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Preface.

In these notes, the Shale-weil representation of the
symplectic group is discussed, as well as some of its applications
to number theory.

The monograph is composed of two parts:

In Part I, written by Gérard Lion and Michéle Vergne, we
introduce the Shale-Weil representation and establish a relation
between its cocycle and the Maslov index.

In Part II, written by Michéle Vergne, applications of
g-series to liftings of modular forms are given.

Although the results of the first part enlightens the
exposition of the classical transformation properties of
6-functions, a reader mainly interested by thése applications
to liftings could read directly the second part with an eventual
glance to earlier paragraphs. The two parts have separate

introductions and bibliographical notes.

The authors
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Part I: The Shale-Weil representation

and the Maslov Index.

by

Gérard Lion and Mich®le Vergne






1.0. Introduction:

Relations between symplectic geometry, Maslov index,
representations of the Heisenberg group and the Shale-Weil
representation of the symplectic group are discussed in this
chapter. We first give in 1.1 the basic definitions and
properties of symplectic vector spaces, Lagrangian subspaces,
the Heisenberg Lie algebra and the action of the symplectic
group of those objects.

The SchrBdinger representation of the Heisenberg group N
associated to a Lagrangian plane £ is constructed in 1.2.

We prove in 1.3 the Stone-von Neumann theorem which asserts
that all unitary representations of N whose restriction to the
center of N acts by the same non-trivial character are essentiall;
the same: two such irreducible representations are equivalent.
Although this uniqueness theorem underlies the construction
of the Shale-Well representation R, we will give however a
direct construction of R, independent of the proof of this
theorem. Thus results of Section 1.3 will not be needed sub-
sequently.

The Schrédinger representations W, and W,, of the
Heisenberg group associated to the Lagrangian planes £ and £!
are equivalent: we give in 1.4 a canonical choice of an operator

fk',ﬁ such that:
wz(n) =_FE},£ hkxn) }}',ﬁ for every n € N.

(This operator in appropriate coordinates is a partial Fourier



transform.)

Before going further, we have to introduce, in 1.5, the
Maslov index of a triple of Lagrangian planes: ILet (V,B) be
a symplectic vector space, ﬁl, ﬁe and £3 three lagrangian
planes, then

Q123(x1$x2®x3) = B(xl,xe) + B(xe,x3) + B(x3,x1)

is a quadratic form on ﬁl_@ ﬁe @ £3, which can be diagonalized
with p times the eigenvalue 1 and gq times the eigenvalue
-1l. A modified definition of the Maslov index T(£1,£2,£3) due
to M. Kashiwara is T(£1,£2,£3) = sign Q123 =p - q. We prove
in 1.5 that this Maslov index verifies a fundamental chain
property.

The symplectic group G acts on Lagrangian planes, on the
Heisenberg Lie algebra 7 and on the Heisenberg Lie group N.
If W, is the Schr8dinger representation of N associated to
£, the representation W'(n) = wﬁ(g-n) is equivalent to W,:
The natural action A(g) of the symplectic group on functions
on N transforms the representation wﬁ of N into the
representation n - wg'ﬁ(g-n). The Fourier operator jk,g-ﬁ
intertwines the representation wg_ﬁ with wz. Thus the
canonical unitary operator Rﬁ(g) = fk,g-ﬁ A(g) satisfies the

fundamental relation:
-1
Wy(g-n) = Ry(g) Wy(n) Ry(g)™ ", for every n e N.

We prove in (1.6) that
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and deduce from this formula that

Ry(g18,) = cylei.85) Ryley) Ryle,)
im
- byg b £)
) 7 (L8, 4:818,

with cﬁ(gl,ge) = e .

It is known that the Shale~Well projective representation
Rﬁ is not equivalent to a true representation of G.
We construct in 1.7 a function s(ﬁl,ﬁe), defined on couples

(ﬁl,ﬁe) of oriented Lagrangian planes, invariant under the
action of the symplectic group. Let us write

ir
_ eTT('g11£2J£3)’

we prove the relation
2 . =N - - - had
c(bys8ys85)" = s(8585) s(Bysks) s(hg,4,).

This leads to the results of Shale and Weil that the projective
representation Rz is equivalent to a true representation of the
metaplectic group, a double covering of G.

The Section 1.é is devoted to the construction of the
universal covering group G of SL(2,R) by elementary means.
Some explicit formulas for the Shale-Weil representation of G
are given.

Iet A Dbe the manifold of all Lagrangian planes of (V,B).
In Section 1.9, we use the chain property of t to
construct both universal coverings of A and of Sp(B). We

here use the fact that the function (gl,g2) > (£ ;8. £:818,4)



is a %Z -valued cocycle of Sp(B). We relate our construction
of the Maslov index to the formulas in coordinates of Leray
and Souriau. The results of this section are independent of
the rest of the notes. We follow in the Section 1.9 (as in
many other parts of these notes) an idea of M. Kashiwara, and
we are happy to thank him.

The appendix extends the notions of Part I to a local
field k. The Kashiwara index T(£1,£2,£3) is then defined to

be the class of the form Q123 in the Witt group W Thus

K
we obtain a canonical cocyle of the symplectic group G = Sp{n,k)

with values in Wk' We define a function S(E;,E;) on couples of
oriented lLagrangian planes, invariant by the action of G. We
describe then the metaplectic group, using this function s, and
prove as in 1.7 that the Weil projective representation of G
lifts to a representation of the metaplectic group. The results of
this appendix are due to Patrice Perrin. Similar results had
been obtained independently by R. Rao.

Bibliographical notes are given at the end of Part I.

The second author gave a seminar in 1978-79 at the
Massachusetts Institute of Technology on these subjects and
thank the participants for several improvements of the text,
especially Martin Andler, Victor Kac, Steve Paneitz, Carolyn
SchrBeder and Bob Styer. We thank Patrice Perrin for discussions
on his results and Masaki Kashiwars for communicating some
unpublished texts.

Our thanks go to Sophie Koulouras for the patient typing

of the text.



The Shale-Weil Representation

and the Maslov Index

l.1. Symplectic vector spaces and the Heisenberg Lie algebra.

Iet V be a finite dimensional real vector space. Let B
be a non-degenerate skew symmetric form on V. Hence dim V is

even. Let dim V = 2n. Then we can choose a basis (Pl’ P2, oo,

P s Qs Qs °°°s Qn) of V with the relations:

l.1.1. B(Pi,Pj) 0 B(Qi’QJ) = 0

B(Py,Qy) = by B(Q;,P,) = -8

J i
We will call such a basis a symplectic basis of (V,B).
We consider the Lie algebra 7 = V + RE, with the bracket

law defined as follows:

[XsY] = B(X,Y)E, if X,Y € V

{7, E] 0, i.ee« IRE is the center of 7.

M is called the Heisenberg Lie algebra. If (Pi’QJ) is a
symplectic basis of (V,B), the Lie algebra 7 has as basis
(Pi’QJ’E) with the Heisenberg commutation relations, or "canonical

commutation relations:



l.1.2. [Pi’Qj] = GiJE
[Pi’P,j] = 0
[Ql’QJ] = 0,

Let An be the associative algebra of differential operators
with polynomial coefficients on ¢” and the corresponding bracket
[Dl’Dg] = DD, - D,D;. The algebra A, is generated by
p; = Bgz, qJ = xJ satisfying the canonical relations
[pi,qj] = 6ij' The corresponding representation Pi > Py
Qj +1%V E > iTd of M will be of particular importance to us.,.

We will use some simple lemmas for symplectic spaces:
If L 4is a subspace of (V,B) we will denote by L' the

orthogonal complement of L in V relative to B, i.e.
L' = {x e V; B(x,y) =0 V¥y e V}.
We then have:

1.1.3. a) (dim L) + 4im(L*) = 2n
b) (LY)* =1L

1 L i
c) (Ly+ L) =L ~ L,

L L L
d) (Lln L2) L+ Ly

a), b), c¢) are clear; d) is easily deduced from c) by using
the relation (L) = L.

If a subspace £ of V 1is such that ¢ = £, 2 1is called
a Lagrangian subspace of V. We have then B(x,y) = 0 for
every X,y € £, hence £ 1is totally isotropic with respect to

the form Bj moreover if x 1is such that B(x,L) = 0, then



X € £; i.e. £ 1is a maximal totally isotropic subspace of

(v,B).

Lemma 1l.l.4. Let £ be a lLagrangian subspace of (V,B).

There exists a Lagrangian subspace £' gsuch that £ & 2' = V.

Proof: Let 26 be maximal among the totally isotropic subspaces

such that #' n £ = 0, Hence we have zbl + 2t = V. However

we have zél < 4 + &', for otherwise, we could choose x € zél
and not in £ + zb and the subspace Lé contained in 26 + IRx

would not be maximal. Hence we obtain £}

o+ £ = V, which is the

equality required.

1.1.5. Hence given £ a Lagrangian subspace, we can find &!
such that 2 & 4' = V; the bilinear form B clearly induces a
pairing between £ and L' = V/4L, So we can choose a
symplectic basis (Pl’ Poy **5 Py Qs Qs o0, Qn) such that

n
L = 3 RP

n
L' = 3z IRQi.
i=1

1 1=1

1.1.6., We define the symplectic group G = Sp(B): By definition
g € G if g 1is an invertible linear transformation of the vector
space V preserving the form B, i.e. for every x,y € V,

B(gx,gy) = B(x,y).

1.1.7. Let V =IRP @ IRQ, with B(P,Q) = 1, be the two dimensional
canonical symplectic space. Then g = (2 g) belongs to Sp(B)
if and only if B(aP + cQ, bP + dQ) = B(P,Q) = 1, i.e. ad - bc = 1.

Hence the symplectic group for a two-dimensional symplectic vector

space is isomorphic to SL(2,R).
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1.1.8. ILet V be a 2n dimensional symplectic vector space.
We choose a decomposition V =4 @ £' of V into two
complementary Lagrangian spaces. We write x for an element

of £ and y for an element of £'. We write an element g

of G =25p(B) as g = (%4_3), with

a: L >4 , b: LY >}
c: 4 > 4", d: L' > 4!

The conditions for g +to be in G are:

B(g-x,g:x') = 0 x,x'e £
B(g-x,8-y) =B(x,y) xc¢€ £, ye b
B(g.y,g.y') =0 y,y' € Al

We identify £ and £'* and £' to (£)*, via the bilinear

map B(x,y), x € £, y e 4'.

We identify £' with £* via x - B(x,y) for v e bt

1.1.9. Hence these conditions are equivalent to:

tea = tac
Yagq - beb = 1d
tab = *pa
In particular we have
t t
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As g-l € G we have also ctd = dtc, atp = bta, ata - vfe = 1a.

If xe £y, ye £, and wu: £' - £', then:

B(x,uy) = B(Yux,y).

1.1.10. From 1.1.5, we see that the group G acts transitively
on the couples (£4,£') of transverses Lagrangian planes, as

n
they can be transformed to the canonical pair £ = 3 IRPi,
n i=1
£y = =

JRQi by a symplectic automorphism.
i=1



12

1.2. The Heisenberg group and the Schr8dinger representation.

We consider the Heisenberg group N as being the simply
connected Lie group of Lie algebra 7. Via the exponential
map exp, N is identified with the 2n + 1 vector space
V +IRE with the multiplication law:

1
exp(v + tE)eexp(v! + t'E) = exp(v + v!' +(t + t' + Eizil—bE)

where v,v! ¢ V, t,t!' e RR.

For dv the euclidean measure on the vector space V,
dv dt is the Haar measure on N. (dv dt is invariant by
left and right translations.)

The subgroup {exp tE} is the center Z of N.

The group G = Sp(B) acts as a group of automorphisms
on N by ge(exp v + tE) = exp(gv + tE). In particular &

preserves the center Z of N.

l.2.1. Let £ be a lagrangian subspace of (V,B), then
£ +RE 1s an abelian subalgebra of 7. We consider the group

L = exp(# + IRE) which is an abelian subgroup of N.

l.2.2. Let us consider the function f(exp v + tE) = elet on
the group N, f 1is a function with values in the torus
T=1{ze¢eC€, |2 =1}, It is immediate to see that f restricted

to L defines a character of L, i.e.

f(h1h2) = f(hl)f(he) for hiy,h, € L.
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(If we order the pairs (H,%) of a subgroup H of N together
with a character U of H via the relation (H,¥) < (Hl,wl)

if HC H; and ¢,|H =¥, it is easy to see that the pair

(L,f) 1s maximal for this order.)

1.2.3. let us consider (£,2') as in (1.1l.4). Every element

n of N can be written uniquely as n = exp y' exp(x + tE),
with y' € £', x € 4, t € R. Hence the coset space N/L can

be identified with #'. The euclidean measure dv' on 4!
defines on N/L a positive measure dfi invariant by the left
action of N on the homogeneous space N/L. We recall that such

a measure dh 1s unique up to multiplication by a positive constant.

l.2.4., We conslder for a given Lagrangian subspace £ the
representation W(£) induced by the character f of the group
L. W(2) 1s the Schrldinger representation of N associated to

L. We wrilte
N
W(2) = Ind ¢ f.
L

By definition of induced representation, W(£) 1s realized as
follows: The Hlilbert space H(L) is the completion of the

space of continuous functions o on N such that

1.2.4. a) o(nh) = f(h)-lw(n), for every n € N and every h € L.

1.2.4. Db) The function n - |e(n)]| on N/L i1s square integrable

with respect to the invariant measure dh on N/L.
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The norm of o 1is:

”QO”2 =[ Itp(n)l2 dn .
N/L

The representation W(£) is defined to be the representation

of N in H(#) given by left translations:
icee (w(l)(no)m)(n) = m(naln) for o € H(Z), ng € N.
As exp tE is in the center of the group N, we have:

(w(2)(exp tE)op)(n) = o((exp - tE)n)

o(n exp - tE)

_ e21‘lT‘th(n)

. 2imt
ice. W(42)(exp tE) = e Tdg(g)»
where IdH(L) denotes the identity operator on H(4%).

le2.5. Let us consider (£,4') as in l.1l,4, Each element of

N is written uniquely as n = exp y . exp(x + tE) where

vy € £', x € 2. Hence, if o € H(4), the condition 1l.2.4 a)
e-QiFt

is written as o(exp y - exp x . exp tE) = w(exp y), {(y € 2,

xe £, teE). So o is completely determined by its
restriction to exp 2'. Hence the application o > o(y) = olexp y)
defines an isometry R of H(%) with Lz(z'). The representa-

1

N -
tion W(n) = RW(n)R acts on L2(l') by the following

formulas:
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(;(exp X)o) (y) = e23TBIY) (4 X € b, ye o

N = t
(W(exp yo)o)(y) = oly - v,) Ys Yo € 4
W(exp tE) = 2114,

Let us consider x =2 xiPi’ y=2 yJQJ as in 1l.1l.5. Then
I2(#') is identified with L°(R®). We consider the space
A@") of rapidly decreasing functionson IR, Then it is easy

to see that if
) of d tX)ef
Xen, fe 'j: dW(X) = gt w(exP ) It 0

defines a representation of %, which is the infinitesimal
AV
representation associated to W. From the preceding formulas,

we see immediately that

2imTx

aw(p,
(e,)

aW(ay) = - -

J

aW(E) = 2irId.

In a sense to be made precise, this is the unique representation
of 7 which can be exponentiated to a unitary representation of

N.
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1.3+ The Weyl transform and the Stone-Von Neumann theorem.

le3.1le Let G be a topological group. A unitary representation

T of G in the Hilbert space H 1is a homomorphism g - T(g)

of G in the group of unitary operators on H (i.e.

T(gl gg) = T(gl)- T(gg). We also require the continuity of the

magps from G to H given by g »T(g)x for every x € H.
There is an obvious notion of equivalence: if (T,H) and

(T',H') are two representations of G in H and H', we say

that T~ T'! if an isomorphism I: H -» H' exists such that the

diagram:

is commutative for every g € G.
If Tl and T2 are two representationsof G in Hl and

H,, we can form T = T, & T, represented in H = H, () H, by

T, (g) ‘ 0

0

T,(g)

We say that T 1is irreducible, if T cannot be written as
Tle T2, or equivalently if there is no closed subspace Hl of H
stable under all the operators T{(g).

let H be a Hilbert space, we will denote by H the same
space H, but with the multiplication law tex = Tx and the
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scalar product <X,y> = <X,y>j. An isomorphism of H and H
H

is then given by an antilinear map €: H - H, such that

e(ax) = Xe(x), la(x)l = Ix'l. If T 4is a unitary representation

of G in H, the same formulas for T(g) define a unitary
representation of G in H that we denote by T. If we have
defined ¢: H » H an antilinear isomorphism between H and H,

the representation T is equivalent to the representation

o"ls T.o on the Hilbert space H.

Let Hl’HE be two Hilbert spaces; we consider the Hilbert
space H; ® HE: Hl ® H2 is the completion of the vector space

N

spanned by finite linear combinations b vy ® Wis V4 € Hl’
i=1

for the natural inner product such that <vy ® Wis

wieH2

Vo ® Wy = <V, V><W ,Wy>e  If (ei) is a Hilbert basis of H; and

(fj) a Hilbert basis of H then ey ®f is a Hilbert basis

27 3

of Hl ] HE' Also H, ® H2 is the Hilbert sum of the Hilbert

1
subspaces (Hl 2 (!JfJ.) . If we are mainly interested in

H we will say that Hl ® H2 is a multiple of the space Hl’

l,
with multiplicity equal to dim H

o i.e. finite or +oo,

Let Tl be a unitary representation of G in Hl' We

consider the representation T of G in HlQH2 given by

T(g) = T;(g) ® Idy , where Id; denotes the identity operator
2 2
on HE' We will then say that T is a multiple of the

representation T, (with multiplicity dim H2): H, @ H,
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can be written as c? (Hl ®ij) and T =? Tl(g) ® 1ij.

Iet T be a unitary representation of a Lie
groups with a left invariant Haar measure dg, on a Hilbert space
H. We define the space > of ¢° vectors for T by the
following condition: x € H® if the map g - T(g)x is ¢~

Iet ¢ be a function with compact support. We can form

the operator:

T(v) = | »(g) T(g) dg, i.e.

<T(o)x,y>

J'Gco(g) <T(g)x,y> dg -

This integral makes sense if ® is in Ll(G,dg), or if x 1is
in H® and o(g)dg a distribution with compact support. For 0y

and continuous functions with compact support, we form the

2
convolution product ®q *G s defined by:

(0] * ©,)(g) = wal(u) coe(u'lg) du.

We have

~TG(coJ_* 0,)(g)i(g)dg = [J o, (g)o,(h)¥(gh)dg dn

GxG

if ¢ 1is continuous with compact support. Thus we have defined
a structure of algebra on the space of continuous functions.
with compact support, as well as on Ll(G) or on the space £'(G)
of distributions with compact support.

The following proposition is immediate to prove:
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1.3.2. Proposition: For every unitary representation T, we

have: T(ml *G mz) = T(rpl)D T(mz).

Remark: If G 1s unimodular, and q'(g) = ¢(g_l), we have

T(¢*) = T(n)*, where T(p)* is the adjoint of T(p).

1l.3.3. Let N be the Heisenberg group. We will prove the
Stone-Von Neumann theorem (or uniqueness of the representation

of the canonical Heisenberg commutation relations):

Theorem:
a) W(Z) 4is an irreducible representation of N.

b) Every unitary representation T of N on a Hilbert
space H such that T(exp tE) = Q2imt Id; is a multiple of

w(s).

This theorem will be fundamental in our work.

Iet N be the Helsenberg group. We consider continuous

functions ® on N satisfying

_intm(n) for every n € Ne

t eR

1.3.3.a) p(n exp tE) = e

Such functions can be considered as functions on the group

B = N/T where T 1is the discrete central subgroup
T=(n=exp kE; ke Z}.

Every element n € B 1is written uniquely as n = exp v exp tE, with

t e R/Z . We obtain a Haar measure db on B by considering

the product dv dt where dv is a Lebesgue measure on V, and dt
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a mass one Lebesgue measure on RE/ZE.

L& function satisfying 1.3.3 a) is determined by its restriction
to exp V. Hence the space of continuous functions on N satisfying
1.3.3. a) is identified with the space of continuous functions
on V. We still denote by o(v) = o (exp v) the restriction
of o to V.

Iet T be a unitary representation of N satisfying

T(exp tE) = 21Tt 1q

q

Then T 1is a representation of B. We form

1.3.4.  W_(o) = T(o) = [ o(p)T(b)ddb = | o(v)T(exp v)dv
T B v

for ¢ a continuous compactly supported function on V (or B).
WT(w) is the Weyl transform of the functions . We will also
consider WT(m) for © a rapidly decreasing function on V.
Compactly supported continuous functions satisfying 1.3.3. a)
form an algebra under the convolution product on B. We have
then defined a structure of algebra on the space of continuous

functions with compact support on V. We have:

"

(0 %oy)(exp v) fvwl(exp u) o,(exp -u exp v)gqu

= [ ¢,(exp u) w,(exp(v-u) exp - B(u,v) E)d
I ealexe w) o, B 5y
_ i'lTB(u,v)du

fvml(exp u) o,(exp(v-u)) e
i.e.

i7rB(u,v)du

1.3.5. (ml *5 me)(v) = fvwl(u) wg(v-u) e
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If m satisfies 1.3.3 a), the function o*(n) = wo(n™")
also satisfies 1.3.3 a); thus identifying » with a function
on V, we have o (v) = 3(=vJ.
If o satisfies 1.3.3.a) the function n - m(naln) as
well as the function n ~ m(nno) satisfies 1l.3.3.a) (for ng € N);
we will denote them by n, *; @ and o *; ﬂg& (convolution with

Dirac distributions).

If Ny = exp Uy identifying o with a function on V,

ivB(uO,u)

(no *BGP)(u)= e co(u—uo)

ivB(u,uO)

(0*g ng)(u)= e m(u-uo)-

1.3.6. From Proposition 1.3.2, we deduce:

a) WT(ml *B mg) = wT(ml)° wT(wg)
b) WT(m*) = WT(m)*

c) WT(nO *5 o) = T(no)o WT(m)

d) WT(m *5 no) WT(co)o T(no) .

1.3.7. We consider T = W(£); we will now see that the
Weyl transform W extends to an isomorphism from the space
LE(V) to the space of Hilbert-Schmidt operators on H(%). We
recall some facts on Hilbert-Schmidt operators:

Iet H be a Hilbert space. We recall that a Hilbert-
Schmidt operator A: H - H on H is an operator such that

for some orthonormal basis (ei) of H,

s lae,ll? = Z|<Aei,ej>|2 = Z|<ei,A*eJ>|2 = z|ai‘_]|2 <w.
i 1,5 1,3 1,3

2
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This sum doesn't depend on the choice of the orthonormal basis
(ei) and is denoted by HAHE_S. For A and B iHilbert-Zchmidt
operators,B*A is of trace class and <A,B> = TrB*A =

b3 <B*Aei,e > = X <he,;,Be;> defines a scalar product on the

i
i i
space ;/JE(H) of Hilbert-Schmidt operatorson Hj; hence %{_2(}{)

is a Hilbert space, having as basis the operators Ei J.(x) =
)

<x,ei>ej° Let x,y € H, we define the rank one operator

E. . (v) = <v,y>x on H. Clearly E is Hilbert-Schmidt and
XY XY

<E > = <xl,x2><yl,y2>o

E
X1s¥1" XpaVp

Hence as the map x,y - Ex y is linear in x, antilinear in Yy
2

we obtain an isometry from H @ H onto éy;/E(H).
Let us suppose now that H = LQ(E,dy) where (E,dy) is

a measure space: We will see that the space of Hilbert-

Schmidt operators on LE(E,dy) is equivalent to the space

2(

L“(E x E,dxdy) of square integrable functions K(x,y) on E x E

via
(Ko) (x) = | K(x,y)e(y)dy

Let (e;) be a Hilbert basis of L°(E). We denote by

(ei ® eJ)(m) = <w,ej> e;-

Hence

. (x)

((e; @ eJ)(m))(X) = <w,ey> ey

= (J »(y) T5(y)ay) ey (x)
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It

I o(y) ei(X)Ej(y)dy

[ K (x,y) oly)dy

1J

with Kij(x,y) = ei(x)ej(yi.
The Hilbert-Schmidt operators are of the form X aij ey [2: ej
with = !a..|2 < »3; hence K(x,y) = = a._. e.(x)e.(yJ is such

ij 1J 1 dJ
that
2

[ IKGuy) 17 axay = 2 Jag | < =,

Thus the operator associulce i the clement b 2y 5 ei(g ey

of H®H is the operator j' K(x,y) -:o(y)dy with K(x,y) =
= 2y 4 ei(
that if wo € I?(V) is of norm 1, the projector P: H - cwo

x)ejlyi. Iet us remark here for later reference:

given by P(») = <m,¥ Pty is given by the kernel K = wo(x)ﬁolyi.
1.3.8. We now prove

Proposition: ILet T = W(£); the Weyl transform W = Wy extends
to an isomorphism from L2(V) to the space of Hilbert-Schmidt

operators on H(Z).
Proof: We have
WT(m) = [ olv) T(v)av.
\Y
We write V = £' @ £ according to the choice of £,4' as in
1.1.4, Hence

WT(w) =[] o(y+x) T{(exp(y+x)) dydx, y e £', x € £

-imB(y,x)
s dxdy.

JJ oly+x) T(exp y) T(exp x)e
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Let us identify H(Z) with I?(ﬂ') as in 1.2.5, and we write
WT(w)-f for f e I° (Lv)

(p(o)-£)(2) = [T X) g (yax) (0 (exp y)W (exp x)1)(8) dxdy

y+x)e2i1rB(x,F-y)f(

- J«J'e-ivrB(y,x)Qp( £-y) dxdy

Changing y to * - y, we have

2ivB(x,y)f(

g-y+x)e y) dxdy

- ffe'ivB(g'y’x)w(
= [JeB ) (ayax) e (y) axay.
Hence if we define:
Ky (#3) = JeATBUS ) (pyax) ax,
we have written WT(w) as a kernel operator, i.e.

(Wp(w)r(e) = Iz' K (2,5)f(y)dy.

To prove our proposition, we have to see that if o € I?(V) the
corresponding kernel K € L (£ x £'). The bilinear form
B(x,2)(x e £, # ¢ £') defines a nondegenerate bilinear map on

£ x £'. Hence the partial Fourier transform
~213 4
(;xw)(Y:E) = Je lvB(x")m(y+x) dx

is a unitary isomorphism from L2(£'GB £} onto I?(ﬂ' x 4v).

But our kernel is then

(k) (£,y) = (Foo)(e-y, - 52)

which is clearly in LE(Z' X £'). Hence our proposition is proven.
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1.3.9. Corollary: If U is a bounded operator on H(Z)
commuting with all the operators W(£)(n) for n € N then

U 1s a scalar operator.

Proof: Let U: H(Z) » H(£) commuting with all the operators
W(£)(n) for every n, then U commutes with the operator

WT(m) for o function on V which is compactly supported and
hence by continuity with all the operators W(p) for o € I?(V),
in particular with all the Hilbert-Schmidt operators. Taking

a Hilbert basis (e;), the relation U (ei ® ej) = (e @ ej) U

for every (i,j) implies immediately that U = ) Id for some

A € €. It follows that there cannot be any closed invariant proper

subspace H; of H(£) (the projector P

H has to be IdH by

1
the preceding corollary). Hence the part a) of the theorem is
proven.
2
1.3.10. let us fix £ = zo, L1 = 26, Hy = H(zo) =L (2(')), Wy = w(zo).

We remark that,if ., ©, belong to the space (V) of rapidly decreasir
funetions on V, then ®q *B m2 e-d (V). Hence we have defilned a
structure of (noncommutative) algebra on -4 (V). In the Weyl

transform given by W the corresponding kernel Km(g,y) for

® € (V) 1is a rapidly decreasing function of (g,y), and we

obtain this way all the operators with rapidly decreasing kernels.

Now we will prove the Stone-Von Neumann theorem. ILet us

first sketch the idea of the proof: via the Weyl transform WT s
0
we have identified the algebra (1&(V),*B) with a subalgebra

Ul of operators on H

o o+ If (T,H) is a representation of N
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- eZivt 14

into a Hilbert space H satisfying T(exp tE) the

H,

Weyl transform W, defines a homomorphism of (*5(V),*B) into

T
a subalgebra ([ of operators on H. Hence we obtain a homomor-

phism m:CTO > Ul  of algebras such that o(a%*) = o(a)¥*.

Iet us recall that if V and V are two finite-dimensional

0

complex Hilbert spaces, and ¢ a homomorphism from EndCVO to
End V satisfying o(A*) = o(a)*, ©(1) = 1, then there exist

vV, and an isomorphism I: VO® vV, » V such that for
A € Endg Vi, w(A) = I (A ® Id

We will give here the proof for the finite-dimensional case as
our proof in the general case will be similar:

Let xq € V5, with Hxlﬂ = 1; we consider P; the projector
Pl(x) = <X,X;>X; on the one-dimensional space €x;; we have

_ _ ¥
= p. Py - R

Let us consider m(Pl). First we remark that m(Pl) # 0.

In fact we can find (xl, Xps s xn) an orthonormal basis of

Vo starting with g We denote by Pi the projector on Gxi.

If g; is any operator on V such that gi(xl) = Xy, then
* * .
giPlgi = Pi' Hgnce § giPlgi = IdVO. Applying the homomorphism
. *
©», we obtain iil w(gi)m(Pl)m(gi) =14, so o(P;) # 0 and
verify m(Plf = m(Pl), m(Pl)* = w(Pl), i.e. m(Pl) is a projector

n *
of V. From the relation = m(gi)m(Pl)m(gi) =1,

on a subspace V1

we see that every element of V 1is of the form

n
= w(gi)wi with w; € V;. We consider the surjective map
i=1
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I: V@V, » V defined by I(A-x1 @ w) = o{A)w. This map
is well defined as, if (A-B)xl = 0, (A—B)Pl = 0, then

(w(A)-m(B))m(Pl) = 0 meaning that o(A)w = ¢(B)w for w ¢ v,.

Clearly now I(Ax Q@ w) = o(A)I(x @ w) and it is easy to conclude
the proof.

Now we come back to our case. Let us choose a function wl

in <&(l') such that |v = 1. We consider the projector

I
Pl on Cwl, Pl is given by the kernel Wl!yS ¢1(x) and hence

is of the form wo(ml) for o, e A(v). as P, 1is a projector

1

on the one-dimensional subspace Cwl we have Pi =P *

12 P1 = Py
Pjo Wo(n) P, =a(n)P; with a(n) = <wo(n)“’1’“'1>° Hence from

1.3.6 the function ®q satisfies
* = * o * * =
1.3.11. Py *g 9 = 09, @] =%, O] *pn *p Py = a(n)ml.

As @y €4 (V), we can calculate WT(wl) for any unitary

representation (T,H) of N satisfying T(exp tE) = 21t Idy-

1.3.12. Iemma: The space H 1is generated by the elements

T(n)wT(ml)-x for ne N, x € H.

Proof: Iet y € H be such that <y,T(n)WT(ml)-x> = 0 for

every n € N, x € H. We compute for no = exp U,

<y,T(no)wT(ml)T(no)'l-x> =0 = £V<y,T(exp u)T(exp v)T{exp -u)-x>§fv)dv

J <y,m(exp(v+B(u,v)E)) - > wfv)av
v

Ein(u,v)d

| <y,T(exp v)orfv)e v = 0.
v
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Our function m{v) <y, T(exp v)x> is a continuous function in

12

(as 9(v) e (V) and [Ky,T(exp v)x>| < llyllllxll 1is bounded).
The preceding equality means that the Fourier transform of this
function with respect to the bilinear form B(u,v) 1is identically
zero. Hence mfv) <y,T(exp v)x> = 0. As ®; is not identically
zero, there exist v, such that <y, T(exp vo)x> = 0 for every
X € H. This implies <y,HE> = 0 hence y = 0,

Now from the relations 1.3.11 and lemma 1.3.6, we deduce
that WT(@l) is a projector on the subspace H; = WT(ml)H of H.
As in the finite-dimensional case, we wish to define I: Ho<® Hl > H
via the formula I(wo(n)wl<3 w) = T(n) w, with n e N, w ¢ Hy.

We first verify
1.3.13. For wy = WT(ml)xl, W, = WT(@l)xg, ny, ny, € N

<T(nq)wy, Tlny)wyoy = <wo(nl)mrw0(n2)wl>HU <wl,w2>Hl
Proof: We have

<T(n)Wpleq)xy, Tlny)Wple)x>y

= Qg (my )T (ny) () W (o )Xy x>y -

Using relations 1.3.11 and lemma 1.3.6, this equals

= a(n3Tn))<Hp(ey)x x>y = alngtng )<ig (g )xy, Wp (o] )Xoy
which 1s the desired equality.

As the representation W is irreducible, the set of

0
linear combinations 2 ciwo(ni)-wl is a dense subspace of Hg.
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It is clear now that we can define as isometry I from
HO ® Hl - H via the formula
N N
I(iil wo(ni)url ® wy) = iil T(ni)wi.

N
This map is well defined as if 2 wo(ni)'“’l ® w; =0 the
i=

1

N

equality 1.3.13 implies | = T(ni)wi”H = Iz Wo(ng)e, ® WiHH e = O
i=1 o1

The operator I is surjective by 1.3.12. Hence I 1is a unitary
isomorphism between H, ® H; and H. Clearly I (wo(n) Q@ Idy ) -1
1

= T(n). Hence T is a multiple of the representation Woe
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1.4, Pourier transforms and intertwining operators.

Let 21 and 22 be two Lagrangian planes. We can form
the unitary representations W, = w(ﬂl) and W, = w(ﬂg) of
N. By the Stone-Von Neumann theorem, we know that they are

equivalent, i.e. there exists a unitary operator

F

2,1 H(El) > H(Eg) such that:
1.4.1, J'—Q,l Wl(n) = wg(n) ‘}:—2,1’ for every n € N.
f2 1 is determined by this relation up to a scalar of
£

modulus one, as follows from 1.3.9.

1.4.2. ILet us first compute }-2 1 in the case where 1’,1=RPl®---®]RPn
2
and 22 =RQ; ® -+ ® RQ . We adopt the following conventions:
n
X = (Xl’ Xos """ Xn): y = (yls Yos * s yn): Xy = 'él XYy
n n 1=
x-P = j_i]_ xiPi, y-Q = iil yiQi-
Then W, acts on L2(dy) and W, on I?(dx) by the following
formulas:
2ivxo-y
(W, (exp xoP)o) (y) = e o(y)

(W, (exp yQ)0) (¥) = wly - vp)

(Wy(exp xP)m) (x) = o(x - x)
—2ivx-yo
©®

(Wy(exp yoQ)o)(x) = e (x).

We denote by HF- the Fourier transform from L2(dy) = H(El) to
I?(dx) -~ H(Eg) given by
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1.4.3. (Fo)(x) = ] e 2% 4(y)ay.

Since J transforms translation operators into multiplication

operators it is immediate that J:;wl(n) = w2(n)°JF . Hence

};,1 = F

1.4.4, ILet 21 and 22 be two Lagrangian planes. Let

L, = exp(ll + RE) and L, = exp (22 + RE) be the subgroups of
N associated to £; and £, (1.2.1). We consider, as in
1.2.4, the Hilbert spaces H(ll) and H(lz) canonically

associated to 21 and 22. We wish to find an operator from

H, to H, intertwining the representations w(ll) and w(lz).

1 2

The formal construction is simple: We look for an operator
commuting with left translations and transforming a function o
semi-invariant under the right action of L (i.e. verifying
1.2.4% a)) into a function o semi-invariant under L,. Hence
it is natural to "force" o to be semi-invariant under L, by
averaging right translates of ¢ under LE’ taking in account
that o verifies 1.2.4 a) for h ¢ Ly n L.

Hence we will define formally:

L5 (F, pe)n) =] »(nhy)f(n,)dh,
2’71 LE/LlnL2

where dh denotes a positive L. -invariant measure on the

2 2

homogeneous space L2/L10L2. As dﬁz is unique up to multi-

plication by a positive scalar, we remark that JLz y) is
271

therefore defined up to multiplication by a positive constant.

Let us compute ka for the preceding example. We have

2’21
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L, " L, = { exp tE }. Hence (I?/LeﬂLl,dﬁE) is identified
with (£,,dy), and
(Fy g0 (n) =] olnexp y-0)dy.
2271 22
We identify H(£;) with I°(dy) by wly) = olexp y-Q), H(Z,)
with L?(dx) by o(x) = w(exp x-P). Our operator F
£osty

becomes

(;Z v) (exp x-P)

P jz w(exp x.P exp y.Q)dy
271 2

[

jﬂ o(exp x-P exp y.Q exp-x-P

2 exp x.P)dy

jz o(exp y.Q exp-x-P exp(x.y)E)dy
2

J  olexp ya)e
£y

-2i‘n‘x-ydy,

as o € H(ﬂl)

—2imx. -
= [ oly)e™ ™ Vay = (Fo)(x).
£2
Hence JTg 1 defined formally by 1.4.3 is indeed a unitary
>

operator given by the Fourier transform.

The following lemma shows that this is basically the only

situation.

1.4.6. Iemma: ILet 21 and EE be two Langrangian subspaces

of (V,B). There exists a symplectic basis (Pl, Pos v+ Py Qq,

Qs *-vs Qn) of V such that:
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4, =RP; ®RP, @ -+ 8RP, @ RP,_, @ --- ®RP_
4, =Ry, ®RQ, ® --- ®RQ ®RP_ , & -+ @ RP_.

Proof: ILet W be maximal in the collection of all totally
isotropic subspaces S satisfying (£l+£2) n S = 0. Hence

Wt c ﬂl + 32 + W by the maximality condition. But we have

(£, 0 £,) + W' =V as (£,+£5,) n W =0 (1.1.3), hence

(ﬂl n ﬂz) + ﬂl + 32 + W=V, i.e. W 1is a complementary
subspace to ﬂl + 32 in V. The bilinear form B defines a
duality between ﬂl n 32 and V/£l+£2 = W. Hence we can
choose a basis P 4, -+, B of ﬂl n 32 and a basis

of W such that B(Pi,QJ) =6, B(Pi,Pj) = 0,

Qk+l’ MY ] Qn JJ
B(Qi,QJ) =0 for 1i,j > k+l. Let us consider the subspace
M=4,nL,+W. Clearly V=MO® M* as Mn M =0. We
have
i
ﬂl = ﬂl al 32 + ﬂl nM
i
£2=£ln£2+£2nM.

It is immediate to see that ﬂl n M* and 32 N MY are transverse
Lagrangian planes in M*. We then choose Pis Pyy o0y Pk a

1

. ES
basis of ﬂl NM, Qy, Qs s Q & basis of 32 n M by

duality, and we obtain the lemma.

Let us consider ﬂl, 32 and the symplectic basis of V
given by the lemma 1.4.6. We will write x = {x',x"), with
x' = (xl, Xos ttts X ), %" = (xk+l’ ++, x;) eand similar

notations. Then H(4;) is identified with 1°(dy'dy") and
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H(L,) 1is identified with 12(ax'dy"). Our formal operator
J; ; Dbecomes then oly',y") » (F'o)(x',y") where [E ' denotes
k]
the partial Fourier transform in the first k-variables. If
C -1
— 1
we compute ‘;i,2 we see that ./1,2 = (F J”~. Hence we have

proven the

1.4.7. Proposition: The operator

(fﬂg,glw)(n) =] w(nh,) £ (h,)dhy,

L2/LlnL2

is an intertwining operator between W(£,) and W(£.). ¢F
1 2 £2,El
is canonically defined up to multiplication by a positive

constant and JF22’£1 = (jil,ﬂg)—l.

We will now make specific the choice of dh 80 that Mf}

2 £

becomes a unitary operator. 2?71
1.4.8. 1Iet us first recall the definition of c-densities on

a vector space E. Let E be a Kk-dimensional vector space

over IR, ARE the space of Kk-vectors in E. ARE is one-
dimensional over IR. For any real number ca, we call a density
of order & a map op: ARE - {0} >R such that p(av) = |x|% p(v)
for each v € ARE - {0}, » e R - (0). The space of all densities
of order a 1is one-dimensional over IR, and is denoted by

Oa(E). It we A*E* is a k-form, we denote by |w|%® the

o density defined by |w|®(v) = |(w,v)|%, for v e g - {o0}.
nl(E) is referred also as the space of volume forms. We denote

by IAKEI the space AKE, modulo the equivalence relation

e v =2,
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1.4.9. ILet £ Dbe a Lagranglian subspace of (V,B) and e e A"Z
be a n-vector. We identify £ with (V/£)* via the bilinear
map B. Hence each element |e| e |A"4| gives a volume form
le] on V/&.

let L = exp{f ®RE) and X = N/L. The tangent space
of X at the image 1 of the identity element 1 of N is
canonically identified with V/£. It is immediate to see that
|e|] can be extended as an N-invariant volume-form on X. We
denote by d|8| the associated measure on X. We denote by
H(Z,|e|) the space H(£) where the choice of the inner product

on H(£Z) 4is now determined by

oll° = IX |cp(n)|2 d|e|ﬁ.

1.4.10. Given (V,B), a symplectic vector space, we have a

canonical element w € A2nV* defined by

w = BaBaA - A B.

n-times
If E 1is a vector space, we denote the top-degree term

of the graded vector space AE by A™3*z.
et El be a subspace of E, we have then:
AmaxE o Amax(E/El) ® AmaxEl .
If E=E ®E,

AmeXg = Amax(E/El) ® AmaX(E/E2) .
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1.4.11. ILet us consider two Lagrangian planes ﬂl and £2.
The bilinear form B defines a canonicalsymplectic form B!
on £l+£2/ﬂlﬁ£2. The spaces ﬂl/ﬂlnﬂz and ﬂz/ﬂlnﬂz are
transverse Lagrangian subspaces in £l+£2/£ln£2.

We have:
Amax(v/ﬂlnﬂz) - Amax(v/£l+£2) ® Amax(ﬂl+£2/£ln£2)

AT (B +8,/0108,) = NBX(Bo+8,/81) ® NTFX(8,+2,/8,) .
Thus  A™8X(V/8108,) = ATEX(V/E +0,) ® ATEX(L+L,/8) ® AR (81+8,/0,)
From this, we deduce:
1.4.12. Lemma:
nl(v/ﬂlrwz) == 01/2(1&1+£2/zln22) ® nl/z(v/ﬂz) ® nl/e(v/zl) .

Proof: Let Uy Ay Aug be an element of Amax(V/ﬂlﬁ£2), with

u; € Amax(V/£l+£2), u, € Amax(£l+£2/£l) and u, ¢ Amax(£l+£2/22).

3
Thus u; Au, € Amax(

Uy Al € Amax(v/ﬂz). Hence for p; ¢ nl/2(£l+£2/£ln£2),

V/81)s upaug e ATEX(L.+8,/8.08,)  and

Py € nl/z(v/ﬂz) and pj3 € nl/z(v/ll), we define

(pl ® 92 ® 93: ul ,\u2Au3) = pl(uzl\u3) 92(u3 /\ul) 93(111/\ u2)

which is homogeneous of degree 1, thus it is a volume form on

V/ﬂlnl2

As £l+l2/£lh£2 is provided with a canonical half-density

Iw'll/z, we get a canonical map from
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1.4.13. Let ey € Anﬂl and e, € A“ﬂz. We recall that the

2
choice of a volume form 6 € 01(32/31022) defines a canonical

operator Jrzz’ﬂl: H(ﬂl,el) -> H(ﬂz,ez) by :

) .
(F = nh,. )f(h,)6h
2., 8 ®)(n) I m( > > 59
2271 L2/L10L2
where 652 denotes the I? invariant positive measure on
L2/LlnI? associated to 5.

We now glve a canonical choice of 6 in function of

el and e2. We conslder the identifications:

0y (V/81085) = 8y, (V/E;) @ 0, 5(V/8,) @ lat|1/2

ol(v/zlrwz) - nl(v/ﬂz) ® nl(ﬂz/ﬂlnﬂz) .

Given e € Anﬂl and e, € Anﬂz, there exist a unique

2
6 € nl(ﬂl/ﬂlﬂﬂz) such that

1/2 1/2

ley 172 @ ley 172 @ [01]2/2 = e,| © 6.

1/2 1/2 1/2

We denote symbolically 6 = |el| ® le,l” ®|w] If

ﬂl = 32 and e; = e, then 6 = 1. If ﬂl n 32 = 0,
identifying nl(LZ) = nl(V/Ll), we have for ejae, = cuw,

6 = ICI'l/ZIell-

. n n
1.%.13. Proposition: Let e; € A El, e, € A E2 and
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6 = |e 1/2 3 |e2|'l/2 €1|w‘|l/2. Then F 2 g. 1s a unitary
2°71

.

operator from H(£ to H(£2,e2). With this choice

l, el)

_Fe
El’£2 32’21

Proof: It follows from our calculation in coordinates in 1.4.2.
that our normalized operator is precisely J: . The general

case 1is deduced from 1.4.6.
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1.5. Maslov index.

In this section, we define the Maslov index and prove 1its

properties following an unpublished text of M. Kashiwara.

Let El,l2,l3 be 3 Lagrangian planes in V. We consider
the 3n-dimensional vector space ﬂl =) 22 ® 33. We define the

Maslov index T(ll,£2,£3):

1.5.1. Definition (Kashiwara): T(ﬂl,£2,£3) is the signature

of the quadratic form Q(xl + X, + X

- 3) on the vector space

El_e 32 () E3 defined by:
Q(xl+x2+x3) = B(xl,x2) + B(x2,x3) + B(x3,xl).

The signature of Q 1is defined as follows: In a certain
basis of ﬂl @ E2 =) E3, the matrix of Q is diagonal and
contains p times the coefficient +1, q times the coefficient

-1; the signature of Q 1is then p - q.

It is clear from the definition, that we have:
1.5.2. For any g € Sp(B), T(gﬂl,gﬂe,g£3) = 1(31,32,33).

1.5.3. 1(31,32,33) = -T(£2,£l,ﬂ3) = -1(31,33,32).

let ﬂl and 32 be two transverse lLagrangian planes. We
have seen that we can always choose a symplectic basis

P P,

n
12 Fos "'vs Bns Qps Qps *0s @ such that £y = I RPy,

E2 = 2 RQy, i.e. for Ei,ﬂé, two other transverse Lagrangian

and

planes, we can certainly find g e Sp(B) such that gll = ﬂi,
gﬂg = ﬂé. On the contrary, formula 1.5.2 shows that the

symplectic group does not act transitively on triples of Lagrangian
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planes. In fact we will see that the configuration of three

transverse Lagrangian planes is determined by their index.

Let El,ﬂz,ﬂ be three lLagrangian planes. We suppose first

3
that ﬂl and 23 are transverse, i.e. V = ﬂle 33. We denote
by 3 the projection of V on ﬂl perpendicular to 33,

and P3; the projection of V on 33 perpendicular to ﬂl.

We have:

1.5.%. Lemma: If 4, and 33 are transverse, then 7(31,32,33)

is the signature of the quadratic form on 32 which associates

to x € 32, B(pl3x,p3lx) = B(x,p3lx) = B(pl3x,x).

Proof: We have

Q(xl + Xy + x3) = B(xl,xz) + B(XZ’X3) + B(x3,xl)

B(xl,p3lx2) + B(pl3x2,x3) + B(x3,xl) as 31. and 33
are Lagrangians,
= B(py3%piP3)%p) = Blxy = Pyg¥psX3 = Pay¥Xp)-
Let Y1 = X1 = P13%Xps Vp = Xp» Y3 = X3 - p3lx2; with respect
to these coordinates Q(xl + X, + x3) = B(pl3y2,p3ly2) - B(yl,y3):
hence sign Q = sign B(pl3y2,p3ly2) - sign B(yl,y3). As the

signature of the form B(yl,y3) is equal to zero, we obtain

the lemma.
1.5.5. Remark. The bilinear form S(x,y) = B(pl3x,p31y) on 32
is symmetric, since for X,y € 32, B(x,y) = 0 = B(pl3x + P31%s

p13y + P3lY) = B(P13X:P31.Y) + B(P31x:pl3Y): as ﬂl and 33

are Lagrangian.

1.5.6. The kernel of the bilinear form S on 32 is equal to

ﬂl n 32 + 33 n 32: if B(pl3x,p3ly) = 0 for every Yy € 32,
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then B(pl3x,y) = 0, hence Pygx € Ez n El. AS x = P3iX + Py 3%,

we have X € ﬂz n £3, and X € ﬂl n ﬂz + £3 n Ez.

1.5.7. Corollary: Let (El,EZ,E3) be three mutually transverse
Lagrangian planes, i.e. El n 32 = 0, 32 n ﬂ3 = 0, El n E3 = 0.
Then there exists a symplectic basis Pl’ sy, Pn’ Ql, ey, Qn

and an integer k, 0 < k < n, such that

£, =RP; ® -+ ®RP_

£, =RQ; ® -+ BRQ

L; =R(P, & £10)) @ ®oR(P ® € Q)
with €. =+1 if 1i < k, Ei = -1
if i>k

We then have T(El,E2,33) =n - 2k.

