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Abstract

We study eta-invariants of links and show that in many cases they form link
concordance invariants, in particular that many eta-invariants vanish for slice links.
This result contains and generalizes previous invariants by Smolinsky and Cha–Ko.
We give a formula for the eta-invariant for boundary links. In several interesting
cases this allows us to show that a given link is not slice. We show that even more
eta-invariants have to vanish for boundary slice links.

1. Introduction

An m-link of dimension n is an embedded oriented smooth submanifold of Sn+2

that is homeomorphic to m ordered copies of Sn. A link concordance between two
given links in Sn+2 is a properly embedded oriented submanifold in Sn+2× [0, 1] that
is homeomorpic tom copies of Sn × [0, 1] and intersects Sn+2× 0 and Sn+2× 1 at the
given links. We say a link is slice if it is concordant to the trivial link. Equivalently
a link is slice if it bounds m disjoint smooth disks in Dn+3.
Denote by C(n, m) the set of concordance classes of m-links of dimension n. The

set C(n, 1) is just the set of knot concordance classes, it has a well-defined group
structure given by connected sum along arcs. Connected sum of links does not give
a well-defined group structure on C(n, m) since there’s no canonical choice of arcs
(cf. Proposition 5·1). One approach to get a canonical choice of arcs and therefore to
get a group structure is to study disk links (cf. [14]).
It is very difficult to determine C(n, m), a common approach is to study links

with some extra structure. A boundary link is anm-link which hasm disjoint Seifert
manifolds, i.e. there exist m disjoint oriented (n+ 1)-submanifolds V1, . . . , Vm ⊂Sn+2

such that ∂(Vi) =Li, i=1, . . . , m. A boundary link concordance between two given
boundary links in Sn+2 is a link concordance which bounds m disjoint (n + 2)-
manifolds in Sn+2× [0, 1]. We say L is boundary slice if it is boundary concordant
to the unlink. Denote by B(n, m) the set of boundary concordance classes of m-
boundary links of dimension n.
A pair (L, V ) consisting of a boundary link and a Seifert manifold is called bound-

ary link pair. A boundary link pair concordance between two given pairs (L1, V1)
and (L2, V2) in Sn+2 is a pair (C, W ) of properly embedded oriented submanifolds
(with corners in the case of W ) in Sn+2× [0, 1] such that C is a link concordance
between L1 and L2 and such that W is a corresponding cobordism of V1 and V2.
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More precisely, W is the disjoint union of m components W1, . . . , Wm such that
∂(Wi) =Vi,1 �Li,1 Ci �Li,2 −Vi,2.
Denote by Cn(Bm) the set of concordance classes of boundary link pairs. Let

σ1, σ2 ∈Cn(Bm). We can find representatives (L1, V1) and (L2, V2) which lie in disjoint
hemispheres. Pick arcs connecting the corresponding components of L1 and L2,
disjoint from the interior of the Seifert surfaces. Using these arcs we can define
the boundary connected sum (L1#L2, V1#V2). Ko [12, proposition 2·11] showed that
σ1 + σ2 � [(L1#L2, V1#V2)] is well-defined if n > 1, i.e. independent of the choices
made. This turns Cn(Bm) into a group for n > 1.
Let Fm be the free group on the generators t1, . . . , tm. An Fm-link is a pair (L, ϕ)

where L is a link in Sn+2 and ϕ:π1(S2n+2\L)→Fm is an epimorphism sending an ith
meridian to ti. A pair (N,Φ) is an Fm-concordance between (L0, ϕ0) and (L1, ϕ1) ifM
is a link concordance between the links L0 and L1 and Φ:π1(Sn+2× [0, 1] \ N )→Fm

is a map extending ϕ0 and ϕ1 up to inner automorphisms (cf. [5]). Denote by Cn(Fm)
the set of Fm-concordance classes of Fm-links.
Let σ1, σ2 ∈Cn(Fm). Pick representatives (L1, ϕ1) and (L2, ϕ2) which lie in dis-

joint hemispheres. Pick representatives of meridians of the components of L1 which
get mapped to ti under ϕ1. Doing the same for (L2, ϕ2) we can form connec-
ted sum along these meridians. It is clear that ϕ1 ∗ ϕ2 defines an epimorphism
ϕ:π1(S2n+2\L1#L2) =π1(S2n+2\L1) ∗Fm

π1(S2n+2\L2)→Fm which sends an ith me-
ridian to ti. Now define σ1 +σ2 � [(L1#L2, ϕ1 ∗ϕ2)]. The discussion below shows that
there exists a canonical bijection Cn(Bm)→Cn(Fm) which preserves the additive
structures, in particular (Cn(Fm),#) is a group for n > 1.
By the transversality argument, such an epimorphism ϕ gives a Seifert surface Vϕ.

Conversely, the existence of a Seifert surface V for L produces such an epimorphism
ϕV by the Thom–Pontryagin construction.We shall go back and forth freely between
isotopy classes of boundary link pairs (L, V ) and Fm-links (L, ϕ). Similarly there’s
an equivalence between the respective concordances, one can easily see that this
bijection preserves the additive structures # if n > 1, in particular Cn(Bm)�Cn(Fm)
is a group isomorphism for n > 1.
We say that ϕ:π1(Sn+2\L)→Fm is a splitting map if it sends meridians to the fixed

generators {ti}. There’s in general not a unique splitting map. Denote by CAm the
group of automorphisms of Fm which send ti to a conjugate of ti for each i=1, . . . , m.

Lemma 1·1. If ϕ:π1(Sn+2\L)→Fm is a splitting map, then for any φ∈CAm the map
φ ◦ ϕ is a splitting map as well, and in fact all splitting maps are of the form φ ◦ ϕ for
some φ∈CAm.

This means that we have an action of CAm on Cn(Fm). The inner automorphisms
of Fm are elements in CAm and act trivially on Cn(Fm). We therefore define Am to
be the quotient group of CAm by the inner automorphisms of Fm. We get an action
of Am on Cn(Fm). Denote by φij :Fm →Fm the map which sends ti to tjtit

−1
j and tk

to tk for k�i. We quote the following proposition.

Proposition 1·2 [10, 12]. CAm (and in particular Am) is generated by φij for i, j =
1, . . . , m and i�j. Furthermore the groups A1, A2 are trivial.

Under the isomorphism Cn(Fm)�Cn(Bm) the group Am also acts on Cn(Bm),
the action of φij on a Seifert surface has been described explicitely by Ko [12].
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Ko [12] furthermore showed that Am acts non-trivially on Cn(Bm) and hence acts
non-trivially on Cn(Fm).

Theorem 1·3 [5].

B(n, m)�Cn(Fm)/Am�Cn(Bm)/Am.

Cappell and Shaneson showed that C2k(Fm) = 0, i.e. all even dimensional boundary
links are boundary slice. It is not known whether all even dimensional (boundary)
links are slice. We’ll restrict ourselves from now on to odd-dimensional links.
For ε=±1 we call A= (Aij)i,j = 1,...,m an ε-boundary link Seifert matrix of size

(g1, . . . , gm) if A is a matrix with entries Aij which are (2gi × 2gj)-matrices over Z

such that Aij =−εAt
ji for i�j and det(Aii + εAt

ii) = 1 (cf. [12, 23]). We say that Aij

is metabolic if there exists a block diagonal matrix P =diag(P1, . . . , Pm) such that
each PiAijP

t
j is of the form (

0 C
D E

)

where 0 is a gi × gj-matrix. This generates in a natural way an equivalence class of
matrices, the set of equivalence classes is denoted by G(m, ε).
If n=2q − 1 then picking a basis for the torsion free parts of Hq(V ) =Hq(V1) ⊕

· · ·⊕Hq(Vm) we can associate to a boundary link pair (L, V ) the matrix representing
the Seifert pairing

Hq(V )×Hq(V ) −→ Z

(a, b) �−→ lk(a, b+)

Theorem 1·4 [11, 12].
(i) Every Seifert matrix is the Seifert matrix of a boundary link pair.
(ii) For q � 3

C2q−1(Bm)�G(m, (−1)q).

(iii) C3(Bm) is isomorphic to a subgroup of G(m, 1) of index 2m.

Remark 1. Cappell and Shaneson [5], Duval [6] and Mio [26] gave different but
equivalent algebraic descriptions of C2q−1(Bm) for q � 3.

The Am action on C2q−1(Bm) translates to an action of Am on G(m, (−1)q) which
was explicitely computed by Ko [12]. Summarizing we get for q � 3 that

B(2q − 1, m)�C2q−1(Bm)/Am�G(m, (−1)q)/Am.

