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Introduction

Plumbing a Hopf band and doing a Stallings twist on the fibre-surface of a given
classical fibred link are two powerful ways to produce other such links [6,15]. In fact
Harer has shown that every classical fibred link can be constructed from the unknot
using these two operations and their inverses. Melvin and Morton have proved using
geometric arguments that there exist genus-two fibred classical knots that cannot be
obtained by plumbing only (cf. [10]).

We consider in this paper the analogue of these two operations for high
odd-dimensional knots. For instance Durfee [3] has shown that all knots that arise
as the link of an isolated singularity of a complex hypersurface are obtained by
plumbing. For this purpose it is necessary to widen the usual definition of a
(2k— l)-dimensional knot to include (k — 2)-connected (2k— l)-dimensional differen-
tiable submanifolds N of S2k+1. A knot is called spherical if N is homeomorphic to
£2fc-i jhg ciassicai concepts of Mink' and 'knot' correspond therefore in high
dimensions to those of'knot' and 'spherical knot' respectively. This is the framework
adopted in [3].

The use of the A-cobordism theorem is essential in many of the constructions so
that we never consider 3-dimensional knots (that is, the case k = 2).

We obtain in particular the following results.
A simple high-dimensional fibred knot is obtained by plumbing if and only if it

admits a unimodular triangular Seifert matrix (Proposition 2.4).
Let / be an integer greater than 1 and let K be a (4/— l)-dimensional spherical knot

obtained by plumbing with positive definite intersection form /; then /is an orthogonal
sum of copies of the form F8 (Corollary 3.4).

For every k ^ 3 there exist (2k— l)-dimensional spherical fibred knots of arbitrarily
high genus that cannot be obtained by plumbing and twisting (Theorem 5.5).

This result has the following classical counterpart.
Either there are unimodular Seifert forms that cannot be realised by fibred classical

knots or there are fibred knots that cannot be obtained by plumbing and twisting only.
Finally we remark that the question whether all high-dimensional simple fibred

knots are obtained by plumbing and deplumbing has an interesting formulation in
terms of matrices, the answer to which we do not know.
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1. Definitions

In what follows, k will denote any positive integer different from 2. A knot is an
oriented smooth (2k— l)-dimensional submanifold K of the oriented (2k+\)-
dimensional sphere S?k+1 such that AT is (A:-2)-connected.

The knot K is called spherical if AT is (A: — l)-connected (K is then homeomorphic
to Szk~x using Poincare duality and Smale's theorem). For k = 1, by convention, a
knot is what is usually called a link and a spherical knot a ' true' (one component)
knot.

Let TK be a tubular neighbourhood of Kin S2^1; TK is a trivial disc bundle over
K. (To see this, note that the only obstruction to trivialise this bundle is its Euler class
and that AT may be thought to be embedded in U2k+1. Using excision it is easy to see
that the Euler class of the normal bundle to an oriented submanifold of Un is zero.)

The knot K is simple if it bounds a (fc-l)-connected oriented 2fc-dimensional
manifold F2k embedded in S*k+1, that is, if K possesses a (k— l)-connected Seifert
'surface'.

We say that K is fibred if there is a trivialisation <f>:TK-* KxD2 such that

pr2o<f>:dTK • S1

extends to a locally trivial fibration of S2k+1\fK over S1. The inverse image of a point
is (after collaring) a Seifert surface for Availed the fibre-surface. Note that if ATis simple,
the infinite cyclic cover of K is (k— l)-connected (cf. [9, §2c]) and has the homotopy
type of the fibre-surface, so that the fibre-surface is necessarily (k— l)-connected.

Let F be a Seifert surface for K; the normal bundle to F in S?k+1 is trivial and
one can define two maps i+ and L:F-+ 52fc+1\/ 'which send any point of Fto a push-off
of itself along the positive and negative direction of the bundle, respectively. (These
directions are determined so that for all elements a and b of Hk(F),

^(a;i+b)-^(a;Lb) = IF(a:b),

where i f denotes linking number in S2k+1 and IF is the intersection form of F.)
To any Seifert surface F for K there corresponds a Seifert form

A:Hk(F)xHk(F)->Z

defined by A(x;y) = S?(x;i+y). Denote by AT the transpose of A and recall that
A + (— l)kAT = IF. Hence if AT is simple, AT is spherical if and only if IF is unimodular.
Recall also that if K is any fibred knot with fibre-surface F, the monodromy of K
induces an automorphism h of Hk(F) which satisfies

A(x;y) = (-\)k^AT(x;hy), h{x;y) = A((\-h)x;y).

The following lemma is well known for spherical knots, and its proof extends
without change to the simple knots considered here (see [3, statement and proof of
Theorem 3.1]).

LEMMA 1.1 (Levine, Durfee). Let k be an integer, k ^ 3.