Proof: The symmetric form S(x,y) on 32 is non-degenerate,

we hence can choose a basis Ql, Qz, vy @ of 32, such that

n

S(Qi’Qj) = -Ejﬁij. As B gives a duality between £; and £,

we can choose a basis Pl’ P P of El such that

os ttts By
B(Pi,QJ.) = 6.1J., i.e. (Pl, “res Pls Qs cee, Qn) is a symplectic

basis. Let Zi = p13Qi’ with respect to the decomposition
vV = zl@ z3,~ then Q; - Z, € £,. By definition

i i 3
S(Qi’Qj) = B(p13Qi’Qj) = 'éjéi,j’ for every J. So pl3Qi = - EiPi.
A basis of E3 is then Q; + EiPi = é'i(Pi + EiQi), and the lemma

is proven.
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1.5.8. Proposition. For 31,32,33,34 four Lagrangian planes,

T verifies the chain condition:
T(El,£2,£3) = T(El,ﬂz,ﬂu) + T(£2,£3,£4) + 7(33,31,34).
We visualize this relation as follows:
€
€ (- e,

€,
Proof: ILet us first suppose that 34 is such that £, N Zi =0

for i = 1,2,3. We have that 7(21,32,33) is the signature of
the form Q(xl,xz,x3) on El & Ez ) £3. The second member is

the signature of the quadratic form Q' on El @ £2 o 33 given

by

Q' (y15¥55¥3) = B(PyYpos¥,) + BlPoyy3sys) + B(Pgyyysyq)-

The transformations:
X, = + = Z(Xq=D1 XD X )
17 Y1 T Puyyp Y1 = VX TPy XotPn¥s
= _ 1
2 = Vp + Pauy¥3  and ¥, = H(xpmppyxstpyxg)
_ _ 1
X3 - Y3 + p3)+yl Y3 = E(x3'p3)+xl+p3)+x2)
are reciprocal {as p14p34yl =V and similar relations). Let
us prove that these transformations give the equivalence of Q
and Q'.

We have:



43

B(xy,x,) = B(Dyy¥ps¥,) + B(yps¥p) + BlyysPpyys) + BIP1y¥osPoyy3)-
By cyclic permutation, we have to show that
B(y1s¥,) + B(y,sP3uyq) + B(pgyy sPyy,) = O
Iet us write Yy = Py, + Py Y,e this is
B(y1sPy1¥p) + B(Py1¥psP3y¥1)s as B(ypspyyy,) = 0,
= Byy,Pyq¥p) + B(Py1¥ps¥1) = 05 as B(pyq¥,sPy3yy) = 0.
This proves the proposition for this case.

Now let us take a Lagrangian plane m transverse to all

the 2J, J = 1,2,3,4, and let us express T(zi

,zJ,zk) as a

function of T(zi,ﬂj,m). Then the result follows immediately.

1.5.9. ILet p be an isotropic subspace of V, i.e. B(p,p) = O.
Then B defines a non-degenerate symplectic form on pL/p. For

W a subspace of V, we define
W= (Wnopt) +p = (Wp) Nptcopt.

We have (W5)° = (Wp)L as (W)t =(KW N ehp)t = p* n (Whp) = (WH)P.
Hence if W 1is a Lagrangian plane of V, Wp/p is a Lagrangian
plane in pl/p.

fle will prove:
1.5.10. Proposition: Iet p < (21 n 22) + (22 n 23) + (23 n 21)

then 7(21,22,23) = 7(29,25,23).
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We first prove the

1.5.11. ILemma: Let El,ﬂz two Lagrangian subspaces. Then
ir £ = (& n Zl) + (£ n ﬂz), we have T(Zl,ﬂ,ﬂz) = 0.

Proof: Let us choose Y, = £ N ﬂl, Y, < Zn 22 such that

£ = Y, ® Y,. For an element x = (xl,u+v,x2) of the space

Zl &Y, oY,0 ﬂe with x; e El, ueisn 21, veldn ﬂz,

x, € Ez, we have Q(x) = B(xl,v) + B(u,xz) + B(xz,xl)

= B(xz-v,xl-u) as B(u,v) = 0. Hence the signature of Q 1is
equal to the signature of the quadratic form B(yz,yl) on

ﬂz 2] ﬂl which is obviously zero.

Now let us prove proposition 1.5.10. ILet p be contained

in ﬂ123 = El n ﬂz + Ez n E3 + ﬂ3

is isotropic, El n ﬂz, ﬂz n ﬂ3 and E3 n ﬂl are contained in

n El. In particular, as ﬂ123
pt. We have 1&3 = (£, N p*) + p by definition. If
U= uj, +Uygt Uzg € with u, e ﬂl n ﬂz, uys € ﬂz n E3,
= 1) _ 4P

u € E3 n ﬂl, we have Upg = U = U, = Ugp € P +(2l Nnop ) El.

P L P _ (4P Py -
23 € ﬂl n (ﬂz Np-). So ﬂl = (El n El) + (Ez n El) =

P p P

(El n El) + (E2 n El).

31

Hence u

We conclude by the preceding formula that
1(£,£9,4,) = T(zl,zg,zg) = o.
From proposition 1.5.8, using the chain rule, it follows that

T(El,ﬂz,ﬂ3) = T(Ep,ﬂg,ﬂg), as seen from the diagram:



=
'_J
-,
NA 5
=
w

-

NS
~o
1Ny
wo

-

0
z2

1.5.12. We define, for a sequence (El, 22, tty b)) of

Lagrangian spaces in (V,B), the Maslov index T(El, Ez, , Ek)

for k > 4, by:

T(zl:‘ze:"':zk) = T(zl:zQ:z?)) + T(z13z3’z4) + e+ T([’l’zk-l’[’k)

= 1 (BysLps k) + T(lyulas8) + ov + v (B 1B, 0) + T4 Lyu0),

k-1’

where £ 1is an arbitrary Lagrangian space. (The equality follows

from 1.5.8.) We have:

1.5.13. Proposition:

a) The index T(El,ﬂz,---,ﬂk) is invariant under the action
of the symplectic group, and its value is unchanged under circular
permutation.

b) For any Lagrangian planes z1’22’23’ Ei,ﬂé,ﬂé, we have:

(L1582, 88) = m(Ly,8ys03) + 7(£],L8,0,,L,)

+ T(ﬂé,ﬂ',ﬂ3,ﬂ2) + (81

3’zi’zl’23)

as visualized by the graphic:
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c) 7(21,22,23,24) = -7(22,21,24,23) as visualized by

Ly ol Ly —> 3
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1.6. The cocycle of the Shale-Well representation and the

Maslov index.

let El,ﬂg,ﬂ3 be three Lagrangian planes in the symplectic

vector space (V,B). We consider the canonical unitary inter-

twining operator (we leave implicit the choice of el,eg,e3):

Foo. H(2,) —> H(L,)

1s4d

which intertwines w(ﬂj) and W(£4;) defined in 1.4.§. It is
J: L . .

clear that the operator 1,3 J:3’2 F 5,1 1is proportional

to the identity operator on H(El) as this operator intertwines

the irreducible representation W(El) with itself. Hence there

is a scalar of modulus one a(ﬂl,ﬂg,ﬂ3) such that:

£y £y

F =a(l,, 0. ,4.) Id.
EQ,EI 129227%3

l’E3 3’E2

(It is easy to see that a(ﬂl,ﬂg,ﬂ3) does not depend of el,eg,e3.)

1.6.1. Theorem: ILet ﬁl’ £2, and E3 be three Lagrangian
planes. Then
Jr JF J: - %FT(EI,Eg,E3)
1,3 /3,27 2,1°°¢ Ty, .
Proof: Let us first compute this for the three dimensional
Heisenberg algebra: Let El = RP, E2 = RQ, E3 =R(P+Q). We
have T(El,ﬂz,ﬂ3) = -T(El,ﬂ3,E2) = -1 as follows from 1.5.%4,.
Hence we have to prove that in this case
imr
— -
fl3 ~F3’2 \;2’1—'6 Id.

3
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Let us identify H(£)), H(£,) and H(£;) with I°(R)

by (Ryo)(x) = o(exp xQ), (Ryv)(x) = o(exp xP) and

(R3m)(x) = ¢w(exp xP). Then on H = L2GR), we obtain

1) f, 1) (exp xP) = [ o(exp xP exp 2a) de
[ emRATEE () g
te. Fp = F
2) (f5, o) (exp xP) = [ m(exp xP exp £(P+q)) ds.

2
We have: exp xP exp #(P+Q) = exp(x+2)P exp *Q exp :%— E.

Hence

1mx® [ —2imxe _ ime?

=e o(g)e e de, changing £ to E-x

.2 =
e, F o, - el

.2
where elvx denotes the multiplication operatar.

3) (1 30) (exp xQ) = [ 2(exp xq exp £P) ar.
We have:
2
exp xQ exp 2P = exp(#-x)P exp x(P+Q) exp(-xe + %) E.

Hence

G;;,3w)(x) = I @(E—X) e2iwxp e'iWX2 ar
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2 .
iTx e
= et [ o(e) g21mxe de, changing & to EB+x

2
irx -1
i.e. ;1,3 = e ‘; .

ei1rzx2

Let us consider the function mz(x) = for Im z > O.

This function is in I°(R).

1.6.2. Lemma.
. 2 -1.2
I e-21vxp eiwzg ae = (%)-1/2 e-i1rz X

where the determination of the function 2z - (-J%_-)-l/2 on the

simply-connected domain Im z > 0 is 1 for =z = 1.

Proof: We define for z € D = {2z; Imz > 0}, x € €

. 2
6(z,x) = I g-2imxe AmzPe 4,

It is easy to see that 6(z,x) 1s a holomorphic function

of (z,x) on DX € and for x eR, b(z,x) = Cfﬁz)(x). It is
-1 2

hence sufficient to prove 6(z,x) = (-:Z-L-)-l/2 =12 TXT pop
z = 1y, y > 0, x = iu. We have then
2mur T, 2
6(iy,in) = [ ™8 V8 gp |
we change & to y'l/2-
-1/2 2
- y—1/2 I e2'rruy g -TE ae
-1/2. 2 -12

-12 2
- y-l/2 JY U I T ae

-1 2
1/2 ;¥ u

0

3
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which is the desired formula.

. ~
We will denote Jo by . From the lemma 1.6.1 we deduce:

1.6.3. Lemma. ILet ¢ be a function in -3 (R), then:
im
o2 2
A I -
J(e) ™™ ar = [ o(r) &1 an.

. . A i1rz-2
Proof: Iet z € D. We consider the function [ o(g) e™ =~

dr.
This is clearly a continuous function of 2z for 2z in D; we

have for z € D by the Plancherel formula, and lemma 1.6.1

N . 2
[ w(e) ewzg2 ar ‘J'cp(g)(eivzg ) ae

o -1,2
= E)Y2 [ a(e) e 1TEE g,

If we now take the limit of this continuous function

when 2z tends to 1 we obtain the lemma.

We now calculate J: o ):2 15 we have from the preceding
> >
ealculations, for o €4 (R)

A 2
(Fy o Fo,1@)(x) = ] alxte) LA

r. 2 A
But o(x+r) = (e'2lv'um(u)) .  Hence

ir

2
(}%,2 J:2,lw)(x) = e1r i e-2imtu co(u)e"j'wu du
_ ir 2
i.e. J ,F = eT J' e_in .

3,2 2,1
Hence
ir =i

=~ T I~ T(£y54,545)
J’1,3 f'—3,2 ./'-2,1=e Ida = e 37 14.

The case when 1(31,32,33) = 1 1is proven in the same way.
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Hence the formula of the Theorem 1.6.1 is proven for the
three dimensional Heisenberg Lie algebra. (If El = E2,

then f2’l - 13, F) 5 =;5}2 (1.4.9b) ana 7(£y,4,,45) = 0).

3)
Now we will prove Theorem 1.6.1 by induction on the

dimension of V. The case where El,ﬂ2,23 are transverse

follows then from 1.5.7, as we can then decompose the transfor-

mations J:El’ﬂ jrz 2 ka2’El into products of transformations

s
involving only3the éariables in the symplectic subspaces
ImPi +Iin without mutual interferences.

We denote by a(El,E2,E3) the element of T such that
Faog Fao, Foyu, = olhitorks) 1.

let us suppose now that, for example, El and E2 are not
transverse and let p = El n 22. From 1.5.9 we have

T(El,ﬂe,ﬂ3) = T(ﬂl,ﬂe,ﬂg). We will show that:

F, , -F _F
£.,4 P J p
372 £3,Z3 £3,22
Fu 4 =F | F
L.,k P p
1’73 El,23 £3,23
£, > £ >£3 >zl

2 \\\\s z; ////a

Hence we will have
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f1,3 F3,2 Fan -F f F 4 sz Fio .z

p P
zl,z3 E3,E3 £3, 3 3,£2 2%
=J:' F FE R (By (1.4.9b).)
P P
zl,z3 £3,E2 2271

But the three lagrangian planes El,ﬂz,ﬂg are contained in

pt El + Ez # V. If we consider V' = p*/p, Ei = El/p,

[

Eé = Ez/p, Eé = Eg/o, Zi, Eé and Zé are 3 Lagrangian

planes in the symplectic vector space V' of dimension strictly
1 ' o4y Yy = p
smaller. It is easily checked that a(ﬂl,ﬂz,ﬂ3) = a(ﬂl,ﬂz,ﬂ3)

and T(Ei,ﬂé,ﬂi) = f(zl,ze,zg) by 1.5.9.

Hence we only need to prove:

1.6.4 Iemma. ILet El, Ez, and £ three Lagrangian planes such
that £ = (£ n El) + (£ n Ez), then

—

F, , =F, ,F,,.
ze,zl Zz,ﬂ E,El

Then our result will follow, as for example for Z% =(E3 n p*)+ D
. p P 9
p being contained in E% n £y, ﬂ3 = ﬂ% n 23 + 23 ne.

Proof: Let us compute (}} P .f} 2.0)(g)
27 271

- S, a%
Izz/mwz( E,Zl“’)(g exp x)

= w(g exp x exp y) dx dy.
Ixelz/ﬂﬂﬂz Iyel/llnﬂ

We have £ = El N4+ 22 N £, hence El n 22 is contained

in 4% = 4. Let us consider Yl a complementary subspace for
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£ n 22 n El = 21 n 22 in £ n 22; then £ = El n4 + Y,. ILet

Y

£y

2

=Y, + 4N 22 =Y, + Y

be a complementary subspace for £ N 22 in 22, then

s - l+21022. Hence Y1®Y2 is a

complementary subspace for 21 n 22 in 22. Our integral

Jz 2 _F'z 4.9 using the choice of this complementary subspace
2? 71

is then:
IY IY o(g exp y, exp y;) dy; dy,.
2 N
But as Y,,Y, < 22, B(Yl,Ye) = 0 hence
(jT ( = o(g exp (y + dy, d
2,8 ,Fz,zlw) g) IY1+Y2 g exp (y1+y,)) dy; dy,
= [ o(g exp u) du
22/21022
= (f, 4 @)e) g.e.d.
22,21

We now define the Segal-Shale-Weil projective representation

of the symplectic group G = Sp(B).

Let G be the symplectic group of the vector space (V,B)

(1.1.6). The group G acts on N leaving the center exp RE

of
of

N fixed. Let (W,H) be "the" irreducible representation

N into the Hilbert space H such that W(exp tE) = eelﬂt Id

If we consider the representation (wg,H) of N in H defined

by

w&(n) = W(g.n), then from the Stone-Von Neumann theorem, the

representation W& is equivalent to W. Hence there exists a

unitary operator R(g) on H such that:

q
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1.6.5. R(g) W(n) R(g)~t = w(g-n)

for every n € N. This determines R(g) up to a scalar of
modulus one.

Let us consider a function g - R(g) from G into the
unitary operator U(H) of H such that for every g € G, n € N
the relation 1.6.5. holds. Then from 1.3.9. we have that for

81+ & € G

with c(gl,gg) a scalar of modulus one. (The operator

y-1

R(gl) R(gz) R(glg2 is a unitary operator commuting with the

representation W). From the relation

R( (glgz)'g3) = R(gl‘ (gega))

we deduce that for 81s Bos g3 € G, we have:
1.6.7- C(glge:ga) C(gl,ge) = C(gl:gega) c(gelga)'

We say that g - R(g) 1is & projective representation of the
group G and c(gl,gg) is the associated cocycle. We will
now define a canonical choice g - R(g) satisfying 1.6.5, and

compute the associated cocycle.

1.6.8. let us consider £ a Lagrangian subspace of (V,B)
with a given form e. The group G operates on functions on

N by (a(g)o)(n) = m(g'l-n). If o© is a function in H(£,e)
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(satisfying 1.2.4. a),b)) it is clear that A(g)w € H(g-£,g-¢).
Hence we may consider A(g) as a unitary operator from H(£,e) to
H(g.£,g-e). It is immediate to verify that A(g) is a unitary

operator satisfying
-1
alg) Wyln) Alg)™" = W 4(g-n).

Let (El,el),(ﬂz,ee) be two Lagrangian subspaces and

ljrze’ﬁl our canonical unitary operator (1.4y§). The diagram
5 E
J’ﬁe,zl
H(El’el) > H(Ezyez)
l A(g) . Alg)
go
F by, ehy

H(gl,,ge;) H(gl,,ge;)

is commutative:

We now define for every g € G

5
1.6.9. Ry(e) = Fg,q.g0Ale)

where 6 = Ig-ell/2 ® Iel-l/2 ® Iw'Il/2 = 6(g). Clearly &
doesn't depend of e (only of relative size of g.e, with
respect to e). Hence Rﬁ(g) depends only on £.

The function g - Rﬁ(g) is a function on G with values

in the unitary operators on H = H(#4,e) verifying:

1.6.10. Ry(g) Wy(n)ery(g)™t = Wy(g-n)

for every g € G, and n € N.
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We will often write R(g) = Rz(g), if the choice of £

is without ambiguity. We have:
Ry(g;) Ryls,) = fz,glzoﬂgl)ﬂ,gez-f\(ge)

£,8,2 '@lz,glg2g-A(gl)-A(g2) (from 1.6.8.)

iw

ﬂr T(nglziglg2z)

e J-;,gngE (g 8,)
as: Alg,) Ale,) = Alg;8,)

'% T (zxglg2zxglz)

E’glzqggz’glg2z. e1e 0ol e Ia (1.6.1.).

Hence we have:

1.6.11. Theorem:
Rﬂ(glg2) = cz(glige) Rﬂ(gl) Rz(g2)

with:
inr
'jr T(zlglz’glgez)

cylaygy) = e
1.6.12. For a projective representation R of a group G with
cocyecle ¢, we consider the Mackey obstruction group Gc' The
group Gc is the set Gc = G X T with the law of multiplication

s -1
being given by (gy,t,)-(g5,t,) = (81855t,t, clgy.8,)7 7).
(The cocycle relation 1.6.7. is in fact equivalent to the
associativity of the above given law.) If we consider the

function R(g,t) = tR(g), R is now a unitary representation
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of the group GC, as

)—l

-1
tit, clgy,8,)7" Rlge,)

t; R(gy) t, Rlgy,).

Hence we can think of the projective representation R of G

as & true representation of the Mackey group Gc'

In our case, our cocycle is given by the formula

-3 (2,808, 8,8,8)
C,Z(gl’g2) = €

We consider the Z-valued function TE(gl,gz) = T(E,glﬂ,glgzﬂ).

This function satisfies the following:
1.6.13. Lemma:
Tp(8180583) + Tyleys8) = Tyleys8083) + Thlepses).

Proof: Applying the cochain relation 1.5.8. to E,glﬂ,glgzﬂ,glg2g3ﬁ,

we have
T(L,g18,818,8) = T(L,8,0,8,8,838) + T(g14,818,05818,83)
+ (8,858, 4,8785834)
which is the relation we want, if we remark that

T(g18s818,L:8180838) = T(Lrex8,8,838) = Tylesse3) -
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P,
1.6.14. Hence we can define the group Gy = G x Z with the

following associative law
(gy5n7) - (g50n5) = (gy85,ny+n,+7(L,8,8,8,8,4) .

We will study in the appendix the group Ek in detail and prove tha
the connected component of the identity of &2 is the universal coverif
group of G, i.e. the calculation of our cocycle in the form
2 .
e allows us not only to construct the metaplectic group, but
elso the universal coverin§vgroup of G. _

The map (g,n) > (g,e ¥ ) 1s a homomorphism of G, = G X Z
into the Mackey group Gc‘ Hence we define the Shale-Weil represen-

tation R,Z on 61?,: G x Z by the formula
ivn
Ll
1.6.15. Rﬁ(g,n) = éjr Rg(g).

This is a true representation of Ez.

1.6.16. Let us suppose we have chosen another Lagrangian plane
£' and define the projective representation RE" We have
RE'(g) = b(g) Rg(g), with b(g) = by E'(g) a scalar of modulus
2
one. From the definition of RE,(g) = }E, X Alg) we see
&
that b(g) is the scalar such that the following diagram is

commutative:

fil,gﬂl

Alg
H(£!) —> H(g-£')



As the first square of the diagram with the arrow in dashes
is clearly commutative, b(g) is given by the commutativity

of the second square, i.e.

b(g) = j},gv j}
P b
im X Y TA
i T(E,gﬂ 28 )+1(L,gl,e )

= e Ia by 1.6.1
S3E (8, ek,e0,00)
e

t,eb! Fgﬂ',gﬂ fgﬂ,ﬂ

it

1,gh! fgﬂ',zjﬂ,gﬁ'ftiﬁ',gﬁ fgﬂ,,@

Id (1.5.12)

"Ti-'r T(Z,gz,g,@',z')
1.6.17. b (g) =e .
£,0

It is clear that we have
-1
cpleqse,) = cpilese,)p(e))ole,)rle,8,)
as follows from
In fact we have:

T(Z:glg:glgg'g) =

T(Z',gll',glggﬂ‘) + T(Z,glz,ng',,Z') + T(Z:ggl’uggz',z')

= T(ZJ glggzsglggzlszl )
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as follows from the (1.5.13,1.5.14) and the relation

T(L,8,8,8,8",8") = T(gi4,8.8,8,8,8,8",8.4")

YA 'glggﬁ'

2 'e 8,4

A ~
1.6.18. 1In particular the groups GZ and GE' are isomorphic

via the map from AEz to ?&, given by:
(gsn) > (gon + 1(L,8l,g8',4").

1.6.19. We now will give the formulas for the canonical
projective representation Rg(g) of G. We choose a decomposition
V=4@®L of V into two complementary Lagrangian spaces. We
write x for an element of £ and y for an element of £'.

The space 4! is isomorphic to £% via x » B(x,y) for y e 4'.

We identify H(£Z) with LE(E') by of(y) = w(exp y). By

definition R,(g) =J'—2,gz a(e),

i.e. (Ry(g)w) (¥) = Iz/ ) z(A(g)w)(exp y exp x) bx
g6
= IE/ s zm(exp g-ly exp g'lx) 5x
g 8l
We have: £ n gl ={xel; g_lx € £}, 1.e. £ n gb = ker e, we

have: g-lx - tax - tcx, with Pax e 2, tex € 21, so
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t t
exp(g'lx) = exp(-tcx) exp(tdx) exp chﬂl E.

As o € H(£), and tax e £
-1 -1 -1 t__y_-imB(a%ex,x)
p(exp g7y exp g77x) = o(exp g "y exp-‘cx)e ’
. -1 t . t
_ co(exp-tcx exp g-ly)e211r}3(g ¥s €X)1mB(d"ex,x)
. t t
_ m(exp-tcx exp g-ly)e-ElvB(tby,cx)éde(dcx,x).

Finally writing g-ly = -tby + ta.y, we obtain

. t . t. .t . t
(Rz(g)w) (y) =] . tp(tay-tcx)el"rB(a bysy) e-211rB( by, cx)e-l‘er(d CX,X) bx
xef/ker ¢

Changing x to -Xx, we obtain finally:

1.6.20. £ ot "
(R (g)w)(y) = [ Cp(tawtcx)eurB(a ¥5¥)2ATB("by, “ex) ~1mB(dex,x) g

t x.
xeb/ker"c

The choice of 6 1is as follows: there is u unique in
|A™@Xg/0ng-£| such that: for v e A™®X(g.f/8ng-£) and

max (

e e A ing-L), vaa = g-(uag) and Juav] = |o'|, where o!

is the canonical form on the symplectic space fb+g-f/8ng-b. We

choose 6 such that |(6,u)| = 1.
1.6.21. Let us consider some special cases of this formula.

1) et gla) = (%‘l'EOTI)’ with a € GL(£), then
a

(Ry(g(a)))(y) = ldet a|'/® o(tay).

2) Let wu(x) = (-(H—%), with x = °x, then
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(Ry(u(x))o) (y) = ITBOFY) g(y)

3) Let g = (2}5), with c invertible, then

fy?t.

o

i » 1 1 - -1 1
(R, (g)o) (y) = [ 'm(y:)elv(B(cldy,y')+B(ac Yy,y)-28(c™ Yy, y))

If a given symplectic basis of V is chosen, with £ ==eB]RPi

and 4! =®RQ,, then boy' = |aet cl'l/2 dy.

We also give a formula for the cocycle Cz(%l’%e) on the

open set {(gl,g2)} of G x G where

a b a b
gy = ( oo, g, = { 2 %), with c,sc, invertible.
¢ 4 ¢ dp
Let us write
a b
gng = ( 3 d3) .
€3 93

We have then:

ir . -1 -1
-7 sign(e7 cycn7)
1.6.22. cg(gl,gQ) = e r 173727,

. _ - -1 _ -1 -1
Proof: We have c3 = cja, + dlcz. Thus cq c3c2 = asCy” + ¢y d

is a symmetric matrix (1.1.9). We now compute

1

T(£,810,218,4) = (74, L,8,0) ,
using 1.5.%.
Iet us write x ¢ £, on the form x = zq + 23 with z; in
gilﬂ and 23 in ggﬂ, i.e.

- t ; .
= “dju - “cqu + ayv + ¢ v, with u,v e £. We then have:

Ve T is the signature of the quadratic form Q'

defined by v -~ B(tdlu - tclu, a v + c2v). We choose
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y =c,v oas variable. Then

t, t -1 -1 -1 -1
Q'(y) = B("da; c]y,y) - Bly,aycy7y) = Ble;7d1y + aye57y,y)

-1 -1
= B(c] c3C5 7Y ¥)

and the formula follows.
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1.7. Oriented Lagrangian planes and the metaplectic group.

imr
- (L., 0,,4
Let us consider c(21,22,23) = e R 12722 3) We will
now show that there exists a function S(Zl,le) defined on
couples of oriented Lagrangian planes, invariant under the

symplectic group, such that
c(81545,45)% = s(TLT,)7F s(Fp, 2507 s (25,207

We will use this fact to prove that the Shale-Well projective
representation is a representation of the two-sheeted covering

group G, of G = Sp(B).

1.7.1. Definition. An oriented vector space of dimension n is
a couple (L,e), where L 1is a real vector space of dimension
n, and e an orientation of L, i.e. a connected component of

AL - {0).

If (L,e) 1is an oriented vector space, we define the
oriented dual vector space (IL,e)* = (I*,e*) of (IL,e) by
choosing e* such that <x,y> > O for x € e*, y € e. We will
sometimes write e for any element x € e C AnV, where there
will be no confusion.

Ir (Vl’el) and (V2,e2) are two oriented vector spaces
and A a linear invertible map from Vl to V2, we define the
sign of the determinant of A denoted by g(A) = + 1, by the

condition

(A"a)e; = cg(h)e, with c > O.
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Let us remark that if (Vl,el), (V2,e2), (V3,e3) are three
oriented vector spaces and Al: Vl > V2, A2: V2 > V3 are
invertible linear maps, then E(AQAl) = €(A2) E(Al). Also
E(a) = €(a7h).

If (V2,e2) = (Vi’ei) and A 1is a linear invertible map
from V; to Vi, E(A) 1is defined without ambiguity independently
of the orientation of Vl’ as it is easily seen by taking the
opposite orientation in Vl‘

Al A2 A3
Now if A = A A A V»>V* with A: V—> Vl —_— V2 —> V*

3hof ¢
then £(A) does not depend on the orientation on
(V’Vl’VQ)’ if we choose on V* +the dual orientation of the one

on V.

1.7.2. Iet £ and m be two Lagrangian planes of the symplectic
space (V,B). We define g, pt L >m* by <g . (x),y> = B(x,y).
e L
The kernel of €. 2 is £ Nm, so if £ and m are transverse,
oL
gm,Z is invertible.
Iet (2l,el) and (22,e2) two oriented Lagrangian planes,
which are transverse (i.e. £, N £, = 0), then g =
1 2 ﬁe,ﬁl

€o,1" (ﬁl,el) - (ﬁe,eQ)* is invertible, and we define

1.7.3. 6((£l,el),(22,82)) =E(g2,l).

This depends only on the relative orientation of (El,el) and (39,92;
More generally if El and 22 are not transverse, we define
E((ﬁl,el),(ﬁe,ee)) as follows: lLet e be an orientation of

p = zl n £2. Then e defines an orientation Ei, i=1,2 on
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ﬂi/p by ejae = e;; ﬂl/p and £2/p are two transverse

Lagrangian planes of ll + £2/p = pl/p. We define
8 ((zl’el)’(£2’e2)) = 8((£l/p’gl)’ (£2/p’g2))'

It is easy to see that this does not depend on the choice of
the orientation e of p, as if we change e to -e, both

orientations gl’gé change simultaneously.

Ir ﬂl = £2’ we define

E((ﬂl,el): (zg:eg)) =1 if el = 62

=<1 if ey # e, s

which can be thought as a special case of the preceding formula.

We remark that:

n-dim(zlnz

)
€ ((Bseq)s (Bser)) = (-1) 28 ((8y0e,)5 (£y5e7))

as t _ .
€1,2 = "82,1

1.7.4. Definition. Let (ﬂl,el) and (£2,e2) be two oriented
lagrangian planes. We define:

.(n-dim(llﬂ£2))

S((,el,el),(»e2,e2)) =1 E(('el)el)’(£2’e2))°

Hence we have s((ﬂl,el)),(ﬂe,ee))-s((£2,e2),(ﬂl,el)) = 1.

Iet ' be the manifold of all lagrangian planes of V and
f the manifold of oriented Lagrangian planes. The map
p: (£,e) » £, realizes A as a two-sheeted covering of 4 .

The symplectic group acts on the space of oriented Lagrangian
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planes. We will write 7 for a Lagrangian oriented plane

(£,e). Clearly we have

~ ~

1.7.5. s(gﬁl,gﬁe) = s(b

l’z

2)-

Now we prove
1.7.6. Theorem. Let 21,22,23 e h, then

~

im T(P(Zl):P(ZE):p(Z3)) ~ Z ) (ﬁ Z
3/ 81¥3»

e? = s(y,2,) s(Z

22 1)

~

(We remark that the second member depends only on p(ﬁl), p(ﬁg)

and p(£,).)
3
Proof: We will prove the theorem by induction on the dimension
of V.
Iet us first prove this theorem, when ﬁi =p(Z.) are

i
mutually transverse. We recall (1.5.4) that T(£1,£2,£3) is
the signature of the quadratic form on ﬁe given by
1 = - .
Q' (x) B(pl3x,p3lx). let S(x,y) B(plax,paly) be the associate

symmetric form. We define

ﬁg > L% > ﬁl > L%

8y30° 3 !

by 2135 = &p) °(g31)_lg3g- We see that S(x,y) = <ay3,(x),¥>,

since if x = xq + X3, X3 € ﬁl, x3 € £3:
S(x,y) = B(Pl3x,y) = B(Xl,Y),

€32% = 831%1»
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R -1
since for u € £3, B(x,u) = B(xl,u). Hence (g3l) g3p% = X
and <al32x,y> = B(xl,y). As sign Q' =p - ¢ =n - 2q, where
p is a number of positive signs in Q', and gq the number of

negative signs, we have:

imr ir _. '
Y/ Y/ sign Q
eT T( l:»ee.v 3) - eT s 6(3123) = (_l)Q_

Hence

T (8, 8,,4

o 3) - i(n-QQ) = i%(-1)9

= in&(al32)

It

1"£(gy1)€(857) E(83,)

~

s(Zl,Zg) S(ZQ’Zé) s(Eé,Zl).

Let us now suppose that ﬁ3 n ﬁg = 0 and £3 n ﬁl = 0.

let p = ﬁl n ﬁe, then £3 Nnpe = 0. We consider the planes

£y = £1/ps £Y = Ly/ps £% = (43 0 pt) + p/p =~ (43 n pt).

As ﬁl < p* and ﬁl + 4, =V we see that p* = ﬁl + (£3 noe*).

3
Hence the three Lagrangian planes Zi,ﬁé,ﬁé are transverse in

1
p/p.
Iet us choose an orientation e on p and an orientation

1 1 1 1 ] ] 1 1
el on £3. We take the orientation ejse} on ﬁl,ﬁe such

that e; = ei'Ae, and consider the corresponding oriented planes
-~ ~
B.Iy 0.

We have t(L1,0,,85) = T(45,85,48) = 7(£1,28,48). So

T 1 (858,,4,) ~ i T
eT 1272273 - S(ﬁi-'zé) S(ﬁl,ﬂé) s(ﬁé:ﬁi)
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We have s(Zi,ié) = s(il,Zé), as the dimension of a Lagrangian

plane in pl/p is n - dim p = n'. We have only to show now
1 1 1 —

that s({£ ,1,_;)) s(z3,zl) = s(ze,z3) s(z3,zl).

We consider the maps 8y g5 28 2 which are invertible,
2) lJ

3 3

as £3 n ze, £3 n ﬂl = 0. Let us form

F = (gz ) )-l &y gt £, —> £§ —> 4

31 3P 2 1

F! = (gzé,zi)'l gzé,zé: ﬂé-—)(ﬂéﬁ'——> 21 .

Clearly F 1is the identity on p = ﬂl n ﬂz. We consider the

diagram
&y .8 (gz 2 )"
2 71
ze 3 S z§ 3 > ﬂl
l P lz‘ _ L P
gzl’z| (gzl’zl) 1
£o/p 25 (z3np*)*.__§__£___> £./p

where p 1is the canonical projection, and r is the restriction
map from £§ to (£3 N p')*. This diagram is commutative

(for x € ze, vy € £3 npt, <gz2,z (x),y> = B(x,y) = B(px,y))-
Hence ©F! 1is the map derived fro% F Dby quotlenting by p3;

as F 1is the identity on p, we see that &€ (F) = £(F'), where
the sign of F, F!' are relative to the orientations (ee,el),

(el,el). Hence we have:

~ o~ ~

E(F) = E(2,,05) € (2,25)

]
—
]
'_J
N
o
o~
—
=
n
-
[S33
w
—
[}
P
=
w
-
=2
'_J
—
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Similarly € (F') = s(Zé,Zé)-s(Zé,Zi), and we obtain the desired

equality.
Now if 21,22,E3 are arbitrary, we choose a Lagrangian

plane m transverse to El,ié,i3. We have
"(p(Z,),p(Z,),p(E3)) = «(p(m),p(¥)),p(Z,))

(p(@),p(%,),p(Z5))
(o (),p(%5),p(F))),

+

+

and

iw
e—g— T(ﬁl,£2,23)

S(E,Zl) s(Zl,Eg) S(Ze,ﬁ) 5(5,22) s(zé,lé)
-s(Zé,a) 5(5,23) s(Eé,El) s(Ei,E)

= s(Z,7,) S(E2,273) s(-'i3,il)

as s(ii,ﬁ) s(ﬁ,ii) =1 for i =1,2,3.

1.7.7. Let us consider the projective representation g - Rz(g)
of the symplectic group G and its associated cocycle:
3 (e 8,808,8)
cglgyrey) = e .
Let us choose an orientation 47 on £. The group G acts
on oriented Lagrangian planes: we define sz(g) = s(2+,g-2+)
(sz(g) does not depend on the choice of the orientation Kt on

£). Theorem 1.7.6 is equivalent to the formula:
2 - -1
1.7.8. c®(g1,8,) = s(gy)™t s(gy) ™ sleqe,)-

1.7.9. A projective representation P of a group G with



71

cocycle p 1is equivalent to a "true" representation if we can
modify the operators ©P(g) as follows: P!'(g) = a(g)P(g) with

a(g) € T such that indeed the operators P!'(g) now satisfy

the relation: P'(glg2) P'(gl) P'(g2), i.e.
o ) a(eq)e(e,)
€1°82) = S{z e -
1?=2 xig8s

The formula 1.7.8 can be written in a symbolic way

-1/2 -1/2

s(g,) s(e,)

)-1/2

C(gl:g2) = s(g a
1=2

Hence our projective representation R can be made into a "true"
representation of a two-fold covering group G of G by

2
choosing R2(g) = s(g) -1/2”R(g).

Iet us now make precise definitions. We consider the

Mackey group Gc(l.6.l2) and the subset G, < Gc =G x T defined

2
by

1.7.10. G, = ((2,%), with t° = s(g)™ 1)

2

The formula 1.7.8 implies that G, is a subgroup of G-
Hence the representation §|G2,'E(g,t) =t R(g) is a "true"

representation of G2.

It is clear that the map G, > G defined by (g,t) > g
is a homomorphism from the group G2 to G, and each fiber
consists of two points. Hence we have lifted R to a true

representation R of a double covering G2 of G. The group

G2 is called the metaplectic group.
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1.7.11. Let us consider the group Ei= G x Z and the function
im
s(g,n) = e 2 % s(g) with values in Z/MZ.

1.7.12. ILemma: s{g,n) is a character of the group 52.

.

Prooi: This is equivalent to the relation 1.7.8.
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1.8. The universal covering group of SL(2,R).

In this section, we will describe the universal covering
group of SL(2,R) using the Maslov index. This construction
is valid in the general case, and we will describe in detail
the universal covering of the manifold of Lagrangian planes and
the universal covering group of Sp(n,R) 1in Appendix A.

However, in the applications to theta series of Chapter II,
we will use only a small part of this general description.
Therefore we will prove in this section only the results that we

need.

1.8.1. Let V =TRP € RQ be the two-dimensional canonical symplectic
space. We identify RPO®RQ to € by xP+ yQ » x + iy. The
symplectic form B gives the natural orientation on €.

A Lagrangien plane is therefore defined by its angle @

mod T with the real axis.

o Hence we identify A with the
G4 Q torus T by: Aif xe=meiep,

u(xe) = 218 ¢,

o

Y

Let (21,22,23) be 3 lines. We have:

'\'(21122:‘83)
7(21,22,23)

0, if 21,22,23 are not all distincts,

1, if 22 is in the interior of the angle 21,23,

«(21,22,23) =-1, if 4, 1s in the exterior of the angle 21,23.
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2,

In our preceding identification of A with T,

T(El,22,23) =1 if wu, is between the points when

5 u;,ug
we move around the circle in the canonical way, 7(21,22,23) = -1

if u2 is between u3 and ul.

Let G = SL{2,R). As in 1.6.14, we define the group Ek.

As a set ‘EE =G % Z, the multiplicative law being given by:

(g15n1) - (84510,) = (818,50 057 (L,8,8,8,8,8)) -

>

1.8.2. We consider the oriented plane EB = RP.

1.8.3. We define By = {g € G, gﬂg = Eg]. Clearly

_ a by,
B, = { (o 4-1)5 a>0,beR j.

1.8.4%. We consider the function s(g) = s(zg,gzg) on SL(2;R).

We have:

it

s(® P) -signa, s(2 g) i sign c, if ¢ # O.
a

0
ir
zn

The function s(g,n) = e s(g) 1is a character of the

group 2;. We define ab = Ker 5. In particular (e,n) ¢ GO is
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equivalent to n € %Z.

1.8.5. We consider the subgroup K of SL(2;R) given by the
transformations u(g)z = et8z or €, i.e. u(g) in real

coordinates is the rotation:

u(e) _ (cos [} ~-sin 8 ).

sin 8 cos 8

The map 6 - u{ps) is a homomorphism of R into SL(2,R).

As the subgroup of rotations acts simply transitively on the
>

oriented lines £, we see that:

1.8.6. Each element g of SL(2;R) can be written uniquely

as g = u(e)b with b ¢ Bos

'cos B -sin 9§ a X
i.e. g:( )( _lj,a>o.
sin § cos B 0 a

Hence SL(2,R) as a topological space is isomorphic to
T x R" x R.

1.8.7. We define the function y: R > Z by

2k, if 8§ = k7w

=
—
@
~
1

2k+1 if kv < 8 < (k+1)T

r
—
@
~
[}



76

z Y4
-4 -3 -t - \ !
-2n -T o g4 2K &
We have: u(-8) = -u(s)

uletkr) = u(e) + 2k .

1.8.8. Proposition: The map & > g(8) = (u(8),-u(8)) is an

injective homomorphism of 1R into '85.
Proof: We have to prove:

ig P ei(el+e2)
)

T(P:e P) = Ll(el) + u(92) - \l(el+e2)'

From the relations
p(91+k17) = u(el) + 2kg
u(e2+k27) = u(e2) + 2k2

we can assume that 0< 6 <7 and 0< 8, < 7. We consider

separately the cases:
8) 8y or 8, =0

b) 0< gy <7 0< 8 +o,<T
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c) 0< 81 < 8, + 8, =T
0 < 85 <7

da) 0< 81 <7 T< B+ 8, < 27
0< 8, <

and the relation is easily verified; for example in case
i, i(ay+e,)
b) ule)) =uls,) =1 =y(s;+8,), and +(P,e “P,e P) =1

Now we have:

s(u(e)) = (-1)® if ¢ = k7

s(u(e)) = 1(-1)¥ if k7 < § < (k+l)m.
%; u(a)
Hence s(u(g)) = e and g(e) = (u(s),-u(s)) belongs
to 85.

1.8.9. For b, € By, we define g(bo) = (bo,o). As B,

leaves stable 25, it is clear that the map b, > (bO,O) is a homo-

ol

morphism of BO onto its image in GO.

We now are ready to prove:

1.8.10. Proposition: Each element & Of Eo is written

uniquely as g(bo)g(e) for 9 eR, by € B.

Proof: As each element of G can be written as bou(e), we
may assume w(g) = e; hence g = (e,%n) = g(2nw). That the

decomposition is unique follows from 1.8 .8, 1. 8.6.
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Remark: We will see in Appendix A that we can define a
"natural"” topology on '8, using the Maslov index, which makes
it into a Lie group. For this topology the map w: (g,n) » g
is a covering map, and the map from IR x BO into '80 given by
g(bo) g{e) is a diffeomorphism. Hence 66 is the universal

covering group of G.

1.8.11. We will now give another realization of the universal
covering group of G = SL(2,R), using the description of SL{2,R)

as a group of automorphisms of the upper half-plane.

1.8.12. Let P = [z =x+1y; z € C, y > O} be the upper
half~-plane. The group SL{2,R) acts on Pt by

_(a b _ az+b
g = (C d)’ geZ = CZ'Fa 2

as

(a.z

+b) l (az+b azZ+b
czrd’ =

tn(g-z) = ez " CZvd

1 (az+b)(cz+d) - (az+b)(cz+d)
2i (cz+d) (cz+d)

1 Z~7Z

= = .e

2T Yez+a|?
1.8.13. Im(g.z) = |cz+d{—2 (Im z).

In particular Im(g.z) > 0 if Im z > O.

The map g - Qg, where Qg(z) = (za.z+b)(cz+d)"l is hence
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an homomorphism of G into the group of invertible holomorphic
transformation of B'.

(Every biholomorphic transformation of the domain P' is a
fractional linear transformation of the form (az+b)(cz+d)™t

with (® ©) e sn(2;R).)
c d
a b +
1.8.1%. For g = (c d) and z € P, we define Jj(g,z) = cz+d.
+
It is easy to see that J(g,z) # 0 on P and
1.8.15. I(e18552) = J(gys8y-2)d(g,s2) -

Let us consider zo =1 as basis point of Pt. We denote by

K = {u(e) = (

cos 8 -s8in @
sin 8 cos B )

Then K 1is the stabilizer of the point Zg-
1.8.16. lemma: The group B, acts simply transitively on P,

Proof: For 1z € Pt z = x + 1y, there exist a unique element

b(z) = (a Bl) of By such that b(z).1 =2 = a1 + au, namely
a
1.8.17.
/2 _-1/2 1/2
= (Y y xy - (1 xXy,¥y 0

1.8.18. We will now describe the universal covering group of
SL(2,R) using the function j. For g € G and z e B!,

J{gs2z) = cz + @& 1s never zero, hence we can find a determination
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o of log(cz+d) on the simply connected domain pt. Let ¢
be an holomorphic function on pt such that em(z) = ¢z + 4,
then ¢ 1s entirely determined by its value at the point

-+

2z =1 of P'. Two such determinations ¢ or o' of log(cz+d)

differs by 2ikw.

1.8.19. We consider the following group

(
G = {(S:wg)i R ?) = j(g,z)}.

The multiplicative law being given by
(s ) (8ostp, ) = (8180s0")
1%y 2’ %g, 152 ’

where

o' (z) = o, (85°2) + o, (2).

cpgl go

(We remark that the relation J(glge,z) = J(gl,g2~z)J(g2,z)
implies that ewl(z) = J(gng,Z)). We have (g,q_-,)'l = (g-l,-m(g'lz)).

Let us consider the proJjection G‘Z G given by (g,w) ~ &.
It is clear that the fiber of this map is isomorphic to Z .

let z #0, z € €, then 2z can be written in a unique way

ex+iy = exeiy with x e R, and y being defined mod 27.

zZ =
We have then 1log z = x + iy. Hence to choose y = Im log z is
equivalent to choose a determination of arg z. We denote by

Arg z the principal determination of arg z, i.e. -T < Argz <,
and ILog z = x + 1 Arg z +the corresponding principal determination.

For each element g € G, we denote by g the particular
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element of ( above g such that, if g = (g50),

w{i) = Log(ci+ad).

1.8.20. ILet b e B., i.e. b = (2 fl) with a > 0. It is clear
a

0’ 0
-1 ~
that &(b) = (b,Iog a~~) = b (with Log a € R) is an element of
C: moreover the map b - §(b) is a group isomorphism of BO
into its image in (.
_ (cos 8 -sin @8 .
Let u(e) € K, i.e. u(e)= (sin 8 cos e). Then u{s)-i =1
and j(u(s),1) = el®. We define the map #: R »(" by
6(s) = (u(e),we), where ¢e(i) = ig. It is immediate to verify

that & 1is an homomorphism of IR into (.

1.8.21. Lemma: Each element of {3° can be written uniquely as

s§(b) 5(s) with s elR, b ¢ By

Proof: This is immediate.

Iet y be the function defined in 1.8.7.

1.8.22. Proposition: The map I: (7> G, defined by
A
1(g,p) = (g,-u(Im o(1))) 1is a group isomorphism from (B” to G-

Proof: lLet (g.p) = 6(0)8(s) with b = (5 21, (a > 0), an
element of (7. As wu(e).i = 1, (1) = Log a-l + ig; hence

Im (i) = ¢ and I(g,0) = g{b)eg(e). So it follows from 1.8.10,
1.8.21 that I is a bijection. We have to prove that I 1is a
group isomorphism. Let us remark first that the function

(g5p) » u(Im (1)) on the group G~ is invariant by left and

right translations by elements g(b), with b ¢ By. For left
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translation, this is clear, as if g(b)(g,q) = (g',9'),

1

9'(1) = Log a™~ + (1) and ILog a~l ¢ R. For right translations,

for (g'sq') = (g,¢) &(b), we have

o' (1) = ¢(b.1) + Log a~l.

But for 2z wvarying in the upper half space,

cz + d stays in the upper half space if ¢ > O
cz + d stays in the lower half space If ¢ < O

cz +d 1is constant if c¢ = O.

Hence when we follow arg(cz+d) = 8' by continuity from
the value 8o = arg(ci+d), the elements 8 and @' stays in
the same open interval Jkm,(k+1)w[ or stay equal if § = km.
Hence y{8) = u(a').

cz+d

I

e

¢,

ci+d

v

Now we have to prove for (gl,¢l)-(g2,¢2) = (g,9),
u(Im(y) (1) + u(Im(g,y (1)) - u(Inm o(1)) = 7(£,g,L,8,8,8)-
Transleting (g;,y;) by an element g(b;) from the left side,
(g2,¢2) from an element g(bz) from the right side, we can

assume (&),0;) = 6{(81), (go,9,) = 6(8,). The equality to be
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is 1(g,+0,)
proven is then “(91) + u(ez) - “(91+92) = 1(L,e lﬁ,e 17%272)

which follows from 1.8.8.