Levine [16] showed that G(1, ε)�Z⊕∞ ⊕Z⊕∞
2 ⊕Z⊕∞

4 (cf. also [32]). Recently Shei-
ham [28] showed that for m > 1, G(m, ε)�Z⊕∞ ⊕Z⊕∞

2 ⊕Z⊕∞
4 ⊕ Z⊕∞

8 , furthermore
Sheiham defined full invariants for G(m, ε).
Much has been put into the study of the forgetful map

B(n, m)−→C(n, m)

Cochran and Orr [3, 4], Gilmer and Livingston [7] and Levine [21] showed that this
map is not surjective, i.e. there exist links which are not concordant to boundary
links. It is an open question whether the kernel is trivial, i.e. whether any knot that
is slice is also boundary slice. It would be very difficult to find counter-examples in
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dimension one, since one can easily see that any ribbon (boundary) link is boundary
slice.
For a more thorough introduction to link concordance theory we refer to [17].
Given a closed, smooth, oriented odd dimensional manifoldM and a unitary repres-

entation α:π1(M )→U (k), Atiyah–Patodi–Singer [1] defined an invariant ηα(M )∈R,
called the reduced eta-invariant. We will refer to the invariant as eta-invariant,
dropping the word ‘reduced’. The eta invariant can be computed in terms of signa-
tures of bounding manifolds, if these exist. For a group G a pair (M, ϕ) is called a
G-manifold if M is a smooth odd-dimensional manifold and ϕ:π1(M )→G a homo-
morphism. Define ρ(M, ϕ):Rk(G)→R via ρ(M, ϕ)(α)� ηα◦ϕ(M ). Two G-manifolds
(Mj , αj), j =1, 2 are called homology G-bordant if there exists a G-manifold (N, β)
such that ∂(N ) =M1 � − M2, H∗(N, Mj) = 0 for j =1, 2 and, up to inner automorph-
isms of G, β|π1(Mj) =αj .

Theorem 1·5 [21, p. 95]. If (Mi, αi), i=1, 2 are homology G-bordant manifolds, then
ρ(M1, ϕ1)(α) = ρ(M2, ϕ2)(α) for all α:G→U (k) that factor through a p-group.

We shall study the ρ-invariant for ML, the result of zero framed surgery along
L⊂S2q+1. For G a group define the lower central series inductively by G0 � G, Gi �
[G, Gi−1]. For the remainder of the introduction denote the free group on m gen-
erators by F . For an m-component link L⊂S2q+1 we have in many cases (e.g. if
q > 1) an isomorphism π1(S2q+1\L)/π1(S2q+1\L)i →F/Fi. A choice of isomorphism is
called an F/Fi-structure. Two links L1, L2 with F/Fi-structures that are concordant
also have F/Fi-structures which are F/Fi-concordant. Hence ML1 and ML2 have
homology F/Fi-bordant F/Fi-structures. Applying the above theorem gives a link
concordance obstruction theorem. The theory becomes even easier if we want to find
sliceness obstructions since any slice knot has an F/Fi-structure for all i and since
any representation factoring through a p-group factors through F/Fi for some i.

Theorem 1·6. Let L⊂S2q+1 be a slice link, if α:π1(ML)→U (k) factors through a
p-group, then ηα(ML) = 0.

Define PD(k)⊂U (k) to be the subgroup generated by permutation matrices and
diagonal matrices. For a prime p define PDp(k)⊂PD(k) to be the subgroup of
matrices where all eigenvalues are roots of unity of order a power of p.

Theorem 1·7. Let L⊂S2q+1 be a link with meridians µ1, . . . , µm. Let p be a
prime number and let U1, . . . , Um ∈PDp(K). Then there exists a unique representation
β:π1(ML)→U (k) with β(µj) =Uj . If K is slice, then furthermore ηβ(ML) = 0.

In Proposition 3·12 we use well-known results of representation theory to show
that any representation of π1(ML)→U (k) factoring through a p-group is in fact
conjugate to a representation in PDp(k). In particular this shows that Theorem 1·7
gives the best possible sliceness obstruction theorem that can be based on Levine’s
theorem. These obstructions combine, simplify and generalize sliceness obstructions
defined by Smolinsky [29, 30] and Cha and Ko [2].
For an F -link (L, ϕ) the ρ-invariant can be explicitely computed in terms of its

Seifert matrix. In the case n=4q + 1 the following holds, the case n=4q + 3 being
only marginally more complicated (cf. Theorem 4·5).
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Theorem 1·8. Let (L⊂S4q+3, ϕ) be an Fm-link, A= (Aij)i,j = 1,...,m a Seifert matrix,
α:Fm →U (k) a representation. Let Ui � α(ti), then ρ(ML, ϕ)(α) = sign(M (A, α)) where
M (A, α) equals


A11 ⊗
(
id− U−1

1

)
+At

11 ⊗ (id− U1) A12 ⊗ (id− U1)
(
id− U−1

2

)
· · ·

A21 ⊗ (id− U2)
(
id− U−1

1

)
A22 ⊗

(
id− U−1

2

)
+At

22 ⊗ (id− U2)
...

. . .




This formula makes it possible to compute enough ρ-invariants to show that
several interesting boundary links are neither boundary link slice nor slice. Note
that if L is boundary link slice, then ρ(ML, ϕ)(α) = 0 for all representations α with
det(M (A, α))�0, i.e. not only for representations that factor through a p-group.
Levine [22] showed recently that this result also holds in the case that L is slice.
The structure of this paper is as follows. In Section 2 we’ll give a more detailed ex-

position of the eta-invariant and the rho-invariant. In particular we’ll cite a criterion
of Levine’s when homologyG-bordant manifolds have identical eta-invariants. These
results will be applied in Section 3 to link concordance questions and in Section 4
to boundary link concordance questions. We furthermore define a useful signature
function for boundary links. We apply our invariants to several interesting cases in
Section 5. We conclude the paper with two sections containing a formula relating
eta-invariants of finite covers and the computation of the ρ-invariant for boundary
links.

2. The eta invariant as cobordism invariant

Let M 2q+1 be a closed odd-dimensional smooth manifold and α:π1(M )→U (k) a
unitary representation. Atiyah, Patodi, Singer [1] associated to (M, α) a number
ηα(M ) called the (reduced) eta-invariant of (M, α). For more details cf. Section 6.
For a hermitian matrix or form A (i.e. Āt =A) we define

sign(A)�# positive eigenvalues of A − # negative eigenvalues of A

and for a skew-hermitian matrix A (i.e. Āt =−A) we define sign(A)� sign(iA).
The main theorem to compute the eta-invariant is the following.

Theorem 2·1 [1] (Atiyah–Patodi–Singer index theorem). Let (M 2q+1, α) as above.
If there exists (W 2q+2, β:π1(W )→U (k)) with ∂(W 2q+2, β) = r(M 2q+1, α) for some r∈N,
then

ηα(M ) =
1
r
(signβ(W )− ksign(W )).

Let G be a group, then a G-manifold is a pair (M, ϕ) where M is a compact
oriented manifold with components {Mi} and ϕ is a collection of homomorphisms
ϕi:π1(Mi)→G where each ϕi is defined up to inner automorphism. Let Rk(G) �
{α:G→U (k)}. For an odd-dimensional G-manifold (M, ϕ) define

ρ(M, ϕ):Rk(G) −→ R
α �−→ ηα◦ϕ(M ).

We call two odd-dimensional G-manifolds (Mj , αj), j =1, 2, homology G-bordant
if there exists a G-manifold (N, β) such that ∂(N ) =M1 � − M2, H∗(N, Mj) = 0 for
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j =1, 2 and, up to inner automorphisms of G, β|π1(Mj) =αj . We want to relate the
ρ-function for homology G-bordant manifolds.
Let

Pk(G) = {α∈Rk(G)|α factors through a group of prime power order}.

Theorem 2·2 [21, p. 95]. If (Mi, αi), i=1, 2 are homology G-bordant manifolds, then

ρ(M1, ϕ1)(α) = ρ(M2, ϕ2)(α) for all α∈Pk(G).

3. Eta invariants as link concordance invariants

Let L⊂S2q+1 be a link. We’ll study the eta-invariants associated to the closed
manifold ML, the result of zero-framed surgery along L⊂S2q+1. We first compute
the eta invariants of the trivial link.

Lemma 3·1. Let MO be the zero-framed surgery on the trivial link L. Then for any
α:π1(MO)→U (k) we get ηα(MO) = 0.

Proof. Let α:π1(MO)→U (k) be a representation. Let D1, . . . , Dm be the push-in
off the disks in S2q+1 boundingL1, . . . , Lm and letW � D2q+2\(N (D1)� · · ·�N (Dm)).
Note that π1(S2q+1\L)�π1(W )�F , in particular we can use W to compute
ηα(MO). But W is homotopy equivalent to the wedge of m circles, in particular
Hq+1(W ) =Hα

q+1(W, Ck) = 0, hence the untwisted and twisted signatures vanish, hence
ηα(MO) = 0 by Theorem 2·1.

3·1. Abelian eta invariants
Recall that any oriented link L with m components has a canonical map

εL:π1(ML)→H1(ML) =Zm. Furthermore if L1, L2 are link concordant, then (ML1 , ε)
and (ML1 , ε) are canonically homology Zm-bordant.
The following is now immediate from Theorem 2·2.

Proposition 3·2. Let L1, L2 be concordant links, then

ρ
(
ML1 , ε

)
(α) = ρ

(
ML2 , ε

)
(α) for all α∈Pk(Zm).

The following corollary contains basically the statement of Smolinsky’s main the-
orem in [30]. It follows immediately from the Proposition and Lemma 3·1.

Corollary 3·3. Let L be a slice link, α∈P1(Zm), then ηα(ML) = 0.

Remark 2. Levine [21] shows that that there are links whose eta-invariants vanish
for all α∈P1(Zm) but where a close study of ρ(M, ε):R1(Z2)→R still shows that the
links are not slice.