(a) A simple (2k— \)-knot K is fibred if and only if K bounds a Seifert surface F
such that the associated Seifert form is unimodular. Such a surface F is a fibre-surf ace
forK.
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(b) There is a one-to-one correspondence between

(i) isotopy classes of (k—\)-connected (2k)-dimensional submanifolds F of
52*+1 such that
K=dF is non-empty and (k—2)-connected,
K is fibred and F is a fibre-surface for K;

(ii) isotopy classes of simple (k—2)-connected fibred knots in S2k+1;
(iii) congruence classes of integral unimodular bilinear forms defined on a free

Z-module of finite rank.

The correspondence associates to each fibre-surface F the boundary of F and the Seifert
form of F respectively.

Let K be a simple fibred knot with fibre-surface F; if K is spherical, rk Hk{F) is
even. This is because if A: is odd then A + ( - 1 ) * AT is unimodular and skew-symmetric,
and hence an orthogonal sum of hyperbolic planes, but if k is even, it is an even
unimodular symmetric form (cf. [13, Chapter VJ). For K spherical we define the genus
of # tobe | rk / / f c CF) .

2. Plumbing

Let Kx and K2 be two simple knots in S2**1 bounding (fc-l)-connected Seifert
surfaces Fx and F2. Divide S210*1 into two hemispheres Bx and B2 intersecting in
a (2fc)-dimensional sphere S. Let *F: Dk x Dk -^ S be an embedding and suppose
that

(i) ^ € = ^ , 1 = 1 , 2 ,

(ii) F1(]S = F20S = F10F2 = V(DkxDk),

(iii) ¥(8/)* x Dk) = 9FX n *¥(Dk x Dk) and ¥(!>* x dDk) = dF2 0 ¥(Z)* x Dk),

(iv) the orientations on Fx and F2 match on ^(Z)* x Dk).

Denote by Fx • F2 the submanifold of S2k+1 obtained from Fx U F2 after smoothing
the corners (Ft • F2 depends of course on *P and the decomposition

DEFINITION. FX D F2 is said to be obtained by plumbing together the surfaces Fx

and F2.

PROPOSITION 2.1. IfFx and F2 are fibre-surfaces for Kx and K2, then K = d(Fx D F2)
is a simple fibred knot with fibre-surface Fx Q F2. Conversely, if K is fibred with fibre-
surface Fx • F2, then Kx and K2 are fibred with fibre-surfaces Fx and F2.

IfAt denotes a Seifert matrix for Ft,i= 1,2, there is a basis ofHk(Fx • F2)for which
the Seifert matrix of Fx • F2 looks like

'Ax 0 \ (Ax B
B A2) ° r \0 A2

for some integral matrix B.

Proof. For k = 1 (that is, classical links) see [4]. Let k ^ 3 and set

and Yt = ^ I
then

K = Yx U Y2, Yx n Y2 = V(dDk x dDk).
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As dF1 = Y1 \Jy{aD><XdDk)V@D'cxDk) and k > 3, n^YJ ~ n^QFJ = 1; a similar
result holds for I T ^ ) . The exact sequence of the pair (dF{, Yt) shows that H}{Y^ = 0
for j ^k-2. Using Mayer-Vietoris for 6(i*i • F2) = 7X U Y2 it is then easy to see that
H}(K) = 0forj^k-2 and hence that Kis (A:-2)-connected.

To show that F = Fx D F2 is the fibre-surface for K, note that F is clearly
(fc - 1 )-connected and that Hk{F) ~ Hk(FJ © /^&(F2). The map i+: F -> SP2*+1\irpushes
all the points of I into one of the two hemispheres; suppose it is B2. For ^ e/^(i^) ,
i = 1,2, choose a cycle z{ with support in Ft; zx and i+ z2 have their support contained
in two distinct balls of 5r2*+1 separated by a small push-off of the sphere S, therefore
&{xl;i+xJ = 0.

The matrix A for the Seifert form of F relative to the bases of Hk(FJ and
Hk(F2) is

A -
A - B A2

for some rk Hk(F2) x rk Hk(F2) matrix B.
If /+ pushed 2 inside ^ we would have

A - (Al B

In both cases dety4 = de t^ i detA2. Using Lemma 1.1, this shows that F is a
fibre-surface if and only if both Fx and F2 are fibre-surfaces.

There are up to isotopy only two fibred classical links that possess a fibre-surface
F with rk HX{F) = 1; they are the right- and left-handed Hopf links respectively which
each bound an annulus S1 x D2 embedded in S3 with ± 1 full twist. One can start from
them and by repeated plumbing construct many new fibred knots or links. We shall
see that the situation is entirely analogous in high dimensions for simple fibred knots.

Let k ^ 3 and Kbe a (not necessarily fibred) simple (2k- l)-dimensional knot and
suppose that K bounds a (k— l)-connected surface F such that rk Hk(F) = 1; F is
obtained by attaching a A>handle on a 2fc-dimensional disc D2k (cf. [14, Theorem 1.1]
the fact that k # 2 is crucial here). The core of the handle together with a fc-disc inside
D2k can be budged to an embedded differentiable sphere Sk and one can show that
F is diffeomorphic to the total space of the normal disc bundle to Sk in F (cf. [17,
proof of Theorem 1] for details).

