simplex Σ(m,n) will
be homotopic (rel endpoints) to the image of the 1-simplex

1P + (1P −m)−1 ⊗ n ∈ B1(1P + IP (TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)))).

Now when K̃TR(M)(TR(M) ⋉ (TR(M) ⊗∧
R N ⊗∧

R TR(M)) is represented as the
stabilization of

∨

Q∈PTR(M)

B.(1Q + IQ(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)))),

(note that the augmentation ideal here refers now to augmentation over TR(M)),
then 1P + (1P −m)−1 ⊗ n should be viewed there not as an R-linear map

P → P ⊗R (TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)))

but as its TR(M)-linear extension to

P ⊗R TR(M)→ (P ⊗R TR(M))⊗TR(M) (TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)))

∼= P ⊗R (TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M))).

(Extending maps TR(M)-linearly gives an isomorphism

HomR(P, P ⊗R S)↔ HomTR(M)(P ⊗R TR(M), (P ⊗R TR(M))⊗TR(M) S). )

So now our original simplex Σ(m,n) maps to the 1-simplex

1P⊗RTR(M) + (1P⊗RTR(M) −m)−1 ⊗ n

∈ B1(1P⊗RTR(M) + IP⊗RTR(M)(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M))))

in the
∨

Q∈RTR(M)
B.(1Q + IQ(TR(M) ⋉ (TR(M) ⊗∧

R N ⊗∧
R TR(M)))) model of

K̃TR(M)(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M)) which admits a homotopy equivalence

K̃(TR(M);B.(TR(M)⊗∧
R N ⊗∧

R TR(M)))

≃
→ K̃TR(M)(TR(M)⋉ (TR(M)⊗∧

R N ⊗∧
R TR(M)))

described in section 4 of [DMcC1]. Following the description there, this homotopy
equivalence is the stabilization of a given map

∨

Q∈PTR(M)

HomTR(M)(Q,Q⊗TR(M) B.(TR(M)⊗∧
R N ⊗∧

R TR(M)))

→
∨

Q∈PTR(M)

B.(1Q + IQ(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M))))

which sends the 1-simplex corresponding to

α : Q→ Q⊗TR(M) (TR(M)⊗∧
R N ⊗∧

R TR(M))

= Q⊗TR(M) B1(TR(M)⊗∧
R N ⊗∧

R TR(M))

to

1Q + α ∈ 1Q + IQ(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M))

= B1(1Q + IQ(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M))).
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Therefore the loop corresponding to 1P⊗RTR(M) + (1P⊗RTR(M) − m)−1 ⊗ n in

K̃TR(M)(TR(M)⋉ (TR(M)⊗∧
R N ⊗∧

R TR(M))) comes from

(1P⊗RTR(M) −m)−1 ⊗ n : P ⊗R TR(M)→ TR(M)⊗∧
R N ⊗∧

R TR(M).

�

Lemma 4.2

Proof. We look at the bisimplicial spectrum

(p, q) 7→ S∧p ∧X ∧R∧q ∧ S

with the usual Hochschild-type face and degeneracy maps in both simplicial di-
mensions. Realizing first in the p-direction, we get that the realization of this
bisimplicial set is

THH(R;S ⊗∧
S X) ≃ THH(R;X);

realizing first in the q-direction, we get that the realization is

THH(S;X ⊗∧
R S).

�

Lemma 4.3

Proof. We will use the methods of [DMcC2]: we can model the product S∧p ∧X ∧
R∧q ∧ S of the Eilenberg Mac Lane spectra associated to the simplicial rings and
modules by

(5.1)

hocolim→

X
Map(S⊔X ,

∨

A

HomS(Q1, Q0)[S
X1

0 ] ∧ · · · ∧ HomS(Qp, Qp−1)[S
X1

p−1 ]

∧ HomR(P0, Qp ⊗S X)[SX1
p ] ∧ HomR(P1, P0)[S

X2
0 ] ∧ · · ·

∧ HomR(Pq , Pq−1)[S
X2

q−1 ] ∧ HomS(Q0, Pq ⊗R S)[SX2
q ])

where X = (X1
0 , . . . , X

1
p , X

2
0 , . . . , X

2
q ) is a collection of finite sets and where

A = (Q0, . . . , Qp, P0, . . . , Pq), Qi ∈ PS , Pi ∈ PR.

Boundary maps in this model come from the composition of maps, smashed with
identity maps of a bimodule as needed, and the smashing together of spheres.

For the elements we need to represent, we can take p = q = 0 and X i
j = ∅ ∀i, j,

and look at elements in

HomR(P,Q ⊗S X) ∧HomS(Q,P ⊗R S)

for P ∈ PR and Q ∈ PS .
Given a P ∈ PR and an R-linear map α : P → P ⊗R X (where the S − R-

bimodule X is viewed as a left R-module through the unit map R → S), we look
at Q = P ⊗R S ∈ PS . Since

Q⊗S X = (P ⊗R S)⊗S X ∼= P ⊗R X,

α can be viewed as an element of HomR(P,Q ⊗S X). Consider

(α,1Q) ∈ HomR(P,Q ⊗S X) ∧ HomS(Q,P ⊗R S).
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If we map S∧p ∧X ∧R∧q ∧ S → THH(R;X ⊗∧
S S), then (α,1Q) will be identified

with the composition

P
α
→ Q⊗S X

1Q⊗S1X

−−→ (P ⊗R S)⊗S X ∼= P ⊗R X

that is, with α ∈ HomR(P, P ⊗R X). But if we map S∧p ∧ X ∧ R∧q ∧ S →
THH(S;X ⊗∧

R S), (α,1Q) will be identified with the composition

Q
1Q

→ P ⊗R S
α⊗R1S−−→ (Q⊗S X)⊗R S

which is the map we called

α⊗∧
R 1S ∈ HomS(P ⊗

∧
R S, P ⊗∧

R X ⊗∧
R S).

This argument holds for any stage n in the Waldhausen S-construction. �
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