We quickly recall a result from high-dimensional knot theory. Combining results
of Matumuto [24] and Levine [15, 16] we get the following theorem.

Theorem 3·4. If q > 1, then a knot K ⊂S2q+1 represents a torsion element in
C(2q − 1, 1) if and only if ηα(MK) = 0 for all α∈P1(Z).

In Section 5 we show that one-dimensional eta-invariants are not enough to detect
non-torsion elements in C2q−1(Bm) for m > 1 and q > 1.
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3·2. Non-abelian eta invariants
For G a group define the lower central series inductively by G0 � G and Gi �

[G, Gi−1], i > 0. Milnor [25] showed that for a link L

π1(S3\L)/π1(S3\L)k�〈x1, . . . , xm|[xi, wi], 〈x1, . . . , xm〉k〉
where xi are representatives for the meridians,wi for the longitudes and 〈x1, . . . , xm〉k
denotes the kth term in the lower central series of the free group generated by
x1, . . . , xm.
To avoid confusion we shall henceforth denote the free group on m generators

t1, . . . , tm by F . Let F →π1(S2q+1\L) � π be a map ti to a meridian of the ith
component of L. Levine [21] shows that this induces isomorphisms F/Fi

�−→ π/πi for
all i if q > 1. If q =1, then we say that L has zero µ̄-invariant of level i if this induces
an isomorphism F/Fi

�−→ π/πi. By Milnor’s result on π1(S3\L)/π1(S3\L)k a knot has
zero µ̄-invariant of level i if and only if for longitudes λ1, . . . , λm, {λj}∈π1(S2q+1\L)i.
Examples for 1-dimensional links with zero µ̄-invariants are boundary links.
We say ϕ:π1(Sn+2\L)→F/Fi is an F/Fi-structure if a meridian of the jth compon-

ent gets sent to tj . Note that it follows from Stalling’s theorem [31] that conjugates
of generators for F/Fi are also generators of F/Fi.
The case i=1 is of course uninteresting since F/Fi =Zm. If i> 1 then L has in

general no canonical F/Fi-structure.

Lemma 3·5 [21, p. 101]. If ϕ1 and ϕ2 are F/Fi-structures for the same link, then
ϕ1 =ψ ◦ϕ2 for an automorphism of F/Fi that sends tj to a conjugate of tj , j =1, . . . , m.

We call such an automorphism a special automorphism of F/Fi. A link L equipped
with an F/Fi-structure is called F/Fi-link. Let (L1, ϕ1), (L2, ϕ2) be two F/Fi-links,
we say they are F/Fi-concordant if there exists a link concordance C and a
map ϕ:π1(S2q+1× [0, 1]\C)→F/Fi which restricts to ϕ1 and ϕ2 up to inner auto-
morphism.
The following proposition is well known.

Proposition 3·6.
(i) If L1 is an F/Fi-link and L2 is link concordant to L1, then there exists an F/Fi-
structure on L2 such that L1 and L2 are F/Fi-concordant.

(ii) If L1, L2 are link concordant and L1 has zero µ̄-invariants of level j, then L2 also
has zero µ̄-invariants of level j.

(iii) A one-dimensional slice link has zero µ̄-invariant for all levels.

Proof. Let C ⊂S2q+1× [0, 1] be a link concordance between L1 and L2.
(i) Consider

πj � π1(S2q+1\Lj)−→π1(S2q+1× [0, 1]\C)� πC .

These maps are normally surjective and hence define isomorphisms πC/πC,i�
πj/πj

i �F/Fi by Stalling’s theorem [31]. The statement now follows easily (cf. [21,
p. 102] for details).
(ii) This follows immediately from the definition and F/Fi�π1/π1i �πC/πC,i�

π2/π2i .
(iii) This follows immediately from (2) since a slice link is concordant to the unlink

which has obviously zero µ̄-invariant for all levels.



444 Stefan Friedl

It is clear that in the case q > 1 the map π1(S2q+1\L)→π1(ML) is an isomorphism,
hence

π1(ML)/π1(ML)i�π1(S2q+1\L)/π1(S2q+1\L)i.

If q =1 the kernel π1(S3\L)→π1(ML) is generated by the longitudes. In particular if
L has zero µ̄-invariants of level i, then

π1(ML)/π1(ML)i�π1(S3\L)/π1(S3\L)i.
In both cases an F/Fi-structure on L gives an F/Fi-structure on ML.

Proposition 3·7 [21, p. 102]. If (L1, ϕ1), (L2, ϕ2) are F/Fi-concordant F/Fi-links,
then (ML1 , ϕ1) and (ML2 , ϕ2) are homology F/Fi-bordant.

Proof. If C is an F/Fi-concordance, then doing surgery along C ⊂S2q+1× [0, 1]
gives a homology F/Fi-bordism for (ML1 , ϕ1) and (ML2 , ϕ2).

The following is immediate from Theorem 2·2, Lemma 3·5 and Propositions 3·6,
3·7. The theorem generalizes results on link concordance by Cha and Ko [2].

Theorem 3·8. Let L1, L2 be concordant links. If ϕ1, ϕ2 are arbitrary F/Fi-structures
for L1, L2, then there exists a special automorphism ψ of F/Fi such that

ρ(ML1 , ϕ1)(α) = ρ(ML2 , ψ ◦ ϕ2)(α) for all α∈Pk(F/Fi).

3·3. Representations of F/F2

We now give an example of a non-trivial (i.e. non-abelian) unitary representation
of F/F2. For U1, . . . , Um ∈U (k) define α(U1,...,Um ):F →U (k) by α(ti)� Ui. We’ll find
U1, . . . , Um such that α(U1,...,Um ) factors through F/F2.
Let z1, . . . , zk ∈S1 and χ:F →S1 a character such that χ(tk

i ) = 1. Define

U1 �



0 · · · 0 zk

z1 · · · 0 0

0
. . .

...
0 · · · zk−1 0


 , Ui �




χ(ti) 0 · · · 0
0 χ(t1ti) 0

0 0
. . .

...
0 0 · · · χ

(
tk−1
1 ti

)


 , i=2, . . . , m.

Lemma 3·9. The representation α=α(U1,...,Um ):F →U (k) factors through F/F2.

Proof. It is clear that we are done once we show that for all x∈ [F, F ], α(x)∈C · id.
Since

[x, vw] = [x, v]v[x, w]v−1

we only have to show that α([xi, xj])∈C · id, but an easy calculation using χ(tk
i ) = 1

shows that
α([t1, tj]) = χ(t−11 ) · id if j�1
α([tj , t1]) = χ(t1) · id if j�1
α([ti, tj]) = id if i�1 and j�1.

Let p a prime, k a power of p, and z1, . . . , zk, χ such that zpN

1 = · · ·= zpN

k =1 and
χ(v)p

N

= id for some N , then ϕ∈Pk(F/F2). Such a representation turns out to dis-
cover non-slice knots in many interesting cases.
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This example can easily be generalized to give more complex representations of

F/F2.

3·4. Sliceness obstructions
Theorem 3·10. Let L⊂S2q+1 be a slice link and let α∈Pk(π1(ML)), then ηα(ML) = 0.

Proof. Assume that α factors through a p-group P . Then Pi = {e} for some i
since any p-group is nilpotent (cf. [9, p. 169]). In particular α factors through
π1(ML)/π1(ML)i which is isomorphic to F/Fi since any slice link has zero µ̄-invariants
by proposition 3·6. Henc α=β◦ϕ for some F/Fi-structure ϕ and some representation
β. The statement now follows immediately from Proposition 3·6, Theorem 3·8 and
Lemma 3·1 since a slice link is concordant to the unlink.

Define PD(k)⊂U (k) to be the subgroup generated by permutation matrices and
diagonal matrices. For a prime p define PDp(k)⊂PD(k) to be the subgroup of
matrices where all eigenvalues are roots of unity of order a power of p. It is generated
by all permutation matrices whose order is a power of p and all diagonal matrices
whose entries are roots of unity of order a power of p. Note that a finitely generated
subgroup PDp(k) is in fact a finite group, hence a p-group.

Theorem 3·11. Let L⊂S2q+1 be a link with meridians µ1, . . . , µm. Let p be a
prime number and let U1, . . . , Um ∈PDp(k). Then there exists a unique representation
β:π1(ML)→U (k) with β(µj) =Uj . Furthermore if K is slice, then ηβ(ML) = 0.

Proof. Let α � α(U1, . . . , Um):F →U (k), then Im(α) is a p-group, hence α factors
through F/Fi for some i. It is clear that β is given by π1(ML)/π1(ML)i�F/Fi →U (k).
Clearly β ∈Pk(π1(ML)). If K is slice, then ηβ(ML) = 0 by Theorem 3·10.

Proposition 3·12. Let α∈Pk(F/Fi), then there exists a prime p such that α is con-
jugate to a representation α̃ with α̃(tj) ∈ PDp(k) for all j.

Proof. This follows from the fact that ifα:P →U (k) is a representation of a p-group
P , then α is induced from a representation of degree 1 (cf. [8, p. 578ff]). This means
that there exists a subgroup Q⊂P and a one-dimensional representation Q→U (C)
such that α is given by the natural P -left action on CP ⊗CQ C. Pick representatives
p1, . . . , pk for P/Q, writing α with respect to this basis we see that α is of the required
type.