Note that Fis embedded in IR2*+1, therefore the associated vector bundle over Sk

is oriented and stably trivial. Recall that such bundles are classified according to the
following lemma.

LEMMA 2.2. Let £ be a k-dimensional oriented stably trivial vector bundle over Sk.
Let D(Q denote the total space of the associated disc bundle and I, its zero section. Let
e1 be the trivial bundle of rank 1 over Sk. Then

(i) £, © s1 is trivial;

(ii) ifk is even, £ is classified by its Euler number e(£,) that can take any even value.

Let F be any embedding of D(Q in S?k+l and let a be the homology class in Hk(F)
carried by the image ofY.; then e(£) = 2!£{a\ i+ a).

(iii) Ifk = 1, 3, 7, then £ is trivial.
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(iv) If k is odd, k ^ 1, 3, 7, then £ is either the trivial or the tangent bundle over
Sk (and these are distinct). Let F and a be as in (ii); it is the trivial bundle if $£{a\ i+ a)
is even, the tangent bundle if £?{a\ i+a) is odd.

Proof, (i) See [8, Lemma 3.5].

(ii) Let ^ n : SO(«) o> SO(« +1) -• Sn be the usual fibration of Sn. There is a one
to one correspondence between oriented rank / bundles £ over Sk and elements
XffleHfi.^ SO(/) [16, Theorem 18.5]. By (i), oriented stably trivial rank k bundles
over Sk are classified by elements of Ker i*: n ^ SO(fc) -> ITfc.i SO(/c+1). Now <f>k

(respectively <t>k-i) induces the following horizontal (respectively vertical) exact
sequence.

JA-1

Coherent orientations give identifications of nfc S
k and n ^ . j S*"1 with Z such that

3(1) = / (T) , where T is the tangent bundle over Sk. For any rank k bundle £ over Sk,
Jk-\X(£) = e(Q is the Euler number of £, so that./*..! o3 is multiplication by 1 +(— 1)*
[2, IV. 1.9]. If k is even, this shows that Iny^ = 0, j k _ x \ Ker /„ is injective and the
Euler number can take any even value.

To show the relation between the Euler number and &(a;i+a), recall that
S£(a\ i+ a) — S£(a\ i_ a) = I(a; a), where /denotes the intersection form of F; for k even,
<£(a\ i+ a) = -y(i+a;a) = - <£{a\ i_a) so that 2&(a; i+ a) = I(a; a) = e(£).

(iii) This is similar to [2, Theorem IV 1.10].

(iv) As £, 0 e1 is isomorphic to Sk x Uk+1, there exists a nowhere zero cross-section

Sk >s* xSk^Skx Uk+\ x >(x; a(x))

such that <x(x) is orthogonal to all elements in the fibre of £, over x. Conversely, given
such a map a: Sk -> Sk, the orthogonal hyperplanes to (x; <x(x)) in {x} x Rk+1 form the
total space of a stably trivial rank k bundle over Sk. The map 3: IT^S*) -> Hk_1 SO(k)
sends the homotopy class of a to the classifying element #(<*), so that £, depends only
on the degree of a.

Decompose 52fc+1 as (Dk+1 x Sk) M5*x s* (Sk x Dk+1). Since for k ^ 2 all embed-
dings of Sk in 5^*+1 are isotopic (cf. [5, Theoreme d'existence]), we may suppose that
the embedding of Fin 52*"1"1 sends the zero section to Sk x {0}; a e Hk(F) is represented
by S* x {0} and i+ a by

Sk > Sk x Sk, x • (x; a(x)).

It follows easily that y(a;i+a) = dega.

Given peHk SO(k+1), the automorphism of the trivial bundle

Sk x uk+1 • Sk xUk+1, (x; y) > (x; p(x) • y)

describes an isomorphism between £ and a bundle pd; associated to the map

p<x: Sk • Sk, x > p(x) • OL(X)
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whose degree isyfc(/?)+deg a. (To see this, decompose pen into the diagonal embedding
of Sk in Sk x Sk followed by

Sk x Sk >S*, (x;y) >p(x)-a(y)

whose bidegree is clearly (jk(p)\ dega).) Since \mjk has index 2 in 11*05*) for k odd,
k -^ 1, 3, 7 [2, Corollary IV 1.11], one can change the degree of a to 0 or 1 without
modifying the isomorphism type of the bundle <!;. Therefore it suffices to check that
the trivial (respectively tangent) bundle of Sk is given by a map a of degree 0
(respectively 1). The constant map corresponds clearly to the trivial bundle while the
identity map corresponds to the normal bundle to the diagonal of SkxSk; this is
precisely the tangent bundle of Sk.