1.8.23. We recall that we have defined, through the principal

determination of log(ci+d) a particular section g - E‘ of G

into (3~

1.8.24. Lemma: I(g) = (g,m) where

if g = (g g) with ¢ >0 m=-1
a b
g=(c d) with ¢ <0 m=1

g=(* 2 )with a>0 m=0
a
a b -
g=(oa_1)with a<0 m=-2.

1.8.25. We define the metaplectic group G, as being given
by G, = {(g,d), where d 1is a holomorphic function on P
such that d(z)2 = ¢z + d}. The composition law being given by:

(g1591)-(g55d,) = (g,8,,d), where d(z) = d;(g,z)d,(z).

The map (g,d) »g from G, to G = SL(2,R) 1is then a
covering map with fiber (g,+id). The map (g,p) > (g’ew(z)/e)
from ij to G, is a homomorphism from (j')to G

> with kernel
{6 (4xm)}.
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1.9. The universal covering group of the symplectic group.

Iet A Dbe the manifold of all Lagrangian planes. The
group G = Sp(B) acts on A. We have constructed in 1.5 a

Z ~valued function 7(21,22,2 on triples of Lagrangian planes.

3)

This function «+ 1s invariant under the action of G and

satisfies the chain condition (1.5.8)
7(21322:23) = T(zl:22:24) + 7(22:23:24) + 7(33,21,34).

Let ZO be a fixed element of A. The function «r leads
naturally to a Z -valued cocycle of the group G by
i~
(g158,) > 7(£yy8 L,8.8,8,). We denote by Gy = Gy, the
corresponding extension of G (1.6.1%).

let A=AxZ = {(£,11); £ € A, w € Z)}. The formula:

(g:n)‘(z:U) = (g-4, n+ u + T(ﬂo,g'ﬂosg'ﬂ))

[ [N
defines an action of GO on A.

Iet us consider the function:
mo((zlsul):(zeitle)) = Ul - o + 7(20321322) .

The chain property of «+ and its G-invariance implies that

mo is a Go-invariant function on X % X. Thus, the formal

properties of + allows us to construct a covering manifold
. A ¥ o

b~
A of A, a covering group Go of G and a Go-invariant

function on 7 % ?, such that
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1(8y50p005) = m(£y,0y) + m(Ly,05) + m(8y,0,)

This function mO, immediately deduced from «, is
usually called the Maslov index. In this section, we relate
(f,%ﬂ to the universal coverings of (A,G) and calculate "in

coordinates" the function m,-

1.9.1. We consider the manifold p of all Lagrangian planes
of (V,B) as a closed submanifold of the Grassmanian of all
the n-dimensional planes.

let (20,21) be two given transverse Lagrangian planes.
Let Aﬂ be the open subset of A of all the Lagrangian planes
m transverses to £. We parametrize Ay

O
there exists a map a: ﬂl > ﬂo such that m = {x + gx; x € 21}.

as follows: If m e hg s
0

The condition for m to be Lagrangian becomes B{ax,x') = Blax,x),

i.e. the bilinear form on £, given by Sm(x,x') » Blax,x') is
symmetric. We have hence identified ) to the vector space

0]
of all symmetric bilinear forms on ﬂl. In particular Ag

0]
is a simply connected neighborhood of El.
We note here that Aﬂ N Az is then identified with the
0] 1
symmetric forms S , such that det S # O, thus Ay n Ag has
o 04 0 1
n + 1 connected components, corresponding to the non-degenerate
symmetric forms of signature (p,q).

Let (Pi’Qi) be a symplectic basis of V, and for

k=0, -+, n



20 =IRPl (5] $.RPn
£, =R, ® --- R,
n ¢ .
by = iilR(Pi + £59) g =+ 1 1k

=-1 if 1> k.

Then each connected component of L) n Ag contains one lk.
0] 1
We parametrize Ay by the matrices y: 21 > lo symmetric
0]
with respect to the basis (Ql oo Qs Pyo-e Pn), i.e. we write

an element m of Ag as m= {x + yX; X € 21].
0

1.9.2. Lemma: Let U = {(mym') € Ag xApsmOm' = 0} and

: 0 0]
let Uy Dbe the connected component of U containing (21,2k) ;
then U =y U,.

Proof: Let (m,m') € U . We then have to show that there exists
a continuous path (m(t),m'(t)) contained in U and Kk,
0< k< n, with m(0) = 21, m'(0) = 2k, m(l) =m, m'(1) = mt.

We write

m

{x + yx; x € 21; vy ﬂl > lo}

m!

{x + y'x; x € ll; NAK 21 > lo}.

The condition m nm' = 0 is clearly that (y - y') is
invertible. Therefore, for any symmetric matrix wu the
translation y » y + u on Aﬂo conserves the couples of
transverse planes. We can suppose then that y = 0, det (y') # O;

By a preceding remark, we can then deform (ll,ﬂ') to (21,£k)
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for some k.

1.9.3. Proposition:

a) When (21,22,23) moves continuously in such a manner
that dim (21 n 22), dim (ZE n 23), dim (23 n 21) remains
constant, then 7(21,22,Z3) remains constant.

b) 7(31,22,23) = n + dim (ﬂl n 22) + dim (22 n 23) + dim (23 ﬂﬂl)

modulo 2.

Proof: It is enough to show that the rank of the quadratic
form Q(xl,xz,x3) = B(xl,xz) + B(x2,x3) + B(x3,xl) does not
change when the 21'5 move continuously.

Let us compute the kernel I of Q; we have (xl,xz,x3) e I,
if and only if B(xy,y,) + Blyisx,) + Blxg,yg) + B(y2,x3) +
B(x3,yl) + B(y3,xl) = 0 for every Y1sYpsV3 € 21,22,23. But
B(xl - x3,y2) + B(x2 - xl,y3) + B(x3 - xz,yl) = 0 for any
¥, € 21, Y, € 22, y3 € Z3 implies x; = X3 € 22, Xy = X € 23,
s € 21.
Iet us consider the change of variable Yy = % + x3 - Xq»

x3-x

Yp = X3 + Xy = X5y Y3 = Xy + X, = X then we have y; € Z2 n 23,
Y, € 23 n 21, y3 € 21 n 22, and X, = —=p—=, X, = ——pm—",

Yy, tv
x3 = -3;?——3; hence by this transformation, the kernel is

isomorphic to (Zl n 22) & (Z2 n 23) 6 (23 n 21) and this proves
the assertion a).

For b) we have T(Zl,22,23) = p - q, where p + q = rank
of @ = 3n - dim (zl n 22) -~ dim (22 n 23) - dim (23 n 21), so
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T(21,22,23) e n + dim (21 n 22) + dim (22 n 23) + dim (23 n 21)

mod 2.

1.9.4. We define:
(%Y
A=AxZ=1{(lu), £ epr, uezZ}.

Let 20 be a fixed Lagrangian plane, and let (21,u1) a
point of FR. We define the following system of neighborhoods of
(El,ul): Let 22 be a Lagrangian plane transverse to 21,

and 0 a neighborhood of 21 in A; we define
U(ﬂlsuliﬂsﬂg) = {(2JU)J b en, weZ, with ¢y = uq + T(Esﬂoszlsﬂg)}
(where 7(2,20,21,22) is definedin 1.5.12).

1.9.5. Proposition: The U(ﬂl,ul;o,ﬂg) form a neighborhood

basis for a topology on ‘ﬁ.

Proof: If £ =44, T(z,zo,zl,zg) = 0, hence (2l,ul) € U((zl,ul);
(0,22)). Iet us prove that {U(El,ul;ﬁ,ﬂg)] form a system of
neighborhoods. Let Eé be another Lagrangian plane such that

| -
Zl n Ez = 0. We have

T(ﬂxzoxﬂlxﬂg) - T(ﬂ:zoxﬂlxﬂé) = T(Elxﬂglzé) + T(ﬂgszxﬂé)

= T(Elxﬂgxﬂé) - T(z:ﬂzxzé)'

We have 21 n 22 = 0, 21 n Eé = 0, hence El belongs to the open

set A N Apy -
z2 Eé

Let 0y and 0, Dbe two neighborhoods of El in p, and
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Qc 0, no, a neighborhood of 21 contained in the connected
component of Aﬂ N Agy- If £ € 0, then £ can be deformed

2 2
continuously to 21, remaining transverse to 22 and 25. Hence

by 1.9.3, if L e 0,
(8 hys28) = (81,05, 05).
This proves that
U(Lyougsnsly) = UL ouq30s23) < U(Ly,055u758,) 0 UL ,ug3nns48).

To conclude the proof, it suffices to show that, given some
U= U(ﬂl,ul;n,ﬂz), if o 1is sufficiently small, then U is
also a neighborhood of any point (£4',u') in U. We choose
0 as being open and contained in Aﬂg. Thus £' and 22 are

also transverses. Now we can easily see that
U(ﬂ'lu'iolzg) = U(‘el’ul;o’zg)

as the equality to be verilfied is 7(2”,20,2',22) + T(E',ﬂo,ﬂl,ﬂz)

= T(z",zo,zl,zg), which follows from the chaln condition (1.5.8).

1.9.6. We denote by T the map A > A glven by (£,u) - 2.
It is clearly a continuous map, and the fibers of this map

[Yad
are discrete, so A 1is a covering of .

Remark: a) Let 21 a 20 = {0}, i.e. 21 is in the simply
connected set Azo; the neigborhood U(El,ul;Q,ﬂo) of 21’“1
in 4 is simply n x uy as 7(2,20,21,20) = 0. Therefore

w'l(Azo) is isomorphic as a topological space to AEO X Z .



90

b) If 21 = 20, then for 22 such that 22 n 20 = 0.
We have 1(2,£0,21,22) = 1(22,2,20). The neighborhood
U((ﬂo,uo);(Q,Z2)) consists hence of ((£,u)} for £ e , and

u = uo - T(ZO,£,22).

1.9.7. Example: Let us consider V = ¢ with the alternate
bilinear form B(u,v) = -Im uv. Here the Lagrangian planes

are just the one dimensional subspaces. We identify the one
dimensional subspace :meie with the element e2ie, hence A

is identified with the circle T = {u;|u| = 1).

iy

4

Iet us define 20 =R, 22 = iR; in the preceding identification

of A with T, we have the following numbers for ¢(20,2,22):
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We draw now the mgnifold j with the neighborhood U((ﬂo,o),(g,ﬂg))

e N

. 2,V / ok =
N \ 4

"

. %\. o
M= -1 =0 w=1

At a point (£,p) with £ # 20, the topology is the usual
topology of the circle. ILet U be a neighborhood of 20 in

T, then a neighborhood of (20,0) in A, above U, is:
@0 v ((£,1); L eUun(mmz>0))y {((£-1); £ e Un (Imz<0)).

Hence we see that the connected component of (20,0) is as

follows:
-7 a
/7 \
{ ‘o
v o LAV v
\ '
\ 7/
\_/
uu-l u-o

and is isomorphic as a topological space to R, l.e. is
simply connected. The connected component of (ﬂo,l) consists

of the complement; hence jr is the union of two copies of R.
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1.9.8. ILet ¢ = Sp(B) Dbe the symplectic group. Let 20 be
a fixed element of A. We recall that we have defined in 1.6.14

-
the group Gg = G x Z with the following associative law:
0

(g15my) - (gpomp) = (g185my *+ npy + w(£gseyLorgi8,74g) -

(v W
We denote Gﬂ by GO.
0

L~ [
Iet us define the action of G on A by the following

0
formula:

(glsul)'(ﬂ-'u) = (glﬂ-’ul + o + T(ﬂnglznglz))'
It is easily verified that El-(éé-z) = (él-ég)-z for

any éi € Eb, éé € Ggs £ € A
1.9.9. et us consider the function my: X X % > Z defined
by mo((ﬂ,u),(ﬂ',u')) =4 - u+ T(ﬂ,ﬂ',ﬂo). The following

lemms is clear:

1.9.10. ILemma: a) mo(é-z,é~2') = mo(z,ﬂ') for any
£,0 € X; g € G »

b) mo(By,8y) + mo(Bysds) + m(Bg,81) = «(m(£),m(Ly),m(L3)).

1.9.11. We now define the topology of Eb. Iet e € G be the
identity element of G. We give a fundamental system of
neighborhoods of (e,0) as follows: Let 22 be a plane

transverse to 20, 0 a neighborhood of e 1n G. We define

v(n,Ly) = ((gs=7(lyslosly)); g € 0.
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Let U1 = {V(Q,ﬂe)}. We have to verify the axioms:

a)

For

If Al,A2 € ¢U, there exist A € ¢ such that

c
A Al n A2 s
for every A € ¢, there exists B € ctt such that

B-lCA,

for every A € ¢t there exists Al,A2 € ¢t such that

AlA2 < A,
for every g € G and A € «t, there exists B € <«

such that gBg L c A .

a) we write

T(gzox‘zelzo) - T(gzox‘zé:zo) = T(gzoﬂze:zé) - T(zoazex‘gé)°

So if g

is sufficiently near 1, we can deform g.ﬂo to ZO

in the open set £ n 22 =4 N ﬂé = 0. Hence by 1.9.3 we will

have w(gﬂo,ﬂe,ﬂé) = ¢(£O,£2,£é), and a) follows.

For b) we have (g:u)_l = (g-l:-u) S0

v(0,2,)70 = (g7 n (8o ks b)) We write < (gloslyid) =

-¢(g-l£0,g-l£2,ﬂo). If g is sufficiently near the identity,

g2

2

is transverse to £

For

or and b) follows.

¢) we compute
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V(Q,Ze)-v(n',ze)

{(a:'T(mzoszeszo»'(B:—T(Bzoszeszo))i ¢ €0, 8 €'}

{(GB:-T(mzoszeszo) - T(Bzoszeszo) + T(zosdzosaezo))]-
We write
T(zo,aﬂo,asﬂo) = T(ﬂo,uﬂo,ﬂe) + T(aﬂo,aszo,ﬂe) + T(aaﬂo,ﬂo,ﬂe),

and we remark that forevery 8 € o' sufficiently small
t(8,s8L,2L,) = T(EO,BEO,a-lZQ), if @ is sufficiently near
the identity, as q_l£2 can be deformed to 22 remaining in
the set ZO n 22 = 0, Bﬂo n 22 = 0.

d) is verified in a similar way.

o~
Therefore G has the structure of a topological group.

0]
It is easy to verify that (66 acts continuously on “X.
The group ‘65 admits a character s (1.7.11) of order 4.
We will see that the kKernel of this character is the universal
covering group of G. Thus Eb is the union of four connected
components, each of them being simply connected. Similarly \X

is the union of two connected components ~X+ 1) A_, where

?+ {((Lyy); wu=n + dim (£ n ZO), mod 2}

it

iy {((£,u); wu=n+ agim (£ N ZO) + 1, mod 2}

—

each of the components A and A_ being simply connected.

+

1.9.12. Let us consider as a model of a symplectic vector space

vV = ¢® = R°® with the bilinear form B(u,v) = -ImCu,v>, where
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{u,v> 1is the canonical hermitian inner product on e,

We denote Re<u,v> by S(u,v). Thus S 1is a positive

definite symmetric form. We denote by J the multiplication

by i. Let U(n) be éhe group of complex-linear transformations
of €% leaving invariant the hermitian scalar product <u,v>,
i.e. U(n) 4is the group of unitary transformation of . It

is clear that U(n) c Sp(B).

We consider 20 =R as a fixed Lagrangian space. We

denote by P P2, teey, Pn the canonical basis of :mn, and

l’
QJ = in. If £ is any Lagrangian subspace, we can find a
basis Pi, Pl, =--, PA of £ orthonormal for the symmetric
form S. As £ is Lagrangian, it follows that Pi, Phy, -,
is an orthonormal basis for the hermitian form h ; hence there

Pt
n

exists a unitary transformation u e U(n) such that u(®") = £,
i.e. the manifold A is homogeneous for the group U(n). Let
us denote by x - X the conjugation & of ¢™ with respect to

IRn

, and U > U = gqyo the corresponding conjugation on GL(n;¢).
It is clear that u € U(n) leaves stable ZRn, if and only if

u=1u, 1.e. u has real coefficients, so u ¢ 0(n).
1 =<l

ny, _ n . - _

We have ulCR ) = uQCR ) if and only if L T
i.e. uiﬁil = uzﬁgl. We denote for u e U(n), v{u) = uwnt
and for £ = u@®") e §, v(£) =w L. v is a continuous

function from » into U(n).

1.9.13. Iemma: £ N £' = 0 if and only if v(£) - v(4') is

invertible.

Proof: If 4 n 4' # (0}, the equations z = v(£)z and
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z = v(£')Z have a common solution, hence v(£) - v(£') is

not invertible. Conversely by applying a suitable element of

U(n), we can suppose £ =R" and £' = WR®; if x = dﬁ'lx,

then x = ﬁu‘lx, nence X = Ui YX. Hence the O-eigenspace of

--1

(1 -uu ) is stable under conjugation and there exist x € r"

such that x = v(u)x , so x € RN g'

—~—~
We consider the group U(n) € U(n) x R defined by

{((u,¢): det u = e The map SU(n) x R— U(n) defined by

(A, ) = (ae*®,np) 1is an isomorphism. Hence,as SU(n) is

r~—
simply connected,so is U(n) . If g € U(n) there exists a
io,
. n
complex basis el,eg,...,en of € such that gej = € Jej 3
with 91,92,...,9n €E R.
~
For (g,9) € U(n) , let 91’92""’9n € R such that
iel ien
a) (e seeas€ ) are the eigenvalues of g,
b) el+92+...+en:cp

and let us consider for W defined by 1.8.7
w(8,/2) + u(e,/2) + ... + u(e /2)

This expression does not depend on the choices of 91,62,...,9n
verifying a) and b); as for another choice (ei,eé,...,eﬁ) we

will have up to a reordering
1] = =
8l/2 = 8;/2 + Ky, sO u(ﬁi/2) = u(ni/e) + 2ky

1 .
but as = 6! =3 8y, W© have 2 k; =0, i.e. 3 “(gi/2) = 3 u(ei/2) .
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We now can define a function a(g,%) on U(n) by

alg, @) = Zu(ei/Q) with @, verifying a) and b) . If g € U(n)
with det g = e*®, det g é_l e

N P
is a map from U(n) into U(n)

—a
, hence (g,9)— (g8 ,20)

~
We define now the function wu: U(n)— Z by

1.9.14, w(g, o) = a(gg t,29)

We have u(g,p+om) = u(g, ) + 4 . Let us remark that as

u(e/2) =1 mod 2 , if © # 2km , we have u(g,9) =n + dim(zfﬁzo) mod 2

Let (4y,ny) € i, , i.e. ny =0+ dim(y N 4,) mod 2.
There exists (g,,9;) € TU(n) such that e(v(gy)s29) = ng
as follows from the preceeding observation. %y and v(gl)
are uniquely determined by this condition. We denote v(gl) by v(ﬂl).

~

We define for a couple((4y,ny),(4,n,))€ A x A

m (815075 (45om5)) = a(v(2y) v (8,),2(9y-9)) .

Remark that m'((f?’ne)’(zl’nl)) = ‘m'((zlxnl);(f'?:ng))

1.9.15. Proposition: Let 71,12,13 € K+ﬁx K+_x T+' then

(8, m(y),m(Ey)) =m0 (B, 05) + mt (B, By) + mr (25, 77).

Proof: We remark first that the second member doesn't depend

~ ~
oy . L
on Iy,1ly, I3 but only of (21,22,23) In fact if w(ﬂl) w(ﬂl),

W(ﬂé) = w(ﬁe), W(Eé) = W(ﬁ;), then o} =g, + K75 o) = 0, + K7
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'' = ¢, + K,m . Hence
®3 7 %3 7 3

¢ - @ = @, - 04 (kg-—l{l)n
- 1 — - -

Wy -y = Py - @,y F (k3 Kg)n

~t 1 —_ ¥ - -

®; vy = ®q w3 I (kl K3)n

Therefore the second member does not change.

We remark also that if wu € U(n)

S ~— ~ e P I~
m'(uzl,uzg) + m'(uzg,ﬁ)é) + m‘(di3,u£l)

~

= m'(?l,jg) + m'(]é,z + m'(?3,]l) ,

3)

NS
where uzi denotes any element of K+ whose projection on A

is ug, . This follows easily from the fact that v(uzi) =
--1 -1 - -1 -1

uv(zi)u , hence v(uzi) v(uzj) = uv(li) v(zj)u is

conjugate to v(zi)_lv(zj) and so have the same eigenvalues.
Let us now prove the proposition. We assume first

that 11,22,23 are transverses. Transforming by an appropriate

element of U(n) , we can suppose that Ly = 4y = R . Now
n = n = N = i

as nl 22 o, zl 13 0, £2 23 0 , the matrices

v(zg), v(£3) as well as v(zg)_lv(ﬁ3) does not have the

eigenvalue 1. So for [Oi], [Oi] , [O;} verifying a) and b)
-1

respectively associated to V(El), v(ﬁe), v(ﬁ2) V(E3) 5

2k £ [mi, Gi, o;). Now consider the connected component U

of the open set o of A x A defined by
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QO = {(z,z');znzo=o, z'ﬂzo=o, LN 2t = 0}

containing £2,£3 . By the preceeding remark and 1.9.3 both

sides of 1.9.15 remain constant on U. Let

n
L = z R(P; + €,Q;)
11
n
iy = Z RQy
i1

By Lemma 1.9.1 it is then sufficient to prove (1.9.15) for (ﬂl,ﬂk,£3).

It is enough now to calculate for the 2-dimensional symplectic

space. We have 7(RP,R(P+Q),RQ) = 1 and P+Q = elmhp |

Q = eln/QP . We have u(el”/“,n/u) =1, u(eln/g,n/Q) =1,
in/2 oy L . . RPN

u(e ,T/2) = 1 . Hence the equality is satisfied.

For T(]RP)]R(P"Q))RQ) = -1, H(e—iﬂ/u,—ﬂ/u) = -1,

u(eln/g,n/Q) =1, u(e_ln/u,n/u) = 1 and the eguality is satisfied.

Suppose now that £1’£2’£3 € A x A X A are not transverse.

We will prove 1.9.15 by induction: We can find £ € A

transverse to zl,zg,z le,Jlg,J£3 . Applying 1.5.8, it is

3)
enough to prove the Proposition 1.9.15 for T(zl,AQ,z) when £

is transverse to Lys 4, as well as J4.

Applying an element u € U(n) , wWe can assume that
n

Ly = R . Let Ly n zg = p £Z 0 : let us choose a basis Pl’EE’ , P
of p orthogonal for S and we complete it in a

. n
orthogonal basis (Pl’PQ""’Pk’Pk+l" .,Pn) of . R {for the

form S). Hence (P 3PP sP ) (Qps e -5Qy)  with

10

Qi = JPi is a symplectic basis for V .
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We consider the orthogonal Wp of o+ Jp = mk with
respect to B , then wp has a complex structure isomorphic to
@n—k , and wp is isomorphic to pl/p as a symplectic vector

space.

Let us consider first the case where

g = 2ne™¥egnck
n-k -
Let 8 = g Na - BYE Loy = 4P/
— n-k - ]
Ly = 22 ne = 4 n Wp = 12/9
g0 = 20 e™E - 4n LIRS */0
By 1.5.10, T(zl,zg,z) = T(zi,zé,z') . By the induction hypothesis
(2,25, 2") = m(Ei,Eé) + m(]é,]') + m(Iv,Ti)
Let gq € U{n-k) such that g14] = £}

g' € U(n-k) such that g'ey = 2’

g1 10
then gl = ( 1 ) is such that glzl = z2 and then there
0|1

g'

exists g" € U(k) such that if g = ( ) s gL =4 .
0 g| 1
imi

Let %y such that det gi = e s ©',9" such that

. . " . 1 "n
det g' = elw' , det g" = e'® . Then det g = el(cP e ); set
- 1 "

n = m rom

We have now to verify the equality



Equality which is clear, as

v(g,)”

A 0 iwl iqb
and as a(( ) s B, + cp?> with det A =e Y, det B =e
o| B 2

= Q(Ajcpl) + Q.(B,CPE)

and u(A-l,—w) = -a(A, @)

We will reduce ourselves to this situation by

deformation. By hypothesis £ and £ are transverse to

2
le = ZZRQK . Let Yo be the matrix representing 22 in AJﬂl’
i.e.
¥yt zl - Jﬂl
and:
L, = [x~+y2x: x € ﬂl]
Hence, with respect to the basis Pl""’Pk’Pk+l""’Pn’

Ql’QQ’...’Qk’QK%-l’."’Q’n s We have

0 0 £
y2 = ( ) where yé = y! 1is a symmetric matrix.
0] yé 2

Let y the matrix representing £ in AJz

, then y = (u—.‘_v_\)
1 Tty
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where u and w are symmetric matrices. The condition

L0 4y =0 LN 12 = 0 are translated in det y # 0

|

det (y

v ) # 0 . We can certainly deform u in u(e) such

that ——————%—————) still verifies det y(e)

det(y(e)-y and such that det(u( O)) Z 0 . Hence we
can assume U invertible.

1 0 \
Let us consider then g(e) = < ) with 3 an
€\
(n-k) x k matrix. Then g(a)y2 g(g) = y2 and

u v!'
t

ee)y "e(e) - 5 —) = v(e)

with v' = tuxt + V.

Clearly det y(e) = det(g(e))2

det(y(e) - y2): det(y-ye) £ O

det y = det y # O

We can choose,as u 1is invertible, A = uly ; as y(1) =
\———%————) » we have constructed A(e) a deformation of
such that £(e) N 4 = 0, 2(e) N g, =0, and (1) =

(1) n e™F + ((1)) NcC

1.9.16. Corollary. The map (g,%)#+* (g,u(g, %)) 1is an homomorphism

PN ~
of U(n) into G .
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Proof: We have to verify

T(Zo:glzoxglggzo) = H(glg2:¢l+m2) - “(gl’ml) + “(SQ:WE)

which is clear.
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Appendix: A generalization of Maslov index to local fields.

Let k be any local field of characteristic different of 2.
let (V,B) be a 2n-dimensional symplectic space over k.

The Heisenberg group is the set N = V ¥ k with the law:
(vot) (vi,t') = (v + v', t + t' + % B(v,v?!)).

The results of Chapter I, corresponding to the case where k =R
have been generalized by Patrice Perrin [11]. Similar results
have been obtained independently by R. Rao [12].

et E be a vector space over k. We fix + a non-trivial
additive character of k. This allows us to identify the Pont« iuzin
dual % of (E,+) with the slgebralic dual L by assocliating to an

element f of E° the character x - X(<f,x>).

Let A be the set of Lagrangian subspaces of V, i.e. the
set of maximal isotropic linear subspaces of (V,B). For £ € A,

L =24 x k is an abelian subgroup of N and
(1 x x)(vst) = x(t) (v ek, tek)

is a character of L. We obtain the Schrédinger representation
of N associated to £, by inducing this character of L. We

write
N

W(f) = Inda T (1 x x).
L

The representation W(£) acts on the Hilbert space H(Z4)

of function ¢ from N to € satisfying:
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(1) w(nh) = (1 x \()(h)_l ¢o(n), for every ne N, h ¢ L.

(2) .Jf'N/LIcp(n)l2 dn < ©, where dn is an invariant
measure on N/L. The representations W(£) is a unitary
irreducible representation of N in H(Z).

If £@® 4' =V is a decomposition of (V,B) into a sum
of two Lagrangian subspaces, the map f(y) = £(y,0) is an
isomorphism of H(Z) with LE(ZO.

We now compare the representations W(Zl) and W(Zg)
associated to two different choices 31,22 of Lagrangian
subspaces of (V,B).

Iet E be a vector space over k and dx a Haar measure
on E. We denote by dx* the Haar measure on F* which makes

the Fourier transform

(Je)(x*) = va(-<x*,X>) f£(x) dx

* depends of the choice of ).

a unitary operator (dx

If (V,B) is a symplectic vector space, V 1is identified
to V*¥ by B. We choose on V the unique Haar measure dv
such that dv = dv*.

If S 1is an isomorphism from the vector space (E,dx) to
the vector space (F,dy), we denote by |S| the unique positive
scalar such that:

5] u[‘Ef(Sx) dx = j'Ff(y) dy , for f e LY(F) .

Let (21,22) be two Lagrangian subspaces of (V,B). The map
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gzz’ﬁl: £y > z; defined by

(gzz,zl(X),y) = B(x,y) (x € 41, y € £,)

induces an isomorphism still denoted by g, , from Zl/ﬁlnﬁg
2271

to (EE/ZlOEE)*. Let dx! be a Haar measure on V/Zl, ax!

1
1 2
a Haar measure on V/Z2 (i.e. we fix the norm in H(Z and

1)
H(ZE)). We choose a measure du on Zl n 22. Then there exists
a unique measure dkl on Zl/ﬁlnﬁz (resp. dke on Zz/ﬁlnﬁg)

such that:

I

du dil dx} = dv s (v £ynl, e Ly/0 0k, @ v/L)

resp. du d}'c2 dx! = dv ,'(V: Zl n 22 @ [’2/[’1“32 Q@ V/Zz) .

Let [g, , | Dbe the module of the isomorphism g, ,
2’71 . o
with respect to dil,(dig)*. Then |gz ) |l/2dx2 does not

2271
depend on the choice of du. We obtain, as in 1.4, the:

A.1 Theorem: The operator

D .
(o020 = (n-(xg,O))|E§22,gl|l/ dxy

o
£y/k 0k
defined on a dense subspace of H(£) extends to a unitary
operator from H(Zl) to H(Zz), intertwining the irreducible

representations W(£4;) and W(4,). We have .;21,22 =_FE;,21.

A.2. Let E be a finite dimensional vector space over k. Let

V=E® E*, with the alternate bilinear form

B(xl + £, X, + f2) = f2(x1) - fl(XE)
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Then V 1is a symplectic vector space and V =E @ E¥ is a
decomposition of V as a sum of two Lagrangian subspaces. Let
Q@ be a symmetric form on E. We denote by sQ the map between

E and E* defined by Q. The subspace L. = {Xx + 5.X; X € E}

Q Q
is a Lagrangian subspace of V. Let us consider the unitary
operators J: °Jk * and J. * - They are both unitary

E,LQ IQ E E,E
»
operators intertwining the irreducible representation W(E¥)
and W(E) of N, hence they are proportional. ke thus define
the Weil index Y(Q) of Q as being the scalar of modulus

one such that:

f£,1Q°le,E* = V(Q)f;,E* .

Let Q be non-degenerate: We calculate V(Q) as follows:
let us choose a measure dx on E. We denote by [Q]| the
module of the transformation s with respect to dx,dx*. The

Q
equality

(f;:ﬁij: ,E*-m)(O,O) = V(Q)(f;,E*m)(o,o)

is then written as follows:

1/2
A3 I olx-y) x(1/2 @(y)) 12172 ay ax = v(Q) [ olx) ax
EE E
for ¢ a function in the Schwartz space over E, identified to
& function in H(E*). (Let us remark that |Q|Y? day is

independent of dy: it is the unique positive measure 4 such

Q
that the transformation

EQ(x) = f‘<(q(x,y»f(y)de is unitary).
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The following properties of +(Q) are immediate:
AWM. If Q= 0, then +(Q) = 1.
A.5. y(Q)-l = v(-Q). (This follows after conjugation of A.3.)

A.6. If E = E, 0 E,, with Q = Q) ® Q, is an orthogonal

decomposition of E, v(Q; @ Q,) = v(Q;) v(Q,)-

Let us consider the Witt group Wk of k defined as follows:
We form first the semi group generated by the equivalence class
of non-degenerate orthogonal vector space (E,Q), with the
additive law (El,Ql) + (EE,QE) = (El ® E,, Q + Q2). We then
identify (E,Q) to 0, if E=(V @ v*,qy) with Qu(x + ) = £(x)
the duality form. It then follows from the properties A.l4,

A.5, A.6 that Q »> y(Q) defines a character of W,.

Remark: If k =R, the map s(E,Q) = sign Q@ defines an isomor-

phism of W with Z .

k
Let (V,B) be a symplectic space. We define as in 1.5 the
Kashiwara index 7(21,22,23) of three Lagrangian subspaces of
(V,B), as being the element of the Witt group Wk associated
to the 3n~dimensional orthogonal space Zl i) 22 & 23, with the

quadratic form
Q123(x1 + X, + x3) = B(Xl’XE) + B(xe,x3) + B(x3,xl).

We have (with the same notation and proofs as in 1.5) the following

properties of the Kashiwara index:
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A.7. Theorem:
a) 1(21,22,23) is invariant under the action of the
symplectic group.

b) 7(2112212 = 'T(22121123) = ‘T(zl:z3122)'

3)
c) Suppose (21,23) are transverse Lagrangian spaces.

Let Qi23 be the quadratic form on 22 defined by

Qi23(x2) = B(pl3x2:p3lx2) >
then

7(21,22,23) = (zszi23)

d) lLet 21,22,23,24 be 4 Lagrangian subspaces of (V,B)

T(ylye83) = T(Byahysdy) + v (Byubahy) + 1 (£5500,8,).

e) Let pc 4N 22 + 22 ni, + 23 n 21. Then

3

T(zg:zg:zg) = T(21122:z3)'
A.8. Theorem: (Patrice Perrin). Let (21,22,23) be three

Lagrangian subspaces of {(V,B). We have:

F,og
L.,2, fig,z

3:}%3’21 = y(T(zl,ﬁz,ﬂ3)).Id.

Proof: Let (Zl,Z be transverse. The form B identifies 23

3)

to 2;. In the notation of A.2, we then have £ Thus,

=L .
2 Qi3
by definition of V(Q_{LEE‘) and A.7 ¢), the theorem holds. If

31 and 23 are not transverse, we prove it by induction on
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dim Vv as in 1.6, using A.7 c) and d) and Lemma 1.6.4.

A.9. We define a canonical projective representation Rz(g)

of the symplectic group G over k, by

-f, eale).
Rz(g) 2,eb (g)
In coordinates Rz(g) are given by the formula 1.6.20.

These operators Rz(g) satisfy the fundamental relations:
R, (g) W(£)(n) Ry(g)™L = W(£)(g-n)

with cplegrey) = vit(bey,2,e.8,8))7 .

a b
Remark: On the open set {(gl,gE)] € G x G with g, = (c1 dl)

a b2 a b 1 1
- ( ) = = (3 3), with invertibl
€2 7 e, a7 B3 7 8af2 T loo agl C12Cp nvertible,
we obtain, as in 1.6.22,

cylersgy) = vlcilegep)™t,

as in [ 17].

A.10. It follows, from the Theorem A.7 a) c) that
(gl,ge) - T(Z,glﬂ,glgeﬂ) is a cocycle of Sp(B) with values
in the abelian group W . We then can introduce the extension

%
GZ of G by W, with the exact sequence:

1 > W > Gﬂ > G > 1

by defining:
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v

Gy = ((gsa); g8 € G, q € W)

with the multiplicative law:
(gl.'ql)'(ge.'qe) = (glg21q1+q2+'f(’e.'gl’e’glge’e)) .

A.11. The map (g,q) > v(q) Ry(g) is a true representation
of E}. We will now prove that Rz(g) lifts in fact to a true
representation of a double covering of G.

Let us define for a e k', v(a) to be v(Qa), when
Qa(x) = ax2 is the one dimensional quadratic form. +(a) is
a function on k*/(k*)z.

Let us define, for a,b € k*, the Hilbert symbol (a,b) to
be 1, if a is the norm of an element of k(bl/e). We need
the:

A.12. Proposition: (Weil, [17]). let a and b be two

element of k*, then

Iet Q Dbe a non-degenerate quadtratic form on a vector
space E of dimension n. We write Q = Z aixi over a basis.
The Hasse invariant £ (@) 1is defined to be T (ai,aJ).

1<i<j<n
It is independent of the basis. The discriminant D(Q) of @

is defined in k*/k*z. By induction on the dimension of V,

A.12 implies:

A.13. (@) = (v(1))78¥1 [ (p(q)) £(Q) -



112

Let us remark that we have:

%) = (-1,-1). (A.12)

Thus «~(1) is a 8th root of unity. We recall that for

k =R, and x(x) = e21vx’ we have v(a)

- eiv/4 sign a Tt
is possible to calculate v(a) explicitly for any local field
[11],[12]-

Let us define oriented vector spaces: Let E be a vector
space over k of dimension n. We say that two couples (E,e)
and (E,e'), where e and e' are two non-zero elements of
AnE, are equivalent, if e = je' with 1 € k*z- An oriented
vector space is a class of equivalence of such a couple (E,e).
If E 1is oriented, E* is naturally oriented. Let 2} and f;
be two oriented Lagrangian planes. The map gzl’ZQ is an
isomorphism from Zl/ﬂlnﬂz to (22/21022)*. If one chooses an
orientation on El n 22, we obtain, from the orientationsof El
and 22, orientations on 21/21022 and 22/21022. Then, one can
define det gzi’zé mod (k*)2 and it does not depend on the
choice of the orientation on Zl n 22. As gy o, = -gz .3

we oObtain from A.13 the relation:

v(det g7 xA)E (det g5 7 )2 - (\(l))U(l—(n~dim ﬂl n EZ)).
‘ gPEQ v 22,21 Y

A [N

A, 14, Let Zl and 22 be two oriented planes of E. We define
m(f,0,) = (v(1))2(-tmdim by 0 £3))  (get g5 5 )72
172 21,22

We then have:



The symplectic group G acts on the set "% of oriented
lagrangian planes. Clearly m(ﬂl,£2) is invariant under the

action of G.

A.15. Theorem:
) ~ ~ ~ ~ A~
V(T(£11£2J£3)) = m(£1’£2) m(£21£3) m(£3’£l) .
Proof: If (ﬂl,£2,ﬂ3) are mutually transverse, we have
y(T(ﬂl,£2,ﬂ3)) = V(Qi23) and Qi23 is the symmetric form on
. . -1
£2 which is equal to 85183183 (1.7.6)> thus the Theorem A.15
is a consequence of A.12. If not, we prove it by induction as

in 1.7.

A.16. Let £ be an oriented lagrangian space above 4. Let

s(g) = m(i;g.Z). The function s(g) satisfies:
cpleysep)® = s(g)) ™t slgy) ™t slege,) .

Thus the square of the cocyle of the Weil representation is a
coboundary. This implies that the representation Rﬂ(g) 1lifts
up to a true representation of a double covering of G, the
metaplectic group, that we now describe:

Let T = the unit circle in €. We consider as in 1.6.2,

the Mackey group GC = G ¥ T with the multiplicative law:

(gl’tl) . (g21t2) = (glg2,tlt2cz(gl,g2)-l) .
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Then the function R(g,t) = tRz(g) is a unitary representation
of the group Gc' As 1n 1.7.9, we define the metaplectic group

G, to be the subgroup of GC given by:

2

6, = ((g,)s % = s(e)™h)

The map (g,t) > g realizes G2 as a double covering of G.

Let us choose a section g - E,t(g)) of G in Gy, i.e.

)2 -l.

let us choose a function g - t(g) such that t(g)° = s(g)

Then the map (g,¢) - (g, £ t{g)) is an isomorphism of the set

G xZ/2Z with Gy The multiplicative law on G xZ/2Z

becomes:
A.17. (g, £)(g, £5) = (g8, € €2C{(gl,g2)'l) ;
with
C'(g e ) - Cﬂ(gl’g2) t(glgg)
t'e1°82 tlg,) tlg,)

=+ 1, from A.16.

)(l-(n-dim(ﬂnu~ﬂ))

Choosing t(u) = v(1 v(det €u.4 ﬂ)-l

(g g), with ¢ invertible, t(u) = v(l)l'ny(det c)'l)

and using A.12, A.13, it is possible to eXpress cé in function

(for ex., if u =

of the Hasse invariant and Hilbert symbols. If

b

a b a b a
1 1 2 2 3 3
g, = ( ), &, = ( )s &y = 88, = ( )
1 cq dl 2 c d2 3 1=2 c3 d3
with det cq = ﬁl, det c2 = 52, det c3 = 53, all non zero, we

have

ci(gys8,) = E(cTregep™) (hyu=h18,) (55,)
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and similar formulas on the full set G yx G. In particular,

if G = SL(2,k)

t(® B) =v(e)t ir c#o0

and
clgyse,) = (v(gy),vig,)) (-vig)vie,)svige,))

with

b ¢ if ¢ # 0 which is the formula of Kubota [ 6 ].

a —
vii @)= 4 if c=o0



Bibliographical Notes.

The study of the Heisenberg group and of its commutation
relations (Heisenberg's uncertainty principle) was developed
with the theory of quantum mechanics. A fundamental result is
the theorem of Stone-Von Neumann [1] (Section 1.3).

As discovered by I. Segal [13], the uniqueness of the
canonical commutation relations leads to the construction of
a projJective representation of the symplectic group. This
representation was studied by D. Shale [14] for the finite
or infinite dimensional real symplectic group and by A. Weil
[17] for the symplectic group over a local field.

In connection with asymptotic solutions of systems of
differential equations, Maslov [10] introduced an index.
The properties of this index were studied by Arnold [1],
H8rmander [4] and Leray [7]. We introduced a modified definition
due to M. Kashiwara who obtained the results of Section 1.5 and
gave the approach of Section 1.9. The link between the Maslov
index, half forms and the Shale~Weil representation was observed
by J. M. Souriau [15] and R. Blattner-B. Kostant-S. Sternberg [3].
Using the definition of M. Kashiwara, the Theorem 1.6.1 was obtalned by
the first author. This gives an explicit formula for the cocycle
of the Shale-Weil representation ([8] a)). This formula was
known on an open subset of the symplectic group [17].

In Section 1.7, the Theorem 1.7.6 is due to the second
author (see [7] a)). Results of Section 1.9 are due to
Masaki Kashiwara. Results of the appendix are due to Patrice

Perrin [11] and Ranga Rao [12]. Of course, underlying implicit
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references are [14] and {17].

We note that B. Magneron [9] has defined a generalization
of the Maslov index for a triple of complex positive Lagrangian
planes, which he used to compute the cocycle in the Fock model.

The Weil representation is a privileged example of the
deep relation between group representations and symplectic
geometry. This relation, known as "the orbit method", was
developed by the work of A. A. Kirillov {5] a) (see also b))
on nilpotent groups. The cocycle of the Weil representation
is a particular and fundamental case of the Mackey cocycle for
extending a representation of a nilpotent Lie group. The
corresponding Mackey extension has been determined by M. Duflo [2].
Generalization of the explicit formula 1.6.11 has been given by

the first author in [7] a).
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2.0. Introduction: We have constructed in Part i a projective
representation R of the symplectic group. As discovered by
A. Weil, this representation plays a central role in the trans-
formation properties of the classical Jacobi A-serie

8(z) == eivngz and higher dimensional 6-series, when inter-
preted gs suitable coefficients of this representation R. We
indicate now the nature of the relation between R and theta

series:.

Iet D be the Siegel upper half-plane, i.e.

D= {Z,(n x n) complex symmetric matrices, such that Im Z >> 0}.

The symplectic group G acts transitively on D, via the fractional
linear transformations 2 - (AZ + B)(CZ + D)™ .

Let (R,V) be a representation of G (or of a covering
group of G) in a topological vector space V (for example,
the space of ¢®-vectors of a unitary representation T). We

suppose that there exists a covariant map Z - v of D to V

Z
such that

_ -k
2.0.1. R(g)-v, = det(cZ + D) Vg.z "

Iet T Dbe a discrete subgroup of G. Let & ¢ v* be a linear
functional on V semi-~invariant under 7T, i.e. we have:
= -1 -
2.0.2. <R(v):-8,v> =<8, R(Y)"".v> = y(¥)<a,v>, for v € T,v € V,

with y a character of T.
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It is clear from 2.0.1, 2.0.2 that the function 8(Z) = <a,v,>
is a function on the Siegel upper half-plane satisfying the modular

relation:

o((AZ+B) (cz+D)™1) = x(y)~1 et (cz+D)¥ o(z), for yz(%+%) e T.

We will call a(Z) the coefficient of the .representation
R with respect to \A and 6. Thus the transformation properties
of such function A(Z) are the immediate consequences of the

separate transformation properties 2.0.1l. for vy and 2.0.2. for

8 and the search for such theta-functions will be divided in

two parts: the construction of covarisnt functicns Z - v,

from D to V and the construction of semi-invariant functionals
8 under T.

Let us consider the first problem: It is clear that a
covariant map Z - vZ from D to V is completely determined

by its value at the point ZO =31 Id of D. The vector Vg
0

has to be an eigenvector for the stabilizer KO of ZO in G.

If we require that the function 2Z - v, be holomorphic in 2

Z
in order for 4a(Z) to be a holomorphic function of Z (the

corresponding infinitesimal condition is that v should be a

Z

¢
highest weight vector with respect to a compact Cartan subgroup
of G), all such "holomorphic" covariant maps arise in the
following way: let us consider the representation Tk of G

on the space (D) of antiholomorphic functionson D given by:

2.0.3. (Tk(g_l)f)(ﬁ) = (det(CT+D))"¥ £(aU+B)(CU+D)™ 1) for
g = (ﬁiﬁ) .

clp
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Consider the map Z - \A with

2.0.4. vZ(U) = det (‘6—2'1&)'k
then Z - vy is a covariant holomorphic map (with weight k)
from D to (T&;G(D)).

However, the problem 2.0.2. for (E&,UKD)) is tautological
to the construction of modular functions. At the contrary, the
model of the Weil representation will provide ample examples of
f8-distributions semi-invariant under congruence subgroups of
Sp(n,Z ).

let us consider (V,B) the canonical real symplectic vector
space of dimension 2n. Let N be the Heisenberg group associated
to (V,B). We have constructed in (1.2) a unitary representation
W(£) of the Heisenberg group by inducing a character of the
connected maximal abelian subgroup L associated to a
Lagrangian subspace £. As pointed out by P. Cartier [4],
there is another model for the representation W especially
interesting in the context of f#-series: ILet r be a self-
dual lattice in (V,B) and x a quasi-character of r
(ice. y(vvt) = BBV (0) (v1)). To (r,y) is associated
the induced representation W(r,v) by the subgroup
R = exp(r + RE) of the Heisenberg group N (section 2.1).

This representation W(r,y) is irreducible (2.1.13), thus is a
model for the representation W.
In some symplectic coordinates, r = g ZP.® © ZQ

and we choose y as given by: (2 m;P, + = n;Q.) = (.1)Z mithy
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The symplectic group G acts on N. The #8-group T(r,y) is
then defined to be the subgroup of the symplectic group leaving

stable (r,y). In the basis precedently chosen, we have

T(r,y) = {(—+—J € Sp(n,z ); at B, D%C have even diagonal
coefficients} (2.2.19)

As the action of T(r,y) on N leaves stable the inducing datas,
T(r,y) acts naturally on the space H(r,y) by automorphisms.

let us choose £ = .g RP; as fixed Lagrangian subspace.
Thus W (in the SchrBdinéZi model associated to £) is realized
in 1° ( @ RQ; ) = L GRn) For g € G, the canonical operator
R(g) 1is the (essentially) unique unitary operator such that
R(g) W(n) R(g)™' = W(g-n).

let us consider the functional (a,f) = = _ f(r). It

geZSn
is 1mmediate to verify that the function:

> (0,W(n)"t.r) = (8-£)(n)

is naturally an element of H(r,y). It follows (2.2.30) from

the unicity of R that
2.0.5. (8-Ry(Y).)(n) = a(v)™" (8-£) (v 'n)

In particular the functional f - (6,f) = (af)(e) where e is
the identity of the group N, is semi-invariant under the
operators R(y) (y € T(r,yx), and we have solved the question
2.0.2. (This result is essentially equivalent to Poisson
summation formula.)

The explicit formula for ¢(y) is not known. We however
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express a(v) as a Gauss sum (2.2.26), (or 2.2.8, more
generally). The formula for the cocycle ¢, of the Weil
representation determined in Part I, Section 1.6 gives us
the relation (2.2.28)
T v bav vy d)
alvyv,) =alvaly,) e .

This relation implies reciprocity formula for Gauss sums.

ILet us discuss the Problem 2.0.1. Iet Z be an element
of the Siegel upper half-plane. Then Z defines a complex

c

structure on (V,B), thus a subspace of V.

Az

2.0.6. The function (v,)(r) = o1m(275¢) (which is LZ(®R"),

as Im Z >> 0) is then characterized as being the unique
vacuum vector for Ay (2.2.23). Thus it follows that the
function Z - v, is a covariant map from D to LQGRn), i.e.

R(g)-vZ is proportional to v It is easy to compute

g.2"
(2.2.35) that:

2.0.7. ﬁ(g)-vz = (det(cz + D))_l/2 Vg.z

(where .ﬁ is the true representation of the metaplectic
group) .

Thus from properties 2.0.5-2.0.6, we see that §(Z) = (e,vz) =
s oim(Ze,r)

reZ

respect to a double covering group of the A-group, i.e. we

is a modular form on D of weight 1/2, with

have:
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1 1/2

8((AzZ+B) (cz+D)" ") = ¢ (v) (det(cz+D)) 8(z) for every

v € 1‘(1‘,\()-

The explicit determination (1.7) of the square of the cocycle
cy, leads us (2.2.22) to the determination of E(v)2: as glven
by Igusa [13].