Remark 3. The above proposition together with Theorem 3·10 shows that The-
orem 3·11 is the best possible sliceness obstruction theorem which can be based on
Theorem 2·2.

3·5. Algebraic closures of groups and link concordance
Whereas Theorem 3·11 can’t be improved on with our means there is still room for

improvement for Proposition 3·8 because of the extra indeterminacy given by the
special automorphism group.
For a group G Levine [18–20] introduced the notion of algebraic closure Ĝ and

residually nilpotent algebraic closure Ḡ of a groupG. In the caseG=Fm these groups
are normally generated by t1, . . . , tm. The results of Section 3 for G=F/Fi also hold
for G= F̂ and G= F̄ (cf. [21, p. 101f] for details), in particular links L⊂S2q+1 with
q > 1 or with zero µ̄-invariants have a F̄ -structure, i.e. a map ϕ:π1(S2q+1\L)→ F̄ such
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that any meridian of the ith component gets sent to a conjugate of the generator ti.
Furthermore concordant links also have F̄ -concordant F̄ -structures. The same holds
for F̂ . In particular we get link concordance invariants from representations in Pk(F̄ )
and Pk(F̂ ).
Note that p-groups are nilpotent and hence its own algebraic closure ([20, p. 100]).

This shows that representations in Pk(π1(MK)) that factor through an F/Fi-structure
for some i correspond to representations that factor through some F̄ -structure (or
F̂ -structure).
We say ϕ: F̄ → F̄ is a special automorphism if it sends ti to a conjugate of ti. The

following theorem follows from the above discussion and from results of Levine [21,
p. 101].

Theorem 3·13. Let L1, L2⊂S2q+1 be concordant links with q > 1 or with vanishing
µ̄-invariants. If ϕ1, ϕ2 are arbitrary F̄ -structures for L1, L2, then there exists a special
automorphism ψ of F̄ such that

ρ
(
ML1 , ϕ1

)
(α) = ρ

(
ML2 , ψ ◦ ϕ2

)
(α) for all α∈Pk(F̄ ).

Remark 4. By the universal properties of F̄ (cf. [18]) there exist maps F̄ →F/Fi

such that F → F̄ →F/Fi is the canonical map. Furthermore special automorphisms
of F̄ induce special automorphisms of F/Fi. This shows that Theorem 3·13 is stronger
than Theorem 3·8 since it shows that the different special automorphisms of The-
orem 3·8 ‘come’ from a single special automorphism of F̄ .

3·6. Relation to previous link concordance invariants
One can easily see that Theorem 3·11 contains the sliceness obstructions defined

by Smolinsky [29, 30].
We quickly recall a results by Cha and Ko and show how it follows from our

results.

Theorem 3·14 [2, theorem 7]. LetL be a slice link and p a prime. Letϕ:π1(ML)→, G
be a homorphism to a finite abelian p-group G. Denote the G-fold cover of ML by MG.
Let αG:H1(MG)→Z/p→U (1) be a representation that factors through Z, then

η(MG, αG) = 0.

Proposition 3·15. If a link L satisfies the conclusion of Theorem 3·10 then it also
satisfies the conclusion of Theorem 3·14.
Proof. Let s= |G|. By Theorem 6·1 there exists a unitary representation

α:π1(ML)→U (s) such that

ηαG
(MG) = ηα(ML)− sηα(G)(ML)

where α(G) stands for the representation π1(ML)→U (C[π1(ML)/π1(MG)]) =U (CG)
given by left multiplication. Furthermore α∈Ps(π1(M )) by Lemma 6·2 and
α(G)∈P1(π1(M )) since G is of prime power order.
If a link L satisfies the conclusion of Theorem 3·10, then ηα(G)(ML) = 0 and

ηα(ML) = 0.

In later, unpublished work Cha showed that if L is a slice link, p a prime power,
M ′ a pa-cover of ML (not necessarily regular) and α′:H1(M ′)→U (1) a charac-
ter whose order is a power of p, then η(M ′, α′) = 0. In this case we can find
ML =M0⊂M1⊂ · · · ⊂Mk =M ′ such that Mi/Mi−1 is a regular p-covering. Using
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Lemma 6·2 and Theorem 6·1 one can inductively write η(M ′, α) as a sum of eta
invariants of ML with representations factoring through p-groups. This shows that
Cha’s extended result is contained in Theorem 3·10.

4. Eta-invariants and signatures of boundary links

4·1. Eta-invariants as boundary link concordance invariants
In this section we denote the free group on m generators once again by Fm. Let

(L, ϕ)⊂S2q+1 be an Fm-link. If q > 1 then π1(S2q+1\L)→π1(ML) is an isomorphism.
If q =1, then ϕ(λ) = e for any 0-longitude, since [λi, µi] = 1∈π1(S3\L). In particular
for any q the map ϕ factors through π1(ML).

Proposition 4·1 [21, p. 102]. Let (L1, ϕ1), (L2, ϕ2) be Fm-concordant links, then
(ML1 , ϕ1), (ML2 , ϕ2) are homology Fm-bordant.

The following theorem is immediate from Lemma 1·1, Proposition 1·2, Theo-
rem 2·2 and the above proposition.

Theorem 4·2. Let (L1, ϕ1) and (L2, ϕ2) be Fm-concordant Fm-links, then

ρ
(
ML1 , ϕ1

)
(α) = ρ

(
ML2 , ϕ2

)
(α) for all α∈Pk(Fm).

If L1, L2 are boundary concordant boundary links with two components, then

ρ
(
ML1 , ϕ1

)
(α) = ρ

(
ML2 , ϕ2

)
(α) for all α∈Pk(F2)

for any F2-structures ϕ1 and ϕ2.

The following is immediate from Theorem 3·10.

Theorem 4·3. If L is a boundary link, and L is slice (in particular if L is boundary
slice), then

ρ(ML, ϕ)(α) = 0 for any α∈Pk(Fm)

for any Fm-structure ϕ.

Corollary 4·4. If L1, L2 are boundary link concordant boundary links and if ϕ1, ϕ2
are Fm-structures, then there exists a special automorphism ψ ∈CAm such that

ρ
(
ML1 , ϕ1

)
(α) = ρ

(
ML1 , ψ ◦ ϕ1

)
(α) for any α∈Pk(Fm).

Remark 5. Note that this corollary gives a slightly stronger statement for bound-
ary link concordance than Theorem 3·8 does, in the same vein as Theorem 3·13 is
stronger than Theorem 3·8 (cf. remark after Theorem 3·13).

Proof. Levine [21, p. 102] showed that if L1 is an Fm-link and L2 a boundary link
which is boundary link concordant to L1, then there exists an Fm-structure on L2
such that L1 and L2 are Fm-concordant. The corollary now follows from Lemma 1·1
and Theorem 4·2.

In Section 7 we compute the ρ-invariant for an Fm-link. This will involve the
computation of the eta-invariant of a circle which necessitates the definition of the
following function. Let z = e2πia ∈S1 with a∈ [0, 1), then define

η(z)�
{
0 if a=0
1− 2a if a > 0.
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Now we can formulate the following theorem which will be proved in Section 7.

Theorem 4·5. Let (L⊂S2q+1, ϕ) be an Fm-link, A= (Aij)i,j = 1,...,m a Seifert mat-
rix for (L, ϕ) of size (g1, . . . , gm), α:Fm →U (k) a representation. Let ε � (−1)q, g �∑m

i=1 gi, T � diag(t1, . . . , t1, . . . , tm, . . . , tm) where each ti appears 2gi times. Let
{zij}j = 1,..., k be the set of eigenvalues of α(ti). Then

ρ(ML, ϕ)(α) = ε

m∑
i=1

sign
(√

ε
(
Aii + εAt

ii

)) m∑
i=1

k∑
j = 1

η(zij)

+ sign(
√
−ε(A − εα(T )Atα(T )−1 − Aα(T )−1 + εα(T )At))

where we consider A as a 2gk× 2gk matrix, where each entry of A= (aij) is replaced by
aij · idk. This simplifies for ε=−1 to the following

ρ(ML, ϕ)(α) = sign(A + α(T )Atα(T )−1 − Aα(T )−1 − α(T )At).

Note that if we let Ui � α(ti), then A−εα(T )Atα(T )−1−Aα(T )−1 +εα(T )At equals


A11
(
1− U−1

1

)
− εAt

11(1− U1) A12(1− U1)
(
1− U−1

2

)
· · ·

A21(1− U2)
(
1− U−1

1

)
A22

(
1− U−1

2

)
− εAt

22(1− U2)
...

. . .




here we use the convention of the theorem again, i.e. we view Aij as a 2gik× 2gjk-
matrix. Alternatively we could write A11 ⊗ (1− U−1

1 )− εAt
11 ⊗ (1− U1) etc.

This result generalizes a computation done by Cha and Ko [2] for certain unitary
representations. We suggest the following conjecture which would be a generalization
of Theorem 3·4.

Conjecture 4·6. Let q > 1 and (L, ϕ)⊂C2q+1(Fm). If for all k, ρ(ML, ϕ)(α) = 0 for
a dense set of representations α∈Rk(Fm), then (L, ϕ) represents a torsion element.