If A: ^ 3, Lemma 1.1 shows that for e — + 1 there is, up to isotopy, a unique surface
F in 52*+1 such that K= dF is (fc-2)-connected, vkHk(F) = 1 and the associated
Seifert 'matrix' is (e); moreover F is a fibre-surface for the fibred knot K. By
Lemma 2.2, for k ^ 2, F is the total space of the tangent disc bundle of Sk and K is
the total space of the corresponding sphere bundle.

DEFINITIONS. We shall call such a surface F a Hopf band and its boundary K a
Hopf knot.

A knot K is said to be obtained by plumbing if there is a sequence of (2fc)-manifolds
Fo, Flt...,F8 embedded in S*k+1 such that FQ = D2k, dFs = K and Fi+1 is obtained by
plumbing together Ft and a Hopf band.

REMARKS, (i) By Proposition 2.1, K is a simple fibred knot.

(ii) For k # 2, any (k— l)-connected (2fc)-manifold with boundary is obtained
from D2k by attaching handles of index k (cf. [14, Theorem 1.2]), so that any simple
(2k— l)-knot bounds a Seifert surface obtained by 'abstract' (that is non-embedded)
plumbing.

PROPOSITION 2.4. Let K be a simple (2k- \)-knot in S2**1. Ifk^3,K is obtained
by plumbing if and only if it admits a unimodular lower triangular Seifert matrix. For
k= 1, the above condition is necessary.

Proof. Let K be obtained by plumbing, let F be the fibre-surface and let A be
the corresponding Seifert matrix. We shall prove the proposition by induction on
r = rkHk(F). If r = 1, it is clear; if r > 2, let F' be the fibre-surface obtained by
plumbing the first r— 1 Hopf bands and let A' be the corresponding Seifert matrix.
By induction A' is, with respect to some basis, a lower triangular matrix with ± 1 on
the diagonal; A looks like

0\
0
0A'

0

or

,000. . .0

where e = ± 1 (cf. Proposition 2.1). In the first instance A is lower triangular and
unimodular. In the second, we can perform row and column operations on A to
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eliminate the ô  in the last column at the expense of changing the last row to

Conversely, suppose that k ^ 3 and K has a lower triangular Seifert matrix A with
± 1 on the diagonal. Let F be the corresponding Seifert surface. As dety4 = +1, F
is a fibre-surface (Lemma 1.1). We shall show by induction on p = T\LA that A is the
Seifert matrix of a knot obtained by plumbing. If p = 1, it is evident; if p ^ 2, by
induction, we can represent the (p — 1) x (p — 1) matrix A' on the upper left-hand corner
of A as the Seifert matrix of a fibre-surface F' obtained by plumbing Hopf bands.
The matrix A looks like

/

A'

i ""I • • • "*/> — 1

0

0
e /

with respect to some basis {e^'l of Hk(F'). Look at the unimodular intersection
pairing J:Hk(F';dF')xHk{F')^Z and let ceHk(F';dF') be the unique relative
homology class such that J(c;et) = (%, i= 1, ...,p— 1. Represent c by a proper em-
bedding of a A:-disc Dk in F' (that is, 3D* is embedded in 9f"). This is possible since
the connectedness hypotheses on F' and Si7' imply that Ylk(F';dF') ~ Hk (F';dF');
therefore any element of Hk(F';dF') can be represented by a proper map
/ : Dk -• F' which we can homotop, using Whitney's theorems, to a proper embedding
of Dk in F'. Look at the trivialisation Dk x Dk of the normal disc bundle to this
embedding in F' and fatten it to a 2k +1 ball B on the positive side of F'. Use this
Dk x Dk and the ball B to plumb an e-handed Hopf band and call F the resulting
surface.

CLAIM. The matrix A is the Seifert matrix of F.

As a basis for Hk(F), take the previous basis of Hk(F') together with the homology
class ep of the core of the new handle. Denote by A the Seifert matrix of F relative
to this basis. Proposition 1.2 shows that

/

\ x1...xp_1

°\
0

0

where xteZ.
The integers xt are determined by the intersection form I? of F. On one hand we

have
^ ( ^ ; ^ ) = /(c;ei) = a< for/= 1, ... p-l;

on the other hand,

Ip(ep; ed = A(ep; et) + ( - 1 )* A(et; ep) = xt.

This shows that A — A and proves the claim.
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We have shown so far that there exists a surface F obtained by plumbing Hopf
bands which has the same Seifert form as F. As both surfaces are (k- l)-connected,
they are isotopic (cf. Lemma 1.1) and Kis obtained by plumbing.

3. Intersection forms of spherical knots obtained by plumbing

Let K be a simple spherical fibred (2k— l)-dimensional knot with fibre-surface F
and Seifert form A. Let IF denote the intersection form on Hk(F). The forms A and
IF are unimodular and satisfy IF = A + (— \)k AT, so that IF is (— l)fc-symmetric. If
K is further assumed to be obtained by plumbing, then A is triangulable.