In Section 2.3, we establish in more detail the relations
between "highest weight" vectors of a representation T of
SL(2,R) (or of the universal covering group), coefficients of T
and holomorphic modular forms. We also define Poincare series
and their basic property with respect to the Petersson inner
product.

In Section 2.4, we give as example the construction of
modular forms of weight 1/2 on the upper half-plane by means
of #-series. Let us recall that a theorem of J. P. Serre and
H. Stark [28] asserts that all modular forms of weight 1/2
with respect to some congruence subgroup TO(N) arise this
way. Section 2.3 and Section 2.4 are not used in the rest of
the notes except 2.3.1-2.3.6.

In Section 2.5, we study tensor products of the Weil
representation R. The setting is the following: ILet (V,B)
be a symplectic space and (E,S) an orthogonal space, with a
quadratic form S. Then the space (V@®E, B ®@S) is again a
symplectic space. It is clear that the direct product

Sp(B) x 0(S) is naturally imbedded in Sp(B @ S). The pair



129

(sp(B),0(s)) is a dual pair in the terminology of Roger Howe [11]
This imbedding allows us to construct a representation Rq

of Sp(B) x 0(S) by considering the restriction of the Weil
representation R of Sp(B @ S) to Sp(B) x 0(S). The role

of the group O0(S) 1in decomposing the representation Ry is
analogous to the role of the symmetric group GVK in decomposing
k-tensors under the action of GL(n,&). Where S is positive
definite, each isotypic component of RS under O(k) parametrize
in a one-to-one way an irreducible representation of Sp(B)

(Howe, see [33], Kashiwara-Vergne [15]).

If V=RPORQ, then V@®E =IRP @E + RQ @ E and the
space of the representation RS is L2(E). Iet us suppose that
S 1is positive definite. ILet P be an homogeneous harmonic
polynomial of degree d, with respect to S. Then the map

z > VE » Where

2.0.8. (vD)(e) = P(e) oimzs(e,e)

is easily seen (2.5.15) to be a covariant map from the upper
half-plane to L°(E) of weight (k/2 + d).

let L be a lattice in E, integral with respect to S; L*
its dual, then L* @ ZP+ L @ ZQ is a self dual lattice r
in V @ E. The imazz of ro(%s x O(L) in sp(Vv @ B), for TO(L)
an appropriate congruence subgroup of SIL{(2,Z ) and O(L) the

discrete subgroup of 0(S) 1leaving L stable, is contained in
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the corresponding g-group T(r,v). It follows that the
distribution
2.0.9. (ep,f) = 2 f(e)

geL

is semi~invariant under RS(TO(L) x 0(L)) (here S 1is of
arbitrary signature). We compute explicitly the corresponding
multiplicator 4(v) (2.6.8). Similarly if dim V = 2n, n
arbitrary, dim E = k with Kk even, the determination of the
square of the cocycle of the Weil representation (1.7) give us
the multiplicator of the semi-invariant distribution eL
(2.6.20), as determined by Andrianov [1].

P

If S 1s positive definite, the construction of v, and

9y, leads us to the classical theta series associagted to positive
definite quadratic forms, via:

5 Pg) eiwzs(g,g)

P.
o(z) =<8 ,v.> =
P "z geL

which are modular forms of weight (k/2 + d) on appropriate congruence
subgroups.
Some modular forms considered by Hecke [10] or Zagier [37]

are similar to these 8-series, being given by a serie of the

2imTzS (e, e)

form = p(e) e However, here S{e,#) is indefinite

gels
S(e)>0
and the sum is restricted to the subset of L contained in the

cone S(g,e) > 0. (we denote S(g,2) also by S(e).)



131

S. Rallis and G. Schiffmann [12] were indeed showing that
these @-series arise also by forming coefficients of the
representation Rs, where S 1s indefinite. They explicitly
constructed rational function p(e#) harmonic with respect to

S, vanishing on the set S(z,e) = O such that, if:

imzs(e,e)

p(e) e for S(r,r) > 0

(P) (»)
=0 if s(e=,e) < 0,

p

the map z - v,

is a covariant map from the upper half-plane

to LQ(E). Thus the representation Rg contains discretely
some representation of SL(2,R) with highest weight vectors,
but in a striking way, this highest weight vectors are supported
on the set S(#) > 0 (Section 2.5).

The corresponding #-series (eL,vg) = 3 pfe) e2imzs(e,e)

rel
5(=)>0
reinterpret thus some Hecke-series or the Zagier kernel in the

framework of the Weil representation, (2.6.14-2.6.16).
We now indicate some applications of the representation RS

to correspondences between modular forms.

In Section 2.7, we consider the case, where S 1is of
signature (2,1). Then the connected component of group 0(2,1)
is isomorphic to PSLeﬂR). Thus the representation Ry is a

representation of G2 X PSLbOR), where G2 is the double covering
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of SL(2,R). It follows from the results of Rallis-Schiffmann
(Section 2.5) that, for k > 1, the representation Tk+l/2 ¢>T2k
(2.0.3) 1s contained discretely in Rg-

If v(z,t) 1is the corresponding covariant map, and L 1is
a lattice in E, the & series GL(Z,T) = <AL,v(z,T)> will be
a holomorphic modular form in 2z of weight k + 1/2, and in
t of weight 2k. Integration of modular forms of half integral
weight %k + 1/2 against QL(Z,T) for the Petersson inner
product produces modular forms of even weight 2k. For an
appropriate choice of L, this correspondence between modular
forms of half integral weight and modular forms of even weight
is the Shimura-correspondence ([30]). Note that Shintani [31]
and Niwa [21] were at the origin of this interpretation of
Shimura-correspondence.

In Section 2.8, we consider the case where S is of
signature (2,2), in view of the Doi-Naganuma lifting: Let
K = Q(/D) be a real quadratic field, let f(r) = = a(n) e2™T
be a modular form of weight k for the full group SL(2,Z).
Suppose f 1s an eigenfunction of all the Hecke operators. ILet

® be the associated Dirichlet serie and

Lf(s) =3 a(n) n~
Lf(x,s) =5 a(n) (%) n~% the twisted serie. Then, Doi-Naganuma [7]

proved (under certain restrictions) that the function IT(S) IT(X:S)

is the Dirichlet series associated to a Hilbert modular form

F(zl,z of weight (k,k).

5)
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Following Zagier [37], we will explicit this correspondence
f »F as given by an explicit kernel Q(T;zl,z2), via the
Petersson inner product.

For this, we consider a form S of signature (2,2). The
connected component of 0(2,2) is a quotient of SL(2,R) x SL(2,R
Thus the representation RS is a representation of
SL(2,R) x (SL(2,R) x SL(2,R)). For k > 1, the representation
T, ® (TL‘k ®T,) is contained in Rq with multiplicity one. We
explicit the corresponding highest-weight vector as follows:

1

We choose E = (2 ¥ 2 matrices x = x

X
x3)] and

o

S(x,x) = =2 det x. The group SL(2,R) x SL(2,R) acts on E
via (gl,g2)-x = glxgél. For (zl,z2) e P* y P', we consider

-z Z.2

1 172

-1 z,

) € E®

Q.(lez2) = (
The Rallis-Schiffmann function v(f;zl,z2) is given by

v(r5z2,)(8) = S(r,Q(z),2,))" s(r,0)1 1780

on S(m,2) >0

=0 on S(re)< 0.

This function satisfies the fundamental relation:

Ry (g5 (g158,)) - v(r,(29525))

= (01-+d)'k (clzl+dl)'k (c2z2+d2)'k v(g-w;(gl-zl,g2'z2))
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for g, g1, 8, € sL{2,R), and T, zys Z, 1in the upper half-
plane.

The lattice

» J/Da
L= {( )5 a,b € Z, \ €0}
/Db A!

is invariant under the action of the Hilbert subgroup SL(2,m)
imbedded in SL{2,R) x SL(2,R) c 0(2,2). This lattice is of
level D. Thus we obtain that the distribution eL with
(eL,f) = éL f(e), is semi-invariant under ro(D) x SL{2,0).
In particular, the Zagier kernel o(r,2152,) = (eL,v(T,Zl,Z2))
is a modular form in T with respect to FO(D), and a Hilbert
modular form on (21’22)'

If S is of signature (1,1), the representation RS is
isomorphic to the natural representation of SL(2,R) in L2GR2)
via (g_l-f)(x,y) = f{ax+by,cx+dy). This simple fact (2.5.6)

L with a distribution related to the
orbits of SL(2,Z ) in Z 2. This in turn leads to the Zagier

allows us to compare @

identity expressing Q(T;zl,z2) in functions of Poincaré‘series
in 1. This proof of the Zagier identity is based on an idea
of Rallis and Schiffmann. As in Zagiler, this identity is at the
basis of the explicit calculation of the Fourier expansion of
f, when f - F is the Doi-Naganuma map (for TO(D)).

In the same spirit than Doi-Naganuma, H. Cohen [6]
associated to a modular form f with respect to any congruence

subgroup FO(N) a Hilbert modular form C?(zl,zg). He also
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conjectured the level of the modular forms C?. In Section 2.9

we prove this conjecture of Cohen. Namely, we prove the:

Theorem: Let K = Q(/D). with D= 1 mod 4. ILet k be an
integer greater or equal to 3.

let (1) = = a(n) e2i™r1

e 5, (Ty(N),x) be a cusp form
of weight k and character ~ on TO(N), where y 1is a
character mod N.

Let us define, for (Ol an integral ideal of ~»

K’
c(a) = =, v y(r) (&) aln o (A/r)).
rent D K/q
r|o
Then:

2im(vz+u'z,)
K 1 2
Cf(zl,z2) = weill c(uh) e

w>>0

is a Hilbert modular form of weight k and character «vo NK/Q

on the congruence subgroup
- ((e B
rO(N’OK) - [(V 8) € SL(2J,‘K)J v € MK]'

Our method is similar to the one of Zagier. We will

K
f

scalar product with a a-function ﬁy(T,Zl,Zz) = <Vy,v(7,zl,z2)>,

reinterpret the Cohen map f - C as given by the Petersson
where VX is a semi-invariant distribution on E carefully
chosen. The main difficulty is to prove an identity for
ny(T’zl’ZE) where the modular properties in the variable

or (zl,z2) are separately evident on each side of the formula--

this is done in a similar way as the proof of the Zagier identity .
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We have chosen in these notes to minimize the group
theoretical background. 1In particular, at the exception of the
study of the Shale-Well representation R, described in Part I,
no a-priori knowledge of unitary representations of SL(2,R)
is required.

The results of Section 2.1, 2.2, and 2.6 on transformation
properties of the #-distributions are classical. We have
derived here these properties from the explicit calculation of
the cocycle of the Weil representation as presented in Part T.
We believe this exposition is enlightening. However, a reader
mainly interested in the material of Section 2.7, 2.8, 2.9 and
familiar with the transformation properties of #-series can
can read only 2.5, 2.7, 2.8, 2.9 (eventually with some glance
at earlier paragraphs).

The exposition of the applications of the representation

R to correspondences is strongly influenced by the work of

S
Rallis and Schiffmann. We have however used also ideas of

M. F. Vigneras [35] and of R. Howe [12] to give quite simple-
minded proofs. As a result of these simplifications, the
Rallis~Schiffmann method for computing the explicit expression
of kernels as the Zagier kernel, and their expansion in terms
of Poincare series, is an effective and conceptually clear way

to give explicit correspondences.

More detailed bibliographical notes, are given at the end



137

of each section. The 1list of bibliographical references is
at the end of the notes.
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2.1. Lattices and representations of the Heisenberg group.

2.1.1. A lattice r in a real vector space V 1is a subgroup
of V such that r is discrete and V/r is compact. Then,
there exists a basis (el, €ns "ty en) of V over IR such

that r = Zelea Zeze 6Zen.

2.1.2. Let (vV,B) be a real symplectic vector space of dimension
o2n. Let r be a lattice in (V,B). We define r*= (% ¢ V,
such that B(f,r) € Z}. If r =r*, r is called a self-dual

lattice.

2.1.3. ILemma: Let r be a self-dual lattice in (V,B), m an

isotropic subspace of V such that r n m generates m as a

vector space. Then, there exists a symplectic basis Pl, P2, sy,
P, Qs Qs -++s Q OF (v,B) such that:
r=ZP,0ZP,® ---®2ZP ©ZQ O ---OZLQ,
m=RP, & .-+ @ RP, (x < n).

Proof: We will prove this by induction on dim V. We may
assume m #{0}, taking m =1RE for some £ ¢ r. Let us consider
Xq in r N m. The subgroup B(xl,r) is a discrete subgroup

of Z%Z. Hence there exists an integer N such that B(xl,r) = NZ .

X X
1 1

Thus - € r* = r and B(T,r) = %Z . We denote by

Pl = Tl' Iet us choose Q‘l an element of r such that

B(Pl,Ql) = 1. Consider the orthogonal decomposition
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V =RP, ®RQ, ® V, of (V,B). It is now easy to prove that
r=ZPO®ZQ O&rn Vy: if xer andif B(x,]i)=nl,
B(x,ge =1n,, x - n,P; + nQ ern V, Similarly

m =1RP1 (-3 Vo N m. Furthermore r N V is a self-dual lattice

0

in Vo and r n V. nm generates VO nm as a vector space.

0
Therefore the lemma follows from our induction hypothesis.

2.1.4%. ILet (V,B) be a symplectic vector space and r =r* a

self-dual lattice in V. We consider the subgroup

R = exp(r @ RE) of the Heisenberg group attached to (V,B).

We are interested in the representations W of the
Heisenberg group satisfying W(exp tE) = 1™ 14, Thus all
these representations are trivial on the discrete central
subgroup expZZE of N. Hence we may consider them as representa-
tions of N = N/exp ZE. We identify N with Vv x T via

2iﬂt)

(v,t) » (v,e with the multiplicative law being given by:

(u,7)- (v, ') = (u+v, 7! eiﬂB(u,v)).

Let R be the image of the group R in T. The fact that the

lattice r 1s self-dual is equivalent to the fact that R 1is

a maximal commutative subgroup of TN: the condition

{(uyr)-(vyg') = (v,1")-{u,r) for every u € r is equivalent

to the condition e23TB(WV) _ 1 pop every uer, i.e. v e r*,
The subgroup T = {{0,7)] 1s a subgroup of the commutative

group R. Let ¥ be a character of R extending the character

(O,w) - ¢ of the subgroup T. We consider x as a character
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of R such that x(exp tE) = 217t

2.1.5. Let (r,x) be a self-dual lattice with a given character
x of R. We consider the representation W(r,ﬁ) of N induced
by the character ¥ of R, i.e. W(r,x) = Ind ﬁ X. By
definition W(r,x) is realized in the Hilbert space:

H(r,x) = {0, measurable functionson N with values in € such

that:

-1

2.1.5.a) o(ny) = x(¥)"" o(n), yYe R, n e N

2.15.v) [ |cp|2 an < »J} .
N/R

Iet us remark here that, as N/R = V/r 1is compact, there
is a canonical choice of the measure dn on N/R, namely we can
choose dn such that the volume of the total space N/R is 1.

The map (Irf)(x) = f(exp x) identifies H(r,x) with the

2

space L“(V,r,%x) of measurable functions f on V such

that:
2.15.a1) r(xty) = ™Y L) ex), xev, yer

2.1.5b') | y l£(x) |2 dx < .
V/R

Let r be identified to the canonical lattice ZEn with

respect to some symplectic basis (Pi’QJ) and let
A= [(x,y) = (Z xiPi" 2 yiQi): with O S x_-]_ S 1L, 0 S yJ s l]"
then

IV/rlf(X)Ig dx = IA|f(x)|2 dx .
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2.1.6. Our aim is to prove that the representation w(r,x) is
irreducible. Iet us first discuss how this model depends of the
choice of the character ¥x. The subgroup R of N is a normal
subgroup of N, however the action of N doesn't leave the

character ¥ stable. In fact we have:

2.1.,7. ILemma: Let x and %' be two characters of R such
that x(exp tE) = x'(exp tE) = eI There exists an element v
of V uniquely determined modulo r, such that

o)

x'(y) = x{exp v)v(exp v)~ for every Y € R.

Proof: x'/x 1is a character of the discrete subgroup r of the
vector space V. So there exists v € V such that (x'/x)(y) =
eZivB(v,y) and Vv is uniquely determined mod r by this
property. (In the coordinates of Lemma 1.8.3, 6 = y/x' is a
character of Z2n, hence there exists (ei,eé) uniquely

determined mod Z such that

2iw (= my 8+ n'jej.) 2iTB(Z 81P.-= 8,Q;,2m; B+ nJQJ.))

8(2 m; P42 nQ ) = e = e 33 i

Then, for this v, we have

)E)) - eZi‘ITB(V,Y) (

x(exp v exp y(exp v)™1) = x(exp v exp(B(v,vy x(v)=x"(y).

2.1.8. let ny be an element of N and let (no-x)(y) = y(nalyno).
The representation w(r,ngy-x) is equivalent to W(r,x), as

the right translation operator (p(no)w)(n) = m(nno) establishes

an isomorphism between H(r,x) and H(r,no-x) commuting with

left translations.



142

2.1.9. Let r be a self-dual lattice in V, R = exp(r + RE),

and (£,£') +two Lagrangian subspaces such that r=rnf@®rn £'.
(For a given r, such a couple (£,£') exists by Lemma 2.1.3).

Each element v of R can be written uniquely as

v =exp uexp vexp tE, with uernif, verniet, t ecR. We
then define XE’E,(exp u exp v exp tE) = eEth, which is a
character of R, as it 1s easy to check. We have
yE’E,(exp(u 'y)) = (_l)B(u,v) =+ 1 for ueldNr, veldNr
(we recall that B(u,v) € Z ).

2.1.10. To prove that W(r,v) is irreducible, it is sufficient
to prove that the representations W(£) (1.2) and w(r,vz E') are
»

unitarily equivalent. More precisely we will construct a

canonical operator between these two representations.

2.1.11. We consider the following data:

£ a Lagrangian subspace of (V,B)

r a self dual let.ice in (V,B) such that r (1 £ generates
£ as a vector space

x & character of R = exp(r @ RE) such that x(exp y) =1

if yern £,

We consider the representation W(£) of N in H(£) (1.2) and

the representation W(r,x) in H(r,x). We want to define
GX
r,
intertwing the representations W(£) and W(r,x). As in 1.4

4 & canonical isomorphism between H(£) and H(r,x)

the formal construction of 9? 2 is simple:
»

A function o in H(Z) verifies:
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a) o(n exp y) = o(n) (for y e )
b) o(n exp tE) = e'givtm(n).

A function o' in H(r,yx) must verify:

a') oln exp y) = x(exp ¥)™* w(n) (for y e r)
b!') o(n exp tE) = e-givtm(n).

We remark that if o verifiesa) then © verifies a') for
vyerns£ as x(expy) =1 if y ern £. Therefore we will
"force" a function o in H(£Z) to verify a') by forming
2.1.12. (Bﬁ,zm)(n) = uer?rnﬂ x(exp u) ol(n exp u).

Now it is clear that formally B;,E verifies a') and that

Bi,z, being a sum of right translations operators, commutes

with left translations.

As rn £ 1is a lattice in £, r n £ defines a canonical
n .
element |er| of lﬁ £l: for P Py, =+, P a basis of £
such that r n £ = igl Z Py, we define Ierl = |P1AP2A"' APnl.
This doesn't depend on the choice of the %Z basis of r n 4,

as the matrix for a change of Z- basis has determinant + 1.

We now prove:

2.1.13. Proposition: ez 2 defines a unitary isomorphism between
Ed

H(E,er) and H(r,y).

Proof: By Lemma 1.8.3, we can choose £' a complementary Lagrangian
subspace of £ in V such that r=rn £® r n £' . For the

choice of the symplectic basis (Pi’Qj) as in 2.1.3, the space
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H(f,e,) 1s identified with L7 (R%,dy), with o(y) = olexp y-Q).
For y = (y), ¥,5 *++» ¥,) and x = (xy, X5, -+, x ), we denote
Zy;Q by ¥-Q = x;P. by x.P, and B(x-P,y-Q) by x-y.

For u = (ul, Uys e, u)) e Z", u.Q describes the lattice
rnNit. As r=rnNi@®r N L', our operator e;,(’z is then
expressed as:

(ai’zm)(exp x.P+y-Q) = =  o(exp(x-P+y.Q)exp u-Q) x(exp u-Q).

n
ueZ

We write
exp(x.-P+y.Q) exp u.Q = exp(y.Q+u.-Q) exp(x.P) exp(EéI + x-u)E.

Hence

-2iwx.ue-iwx-y

(e;’ch)(GXP(X-Hy.Q)) = 2 X(exp u.Q)e cp(y+u) .

ueZn

For ¢ in 4 (R®), this serie is absolutely convergent.
Iet us compute the norm of 9? 2% in I?(A). As the functions
E

(e723™Y}  form an orthonormal basis of 1%(ax; 0 < x4 < 1),

we have
" e¥’£¢||22 = ‘r dy J- Ie-in-y z cp(y+u)x(exp u.Q)e-Qj_'n'x.u|2dx
L5(a)  ToKy;<l T o<xg<1 uez®
2 2 2
= 2 |cp(y+u) | dy = dy = .
I0<yi<l uez® {mn|¢(Y)| y llell

Hence we see that our operator e} 2 is an isometry. We will
EJ

now prove that e§ y) is surjective. More precisely, we
E
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similarly define a natural operator e} , from H(r,x) into
Ed
H(Z) by "forcing” a function ¢ in H(r,x) to be invariant

under right translations by £. This leads us to:
2.1.1%. (8% £)(n) = £(n exp y) dy .
b,x | L/r04
Let us check that:
X X -
2.1.15. er,z. ez’r = Id.
We have to calculate for o € H(r,yx)

(0F,2° 8}, @) (exp x.P+y-Q)

2 y(exp u-Q)e'le'ue'lm'y(G},

@) (exp(y-Q+u-Q))

2imu-t

uez”
= = _ y(exp u.q)e 21™ U-imx-y [ w(exp yQ expu-Q exp t-P)at
uez” £/rn
= = x(exp u.q)e”2i™* UmITXy ¢ p(expy-Q expt-P expu-Q)e
ue 2/rnk
=Y 5 [ olexp y.q exp t-B)e2iM (8X) gp
ueZ " R /Z
as o(n exp u-Q) = y(exp u.q)"l w(n),
= g~imx-y p(exp y.Q exp (t+x).P)e21m°t dt.

2
uez™ ‘rlﬁn/zn
The function a(t) = w(exp y.Q exp (t+x)-P) is periodic in t
( o(n exp u-P) = p(n) for ue Z®, as o e H(r,x)).
Hence

a(t)e?I™t gt = a(0).

2
uez! IIRn/ z"

at



146

Now we obtain:

"X Yo(exp y.Q exp x-P)

1
o

(8% 4o 8 o) (exp x-Pry.Q)

o(exp x.-P+y.Q), Q.E.D.

2.1.16. Let us relate the Poisson summation formula to the
preceding proposition.

Ilet U Dbe a real vector space with a lattice T.

Let U* be its dual vector space with the lattice

T = (e cU* 0(T) cz)

Iet f be a function in the Schwartz space -} (U). We

~
define f e A(U*) vby:
£(e) = [ e BIM(BX) p(y) ax,
U
where dx 1is the Euclidean measure on U defined by T.

2.1.17. Proposition (Poisson Summation Formula): Let f e—A(U),

then:

Vol
= fly) = = £f(v*).
yeT v¥er*

Proof: The alternate formon V = U & U* given by

B(xl + fys Xy + f2) = fl(xz) - fz(xl) defines on V a
structure of symplectic vector space. It is clear that

r=Te T is a self-dual lattice in (V,B). The subspaces

£ =1U, &' = U* are complementary Lagrangian subspaces of (V,B).

We consider ¥ = Xg, 412 er’z: H(E,er) > H{(r,¥x) and
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eﬂ,r: H(r,x) - H(ﬂ,er) the unitary operators (2.1.12),
(resp. 2.1.14). The operator J-E T H(Z',er) > H(E,er) (1.4)
2
and the operator ez s B gy are two unitary operators
s T r,
intertwining the unitary representations W(£') and W(£),
thus they are proportional. 1In fact it is immediate to check

that ;ﬂ,,@' = 8y .08, gi w have for o in 12(u) = H(4')
1) (Fy (e =] olw) au
’ U

2) (er ﬂ,w)(exp u) = = o{u+vy), ueu
’ veT

3) (eﬂ,r° ér,z,m)(e) = Ju/r(vir plutv)) du = IU ol(u) du.

Thus we obtain by 2.1.15

F

8,0 2,80 T 8r g0

In particular, for o e -3 (U)
(er’ﬂ J:é,z.m)(e) = (ar,ﬂ,m)(e),

which is formula 2.1.17.

2.1.18. let us remark that if U 1is a vector space with a given

" s

measure dx and if f(e) = [ e 2in(e,x) f(x)dx is defined with
u

respect to this measure dx, then as ngLT = dpx  when dr(x)

is the measure on U defined by T, we have the formula:

1

S T = = f£(y)
v) = v) -
vol 1 Y*ET* veT

2.1.19. We will also have to consider the following situation:

Let (rl,xl) and (rg,xg) be two self-dual lattices with
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their associated characters %12 %o
Iet us suppose that ry and r, are comnensurable, i.e.
the change of basis from rqy to Ty has rational coefficients,
and let us suppose that %7 coincides with X on ry n Ty
As r2/rlﬂr2 is finite, there exists a natural intertwining
operator
Xz’ Xl
rz’rl‘ H(rl’xl) > H(rzixz)
between the representations W(rl,xl) and w(rz,xQ) given by:
] w)(n) = b) v (exp u) o(n exp u).
ThsT 2
2271 uere/rlﬂr2
It would be extremely interesting to analyze as in Chapter I,
the composed operator:
X1X3 X3X2 X%y
] - 8 o = (P T 3 To35% 5 ¥ Xs) Id.
rl,r3 r3,r2 TysTy 12722732 217 22 A3

We will determine the scalar a« in special cases.
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2.2. The multiplier of 8.

2.2.1. Let us consider a self-dual lattice r in the symplectic
vector space (V,B). Let x be a character of the associated
group R = exp(r ®RE). Equivalently x is a function on r

éde(v,v').

satisfying (v + v') = x(v)x(v*) The couple (r,y)

will be fixed in this paragraph.

2.2.2. Let £ be a lagrangian subspace such that
a) rn £ generates £ as a vector space,
b) x(expy) =1 if yern 4.

We have constructed in (2.1) canonical unitary operators
e},r and eﬁ,z intertwining the irreducible representations
W(£) and W(r,x).
Let 31,22 be two Legrangian subspaces satisfying the
conditions 2.2.2 a) and b). There exists a scalar
b(El,Zg;(r,x)) = b(ﬂl,ﬂg) of modulus one such that
e}e,r-e},zl = b(zl’22)J:31,22’ as both members of the equality
are unitary operators intertwining the irreducible representations

w(£.) and W(£,). (The operator JF has been defined in 1.4.)
1 2 zl,z2

We will express b(ﬂl,ﬂg) as a Gauss sum.

2.2.3. Let us first consider the case where ﬂl n Eg = 0. Then
rn Zl +rn 22 is a sublattice of r. We denote by
F = F(El,ﬁggr) the quotient r/rnﬂl+rn22. This is a finite

abelian group.
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Let e; and e be the canonical elements of )\nﬂl and

2

I\n22 associated with r n 21 and r n 132 (2.1.12). We have

e;ne, = cw, where w 1is the canonical form of (v,B). By

2.1.3, |w| is the volume form associated to a Z -basis of r.

As ejae, is associated to a Z basis of rn El +rn 22,

we have |e; ne,| = f|w| when f is the number of elements of
F. Hence the element 6(el,e2) defined in 1.4.13 is equal
1/2 *

- Ny o ,N
to f lell where e; € A zl A 22.

We denote by (pl,pe) the projections of V on (21,22)
according to the decomposition V = 21 (&:] 132.

) -1mB(p,(z),p,(2))
2.2.4. Ilemma: The function ql’g’x(z) = y(exp z)e

is a function on F = r/rn131+rn22.

Proof: Let us consider u, er N 131, u, €r n 132 and z = z,+z€r
(with zy = pl(z), z, = p2(z)). Then

~irB(z,+u ,z,+u,)
x (exp z+ul+u2)e 171t

-i1rB(z,ul+u2) e-iWB(ul, ua)e-:'urB(zl-rul, Z,+u,)

= x(exp z)e
B(z,u1+u2) + B(ul,u2)
as exp(z+ul+u2) = eXp z exp U; eXxp U, exp - = E.
-2i1rB(u1,u2)
But e =1, as B(ul,u2) € B({r,r) cZ. Similarly

_i1rB(z,u2)e-i1rB(zl,u2) ] e—:‘urB(z,uQ) -i1rB(z,u2)= e-2i1rB(z,u2)=

e e y]

and the lemma follows.

2.2,5. Proposition: ILet 21,22 be two transverse Lagrangian

subspaces:
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-imB(p,(z),p,(2))
a) Let G(ﬂl,zg;r,x) = 2 y(exp z)e 1 2
zZel
then |a(4y,Lyr,y) | = £7/2,
-1/2 .
D) b(hyhy) = £7H26(8,, 055, %),

Proof: Iet o € H(zl), we have

(Fz g 0)(e) = £1/2 J  olexp v) a,v.
2°71 z2
We compute:

(5 r = 5,0, 0)(e) = ] (83,5 @) (exp v) av

Eg/ﬂzﬁr

= f ( 5 olexpvexp u)x(exp u))av.
Yezg/zenr uer/ﬂlnr

Consider the inclusions El nrc El nr + 32 Arcr. We can
write any element of r/Elnr as u =2z + 6, where 2z varies
over a system of representatives of F = r/Elﬁr+Egnr in r and
6 varies in £, N r “(Zl nr+ by N oVhinr. We write our

integral as:

)

z o2 exp v exp(6+z exp(6+z av .
vely/Bynr zeF bebonr o(exp p(6+2z)) y(exp(6+z))

Now o(exp v exp(6+z)) y(exp(6+z)) = p(exp v exp 6 exp z) x(exp z)

w(exp v exp 6 exp(22+zl) y({exp z)

-ivB(zl,ze)

x(exp z)

B(zp,24)
as exp(zg+zl) = eXp Z, eXp 2z, exp - —5—— E

w(exp v exp 6 exp 22) e

and o € H(El),

-imB(z,,2,)
w(exp(v+6+22)) y(exp z) e 1*7e > as v,b,z, € 22.
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Then:

-imB(z,,z,) .
b3 S o(exp v+6+22)x(exp z)e 17727
veze/‘zgnr ZelF 662201‘

-imB(z

,Z)
= 5 x(exp z)e 1772 b

w(exp(v+6+22))d0).
zZeF veﬂg/ﬂenr Geﬂznr

Clearly

b3 w(exp(v+b+z,))dv = (exp(v+z,))av
veﬂz/ﬂznr Geﬂzﬂr e Iveﬂ2w 2

=[ o{exp v)dv.
veE2

Therefore we obtain:

G(Lys8,51,x) [ wlexp v)av

(8% - 8%, o)(e)
12 r r,Zl V€2

2’

s}
Gy Lsre) ()Y, @) ().

6
As we know that both operators ';Z 2 and e} r’ e§ 2 are
2°71 2° *71

unitary, we obtain the proposition.

Let us now consider the case where El n 22 =p #£ 0. We
form similarly to 1.5.9, rP =(r N p*)+ p =(r + p)N p*.

2.2,6, Lemma: a) r N p is a lattice in p.

b) r°/p 1is a self-dual lattice in the symplectic

vector space pi/p.

Proof: a) The condition x € p 1is equivalent to the equations

B(x,r N Zl) = B(x,r N 22) =0, as r N 21 and r N 22 generate
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Zl and 22 as a vector space. Let us write x = X xje
where ey €r (r is a lattice in V); then x € p if and

only if (xi) is the solution of a linear system of equations

in Xy with integral coefficients. Clearly the space of solutions
is generated by the ones with integral coefficients, i.e. p 1is

generated by p N r.

b) We can choose a symplectic basis of (V,B) such that

kK n n
rNp=@ ZP, and r= @ ZP + ® ZQ,.
i=1 i=1 i=1
n n
Thus r°/p is given by the lattice & zZP & © ZQq
i=k+1 i=k+1
n n n
in p7/p = @& ]RPiQ @]RQi.
i=k+1 i=k+1

2.2.7. Let (21,22,(r,x)) satisfy 2.2.2 a),b). We consider

p =4y N0 Ly V' =0/, N' = exp(p™/p ®RE), £} = £1/p, £} = Ly/p,
r' = r’p and R' = exp(r!' ® RE). As the character x 1is trivial
on exp(r n p), we can define x' on R' by x'(exp &l + tE) =

x(exp(ul + tE)) for u; ern p* mod r N p without ambiguity.

2.2.8. Proposition:

b(zl:'zzi(r:X)) = b(‘e‘ireéi(r':\('))

-iWB(zl,zz)

- (fu)-l/? “(exp z)e

3,
17
zern(21+22)/rn£l+rﬁA?

where 2z = Zy + 2y with z, € 21,22 € 22, and f' = cardinal of

Fi, = rn(21+22)/rn£l+rn£2.
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Proof: Let us use the coordinates of Lemma 2.2.6. We write:

V=V,®V', with

k k
V.= & RP, & © RQ.
0 451 Tt
n n
vVt = & RP,® © RQ
i=k+1 i=k+1 T
k
p = & RP,
i=1 1
n n
r= ©ZP, O © ZQi .
i=1 1 i=1

As 21,22 > p, we have £y = o & Ei and 22 =0 & Eé where
Bi and Bé are Lagranglan subspaces of V!. The space p 1is

Lagrangian in V,. We have r =r 0V, ® r N V' =150 x'.
According to the decomposition V = V0 @ V', we can write:
H(£y) = Hylp) ® H'(£)])

H(r:)()n' HO(rO’XO) ® H'(I",y')

H(4y) = Hylp) @ H'(£Y).
Clearly
X '
X - O (pa aX
eﬁz,r ep,rJS eﬂf,r'
X owgl0 ooex'
rshy Trgep rt, 6]
Xo Xo s
As ep r® er o = IdH » We obtain our Proposition.
> 0 0, 0
2.2.9. Corollary:
v (exp z)e_ivB(Zl’22)| - 12,

| by
zerﬁ(ﬁl+E2)/rﬁﬁl+rﬁ£2



155

We have hence expressed b(El,Ee) in function of a Gauss sum G

over F' and determined the absolute value of G.

Now let 21,22 and 23 be three Lagrangian planes such

that (Zi;(r,x)) satisfies the conditions 2.2.2 a) and b).

The Theorem 1.6.1 implies:

2.2.10. Theorem:

ir
T (1 bp0d3)
By, £y )b(Ly, 0y)0(Rgs k) = e :

2.2.11. We will now calculate b(Zl,ZQ) when dim Vv = 2.

let V=IRPORQ, r = ZP® ZQq, and y(exp(mP+nq)) = (-1)™.

Let (c,d) be two relatively prime integers with cd
consider El=]RP and 32=]R(cP+dQ),- El,ﬂz satisfy
relation 2.2.2 a) b), relative to (r,y). We have

rn1&2=z(cp+dq). Now rnzl+rn142=ZZP+ZdQ.

Fip

it

r/rﬂﬂl+r032 =2ZQ/Zd4Q ~ Z /dZ .

We write nQ

cn n _
- ZPP + -d-(cP+dQ) = zy + z,. Hence

even. We

the

Therefore

i1rcn2
p(£;,4,) = ble,d) = |d|-l/2 T e
neZ /d7ZZ
et Z3 = ]RQ, then F23 = r/rnz2+rnz3 ~ 7 P/Z cq ~ z/cZ . We
write nP = %(CP+dQ) - %gQ, therefore
i1rdn2
bbby = lel™2 2 o © ~n(ae).
3 neZ/cZ

As F3; =0, b(l3,£;) = 1. Thus by 2.2.10,

b(ec,d)b(d,c) = eiv/4 sign Cd, as 1(21,22,23) = sign (cd).
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We define for any integers {c,d)

Ziwk2c

g(2c,d) = b3 e R
keZ /4Z

i.e. if (2c,d) are relatively prime, g(2¢,d) = Idll/2 b(2c,d).

2.2.12. Proposition: For d > O

247k2
g(2,d) = b e
KeZ /dZZ
is given by:
1) g(2,d) = (1+i) /@ if d = O Mod 4
2) g(2,d) = /3 if d= 1 Mod 4
3) g(2,d) =0 if d= 2 Mod 4
4) g(2,d) =1 /d if d = 3 Mod 4.

Proof: Let d be an odd positive number. We have from 2.2.11

ir

g(2,d) = [a]Y2 v(2,d) = [a|72 ¥ bla,2)"?.

But ird
1 -
b(d,2) =— (1 + e )

2 ‘fé_

Therefore
imr

T

b(d,2) = e if d = 1 Mod 4

_An
e k2 if d = 3 Mod 4,

and we obtain the equalities 2) and 4).

Now let d be even. We consider the translation
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kK >k + % on Z /AZ . This implies that

~1md

e211r(k+d/2)2/d - e_g— g(2,d).

Thus, if d = 2 Mod %, then g(2,d) = -g(2,d) implying 3.

If d= O Mod 4, then

g2,a) =2z GBI/ o s p(L3) ,
heZ /§ Z
(l,% are relatively prime and % is even)
inr
=2 (/@@ e b1t

i

Sz e1r /Jd = (1+1) /94 , proving 1).

2.2.13. We recall now some definitions (see [18]).

Let m Dbe an integer. We consider the group (Z /mzZ )*
of invertible elements of %Z /mZ . An element of (Z /mz)* is
the image of an integer a in % such that (a,m) = 1. Let
x be a character of the group (% /mZ )*. We may consider ¥
as a function defined on the set of integers prime to m such

that

x(ab)

x(a)x(v)

x(a) .

x(a+mN)

We extend y(a) as a function on Z, by defining x(a) = 0 if

& 1is not prime to m. Such a yx 1is called a character Mod m.
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let p be a prime. We define for an integer x prime to
ps (%) =1 if x 1s a square in T, = Z /pZ eand (%) = -1
if not. We have (%) = xP~1/2 Mod p. The map x - (%) is a
character mod p, called the quadratic residue mod p.

We define now,for d an odd integer, the number éd to be

£ =1 if ds 1 Mod b

,=1 if d= -1 Mod 4.
We have EdE_d =1
€2 = (-1 (@172 o ()
(B5%) (35%)
€pq = &p &g (1) :

2.2.14. Lemma: Let p be an odd positive prime:
2
- 2imxk
1) b(2x,p) = |p|~1/? s ePimXKT/p (%) £

heZ /pZ
2 imxp/2
- imrxk"™ /2 1+ X
2) blx2p) = IpI"V2 5 xR (Me )¢
heZ /2pZ /2
Proof: a) The expression
211rk2x
% e P
keZ /pZ
depends only of the class of x modulo the squares in JFp:
if x = a2 mod p, we can replace k by ak 1in the sum.
Therefore if x = a2, we obtain b(2x,p) = b(2,p) = |p|"l/2 £

p
from 2.2.12.

Let us now suppose that x 1is not a square mod p. Using

p*
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the fact that the sum of all the p-roots of unity is zero,

we get
2imu 2imk 2iwk!
2 = eP =0=(1+2 5 e Py+(1+2 s e P )
ueZ /HpZ k square k' not
in IFp a square
217k 24mkx
= 2 e p + p e p .
keZ /pZ

Hence b(2x,p) = -b(2,p) = (_’5() |p|-l/2 tp'

b) We write an element k € Z /2pZ as k = 2kq + K,p

where k, € Z /pZ and k, =0 or 1. Now
2 2 2
imx (Ekl + k2p) 21‘rrxl<;l ir xkzp

2imk k. x —=—
2p e P e 12e

e

217 xk5 imxpks

So

klez /PZ
which is formula 2).

2.2.15. Corollary: (Quadratic Reciprocity Law).
a) Let (p,q) be two positive odd primes, then

(Bx1)(351)
B @) = (-2) Rl
) (%)=1 if p=1 or 7 mod 8

(%)=_1 if p=3 or 5 mod 8.
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Proof: &) We have

b(ep,q) = (B) €,
_ 1+ eiﬂpq :
b(q,2p) = (———/—,2_—)(%) &p .
imr

éﬂ_ by 2.2.11, we have

1+ I
('g) (%) tq Ep (-——/e?_—') = € .

Then, as b(2p,q)b(g,2p) =

The formula then follows by direct computation, as:

ir _Admq
eT (-]______—L_Z_) =t
Sz pa

b) We have b(4,p) = (%) Ep from 2.2.1%. Using
imr

T

b(4,p)b(p,4) = e and the explicit computation of b(p,4)

we obtain b).

2.2.16. We define now the generalized quadratic residue symbol
(%) for (a,b) integers, b odd as in ([30]) by the formula:

1) (@ =o0 if (a,b) # 1
2) (f&) = sign a

3) if >0, b=1wb b, primes not necessarily

iy
distinct
® - 1)
B (£ = Ed)
5) (301) =1 .
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It is clear that (%) is bimultiplicative in (a,b), i.e.

2.2.17. We have the following properties:

1) For b > 0, (%) depends only of a Mod b.

3) (%) = (-1) KR (For a >0 and b > 0,

this follows from developing a and b 1in product of primes,

and apply 2.2.15. For a and b arbitrary, we use 2.2.16 2)
and 4).)

1) b » (%) is a character Mod 4a. (This follows

from the property 3.)
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We now express the Gauss sum

imck
d

|-1/2

b,, = b(ec,d) = |4 b3 e

12 keZ /A%

in funetion of the quadratic residue symbol (%) We recall

that b(c,d) is defined for cd = 0 Mod 2, (c,d) = 1.

2.2.18. Proposition: Let (c,d) be two integers, with

(c,d) =1 and d an odd positive integer. Then b(2¢,d) = (%) Ed‘

Proof: If 4 is prime, the proposition has already been
established. Let d = p', with r > 1. We prove it by induction
on r. We have to compute

21mke

Zr e d .
keZ /p°Z

We write every element k in Z /prZ as k =y + pr—lz where
zZ € Z/PZ and y varies over a system of representatives of

Z /Pr_l'E . Then

einc(y+pr"lz)2/pr _ eZiTry2c/pr c2im(2yez)/p

If y 4is not divisible by p, then z - 2ycz 1is a

permutation of the classes of Z/PZ . Thus
21w (2XC2)

e p =

zeZ /P2
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If y 1s divisible by p, then

5 e2i1r(2ycz)/p

= P.
zeZ/pZ

Hence we see that we have only to consider the classes y of

the form py' where y' € Z/p'~°ZZ. We obtain:

g 2imke/’ _ p = 2imytPept 8
keZ /p*z y'ez /ot 1z

Thus we see that
b(2c,07) = b(2¢,p™%) =(E5) € .,
p p

by induction hypothesis. But

(—25) = (), € ., =€ ., (as p°=1 Mod4).
P p’ P

p

Therefore we obtain the Proposition 2.2.18 in this case.

Now let d = d.d with dl and 4

145 mutually prime.

2

We have to compute

2imck

e 1 .

z
keZ /d,4,7Z
The map (kl,kz) » k,d, + k,d; 1is an isomorphism of

Z /dlZ X Z /dzz onto Z /dldzz . As

2

2 2

211rc(kld2 + kedl) 2iwmed k] 21w cdjky
d.d d d

R 12 - e 1 e 2
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it follows that:

b(2c,dld2) = b(2cd2,dl)-b(2cdl,d2)

cd2 cd;
= (_dT) Edl (_d;) f.dz, by induction,

[ d2 dl
@) @) G b, b,
(dl-l)(de-l)
—2 VT8
= (%) Ed, as EdldQ = idl Edz (<1)

i a e -
and (-d%)(ai)=(-l)_r A

This ends the proof of the proposition.

2.2.19. et (V,B) be a 2n-dimensional symplectic vector
space. let r = ZP1® Z P, @ -0 ZPnQ ZQ, @ - ®ZQ),
x(exp(m-P + n-Q)) = (-1)™", 2 =RP, ® --- @ RP, and

t = .o
‘e '"IRQl 6 $]RQn'

We consider the group G = Sp(B). The subgroup T' of G
leaving the lattice r stable is the subgroup Sp(n,Z) of
matrices g € G with integral coefficlents in the basis Py, QJ-
t,] -

6 tB) .
-.t

t t y: a
x(exp(“6u - ®yu), for uern £

let us write g = (%—l—%) in Sp(n;Z). Then g% = (

We have (g-x)(exp u)
- (_l)B(tﬁu:tYu) .

(g-x)(exp ¥} = x(exp Yoy - ta.v) for vernd'

for vernid'.

(_l)B(th,tav)
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Hence g leaves the character y stable if and only if the
symmetric matrices ate and éty have even dlagonal coefficients

in the basis Pi’Qj’

2.2.20. For every g ¢ T'(r,y) the subgroup of G leaving the
pair (r,x) stable, the Lagrangian subspace g-£ clearly
satigsfies the conditions 2.2.2 a) and b). Hence we define

b(g) = b(L,g-£;(r,v)) as a function on T(r,x). The Theorem
2.2.10 implies

% T(ﬂ,glﬂ,glggﬂ)

)7t - e .

b(g;)b(g,)v(g,8,

Therefore the function g - b(g)8 is a character of the

group T(r,x). Iet (t;,s;,n) be the elements of T(r,y)
acting on

= ]RPJ O RQ .,

31 J

by the identjty and on ]RPi (<] IRQ,i by the transformations

(2, ¢ 9, (9 1)), respectively.
0 1 0 -1 -1 0

It is known [ 8 ] that T(r,x) is generated by the elements
[ti,si,ni]. As for each of these elements vy, b(y) = 1, we

obtain:

2.2.21. Proposition: b(g) 1is an 8% _root of unity on
T(r,x) .
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We will precise the value of b(g) up to sign.

Let us consider an orientation £% on £. We recall
that we have defined a function sﬂ(g) = st e N (. 7.7)
satisfying
A (4,80 0,808,0)
s;(a,8,) = syle))sgley)e .

Hence we obtain:

2.2.22. Proposition: The function k(g) = b(g)eség)_l is

a character of the group T(r,y), with values in the 4 roots of

unity.
We will identify this character on a special subgroup of

T(r,x). We define:
(0] _ _qap B . -
I‘O(Q)—{M—(Y—f——g)er,ﬁuy=0 Mod 2} .

Clearly r8(2) c T(r,x). The element n = (Eff%) belongs also

to T(r,x) and acts by automorphisms on rg(e):

-1 5 |-
o (3 R) et = (S .

A
We define F8(2) to be the semi-direct product of Fg(?) by

As a set

]

rg(e) = { g = (%—f%) € T such that either ¢

]

either 8 = y = 0 Mod 2

sl
Let us consider the following special elements of T8(2)

given by:

ag.

5§ = O Mod 2 {
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u(s) (%—+—§) s when S 1s a symmetric matrix with even

coefficients.

A 0
g(n) = (0 tA_l) s, with A e GL(n;Z ).

A

2.2.23. It is known that the group F8(2) is generated by

(u(S),g(A),a][ 8 1.
2.2.24. Proposition [13]}: On ?8(2)

Keg) = (g5i5) it & T9(2), & = ()

x(g) = 1"

Proof: Let g = (%{—%) in T (2) As o% - 8% =1 we have
abs =1 (Mod 4). In particular (det 6) in an odd number. It is

easy to see that the function

(det 81
g~ (Zgg) = (-1 °

is a character of T8(2), as for

a 28 28
1 1 ao 2 * *
g = (== = (g2 - G
1 T2y, oAy ) & (2Y2 55 )s 818, = 16,7 Ylsg)

If (det ¢)(det §) = 1, then (det a) = (de ) 3 hence this

character is stable by the action of g on r0(2) Thus the

formule

k'(g) = (ggg%) » k'(e)

I
[ e

defines a character of FO(Q) It is then sufficient to prove
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A
that k = k' on the given set of generators of r8(2).

let g = u(S), then clearly b(g) =1 = s{g); hence
k(g) =1 =k'"(g). Let g = g(A) with A e GL(n;Z ). Clearly

b(g) =1 (as g-£ = 4)

s(g) = sign (det A) = det As> as det A =+ 1.

(Sen -

b(g) =1 as Ff,g-ﬂ =1, s(g)=1" (-1)B, s(g)'1 = 1%, q.e.d.

Thus k(g) = s.(g)'l = (det &) = let g =g then

2.2.25. ILet g = (%{—%) € T(r,x). We now express b(g) = b(£,g.£)

as a Gauss sum in function of (a,vy).