Note that in light of Theorem 1·4 this conjecture is purely algebraic. This con-
jecture seems to be hard to prove, and any attempt would I think require a good
understanding of non-commutative algebraic geometry. If this conjecture can be
proved to be true then this would give an algorithm for detecting non-torsion ele-
ments in Cn(Fm), which is easier to implement than Sheiham’s [28] algorithm. The
disadvantage of such an algorithm would be that it can not conclude in finite time
that an Fm-link is torsion. An interesting follow up question to a positive answer
would be whether there exists a k depending computably on (L, ϕ), such that it is
enough to study the ρ-invariant for dimensions less or equal than k for deciding
whether (L, ϕ) is torsion or not.

4·2. Signature invariants for boundary link matrices
Recall that if a boundary link (L, V ) is boundary link slice then any Seifert matrix

is metabolic. Using this fact and some algebra we can strengthen Theorem 4·3.
Let A= (Aij) be an ε-Seifert matrix and Ui ∈U (k), i=1, . . . , m. We denote by

U � diag(U1, . . . , Um) the block diagonal matrix with blocks Ui · idhi
and define

M (A, U )�
√
−ε(A − εUAtU−1 − AU−1 + εUAt)

using the convention of Theorem 4·5. Furthermore let σ(A, U )� sign(M (A, U )). If
A is metabolic then M (A, U ) is metabolic as well, if U is such that det(M (A, U ))�0
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then σ(A, U ) = 0. The map σ is continuous outside of the set

Sk(A)� {(U1, . . . , Um)∈U (k)m|det(M (A, U )) = 0}.
It is easy to see that if A1, A2 are S-equivalent, then σ(A1, U ) =σ(A2, U ) and
S(A1) =S(A2). In particular for a boundary link pair (L, V ) we can define σ(L, V, U )�
σ(A, U ) using any Seifert matrix and we let Sk(L, V )� Sk(A). This generalizes sig-
nature invariants for knots defined by Levine [15] and Trotter [34].
We immediately get the following proposition.

Proposition 4·7. Let (L, V ) be a boundary link pair which represents zero inCn(Bm),
then σ(L, V, (U1, . . . , Um)) = 0 for all (U1, . . . , Um) � Sk(L, V ).

Combining this with theorem 4·5 we get a theorem that gives a much stronger
boundary sliceness obstruction than theorem 4·3 since the matrices Ui no longer
have to lie in PDp(k) for some prime p.

Theorem 4·8. Let (L, V ) be a boundary link pair which represents zero in Cn(Bm),
then

ρ(ML, ϕ)
(
α(U1,...,Um )

)
=0 for all (U1, . . . , Um) � S(L, V ).

Remark 6. Note that
√
−ε(A−εUAtU−1−AU−1+εUAt) =

√
−ε(A+εUAt)(1−U−1),

using an argument as in [15] one can show in a purely algebraic way that σ is
continuous outside of the set {(U1, . . . , Um)∈U (k)m|det(A + εUAt) = 0}. In our case
this gives a slightly stronger statement than the topological result of Levine’s [21]
that ρ is continuous on any set of the form (ri ∈N0)

Mr0,...,r2q+1 = {α=α(U1,...,Um )|dim(Hα
1 (ML, Ck)) = ri}

since A + εTAt represents the qth homology of the universal Fm-cover of ML. This
shows in particular that ρ is zero in a neighborhood of the trivial representation.

Remark 7. Levine [22] showed that these ρ-invariants are in fact obstructions to a
link being slice and not just obstructions to a link being boundary slice.

There are many ways to associate a hermitian matrix to A which is metabolic if A
is metabolic. Let Fij ∈M (ki × kj , C), i, j =1, . . . , m such that Fji =

√
−εF̄ t

ij , then we
also get a similar proposition for

σ(A, Fij)� sign




A11F11 +At
11F̄

t
11 A12F12 · · ·

A21F21 A22F22 +At
22F̄

t
22

...
. . .


 .

This approach has the advantage that it is much easier to find (random) matrices in
M (ki × kj , C) than matrices in U (k).
In the knot case these signature invariants have the same information con-

tent as σ(A, U ) since all signatures are determined by 1-dimensional signatures
(Theorem 3·4). In the case m > 1 we don’t know whether these different signature
functions have different information content or not.

5. Examples

Ko [12] gives an example of a three component boundary linkL⊂S4l+3 with Seifert
manifold V such that (L1,−2, V1,−2)� (L, V )# − (L, α12V ) (cf. [12] for details on the
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action of CA3 on Seifert surfaces) has the following Seifert matrix of size (1, 2, 2)

A=




0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 0
0 0 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1




Ko showed that L1,−2 is not boundary slice and posed the question whether L1,−2 is
slice or not. By construction we get for α∈P1(F3) that

ρ
(
ML1,−2 , ϕV1,−2

)
(α) = ρ(ML, ϕV )(α)− ρ(ML, α12ϕV )(α)ρ(ML, ϕV )(α)

− ρ(ML, ϕV )(α ◦ α12) = 0

since U (1) is abelian. Hence all one-dimensional eta-invariants vanish.
Cha and Ko [2] showed that L is in fact not slice. We reprove this using higher

dimensional representations. Let

U1 =
(
0 1
1 0

)
, U2 =

(√
2
2 +

√
2
2 i 0

0 −
√
2
2 −

√
2
2 i

)
, U3 =

(√
2
2 +

√
2
2 i 0

0 −
√
2
2 −

√
2
2 i

)

A computation using Theorem 4·5 shows that ρ(ML, ϕ)(αU1,U2,U3 ) =−2, hence L is
not slice by Theorem 3·11.
On the other hand, let (L1,−1, V1,−1) � (L, V )# − (L, V ), then L1,−1 is obviously

slice. This reproves the following well-known proposition.

Proposition 5·1. Connected sum is not a well-defined operation on C(n, m) for
m � 3.

We now give an example of a two component link with vanishing one-dimensional
eta-invariant but which is not slice. Consider the following boundary link Seifert
matrix of size (2, 1):

A= (Aij)i,j = 1,2 =




0 0 0 0 1 0
1 0 0 −1 0 0
0 0 1 0 0 1
0 1 −1 −2 0 0

1 0 0 0 −2 0
0 0 1 0 1 1




Let (L, V ) = (L1 �L2, V1 �V2)⊂S4l+3 be a boundary link pair with Seifert matrix
A. In fact we can find isotopic slice knots L1, L2 and corresponding Seifert surfaces
with the above property since one can easily see that A11 and A22 are S-equivalent
and metabolic.
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Note that ∆(L)(t1, t2) = det(AT −At)t−21 t−12 =−(t1t2 + t−11 t−12 )− (t−11 t2 + t1t
−1
2 ) + 5.

Let (L̃, Ṽ ) = (L2, V2)� (L1, V1), clearly (L̃, Ṽ ) is a boundary link with Seifert matrix
(Ãij) = (A3−i,3−j). Note that ∆(L̃)(t1, t2) =∆(L)(t2, t1) =∆(L)(t1, t2).
Now pick arcs connecting the components of L and L̃, which lie outside of V and

Ṽ . Use these arcs to form L#− L̃. If q > 1, then this link is independent of the choice
of arcs.

Proposition 5·2. The boundary link (L#− L̃, V #− Ṽ ) has zero U (1)-eta invariants
but is not boundary link slice. Furthermore L#− L̃ is not slice.

Proof. Let B =A ⊕ −Ã be a Seifert matrix for (L# − L̃, V # − Ṽ ). For z1, z2 ∈S1

let Z =diag(z1, z1, z1, z1, z2, z2, z1, z1, z2, z2, z2, z2), then

ρ(ML#−L̃, ε)α(z1,z2)
= sign(B(1− Z) +Bt(1− Z−1)) = sign((BZ − Bt)(Z−1 − 1)).

In particular the function ρ(ML#−L̃, ε):R1(Z2) =S1×S1→Z is constant outside of
the set {(z1, z2)∈S1×S1|det(BZ − At) = 0}. It is obvious that for all z1, z2 ∈S1 we
have

det(BZ − Bt)z−3
1 z−3

2 = ∆(L)(z1, z2)∆(L̃)(z1, z2) =∆(L)(z1, z2)2

=
(
−

(
z1z2 + z−1

1 z−1
2

)
−

(
z−1
1 z2 + z1z

−1
2

)
+ 5

)2 � 1

hence the ρ-invariant function is constant. Picking z1 =−1, z2 =−1 we can compute
that the constant is in fact 0.
Now let

U1 =
(
0 i
1 0

)
, U2 =

(
i 0
0 −i

)
.

A computation using Theorem 4·5 shows that ρ(ML#−L̃, ϕ)(αU1,U2 ) =−2, hence
L#− L̃ is not slice by Theorem 3·11.

Now consider the following Seifert matrix of size (1, 1)

A=



0 1 0 1
0 0 2 1

0 2 1 0
1 1 1 0


.