There are therefore two natural questions we can ask. What (— l)fc-symmetric
unimodular bilinear forms S can be decomposed as S = A + (— \)k AT

(a) with A unimodular?

(b) with A unimodular and triangulable?

Question (a) is the subject of [7] and we investigate question (b) below relying on the
ideas used there. The investigation breaks into three parts: (I) k odd, (Ha) k even and
S indefinite, (lib) k even and S definite. We shall denote by Tx 0 T2 the orthogonal
sum of the forms T± and T2 and by nTthe orthogonal sum of n copies of the form T.

(I), where k is odd. Here the form S is unimodular and skew symmetric and

/ o r
is therefore an orthogonal sum of hyperbolic planes ( . „ ). As

0 1
- 1 0

all such forms satisfy (a) and (b).

1 0
- 1 1

1 0
1 - 1
0 1

(II), where k is even. Let S be a unimodular bilinear form defined on a free Z-module
L. We have the following obvious condition.

Condition 3.1. There exists a unimodular triangular form A such that S = A + A T

if and only if S is symmetric and there exists a basis {et} of L such that S(eu e{) = ± 2.
In particular S is even (that is, S assumes only even values).

(Ha), where k is even and S is indefinite. If S is even symmetric unimodular and
indefinite, then ± 5 is isometric to an orthogonal sum of m copies of the hyperbolic

plane H = ( j and n copies of the form

2
- 1

0
0
0
0
0

\ 0

- 1
2

- 1
0
0
0
0
0

0
- 1

2
- 1

0
0
0
0

0
0

- 1
2

- 1
0
0
0

0
0
0

- 1
2

- 1
0

- 1

0
0
0
0

- 1
2

- 1
0

0
0
0
0
0

- 1
2
0

0
0

- 1
0
0
2

(cf. [13, chapter V, Theorem 5]). As can be easily checked, H does not decompose
as H = A + AT with A unimodular. On the other hand we show the following.
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PROPOSITION 3.2. If S is an even symmetric unimodular indefinite form of rank
greater than 2, there exists a unimodular triangular form A such that S = A + AT.

Proof. By the above classification, it suffices to prove the proposition for 2H, 3H,
F8 and H H F8. Let us denote by Ea(i;j) the elementary operation which consists of
adding a times the i-th row and column to the>th row and column.

(a) The sequence Ex{2\ 1), EX(A\ 3), Ex{\;4), £x(3; 2) changes 2H to

which satisfies condition 3.1.

(b) The above sequence followed by £'1(6; 5), E^l; 6) changes 3H to

0 2 \
0 1
0 0
0 2

0 0 0 0
\ 2 1 0 2

2 1
1 2

which satisfies 3.1.

(c) T8 obviously satisfies 3.1.

(d) The sequence £x(2; 1), £r

condition 3.1.
; 2) also changes H ffl F8 to a matrix that satisfies

(lib), where k is even and S is definite. After a change of signs in S, we may suppose
that S is positive definite. Let S be a (non-necessarily unimodular) even and positive
definite symmetric form defined on a free Z-module L and let R(S) denote the ' root
system' of S, that is, R(S) = {xeL\ S(x;x) = 2}. Positive definite forms S such that
R(S) generates L are completely classified: they are orthogonal sums of the (irreducible)
forms corresponding to the root systems: An (n ̂  1), Dn (n ^ 4), E6, E7, Es (cf. [12]
for details and the following facts about these root systems). These forms have
discriminants n+1,4, 3,2 and 1 respectively and the form associated to Es is precisely
F8. These considerations lead to the following.

PROPOSITION 3.3. Let S be a positive definite unimodular form. There exists a
unimodular triangular bilinear form A such that S = A+AT if and only if S is an
orthogonal sum of copies o/F8.

Proof As F8 decomposes as A 4- A T with A unimodular and triangular, the same
remains true for any orthogonal sum of F8. Conversely, if S = A + AT with A
unimodular and triangular, condition 3.1 shows that the root system of S forms a
basis for L. The above classification shows that S is an orthogonal sum of forms
corresponding to the root systems in the list. If det S = 1 then the only form that can
appear as an orthogonal summand is F8.
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COROLLARY 3.4. Let k be an even integer greater than 3 and let K be a
(2k— \)-dimensional spherical knot obtained by plumbing with positive definite inter-
section form I; then I is an orthogonal sum of copies of the form T8.

We conclude this section by a summary of the results contained in [7, 1] that we
shall use in the sequel.

LEMMA 3.5. Let S be a unimodular symmetric form defined on a free Z-module
L. There exists a unimodular bilinear form A such that S = A + AT if and only if there
exists an isometry t:L-*L of S such that \ — t is an isomorphism.

Kervaire calls such an isometry a perfect isometry. Note that an isometry t is
perfect if and only if its characteristic polynomial / satisfies #(1) = ± 1 .