By 2.2.8

-irB(z.,2,)
b(g) = (£1)"1/2 Z v(exp z) e 1""2
zern(f+g-£)/rnb+rng. L

where
£' = cardinal of rn(f+g.8)/rnb+rng.-4 ,

zern (b+gh), 2 =2, + 2,5, with z, € £, 2, € g-£.
We have:

£+ g. b
r n (L+gk)
rnét+rngb

£+ YZ

rnd+vybnr

]

fl

rné+ y(énr) .

Therefore
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F, = rn(L+g-£)/rnb+rng-£ = (v&)nr/y(fnr) = v@®™) n z /v (zD).

let z € v nr, we have 2z = yx for x € £. We write

symbolically x = y'lz (i.e. x 1is any element satisfying

yx =z). Then z = -gx + {ax + yx) with gx e £, ax + yx € g(8).

So

B(z,2,) = -Blox,vx) = ~"Blay1z,2)" .

(1t is easy to see that this formula is indeed well defined

for z € v, as if yx' =0,
1 = to - t 1 -
B(ﬁ.x JY'u) = 'B( yoX :u) = 'B( ayX ,u) = 0. )

Hence we obtain the formula:

. -1
2.2.26. b(g) = £~1/2 b 1By 72,2) _ (4, y)
zeydnr/y{4nr)

where f = # (vénr/y(Lnr)).

We recall that we have

2.2.27. [bla,y)| =1

i
- (L,8,2,8,8,L)
b(g,)bleyle T L RN

(=345) - Then b(e) = 1. Now if

2.2.28. b(glgg)

In particular let ¢

s= (43, o= (D) .

Thus
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im
- T(ﬂ: Uﬂ,ogﬂ)
blg) e ¥

b(og)

b( ) "jf“'—r T(Z,gﬂ,c'lﬂ,)
g) e .

As b(y,-a) = b{ysa) = b(y,af_l, we obtain the reciprocity formula:

AT sign(Pya)
2.2.29. Proposition: bla,y)blysa) = e .

2.2.30. Let us consider the projective representation Rz of
the group G = Sp(B). A4s T(r,yx) leaves the palr (r,x)
stable, it is clear that, if we define (Ar(y)w)(n) = m(y'l-n),

Ar(y) for v € T(r,x) 1s a unitary operator satisfying

A, (v) W(r,x)(n) a,(v)™ = (W(r,x))(yon) .

Hence Ar(v) is proportional to the operator Rz(y) of the
projective Welil representation. More precisely there exists
a scalar afy) such that the following diagram is commutative:

Q(V)Rﬂ(‘l)
H(£) > H(L)

X X
er,ﬂ er,Z

A.(y)
H(r,x) > H(r,x)

ILet us compute af(v). We recall that R, is canonically
definedby Rﬂ(y) =_;k,Y-£ s A(v), where (A(y)-0)(n) = m(y'l-n)
is a unitary operator from H(£Z,e) to H(v-£,y-e). Now it is

clear that the diagram:



Ay)
H(f) ——— > H(v.8)
) )
A(y)
H(r,x) ——— > H(r,)

is commutative (y leaves the pair (r,y) stable). Hence
to calculate a(y), we have to calculate the scalar a such

that the following diagram is commutative:

“5,@

H(y£) > H(L)
X
e;,ﬂ eﬂ,r
H(I‘,X)

tre. alv) = blyL2) = b(L,v 1) =p(y1) = b(y) L.

2.2.31. We now relate the model H(r,x) of the representation
W and 8-series. We have fixed (V,B) with its symplectic

n n
basis (Pi,QJ), r=©ZPi®ZQJ, L= 0 RP,, L' = @ RQ

i=1 i=1 J
Iet D be the Siegel upper half-plane. By definition

D = (\; n-dimensional complex subspaces of Vc, such that
1) B(x,y) =0 for x,y € )
2) 1iB(x,X) > 0 for x e ) - {0) .]

Iet % € D, then the condition 2) implies that x n (£%) = 0.
Thus there exists a map Z: (£')€ > (£%) such that
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A = [(Zx+x); x e(E')c]. ldentifying £' with £¥  as in 1.1.8,
the condition 1) is translated by the fact that Z is a
symmetric form, i.e. Z = tZ, the condition 2) by the condition
that (Im Z) 1s a positive definite symmetric form. Thus,
considering the basis (Pi)’(Qj) of 4 and £', we can

parametrize D as:
D=(Z, n xn complex symmetric matrices, such that Im Z >> 0}.

Clearly G = Sp(B) acts on D wvia X\ - g-\. If
A= (Zx + x, X € (E’)c] and g = (%—4—%) then
g.x = ((AZ+B)x + (CZ+D)x; x € W')c]. So we see that if Z € D

the matrix (CZ+D) 1is invertible and, as
-1 . ¢
(g-2) = ((AZ+B)(CZ+D)""x + x5 x € (L)) ,

the action of G on D is given in the Z-coordinates by

g-Z2 = (Az+B)(cz+D)™ L.

2.2.32. Iet us define for g = (g g) € Sp(B) and Z e D,
j(g,2) = det(cz+D). It is immediate to verify that:

i(gy8,,2) = J(gys8,-2) J(gp,2) -

Let us consider the representation W(£) of N in H(£).
We identify H(£) with 1?(2') = Le(dyl dy, - ay,)- let us
consider the infinitesimal representation dW of 7 in :)GRn)

(A @®) is the space of C™-vectors of the representation W).
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Let ) C Vc, we say that v is a vacuum vector for 1 if v

is a C"-vector such that daw(x).-v = O.

2.2.33. Proposition: Let X € D, then the space of vacuum

vectors for ) 1is one-dimensional and spanned by

v, (y) = ATEyy) (y € £').

{Z corresponds to 2\, under the above parametrization.)
Proof: X has the basis Qi + ZQi' As
a(Q)o = - = o
1o = 3y
aw(zQy)ew = 2imB(2Qy,y)w ,
it is immediate to verify that vy is the unique solution of

the equations (3§I¢)(y) = EivB(ZQi,y)m(y). Clearly, as
Im Z >> 0, vx(y) is in the Schwartz space -A(R").
For X\ € D, we also denote vy by V- We have
defined the canonical projective representation Rz(g) of Sp(B)
on H(£). From the fundamental property Rz(g)wz(n)Rz(g)'l = Wz(8~n):
it follows that if v, is a vacuum vector for 2 = X, Ry(g)-vy
is a vacuum vector for g.). Hence there exlsts a scalar

m{g,2Z) such that

2.2.34. Rz(g)-vz = m(g,Z)~vg‘Z . The relation

Ry(8,8,) = cy(g,8,) Rylgy) » Ry(gy) (1.6.11) implies:
m(glgzj Z) = cl(gl’g2 )m(gl’ gz' Z)m(gzj Z) .

In particular, using 1.7.8:
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»]
I

).

m(g18,,2)% s(g18,)"" = (s(g))m(g),e,-2)") (s(ey)m(s,,2)
2.2.35. Proposition: m(g,Z)2 = s(g) J(g:z)-l-

Proof: Both functions m(g,Z)Es(g)"l = ul(g,Z) and J(g,z)-l
verify the cocycle relation: c(glge,z) = c(gy,8,°2) clgy,2) -
It is then sufficient to prove the reguired equality on a set

of generators of Sp(B).
a) let

g(a) = (: t:_l),

with a e GL(R"), then as

(Ry(g(a)) o) (y) = |det al'/? o(*ay) (1.6.21)
m(g(a),7)® = |aet al
s(g(a)) = sign(det a)
iela)z) = (det a)~t

the equality is satisfied.
b) Let

u(x) = (%r+§—) s

with x = tx, then
m(u(x),z) =1
s{u(x) =1
,j(u(x),Z) =1

and the equality is satisfied.
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c) Let

(211,

o = (g

-EiW(y:Y' )

then (Rz(d)m)(y) = f oly') e dy'. Thus from a

calculation similar to 1.6.2 it follows that

n(n,7) = (aet(%)72.

We have (1.7.4)

s(a) i

I

J(m,2) = (det z)

and the formula is satisfied.

as {gla),u(x),~} form a system of generators of Sp(B),

our proposition is proven.

Remark: As "formally" R(g) = s(g)'l/2 Rz(g), we have
‘i(g).vz = (det(GZ+D))'l/2 Vg.7? where the determination of
(det(cz+D))'l/2 is well defined for g belonging to the

metaplectic group.

2.2.36. Let (r,x) be our lattice with its given character
The operator e} e H(£) » H(r,¥%x) 4is such that
£

(0% 40)(0) = gezznro(r)

We define the function:
8(2) = (9% 4v,)(0) = = eiv(z%:!).

r, Z
gezn

It is clear that 8(Z) 1is a holomorphic function on D.

X
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2.2.37. Theorem: Let vy € T(r,x), then(for vy = (A|B)L

1/2

8(v.z) = €(y) det(cz+D) 8(z)

when E(y)2 = k(vy) 1is the character of T(r,¥x) defined in

) . 0 2, -1
2.2.22, In particular if v ¢ To(2), E(v)s = (Hgf_ﬁ)'

Proof: As det(CZ+D)l/2 is defined up to + 1, S(v)2 is

well defined. Now we have:

]

8(v-z) = (8% 4-v, ,)(0)

v
Y-Z

m(v,2)7" Ry(v)-v, -
If v e T(r,x),
e},g Ry(v) = b(y) a,(v) ef ;.  (2.2.30)

Thus:

(e},z RE(Y)-VZ)(O) b(y) (AL(y) e},g.vz)(o)

b(v) (8] 4v,)(0)

b(y)e(z) .

Hence 8(v.z) = m(‘(,z)"l b(vy) 8(zZ) eand our proposition follows
from 2.2.35, 2.2.22.
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2.3. Modular forms on the upper half-plane,

2.3.1. Let us consider the action of SL(2,R) on the upper
half-plane. Let T be a discrete subgroup of SL(2,R) and
x @ character of T. We wish to construct holomorphic functions

f on P' such that:

az+by _ K
tGrg) = x(y)(ez+d)™ £(z)
for every vy = (2 g) in T. (If f satisfies also the

additional condition to be holomorphic at the cusps, f is
called a modular form of type (k,yx) for T.)
We wish also to consider forms of half-integral weight %:
Let G be the universal covering group of SL(2,R) and
Tc (3' a discrete subgroup of (T’ . We consider for any real
nunmber k (in fact k will be a half-integer)

M(T,k,x) = {f holomorphic on P

such that
for every vy = (v,9) in Tc O s wWe

have f(v.z) = x(¥)ek®(Z)e(2)3.

We indicate first, in a sketchy form, how to construct certain
theta~-functions satisfying these conditions by taking appropriate
coefficients of representations of 51(2JR)2

-s1
2.3.2. Iet G =SL(2,R) and K = (535§ =510 8y

let (R,H) be a representation of SL(2,R) in a

(topological) vector space H (we will avoid carefully here
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all delicate questions of continuity). Let v ¢ H be an

-1k 8
e

eigenvector for K of weight k, i.e. satisfying R(u(8)).v = V.

a b
¢ d

vector Vg = (ci + d)k R(g)-v depends only of z =g.i. We

It is immediate to check that, for g = ( ) € SL{2,R), the

denote it by V- We have in particular:

2.3.3. v_ = y"k/2 R(b(z)-v), where 2z = x + iy and

1/2
o(z) = (5 DO §p)sas v(z)i =3,
y

2.3.4. The function z - v, satisfies the fundamental property:

- -k
R(g)-vZ = (cz+d) Vg.z
- 1,1 1
Iet J = = (l -i)

eigenvector of weight k for K. If v 1is annihilated by J°

in 4L(2,&) and let v € H be a

under the infinitesimal action dR, v 1is called a lowest weight
vector of weight k. TIn this case the corresponding H-valued
function =z +> v, is holomorphic in z. (The Cauchy-Riemann
equation for z - (f,vz), f € H' dual vector space of H,
corresponds to the equation J .v = 0, as we will explain.)

The typical example for the construction of such a function
v, is as follows: We consider the representation Tk of SL(2,R)

on 6(P+), space of holomorphic functionson P+, given by:

(T, (1)2) (2) = (cz+d)™™ £(g-2), for g = (2 D).

Similarly, we denote by Tk the representation of SL(2,R)

+

on the space B(P') of antiholomorphic functions on P' given

by:
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(T (")) (z) = (cz+a)™ £(g-2).

Let us consider the function iw(z) = (Elw)'k. From the relation
-1 - — -1
2.3.5. (g-z-g-W) = (cz+d) (z-w) (cw+d) ™~ ,
it is obvious to verify that:
(T, (g):v.) = (cwra)™™
k 4 g-w

In fact each representation (R,H) with a lowest weight
vector v of weight k 1s isomorphic to a subrepresentation
of (TK,E%P+)), the isomorphism being obtained by sending v

to ww.

2.3.6. Let T Dbe a discrete subgroup of G. Let 68 ¢ H' be a
semi-invariant functional under T, i.e.: R(y).8 = x(v)_le,
for all v ¢ T, where ¥ 1is a character of the group T.

For v lowest welght vector of R of weight Kk, we can
then form the "coefficient": 08(z) = (e,vz). Then & is a

holomorphic function of z. Properties 2.3.4, 2.3.6 assure

that:

)k 8(z), for every v = (2 b) e T.

8(v.2z) = x(y)(cz+d . d

Therefore a method to construct modular functions in
M(T,k,x) is to construct representations (R,H) of SL(2,R)
such that there exists

1) a vector v # 0 in H satisfying
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R(u(8)).v = e ~1k8,

drR(J").v = 0.

2) a functional 8 € H!' such that R(y):8 = x(y)'le, for

vy eT

We will consider both of these questions separately. In
the model (TK,EKP+)) where the choice of v, 1is apparent,
the construction of 8 is equivalent to the initial problem:

a semi-invariant functional on F(P+) is produced by a modular

form g, via (g,f) = jj g(z)f(?)yk-e dxdy. However in the
+

P
model of the Well representation, we have already seen in 2.2

that non-tautological answers appear, via the construction of

8- distributions © associated to self dual lattices.

L
In the next chapters, we wlill make a detailed study of the
Well representation assoclated to a quadratic form and study

in this model questions 1) and 2).

We explicit now the 1somorphism between the space M(T,k,¥x)
and a space of functions on G and relate the infinitesimal

action of J° to the Cauchy-Riemann equations on Bt

Let us consider the identification g -» g.1 of G/K

with P
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When & is a function on P', the function g - 8(g-i) = (I%3)(g)
is a function on G. The group G acts on functions on Pt

by (g-9)(z) = w(g'l-z), preserving the space of holomorphic
functions. We consider the left regular action of G on
functions on G given by (go-m)(g) = @(galg). We identify
functions on P+ with functions on G invariant by right

translations by K, by (Ip)(g) = olg-1). We have gy Io = I(go-m).

2.3.7. Llet us consider the Lie algebra %ﬁ of G. @P consists

of the 2 x 2 matrices with zero trace. A basis of 5t is
1 0 o 1 0o 0
H = (O _1)s X = (O 0), Y = (l 0), with relations [H,X] = 2X,

[H,Y] = -2Y and [X,Y] = H.
The corresponding one-parameter subgroups of SL(2;R) are
t

exp tH = (€ 0

1
), exp tX = (5 3), exp tY =
0 e

-t

The generator of the compact one-parameter subgroup

_ (cos & -sin @ ; - (9 -1y _ vy _
u(e) = (sin 8 cos e) is Jo = (3 o) =Y-X

¢
Iet us consider the complexification %ﬁ of ?L , and

¢ = % (i Ty

J2 1
Then cHe L = 1J, = Z. In particular cHe L = Z, exe™t = Jt,
cYe ! = 5 form a basis of e; € ,ith relations:

[z,3%1 = 235, (2,371 = =20~ anda ([J",071 =z.

We have:
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We define

b =0€Z + ¢€J

b =€ + €J , i.e. D =Db .

For X € g} , we define the left invariant vector field

r(X) on G vy (r(X)o)(s) =§—Ecp(g(expex))|£=o- The map

X » r(X) is a homomorphism of gz into the vector fields on G.

r xe b x

U+ iV with U and V in (¢ , we define

r(X) by r(x) r(U) + ir(v). Similarly, we define the right
invariant vector field £(X) on G by (£(X)o)(g) = é% m«gxp—ixk)|£=c

We extend £ to z;c by linearity.

2.3.8. Lemma: A function 8 on P 1is holomorphic if and only

if r(X)(Iy) = 0 for every X € b™.

Proof: The condition (r(Jo)-f) = 0, for a function f on G, is
equivalent to the fact that f 1s right invariant under the group
K, i.e. f 1is & function on G/XK = P". let us now analyze the
condition r(J7)-Ip = O

let © be a function o(z,Z) on Pt. We compute
(r(d3”)Ip)(e) where e 1is the identity component of G. By
definition:

(r(37)Ip)(e) = 3 & olexp £( 5)-1)
d

P aleme (3 D1,

N 4
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We have modulo § 2

. 13 .
exp £(] )1 = (sl 1= fE -1 2k
exp E(é _cl))-i = (18& 195)'i = (1+£)(1-e)'1-i =i+ 261
Hence

(r(37)Ip) (e)

(3% + 1 39)-0) (1)

3 :
(B—E-co) (1)

If ¢ is holomorphic on P, (r(J”)In)(e) = 0. As r(J”) is a
left invariant vector field, r(J~ ) commutes with the left

action of G, hence:

(r(37)I9) (gy) = (e5'-r(37) In) (e)

1

r(37) (g5 0) (e) = O

as gal-w is again a holomorphic function on P+.
Reciprocally, if (r(J )Iw)(g) = 0, we have that, for every
_q¢(a b
go € GJ go - (C d)
d -1 _
— (z » o((az+b) (cz+d)™ ")) -4 =0
oz z=

= (cF+d)™2 (éé o) ((ai+b)(ci+a)~L) = o.
Z

Hence (gé ®) = 0, i.e. © is holomorphic on pt.
zZ

2.3.9. Let us denote by (f (P') the space of real analytic
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functions on P+ and by O(P+) the space of holomorphic
functions on P,

For o a real number, we define the representation Ta,o
of Ov in the space of functions on P+ by :

(1, o (E0) P (2) = e0(2) (g.z).

It is immediate to verify that Ta,o(gl) °Jé,o(g2) = I‘a,o(glge) and
that Taoleaves the space O(P+) of holomorphic functions on pt

£

stable. (If a = x is an integer, Taois indeed the representa-
24

tion of the group SL(2,R) given by:

(7,08 HIF) (2) = (cz+a)™ F((az+d)(cz+a)™ )

_(a b
for g = (c d).).

2.3.10. Let G be the universal covering group of SL{2,R).

We now consider the one parameter subgroup of G with generator
Jy- We have exp 8J, = 5(8), where &(8) = (u(e),cpe), with
cpe(i) = i® (see 1.8.20), as 5(8) 1is a one parameter subgroup

above exp 8J, in SL({2;R).
For any real number ¢, we define:
2.3.11. M(0,0) = {f, analytic on U ; £(e5(8)) = e %% £(q)}.

The group (J acts by left translations on M(C,a). We

denote this representation by ‘Za'

We consider the function aa(g,cp) = eaw(l) on T where



185

(g,p) 1is an element of O\ . (if e =k, a(? b) = (ci+d)k.)

c'c d

We have: aa(n(‘s(e)) = eic'eaa(o)

as for o = (g,9), 06(8) = (gu(8),o'), with e@'(i) = (i) + i8.
Hence if f e M({(,a), the function (Iaf)(rv) = a.a(f_-v)f(c) is
invariant under right translations by 6&(8). Let us denote by
s G“—» G the covering map. We can thus find a function on pt
still denoted by I f such that (I f)(s) = (I f)(7(s).1).

Let, for z in PBY, b(z) = (3 ’1‘)(5’10/ _2/2) be the
unique element of BO such that b(z).-i = z. We still denote
by b(z) ="E(z) = (v(z), Log y-1/2) the corresponding element of
O under the isomorphism b > §(b) of By with its image in

o~ (1.8.20). We have:

(L, £)(z) = (I, £)(b(z)-1) = (I £)(b(z)) = a, (b(z)) £(b(z))

2.3.12. (1,£)(z) = y‘°‘/2 f(b(z))
1/2
s _ R _ (1 =x\(y 0
with 2z = x + iy, and b(z) = (O 1)(0 y_1/2) .
2.3.13. Lemma: I intertwines the representations Ea and T_ -
2
Proof: We have for g € G, a = (g50)

Ia(l"(go,mo)'l-f)(g) = a (n) fl(ggr0y)-a) = eao(i) £(gy8s9')s

with o'(1) = gy(g-1) + o(i) .
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e'wo(g'i)(laf) (808)

)

(Ta,o(go’@o)-l°laf)(g)
- e—amo(g°i) ean'(i) f((go,wo).c), g.e.d.

For X € 999, we now consider, r(X) to be a left

invariant vector field on (j“ .
2.3.14%. Lemma: The function a_ satisfies
r(J')-aa = 0.
Proof: Iet us compute (r(J')-aa)(e). We write
207 =1H + X + Y = iH + J, + 2X.

The one parameter subgroup of (}v corresponding to X in CTV

s (5 ),0).

The one parameter subgroup of CT— corresponding to H is

t
0
(¢ 20
e
The one parameter subgroup corresponding to Jo in C;v

is &(t) = (u(t),wt), with wt(i) = it. We have
a (3 9,0 =1

t
0 -at
a ((° ),-t) = e
e’y ot

8, (8(t)) = elat

Hence
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2(r(J')-aa)(e) = (ir(H) + r(J.) + 2r(X)-aa)(e) =< + ig = O.

O)

0

>1)s Log a7t), a (by) = e"O108R
a

Now for b € By, b= ((® a (o),
0 [o 3

hence (r(J')aa)(bn) = o~eloga aa(c). Therefore we only have
to check that (r(J-)aa(q) =0 for ~ = &(t). We recall that J°

satisfies [JO,J_] = 2iJ . It follows that:

(r(37)ay ) (6(£)) = -e?M¥(8(37)a ) (5(2)) = 2™ (x(57)a ) (o) ,
(as we have the equality:

(x(x)-)(g)

-1
ad; olg exp £X) = 4= olg exp €Xg™'g)

= £ olexp £(g-X)-g) = -(4(g-X)o)(g) -
Thus (r(J")aa)(G(t)) = 0.

2.3.15. Corollary: Iaf is a holomorphic function on Pt if
and only r(J )f = O,

Proof: We have (Imf)(n) = aa(n)f(q). I,f is invariant by

right multiplication by K, hence by 2.3.8, Iaf is holomorphic

+

on P' if and only if r(J')-(Iaf) =0. As r(J7) is a

vector field annihilating the function a_, r(J')-(Iaf) =

aa(c)(r(J')-f), and we obtain our corollary.

2.3.16. let T Dbe a discrete subgroup of (j\land x be a
character of T. We denote by %ﬁ?,x,a,J') the space of
analytic functionScn1(j- satisfying

a) £(n8(t)) = e £(a) ,
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b) r(J7).f = 0
c) f{vs) = x(y)f(s) for y eT.

The condition ¢) can be restated as Ea(y'l)-f = x(y)f for
¥y € T'. Therefore,the correspondence f = Iaf is a isomorphism
between }%ﬁr,x,a »J ) and the space of holomorphic functions
on P+ satisfying

az+b
f{ezrg) = x(y) "ez+a"® £(z),

for every vy = ((§ 3),w) € T, where "cz+d"® = e%%(2)  pgence

we have identified our space M(T,k,x) (2.3.1) with the subspace
%ﬁr,x,k,J_) of functionson (Iv verifying the invariance conditions
a), b) under the right action of b~, and c¢) under the left action
of T.

Iet (R,V) be a representation of G- in a topological vector
space V (V will be for example the space of C° vectors of
some unitary representation (R,H)). Then for v e V, £ € v*
we denote by cg’v(c) = (#,R{(s)-v) the associated coefficient.

We consider ¢, . as a functionson 0~ . We have:
~ 3

cp v(877€e,) = (£, R(gy) 'R(e)R(gy) V)

(g,-7, R(glgy-v)

(o) .

cgl'glge’v

If v satisfies
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1)  R(6(t))-v = e~laty

iat (U)-

(for t eR), ¢ verifies ¢ (o6(t)) = e c,
r .,V

»V P,V

1\

et x € g , U € V. We denote by dT(x)-u the limit

(if it exists) of (Eiﬁlﬂ_igl_:_l).u when € > 0. For x € g(a

we define dT(x)-u by linearity. We have

r(J )'ct,v = C9,aR(J7) v
Hence, if v satisfies

2) dR(J")-v = 0

e,y satisfies r(J )'cg,v = 0.
As in 2.3.3, we consider, for v satisfying 1), the vector
v, = aa(n) (R(g)-v) which doesn't depend of the choice of
o = (g,9) such that g.i = z. We keep in mind the formula:
1/2
-o/2 1 x 0
2.3.17. If v, =y / R(v(z)).v, for b(z) = (O 1 (yO y_l/g),
_on nl
R(g)-vz = ez + a"" v, ,
Iet » be any element of V*, we have I_(c, 2 )}{(z) = (=,v ).
ate,y z

Thus the function (!,VZ) is holomorphic in 1z, if v satisfies the
relation?2), i.e. if v 1is a lowest weight vector of the representa-
tion R,

Let 8 ¢ V*¥ a functional satisfylng R(v).6 = x(v)_l-e
and Vv a lowest weight vector of the representation R of
weight «a. We finally see that (G,VZ) = 8(z) will be a

holomorphic function of 2z satisfying
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b " b
e(%) = y(v) "cz + a"* 8(z) for (i 3) €T.

We now indicate another important way to construct modular

forms, 1.e. the notion of Polncare series.

2.3.18. Let T < sSL(2,Z ) a subgroup of finite index, containing
-1 0]
o 1)

We define the notion of "cusps'": ILet us consider the

t+ + b

action of SL(2,Z ) on R U {»} P given by x »2’—;—;——3 .
By definition, a cusp P of T 1s an equivalence class of
@ U {~} under this action of T. If T = SL(2,Z ), each element
of ® can be transformed to («) by T, hence there is Jjust
one cusp: the point of infinity.

For each cusp P, we can fix a matrix A € SL(2,Z ) trans-

P
forming P to «, i.e. AP(P) = w, If P =o we naturally
- o =1,1 Z
choose A_ = Id. We denote by Sp = A, (o l) A, n T. Clearly

if v € S,, then y-P = P, as the subgroup (é ?) leaves

p?

~ -1 1 =
stable the point at «. The subgroup T, = ASpAL~ © (o l) is

of the form I‘P = [(l nwl’),- n e€ Z)}. The integer wp is called
0 1

the width of P.

Iet T Dbe a discrete subgroup of finite index in SL(2,Z )

“~

and T 1its reciproc image in (- . 1ILet Y Dbe a character of

T and f & function in M(1,x,a). For KPG 0~  above Aps

the function Ta(AP)'f is then semi-invariant under the action
T, of I‘P on ¥(P"), with character Ap-X. We say that f 1s
holomorphic at the cusp P, if (Tﬁ(KP)‘f)(Z) admits a development

of the form
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2imnz
w
2 a; e P
n>0
f 1s said to be a cusp form at P, if ag =0, i.e., if
2imnz
“ n Wp
(Ta(AP)f)(z) = Z ape
n>0

2imnz
n _ Yp
2.3.19. 1In fact, as each function ep(z) = e is an
invariant function under the action f(z) = f(z + WP)
l w " "
lP) of FP’ there is another important "natural

of the
generator {
way to construct functions in M(?,x,a): We suppose for
simplicity that o« 1s an integer (the modifications for
arbitrary o being obvious)and consider T a subgroup of
sL{2,%). The function er; is invariant under T_(Tp), thus
the function Ta(A;l)-e; is invariant under Ta(SP)' Let us

suppose X(SP) = 1. We then can form formally the series:

2.3.20. Gg “ =% = x(y) Ta(y)-Ta(A;l)-e;.
’ yeF/SP

It is clear that formally G; verifies:

n

n _ -1 .
T (v)-6p = x(¥)77.6p , L.e.:

az+b
)

n o
GP(cz+d = x(y) (cz+d) G;(z), for v e T.

2.3.21. lemma: The series G; o (2.3.20) is convergent for
. E

a > 2.

Proof: After conjugation by AP’ it is sufficient to prove that

if T' 1s a subgroup of SL(2,Z ), the series
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2 €, () -eD) (2) |
yer'/r'ﬂ(é 1

i1s absolutely convergent. We have

(T (v)-eR)(z) = la - cz|™® [B(y 1.2)|.

as vz ¢ P, |er1;(y'lz)| < 1. Thus we have to check that

z la - cz|™% < =.
l Z
veI"/I"r\(o l)
1 ZZ)
0O 1
- {0,0). Thus this series is majJorized by the serie

The map (i 2) = (i) is an inJjection of T'/T1n( on
ZQ

z |—L _[®
(m,n)ez°-{0,0)

Now, for =z € P+, the elements m + nz describe the lattice

in R® of basis (1,z). As 1
| x

o > 2, we obtaln our lemma. Similar estimates shows that

& is integrable at « for

2 j=—2_[%*>0

mn BT DZ
n#0

when 2z = iy, y > «. Thus it is easy to see that Gg o is a
’

cusp form when n # O. G;,a is called a Poincare series.

2.3.22. Let us now define the Petersson scalar product. The
measure y-2 dxdy on Pt is invariant under the action of

SL(2,R) on P, i.e. we have:
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| £(z2)y® axay = (g-1)(z)y™° axay
A g(a)

for (g-f)(z) = f(g_lz), as follows by change of varilables.

-1 0
Y
and let F be a fundamental domain for the action of T on

Ilet T Dbe a discrete subgroup of SL(2,R) containing
P*. Thus v Fn F  is of measure O (except if v = -1, as
then vy acts by the identity on P'). If f 1is a function on
P* invariant by T (v.f = f), the integral (if it exists)
J f(z)y_2 dxdy 1s then independent of the choice of F

Let us consider T a discrete subgroup of SL(2,R), T
its reciproc image in U7 and the space M (?,x,a,J‘); if

a~
fl and f2 are two functions in Mo(\l‘,x,a.,J_), the function

f(s)g{o) 1is a function on —f‘\o’/}( o~ I‘\P+ = F . fThus we
can form (if 1t exists) the integral _‘f}_f(c)g(?)' y-2 dxdy, over
a fundamental domain J for T. Let us consider the
isomorphism I, of M, (T, xsa,d7) with M(T,¥,a) given by

(Iaf)(z) = y-o’/2 f(b(z)). We have:

] £(e)EET y~°2 axay = J (1,£)(z) TT&)(z) v*~2 axdy .

Thus, we define the Petersson scalar product of two functions

\A

in M(T,x,a) by

<t,e> = [ £(2)g0ZT y*°° axdy ,

where \F is a fundamental domein for the action of T on P+.
(We recall that this formula is independent of the choice of F .)

et T be a subgroup of finite index of SL(2,Z ) containing
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o -

on T is (z, |z| > 1, |Im ZIS%].

A fundamental domain F for the action of SL(2,Z )

It follows that <f,g> exists, if y* ° £(z)g(zJ 1is integrable
in y, when y = «; thus, if f or g are cusp forms at =
(or if & = 1), the Petersson scalar product <f,g> 1is well
defined. ILet us denote by Sk(I‘,x,a) the space of cusp forms

in Mk(I‘,x,o.) (1.e. £ vanishes at the cusps). We have:

2.3.23. Proposition. ILet o > 2. ILet feSk(I‘,X,a) and
2imnz

(1,(8p)-£)(2) = 3 ap(r) e P

Then:
n Yp a-1 n

Proof: We have:

<f,G§,a> =5 g_f(Z) (v€T§S x(v)Ta(v)-Ta(A;l)-eg)(Z)y“'edxdy .
P

The integral is absolutely convergent and we can reverse the

order of summation. Now:

&f(Z) X(v) (T, (V) T, (ap1) -eB) (2) y*~Paxay

=J _1(F)<Ta<v)‘1-f)(z) x(y) (T, (857) -ep) (z) y*Paxay
Y
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as follows from the invariance property of yc""2 dxdy,

= fy_l £(z) (T (A'l)-e’;)(Z) v* 2 axay

as follows from the relation Ta(y)"l-f = y(y)-f, for v e T.

Thus we have to compute:

1. n-/_ -
% = 1 f(z) (Ta(AP )-eg)(z) & 2 dxdy .
vel/sp v 7 (F)
Writing T = U s le, we see that A, = ) v_l(_F)
Pi P
YieT/SP Y€T/SP

is a fundamental domain for the action of SP on P+.
As y-{F = Y'-lJ: if and only if Y = + y!', our integral is
exactly:

- J (T, (85)-2)(z) ep(z) y*~2 axay.

Now AP(AP) 1s a fundamental domain for the action of
1 nw

Tu(AP)'f and eg are invariant under

on P+. As both functions
Yp, the integral doesn't

depend of the choice of the fundamental domain. We then can choose

as fundamental domain A' for YP the set [z, 0< |Re z| < wP].
Our integral becomes:

OS_XS_WI(,Ta(AP)'f)(Z)'e Pyt

K y< o Eiynz
Using the development (Ta(AP)-f)(z) = 3 a&(f) e P




we obtain finally:

n
<f’GP,a

Ky

Yp

= vplmg

196

)(a-l) T(a-1) a

n
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2.4, Modular forms of weight 1/2.

We will construct 8-series of weight 1/2 and 3/2
for some congruence subgroups of SL{(2,Z ) by taking appropriate
coefficients of the representation R or SL(2;R), illustrating
the method sketched in 2.3. Our method will be the following:

1) Analyze the possible lowest weight vectors in the
Shale-Weil representation 415 of E = EL(E,R)

2) For a given congruence subgroup T of SI(2,Z ), produce
some semi-invariant linear functionals under T, using the model

H

H(r,y) of the representation W.

We consider V =1RP @RQ our canonical symplectic space.

2.4.1. Let us consider the following elements:

o=(3 Doux) =G D, ela) = (Z a.(_)l)’ a eR - (0],

of SL(2;R).

a
We denote by B the subgroup: [(O 1_11), a # 0}. FEach element
a

of B is written uniquely as g(a)u(x).
2.4.2. Ilemma: G = B U BaB.

Proof: Iet £ = RP be our Lagrangian plane of reference. Then
B is the subgroup of G leaving £ stable. We have

gf = £' =TRQ. It is clear that B-£' consists of all the

lines other than RP. ILet g e G: if g.£ = £, g belongs
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to Bj; otherwise there exists b € B with g.£ = b.g-£, i.e.

g € BaB.

2.4.3. We recall the formulas 1.6.21 for the projective representa-

tion R =R, of G on the set of generators (m,g(a),u(x)) of

SL(2;R). We identify H(£) with I°(@) by f£(y) = £(exp yQ), then:
0

(R(g(a))£)(y) = lal? £(a.y) for gla) = S

2
(R(u(t))£)(y) = ™ £(y), ror u(t) = (5 5,

(R(f; %)f)(y) I 2™V r(x)ax.

We see that the space L(0)of even functions in L?GR) as well
as the space L(1) of odd functions is stable under R.

Let us consider 45 (R), the Schwartz space of rapidly
decreasing functions on R. If fe 4(R), £ is a ¢~
vector for the representation R.

Let

H=(3 9, x=( & v=(

be the standard basis of 4 L(2,R). Then on ) (R):

dR (X) = i7ry2

(where i7ry2 denotes the multiplication operator)

d'ﬁ(H)=y36§+%

R (1) =5 ()
y
(For ¢ = % é), ¢ acts by the Fourier
- 1

transform and aXe = = Y.)
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Let us consider the basis J, J_,J+ of (gc given in

2.3.3. We are interested in finding the lowest weight vectors of
v~

the representation R, i.e. the solution of the equatilons

dr (J )-fO = 0.

2.4.4, Temma:

2
1) The function £,(y) = e”™  satisfies

o~ i

a) 4R (Jo)-fo =-35f4
b) 4R (37)-£, = O.
2

2) The function f,(y) = ye~ ™  gsatisfies
3i £

a) d‘ﬁ (Jo)-fl =-3 1

b) R (J7).f, = O.
Proof: We have dR (3,) = dR (Y) - aR (X).
2 2 2
S (&™) = (4my? - 2me™™

Since —
oy

2

~ ~ 2
(dR (Y) - dR (X)-£5)(y) = (4 - 3 - imy®)e™™

i
- '2' fo(y) .
The other calculations are similar.

Remark: According to the decomposition L2(]R) = L(0) @ L(1) 1in
even and odd functions, we have uﬁ = ‘ﬁo @ vﬁl and both representa-
tions ﬁo and \ﬁl are unitary irreducible representations of
QL(Q,R) (thus isomorphic respectively to Tl/e,T3/2 acting on
some Hilbert spaces of functions on P+). The vector fo
(resp. fl) is "the" lowest weight vector of vﬁo (resp. ?il).

We hence have accomplished the first part of our program.
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Let us now analyze the second part.

2.4.5. We consider the lattice r = ZP@® ZQ with the

character x(exp(mP + nQ + tR)) = (-l)meeiﬁ‘

of the corresponding
subgroup R = exp(r ® RE) of N = exp(RP ® RQ ® RE). To these
data 1s associated the model H(r,x) for the irreducible
representation W of the Heisenberg group.

We have constructed the operator e;’z: H(£) » H(r,¥).
Sﬁ’z is given by the formula (6;,£¢)(g) = nizzw(g exp nQ) for

@ € H(L).
2.4.6. Let
T = SL{2,Z), i.e. T =$(2 3), a,b,c,d € Z, ad - bec =1 j

be the subgroup of G leaving the lattice r stable. ILet T(r,y)

the subgroup of T leaving x stable. We have:

T(r,x) = ((5 0) €T, ac = 0 Mod 2, bd 3 0 Mod 2}.

Iet us consider the model W = w(r,x) of the representation

W acting on H(r,x). We also denote T(r,y) by T(y)

2.4.7. ILet us define for vy € T(¥), (Ar(Y)w)(n) = w(Y—l-n) as a

unitary operator on H(r,x). As calculated in 2.2.30, we have

8% e Ry(yv) = (8% )71 = a(v)7h A (v), witn

a(y) = b(v£,£) = b(2,v"18) = b(RE,R(aP-ca)) (as v' = (S “2)).

be
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Thus  a(y) = b(d,-¢c) = |e]1/2 z e ¢ (2.2.11)
nezZ /cZz

2.4.8. Let us consider the universal covering group (3\~ of

SL(2,R) and the true representation ‘ﬁ(n) of (O in H(E).

We denote by ?(X) the reciprocal image of T(x) in (% .

For any n e'}(x) the Weil representation .ﬁ(q) acting on H(4)

and the representation Ar(a) acting on H(r,y) are proportional.

el
Thus there exists a character A of T(y) such that:
X = X,
er,le Rl(Y:CP)" el,r = x(v,0) AI‘(Y)

for every o = (v,p) of T(x) .

We still denote by R the true representation of CT' given by
8X , o Rea% _. We will determine A(y,o0). We recall that we
r, b L, T
have defined a particular section v =+ v = (y,Log(cz+d)) of
G = sL(2,R) in (O, where ILog(cz+d) is the principal determina-

tion of 1log(cz+d).

“~ A -
2.4.9. Theorem: For vy = (2 g) e T(yx), R(y) = 2 (¥) Ar(y) with:

) a@ =eF (%3.), if 4 is odd (¢ even),
2) aly) = e‘i"/l*(%) £, if ¢ is odd, c > 0,

3) A{) = e'i"/u(e—cd) €, signd, if c is odd, c < O,
imr
LT m
Proof: We recall (1.8.24): R(y) = e ¥ R(y), where,

m = -sign ¢ if c#0
for v = (2 g) m=0 if c¢c=0 a>o0
m= =2 if c=0 a< o0
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im
~ m
Thus R(Y) = eT b(d,-c)'l Ar(y).

If ¢ is even, ¢ # 0, then

im
A~ - sign c -
RY) =e © ((a,-¢))™ & ()
ir _ . ir _.
- sign c sign cd
e ¥ et b(-c,d) A (v)
imw
- sign cd
as b(d,~c)b(-c,d) = e k3 (2.2.11)
imr i
sign cd - sign c _
=e? e ¥ b(c,da)”t AL (y)

as b(-c,d) = b(c,d) = b(C:d)-l

b(e(%):d)_l Ar(Y): ir a >0

c
(%)Eal A (y), if a>0 - (2.2.18)

The other formulas are proven similarly.

Remark: The group T(r,%x) contains the congruence subgroup

0 Mod 2

b c
To(2:2) = ((C @)y 420 Moa2)

n

For this group the formula 2.4.9 is then written as

Rv) =630 G8) aL(v).

2.4.10. Now we are ready to consider question 2). Iet us
first consider the group T(r,x). It is clear that the distri-

bution ﬁo(w) = gp(e) on H(r,x) (where e 1is the identity element
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of N) is an invariant functional under the representation Ar
of T{(r,x) in H(r,y). Hence 6, is semi-invariant with
character )\ with respect to the representation ‘i of ‘}(r,x)
in H(r,yx). We consider the isomorphism e;,z of H(£) with
H(r,%). Then e},z fo 1is a lowest weight vector in H(r,x).

Thus, if we form the coefficient
8(a) = (85, R(n)-8} 420) = (85,00 4Ry(0)-T5),

we obtain a function in the space Mb(r(x),x,%,J').
Using the isomorphism Il/2 we may consider & as a holomorphic

function 6(z) on the upper half-plane. We have
(% _-\- l x yl/2 O . .
R(b{z))-f = Rz«o l)( o y_1/2)) £, i.e.:

9 . 2
2.4.11.  (R(b(z))-£)(») = y/*eI™C r(y %),
hence

- . 2
2.4.12. R(b(z).fo)(!) - yl/4elvzg )

We compute

2
-1/4%,.0 1/4k imz
(1, ,50)(2) = 574 (5%,8% ple >y telT8))
- = eivznz
nez
So we obtain:
2
o(z) = = ei1rzn

nez



204

and the.

. 2
2.4.13. Theorem: Let 8(z) = = e "™, then for every
neZ

v=(2 g), with a,b,c,d € Z ac = O Mod 2, bd = O Mod 2,
+b 1
8(2ZE) = a(v)(cz+a)™? o(z)

1/2

where (cz+d) is the principal determination of (cz+d)l/2 and

A 1is given by 2.4.9. 1In particular,if c¢ 1is even, A(y) = E'l( ).
2.4.14%. We now define the congruence subgroup
To(N) = ((2 9) eT, c= 0 Moa N}
and more generally,
To(Np,N,) = (3 ®) €T, c= Omod Nj, b= OMod Ny} .

/T
2.4.15. et g(/T) = ( o Then

o}
(fi?)-l)'
/T 0 a (/?) 0] a tb
( 0 (ff)_l] (c d) ( ft) =(c/t d) :
Hence
g(==) r.(N.,N,) g()"! = T (N.N,).
30 the group I‘O(Nl,Ne) is conjugated to I‘O(NlNe).

let y = (2’ 2) in I‘O(N). As ad=1Mod N, d Mod N
is an ivertible element of the ring Z /NZ . If ¢ 1is a character
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mod N, the function #(y) = #(d) is a character of TO(N).
We say that ¢ 1is even if ¢(-1) =1, odd if +¢(-1) =-1.

2.4.16. Iet N Dbe an integer. We consider

To(2,28%) < Ty(2,2) © T(r,x)

Hence we may consider the representation Ar of I‘O(2,2N2) in
H(r,y). We will now construct linear functional on H(r,x)
invariant under this subgroup. Iet k be an integer and consider

. k
the functional (8,,0) = w(expgr) on H(r,x). We have &, n = 8.
b

2
2.4.17. lemma: A,(Y)8, = 64 for every vy = (2’ 3) € To(2,28%).

Proof: let o € H(r,x), we have:

(A (¥) bs0) = (8,,8,(1)71e0) = (A, ()" p) (exp § Q)

w(exp -}5} ¥a) = olexp PN}E P+ %}5 Q).

]

We write:
bk dk dk bk bdk®
exp(TP + —N-Q,) = exp —N-Q exp x P exp —é—z- E.
N
Bs o € H(r,x), 3’% e Z (b= 0Mod 2¥) and
bdk2 2
e Z (b = 0 Mod 2N°), the lemma follows.
2N

2.4.18. Corollary: Let ¢ be a character mod N, we define

8 (k) 6y .

= z
VO ke(zmm)*
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Then & (y)-6 = %(a)"1s

v for vy = (: b) € To(2,2N2).

] d

Proof: We have A_(vy)-5, = b y(k)6., . As d is
r Vo ez Nz )T dk
invertible mod 4N°, d is invertible mod N. Changing X to

a1k the corollary follows.

As in2.4.10we now form the coefficients:

e;/e(c) - (5¢:9}’£§k(c).fo) for § even
03/2(0) = (5,,8% jRyl0)-)) for y oua
We have:

‘R 2

(Ry(v(z)) -£,)(e) = g1/ heimze

R 2
(Ry(b(z))-r,)(2) = 3 g 127

1/2
We identify, via the isomorphisms Il/2 and 13/2, ew and

63/2 with holomorphic functions e;/e(z),eﬁ/e(z) on the upper
half-plane, i.e.

. irz ﬁ;
(8 0)(2) = nszlx(n)e
2
( . imz Eg
93/2)(Z) = ni-z\l!(n)ne

(it is clear that we could define 6" for any character ¥

is ©

¥ 2 ¥
mod N, but,if ¢ is odd, 6 = 0. Similarly 8
Ve 372
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if ¢ is even). It is more standard to consider

the modular forms

2
5y(z) = = 4(n)e®1TN < ot (28%2),

or more generally,for an integer +t, the modular forms

ot (z) = = uy(n)ezi’rznet = 8¥ _(2Ntz).

vt neZ 172
-2
a
when (& Py ¢ T (2,28%t), ( 2N“t) ¢ T.(4N°t) and thus
¢ d 0 2N2tc d 0

we obtain:

2.4.19. Theorem: a) Let ¢ be an even character mod N,

then
+ 2ivtn2z
8,4(z) = = u(n)e
’ neZ
satisfies:
of (B2 = w() (@ e @ ez + Y2 0, L (2)

b

for any (2 q

) e T _(48°%),
0
b) Iet % Dbe an odd character mod N, then

. 2
8, 4(z) = = a(n)ne®TON 7
’ nez

satisfies:

0+ (22%) = (@) 3 @ ez + )32 o (2)
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for any (g b eT&MftL

Remark: We recall here the theorem of Serre and Stark [28]. ILet n
be an integer and ¥ a character mod n. A modular form on

To(n) satisfying:
£(v-2) = x(v) €37 (cz + 0)? £(2)

for every v = (i 3) in To(n) is a linear combination of the

9-series 8 for appropriate choices of (¥,t) (¥ 1is a character

+
¥,t
mod N, t an integer such that 4N2t divides n and

x(d) = +(a)(%))
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2.5. The Shale-Weil representation associated to a quadratic

form.

let (V,B) be a symplectic space. The representation R
of gb(B) is "almost" irreducible. It is a sum of two irreducible
representations corresponding to even and odd functions. We will
similarly study the decomposition into irreducible components
of the k-tensor products of the representation ﬁ. The principle
is the following: Let (E,S) be an orthogonal vector space of
dimension k, with a quadratic form S. Then the space (V @ E,
B ®S) with the bilinear form B ® S 1is a symplectic space.
The representation R of the group Sp(B x S) restrict to
sp(B) x 0(3) in Rg - When S 1is positive definite, R,
as a representation of Sp(B), is the k-tensor product of R
and the compact group O(k) plays an analogous role for the de-
composition of ; R that the symmetric group (Ti for the
representation of GL(n,G) in % ¢”: let us consider an
irreducible representation A of 0(k) occurring in RS’ then
the restriction of the representation RS to the space of vectors
of type A under O(k) is jointly irreducible under Sp(B) x O(k).
Thus the unitary representation of Sp(B) occurring in Ry are
in this way naturally parametrized by representations of the
compact group O(k). They are "lowest weight vectors”" representa-
tions of Sp(B) and their lowest weight vectors have potential
interest for the construction of holomorphic modular forms ‘on the
Siegel generalized upper half-plane. This representation g R

is studied in detail in [ 15]. When S 1is of type (p,q), the
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representation RS is the tensor product of p copies of R
with q copies of the conjugate representation of E . The
decomposition of this representation is not known in general,
although the same feeling persists that the unitery representation
of 8p(n,R) "occurring" in Ry should be naturally parametrized
by the unitary representations of 0(p,q) occurring in RS.

When dim V =2, i.e. Sp(B) = SL(2,R), this is indeed true:

we have RS = j 9 ® Te ds, where ds 1is a Borel measure on
A Pa
the dual space SL(2,R) x 6(p,q) » s =0, @7,  with o € sL(2,R),
A

Ty € 0(p,q) and for almost every s (with respect to ds),

T and Ts determines each other [12]. The description of the

discrete part of R, was given by Rallis and Schiffmann [22].

S
This discrete part will be of interest for the construction
of #-series.