Let (L, V ) be a boundary link pair with Seifert matrix A. If we let

F11 =
(
4 1
3 0

)
, F12 =

(
4 1
2 1

)
, F22 =

(
1 2
4 1

)

then σ(A, Fij) =−2, which shows that A is not metabolic, i.e. L is not boundary
slice. Computer computations indicate that ρ(ML, ϕ) vanishes outside of S1(L, V )
and S2(L, V ) but is non-zero outside of S3(L, V ) which shows again that L is not
boundary slice by Proposition 4·7.
All the ρ-invariants of Theorem 3·11, i.e. all eta invariants corresponding to rep-

resentations that factor through a p-group that we computed so far with a computer
vanish. So it seems that one cannot use Theorem 3·11 to say that L is not slice.
However a new result of Levine [22] shows that L is in fact not slice.
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6. Relating eta-invariants of finite covers

Let M be an oriented Riemannian manifold of dimension 2l − 1 and α:π1(M )→
U (k) a representation. Denote the universal cover of M by M̃ . Then let Vα �
M̃ ×π1(M ) Ck, this is a Ck-bundle over M . On the space of differential forms of
even degree there’s a natural self-adjoint operator B defined by

Ω2k(M ) −→ Ω2l−2k(M )
ω �−→ il(−1)k+1(∗d − d∗)ω.

This can be naturally extended to give a self-adjoint operator Bα acting on even
forms with coefficients in the flat vector bundle defined by α. Consider the spectral
function ηα(M, s) of this operator defined by

ηα(M, s)�
∑
λ�0

(sign(λ))|λ|−s

where λ runs over the eigenvalues of Bα. Atiyah–Patodi–Singer [1] showed that for s
with Re(s) big enough, ηα(M, s) converges to a holomorphic function. Furthermore
this holomorphic function can be extended to 0 and ηα(M, 0) is finite. Now define the
(reduced) eta-invariant of (M, α) to be

ηα(M )� ηα(M, 0)− kη(M, 0)

where η(M, s) denotes the eta function corresponding to the trivial one-dimensional
representation of π1(M ). Atiyah–Patodi–Singer [1] showed that ηα(M ) is independ-
ent of the Riemannian metric on M .
Let M be a manifold of dimension 2l − 1 and M ′ a finite cover, not necessarily

regular. Let α′:π1(M ′)→U (k) be a representation. The goal is to express ηα′(M ′) in
terms of eta-invariants of M .
Consider Cπ1(M ) ⊗Cπ1(M ′) Ck where we view Ck as a Cπ1(M ′)-module via α′. We

give Cπ1(M )⊗Cπ1(M ′) C
k the metric induced by

((p1 ⊗ v1), (p2 ⊗ v2))−→
∑

g∈π1(M ′)

δ(p1g,p2)(α′(g)−1v1)
t
v2

where pi ∈π1(M ), vi ∈Ck. It is easy to see that this is well-defined. Let s �
[π1(M ):π1(M ′)], then clearly dim(Cπ1(M )⊗Cπ1(M ′) C

k) = ks.
Define

α:π1(M ) −→ Aut
(
Cπ1(M )⊗Cπ1(M ′) C

k
)

a �−→ (p ⊗ v �→ ap ⊗ v).

This action is obviously isometric, i.e. unitary.
Denote by α(M, M ′) the representation π1(M )→U (Cπ1(M ) ⊗π1(M ′) C) given by

left multiplication where we consider C as the trivial π1(M ′)-module.

Theorem 6·1.
ηα′(M ′) = ηα(M )− kηα(M,M ′)(M ).

Proof. GiveM some Riemannian structure andM ′ the induced structure. We have
to show that

ηα′(M ′, 0)− kη(M ′, 0) = (ηα(M, 0)− ksη(M, 0))− k
(
ηα(M,M ′)(M, 0)− sη(M, 0)

)
.
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We shall in fact show that

ηα′(M ′, 0) = ηα(M, 0)
η(M ′, 0) = ηα(M,M ′)(M, 0).

Recall that

Vα′ = M̃ ×π1(M ′) C
k and

Vα = M̃ ×π1(M )

(
Cπ1(M )⊗Cπ1(M ′) C

k
)
.

Let p∈M, U ⊂M a (small) neighborhood and p1, . . . , ps, U1, . . . , Us the different lifts.
Then the map

⊕s
i=1πi:Vα|U −→ ⊕s

i=1Vα′ |Ui∑
(q, gihi ⊗ vi) �−→

∑
(qgi, hivi)

is an isomorphism with inverse map given by∑
(qi, 1⊗ vi)←−

∑
(qi, vi)

where gi such π(qgi)∈Ui and hi ∈π1(M ′). Note that

Ω2i(M ′, Vα)|� Ui
= ⊕s

i=1 Ω
2i(M ′)|Ui

⊗C∞(Ui ) Γ(Vα′ |Ui
).

This is isomorphic to

Ω2i(M )|U ⊗C∞(U ) ⊕s
i=1Γ(Vα′ |Ui

)�Ω2i(M )|U ⊗C∞(U ) Γ(Vα|U )

which is just Ω2i(M, Vα)|U . It is clear that these isomorphisms can be patched to-
gether and give an isomorphism Ω2i(M, Vα)�Ω2i(M ′, Vα′) which commutes with ∗
and d since these operators are defined locally. Therefore ηα(M, s) = ηα′(M ′, s), hence
ηα(M, 0) = ηα′(M ′, 0).

Exactly the same way using the trivial representation for α′ one shows that
η(M ′, 0) = ηα(M,M ′)(M, 0).

In the application we’ll have the case that π1(M ′)⊂π1(M ) is normal. We’ll now
restrict ourselves to this case. Write G � π1(M )/π1(M ′) and write MG, αG for M ′

and α′. Denote the canonical map π1(M )→G by ϕ. We’ll give an explicit matrix
representation for αG and show that if αG ∈Pk(π1(MG)) then α∈Pks(π1(M )).
Let g1, . . . , gs be the elements of G and pick a splitting ψ:G→π1(M ) which

is of course in general not a homomorphism. Let e1, . . . , ek denote the canonical
basis of Ck. Then gi ⊗ ej is a basis for CG⊗C Ck and ψ(gi)⊗ ej is a basis for
Cπ1(M )⊗Cπ1(MG ) C

k. We shall write α with respect to the basis ψ(gi)⊗ ej . Note
that

a · ψ(gi)⊗ v =
(
ψ

(
g−1

i ϕ(a−1)
)−1(

ψ
(
g−1

i ϕ(a−1)
)
a · ψ(gi)⊗ v

=
(
ψ

(
g−1

i ϕ(a−1)
)−1 ⊗ (

ψ
(
g−1

i ϕ(a−1)
)
a · ψ(gi) · v

=
(
ψ

(
g−1

i ϕ(a−1)
)−1 ⊗ αG

((
ψ

(
g−1

i ϕ(a−1)
)
a · ψ(gi)

)
v

since ϕ(ψ(g−1
i ϕ(a−1))a · ψ(gi) = g−1

i ϕ(a−1ϕ(a)gi =1. Therefore with respect to the
basis ψ(g1) ⊗ v1, . . . , ψ(g1) ⊗ vk, . . . , ψ(gs) ⊗ v1, . . . , ψ(gs) ⊗ vk the matrix α(a) is
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given by

Pϕ(a)




αG

((
ψ(g−11 ϕ(a−1)

)
a ·ψ(g1)

)
0 · · · 0

0 αG

((
ψ

(
g−12 ϕ(a−1)

)
a ·ψ(g2)

)
0

...
. . .

...

0 0 · · · αG

((
ψ

(
g−1s ϕ(a−1)

)
a ·ψ(gs)

)




where Pϕ(a) is the permutation matrix given by Pϕ(a)(ψ(gi)⊗ej) =ψ(g−1
i ϕ(a−1))−1⊗ej .

If αG factors through a p-group then we can assume that αG(g)∈PDp(k) for all
g ∈π1(MG). It is then clear, that α(g)∈PDp(ks) for all g ∈π1(M ), in fact α factors
through a finite subgroup of PDp(ks). In particular α factors through a p-group.

Lemma 6·2. Let p a prime number. IfG is a p-group and αG factors through a p-group,
then α also factors through a p-group, i.e. α∈Pks(π1(M )).

7. Computation of eta-invariants for boundary links

Let (L⊂S2q+1, ϕ) be a boundary link pair and V =V1 � · · · � Vm a corresponding
Seifert surface. Let α∈Rk(Fm), then define θ � α ◦ ϕ:π1(ML)→Fm →U (k). In this
section we compute ρ(ML, ϕ)(α) = ηθ(ML) using Theorem 2·1.
First we add handles D2q

i ×D2 along the Li to D2q+2 and denote this mani-
fold by NL, then ML = ∂(NL). Note that ϕ does not extend over NL since in fact
π1(L) = 1. We push the surfaces Vi into D2q+2, more explicitly, we can find a map
ι:V × I →D2q+2, I = [0, 1], such that ι|V × 0 is the embedding of V into S2q+1, ι|Li × I
is constant on the intervals and such that ι|int(V )× I is an embedding. Now let
Σi � ι(V × 1)�Di × 0⊂NL, i.e. Σi is the push in of V , capped off by the core of
the ith handle, in particular a closed manifold. Let Σ� �m

i=1Σi, and N � NL\N (Σ).
Note that ∂(N ) =ML �−Σ×S1.
We can find embeddings gi:D2q × I ↪→D2q

i ×D2 such that gi|D2q × 0 is just the em-
bedding inD2q

i × 0⊂D2q
i ×D2 and such that gi|D2q × 1⊂ML and gi|∂(D2q)× I ⊂Vi.