Even symmetric positive definite unimodular forms of rank at most 24 are
characterised by their root systems [12,13]. There are 1 form in dimension 8
corresponding to Es, 2 forms in dimension 16 corresponding to 2Ea and D16,24 forms
in dimension 24, one of which is associated with the 'Leech lattice' A in IR24 and has
an empty root system.

According to [7], the root systems of those that admit a perfect isometry are exactly
the following ones:

1 in dimension 8, namely Es,

1 in dimension 16, namely 2E6,

10 in dimension 24, namely A2A, 2Al2, 2>A8, AA%, 6A^ \2A2, 6D4, 4£6, 3£8, 0 .

Following Eva Bayer, we call an integer m mixed if m is not of the form pr or 2pr

with p prime. Recall that <Dm(l)Om(— 1) = ± 1 if and only if m is mixed, where <Dm

denotes the m-th cyclotomic polynomial of degree (j>(m). We quote the following
theorem from [1].

THEOREM [1, Theorem 1.1 and Corollary 2.3]. Ifm is a mixed integer such that
<f>(m) is divisible by 8 there is an even unimodular positive definite symmetric form S of
rank <j>(m) together with an isometry t of S whose characteristic polynomial is Om. If,
moreover, m is square-free and <f>(m) > 8, then S does not represent 2.

4. Examples of spherical simple fibred knots not obtained by plumbing

The preceding section shows that the intersection form can give an obstruction
for a spherical knot to be obtained by plumbing only if k is even and the form is
definite. The above results can none the less be applied for k odd if one assumes that
the symmetrised Seifert form is also unimodular.

Case I, in which k is even and greater than 3. Let S be one of the forms in dimension
24 that possess a perfect isometry (except 3F8) or one of the forms not representing
2 whose existence is given by Eva Bayer's theorem. The associated perfect isometry
yields a unimodular form A such that S = A + AT and therefore, as k is even, k > 3,
a simple spherical (2k— l)-dimensional knot (Lemma 1.1) which cannot be obtained
by plumbing (Corollary 3.4).

Case II, in which k is odd and greater than 1. The same ideas can in principle be
used for (2A;-l)-spherical knots with k odd. If such a knot is fibred it admits a
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unimodular Seifert matrix A such that det(A — AT) = ± 1. However, S = A + AT is
no longer necessarily unimodular. Also, there is an isometry / of S (given in matrix
form by P = (AT)~1A) which satisfies S = AT(l + P) so that detS = ±det(l+i>).
As AT{\— P) = AT — A, det(l— P)= ±1 , and t is again perfect. The converse is
unfortunately not true; if Ms a perfect isometry of a symmetric form S such that
det(l + f) = detS, we can still define a unimodular form A by the equation
S = AT(\ + t) which will satisfy S = A + AT and det(A-AT) = ± 1, but there is in
general no way to be sure that A is integral. This will, however, be the case if we
assume S to be unimodular and 1 + t to be an isomorphism. We set accordingly the
following definition.

DEFINITION. Let 5" be a symmetric unimodular form defined on a free Z-module
L. An isometry / of S is doubly perfect if 1 + / and 1 — t are isomorphisms of L.

Note that an isometry of S is doubly perfect if and only if its characteristic
polynomial x satisfies /(I) = ±1 and /(— 1) = ±1 .

Here is an easy way to construct doubly perfect isometries.

LEMMA 4.1. IfS admits a perfect isometry, S\BS admits a doubly perfect isometry.

Proof. Let / be a perfect isometry of S and define u\L@L-+L®L by
u(x;y) = (y;tx);u is clearly an isometry of S ES S and 1 — u2 = (1 — t) © (1 — t) so that
1 — u and 1 + u are isomorphisms.

The geometric realisation of these forms gives the following.

THEOREM 4.2. There exist for any k ^ 3 simple spherical fibred (2k— \)-knots of
arbitrarily high genus that cannot be obtained by plumbing.

Proof. Let S be one of the 9 forms of dimension 24 that possess a perfect isometry
(with 3F8 excluded). By Lemma 4.1, S El S admits a doubly perfect isometry, so there
exists a unimodular form A such that A+AT = S \BS and det A — AT = ±1 . As
k ^ 3, Lemma 1.1 associates to A a simple fibred knot K which is spherical for k both
even and odd. If the connected sum of a number of copies of K were obtained by
plumbing, there would exist an integer n such that n(S El S) is isomorphic to 6nT8

(Proposition 3.3), but this would contradict the uniqueness of decomposition of
positive definite forms (cf. [11, Theorem 6.4]).

REMARK. Applying Eva Bayer's theorem to the values m = 35, 51, 55, one
obtains forms of rank 24, 32 and 40 that admit (since m is mixed) a doubly perfect
isometry. Realising these forms and taking connected sums one can produce for any
k ^ 3 and / ^ 3 simple spherical fibred ilk— l)-knots of genus 4/ that cannot be
obtained by plumbing.