Our main goal is to give explicit formulas for the lowest
weight vectors of these representations RS of Sp(B). We will
do it referring to representation theory only as a background.
We will start by the well-known case SL{2,R) x o(k) (i.e.

dim V = 2, S8 positive definite), then we will describe
explicitly the lowest weight vectors for SL(2,R) x 0(p,q)-

Finally we summarize some of the results for Sp(n,R) x O(k).
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2.5.1. let E be a k-dimensional real vector space with a
non-degenerate quadratic form S of signature (p,q) (with

P+ q = k). There exists a basis eys€p, of

"ep’ep+1""’ep+q
E such that:

S(e;se;) =1 for i< p,

S(ei,ei) =1 for 1i> p.

We will, for such a decomposition, write E = E+ ® E_ with

p p+q
E, = Z Re;, E_ = Z Re,.
i=1 Y T i=p+l

We denote by 0(S) the orthogonal group of the form §. We have

0(s) = 0(p,q). The subgroup of 0(S) 1leaving stable the

decomposition E_® E_ 1is naturally isomorphic to o(p) x o(aq).
Let (V,B) %bve a symplectic vector space. We consider

the space V ® E, with the bilinear form B @ S given by

(Bes)(xe v,y ® vl!) = B(x,y) S(v,v'). The form (B ® S) 1is

a non-degenerate alternate form on V @ E. Thus the space

VE®E with the bilinear form B ® S is a symplectic space.

It is clear that the direct product Sp(B) x 0(S) is naturally
imbedded in Sp(B @ S) by (gl,gg) > g, ® g, acting in V ® E.
We will study the restriction of the Shale-Weil representa-

tion of Sp(B@® S) to Sp(B) x 0(S). ILet £ be a Lagrangian
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subspace of (V,B), then £ @ E is a Lagrangian subspace of

(V@ E,B@® S). We recall that we have constructed the universal
covering group v(;z of the group Sp(B) = G using the choice of £
e Lagrangian space. As a set/ Ez is equal to G x Z, the
multiplicative law being given by: (gl,nl)-(gz,nz) =

(81855 ny + n, + 7(L4,8,8,8,858)).

2.5.2. ILemma: The map (g,n) » (g @ 1,(p~q)n) is a homomorphism
from G, to Sp(B Qs)ﬂaE'

Proof: We have to verify that
"'(‘e ® E, gl‘e ® E, glg2£ ® E) = (p‘Q)T(z:gl‘nglgzz):
which is immediate.

As the group O0(S) leaves stable the Lagrangian space £ @ E,
v~
0(S) is naturally imbedded in Sp(B @ S)y bY & - (1@ 8550) .
We will study the restriction of the representation R of the

v A e
group Sp(B ® S) to Sp(B) x 0(S). We note by Ry this:

restriction. We denote by R the restriction of the projective

S
representation Rﬂ@E to Sp(B) x 0(s).

2.5.3. Iemma: If k 1is even, the projective representation

RS is equivalent to a true representation of the symplectic

group Sp(B).

Proof: The cocycle associated to the choice of Z®E as Lagrangian

subspace of V@B is given by:

as
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ir
- (p-q)r(£,8,4,8,8,%)
c(gl:gg) = e k2 1 1%2 .

As p - q 1is even, this is a coboundary: let
s(g) = s(8%,g-87)(1.7.7), we have

-5 &Y (B5%)
c(g),8,) = s(g;) s(g,) s(g48,)

Hence the function

- (B
R(g) = s(g) T('1)RS<g>

defines a true representation of G, equivalent to the projective

representation RS .

2.5.4. Let us consider an orthogonal decomposition E = E, @ E,

of the space E. We denote by Sl,S2 the restriction of S

to El:Eg' The corresponding decomposition V@E =V @ El Ve E2

is stable under Sp(B) x O(Sl) X O(Sg). Iet us consider the

representation R of gp(B) x 0(S R is realized in

) 1)
H(Z ® El)’ subspace of functions on the Heisenberg group

associated to (V@& E), B ®S;). Similarly ES is realized

2
in H(4 ® E2). It is clear that the map
(col ® cpe)(exp V), ® € exp v, @ &, exp tE)
-2imt
= cpl(exp v, @ el) cpe(exp v, @ e2) e~ i

establishes an isomorphism of H(4 @ El) ® H(Z © E2) with
H(4 ® (El ® Eg)) Therefore the restriction of the representa-

tion Ry to Sp(B) x 0(s;) x 0(s,) 1is given by
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v ~

Yl
Rs(gsr’licg) = Rsl(g,”l) @ ng(gscg)s

~

i.e. Ry as a representation of Sp(B) is the (inner) tensor
product R, @E . As a representation of 0(S,) x 0(s,),

Sl 32 1 2
it is the outer tensor product.

Let us remark that the representation R_ is canonically

S
equivalent to ﬁs. In particular if S 1is of signature (p,q)
our representation RS as a representation of Sp(nzR) = G is
D q =
isomorphic to @R @ & R.

2.5.5. Let S be of signature (1,1). The representation J}-{S
of the group Sp(B) is equivalent to Ry ®_Rz. Iet us consider
the natural representation U of Sp{(B) inside L2(V) given
by (U(g)f)(x) = f(g'lx). The representation U is a unitary

. 2
representation of G (if g € Sp(B), det g = 1) in L°(V).

2.5.6. Proposition: ILet S be of signature (1,1). The

s
representation Rs is equivalent to the representation U.

Proof: We consider the vector space E =]Rel @]Re2 with the
symmetric form S(xlel + Xy€55¥,8 + y2e2) = X1V + X5V, The
subspace ]Rel is an isotropic subspace for S. Iet VvV =4£ & 40!
be a decomposition of V 1in a sum of complementary Lagrangian
subspaces. Then ['E =L ®E and V @ Re; = ll are both
Lagrangian subspaces of (V ® E, B @ S). The representations
R, in H(lE) and Ry, in H(ll) of the group Sp(B & S)

E 1 —
are unitary equivalent via the operator J’l - We identify

l,

H(ll) with L2(V) via of{v) = olexp v ®ey). As G = Sp(B)
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leaves stable the decomposition V @ e &V E e, of V®E it

is clear that R, (g) is given by (U(g)f)(v) = f(g'lv). This
1

establishes the proposition.

We will, for later applications, give the formula for the

intertwini t
intertwlining operator \}'ﬂl;l@E

H(lE) with Le(l' ® E) and write o(y ® e+ y' ® e2) for

between RS and U. We identify
olexp(y & ety ® e2)), y,y' € £'. As

ll/llnlE = ' ® ey
we have
(J“— o) (v) = owlexp v e, exp t @ e,) dt.
£1s45 Itel' 2 1

Iet us write v = x + y, where x € £, y € £'. Then:

2.5.7. (,FllJEqp)(x + y) I olexp y @ e, exp X ® e, exp t @el) dt

—2ivB(x,t)dt

j‘teﬂ'cp(exp(t ®e, +¥ ®ey))e

~

i.e. jll’lE is a partial Fourier transform with respect to the
variable t.

Let (E s8) be an orthogonal vector space, with S of
signature (p,q).

We will restrict now our attention to the case where v
is our 2-dimensional canonical symplectic vector space IRP ® RQ.
We choose £ =IRP @ E as a Lagrangian subspace and £' =1RQ ® E
as a complementary Lagrangian space. Hence the space of i\s is
identified with L2(E) by o(v) = olexp Q ® v). We consider Ry as a
representation of O x 0(8), where (J™ is the universal covering

group of SL(2,R). We write also ¢ = SL(2,R).
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2.5.8. The formula for the representation RS (the canonical
projective representation) becomes on the set of generators

of SL(2,R)

Kk/2

0]
(R (g(2))1) (v) t(a.v), for gla) = (g 4-1).

la]
(Rs(u(t))f)(v) = eivts(v’v)f(v),for u{t) = (é E),
(Rg(0 D)) (v) = [ 2ASWery) gy,

We have

ir
v 1r(P“Q)n
Rg(g,n) = e R5(g)
for (g,n) € (T°= G from Lemma 2.5.2.
As 0(S) Lleaves stable £ and £' the representation R,

S
of 0(sS) 4is simply given by:

(Es(u)f)(v) = f(u'lv), for u e o(s).

2.5.9. Let us first restrict our attention to the case where
S 1is a positive definite form defined on a space E of
dimension p. We are interested to study the decomposition of

o

R, under U x o(p).

S
Iet A\ be an irreducible representation of the group 0(p).

As 0(p) and (7 commutes, the isotypic component L(\) of

type A of I°(E) 1is stableby O . If X\ #u, L()) and

L(u) are orthogonal subspaces of I?(E).

Iet us consider the action of 0{(p) on the space of

polynomials OD on E given by (u -P)(v) = P(u'lv).
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Similarly we denote by 0D(X) the isotypic component of type

r» in (P .
2.5.10. Iemma: The space L()) # O if and only if (P (1) # o.

Proof: The space of functions of the form P(x)e-vs(x’x), with
Pe P is dense in I?(E). (As 8 1is positive definite, these
functions are in I?(E).) Let P =32 P the decomposition of P
in isotypic components of type . Then,as S(x,x) is invariant

under 0(8),

p(x)e ™ (%X | 5 (b (x)e=™S (%)Y Lign B (x)e”"SX0X) ¢ 1(y).

N A s

For f e L(\),
<f:P(x)e_WS(x’x)> = <f,Px(X)e-ws(x’X)> .
Hence ﬁkx) = 0 implies L(2) = O.

We now analyze the possible \'s such that e (n) 1is
not zero. Let us consider the identification of E with E*
given by 8. This extends to an identification of the space of

polynomials on E with the space of constant coefficients

differential operators on E. If (xl, Xgs "7 xp) is an

orthonormal system of coordinates, the differential operator
. . 5 3 .. 3

corresponding to P(xl,xg, ,xp) is P(3§1’3§E’ :3;;).

The space of polynomials on E 1is provided with the hermitian

inner product <P,Q> = (P(g%)-ﬁ)(o). This inner product is
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invariant under the group 0(S).

We denote by A the Laplacian operator corresponding to

S
S, i.e.
2 2
d d
A = + s e +
5 Bxi axg

for an orthonormal system of coordinates. The operator AS
commutes with the action of 0(s).

We denote by éﬁé the space of harmonic polynomials on E,
j.e. Kb = (P e P 3 AP = 0). M6 is invariant under O(S).
Iet us remark that H#€ is the orthogonal complement of the
space (P s = (P(x)S(x,x), with P e P )} for the inner product
<P,@>: 1in fact, if Q € Jt , clearly

(P(3%)AS-'Q)(O) =0

- d \n
as 8;°Q= 0 on E. Conversely if ((Eiz) (ASQ))(O) =0
for every 1i,n, all the derivatives of ASQ are equal to zero

at the origin, hence Asﬁ = 0.

2.5.11. Lemma:
a) Every element P e 0) can be written on the form
i

P =3 S"P; where P, ¢ A (i.e. P(x) =32 S(x,x)iPi(x)).

b)  (\) # 0, if and only if H#( (\) # O.

Proof:
We can write P = Po + SPl as S &D and A{ are
orthogonal with respect to the positive definite hermitian

form <P,Q>. By induction of deg.P a) follows. Now if
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P e GD(X), we have P =3 SlPi , VWhere P
Ed

i is the isotypic
component of type A\ of Pi' Hence if 6)

A\
Ed
(\) # 0, Ho(\) # 0.
2.5.12. Let us consider the space #€ (n) of homogeneous
harmonic polynomials of degree n. It is well known that the
representation 4  of 0(S) into Mf(n) is an irreducible
representation of 0(S). We have finally proven that L(x) # (0]}

if and only if %\ is of the form dn.

We denote by I?(dn) the subspace of functions in
I?(E) of type d, with respect to the action of 0(8). The
space I?(dn) is stable by U x o(s).

If dim E = 1, we have M6 = (P; (S%)QP = 0}. Hence
P(e) =1 or P(e) = e, corresponding to the two different

irreducible representations of 0(1) = (+1}. Hence 12 = L(o) &® L(1)
where L(0) = {f; f(x) = f(-x)] consists of the even functions
L(1) = (f; f£(x) = -f(-x)) consists of the odd functions.

If dim E > 1, then for every n > 0, H#((n) # 0. For
example, if S = xi + xg + e+ xg in orthonormal coordinates,
(xl + ix2)n is such an element of %t (n). Hence we have
- 9 L°(a)-

Iet ,d (E) be the space of rapidly decreasing functions
on E. Then,if f belongs to A (E), f is a C” vector for
the representation R. et (H,X,Y) be the canonical basis of
A4(2). We have:

2.5.13. a) 4R

<
~
1l

imS, where imS denotes the multiplication

operator f(v) - ims(v,v)f(v).
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b)  dRy(H)

vy et _ d
c) dRS(Y) = 7 bgs where Al =3 (3iI

The formulas a) and b) follows by differentiation of 2.5.8.
As o(X) = aXa—l = -Y, and o acts by the Fourier transform
it follows that &ES(Y) is given by the Fourier transform with
respect to S of the operator imS, leading to c¢). We will
still denote by H the operator

p

d
z X, + p/2 .
jo1 1 %Xy

Let us now consider the basis J.,J°,J7 of 4£(2,¢).

O.'

2.5.14. Iemma:

aR(J)- (£(r)e ™)) o (L p o gner)eTS(808)

QdE(J_)(f(!)e-‘ITS(!:g)) ='Z];L1T (As.f)(g)e-‘lTS(!{,p),
Proof: As
2 2
aiz (f(x)e_m ) = (-:—2§ + (271')2)(2 - br(x g; + %))e-vx ,

we obtain:

dV};s(Y)(f('a)e_vs(g’g)) - (= Ag T + iTST - iH.r)e~TS(8s2)

Writing J, =Y - X, 2J° = Y + X + iH, we obtain the lemma.

2.5.15. Proposition: Let P e H#6(n), then the function
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fP(g) = P(g)e'vs(!’g) satisfies:

a)  aRg(dp) £y = -1 + n)g,
b) dﬁé(J’)-fP = 0.

Proof: This follows immediately from 2.5.14.

Thus the functions fP(R) are lowest weight vectors for
the representation ﬁé. Our first aim is then reached for the
case of a definite quadratic form.

25.16. Let us explicit the relation between the representation Rgq
and the representations (Tk, G(F")) which are the "typical
representations of SL(2,R) having lowest weight vectors.

We consider the subrepresentation (Eé,Lg(dn)) of
U”x o(p) in the space of functions of type d, with respect
to the action of 0(p). The vector fP is a lowest weight
vector of weight a = p/2 + n in I?(dn). As in 2.3.3, we

thus consider f, = y—a/é(ﬁé(b(z))-fP), i.e. explicitly

P,
2.5.17. fp () = P(!)eivzs(g).
22
(We write S(®) for sS(%,2)) This function z ~ f of P'

in 1?(dn) satisfies the fundamental relation:

2.5.18. Rg(g) tp , = "(cz+a)"™® ¢

z P,g-z "’

This relation follows from 2.5.15 a) and the discussion in 2.3.3.

It could also be checked directly on the set of generators

(l X

5 l), (:1 é) of SL(2,R): as P is harmonic, the Fourier
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irzs(®)

.o =1
transform of P(f)e is proportional to z *P(g)e”*"? S(!).

Let us consider the operator fn: L2(dn) > F(pH, H6(n))
from functions on E of type dn to antiholomorphic functions

on P’ with values in M (n), given by:

-irzs(e)

A(Fpo)(z),® = fEe o(e) Q(r) d=.

Writing fncp as <cp,f§ 2> 5> the relation 2.5.18 shows that
Ed

12 (z)
Fnﬁ‘s(g) = E(p/2)+n(g)'fn’ for g € 0. Hence j?n intertwines
the representation Jﬁs of U x o(p) on the space L2(dn) with
the representation E(p/2)+n ®d ~of G x o(p) on &(FH) @ H(n).

The image of the lowest weight vector f, in (}?,Lg(dn))
is proportional to the lowest weight vector (‘Bi ® P)(w) = (w-i)"%®F
of the representation (Ta ®ad,, B(P") ® #(n)). It is in fact
easy to check directly that: ()_-"an’z)(w) is proportional to
(w-z)"% @ P: The relation to be proven is:

J ) pe)aeras = c(w-2)7* (RQ),

whenever Q 1is harmonic of degree n. By homogeneity, it is

enough to check this relation for (z-w) = i, i.e. that
IEe'"S<5)P<g>Q<;>a= - ¢(P,Q)

where c¢ 1is a non-zero constant. Both members of this equality
are inner product on M¢(n) invariant by O0(p). As d, is
irreducible, they are proportional. We summarize the preceding

discussion in the:
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2.5.19. Proposition: The operator Fn: 1°(a. ) » a(F) @M(n)

given by
<F2) (20,0 = [ e g e)a(e)ar

intertwines the representation (R ,L2(dn)) of " x o(p) in

2

L°(d,) with the representation T ®d_ of 0 x o(p)

p/2)+n n
in 5(P+) ®. H(n). Purthermore In is an injective operator

such that

fan ; = c(w-2)""®@P, with « =p/2 +n
rl

where c¢ 1is a non-zero constant.

Proof: The only point of the proposition which doesn't follow

=

from the preceding discussion is the injectivity of Fue However

a_a_)i(}?n@)(f) we see that o
z Iy
is orthogonal to all the functions of the form e-vs(g) st(r)a(e)

if (fnmp)(f) = 0, by considering (

with Q harmonic in X¢(n). As this space of functions is dense

. 2
in L (dn)’ o= 0.

2.5.20. Remark: The representations ('Tk,E(P+)) of SL(2,R)
are unitarizable for k > 0: Let

B = (£ e 5(F") 5 [ |21 2 axay < =) ,

then H # {0] for k > 1 and it is easily checked that Tk
acts unitarily and irreducibly on Hk‘ These representations,
for k > 1, are the representations of the antiholomorphic

“
(relative) discrete series of SL(2,R). If k > 0, we can define
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H to be

H = (£ e (") 5 [1£1(2)1® ¥ axay < =

f >0 at =}

and it is not difficult to see that (Tk,Hk) is an irreducible

unitary representation of SL(EJR), for k > O.

(%Y
We can then write the decomposition of R

A
irreducible representations of SL(2,R) x 0(p), as:

A

RS = ? (T(p/2)+n ®dn)

(when p =1, n is restricted to be O or 1).

We now consider the case of a form S of signature
on the vector space E of dimension kK =p + q. We will
suppose that both p and q are non-zero. We will first

somewhat sketchy procedure to obtain lowest weight vectors

AV
the representation RS, then a group theoretical approach.

Let us choose a decomposition of our space E as
orthogonal sum E = El ® E2, where the restriction Sl of

to El is positive definite, the restriction =S of 8

2

E is negative definite. We write A, = A - A where
2 S Sl S

8. (resp. A, ) 1is the Laplacian associated to S, (resp.
Sl 82 1

acting on E,; (resp. E2).

S in unitary

(psa)

give a

for

9]

to

32)

™
Let us consider the infinitesimal action of R on the

S
space <5(E). We have:

A
dRS(X) = iv(Sl - 82) = imS
dRS(H) = (Hl + H,) = H
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[V _ 1 _ i
dRg(Y) = o7 (Asl - As2) =77 8-
2.5.21. Proposition: If a function P(z)e'vs(g") on E
is a lowest weight vector of welght 2\, 1t satisfies the

relations:
1) p(e)e=™(88) 45 i 2(x)

2) A.+P = 0 1in the weak sense

S
3) H.P = \P

(i.e. P 1s harmonic with respect to A and homogeneous of

S
degree \ - k/2).

Proof: If f = P(=) ~™5(2) 35 4 lowest weight vector of weight

for the representation Ré: we have, for every o ¢.A (E),

e-ike

<Rg(s(0)) 9 5 = <Eyq> = <£,Rg(6(8)) o>,

Differentiating the last two equalities and using Lemma 2.5.14,
we obtain i% AS'P - 1H-P =-iA8 1n the weak sense. Similarly,

A
if f 1is a C®-vector for RS’ we have
<d S(X)'fJCP>L2 = <f:dRS(‘i)'(9>L2 .

Using Lemma 2.5.14, we obtain the relation AS-P = 0.

It 1is a delicate question to decide when a function
satisfying the equation 1), 2), 3) is actually a C -vector

for the representation \ﬁé. We will first ignore

this point, and construct vectors satisfying 1), 2), 3). As

-7S(e}

S 1s not positive definite, the function e is clearly
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far from being in I?(E). We will see however that there exists
continuous functions P(e), solutions in the weak sense of
the equations AS-P = 0, H.P = \P and supported on the cone

-mS(e,8) 4o i 1°(E). P(x) will

S(r,g) > 0 such that P(z)e
be on the form S(!)ku(g), with k > 0, where u(er) is supported
on the cone S(®¢) > 0, so s(r)k will cancel the singularities
of the characteristic function of the set {z;5(e) > 0}. We

now proceed to our construction:

We write A for AS'
2.5.2¢. lemma: For f differentiable, we have:
2%t = S¥Af + 4aS® L(H + o - 1)f, on the set S(x) # O.

Proof: It is easy to compute that, for

= (%2 2, ... 2 2 . ... 2
S = (xl + x5 + +xp -yt + yq)
2
d \2 o. _ a-1 2,0-2 -1 d & 93
(32—) S*f = 2a8°7°F + ua(a-l)xis £+ 408" " Txy x— + 8 —f
i i Bxi
2
d \2 .o a-1 2.a-2 o-1 d o O
s%r = -2as + -1)y=s®Ter - b . £
(Bi‘) o £+ sala )yJ as™ 7y 3§3f + 8 S;?

and the lemma follows.

2.5.23. ILemma: Let P1 be a harmonic polynomial of degree n

on El’ P2 a harmonic polynomial of degree m on Es- Then, if:

1) B%S +Yy-1+22+28 +n+m=20

2) a(f+a-1+n)=0

3) a(% +8-~1+m) =0

the function o = P,P,s%s2SY satisfies Ap = O on the set

1"271%2
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S(x) # 0, 55(x) # 0 8,(x) # 0.
Proof: By lLemma 2.5.22, we have

Y a8y _ &Y o 8 y-1 o8B
AS(S Plpzsls2) =85 ((Al-Az)PlslPQSQ) + Uys ((H+Y-1)-P1P28182)

But the condition 1) implies that (H + (y-1)).(PP,s3s) = o,
as follows from the homogenelty degree. Similarly 2) and 3)

implies
o _ g -
Al(SlPl) =0, A2(S2P2) = 0.

2.5.2%. Theorem: Let P1 be a harmonic polynomial of degree n

on E1 and P2 a harmonic polynomial of degree m on E2. Let

-(n + p—2) ~+n-m-1
- s

v = P.P.S
P,P, 172°1
on S(x,x) > 0
=0 on 8(x,x)< ©
then
1) A-¥p_p = O on the set Sl(x) # 0, S(x) #0
1’°2

1
Hev =(n-m+ (p-q)) -t .
Pl’P2 7z Pl’P2

2) 1t B4+ (n-m)> 1,

-S(x,x)

the function 4 belongs to I?(E).

1’P2(X)e

p (x)e—TTS(X,X)

3) If n-m>gqg, the function ¥
P1s P

belongs to Ll(E).
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4y If p+q>2, and n-m>q then is in
5 Pl’P2

LY (E) n 1°(E) and is continuous.
Proof':

1) follows from 2.5.23. (It corresponds to the case
B = 0.)

2) TIet us write x =u+ v with u e E;, v € E;. We have
to compute:

-(p-2+2n) - p-gq+2(n-m)-2
5y a2 (8,(1) = 5,(v))

281 (w-8,(v)) 1B, (@) 1212, (v) 1 auav,

Let us consider polar coordinates on El and E2, i.e. we

1/2 1/2
write u = Sl(u) / 0ps V = Sz(u) / gy, Wwhere o4,d4, are points
on thepz;;t sphere in El,Eg}2 If t; = Sl(u), t, = S2(v), then
du = t7 dt; dog, dv = e dt, do,s for da;,do, the surface

2
measureson the unit sphere. Then,using the homogeneity property

of P.,P

12 Pps we have to see when:

-27(t.~-t,)
- (p-2+2n) p-gq+2(n-m)-2 1"v2/ n.m p-2)2 g-22
ft ot t7 (tl-te) e titoty t5 dtdt K.
1772
t1>0
t2>0
Changing tl in (t + t2), we obtain that the preceding integral

is equal to

-{P-2Y/2 +n) m+ (@-2¥/2
[t ty) t, 2T Pma#2(nm)-2 gpqe
£,>0
£>0
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But

m+ (g-2)/2
J ‘2

t,>0 TEFE, Jp-2y2 +n dt,

is convergent, provided that n - m +(p-qy2 > 1. In this

m-n+ (g-p/2 +1

case, changing t2 in tt}!, this equals t Thus

the full integral is

[ e-2Tt  n-mt (p-qv2 -1

t at,

which is convergent.
The assertion 3) is proven in the same way. Using

polar coordinates, we have to see when

[ ti«p-ZV? +n)(t1_t2}p-qV2 +n-m-1 tg/etg/ze'vtég_2V2tg-ayedtldt2 <.

Thils integral is equal to:

fb-ay/2 +(n-m-1) dgra-2ve
- ~-m-1) -7t 2
(£)P-e +in-m=1), ( dt,) dt .
‘Ft>o ‘Yt2>o (t+t2)n72 2
As before, this is convergent, if and only if n - m > q,
and is equal in this case to:
I ,én—m)/e +p/2 =1 ~TE .
t>0
4) Iet us remark that if n - m > q, the condition 3)
implies (p-g/2 + (n-m) > p+q@/2. On the set Sl(x) > S2(x), the
only singularity of Sl(x) is for Sl(x) = Se(x) =0, i.e. at
x = 0. The factor ép-qu n-m-1l 5 then positive and cancels
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the singularity on S(x) = 0 of the characteristic function
x #0
of the set S(x) > 0. The homogeneity degree being positive

the function is continuous at O.

We now give a group theoretical approach to the

construction of the Rallis-Schiffmann functions

£ (x) =4 (x)e”rs(x) based on the script of R. Howe [12].
P.,P P.,P
1’72 1’72
We write, according to the orthogonal decomposition
2 2 2
E =E ®E, L(E) = L7(E;) ® L°(E,).

Then R, , as a representation of SL(2,R) x 0(p) x 0(q), is

isomorphic to n?m T(p/2)+n ® T(q/2)+m ®@d, ®d . Let

d =~ (p/2) + n ~ ((q/2) + m). We will see here that, when
d > 1, the representation qu/z)m X T(q/2)+m contains Td'

Let v, be the lowest weight vector of T,, P e X (n), P, ex((m).

d’
The Rallis-Schiffmann function fP corresponds to the
1’72 —-
(unique) vector v ®P; @ P, of T, ®d, ®d < Ry. Hence we

need only to describe explicitly the formula for vy ® Pl ® P2

in the given model Rj.

2.5.25. Remark: The decomposition of Tu ® Ty has been
studied by Gutkin [ 9] and Repka [25]. In particular
Ta ® Ty (e > 8) contains discretely the sum

(-2 T .
J integer a-8-2J

a-8-2J>1
It is then not difficult to prove (see ([11])) the following:

AP
2.5.26. Theorem: The discrete spectrum of the representation RS
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is given as follows:
A) let p> 1, q> 1, then

Ry, = @ T @V, 6 @ (T, ® V)
S’d T 5 e T e Tgsy VB T8
where &,8 runs over the integers, if 253 is an integer
or a,8 runs over the % integers, 1if =9 is a half integer.
The representation Va (resp. VB) is a irreducible representa-

tion of O(p,q). Its restriction to 0(p) x O(g) is

Vo

[

2y 4, ® 4, with n-m+£2-9-=a+2j, 3>0

(resp. Vg

®d, ®d with m-n+ 32 -8 + 25 5> o0).

B) let p>1, q =1. Then (Rs)d=£lTa"Va‘

(with v, = @ a ®da;n-n+B2-0a+25 j>0).
m=0, 1

W
) If p=gq=1, then (Rj)y =

In particular, it is possible to describe all the K-finite
vectors of the representation Td @ Vd by differentiating

our particular vector £ P with respect to the

P
. 1°°2
infinitesimal action of SL(2,R) x 0(p,q).
We proceed now to the explicit description of the vector

v, ®P, ®P, in L°(E).
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Iet us consider the action of O(Sl) X O(Sz) = 0(p) x 0(q)
on LZ(E). Let L2(dn ® cim) be the isotypic component of L2(E)
of type dn Q@ dm. The operator ‘Fn ®‘Fm intertwines the
representation ‘ﬁs of SL(2,R) x 0(p) x 0(q) restricted to
L2(c1n ®d_) with the representation (%/2%n® T(q/am) ®d, ®d,.
The representation %/2)+n ®T@/2)+m operates on the space of
functions F(z

antiholomorphic in z.,, holomorphic in =z

l’z2) 1 2’

by:

((%’/2)”‘ ® Tg/2)+m) (€71)F) (2152)

G T P

Now, a function F(El,z2) entiholomorphic in z; and
holomorphic in Z, is entirely determined by its restriction
to the diagonal (Z,z). Thus, if we consider the representation

Ly o " 1t . + .
T(p/2)+n,(q/2)+m of SL(2,R) acting on "all" functions on P by:

(T@/2)+n :@/Q}Fm (g—l) -£)(u)
= (cﬁ+d)’((P/2)+n)(cu+d)-((q/2)+m)f(g.u) R

the operator o - ((J:n @Fm)-co)(f,z) intertwines the representa-
e~ 2

tion RSIL (dn ® dm) with_ ?p/2)+n,(q/2)+m ®d, ®d . We still

denote this operator as Fn ®Fm- et d = ((p/2)+n) - ((q/2)+m).

The operator (Mf)(u) = (Im u)'«q/2)+m) f{u) intertwines the

representation T, . acting on "all" functions on P with the
k]
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representation T(p/2)+n,(q/2)+m' The representation Td
{(acting on E(P+)) is naturally contained in Td o» thus in

»
T(p/2)+n,(q/2)+m' It follows from 2.3.5 that the function on
pt given by:

W;(u) = (Im u)-((q/2)+m))(ﬁ;1)-d

verifies:

d gt

2.5.27. T(p/2)+n,(q/2)+m(g).$; = (cr+d)” g’

Our aim is to give an explicit formula of the function

. 2 = o
¥ in L(dn ® dm) such that (f; &J;J-ﬂT = 4!.
According to the decomposition E = E,® E2, we write an
element of E as u+ v with u e El and V € E2.

Let Pl(u) be a harmonic polynomial of degree n with

respect to S and P2(v) a harmonic polynomial of degree m

1
with respect to 5,. Let d = ((p/2)+n) - ({(q/2)+m)). We
consider the Rallis~Schiffmann functlion of =T ¢ P+:
-2
-(Bx%4n)
1 (wv) = Pylu) (s () 2 By(v)s (usy)d-BTrS ()

if s(utv) = sl(u) - Sz(v) >0

]

0 if Sl(u) - Sz(v) < 0.

We now prove the:

2.5.28. Theorem: If d>1, y_ belongs to L2(dn(3 a)
s (F05) 4, =vi07 08,
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Proof: The equality to be verified is:

~iTrzZ _ p_2
IS (u)>s,( )e T eiwzsz(V) P (W) P, (v)(s;(u)) Gzoem)
FRie- A
ir7 (S, (u)-S,(v))
(Sl(u)-Sz(v))d-l elW q\u oV Ql(u)QQ(v) dudv

- y-((a/2)+n) = y-a
=Yy (Z—T) <P1’Ql> <P2:Q2> .

We write z =z - 2iy, ty = Sl(u), t, = SQ(V). Using polar

coordinates separately on El and E2 and the relations

Is P,(g) (0] do = <P;,Q;>
i

(si unit sphere of E; (1 = 1,2)), the integral to be calculated

is:
- -2
ir(z-1) (t,-t,) -2myt +m

) e 1727 ¢ 2 (tl-t2)(d'l)t2 at,dt, -

t.>t

1772

t,>0
This separates in an integral on (tl-t2) >0 end on t,> 0.

By homogeneity the result is clearly proportional to w;(z).

The first assertion follows from 2.5.28 2).

It then follows from 2.5.25, 2.5.26 and from the fact that
the operator F_ ®F, 1is injective on I°(d, ®d,) that we

have the fundamental formula:
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. -d

2.5.29. Rolg)-v = Jlesm)™" ¥, s

where J((2 B),7) = (cr+a).

Remark: As WP P is a harmonic function with respect to AS’
1’72

our function ¢ einTs

= vT,Pl,PQ = mPl’PQ is similar to the

function fp . (2.5.17) (when S >> 0). The striking fact about
E
the Rallis-Schiffmann function 4, is that WT is supported

on the set S > 0 and is not a C™-function on E.

——

2.5.30. 1Iet us consider RS as a representation of (3 x O(S).

The choice of the decomposition E = El @ E2 of E as a

orthogonal direct sum of subspaces where Sl,82 are definite,

is equivalent to the choice of a maximal compact subgroup of
0o(s) = o(p,q), namely O(Sl) X O(SQ) = 0(p) x 0(q). Clearly
under the representation (ﬁs(g)m)(x) = o(g"1x) of the group

2
0(8) in 1°(E), our given function ¥ p  transforms under

PPy
0 0

(p) x 0(q) as does P, @P,, i.e. MBPI,PQ is of type d, ®d,
under O(p) x 0o(q).

Iet us summarize the results of the preceding discussion:

a) The function ¢ associated to the harmonic
TJ Pl’ P2

polynomials Pl and P2 of degree n and m respectively
is in L2(E) if 4 = ((p/2)+n) ~ ({q/2)+m) > 1. It is in
tME) N 1°(E), if n-m>q and p+q > 2.

b) Iet d > 1, then depends holomorphically

WT’Pl’PQ

of T and satisfies:

A

RS(g).wP P

_ -d
1? 2’1 - J(g’T) wPlJPQJg'T
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where J(g,T) =ct + 4, if g = (i g) e SL(2,R). (If 4 is

not an integer, kﬁé is a representation of (TV= {(g,®)) and

3((gs0)57)"% = 790(T))

C) dJP]_JP T
action of O(Sl) X O(Sz).

is a vector of type dn (o] dm under the

(As remarked before, these properties in fact characterize

wT,Pl,P2 uniquely.)
2.5.31. We will be mainly interested in the case where S 1is
of signature (2,q) on E. Iet D = (z ¢ E® such that

S(z,z) = 0, 8(z,Z) > 0}. (D 1is a line bundle over the hermitian

symmetric space associated to the group 0(2,q) via the map
z > ¢z.) Then the 2-dimensional plane (Cz & Cz) N E is a
positive definite plane El' There exists a basis el, €ss fl,

f .oy fq on E such that 2z = ey + ie2,

23
_ .2 2 2 _
s(= xie1+ZnyJ) = X7+ x5 - ng vy On E; =Re; ®Re,, 2
harmonic polynomial Pl of degree n is given by
n n n
P, = (xl + ix2) or (xl - 1x2) . Now for P, = (xl - 1x2) R

-n _ 2 2y-n n _ ~-n -n
S1'P; = (xl + x2) (xl - 1x2) = (xl + ix2) S(x,z)""™. Hence

the vector £

— n —
Py» P, associated with P, = (xl - ix2) s Py =1
is given by S{x,z)™" S(x)n'h/e) and depends holomorphically of

the varigble 2z 1in D. Hence we obtain:
2.5.32. Theorem: Let E be a space with a quadratic form S

of signature (2,q) (with q > 1). Iet z e EC with S(z,z) = O

and S(z,z) > 0. Then
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a) The function

S(x,z)™" S(x)n'(q/Q) eiw*S(x), on S(x) >0

=
—~
b
~—
]

0 on 8(x)<o

is in I°(E) if n > q/2.
b) For n > q, w? . 1s continuous and in Ll(E) n LE(E).
rl

c) w’;‘ , satisfies the fundamental relation:
3

n _ -4
Rs(gl’gQ)'wT,z = (epm) wgl-T,gQ-Z

where g; € g, g, € 0(s), d=n+1-(@/?.

(Remark: In appropriate coordinates for the projective space
assocliated to D by z - €z, an automorphy factor j(g2,¢z)
will also appear in the variable g2.)

For some appropriate linear functional & on L2(E)
semi-invariant under the action of discrete subgroups Tl X Té
of (x 0o(s), the coefficient 8(7,z) = <e,wf,z> will be an
automorphic form with respect to T and 2z. Some explicit
examples will be given in Section 2.7, 2.8, 2.9 and will lead

to kernels of important correspondences.

2.5.33. ILet us comment now on the case p =g = 1. Let

2 2
E=E ®E, with S(x) = x] = X5 L
is the direct sum of T1/2 and T3/2, corresponding to the

N~
The representation RS

decomposition of ﬂ%E) , in even and odd functions. The
vector wl(xl) = x,e 1 js the lowest weilght vector of the
representation T3/2. Similarly RS2 = T1/2 (4] T3/2, and the
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-mcg
2

vector w2(x2) = e is the highest weight vector of the
representation T1/2' The decomposition of R, = §— ® E;

] ]
1 2
in irreducible representationsof SL(2,R) is given by a direct

integral, without any discrete spectrum, as it can be easily

seen from the isomorphism RS = U. However the representation

Tl occurs in this direct integral decomposition, even if not
discretely. Our vector V(x) = *P P (x) corresponding to
1’72

P, = x

1 1° P, =1 1s given by

2
i '"(xi'xg) . 2 2
mPl,PQ(x) = (sign xl) e if (xl - x2) >0
. 2 2
=0 if (xl - x2) <o,

Although v(x) is not in LQ(E), we can consider it as a
tempered distribution on E. Under the action of the representa-
tion RS on tempered distributions, v spans a representation
equivalent to ﬁ}

Iet us look at the action of the group O(S) = O(l,l) on
v(x). As Xy doesn't change sign on the connected component
of the hyperboloid xi - xg =k for k> 0, v(x) is invariant
under S0(1,1). Thus v(x) transforms under the character a;
of 0(1,1) such that

0
1 1 ) = sign &, , (& ==+1)
¢ €2
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Thus in the '"philosophical" correspondence between representa-
tions of SL(2,R) and of 0(1,1) via Rg, Tl is associated

to this character 4, of 0(1,1).
The vector

(wl ® w2)(xl,x2) = x;e

1
2 2
--1r(xl + x2)

is of the same weight than v under the action of

cos 8 sin 8

K=( e) < sL(2,R) .

-sin 8 cos

But v 'belongs" to the isotypic component associated to the
trivial representation of 80(1,1). Hence it is natural to
expect the formulas
v = (Rg(g)-w) ag,
so(1,1) ©

if this has a meaning.

2.5.34%. Lemma: Let (x? - xg) # 0, then

v(xysx,) = [ (Rg(g) -w)(xy,x,) dg.
30(1,1) 5 o
iv(xl+x2)
Proof: We have to integrate the function x e over

the connected component of the hyperbole x? - xg = k with

respect to the invariant measure under 80{(1,1). If k < O,

as (xl,x2) and (—xl,xz) belongs then to the same connected
component of the hyperbole x? - xg = k, the integral 1s zero,
g = k2; we parametrize the
2 2
2

by antisymmetry. Now let xi - X
i - x5 = k%, with x, >0, by

branch of the hyperbole X

Xq + X, = ku, X - X, = ka'l; kK> 0, ¢ > 0. The integral to be



240

calculated is:

_p K2 (e2ra72)
l) da

e —_ .

% f k(e + o~ =

l) as new variable. Then

-1y d&
=

We choose u = (a - a”

-2

du = (1 +a°°) do = (& + a Thus this is

kK 2
-7 (u+2)
e 2

% I Kk du,
_7K2 —W(xi—xg)
and is clearly proportional to e = e . >
) 1 iWTx? > -1 —Xz
Let us consider wT(xl) = x,e R wT(xz) =e
and
(x0%,) = (In 1) wl(x)) w2 (xy)
WelXys%o ¥ 2
. 2 o= 2
imrxS -imTx
= (Im 1)1/2 x;e 1 e 2,
Then it follows from 2.5.18 and 2.3.4 that
-1
2.5.35. Rs(n)-wT = (ct+d) W
(However w, is not holomorphic in T.)
Now let us consider
iWT(xi-xg) 5 5
vT(xl,xz) = (sign xl) e » if X7 - x5 >0
= 2 2
=0 on Xy - %5 < 0.

The calculation of the Lemma 2.5.34, proves that v, 1is the
"projection" of w. on the trivial representation of so0(1,1),

i.e. we have the formula:
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2.5.36. VT(xl’XQ) =] (Rs(g)°w1)(xlxx2) dag -

ges0(1,1)

We will use this integral representation of v, 1in order to
explain the behavior of the modular forms considered by Hecke,

in the framework of the Weil representation.

2.5.37. We now summarize some of the results on the decomposition
of RS in irreducible components, in the case where V is an
arbitrary symplectic space of dimension 2n, and S 1is a
positive definite quadratic form on E.

Iet W Dbe a real vector space of dimension k and w*
its dual vector space. We take as model of symplectic space
V=W®W, with B(xl + £, X, + f2) = fE(Xl) - fl(x2)' The
space £ =W and &' = w*  are complementary Lagrangian
subspaces in (V,B).

Iet E be a Kk-dimensional vector space, with a positive
definite symmetric form S. We consider the decomposition
WOE+ W @E of V®E in complementary Lagrangian subspaces.

The Weil representation R associated to the Lagrangian

S
subspace £ @ E 1is then realized in L2(w* ®E). We identify
W* ® E with HOWR(W,E). The action of the group 0(S) on
I?(Hom(w,E)) is then simply given by (m.®)(x) = w(c'lx), for
x € Hom(W,E).

Let D be the Siegel upper half plane associated to (V,B),
i.e. D = {Z: (w*)C > (wc) such that ty - Z, Im Z >> 0O}. Let

D' Dbe the Siegel upper half plane associated to ((V ® E), B® S),
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t

Dt = (z¢ (W* @E)® » (w ®E)®, such that ®2' =z'; mm 2' > 0)

where E is identified with E*, via S.

As S 1s positive definite, the mep 2 > Z @ idE is an injection
of D in D' (with respect to an orthogonal set of coordinates

of E, Z @ id is represented by the matrix

E
Z 0
Z
0 Z
) Siyy _
Iet us define for Z e D the function vZ(X) = Vzand(x)‘ For
X € Hom(W,E) and Z e D, the matrix zt¥sx e Homc(wc,wc). It

is immediate to check:

2.5.38. Proposition:

8) vS(x) - JimTr(ztxsx)

S _ k. S
b) For g e 5p(V,B), Rg(g)-v, = m(g,2) v, -

c) vg is invariant under the action of 0(S).

The function vg is thus the analogue of the "lowest weight
4

ei1rzS( )

vector" in the case of SL(2,R).

Iet k be even, then the representation Rs(g) is
equivalent to a true representation Ré(g) = s(g)k/2 Rs(g)
of 8Sp(n,R). Hence we have:
vS

R (g) -5 = (det(cz+D))~5/2 5.2

tor g = (B2 ¢ sp(nm).
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2.5.39. We now generalize the functions fp z(!) = P(!)eiwzs(g),
El

P harmonic polynomial on E, discussed in the case of SL(E,IU.
Iet us consider the space € of all complex valued

polynomials on Hom(W,E). This is isomorphic to the space of

all complex polynomials on Hom(WC,EG). We denote by 0(S,¢)

the subgroup of complex transformation of EC

the form SG on EG.

leaving stable
The group GL(n;E¢) x 0(S,C) acts on @
via ((A,a)-P)(X) = P(~"1xa), for A e GL(n,e¢) and ~ ¢ O(S,€).
%)

For X ¢ Homc(wc,E » let us consider the symmetric matrix

tXSX. The coefficients ( XSX) 1,3 generate the algebra of all

0(S,€) invariant polynomial functions on Hom(W,E). Thus
we can describe the algebra (D S of all O(S,C)-invariant

constant coefficients differential operators on Hom(W,E) as

C €

follows: we fix a basis of W and an orthogonal basis of E".

Writing X in Hom(WC,Ec) as:

X <y X

11° nl
X = »
*1k? 7 Fnk
the algebra (1)8 is generated by the operators:
n
A = X 0 B

LI g sy g

Similarly to 2.5.11, we define the space of 0(S,€) harmonic

polynomials by:

%:{Pe ¢ such that AiJP=O, for all 4,j}.

Let us consider the action of the group O(k) = 0(S) on X .
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We write ;’4{: ® # (\) for the decomposition of M6 in

isotypic components under O(k). We then have:

2.5.40. Theorem:

a) Let = = () ¢ O(k)A such that A6(\) # {(0}}. The
restriction of the representation \ﬁg of 8p(B) x 0{k) on the
isotypic component of type A under O0(k) is an irreducible
representation W, ®\ of sp(B) x o(k).

b) We have ‘ﬁs = xf; W, ® . The correspondence X > W,
is injective on X.

Remark: The representations wx are representations of EE(B)
with lowest weight vectors. Our conjecture in [ 15 ] 1is that
{Wx} exhausts the list of unitary representations of the metaplectic
group with lowest weight vectors. When k > 2n, the representations
WX are the members of the anti-holomorphic discrete series of
Sp(B). When Xk is small, these representations can be realized
into a subspace of anti-holomorphic functions on the Siegel
upper half plane solutions of a system of differential equations.
Let us now describe the lowest weight vectors of the

representation R, of Sp(B). ILet us consider the space H¢

S
of 0(k) harmonic polynomials on Hom(W,E). &6 1is stable

under GL(n,€) x O(k,E). We have the following:

2.5.41. Theorem:
a) The isotypic component 4 (\) of A6 of type ) under

0(s,€) 1is irreducible under GL{n,C) x 0(S,t).
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b) The isotypic component A6(71) of A6 of type 7 under
GL{n,C) 1is irreducible under GL{(n,€) x 0(S,¢).

In other words, if X = {\, irreducible representationsof
0(s,€), such that &6 (1) # 0}, then, for X\ e %, there exists
a unique irreducible representation 7T = 7(\) of GL(n;€) such
that 3£ (T ® \) # {0}. Furthermore, the map X - 7(\) is
injective on . (It 1s possible to describe explicitly the set
5% and the correspondence X - 7(1), see [15].)

Let now P e (T @®L). We consider the vector

iﬂTr(ZtXSX)

,(X) = P(X) e of L?(Hom(W,E)) .

We have then the following:

2.5.42. Theorem: Iet P ¢ 4 (* ® 1), then for

g = (é+§ e sp(n,R)

k
R.(g) -fp , = m(g,2)" £ -
S P,Z 7(*(cz+D)™ 1) .2, 8.2
Proof: This relation can be checked on the set of generators

(é ?), (_g é) of Sp(n;R), or by infinitesimal methods as in
the case of SL(2,R).

2.5.43. We finally give a special example of P e A (7 ® \).
let dim E = dim W = n. Then Hom(W,E) is a space of n x n
matrices and the function X > det X 1s well defineq,up to a
scalar depending of the choice of basis of W and E. Let us

consider an orthogonal basis of E with respect to S. Then it
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is easy to verify in these coordinates that det X is an 0(S)
harmonic polynomial. Clearly P is of type \(o) = det o,
7{(A) = det A with respect to 0(S) x GL(n,C).

2.5.44. Corollary: Let,for v = 0,1 and k =n

£ (X) = (det x) etTTr(2%XsX)

) - k -1
then Rg(e)-f, , = m(e,2)" (det(cz+p))™" £ ., -
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2.6. 6-series associated to quadratic forms.

Let (E,S) be a k-dimensional vector space with a non-
degenerate symmetric form of signature (p,q). We first consider
the two-dimensional canonical symplectic space V =RP @ RQ
and the associated symplectic space (E ® V,S ® B). The groug
0(8) x SL(2,R) is naturally imbedded in Sp(S @ B). The
space £ = E® P 1is a lLagrangian subspace of E ® V.

Let L be a lattice in E. Let L* = {e ¢ E, s(2,L) € Z )
the dual lattice of L with respect to the form S. The lattice
r=L"@P+L@Q is a self-dual lattice in EQV=E@®Pe& E® Q.
We consider the character x of exp(r ® RE) = R given by

y8(£,£%) 21wt

x(exp(L* @ P+ £ ® Q + tE)) = (~1 We assume L c L*

(i.e. S(L,L) € Z). We denote by n, the 1level of L, i.e.

L
np 1s the smallest integer such that nLﬂ* e L for every
2 e LY.

ILet us consider the action of SL(2,Z) on E @ V. We have

(2 D).(4*@P+280) = (al*DL) @ P+ (chhal) ®Q.

Hence the lattice L* @ P LeQ=r 1is stable under

[¢]
n

Tonp) = (2 2), ¢ = 0moa np).