Now let Ti � (ι(V × I)� gi(D2q × I))� N and T � �m
i=1Ti. The manifolds Ti ⊂N play

the role of the Seifert manifolds in S2q+1. For example the Pontryagin construction
for T ⊂N gives a map π1(N )→Fm which extends ϕ:π1(ML)→Fm. We denote the
map π1(N )→Fm →U (k) by θ as well. Note that Ti inherits an orientation from
int(Vi)× I ⊂Ti. By Theorem 2·1

ηθ(ML)−
m∑
i=1

ηθ̃i
(Σi ×S1) = signθ(N )− k · sign(N ),

where θ̃i = θ ◦ i∗:π1(Σi ×S1)→π1(N )→Fm →U (k).

7·1. Computation of ηθ̃i
(Σi ×S1)

Note that S1 inherits an orientation from the orientations of Σi and Σi ×S1.
Denote by mi the (oriented) generator of π1(S1), then

θ̃i:π1(Σi)×π1(S1)�π1(Σi ×S1)→U (k)

is given by sending (g, me
i ) to α(ti)e. We need the following proposition.
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Proposition 7·1 [27, theorem 1·2].
(i) Let αN :π1(N 2r)→U (kN ) and αX :π1(X2s−1)→U (kX) be representations, then

ηαN ⊗αX
(N 2r ×X2s−1) = (−1)rssignαN

(N )ηαX
(X).

(ii) Let α:π1(S1) =Z→U (1) be a representation. If α(1) = e2πia, a∈ [0, 1), then

ηα(S1) = η(α(1))�
{
0 if a=0
1− 2a if a∈ (0, 1).

Therefore

ηθ̃i

(
Σ2qi ×S1

)
= ε sign(Σi)

k∑
i=1

η(cij)

where {cij}j = 1,..., m denotes the set of eigenvalues of α(ti) and ε � (−1)q. We can
express sign(Σi) in terms of the Seifert matrix as follows:

sign(Σi) = sign(Vi) = sign
(√

ε
(
Aii + εAt

ii

))
.

In the case ε=−1 one can easily show that Aii − At
ii is congruent to (

0 id

−id 0
), hence

the signature is zero.

7·2. Computation of signθ(N )

7·2·1. Computation of Hθ
q+1(N, Ck)

Denote by Ñ the Fm-cover of N induced by ϕ, note that C∗(Ñ ) has a right
Fm-module structure. Recall that the twisted homology Hθ

i (N, Ck) is defined as
Hi(C∗(Ñ )⊗ ZFm

Ck), whereCk is a left Fm-module via θ. Fix an orientation preserving
embedding f : (T, ∂(T ))× [−1, 1]→ (N, ∂(N )), such that f (T × 0) is the usual embed-
ding of T ⊂N . Let X � N \ f (T × (−1, 1)), then X is homoemorphic to N cut along
T . We can embed T in X via the embeddings f+(c)� f (c, 1) and f−(c)� f (c,−1).
Then Ñ�X × Fm/ ∼, where (f−(ci), zti) ∼ (f+(ci), z) for ci ∈Ti, z ∈Fm. We will in
fact identify Ñ and X ×Fm/ ∼.
From this decomposition of Ñ we get the following short exact sequence (where

ci ∈C∗(Ti))

0−→C∗(T ×Fm) −→ C∗(X ×Fm)−→C∗(Ñ )−→ 0

(ci, z) �−→ (f−(ci), zti)− (f+(ci), z)

(c, z) �−→ (c, z).

We tensor with Ck over ZFm via θ. The tensored sequence is still exact since C∗(Ñ )
is a free ZFm-module. Taking the long exact homology sequence we get

· · · −→Hθ
i (T, Ck)−→Hθ

i (X, Ck)−→Hθ
i (N, Ck)−→Hθ

i−1(T, Ck)−→ · · ·
where

Hθ
i (T, Ck) = Hi(C∗(T ×Fm)⊗ZFm

Ck) =Hi(C∗(T )⊗Z Ck) =Hi(T, Ck)
Hθ

i (X, Ck) = Hi(C∗(X ×Fm)⊗ZFm
Ck) =Hi(C∗(X)⊗Z Ck) =Hi(X, Ck).

We have to compute H∗(X). Write X =X1 �X2 where X1 � X �D2q+2 and X2 �
X � (�m

i=1D
2q
i ×D2). Note that X1 is just a deformation retract of D2q+2, i.e. X is the

result of attachingm (2q − 1)-handles to X1, hence Hi(X) = 0 for all i=1, . . . , 2q− 1,
H0(X) =Z and H2q(X) =Zm.
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Proposition 7·2. If q > 1 or if (α(ti)− id) is invertible for all i, then

Hθ
q+1(N, Ck)�Hq(T, Ck)�Hq(Σ, Ck)�Hq(V, Ck).

Proof. The last isomorphism follows since Σ2q =V 2q �D2q, the second isomorphism
is clear, so it only remains to prove the first isomorphism. For q � 2 this follows
immediately from the long exact sequence. In the case q =1 we get the following long
exact sequence

· · · −→H2(T, Ck)−→H2(X, Ck)−→Hθ
2 (N, Ck)−→H1(T, Ck)−→H1(X, Ck) = 0.

Clearly it is enough to show thatH2(T, Ck)→H2(X, Ck) is an isomorphism if (α(ti)−
id) is invertible for all i. The map H2(T, Ck)→H2(X, Ck) is induced by the map

C2(T ×Fm)⊗ZFm
Ck −→ C2(X ×Fm)⊗ZFm

Ck

(ci, z)⊗ v �−→ (f−(ci), zti)⊗ v − (f+(ci), z)⊗ v.

First note that H2(X)
�−→H1(X1 � X2) is an isomorphism, and that X1 � X2�

�Li ×D2. Consider the maps

f+,∗, f−,∗ : Zm =H2(Σ) � H2(T ) −→ H2(X) −�−→ H1(X1 �X2) =Zm

[Σi] −→ [Σi] −→ [f±(Σi)] −→ [f±(Σi)� (X1 �X2)].

But [f±(Σi)� (X1 � X2)] =Li, i.e. f+,∗ = f−,∗. Furthermore f+,∗ and f−,∗ are isomorph-
isms. In particular f−(c) and f+(c) are homologous for any c∈C2(T ). Therefore the
map H2(T, Ck)→H2(X, Ck) is induced by the map

C2(T ×Fm)⊗ZFm
Ck −→ C2(X ×Fm)⊗ZFm

Ck

(ci, z)⊗ v �−→ (f−(ci), zti − z)⊗ v = (f−(ci), z)⊗ (α(ti)v − v).

If (α(ti) − id) is invertible for all i, then H2(T, Ck)→H2(X, Ck) is clearly an iso-
morphism.

In the following we will assume that the assumptions of the proposition hold. Our
next goal is to give a geometric interpretation of the map Hq(V, Ck)→Hθ

q+1(N, Ck).
We need the following theorem [33, p. 210].

Theorem 7·3. Let X be a manifold, A⊂X. Let α∈Hi(X, A). Then there exists an i-
dimensional oriented manifold Y and a map g: (Y, ∂(Y ))→ (X, A) such that g∗([Y ]) = kα
for some k∈N.

Write sh � rank(Hq(Vh)).

Corollary 7·4. There exist immersions of oriented (q + 1)-manifolds

ghi,+: (Nhi,+, ∂(Nhi,+)) −→ (X1, f+(V ))
ghi,−: (Nhi,−, ∂(Nhi,−)) −→ (X1, f−(V ))

and immersions of oriented q-manifolds ghi:Mhi →V , h=1, . . . , m, i=1, . . . , sh such
that the following holds for lhi � ghi(Mhi), c+(lhi)� ghi(Nhi,+) and c−(lhi)� ghi(Nhi,−):
(i) {[lh1], . . . , [lhsh

]} are a basis of Hq(Vh)⊗ Q;
(ii) f+(lhi) = ∂(c+(lhi)), f−(lhi) = ∂(c−(lhi));
(iii) c+(lhi), c−(llj)⊂X1 are in general position, in particular lh1, . . . , lhsh

⊂Vh,
h=1, . . . , m are in general position.
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Proof. Since X1 is contractible we get Hq+1(X1, Vh) =Hq(Vh). Pick a basis

b1, . . . , bsh
for the torsion free part of Hq(Vh), h=1, . . . , m. Note that multiples

of b1, . . . , bsh
still form a basis of Hq(Vh) ⊗ Q. The existence of immersions

ghi,+: (Nhi,+, ∂(Nhi,+))→ (X1, f+(V ))), and immersions ghi:Mhi →V with the respect-
ive properties (1) and (2) now follows immediately from Theorem 7·3. In fact one
can choose Mhi = ∂(Nhi,+) and ghi = f−1

+ ◦ ghi,+. Obviously these immersions can be
brought into general position.
Now let Nhi,− =Nhi,+. Then it is clear that maps ghi,−: (Nhi,−, ∂(Nhi,−))→

(X1, f−(V )) exist with the required properties, since (X1, f−(V ))�(X1, f+(V )).