5. Twisting

Let * be a base point of Sk and let p: Sk -* SO(fc+1) be a differentiable map such
that p is the identity near *. The composition p:Dk-*Dk/dDk^* SO(k+ 1) gives a
diffeomorphism

T(p): Sk x Dk +Sk xDk, (x;y) >(p{y) • x;y)
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which is the identity near 5* x 8D*. Let p be a point on dDk and c (respectively d)
denote the fc-chain Sk x {p} (respectively {*} x Dk} of SkxDk; (T(p) — \)d is a fc-cycle
of Sk x Dk and is therefore homologous to flc for some fie Z.

CLAIM. fi=jk(p)-

(For a definition of yfc, see Lemma 2.2.) Now 71(/>) induces a diffeomorphism of

5* x Dk/Wk whose matrix in homology is ( ) with respect to the basis Sk x {p},

{*} x D*/a/>*, so that (° A ^ ) Q = fiQ, and thereforeyfc(p) = fi.

Let AT be a simple fibred (2k— l)-dimensional knot in 52fc+1 bounding a fibre-surface
F2* and let C be the image of an embedding of Sk in F. Set a = J£?(C; /+ C) and suppose
that the normal bundle to C in F is trivial. Recall (Lemma 2.2) that this is always
the case for k = 1, 3, 7 and is equivalent to a = 0 for k even, a = 0(2) for k odd,
k # 1, 3, 7. Using a trivialisation of the tubular neighbourhood z(C) of C in F and
the diffeomorphism 7T(/>), we get a diffeomorphism D(C;p) of F which is the identity
outside T(C) . We call such a diffeomorphism a Z)e/w fwwf along C.

LEMMA 5.1. D(C;p) induces the transvection

Hk(F) >Hk(F), *. >x+JMl(x; C) C.

Proof. By transversality x can be represented by a cycle z which meets T(C) in
meridinal discs {pt}xDk with total algebraic intersection number equal to I(x,C);
(D0(C;p)—\)z is then a cycle in T(C) and the above claim shows that it is homologous
to I(x; C)jk(p) C. This proves the lemma.

Let h: F-* Fbc the monodromy of AT; h' = hoD(C,p) is the monodromy of a new
fibred knot K bounding a simple fibre-surface F' in a (2k + l)-dimensional manifold
M. We shall show that M is obtained by surgery in the following sense. Let y be the
image of an embedding of Sk in 5^*+1 and let TV be a tubular neighbourhood of y.
Now Af is diffeomorphic to the torus Sk x Dk+1 and there are two well-defined classes
m and / of Hk(dN) called the meridian and preferred longitude respectively, such that
S£(m;y) = +1 and m is represented by a fc-cycle in dN which bounds in N, and
/(m;/) = + l and / is represented by a fc-cycle which bounds in S 2 ** 1 ^ . Let
(j>:dDk+1 x Sk -> QN be a diffeomorphism and consider the manifold

M = (52fc+1\iv") Ut(Dk+1 x Sk).

Call fi (respectively X) the homology classes carried by dDk+1 x {pt} (respectively
{pt} x Sk) in Hk(dDk+1 x S*); these are the meridian respectively longitude of the ' new'
torus Dk+1 x Sk. Now 0 induces an isomorphism Hk(dDk+1 x Sk) -* Hk(dN) such that

<f>+(k) = cm + dl, ad-bc=\. Call K C) the surgery matrix
\0 dj

associated to <f>.

PROPOSITION 5.2. M is a manifold obtained by surgery on the k-sphere i+(C) with
surgery matrix

hip) 1/
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Proof. M\fK> is diffeomorphic to Fx [0, l]/hoD(C;p) and therefore to
(F*[0A]U¥Fx[b\])/h, where

We may identify i+(C) with {C}x{\} and N with T(C)X[Q,$. AS Z)(C;/>) is the
identity outside T(C), it follows that M\fK> is diffeomorphic to S?k+l\fK surgered
along N. To determine the surgery matrix, take a transverse fc-disc S to C in T(C); the
meridian of the new torus is // = 5 x {0} U bd 6 x [0, £] U <5 x {*} and the attaching map
if/ sends ̂  to 8 x {0} U bd S x [0, £) u D(C\p) 6 x {£}. This chain is homologous in dN to
w+A(p) C+, where C+ is a push-off of C at level \. As -£?(/+ C; C+) = i?(C; i+ C) = a,
it follows that </>m(jj) = m+jK(p)(l+am). In a similar way <j>m(X) = C = l+oon.

COROLLARY 5.3. Af is again S2"*1 provided that

1 +jic(p) a = ± 1 and C is unknottedfor k = 1.

The condition above implies that, for k ^ 3, M is a homology sphere that
is simply connected and for fc = 1 a lens space such that HY(M) = 0; M is therefore
at least homeomorphic to S2*"**1. A more precise analysis of the attaching map shows
that M is in fact diffeomorphic to S12*"1"1.