The pair (r,y) is stable under

2.6.1. Tyln.,x) = ((3 %), ¢ =0 mod n , acs(4*,4%) = 0 Mod 2
bdS(£,£) = O Mod 2 1},

*

In particular if L =L" and L is even (S(f,£) e 2Z, £ € L)
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then T (n;,x) 1is the full modular group SL(2,Z). In
general TO(nL,x) contains the congruence subgroup Tb(znlfz).
ILet us consider the representation W = W(r,x) of the
Heisenberg group N in H(r,y). It is clear that the operator
(Ar(y)¢)(n) = w(y'l-n) is an unitary operator on H(r,x)
satisfying Ar(Y)W(n)Ar(Y)-l = W{y.n). Hence Ar(Y) is
proportional to the operator Rz(v) of the canonical projective
Well representation. There exists a scalar a(y) such that

the following diagram is commutative:

2.6.2.

X X
Br,

L) y)

H(r,x) —L> H(r,x)

As in 2.2.30,we have a(y) = b(v£,£4;(r,yx)) = b(ﬂ:Y-lﬁs(r:X))~
let (el, ess ek) be 8 Z -basis of L, then
* =z e] ® --+ ® Zey where e] 1is the dual basis. Let

S = (S(ei,eJ)) the matrix of § with respect to the basis ey

The number D = {det S) is independent of the choice of the

Z -basis (eiL and is called the discriminant of L. We have

e; = 2 S(egsey)ed, Lee. * = 571%2%, if we have identified L

to ZX inside RX=E (s 1s the matrix 5 = (S(ey,e ).
Consequently, the number np is the smallest integer such that
1

n.S”

r have integral coefficients. In particular np is a
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l) implies

divisor of {(det S); the equation n =S=(an'

L

that ni = (det S)(det(nLS-l)). Hence n, contains all the

L
prime factors occurring in det S.

The elements P, = e; ®P Q;=e;®Q forma symplectic
basis of E ® V such that

k k
r= 2 ZZPi 6’.2

ZQ.,.
i=1 i=1 J

For vy = (i 3) in SL(2,R) the symplectic transformation

vie ® v) = e @ yv 1is expressed in the basis (Pi’QJ) by the

matrix:

Hence for v e ro(nL,v):

a(y) = b(L,y"18) = p(d,-cs™t)

- %F(sign(dcﬂsign s))

i -1
- sign{ds™ ")
5 = b(es™1,d)e .

= p(es~t,a)e

from 2.2.29.

We now have to calculate:

k iw<cs‘15,z>
2 Z e .

-1
b(es™1,d) = d
’ rez X jaz ¥

2.6.4. Proposition: Iet Q be a (k x k) symmetric matrix
with integral coefficients and even diagonal. Iet d be an integer

ime to det Q. ILet
prime et Q i Q(:SQ)
-k/2
b(Q,a) = @ / Kk > kK ©
reZ™ /dZZ
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Then, if 4& 1is an odd positive integer:

_ ¢det Q,,2\k ¢k
b(q,d) = (FF)(F) &Y -

Proof: We proceed as in 2.2.18.
a) Let d =p be a odd positive prime. The even symmetric form
(@ mod p) on the vector space Fg = (zZ /pZ )k is diagonalizable,

i.e. there exists a (k x k) matrix A with integral coefficients

t 2q; 0 )
such that AQ"A =( ) mod p Changing 2z in Ar, our sum
0 2qk
becomes
2 . 2
2q.,® 2img e
oi —sdd k e
-k -1/2
p~F/2( b e Py =g (Y s e P
PG(Z /pZ)k a=1 ecZ /pZ
k 9y Tq
= 7 o= - (&)
OL/il[(p)ép] ( 5 )ép

by 2.2.14. But (det Q)(det A)° = (an)Qk mod p. Hence
(22) - (428 Q) B)k
p b b
B) et 4 =p". Let ®y ez /p"Z". We consider the
elements of Zlk/przK of the form e, + pr'lﬂ where £ varies

over ZK@ZR. We have

ir Qe+ 4, e 0" L)

T
2 . e p
2eZk/pZ
A alegs4)
r .
- e o] kz N e21'IT P
beZ™ /pZZ
. k apa
im Q(;O:'go) 4]‘_7T Z go qG.
= b
= e p ) e a=1
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using the diagonal form of Q over (Z /pZ )k {(with g, Prime
to p). As the sum over all p-roots of unity is zero, we find

that our partial sum is zero except if gOOL = O mod p, i.e. if

go € pzk. Hence in our Gauss sum
T
& ok © P ’
£ <% /oY Z
we need only to consider the element £o € pzk. We obtain as

in 2.2.18
b(Q,p") = b(a,p™?) = (225 8) (€ ) (2)¥,
p b

by induction hypothesis.

y) Finally if d = d.,d,, with d; and d, relatively

172
prime, we write any element ¢ of z* /de as
k k k k
£ =d,€, + d;e, with &, e Z"/d|Z", v, ¢ Z /A,Z" 5 and we

obtain (following 2.2.18) our proposition.

2.6.5. Remark: Let Q be an even form such that det § is
odd. Then
a) dim E = k 1s even and (-1)k/2(det Q)

b) v(e,2) = (g5 -

n

1 Mod 4.

Proof: Iet us first consider the case where k = 2. Then

2

Q = (Ea 2%), with ¢ odd. Hence det Q@ = -c” Mod 4 = =1 Mod 4.

e
Now to prove b), we have to calculate
2 2
1 s ei’r(agfcglgz*b“e)
2 ® T /27
¥ EZ /27
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This depends only of (a,b,c) mod 2.
2 _
If am Omod 2, we can write e;e, + b2y = ge(gl+b12) .

Changing of coordinates, we have:

ire. 2
p(,2) =3 = e 17
£,=0,1
#,=0,1

As det Q = -c® (¢ o0dd) is congruent to 1 or -1 mod 8,

we have b(Q,2) =1 = (E“%‘Q)‘

e
If a# 0, b # 0, ¢ # 0 mod 2, we have to calculate
2 2
1 5 im(rite eotes)
7 € =<
£,=0,1
g2=0,l
But det @ = 4ab - c® 1s congruent to 3 or -3 mod 8, and we
_ _ 2
have again b(Q,2) = -1 = (m)
Now let k > 2. As det Q@ 1s odd, we can find a coefficient

44y = Q(ei’ej) of Q which is odd. We can suppose (ei,ej)

are the first elements of the basis (el,ee). The restriction
of Q to the space Ze; + Ze, has matrix (ECa. Now

c
Eb) ‘
for i > 2, we can find Xys¥y € Z such that

0 mod 8

Qley - x4eq - yyepse;)
Q,(ei - xye; - yiel,ee) =0 mod 8,

as det (2:‘ Ecb) is invertible mod 8. Thus there exists a

unipotent matrix U such that
0]
t !
QU =( Q, ) mod 8

0] '°Q£
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where Qa. are 2 x 2 matrix. Now det(UQtU) = det Q =
(det Ql)-(det Q2) «v. +(det Qy) mod 8. This implies a) and
b) as

b(Q,2) = T b(Qi,2) = Tr(ae.g Ql) = (dei Q) ’

If Q@ 1is an even symmetric form, such that det Q@ is odd,
we can compute b(Q,d) for d prime to (det Q), using the
recurrence formulas:

If 4= d.27 with d

1 odd:

1
r r r

b(Q,a,27) = b(Q2",d;) b(Qd;,27)

v(Q,2%) = b(q,2"?)

b(Q,2) = (ﬁ)-

2.6.7. let v = (: g) belonging to I‘O(nL,X). Then es~1

is an even symmetric form. Now from the equation det(cS_l)(det S)=ck,
det(cS'l) is a divisor of cX. As ad - be = 1, d and det(cS'l)

are relatively prime. Hence we obtain:

S b _(a b
2.6.8. Proposition: Let vy = (c d) belonging to I‘O(nL,X)
then the diagram 2.6.2 is commutative, with

- j—‘n[ (sign cd)sign S
e

aly) = b(cS'l,d) .

For d odd positive:

b(es™h,a) = (G IR e .
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(for d even, we can use the Remark 2.6.6 to give an explicit
expression of b(cs'l,d)).

We now can give uniform formulas for the representation Eé
on the congruence subgroup T0(2nL,2).

Let us consider the universal covering group Cj-/of SL(2;R)

-

and the true representation Ry of ijjin H(£) defined in 2.5.

2.6.9. Theorem. Iet v € T0(2nL,2), then
Ry(Y) = 2 () AL(y)

~ -k (2c \k (D
with A(y) = £45 (F)© QF)-
ir
~ —E-m
Proof: We recall (2.5.2) that RS(Y) =e RS(Y) where for
Y = (2 3), m = -(p-q) sign ¢ if ¢ # 0. Thenfrom2.6.2,

we obtain

N - IT (sign c)(p-q)
R(Y) B

a(v) ™t aLly) e
- %F (sign c)(sign S)

a(y)™t A(Y) e

ir .
n{cd)(sign S)
T sign(cd)(sig o

1 --%; (sign c¢)(sign S)A
= e

cS'l,d)- e r

Hence if d is positive, we obtain:
_ ¢ -k (2¢\k D i
R(y) = & d (7;) (d) Ar(Y) by 2.6.%.
If d 1is negative, we proceed in a similar manner.

2.6.10. For applications in Section 2.8, we will analyze a

slightly more general situation.

let A be a lattice in (E,S) of level ny and determinant

(v).
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b
d)
abS(x) = cdS(y) = O mod 2, for every x,y € A. Let h e r¥,

let y = (z' be an element of SL(2,7Z ) such that

we denote by 8(p,h) the distribution on E given by

(8(Ash),f) = = f(h+x) .
X€EA

2.6.11. Proposition:
- -k/2
Ry (v)-8(n,n) = Y252 5 o(n,k) s(n,k)
kep*
with

-ir £ s(hry) 2T s(k,hiy) -i7 2 5(k)
c(h,k) = z e e e
yeA/cA
Proof: For a change, we will give a direct proof using the

explicit formule for Rs(y). By definition

(Rg(v™H) ) (exp v 0 Q) = (-1 A Do) (ex v ® Q)

Nl

ul (a(v ) (exp y ® @ exp x @ P) dx

u [ olexp vy @ YQ exp x ® yP) dx

where u 1s the positive constant such thatthis operator

is unitary. We write
eXp ¥y ® vQ eXpP x @ vyP = exp o« ® Q exp 8 @ P exp tE

and we obtain

(RS(Y—l)cp)(exp y®a) = w [ olexp o ®Q) e 21 aq ,
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as ¢ ¢ H(£). The explicit calculation of t 1in function of

y and ¢ leads to the formula

(Ry(y™1) -0) (exp v ® Q)

~im 2 5(q) 2imSleny) iy d 5(y)
=u' [ owlexp c Q) e e e ¢ da

Let Q;, Qys ++-, Q be a basis of E, and suppose that H(Z)
is identified with I°(E) with the measure dy, dy, -+ dyy
derived from this basis, then if det S is the determinant

of the matrix S(Qi,QJ), the normalization of u' in order that
RS(Y'l) is unitary is

u' = |det Sll/2 c-n/2.

Let A be our lattice, we choose da as such that the
volume of A 1s 1. Hence |det S| with respect to this
measure da 1s equal to the discriminant D of the lattice .

Thus we obtain the formula for RS(Y-l)

2.6.12  (Rg(v"Mo)(exp ¥ ® Q)

_ a inS(a:X} d
1/2 ~k/2 im Es(a)e c e'iwﬁsﬁﬂo

= |p| [ elexp o @ Qe

which is a special case of 1.6.21 3).

We have to compute:
-1738 (n+e) -1785 () ETs(q, e+h)
F,= Ze I olexp ¢ ® Qe e da -
geA
let us write e € A as e =y + cl, where y describes a

system of representatives of jA/cp and £ describes A. Then
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as cdS(£) = O mod 2, £ € A, we have

F,L = 3 e [ wlexp a®Q)e
h yeh/ch ZeAf

Now the dual lattice of A with respect to S is 2*. Then

vol A* = (card A*/A)-l - pt. By Poisson formula we obtain

-1 -iw%S(h+y)
F, =D e z plexpk® Q)e
yer/eh ke

-im2s (k) Es(k,hey)
e

and

(RS(Y)'G(A:h):w)

.. a 2im .. d
-ir=s(k) =—s(k,h+y) -im=s (h+y)
= c-k/2D_l/2 2 olexp k @ Q)e € e © e °© .
kepr™
yer/cA

Now let us remark that the function
-iw%S(h+y) E%ES(k,h+y) -iW%S(k)

c(h,k) = = e e e
yer/ch

is invariant by the translation k >k + £ , with £e A as we
have the equality

-iv%s(h+y) gézs(k+2,h+y) -iv%s(k+2)
e e e

- 173 (h+ (y-a8)) ZT5(k,h+ (y-al)) -172s(k)
= e e e

(ad - be =1 and abs(£,£) = O Mod 2). Thus we obtain our

proposition.

2.6.13. Ilet us consider S of signature (p,q). We choose a
decomposition of E of the form E = El (5} E2 such that

(El,E2) are orthogonal, the restriction S; of S to E,

3]

_1r S (ney) ~1m38 () 55 (0 149) o1 (s, 2)

da
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is positive definite and the restriction of S to E2 is
negative definite. Let Pl be a homogeneous polynomial of
degree n on El harmonic with respect to Sl and P2 a

homogeneous polynomial of degree m on E2 harmonic with respect

to S2. We consider the function:
(22 + n) P9 4 1)
R~ - ==
wPl,P2 =8, PP, S for S(x) > 0

and

f131,132(x) =y (x)

Pl’P2

Let us suppose that n - m>q, p > 1, q > 1, then the function

f is continuous, in Ll(E) n L2(E) and is a lowest
Pl’P2
Y

welght vector of the representation RS.

Iet L Dbe a lattice in E of discriminant D and level n;.
We can form the coefficient (6,,R.(n)f ). We obtain

I’s Pl,P2
2.6.14 . Theorem: The function . . p (7)) = = o p (g)e ims(e)
- 1’72 el 1’72
S%P)>0

is a holomorphic function of 1 on P'  and satisfies

2%3 +n-m
) 8. p (T)

+b D, /2
aT - (_a_) ( C
1’72

k .=k
ePl,P2 crd =) €g (cr+d
(& 9

e q 1in ro(an,z), which k=p + q.
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Remark: As § p (¢) 1is supported on S(eg) > 0, we indeed

P
1’72
sum only over the part of the lattice L in the cone S(r) > O.

This is clearly a necessary condition for the sum to be convergent
Our condition n~m>gq, p > 1, g > 1, assuresthat the function

s . s 1
f is continuous and in L, hence the sum converges

Py By
absolutely and defines a holomorphic function of 7.

2.6.15. Iet us consider the case p=q =1. ILet L be a

. 2 2
lattice in (E,S), where S(xl,x2) =x] - x5. Let P; = x5,

P2 = 1. We consider, as in 2.5.33, the function

. 2 2
lTT(Xl—X2)
(sign xl) e , if x

VT(xl,xe) - X

N NN

IN Vv
o O

=N

0 , 1f x

- X

Let us consider the group G = S0(1,1). Let GO be the subgroup
of G leaving L stable and such that GO acts by the identity

on L*/L . For h ¢ L*, the set h + L is invariant under Gg-

We denote by h+L/G0 the set of orbits of Gy, on h + L. As

G, 1s contained in S0(1,1) the function (zl,g2) > sign r, is

constant on an orbit of G We thus can form

0

. 2 2

171(11-82)

BS(T,h) = z (sign gl) e .
geh+L/GO

2.6.16. Theorem: ILet L be a lattice in (E,S) such that

S(e) #0 1f ® € L, £ # 0. Let N be the smallest integer

such that NS-l is an even integral form. Then for

Yy=(* D7), asdm 1Md N, b=cs=OModN, 8(v-7,h) =

(cr+a) 8(r,h)
S
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Proof: Let us consider the distribution

(o ) = = olh+ )
L,h? ecL

It follows from our study that is a semi-invariant

®,n
distribution under the subgroup T(N) = (v = 1 Mod N}. The group
S0(1,1) acts naturally on E and clearly eL h is invariant

;]

under GO' Iet us consider the function

2 2
1/2 iWTxl -iWTxe

wT(xl,xz) = (Im 1) x,e e .
The function w_ is rapidly decreasing on E. We recall (2.5.35),
(2.5.36) that
v (x,,%x,) = (g-w_)(x4sx,) dg .
L \X10%p Iso(l,l) ) (XpsXp
The function g - (eL h,R(g)-wT) is invariant by left translation
'y

of GO. Furthermore the double integral

Gd\Sg(l,l)(le§+h(R(g).mT)(gl’gz)) de

is absolutely convergent. Interchanging the order of summation,
this is
> | (R(g) v )(2g,5e,)dg) = 85(r,h).
gelth/G, jSO(l,l) T2 S
But o verifies Rs(c)-wT = (c—r+d)-l wy. .o fOr o€ SL(2,R),

thus, for any g € S0(1,1), the function
(SL,h’R(g) '(D,r) = es(gi Tih)

verifies
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o;(gsv-7,h) = (cr+d) eg(g,7,h) .
From the integral expression

e(t,h) = [

8 (g:"':h) dé s
"Go\s0(1,1) ®

we obtain our theorem.

Remark: Let K = Q(/D) a real quadratic field. Let ~ ©be the
ring of integers of K. We may identify & (or an ideal of ~)
to a lattice L in R° via u~> (u,u'). Let S{x,y) = X2 - Dye,
then S(usu') = N(u). The dual lattice is ©_ and is of level D,

JD
for D= 1 Mod 4. The group GO is the group U

0 of units ¢
of & such that £ = 1 mod » /T . The corresponding @-series
b (sign u) qN(u) has been considered by Hecke. They
M 2 & modn
/D

also appear in character formulas for the highest weight representa-

Fa
tions of the Kac-Moody Lie algebra 3132, as discovered by D. Petersor
and V. Kac.

2.6.17. We similarly explicit now the transformation properties
of the #-series on the Siegel upper half plane assoclated to a
even number of variables.

We consider (V,B) a symplectic space of dimension 2n

with the fixed self dual lattice r =@ Z P, ® - ® Z P, ® ZQ, :3)
e B ZQps and the decomposition V = £ @ £4', with £ = © RP;,
i
| . 1 = = = '
y O_SJRQJ.. We write r =1 & r, with r; =71 n £, r, rn 4.

Let (E,S) be an orthogonal vector space, with a lattice L
such that S(L,L) ¢ Z. Let L* be its dual lattice. Let

(el, €ps "7y ek) be a Z -basis of L, then L*=Ze;_@ "'@Ze;
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is a Z-basis of L*. The lattice r =1, @L* +r, @L 1is

L
a self-dual lattice in (V@ E, B @ S). Let X, be the quasi-

character of r assoclated to the decomposition

L
* N
rL=rl®L @r2®L,1.e.

imB(x,,x,)8{(v¥,v)
vplexp(x; @ V¥ + x, @v) = 1 °

for x; € Ty, X, €T v* ¢ 2%, v e £, and let T(r ve

2 22 LY
the associated #8-group in Sp(B ® S). The basis (e; ® Pj,ezg QK)
is a symplectic basis of (V,B) which is a Z -basis of T,

over Z . With respect to this basis, the matrix representing

the image g @ Id of the transformation g = (é‘ g) of Sp(B)

is Sp(B @ S) is the matrix

C®S D@ id
In particular, we have the:

2.6.18. Ilemma:

a) Iet S be even and g be the smallest integer such

1

that @S~ is integral and with even diagonal coefficients.

n) _ AIB . . ‘(n)
Let Ty /(a) = {(m) 5 CeaM (Z)). Then if v e Ty (a),
v @ id € T(I‘L,\(L) .
b) Let S be arbitrary, let ng be the smallest integer

such that ncS™' has integral coefficients. Let
NE
ron)(2ns,2) = {(E‘|'ﬁ)" C e 2Mn(Z ), D € 2nSMn(ZZ )y .

then if v € r(()n)(Qns,Q), v @ id € I‘(rL,yL) .
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2.6.16. We now suppose k even. We will thus explicit the
multiplicat or of the s-function on the congruence subgroup
described in the lemma.

In the case where X is even and S is of signature (p,q)
we have seen that the projective representation RS is equivalent
to a true representation of Sp(n,R). In fact, if we define
R'(g) = S(g)—(p-q/Q) Rs(g), then R'(g) 1is a true representation
of G = Sp(n,R).

We consider er the intertwing operator between

L
H(L @ E) = I?(z' ® E) and H(rL,XL), in particular 6_ o is

T,

a function on V @ E such that
(Qr @) (0) = b ep(e)
L ger2@L
Iet us consider S even and let v € rén)(q). Then the image
v ® id of y Dbelongs to TO(rL,XL). Thus the operator
naturally, by conjugation.

ArL(Y x id) operates on H(r ,x)
2.6.19. Iet L be an even lattice in (E,S) with dim E = 2k.
Let (det S) be the determinant of S over a Z -basis of E

and q the smallest integer such that qS_l is even integral.

k2
The function on Z defined by xg4(n) =(iﬁ_n_di'°_§> for n

odd defines a Dirichlet character mod q.

We now prove the:

2.6.20. Theorem: Let L be an even lattice in the orthogonal

vector space (E,S) where dim E = k is even. Then
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Ré(v)erL = x(y) &, (v) o,

L TL
with (y) = Xs(det D), for v = (%+%) € Tén)(Q)-

Proof: We know that Rg(y)a, =Db(v @ 1d) A, (v)a with
T rp rp
b(y x id) given in (2.2.26). Thus we obtain

Ry, s (VP=92) 4 (, g 1a) A (V) 8y

D

wi) A, () 8,
As Ré(v) and ArL(y) are true representations of Tén)(q),
u(y) is a character of rén)(q). We thus have to verify

that u(vy) coincides with x(v) on a set of generators of

Tén)(q). Let
v=( e r{t)(q) c sL(2,2) (t.e. ccaqz).

We consider ?i the element of Sp(V) which operates by

a b .
(c d) on (]RPi ® ]RQi) and by id on Zi(RPJ @BQJ). It
then follows from the calculation of b{y x id) in one-dimension,

that u(¥y) = x(vy) -
Let us consider now the following elements of To(q):

g(a) = (%.‘TQ_.I) , vith A e SL(n,Z)
A
u(x) = (%.Pf) , with X = ®x ¢ My o (Z)
g' (T) = (q—l,IJ—%) , with T = b1 ¢ M, o (Z)

"
It follows from [8] , that the elements {[vi],g(A),u(x),g'(T)]
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generates T‘(()n)(q). To complete the proof of the Theorem, it

is then sufficient to verify that u(y) =1 for v = g(a),

u(X) or g'(T). For vy =g(A) or u(X) this is clear, as

b(y @ id) = s(y) = 1.

Now let g'(T) @ id = (—-lj‘—i-). Then
THS 1

q

1.1 —lg(sign T)(sign S)
e

b(g'(T) @ id) = b(1,qT @ 5~%) = b(qT @ s~1,1)

by (2.2.29)
s(g'(T) = i® sign @et T) if T is invertible.
Hence we have to verify that:

-7 (sign T)(p-q) B2
e -(e sign (det T)) =1.
If sign T = a-b, then sign (det T) = (-l)b and at+b = n

(if T is invertible). Then we have

e--i[Z-T(sign T) (p-q) e-%—r(n-?b) (p-a) '%Tn(g%g)e“b(pé_q)

end the equality is satisfied.

2.6.21. We now give some standard applications of the Theorem
2.6.20 together with the Theorem 2.5.41 to transformation
properties of @-functions.

Let S be a positive definite quadratic form on E. As
in 2.5.36, we write V=W® W* and realize the representation
Ry in L2(Hom(w,E)). let Ze;® - ®Ze, a Z-basis of L
in E. Then the lattice r, ® L in W' @ E is identified

with the lattice M, k(z) of n x k matrices with integral
E)
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coefficients.

We consider r r® L* + r, @ L. Let N(B @ S) be the

L=
Heisenberg group associated to (V @E, B @ S). We identify

elements of Hom (W @ E) =W* @ EC V@E to elements of N(B @ S)
® ®

by the exponential map. The operator @ < from L2(Hom(w,E))
L’ *L
to H(rL,yL) has the form:
(er ™ f)(n) = b3 f(nexpX) ;3 ne N(B@S).
XL XeMy 1 ()
Let S be even on the lattice L.
. t
We define es(z) = b el"rTr(Z XsX)
XeM, x(z)

2.6.22. Theorem:

a) Let k Dbe even and q the smallest integer such that

qS'l is integral and with even diagonal coefficients, then for

every g = (—+— € T(n (a)»

e5((az + B)(cz + D)71) = yg (det D)(det(cz + D))kK/2 85(2) .

b) Let n =k be even, Q an integer and y a Dirichlet
character mod Q.
We define, for =0 or 1,

t

irTr (2 “XSX)

oy’ ¥X(z) = = y(det X)(det X)V e

XeMn n

Then, for every g = (—+—) € T(n)(qQ )
e\S”X((AZ+B)(CZ+D)'l) = y(det D)(det(cz+D))k/2+" e}s”x(z) .

Proof':
. vS S
a) As usual, we write eS(Z) = (n .v2)(0), where v
Loy 2 Z



267

is given in 2.5.32. Then a) follows immediately from 2.6.20
and 2.5.38.

b) The function M > y(det M) is constant on the cosets
M+ QX of M, (z)/aM (Z).

Let us thus introduce the lattice QL. As (QL*) =% *
its level is qu. Applying the Theorem 2.6.18 to the lattice

QL, we have that for v e Tén)(ng):
R (v)e = yo(det D) A (v)-s
S oL Xs roL oL
But, now for f 7 given in 2.5.42:
Vs

0y X(2) = v(det M)(erQL-fWZ)(exp M) .

2
mew, (z2)/av, . (Z)
Thus for g € T(n)(QQz)f

0
o’ X(g-2) = p> (det M)(s. -f ) (exp M)
S y MeMn,n(ZZ )/QMn’n(Z) X QL vsg-2
= (det(CZ“D))k/zwtvxelvln,n(Z)EQMn,n(z)x(de'c M)(erQL'RS(g)'fw,z)(exp M)

by 2.5.42

k/2+\

xg (det D)(det(cz+D)) x(detM) (ArQL(g)- e.rQLﬁ,'z(emM

Z
MeM, o (Z) /am | (Z)
by 2.6.20

X _ (AlB 2\ er .
Now, if M € Mn’n(ZZ) and g = (E+ﬁ) € TO(qQ ) it is easy to see
that g 1M = MA + u, with u e rqL = Tp ® I*/@ + ¥, @QL, and

(B ®S)(MA,u) € 2Z . Thus, for o e H(rgpavgp)s olg~IM) = o(Ma). Thus
b) follows by changing in the last equality M in MA and

remarking that, as (det A)(det D) = 1 Mod Q, y(det &)1 = ,(det D).
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2.7. The Shimura correspondence.

2.7.1. Let us consider the vector space E of real 2 x 2 symmetric

matrices x with the quadratic form S = -2 det x.
If
e Y1 93
X = (x3 x2) and y = (y3 yz) s

the associated bilinear form S(x,y) is given by
S(x,y) = 2x3y3 - Xi¥, = X5y IF

u

2 2 2
s(x) = 2(ul +uy - vl).

)s
vimh
In particular S is of signature (2,1).

The group SL(2,R) acts on E by g-.-x = gxtg. This
action leaves S(x) stable. Hence we obtain a map from SL(2,R)
to 0(2,1). It is easy to see that this map is surjective on
the connected component of 0(2,1) and that its kernel consists

+1 0]
of (O il).
Let us consider the symplectic vector space (RPORQ) @ E

The group SL(2,R)/(+1} is denoted by 'PSLEGR).

-
and the imbedding of ()7 x 0(2,1) into Sp(B @ S) defined in
~/
2.5. The corresponding representation Rs gives us a representa-
tion of G, X 0{2,1), where G,
. 2 2
SL(2,R). The formula for the action of (O~ on I°(E) = L°(E @ RQ)

is the two fold covering of

are given in 2.5.8. The action of 0(2,1) on L?(E) is simply

given by (g-f)(x) = £(g"1x%1).
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As in 2.5.24%, we consider D = (v € EG; s(v,v) = 0, s{v,v) > 0}.

A basepoint Vo of D is

let us consideg for z € P+/ the unique element

1/2 -1/2
72 gyl

o y-l/z)

b(z) = (

of B, such that b{z)-i = z. We consider the

0
action of SL(2,R) on E° given by g.x = gx’z. For this

action, we have the:

2.7.2. lemma:

_ 2is _ ¢(cos © -sin ®
a) u(se) Vg = e vy, for u(se) (sin 8 os e).
b) J-vo=0
-1 z2 z +
e) b(z)-vo =y ), for z e P .
z 1

Proof: a) follows from direct computation of

os ® -sin 8,,-1 i _,cos © sin 0
. ol

c
8). =
u(e) Yo (51n 8 cos l)(-sin 8 cos 9)'

_d
b) For X eg, X-vy = 3¢ (exp £ Xovp) |0
t
= d—‘; (exp eX vy + v “(exp £X)) |, g
_ t
= Xvo + V4 X.
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- 1,i 1 - t, -
Thus, as J° = 5( Yy I vy + VO(J ) =

1 -1 0

i 1,,-1 i -1 i i 1
HG DG DA DG ) =o
¢) follows from the computation

1/2 -
v / xy 1/2 1/2

B -1 iy C
b(z) vy = ( y-l/E)( i 1)(xy_1/2 y-l/z)'

As in 2.5.31, we consider the function:

n-1/2 e-WS(x)

(wﬁo)(X) s(x,v)™™ 8(x) on s(x) >0

=0 on S(x)< 0.

This function is continuocus and in Ll(E) n I?(E), if n > 1.

2.7.3. Proposition: Let n > 1, the function ¢$ is a lowest

0
weight vector of weight (n +(l/gL2n) for the action of

O™x pL,@®).

Proof: The fact that ws is a lowest weight vector of weight
n + 1/2 for the first fagtor C?J has already been established
in 2.5.31. Let us check the corresponding assertion for
PSLEOR). The fact that w?o is an eigenvector for the action
of u(8) follows from 2.7.2. As the action of the Lie algebra
of PSLEGR) is given by linear vector fields, it follows from
2.7.2. b) that J'-wﬁo =0, as J7-S(vy,x) = O, and the other

factors are invariant under the full group 0{(2,1).
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From the Remark 2.5.25, we obtain:

2.7.4%. Theorem: ILet n > 1. The representation Tn+(1/2)® Tzn
of G, x PSLE(R) is contained as a discrete subspace in LQ(E)
with multiplicity one. The vector ‘bs is the lowest weight

0]
vector of this representation.

let 7 =a + iB, z = x + 1y be given points in pt x P*

2
and Q(z) = (ZZ i), then we have the formula: (n > 1).

2.7.5.  (By(b(r) x b(Z))-wﬁo)(X)
_ S(nﬂj/an/z M s(x,a(z))™ S(x)n41/2)eivs(x)7
on S(x) > 0

0 on S(x) < o.

it

2.7.6. For g = (Z‘ g), and g-z =%,

Q(g-z) = (cz + d)'zg Q(z)tg.

This formula follows from direct computations.

2.7.7. As shown in 2.3.3 the fact that ¢, is a vector of
“— 0]

weight (n +<l/2),2n) for Rg can be translated as follows:

For (7v,z) € P' x P", we denote by #"(v,z) the function in

L?(E) given by

B(r,2) (x) = S06a(z)) ™ ()28 IST o1 sy > 0

0 on 8(x)<o0,

then, for (a,g) € G, X PSL{R),
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$aur)~ (H2) 50,2728 N(5.r,g2)

ﬁ;(a,g)'wn(f,z)

where J((z g),z) = cz + d, and more generally, for

5= (2 2),0) e Olie. ®2) - ez a),

j(G:T)a = ean(T) .

Remark: For g ¢ PSLQGR) c 0(2,1), this formula is immediately
derived from 2.7.6.

For e € G, this is a deeper property.

As n > 1 will be fixed in the following, we will often

. n
suppress the index n and write ¥(r,z) instead of ¥ (1,2).

2.7.8. We will now construct semi-invariant distributions

X
associated to the lattice L = [( 1 3); x, € Z}. Let us
X3 X, i
consider the orthogonal decomposition E = El2 c}] E3 of our

) xXq 0 X3
space E, with E;, = ((, x2)] and E3 ={(_ )}. we
write

10 oo o1

ep = (o o)s ep=1(y 1) and ez =1(; o)

1*(£,,) @ I°(E,),

our representation RS 1s written as R12 ® R3.

With respect to the decomposition L°(E)

2.7.9. We restrict first our attention to R As the

l2°

restriction §,, of 5 to E is of signature (1,1),

12
R = RS is a true representation of SL(2,R) equivalent to
12 12

the natural representation U (2.5.5).

2.7.10. 1let us consider the lattice Zel <] Ze2 in EJ.E and
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the 6-distributions (6xl,x2,¢) = q,(xlel + x5e,). Let § be a
character mod N and u a function on % /NZ such that
u(a-3) = y(a)u(j), for a invertible mod Z . We define

(6.,0) = 2 u(x)s .

u xl,xzeZZ 1 X12%p
We consider 8  as a distribution on H(E12 @ RP) via
(Gu,w) = b3 u(xl) w(exp«xlel + x2e2) @ Q).
xl,xeeﬂ
a b _ .

Iet rO(N) = ((a d); ¢ = Omod N). We still denote by ¢

the character
v=(2 % >
of TO(N).
2.7.11. Proposition: For vy € IO(N), Rlz(y)-éu = w(y)_léu.

Proof: We could use the results of Section 2.6. However we

will give an alternate description of Gu which will be funda-
mental for our applications. Let us consider the Lagrangian
subspace £ = E12 ® RP and [’1 =Re, 8 (RP @ RQ). As seen in
2.5.5, the representation Ry, of SL(2,R) in H(£) = L°(E), ® Q)
is equivalent to the natural representation U of SL(EJR) in
I°(RP ® Q) = L°(RP ®#1RQ) ® e,) = H(Z,) via the operator:

Uy, 09) (exo(xP + y) @ ey) = | w(exp(xP + y0) @ €5 exp te; ©Q) at

= | olexp(te; + ye,) ® Q)e?iTEX gt .

i.e. jrﬂ 2 is the Partial Fourier Transform with respect to
l’
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the variable t.

We write, as u is periodic mod N,

(Gu,CD) = z u(h) z Cp(h + mN,n).
heZ /NZ m,nezz

Thus, applying Poisson summation formula in the first variable,
we obtain:
2immh
1 n P TN
(6p0) =% = ulh) = (5 40)((Fr+m) Qey) e
heZ /NZ m,nezz 1’
2.7.12. We deflne for u a function on Z /NZ , the Fourier

transform of u by

2immh
A Leimmn
u(m) = > u(h) e N
heZ /NZ
It is clear that, i1f u satisfies u{ah) = #(a)u(h) for

a character mod N, a invertible mod N, then G satisfies:
A(am) = 4(a)"Hi(m) .

Using this definition, we thus have the:

2.7.13. Formula:

A n P + nNQ
(6,0) =% = u(m(fy o) & @e,) .
u N n,neZZ El,ﬂ N 2

Let us define the distribution 61 on the space IRP & IRQ
u

by

(60,9) =3 2 (n) o(REF 29y,
u m,n

As we have
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b
e, D) - GRS

we have U(y)-ék = w(y)'lél. As 6. is transformed to 6! by
Q

u
u
JTZ go Wwe get our proposition.
l’

1
A
u

2.7.14%. ILet us consider the space E3 and the representation
R3 of U in L2(E3) associated to the quadratic form

S.(x,) = 2x2. ILet (8,) = S o(x,) the 8 distribution on
3 3 3 v X, €EZ 3
Eg. We denote by TO(4) the3réciproc image of ro(u) in O .

The group TO(4) is conjugated to TO(2,2) by the element

/2 o
gl2) = ( 1).
o

Thus it follows from the Theorem 2.4.9 and 2.4.15 that

‘ﬁ(n)-e = x(n)'l.e, where, for v € TO(4)

v= (& 2) (c=0moa ), \3) ~£7M(F) .

let ¥ Dbe a character mod 4N and u a function on
Z/UNZ satisfying u(aj) = ¢{(a)u(j). Let us consider our
space
b'd b'd
E=((t 3
x3 X5
and the distribution on the space E given by:
(e ,0) = b u(xy) olx,,x,,%x;) -
u xl,xz,x3ez 1 1772773
b ™
We denote by TO(MN) the inverse image of TO(4N) in 07 .

On i?b(uN) we consider the character Ay where A 1is the
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[V
special character of TO(M) associated to @ and § 1s just
given by w(z 3) = 4(a).
Iet us consider the subgroup FO(O,EN) = {(? g), b = 0 Mod 2N}.

The map (? 3) > w(d)2 defines a character *2 of

.1:0(0,21\1) = T,(0,2N)/{+1} .

(Vad
We consider the representation Rg of G, x PSI,(R).

We now state:

2.7.15. Proposition:

a) Ry(0)ey = a(n)"t w(s)"t 6, for o e Ty(4N) © G, .

u

w

) Rgly)-8, = 4(v)2 8, for vy e T,(0,2N) € BSI,(R) .

Proof: a) follows immediately from the Proposition 2.7.11 and

the fact that \ﬁ o R12 @ ﬁé as a representation of Gz.

b) We have:

X X

)=

X X
G D D6 D=

W e

<) s

with x! = aex + 2abx, + bexe, thus xi = a2x

! 1 3 mod 4N proving b).

1

2.7.16. Let n > 1 and let us conslder the function ws which
[0}
is in Ll(E) n LE(E), continuous and supported on S(x) > 0.
Thus the coefficient (eufﬁ(c,g)-we ) = rn(g,g) =
-~ [0}

b u(xl)(R(o,g)-ws ){x) 1s given by an absolutely
xl,xe,x3ez 0]
convergent serle. It follows from 2.7.15, 2.7.7 that rn(q,g)

is an automorphic form with respect to both variables (g,g)

of weilght (n + %, 2n). The corresponding holomorphic function
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+

rn(w,z) on P* x P* is given by:

2
22 u(xl)(zx —x2z2)'n(2(xg-xlxz))n“<1/2)e2'JLW(X3'X1X2)'T

xl"x2" x3€Z

Z=-X

3 1

2
x3>xlx2
Hence we get:

2.7.17. Theorem: Iet ¢ be a character mod 4N, u a function

on %Z/NZ satisfying u(aj) = v{a)u(j). Let n > 1, the function:

. 2
2im(xS-x.x, )1
2\ - 2 1/2
Qu(q,z) = 3 u(xl)(2x3z—xl-xzz ) n(x3-xlx2)n_(/ )e 3712
xl,xz,x3eﬂ
2
x3>xlx2

is a holomorphic function of (7,z), which is;

e
- modular in r with respect to FO(MN), with character
Ay, of weight n +(l/2)
- modular in z, with respect to FO(O,2N), with character

¥"2, of weight 2n.

Let
w  (z) = b w(x, ) (2x42=x,-X% 22)-n
q,u - 1 3 172
xl,xe,x3ez
2 -
x3-xlx2—q

then we can reexpress 0 (1,z) as
00

2.7.18. nu(-r,z) = Zl wq u(z)(q)n-(l/Q)einq'r-
q= 3

2.7.19. et n> 1 and § a character mod 4N. We denote
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by sn+l/2(ro(4N),xw) the space of holomorphic functions on

pt satisfying:

a) f(i:ig) = X(;)W(Y)(c1+d)n+a/2)f(1), for every

v = (& %) e ).

b) f{r) = = amezime.
m>0
Let J T©be a fundamental domain for To(4NT\\?+. We can

then form for f e Sn+é/g(ro(4N),xw) the Petersson inner product

£u(2) = [ o T (2 /A2 e

The resulting function is an automorphic form of weight 2n wunder
2
To(0,N/2) and character " .

We will now consider some special function ug, and prove

that the map f - Fu gives the Shimura correspondence.
0

. 7
2.7.20. We recall that if n > 2, we can define the Poincare

series associated to thecusp P = o, by

6(r) = % ra) ¥(n) J(G-l,T)-(n+@/2»eziWQ(d_l'T)

- Z ~
neI‘o(l&N)/T‘m
1 Z% = . . .
where T = (O 1)» and T_ is the reciproc image of T_ in 6\.
2.7.21. Let us denote by , for ¢ a character mod 4N, the

function on %Z such that 4(a) = 0 if (a,4N) # 1 and

¥(a) = y(a Mod N) if a 1is invertible mod 4N. We will see
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that is wu. is such that 4. = ¥, the automorphic form a,
0] 0 0
is naturally expressed as a sum of Poincare series Gq(w)

(associated to the cusp =). (If u was arbitrary, we would

have to use several cusps of TO(4N)\\P+: a similar example

will be treated in 2.8.)

2.7.22. let | Dbean even character mod 4N. For uy such
that U = w-l =V, the distribution Ou is transformed by the
- 0
operator ~*z 4 into the distribution
l’

- LNnQ
(61,0) = o= S V(m) (PR
v N m, NeZZ N
(m, 4N)=1

ﬂz_iﬁn_@ ; (m,4N) =1).

N
We analyze now the orbits of TO(MN) on this set. We denote

In particular 6& is supported on the set {(

the point xP + y@ by (;). The stabilizer of the point (é)
for the natural action of SL(2,R) on RP ® RQ is the subgroup

1 .
é g):(t e R). As (i g)-(o) = (i) the orbit of (é)
under SL(2,%Z ) is the subset (m,n) of integers (m,n)

relatively prime. Hence the image under TO(4N) of (é) is

N = {

the subset A, = ((,,), with (m,4Nn) = 1). Thus Ay = Ty(4n)/T,
For J invertible mod 4N, we consider

AJ = JA] = {j(mP + 4NnQ); (m,4Nn) = 1}. We have:

2.7.23. Iemma:

a) A = u A

J inv.mod 4N J

b) For J dinvertible mod 4N, the map v = y(%) defines
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a bijection of 1‘0(4N)/1'(n with AJ' We have Aj = AJ'
if and only if Jj = +J'.

Proof: ILet (mP + 4NnQ) ¢ A and let j be the greatest common
divisor of (m,4Nn). As {(m,4N) =1, j is prime to UiN.

Hence (m,4%Nn) = j(m',4Nn'), with (m',4%Nn') = 1. The assertion

b) is immediate.

For o a functlion on the space E12’ we thus have

(6y 0% =g 2 TOT (o) @i @ e,)

m,neZ 1°
AL ﬂgz TCTo() U0 ge) (s 0))
(3,4N)=1
yt—:l‘o()-l-N)/l'oo
-3 z W(v) = TQT @l,,&mm(yrlw)(fﬁ,o»

ye'l'o()-l-N)/Too JeZ

But we can again apply the Poisson summation formula to the
function (ng(v)_l¢)- As qu 2 is the partial Fourier transform
l,

with respect to the first variable, we obtain:

2.7.2%. (b ,0) =2 P> #(y) = u(3) (R, (v) L) (4,0)
ug?® 2 yeT, (4N)/T Yoz 123

(The factor 3 comes from the fact that ro(lm)(g) = TN ()

We now express nu (1,z) in fuction of the Polncare series
63(r). 0

2.7.25. Theorem: Let us define
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Yo 1 __yn
d, (z) = JZGZZ uO(J)(m———_—j) .

Then we have:

Proof: We have to compute:

(8, >¥¢(r,2)) = b u,(x.) v(1,2)(x,,%,,%x5) -
uO xl,xz,x3ez 01 1772773

Let us define

Xy X3
¥ (T,Z)(x X ) = 2 W('\',Z)( ):
8 1772 X, €Z X X
3 3 2
as a function of (xl,xz). We then have to calculate:

(ﬁuo,we(w,z)). Using the formula 2.7.22, this is

3 ) 1v) = u(a) (R, e, (7,2))(5,0).
veTo(4N) /T, Jez
As R12 operates on the variable (xl,xz), we have:

Jiz u(j) Rlz(y)-l tg(7,2)(J,0)

Jizu(J)(Rla(Y)_l'w(T,Z))(i .
mezz

"

-1 -1
Let us write Rs(g) Ri,(0)Ry(n), 1.e. Ryp(0)™" = Ry(o)Rg(0)™"-
In particular, as R3(o') for g € I‘O(UrN) leaves semi-invariant

the distribution 6, we have:
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2 (Ryp () ow(r,2)) (0 D)

- mgﬂx(V)(nswrl-w(T,z))(g ).

We recall (2.7.7)
R(5)Lov(r,2) = 35750 (2D (T gy

Now

.2 -1
(zmi'_J)n (2m2)(n—é'/2))e211m1 Y 7 for m >1

Wy )@ D)

=0 for m=20 .
Using now the order of summation:

2 2 = Z 2 2
yero(4N)/T m, jeZZ meZ YGTO(M'N)/TG,' JeZ

(o]
we Obtain our theorem.

u
We now compute the development of dmo(z) in Fourier series.

2.7.26. Lemma: For z € P+, we have:

o 2iTrmz
u n-1 2N
dmo(z) = c(n,N) ril r ¥{r] e

Proof: We write
%o(4) (h) £ (p—t n
a Y(z) = b} u.(h) = ).
m ne(z /4z) O jez 2mZ - (BFEN])

Iet us consider the function on R defined by:

* 7V EmEh,
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From the integral formula

1l\n 2imez n-1
F =c [ e .

de (z € P+) s

we see that,for n > 1, this function of x 1is the Fourier
transform of the continuous function of ¢, supported on

£ > 0 given by

2ime (Pmz-h)
n-1

L e e

Thus, applying the Poisson summation formula, we obtain:

2imr(2mz~h)
N n-1l

()" =0 2, © r
jeZZ ——rN- + J r=1

Mg

and finally, up to a multiplicative constant depending only

of n and N:

u o _2imrh 2imTrmz
dmo(z) = b uo(h) e N opn-l 2N
heZ /4NZ r=1
As, by definition of Uy
_2imrh

b uo(h) e o ()
heZ /4NZ

we obtain our lemma.
2.7.27. Theorem: ILet n > 1, ¥ a character mod 4N,

fF= = a(m) eEimm'
m>0

a function in sn+<1/2)(ro(4N),w),
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then
(5 £)(2) = = " y(r) a(n®) BTN

is an automorphic form with respect to the congruence subgroup

To(2N), with character .

Proof: Let us compute:

(8r)(z) = | Ouo(nZF £(7) du,(v)

From the characteristic property of Poincare series (2.3.23)

and Theorem 2.7.25, we obtain (up to a multiplicative constant)

- 2 Yo 2
(5r)(z) = Lz 4y (z) a(m®)
g _2imrz
=z 1 v(r) a(m®) e 2N
r=1
m=1

From 2.7.17), o, (r,z) is modular in 2z with respect to
[0}
TO(O,EN) with character TE. Thus [ o, (t,z) £(7) dun(T) = (=) (z)
6}

is antiholomorphic in 2z and satisfies the relation:

52)(v-p) = v(y)? T%>0)2"  (F)(p)

for pe P, v ¢ T,(0,2N). We have (sf)(z) = (Sf)(-287).

From the fact that (-2N)(¥-p) = y".(-2Np) with
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a -2Nb
vy = ( c d ) I
“2N
we see that (Sf)(z) is holomorphicin z, and automorphic

with respect to the congruence subgroup TO(EN) with

character we, Q.E.D.

2.7.28. Remark: The Dirichlet series corresponding to Sf

(s 1ike Shimura) is

2 L y(r) a(m®) (mr)”S

(% y(r) P (5 a(@®)n®)
r=1 m=1

Shimura proved originally Theorem 2.7.25 using Weil characteriza-
tion of automorphic forms via functional equations of Dirichlet

series.
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2.8. Zagler modular forms and the Doi-Naganuma correspondence.

2.8.1. Let us consider the vector space E of all 2 x 2

matrices x provided with the quadratic form S(x) = -2 det x.
If
X X
x = ( 1 3) > S(x) = 2x Xy = 2X X, .
X X 3 172
4 2
If
X X ¥y y
x= (1 3) ana y= ("1 3,
X X Yy Yo

the value of the associated symmetric form S(x,y) is
S(x,y) = X3yy + Xy¥3 - (xly2 + xgyl).

We write also

'Lll+Vl

u2+v2 vl-ul

U,-v
2 2
)

In these coordinates
+v3)) .