Denote by ∗ the pushing of V into T = ι(V × I), more precisely v∗ � ι(v, 12 ) for v ∈V .
It is now clear that we can find c+(l∗hi) respectively c−(l∗hi), h=1, . . . , m, i=1, . . . , sh

as in the corollary, such that f+(l∗hi) = ∂(c+(l∗hi)), f−(l
∗
hi) = ∂(c−(l∗hi)). We can again

assume that all immersions are in general position. By this we mean that for any
l, l̃∈{lhi, l

∗
hi} the manifolds c+(l) and c−(l̃) intersect transversely.

For l∈{lhi, l
∗
hi}i=1,...,sh

write ψ(l)� c−(l)th �l−c+(l)⊂ Ñ = (X ×Fm)/ ∼. Note that
ψ(l) is a closed manifold since (f−(p), zti) ∼ (f+(p), z) for any p∈Ti. It is clear from
the above proposition that {[ψ(lhi) ⊗ ej]}h= 1,..., m,i= 1,...,sh ,j = 1,..., k forms a basis for
Hθ

q+1(N, Ck). We order this basis lexicographically on the triple (h, i, j).

7·2·2. The intersection pairing on Hθ
q+1(N, Ck)

Let l, l̃⊂ Ñ be oriented immersed (q + 1)-manifolds in general position, by this
we mean that lg and l̃ intersect transversely for any g ∈Fm. Then their equivariant
intersection number 〈l, l̃〉 is defined as follows:

〈l, l̃〉�
∑

g∈Fm

(lg · l̃)g−1 ∈Z[Fm]

where lg · l̃∈Z is the ordinary intersection number, which is 0 for almost all g. Note
that 〈gl, l̃〉= 〈l, l̃〉g and 〈l, l̃g〉= g−1〈l, l̃〉.
The twisted intersection pairing

(, ):Hθ
q+1(N, Ck)×Hθ

q+1(N, Ck)−→C

on Hθ
q+1(N, Ck) =Hq+1(C∗(Ñ )⊗Z[Fm ] C

k) has the following property:

([l ⊗ v], [l̃ ⊗ ṽ]) = ¯̃vtα(〈l, l̃〉)v
if l, l̃⊂ Ñ are immersed (q+1)-manifolds in general position. Furthermore the pairing
is hermitian, in particular we can define its signature.
The Seifert pairing can obviously be extended to a pairing Hq(Vh, Q)×

Hq(Vh, Q)→Q. Denote by A the Seifert matrix of (L, ϕ) with respect to the bases
{[lh1], . . . , [lhs1 ]} of Hq(Vh, Q), h=1, . . . , m.

Proposition 7·5. If (α(th) − id) is invertible for all h or if q > 1, then the inter-
section pairing on Hθ

q+1(N, Ck) with respect to the ordered (cf. above) basis {[ψ(lhi) ⊗
ej]}∈Hθ

q+1(N, Ck) is represented by the matrix
√
−ε(A − εα(T )Atα(T )−1 − Aα(T )−1 + εα(T )At.

In particular

signθ(N ) = sign(
√
−ε(A − εα(T )Atα(T )−1 − Aα(T )−1 + εα(T )At)),
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Note that we can deform ψ(lhi) into d(ψ(lhi)) = c+(l∗hi)− c−(l∗hi)th. Then ψ(lhi) and
d(ψ(llj)) are in general position for any h, i, l, j. We therefore have to compute the
equivariant intersection numbers of ψ(lhi) and d(ψ(llj)). The proposition now follows
immediately from the definitions and the following lemma.

Lemma 7·6. With respect to the ordered sets

ψ(l11), . . . , ψ(l1s1 ), . . . , ψ(lm1), . . . , ψ(lmsm
) and

d(ψ(l11)), . . . , d(ψ(l1s1 )), . . . , d(ψ(lm1)), . . . , d(ψ(lmsm
))

we get the following matrix for 〈, 〉


A11

(
1− t−11

)
− εAt

11(1− t1) A12(1− t1)
(
1− t−12

)
· · ·

A21(1− t2)
(
1− t−11

)
A22

(
1− t−12

)
− εAt

22(1− t2)
...

. . .




= A − εTAtT−1 − AT−1 + εTAt

= (A + εTAt)(1− T−1)

Note that a similar computation has been done by Ko (cf. [13]) for the intersection
form of the (abelian) Zm-cover of N .

Proof.
Denote by + respectively − pushing into the positive respectively negative direction

in int(V )× [−1, 1]⊂S2q+1.
Note that ∂(X1)�S2q+1. There exists an orientation preserving embedding

g:V × [−2, 2]→ ∂(X1) such that for l⊂V

g(l, 2) = f+(l)
g(l, 1) = f+(l∗)

g(l,−1) = f−(l∗)
g(l,−2) = f−(l).

In particular for l, l̃⊂V closed q-manifolds we get

lkS2q+1 (l+, l̃) = lk∂(X1)(g(l, 2), g(l, 1)) = c+(l) · c+(l̃∗)
lkS2q+1 (l, l̃+) = lk∂(X1)(g(l,−2), g(l, 1)) = c−(l) · c+(l̃∗)
lkS2q+1 (l+, l̃) = lk∂(X1)(g(l, 2), g(l,−1)) = c+(l) · c−(l̃∗)
lkS2q+1 (l−, l̃) = lk∂(X1)(g(l,−2), g(l,−1)) = c−(l) · c−(l̃∗).

Furthermore, note that:
(i) right multiplication by th is an isometry,
(ii) lk(l, l̃) =−ε lk(l̃, l).

Using this we compute

ψ(lhi) · d(ψ(llj)) = (c−(lhi)th � − c+(lhi)) · (c−(l∗lj)tl � − c+(l∗lj))
= c+(lhi) · c+(l∗lj) + c−(lhi)th · c−(l∗lj)tl

= lk(lhi+, llj) + lk(lhi−, llj)δhl

and for z�1 we compute

ψ(lhi)z · d(ψ(llj)) = (c−(lhi)zth � −c+(lhi)z) · (c−(l∗lj)tl − c+(l∗lj)),
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this is zero except for the following cases:

z = tl =⇒ψ(lhi)z · d(ψ(llj)) = c+(lhi)tl · (−c−(l∗lj)tl) =−lk(lhi+, llj)
z = t−1h =⇒ψ(lhi)z · d(ψ(llj)) =−c−(lhi)tht−1h · c+(l∗lj) =−lk(lhi−, llj)

z = t−1l th =⇒ψ(lhi)z · d(ψ(llj)) =−c−(lhi)tlt
−1
l th · (−c−(l∗lj)tl) = lk(lhi, llj)

since z�1 implies h�l.

These are the only possible intersections. More precisely, c±(l)z · c±(l̃)z̃ = c±(l)z ·
c∓(l̃)z̃ =0 if z�z̃ and if l, l̃ don’t intersect, since the corresponding manifilds don’t
intersect. The lemma now follows immediately from the definition of the Seifert
matrix A.

7·3. Proof of Theorem 4·5
Recall that we have to show the following.

Claim 1. Let (L⊂S2q+1, ϕ) be an Fm-link, A= (Aij)i,j = 1,...,m a Seifert matrix for
(L, ϕ), α:Fm →U (k) a representation. Let ε � (−1)q+1, then

ρ(ML, ϕ)(α) = ε

m∑
i=1

sign
(√

ε
(
Aii + εAt

ii

)) m∑
i=1

k∑
j = 1

η(zij)

+ sign(
√
−ε(A − εα(T )Atα(T )−1 − Aα(T )−1 + εα(T )At))

Proof. Note that the expression on the right-hand side only depends on the S-
equivalence class over Q of A, since matrices A1, A2 which are S-equivalent over Q

give rise to matrices with identical signatures. In particular it is enough to show that
the claim holds for a Seifert matrix A. The statement under the assumption that
either q > 1 or (α(ti) − id) is invertible for all i now follows immediately from the
calculations above and the observation that the untwisted signature is 0.
Otherwise we have

Hθ
2 (N, Ck)�H1(V, Ck)⊕ Im

(
H2(X, Ck)−→Hθ

2 (N, Ck)
)
.

Let (c, z)∈ Im(H2(X, Ck)→Hθ
2 (N, Ck)) for i=1, 2 and (d, w) ∈ Im(H1(V, Ck)→

Hθ
2 (N, Ck)). Then cg · d=0 since c can be represented by an element which is sup-

ported on ∂(N ) whereas d can be represented by an element which is supported on
N \ ∂(N ).
Since H2(X) is generated by [f−(Σi)] it remains to show that f−(Σi)g and f−(Σj)∗

are disjoint for any g ∈Fm, i, j ∈{1, . . . , m}. That’s obvious for i�j and for g�e.
Recall that Σi � (X1 �X2) =K. Pick a longitude K ′ for K. Pick a Seifert surface V ′

for K ′ and close it by a disk D′ in the 2-handle over K. Then [V ′ �D′] represents
[Σ] and we can assume that Σi and V ′ � D′ are in general position. But

Σ · (V ′ � D′) = (V � D2) · (V ′ �D′) =V · V ′ +D2 · D′ =0

since V · V ′ = lk(K, K ′) = 0 and D, D′ can be chosen to be disjoint.
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