DEFINITION. A Dehn twist along C satisfying the condition of Corollary 5.3 is
called a Stallings twist along C. (Stallings was the first to consider these twists for
classical links in [15].)

Observe that if jk{p) = 0 or C = 0 in Hk(F) the intersection forms and algebraic
monodromies of F and F' are the same; this implies that if K and K' are spherical,
the Seifert forms are the same and, as both F and F' are simple, K and K' are isotopic
for k ^ 3 by Lemma 1.1.

Recall (proof of Lemma 2.2) that lv\jk = 0 if k is even, so that Stallings twists
do not yield new fibred knots in these dimensions.

If jk(p) T* 0 the allowable values of a are at most 0, ±1 , ±2. This shows that to
perform a non-trivial Stallings twist on F there must exist a non-zero homology class
CeHk(F) such that A(C; C) = 0, ± 1, ±2, where A denotes the Seifert form of F.
We shall show that there exist Seifert forms for which this condition is never satisfied.
I thank Eva Bayer for suggesting the following approach.

DEFINITION. Let S be a positive definite symmetric form on a free Z-module L,
define m(S) to be the integer mina;eL\{0}S

r(.x:;;c).

LEMMA 5.4. If S is an even symmetric unimodular positive definite form, so is
S (g) T8: ( I (g) Z8) x (L <g) Z8) ->Z;ift is a doubly perfect isometry ofS, then T=t®id
is a doubly perfect isometry of S®TS; furthermore, the following equality holds:

Proof. The tensor product of two unimodular forms defined on a free Z-module
is again unimodular [11, Lemma 5.3]; T is clearly an isometry of S®TS and the
equation I ± r = ( l ± / ) ® 1 shows that T is doubly perfect. The equality
m(S <g> T8) = 2m(S) is due to Steinberg (cf. [11, Theorem 9.6]).
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In [6], John Harer proves that every classical fibred link can be obtained by
plumbing, doing Stallings twists and deplumbing. He also asks [6, §5] whether
deplumbing is necessary. We shall show that there exist high-dimensional fibred knots
that cannot be obtained by plumbing and twisting only. As the method involved is
algebraic, we get only a partial result for classical knots.

THEOREM 5.5. For every k ^ 3 there exist spherical fibred knots of arbitrarily high
genus that cannot be obtained by plumbing and twisting. For k = 1, either there are
unimodular Seifert forms that cannot be realised by fibred classical knots or deplumbing
is a necessary operation.

Proof. Take one of the forms S admitting a doubly perfect isometry and such
that m(S) ^ 4 (cf. §4). By lemma 5.4 m(S® F8) ^ 8 and there exists a unimodular
form A such that A — AT is unimodular and A + AT = S®T8. For k ^ 3 we realise
this form by a fibre-surface F c S*k+1 (Lemma 1.1); K = 9Fis a spherical fibred knot.
If it were obtained by plumbing and twisting, there would exist a sequence
Fo = £)2k, Fx, ..., F8_x, F8 ='F where Fi+1 would be obtained from Ft using one of the
two operations. Suppose that F were obtained from Fs_x by doing a Stallings twist,
^s-i w o uld clearly be also be obtained from F in a similar way, so there would exist
CeHk(F) such that C # 0 and A(C; C) = 0, ± 1, ±2, hence S(C; C) = 0, ±2, ±4,
which would contradict m(S (g) F8) ^ 8 . If F were obtained from F8_x by plumbing,
there would exist CeHk{F) such that A(C\ C) = ± 1, so that S(C; C) = ±2, again
a contradiction. Taking connected sums of # gives the result. Note that the least genus
that the above method can achieve is £(24*8) = 96.

For k = 1, nothing more can be said, since we do not know whether every
unimodular Seifert form is the form of some classical fibred knot.

REMARK. It is interesting to note that Theorem 5.5 can be proved using only
the form F8. Take the obvious triangular unimodular form A such that F8 = A + AT;
then A corresponds to a perfect isometry (Lemma 3.5). Use Lemma 4.1 to obtain
a doubly perfect isometry of 2F8 and Lemma 5.4 twice. This provides the form
S = (2F8) ® F8 (g) F8 (which has minimum 8) with a doubly perfect isometry; then
take orthogonal sums of S.

FINAL REMARK. It is not known in the classical case whether every fibred link
is stably obtained by plumbing, that is, whether by plumbing enough Hopf bands to
a fibre-surface one gets a surface which can be obtained by plumbing (cf. [6, §5]). The
analogous statement in high dimensions is equivalent, using Proposition 2.4, to the
following algebraic question whose answer I do not know.

If A is any m x m integral unimodular matrix, does there exist a lower triangular

unimodular nxn matrix T and an integral nxm matrix B such that I I is
\B TJ

congruent to a triangular matrix?
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