In particular S is of signature (2,2).
The group SL(2,R) x SL(2,R) acts on E via
(gl,g2)~x = glxgél. This action leaves stable S(x). Thus
we obtain a map from SL(2,R) x SL(2,R) into 0(2,2). It is
easy to see that this map is surjective on the connected component

of 0(2,2). Its kernel consists of



ct 9 xct 9
¢ -1 0 -1

VN
We consider the representation Rg of g x 0(2,2). &s

S is of signature (2,2), the restriction of R, to o~
defines indeed a true representation of SL(2,R) which
coincides with Rg (2,5.8). The formula for the action of o™
on L2(E) are given by 2.5.8. The action of 0(2,2) on LE(E)

-1

is simply given by (g.f)(x) = f(g ~.x). In particular, we

obtain a representation of SL(2,R) x (SL{2,R) x SL(2,R)) on
LQ(E). We will denote by n an element of the first factor (we
will write indifferently ~ ¢ (~ or ¢ e SL(2,R) for the first
factor) and by (gl,ge) an element of the second factor. The
corresponding variables in Pt are denoted by (T,Zl,Z2).
Following 2.5.31, we consider D = (v ¢ Ec, s(v,v) = 0,

S(v,v) > 0}. A base point vy of D is

v = (b oL
0 -1 [

2.8.2. Lemma: For the action of SL(2,R) x SL(2;R) on E

given by (g,,g8,)'x = g xg'l, we have:
17~z 1772 %50, is
a) (u(e)),u(e)) vy =e e 2w,
5)-vo = 0.
©) (blapblz,) vy = ¥

b) (JE,J
-Z Z Z

~1/2 -1/2 ( 1 71 2)

l y2 _l ZE *

Proof: This is proven in the same way than 2.7.2. As in 2.5.31,

we consider the function:
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(v ) () )T 50kt ),

on S{x) > 0

S(x,vo

o 1r s(x) < o.

This function is in L2(E) 4f k > 1, and in L (E) n I2(E)

if k > 2. We thus obtain (as in 2.7.3):

2.8.3. Proposition: Let k > 1, the function ws is a lowest
0]

weight vector of weight (k,k,k) for the action Rq of

SL(2,R) x (SL(2,R) x SL(2,R)) on I°(E).

Remark: The following theorem follows easily from the

Remark 2.5.25.

2.8.4. Theorem: For k > 1, the representation Tk ®Tk ®Tk
of SL{2,R) x sL(2;R) x SL{(2,R) is contained in L2(E) with
multiplicity one. The vector ws is the lowest weight vector

0
of this representation.

et 7 =a + 18, z, = X + iyl and Z, = X, + iy2 be

+

given points in P x pt x P+ and define

-2z zZ.2
1 172
( )

Qz,z,) = N z,

then:
2.8.5. (Rg(b(7) x blzq) x b(zg))-wﬁo)<x)
- Bk/2 yl;/z y}g/z S(x,Q(zl,zg))-k s(x)k-l ei1rs(x)1,

on S(x) >0

0 on s(x) <o.
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2.8.6. As shown in (2.3.3 ), the fact that ws is a vector
0

of weight (k,k,k) for RS can be translated as follows:

For (T,zl,zz) e Bt x P" «x P+, we denote by wk(f;zl,ze) the

function in I°(E) such that

k-1 ei‘lTS(x)'r

¥ (r,21,2,) (x) =8(x,Q(21,2,)) ™ s(x) ,on S(x) >0

=0 on S(x)<o0.
Then for (m,g1,8;) € 0% (SL(2,R) x SL(2,R))

k
RS(”:gl:gz)'w (T:Zl:ze)
. -k -~k -
= 3(0,7) " 5(g1p20) 3 (8ps2,) kwk(ﬁ-ngl-zl,gg-zz)
where

JE Dz) =cz + a.

Remark: For (gl,gz) ¢ SL(2,R) x SL(2,R), this formula is

immediately deduced from the relation:
-1, -1 -1
Q(gl’zl:gz’ze = J(gl’zl) J(gexzz) ng(zl’ZE)gQ .

For o e SL(2,R), this 1s a deeper property.
As Kk will be a fixed integer > 2, we will often
suppress the index k, for example we will write w(w;zl,z2)

k
instead of ¥ (7,2y,z,).

2.8.7. Iet K = Q{/D), with D > O a square-free integer,
a real quadratic field. We denote by X ~» A\! the conjugation
in K with respect to Q, i.e. {a + b /D)' = (a - b /D),

and by N{\) = a\' = 8 - Db° the norm. Iet (: g) a matrix
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1
with coefficients in K, then (2 3) denotes the matrix
a' b!
(c' d')'

Iet O be the ring of integers of QD). A is in O
if and only if A+ A' € Z, \\' e Z. If DW¥ 1 Mod 4

a basis of & over % is thus given by (1,/D). If D=1

Mod 4, a basis of O over 7Z is given by (l,l—-;—-f—ﬁ) .
2.8.8. Let sL(2,0) = ((2 g) e SL(2;R) ; a, b, ¢, d € O}.
We consider the Hilbert modular subgroup Ty of SL(2,R) x SL{2,R)

defined by Ty = {(g,8'); g € SL(2,0)]}.

Let L be the lattice given as in [37], by:

L={£, 2 x 2 Matrices with coefficients in ¢ such that
£6Y = (det £) Id)}.

b al b'y _ (d -by

a . X
Thus (c d) € L, if and only if (, 4) = (. 7). i.e.
L= ‘D3, with 1 co, X3s%y € Z ).
fDxu A!
2.8.9. Lemma: The lattice L is stable under the action of
q}'

Proof: This is clear as

(exg'™ 1) (gxg'™ 1)t = gxx'g™! = (det x) Id.

2.8.10. Remark: We have the formula:

X X
a b 1 73 dat -b'y _
GG NS I W
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with:

o
'_l
]

] - ] - t 1
ad xq be X5 ac x3 + bd Xy

= b ] 1 - t
Yo ble X, ta dx, + a cxg b dxu

<«
W
1

—-ab'xl + a.'bx2 + aa'x3 - bb'xu
— t ' ] - t
yy = cd X, - ¢ dx2 + dd Xy ce x3

We see that if ¢Z is an ideal of O containing 6 /D the

lattice
» VD X3
L, = [(/§Xﬁ \) ) 3 » €t} 1is invariant under SL(2,0).
Iet Dl be a divisor of D. We obtain all such ideals as
QD = D0 + 0 /D , and we denote the corresponding lattice by
1

LD . For Dl = 1 +this corresponds to our lattice L; for D, =D
1
we obtain the lattice considered by Kudla [17].

Let us consider the distribution 6, given by (6L,w) = 3 olu).

uel
This is an invariant distribution under Ib. We now investigate
the transformation properties of & with respect to the action

L
of CP‘. We will suppose for the rest of this chapter that D= 1

Mod 4.

2.8.11. Proposition: ILet
_(a b O _ (4
vy = (c d) € TO(D) c , then RS(V)-bL = (ﬁ) by, -
xq 0
Proof: We write E = Ej, ® E34, where E;, = [(O x2), x5 ¢ R}

x
and E34 = [(x C)3)}. According to this decomposition, we write
mn
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our lattice L = A @& £, where

\ 0 0 /D )

A= {(g x:):'XGG] and £={(‘/ﬁx4 0 7)s x3,xueZ].
We consider first the distribution S=£ on the space E34 given
by (ei,cp) = E:'i w(#). Tt would follow from the formulas in
Section 2.6. ~, that 8, is invariant under I‘O(D). However
we will give an alternate proof which will be fundamental for
the remaining of the section.

let us consider the Well representation R34 attached to
the restriction 834 of S = -2 det x to the space
E34 =R e; OR ey, (e3 = (8 é), e = (g 8)). Our model is
assocliated to the choice of the Lagrangian space £ = E34 ® P.
Let us choose Zl =R e3 ® (RP + RQ). We identify H(Zl) with
I°(RP + RQ) via o(xP + yQ) = o (exp(xP + yQ) @ e,). The

operator:

(-le,zm)(exp(xHyQ) ® 84) = | w(exp(xP+yQ) ® e, exp t(Q@e3)) dt

intertwines the representation R34 with the natural representa-

tion U of SL(2,R) in I°(RP + RQ) (2.5.6). We have:

~2imrxt

(-le,ztp)(exp(xPH'Q) 4 34) =] co(exp(te3+ye4) ®Q) e dt

i.e. J:E 4 1is the Partial Fourier Transform with respect to
l’
the variable t. Hence, by Poisson summation formula,
(Si,cp) = Z o(exp(m /D eg +n /D eu) ® Q)
my,nez

is transformed in:
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2.8.12. (8, Fz’zlcp) %) _Z_elexp(ZP+n/Ba)aey).

Let us consider the lattice RD =ZP® ZDQ. As

b bD:
(o Don) = Olomran)

this lattice is invariant under the natural action of TO(D)
on RP @® RQ. As our distribution e£ is transformed into the
Poisson distribution associated to the TO(D)-inva.riant lattice
713 RD’ 6£ is invariant under TO(D).

Let us now analyze the distribution (SA,cp) = giACP(Q)-

We consider the restriction S of S to E We employ

12 12°

here the formula 2.6.8. The lattice

/\‘={(J(§ 3); X\ + y\' € Z, for every X\ € O}

is easily seen to be

2 o
A"={(m ) , with w e G} .
o =zu!

/D
Its level n, is D.

The lattice A has the Z -basis

1D 0
_4¢1 o0 - (2 4
£ (o 1)’ £, = ( o] ——12/3) .
Hence S, = ("2 1) and det s, =-D
AT Y, D=1 A :

As A 1s an even lattice with respect to 812 and D is
odd, we have TO(nA,x) = TO(D). As sign S = 0, k = 2, we get
from 2.6.8, for d odd:
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a(v) = (D) €5 - @ ES = D) = ()

as D 1is congruent to 1 Mod 4. Using the remarks 2.6.6,
we see similarly that we have a(y) = (%), for every d. Q.E.D.

Let us consider the coefficient Rk(c,gl,gz) =
(6.,R.(0 % (g452,))-45). Tt then follows from 2.8.11, 2.8.9 and
’7s 1°°2 Vo
2.8.3 that the function Rk("’gl’gz) is an automorphic form in
o with respect to the subgroup I‘O(D) with character
b d . .
(2 d) = (ﬁ), and in (gl,gz) with respect to the Hilbert
modular subgroup T, of SL{2,R) x SL(2,R). From 2.8.6, we

explicit this as:

2.8.13. Theorem: {(Zagier) Let k > 2, then the function:

nk(q’zl’z2) Z lh('r:zl’zz)(g)

fel

z S(E,Q(zl,ze))‘k s(m)E-1 Gims(e)r

Eel
s(e)>0

is an automorphic function on B' x (BP' x P'), which is:

- modular in (zl,zz) of weight (k,k) for the Hilbert

modular group I‘o,

- modular in T of weight k for the congruence subgroup

To(D) with character &

We explicit this function:



Let us write # =/D (Y %) with a,b e Z and

b -u
u e 7‘% =51 (where 6 =2 .T is the different of K = Q(/T))

then - det £ = D(uu' - ab)

S(2,Q(z,52,5))= - (uz, + u'zy + a + bzyz,) .

Let
> 1 k
w (z,,2,.) = _1 )
m-"1’"2 peb uz; ¥ 'z, ¥ a ¥ bz Z,
a,beZZ

N(u)-ab=%

Clearly each w is a Hilbert modular form of weight (k,k)
we have:

_ -k k-1 k-1 2immr
2.8.1%4. Qk(w,zl,zz) = (/D)™ 2 mil wm(zl,zz) m e .
We will now express nk(zl,zz,T) as a linear combination of
Poincare series attached to the cusps of TO(D). We recall
(2.3.18) that a cusp is an equivalence class of Q U {»} wunder

L

the action of T,(D). Let %, %r € @ U (=) with (x,y) = 1,

(x',y') = 1. The relations

for (g 3) € TO(D) implies y' & dy Mod D. Thus, as d is

prime to D, we have (y',D) = (y,D).

Let Dl a divisor of D. We write D = D1D2. As D 1is

square free, (Dl’DE) = 1. We thus can find integers
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(p,q) € Z such that pD; + qD, = 1. If the cusp P is the
-2 7

equivalence class of (%3) we can choose
Dl q

as
AP-P = (2.3.18).
let us consider the natural action of SL(2,R) on RP & RQ.

We write (;) for the vector XxP + yQ.

2.8.15. Lemma: Iet (x,y) two integers, with (x,y) =1
and (y,D) = D,. There exists an element v € TO(D) such that

) = agt-(g), for P = (;7‘11) .

Proof: Iet D = D;D,. We have y = D;y', and (y,DE) = 1. As

(x,¥y) =1, y is prime to xD Thus there exists u,v € Z

X
such that xD2u + vy = 1. We write
- ~Vyr1l
=G -
But
X - (& b
G nute = (€ @)
: _ Xy _ -1,1 :
with ¢ = D,y + DD, = O Mod D. Hence (y) =Y Ap (0), with
Y € TO(D).
From the preceding lemma, it follows that the cusps of Tb(D)
are in one-to-one correspondence with the divisors D1 of D.
We write P = @1) for the corresponding equivalence class of
(=2).
Dy
As

1 nw

g -
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the width is D

vy, of the cusp (D A

l) = D/Dl’ We denote by

S the subgroup
(D)
.1 1z,
A .
A(Dl)(O 1) Ap))
We consider, as in 2.3.19, the function e?D )(T) = ¢2imaT /D2
1

and we form, if k > 2, the Poincare series associated to the

cusp (Dl) defined by:

-1 - -1 ,
G?Dl)(T) 2 Yiro(D)/S(Dl) ‘ (Y)(TK(V)TK(A(Dl)) e?Dl))(T)
We explicit this as:
Eivq(A( v~
1 -1 -k, D)
G%Dl)('r) =5 vzeI‘o(D)/S(Dl) E(Y)J(A(Dl)Y »T)
For f a cusp form in M(TO(D),E k), we have
_ -k (k-2)!
QiTTq'T/Dz)

(where (Tk(A(Dl))-f)(T) = q§0 a?Dl)(f) e

We now define, following Zagier:

1) = ¥(0p) D3 oPp5(n)
D1D2=D
D2|n
where W(De) = (gi) /ﬁ; , if D, = 1 Mod 4

]

D
-1(7%)/72, if D, = 3 Mod 4.

1

.-r/D2
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We will prove the Zagier identity.

2.8.16. Theorem: For all (zl,z2,T) e PT x P «x P+, we have:

(2]

k-1 2immv 2 0 k-1.n
2 w(z.,z,)m" e = 3 w(z,,z,)n"""GH{(")
oy mi%1%2 ooy “n'Z10%2
where
0 1 k
wn(zl,z2) = - (uzl+u'z2+a)
ueb
aeZl
N{u)=n/D

Proof: Our method will be similar to the one in Section 2.7.

We write L =A@ <L in El2($ E3u. Our representation RS in
2 .2 2 . .
I°(E) = L (E12) ® L (E3u_) is written as Ry, @ Ray -

that we will prove

We will

need two lemmas on the representation R12

later:
2.8.17. Iemma: ILet D = D1D2, then:
* _— -
DA +D@<—[!eA,SR(5F)€2%Z].

Let us consider the lattice A + D.A* = fL(D A+ DAY).
2

1 >
Then
. A 27
A+ DAY = (2 e 5, ¢ Sp(e,2) e 5;—]
We define
(B p%, ps®) = 2 »(2)
DyAT+A £eD A% +A

2.8.18. ILemma: Rl2(A(Dl))-BA = leeDlA*+A » with sy = Dj w(DQ).
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2.8.19. We now analyze the Poisson distribution with respect
to the lattice £. From the proof of 2.8.11, the distribution
Qﬁ is transformed by the operator J:kl,ﬂ in

(ei,f,;,zlcp) = Bt i w(exp(7gP + 0 /DQ) @ey).
We now analyze the orbits of TO(D) acting on the lattice

RD = Z P+ ZDqQ.

2.8.20. Lemma: Each element of R

to an element jAZ; )

and j & multiple 8f D, = D/D,. Two elements JASL: (1) and
2 1 (Dl) 0

p 1is conjugated under TO(D)

(é), where D; 1is a positive divisor of D

j'ABi(é) are conjugated if and only if D; =D{, J =+ J'.

Proof: Iet m = jx, Dn = Jy with (x,y) 1 (y,p) = D,, then
J 1s determined up to sign and has to be a multiple of D2’ So

the lemma follows from 2.8.14.

2.8.21. As the stabilizer of Al-)l(g) in T, (D), for J #0,
1

is

-1 1
A(Dl)(O le) A(Dl) n TO(D) = S(Dl) s
we obtain
e -1z Lu(a . \)Uly) L )(DZ;I 0)
= VD) D, ID AR T R PP A s
Jez-[0}
Yero(D)/s(Dl)

+ (Fy,49)(0,0) -

(The factor % comes from the fact that the orbits of ABl(g)
1
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and ABl(Ef) coincides). Let us now prove the Theorem 2.8.16.
1

The first member of the equality 2.8.16 is up to a constant:

Z w(T:lezz)(E)

(9 :W(T:z x4 ))
L 1’72 rel

» VD a

Z 2 W(T:z 2 )(
\ed a,beZ 1’727 VDo A

x3).

A
Iet us write Wx(x3,x4) = w(T,zl,ze)(xu A1 We have to

calculate (q£’¢k)'
2.8.22. lemma: (le,z-w)\)(o,o) =0.
Proof: We have to prove that
1 k
[ ) ax; = 0,
x3+k zl-Xz2 3
where X 1is such that N(A) < 0. As A and \' are of

different signs, the element k'zl - XZE is not on the real

axis. Thus we have

) az =0 (for k> 1),

Imz = ¢ ;40z
and the lemma is proven.

We then rewrite the formula 2.8.21 as:

- 1 -1 Dyd
= ¢/t Dlllz) 3 (Ulap ) U pt) (50)
JeZ - {0}
Vel‘o(D)/S(Dl)

Let vy be fixed in SL{2,R), then:
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o
%) (U(v)'l.fil,gwx)ciii,O)

jezZ-(0} D, 3 /D
- -1 -1 27,0
Vot = ) fo ) Fr©)

as

<U<Y>'l-f21,zh><°’°> = (g, 0000 = 0.
Applying Poisson formula, this is:
ERCMORSINIC SIOR

Thus, we have (modulo a change in the order of summation that

we could Justify) and writing ¢ = w(T,zl,zz),

(or5¥) |
z -1 s 1 A %g?
= o |D (2D2) o (R3)+(A(Dl))R3)+(Y) .\];)( . i' ) .
1
YeTO(D)/s(Dl) JeZ

Let us write R(o) = RlE(U)R34(”)’ i.e. we write
-1 _ =1 -1
R3)+(A(Dl))R3)+(Y) = RlE(Y)RlE(A(Dl))R(A(Dl)Y ) .
If a 4is a function on the space E12’ we have:

EA (Ryp(¥)-a)(2) =E(v) ng a(e) , for Y e T,(D)

-]
(the level of the even lattice A is D, and its discriminant
2 (Rp(A7p y) @) (8) = D3Me(Dy) =, ale)
1 geDlA +A
from the Lemma 2.8.18, to be proven.
We denote for £ € E;,, (x3,xu) e R xR the element

-D)
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B+ x3e3 + Xyey of E by (g;x3,xu).

Using the preceding remarks we have:

> Uli'
- |

A

- .
= RlE(V)R 2(A )(R(A(Dl)y l).Q;(T,zl,zz))(o x?) =

\eER

-1 -1 D
Doy (D, ) e (v) b (r(a YoO) b (1,252,)) (2 ,0).
2 72 £eD, A*4A (D,) 172 D,
We recall

R(A(Dl)Y-l)w(T:Zl:ZQ) = J(A(Dl)‘(-l:"')_k‘b(A(Dl)Y_l-T,Zl,zz). (2,8‘6)

Let e D A*+A, then § e A/D, and 5(2) =-§# (2.8.17). We
o

write
J5 M O . o 2n
g == (5 _4)s with u e — and s(r) =5=.
ToDp 0w /D Dp
. 1 JB -k kel 21wn /D
Now w<f,z1,z2><g,--ﬁ-0“§,o>= <W” ) <2n>
Thus, it is not difficult to see that
-1 -1 J/D
z (D574 (Dy ) E(y) (R(A(p yv™7) - ¥) (8545=,0))
2 2 (D;) D,
DllD
veT (D)/S(D )
1
JeZ
reDlA +A
is absolutely convergent. ILet us consider the partial sum X!
0 2
over the (r,J) iuch that = =%(‘3 —yt)s with s(e) =D§
(i.e. N(u) = -%— with n fixed. (We only have to consider

n> 0, as ¢(T,zl,z2) is supported on S(#) > 0). Then, by
definition of wg, we have the equality:
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WD) 27 = . D;lW(DE)(R(A(
geDlA +A
s(g)=52

D,
jem °

0 k-1
= DewDen(zl,ze)n j(A(Dl

Now, summing over v in TO(D)/S the expression

_ 1 (py)
-1 )_k elwn(A(Dl)y .-r)/'D2

6(Y)J‘(A(Dl)v 2T) e

we obtain finally (!)

VD)S 2T (8,4 (1,2,,2,))

o0
-10 k-1.n
= %  ¥(D,)D;"w (z,5z,)n "G ().
D, |D 2’72 "p,nt*10%2 (Dl)

n=1

Reassembling together all the terms (De,n) such that Dyn

is fixed, we obtain:

n
k 1=k 0 -1, nk=1
(VD))" 2 ﬁk(T,zl,ze) = > o' (z by ¢(D2)D2 (ﬁg) G(p
= 2|D
D1D2=D
D2|n ,
oo n/bd
_ 0 x-1.Do
= nil wn(zlﬁzg)n G<Dl)(T)

and our proposition is proven, modulo the two lemmas: 2.8.17,

2.8.18 that we prove now:

Proof of 2.8.17: It is immediate to see that the first member

is contained in the second member. Now let !O e A such that

Sle(go,go) € 2D,Z , we have:

/Dy

1)

(7)
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1+/D 0
1 O -
go = a(o 1) + b( o 1‘\gﬁ) )

S(2gr80) = 2((a+)? - v° ) .

As D2 divides D, this implies 2a 4+ b = D2u, thus

b = D2u - 2a and

1+/D 0
2 0
Py = D2u( o 13f5) - af o -fﬁ)'

The first term belongs to D2A » the second to DA™,

Proof of 2.8.18: We first prove the following abstract result:

2.8.28. Iemma: Let (E,S) an orthogonal space, with
dim E = k. ILet A be an even lattice in (E,S) of level

n, and discriminant D. Iet y = (z 3) be an element of

SL(2,Z ) such that ac = 0 mod n, and acS(e,8) ¢ 2Z for

every & € h: then

R{v)-8, = s(v)8, us

. a
-ir = s(y)
- - C
with s(y) =D 1/2,~k/2 =z e , If ¢ #£0.
yeM/CA
(Remark. If the level n, of A is odd, the condition ac = 0
mod n, dimplies acS(e,®) € 2%Z, for € e A%)

A

Proof: Let us first see by abstract consideration that

RS(Y)~GA is proportional to @ By definition

ch*+p”
-1 -1 .
(Rs(y)-eA,w) = (eA,RS(y) @) . We can compute Rg(y) in

the following way:
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We consider our self-dual lattice r = A* @ PO A ®Q
with its character yx(exp(Z* @ P+ 4 ®Q)) = (_l)s(ﬁ,ﬁ*).
The operator (Ar(y-l)-m) (n) = o(y-n) transforms the space
H(r,x) into H(y'lr,y'lx). We notice that the hypothesis of
2.8.28 implies that ¥ coincides with y-l.x on v lrnr.

Thus there is a natural intertwining operator I between

r,y-ir
-1 -1 -1 -1
the model W(y "r,y ~x) of W in H(y "r,y "x) and the model

W(r,y) in H(r,yx), namely we average o in

(1 _; o)(n) = %z _; x(exp #) o(n exp g) .
ryy T rer/rNly “r

The operator R'(y-l) =I _; oA.(y) satisfies the fundamental
r,y r

(=1 =11 -1
property R'(y"™) W(r,x)(n) R'(y 7)™~ = W(r,x)(y""-n). Hence

there exists a scalar s(y) such that the following diagram

is commutative:
R (v1)
H(Z) > H(Z)

X X
er,ﬁ er,

-1
H(r,x) stvm(y ) > H(r,¥x)

£

We now remark that r/y'lrnr == A*/A*nc-ll\ : as

A®Qcrn y'lr, we have
r/y-lrnr = (e @P; £ € A*) modulo

{8 @P, £ e A%, such that v(e2 @ P) € r)

i.e. r/y—lrnr o A*/[\*nc-ll\ .
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Thus :
(9},z RS(Y-l)m)(O) = (eA’RS(Y—l)‘®)

= o -1y ¥
I ICREE M PRI

-1 X
= s(y) Z (A_(v"7)-8X yo)(exp ¢ @ P)
sern*/A*ne Iy T T, 4

= s(y) z (0% p0)(exp » @ vP)
een*/n*ne=ly  To4

= s(y) A*/i*ﬂ -1, (63 go)(exp £ @ (aP + cq)) .
£ c

We write: exp(r @ (aP + cQ)) = exp c*» @ Q exp a* ® P exp == S(g e)E.

As B;,zm € H(r,x) , re A" s a2 @ Pe r and acS(-,r) €2 Z,

by our hypothesis,
(of go)(exp & @ aP + cQ) = (8} yo) (exp(ct @ Q))

and we obtain:

z (0 gd)(exp ¢ @ (aP + cq))
* 0% =1
FEA /AT NCT A

*/Z*n _y (8%, o) (exp ce @Q)
gea®/A*ne™ A

. Z ogplexp(u + cr) ©Q)
eeh™ /A% ne” A uepn

s(y) (8

» Y

CA+A
which is the first part of our assertion. Comparing with the

Proposition 2.6.11, we clearly have: s(y) = D'l/ec-k/ec(o,o),
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which ends the proof of our Lemma 2.8.28.

2.8.29. It thus remains to compute s(A(D )) for
1
D -p
oy = G )
1 Dl q
Iet us consider the basis e, = /D, e, = -]lz—m of o over
For 1\ = aeq + be2, we have
s(* ©) =2(a®p + awd + O (D)) .
0 !
Thus q(l—D)
~2im L(a®prabpib (BL))  2im — L p?
D I D
1 1
€ = e
Now 1-D 2
a(=g=) »
2imw — 5
c(0,0) = z e 1
acZ /DlZ
beZZ /DlZ
y 1D
1/2 T q
=D, D (—) (&)
1 -1 Dl Iﬁ Dl
But
1-D
T 1-D
(=) =() =1
Dl ﬁl
a4y 2
(Dl) = (Fl-) as qD, ® 1 Mod D
and
D D
U _
EDl(D_l) = (D—z) if Dy = 1 Mod %
D D
Ep (52) = - (§2)i if Dy = 3 Mod 4.
1
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-1/2 D,
Thus we obtain: s(A(D )) = D, ED (ﬁ—), Q.E.D.
1 1 -1

2.8.23. Similarly that in the Section 2.7, we now consider the
correspondence between cusp forms of weight Kk and character
(ﬁ) with respect to TO(D) and Hilbert modular forms of

weight (k,k) given by:
(z£)(z,2,) = [ QlT5252,) £(1) du ()
(2£)(zy52,) = (2£)(-Z;,-2,) .

We first need to express the development of mg(zl,zz) in
Fourier series.

Gk 2irr(uz +u'z,.)
2.8.24. lemma: wo(z 32,.) = (omi s = rk=1le 1 2’
—emma n'%12%o *=1)1 -1
r=1 yebd

u>>0
N(u)=p
Proof: As N(u) > O, we have yu' > 0. Thus either y > 0
end u' > O, or both are negative. As Kk 1is even, we can then
sum only on y > O, u' > 0, i.e. y >> O and multiply the
€ P+, and

result by 2. Then for z, € P+, Z, € P+, uz, + u'z

2 2

our result is proven as in 2.7.24.
From the characteristic property of Poincare series we

then obtain (up to a multiplicative constant):
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_q 2imr(uz +u'z,)
(z£)(z,2,) = = =l 1772 s y(p )D(k'l)a(D $(£)).
>0 T D |
- 51 Dyln
[$15
n
N(u)=—D

We put together all the term having the same coefficient.

1

- o
Iet A e 5~ = >, then A6 = (A /D)® 1s an integral ideal,

7—
with norm N(%5) = N(A)D. We sum over all the cuples (r,u)
such that ru = ). Thus r divides the integral ideal ()\&) =07,

and DN(u) = N(OE)/r2 . Thus we obtain:

2.8.25. Theorem: ILet f € Sk(TO(D),(ﬁ)) a cusp form of weight
k. For each integral ideal ¥ of O we define:
e = = 1 g #(D,) D5t Tg ;/r P2 2(r)
rlut D,|D
D, |N@r)/r?
(The first sum is over the natural numbers r dividing ¢7,
the second sum over the integers dividing D and N(1)/r°.)

Then the series:

2171'(\)2 +\) z
(Zf)(zl,ze) = Z-l c(uh) e
VED
Ww>0
is a cusp form of weight (k,k) for the Hilbert modular group.

5)

Remark: As proven by Zagier [37], this map coincides with the map of Doi-

Naganuma defined for the eigen functions of the Hecke operators.
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2.9. Cohen lifting of modular forms.

let K be a real quadratic field. We heve discussed in 2.8

the kernel a(r,z,z of the Doi-Naganuma correspondence

5)
constructed by Zagier. We will modify this consiruction in
order to obtain the correspondencg,conjectured by H. Cohen ([5]),
between modular forms in one variable with respect tac any
congruence subgroup TO(N) and Hilbert modular forms in two

variables. We consider K = @(/D), with De 1 mod 4 and we

keep the notations of Section 2.8.

Iet N be an integer. We denocte by I‘O(N,ﬁ) the subgroup

of SL(2,8) defined by:

T, 0) = (v = (5 )i v e sL(2, 0), c e NEY.

Iet ¥x Dbe a character mod N. The map vy = (? 3) > y(dd")

is a character of T,(N, ) denoted by x-N In this

K/Q "
section we will prove the:

2.9.1. Theorem: Iet K be an integer greater or equal to 3.

Let
o0

f(r) = 2 a(n)
n=1

03
e imr € SR(I‘O(N)’X)
be a cusp form of weight Xk and character x with respect
to PO(N).

Iet K = Q(/D), with D= 1 mod ¥. We define for

an integral ideal

- N(U
e(tn) = ;§;+ X l(%) x(r) a(—;g—l)

rlot
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Then

211T(\)Z
K = 2 _ cl(vs
Cplzy,2p) = 2 c(vd) e
weED
wWw>0

+y'z

1+v'2p)

is a Hilbert modular form, with respect to the congruence subgroup
I‘O(N, (?) and character X'NK/Q’
To prove this theorem we will reinterpret Cohen correspondence

f > C? as given by the Petersson inner product with a kernel

nx('r;zl,ze) .

Let us introduce N' +the smallest common multiple of N

and D. We have N' = ND', N = N.D" with D!'D" =D. We

0
consider on Z /N'Z the function r - X(r)(%). We define
_2imhr
2.9.2. u(h) = = e N x(r)(%).
heZ /N'Z

The function u is a function on Z /N'Z such that

u(hx) = X(h)(%) uo(x), for h e (Z/N'Z)*. The function u

is an even function if y 1is even, odd if yx is odd. We have

the inversion formula:
2irhr

2.9.3. 5 uh)e M =N (FE) .
ueZ /N'Z

We define, for k and ¢ of the same parity,

(leze) € P+ X P+:

2.9.4. ° p S .
.9.4, wx,n(zl’z2) = iz u(J)(uZl+_'_(37N'7u 77 )
-1
UEB
e
N(u)=5



2.9.5. Lemma: Let (zl,zz) e Pt x P, then:

o 2irr(uz +u'z,)
0 z > k-1,r 1 2
u’X,n(zl’zz) ¢ pes™l rma r (ﬁ)x r) ¢
u>>0
_n
N(U)—D’-

where ¢ 1is a nonzero constant.

Proof: If N(u) = %, ug' > 0. As the function

1 k
w(3) ()

is unchanged under (J,u,u') = (-J,-us-u'), we can restrict

0]

the sum definin
€ mX:n

to be only over uy > 0, u' > 0, i.e. w>O0.

Now writing

1 k
2,49 (mmarem)

1 k
= = u{h) = —————1———TE7NTT—3)
heZ /N'Z JeZ ( uzj tutzot +

and applying Poisson summation formula to the function

2 -
X > (_%f kK_o f e2imex o ez gk 1 de ,
z #>0
we obtain
o © e, 2im §$ 2iwr(uz1+u'z2)
w (zl,zz) = ¢ b3 u(h) = r e e
Xo I heZ /N'Z r=1
o o kel 2iwr(uzl+u'z2)
=ct = X(rf(ﬁ) r e . (2.9.3)

r=1
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(s Z).

G2 of weight k on TO(N) associated to the cusp at «:

We set Fw = let us consider the Poincare series

Ur) =3 3 w7t (erra)TR QPATAYT
veT NI (N)
We now define:
g 0 k-1 .n
2.9.6, QX(T;ZI,ZE) = nil mx,n(zl,zz) n G(r) .

The function QX(T5Z1’Z2) is constructed in order that:

K
Cf(zl,z2) = &_QX(T;-ZI,—Z2’ () duk(w)

with duk(T) = (Im 1)k_2 [dr d7| and F is a fundamental domain

for FO(N), i.e. nx is the kernel of the Cochen correspondence.

Hence the Theorem 2.9.1 will be a conseguence of the:

2.9.T Theorem: The function OX(T;Zl,ZE) is
1) modular in +r with respect to TO(N) and character ¥y,
2) modular in (Zl’z2) with respect to FO(N,L}) and
character (¥ "NK/Q)_l'
The first assertion is obvious by construction. To prove
the second assertion, we will reexpress nx(w;zl,zz) as a
coefficient <Vx,wk(Tizl,Z2)>, with ¢*(1;2,,2,) the function
defined in2.8.6, and VX a FO(N,0J semi-invariant distribution

on E, and prove an identity analogous to the Zagier identity (2.8.16).
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Let Dl be a divisor of D, we consider the lattice

A JD x
- 3y, & .
L‘Dl—[(fDx4 x'),xenl +0’fﬁ,x3,x4ez}.

Then Ly~ 1is invariant under the action of sL(2,J). (2.8.10)
1

2.98. We will now define an invariant function v under

sL(2, 0), which will be crucial in our study of the map of Cohen.

We need first the:

2.9.9. Iemma: a) X\ € D1(7+ (/D if and only if X € O and
A € DJ_Z .
b) If xenl(}+0/‘ﬁ,x+wenlz.

Proof: It is clear that if X\ € Dl(}+ O /D, then A\!' € D,Z .
Now /D, % is a basis of O over Z . Iet
i\ =af]3+b(l—'%ﬂ) e &, with a,b € Z; we have

b2

' =5 - D(a+ 3% Ir A\' € D)Z, we obtain that D,

divides D and X e J/D + D;0 . D) is immediate.

We now consider the SL{2, ¢)-invariant lattice Ly = %,
i.e
x4
LO=[( 75);kefgrﬁ=5'l,J,kc-:z}

This is the lattice considered by Kudla [17].

Iet D' be & fixed divisor of D. On the lattice LO’
we define the function v

Dt by the formulas:
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J
"
a) v, ( /D ;
D! ) =0, if - dK 4 5
X T
/D
b) let xx'-%kez. let (k,D') = D! ana

Dé = D'/Di, then we define Vo by:

,
alu

-1,/k
(e ) - ) (g ) -

2.9.10. Proposition: The function W is invariant by the

D|
action of SL(2,{).

Proof: Let us consider the matrices g( ¢ ,a) = (; Ea')
(¢ Units, ¢ € ) and o = (_g 2-')). By a theorem of Vaserstein [34],
these matrices generate SL(2,().

We compute:

vooh o d2
g(£,e) DY (gle,e))t = D,

}_{_1. A .}E?. u'

/5 /D

2 19 Jp =Jy - (te'x - €'ar') /D - (ea')k;. For

A
-

k

/D

Hence the set of points p such that det p € Z 1is invariant

J .
Vg) ;

,detp:)\)\'-—JD—k.
X'

under 0(2,2), in particular under SL(2,0). Let p be such
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that det p € Z. We write X = -% with u e (}, k; = DIk',
with (k',D})
Cuwr | DIE'

D D
Then (£ a'WD) = £a'u € (9D'l +0 /D and

£a' WD - g¢'ar'V/D = (Ea'u) + (Ea'u)! € D!Z . Thus Jj, = j, mod D},

1. The relaticn det p € Z 1is:

€ Z , hence uu! € DI{Z and ueﬁD'l+0f5.

Jp Jy
(=%) = (%¥), and clearly
D Dy

VDI(g( E:G-) pg( £ :a)'-l) = VDl(p) .

Let us now compute the action of ¢. We have:

(x 7‘% R N -
¢ ad = .
A b

k -4
/D /D
Let
u S
/D /D
P = s
k -u'
/D> /D

such that wu' + jk € DZ. Let k = Dik', J = D}j', with
(k',D') = (J',D') = 1, D' = DID} = D{Dj. The equality to be

proven is

- k. /= ~1
<5,21> (Flr) (5%) = (33{) (5‘? (fﬂlr) :

If (D',Di) # 1, both members of the equality are zero. Thus
i | - ! 3 t = 1" "o ™.
we consider the case where D DlDlM’ i.e. D2 DlM’ D2 DlM

The first member of the equality is:

-1 i -
(Fv) (%i ) () (%&lr) (3%) ,
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while the second member is

() () ) (5P)

1 1 1
We hence have to prove:
=1y,=1y,dy _ (kyy=1
G Gm G = G -

Let us write 4uu' = 8° - Db°, with a,b € Z . The equality
buu' + bjk = a2 - Db + 4DIDJ'k' € DZ implies a° e DIDIZ .
As D is square~free, a = DiDix, with x € Z and we cobtain

the relation
DID'x° + Ui'k! € —iom Z © MZ
1”1 J DIDT :

This implies:

D! DI i ' +

()G = GREDED, 1e. () = GDE -
As

<5%)<5%)<%%)<5%) = (5p)% =1,

this completes the proof.

We come back to the study of the kernel OX(T;Zl’ZQ)'

2.9.11. Lemma: We have:

( ) 1 k R
a_(v;z,,2,) = ¢ b "R . 32,
driseme) me E L w07 R0 4 e 2, T, )
JjeZ
\E U

when ¢ 1is a nonzero constant.
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Proof: By28.6, Rgly) -¢(15zy,2,) = (cr+a)™™ ¥(v-7152y,2,)

Let us write

/DJ J
X
( ﬁ') - /D (u W’) ,
0 Az 0 -u!

with u e 6”%. Now

S ((U WJ") s Q(zl’ZE)) = '(T\IJ" + uz, + u'zl) .

o -u!'

Thus
/D
/Du gE )

=0, if wu' < O

c(uzg+u'21+§r)'k(nuu')k'l(c1+d)'kezi”(Y'*)(Du“')

if uu' > 0.

It is not difficult to see that the corresponding seriles is

absolutely convergent. Rearranging the terms, we obtain 2.9.11.

2.9.12. Let us conslder the decomposition of E = E12 (<2} E34 in

orthogonal subspaces, with

X 0 0 x

1 3
me- () m - (09)
12 Oxg’ 34 x40

and S = 812 + 834. The forms 812 and S are both of

34
signature (1,1). In the decomposition LE(E) = LE(EJ_E) ® L2(E34),

RS is written as R12 ® R34 .
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We consider the lattice

_ b 0 .
i\—~{(o )\‘),)\GO} in Ejp -
Slg(!) is even-valued on ). With respect to 85,
u O -
A= g1)iued 1

Hence DA¥ < A. It follows from (2.6.9) that the

8 -distribution (eA,cp) = = op(x) on E,, 1s semi-invariant
Xeh

. a by _ (4
for R, under the group I‘O(D) with character £ (c d) = (D)'
As N' 1is a multiple of D, eA is semi~invariant under

I‘O(N'). writing vy = gy;, with g e T‘m'\T‘O(N'),
vy € I‘O(N')\I‘O(N), we obtain

Q (TSZ 22,) =
z xlvy)™t .0 (Dxle) HRg(@)Rg (v ) - ¥5 (152,250 ( o )
1 L€ O
geT NI (N')
Writing Rs(g) = ng(g) ®R34(g), this is:
-~ x(vg) ™ z,0 (3)E(e)n(e) Ry (8)Rg (vy) 4" (rsz 0z (- )

1 re ©
geI‘W\I‘O(N' )

0 x
2.9.13. Let us write (xj,x,) for the point (, 3y

0 of E

34

We now calculate, for a function ¢ on E34, the distribution:

(55(,@) =
s . -1 . fﬁJ’ )
A
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(We will see in the proof that indeed &, is a distribution.)

L]

Let us use the operator J:Z of2.5.6 which transforms the

Y
l’
representation Ry, to the natural representation U of SL(2,R)

in ]R2. J:Z i1s given by the Partial Fourier Transform in x3.

l’z

Writing (x,y) or (;) for xP + yQ and using Poisson
summation formula, we get:
D
2 u (3)(Rqy () -0) (DL ,0)
jeZ 3 N

/Dh
= b (h) = (Ryyu(g)-p)( +J/DJ,0)
ReZ/N'Z ) JeZ( 34(8)-0) (g

i

VD) 2 AT () ue)- (S, g0 (5 0)

H

U2 T @ e s et ()

I

/B)" z X037 (%) (&1:”)(% g"l-(g))
(J:N')=l

as x‘(‘j)‘(%) is 0 if J is not invertible mod N'.

Let us consider the action of TO(N') on ZP® ZQ. The
orbit of the point ((1)) is the set ((®); with (a,N'c) = 1J.
Any element (yy,), with (m,N') = 1, is thus of the form
Jg(é), with (j,N') =1 and g € I‘O(N'). Thus we obtain:

-1 ) (/D J
gel"oiro(N’)E(g)(X(g)) (Jﬁzu (1) (Rg), (&) -0) (Fgr=50))

- -1 my, F 1 1 .,
= VD)7 2 AT (5, 40) (g my 5 Nin)

m,n

/D j N'K),

2 u (J (—N"—:
JskeZ Vo /D

]
=
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by using "again" Poisson summation formula. We have proved:
1 ]
2.9.14%. (6_,0) =i, z  u (4) Cp(fﬁJ,H_k)'
X N 4, kez NS

Thus up to a multiplicative constant, we obtain the identity:

2.9.15. Q (7527,25) =

/D
z X(Yi) Z u (J)(RS(Yi)"bk('r;zl:zz)) ).
Yi j!kez N'k X'
re € /D
Iet us define on E the distribution CX’ where
C =
( X,tp) ]
Y fj?,'i
: z : x(vy)t z U (J')(Rs(vi)'co)( - )
eT (N*NT.(N Jske t
Yi e} )\O ) iGG ﬁ X
-1 -1
i.e. C = x(v;)7" Rglvy) '(9A® GX)

z
X \(iErO(N' )“‘O(N)
the equality 2.9.15 is then
a (r521,2,) = (C_,¥%(r52,,2,)) .
X 1°°2 X 1’72

We now determine a system of representatives of I‘O(N') I‘O(N)

Let us consider Di a divisor of D'. We write D' = D]'_

As D 1is square free, (D]'_,Dé) = 1. As (ND],D}) =1, we can
1
= (%2 P) e (m).

Dé.

find (p,q) such that aps

1
1 NDl q
2.9.16. Lemma: A set of representatives of I‘O(N'N‘O(N) is
-1
[aD,(é ){)} where D'l varies over the divisors of D' and x
1

varies in Z/Déz .

Proof: Let us consider the natural action of TO(N) on ZP + ZQ
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We have, for vy = ( b), y'(é) = (ﬁi)- let (c,D') = D!,

a
Ne d
D} = D'/Di. Then (Nc,Dé) =1 and (Nec,a) = 1. We thus can

find (p',q') such that

V= (o ) e T .

N 1!
Cc D2q
1 -
Now y'-(o) = Y(é) = (Y"aD,) aD}(é). But remark that
1 1
v'a., € T.(N'). Hence we obtain vy = y".a-}(l Xy, with
Dl 0] Dl o 1
-1 .
v" € FO(N'). The lemma follows, as aDi(é ?) aDi € FO(N') if
and only if x € Déz.
2.9.17. Lemma:
DN .
.6 = 11/2(Z2°0
R12(°'D]'_) % = c(D,N) D} (D"D]'_)ED"Di eD"D'lA*H\

when c¢(D,N) 1is a constant depending only of D and N.

Proof: We apply2.6.11 Iet Kk € A*, we need to calculate:

-irds(y) %’{s(k,y) W—s-iwé (k)
ND Y 1 1 .

c(0,k) = e e e

]
yeA NDlA
Let yy € A D NDiA*, then S(y,) € 2NDJZ . If we apply the

translation y >y + Yos We obtaln the equality:
21n (x )

2y
oND] 0% ¢(0,k) .

Hence c¢(0,k) = 0, unless

c(0,k)

T§%T e (A nNDIA")Y, f.e. ke NDIA* + A .
1
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As N = NpD" with (NO,D) =1 and DA¥ < 3,

e a® _ mMne
D DlA =D'D

l(NOA*+DA*) < NDIA® + A, i.e.

1
* ~ " *
NDiA + A =D DiA + A

We suppose now Kk € D"DiA* + A. Remark that Dik e A.

Applying the translation y > y + Dék, we then have:

- irgars (y)
clok) = = e 1 = ¢(0,0) . (Recall that
YGA/NDiA
qb} - pND] = 1)

Let us write ND! = N.D"D!. As (N D"Di) = 1, we.can

1 [0) 1 0’
s _ L1} ]
write every X\ € A on the form \ = Noxl + D Dlxe, where Xl
ranges over A/D"DiA and L, ranges over A/NOA. We obtain:
-iquo
—pprs(¥)
c(0,0) = ¢ e, With ¢ = b e 1 and
yeA/D"DiA
D"D'
~img _N_ls(y)
02 = z e 0
yeA/NOA

The number s is standard to calculate: NO is prime to D.

Decomposing N0 in prime né, we can diagonalize S over Z /nZ .

As dim E12 = 2, we see from 4.3 that o depends only of the

denominator N

o
We now calculate c¢;. Choosing /D, Eié@ as basis of &

we obtain:
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aN

~2im F%(a2D+abD+b2 ((D-1)/4))
cl = > e 1
acZ /D"D}Z

beZ /D”D]'_ /4
. " .
i.e. as D Di divides D . qNO 0
21v-ﬁwﬁT((l-D)/4)b
1

¢y = (D“D'l) b} e
beZ /D"D:'LZ
- (D"D')(D”D')l/2 (_,,.ﬁ,.) &D,,D,l
As gD} = 1 mod D”Di, this concludes the proof of the Lemma 2.9.17.

2.9.18. We now analyze R34(uDi)-6X. Using the operator z’zl,

we have:
(R34(aDi) '5XJ-)jz,zl"D)

-1 J -1 ] N'k
- VDT 2 (§) T (Ulap,) o) (FE5) -

Js

The set [JjP + N'kQ; Jj,k € Z ) 1s transformed by aDi

into the set [D J'P + ND'k'Q, J',k' € Z ). The formula

( Dy 3! i = 1 it s

“D' 'k) (Y2 ) determines J = gDyJ' - PNDik'. As x is
ND! k!

a character mdd N and qD! = 1 mod N, (J) = x(J'). We write

2
D= D"D:'LDé. We have J = Jj' mod D"DJ'_, J = k' mod Dy . Thus

) = <5#55)<ﬁ%) = <5455)<§% :
We obtain thus:
(Ryylapy) 0,0 fy 4 @)
DYJ ND!k

= -1 2
(/D) J’ie —r?J—r)T('J'T(—r) (f‘

1
l
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Introducing the classes of j mod NDi, we need to calculate:

_ 2imhj
wy () = 5 @)W Ee T
1 JeZ /DiNZ 1

As (Di,N) = 1, writing J = + Nj,, we obtain

.
Did,

Dl
agy () = (%) X(OLT (D—N.l) uo(h) vp, (n)

with
_ 2imhyg

u-(h) = s (@) X(GT e

0 jez /vz D
and 2iv;h

v (h) = 3 (Fp) e DL _ (g2 .5}

- - 1]

Dy jez /DizZ 1 1 D17 "Dy

Hence:

(R34(aD.)'6 %)

- b T (oo, 200 G (5 >¢<—,J-,

We have:
D' — D"D} __ :
1 N 2
T)-rr — E (—nD—:‘L)EDnD, (Fr (D_l)fDi fD”D:'L

( )(ﬁT)(—w)g w using the relation £> Ep{é(g)(ﬂ)

Thus



326

(RS(“Di)'(eAQ 8.,)s0)

o7 o (22 (L () () of R
= " D D' nT Z u 'j Dr ©
c X 1 1 (ﬁ{)(D )Jez 0 Dl Dé ND:'LK
keZ —7:f A
)\eD"Di %*‘3’ D
We now calculate: CDi:X =
1,1 xyy-1 1 xy, .
- Xepilo 17 Rs(p 1) Rglapy) (3@ 8,
It
\ ——.—/EJ
xeD"D'ﬁJrl?,s =-2(xx'-g$)e2Dﬁ,.
1/ ND! k 2 2
—_— !
/D
Hence
X /D3
1 x
XeZZ /Déz ND!k
__l_ A
JD
; /DJ
~2imx(an1-3%) N e
= > e 23 s # 0,
xeZ/D)Z NDjk \t

‘ /D]
1y if ' - 45 ¢ Z . In this case this is D} o h
only 1 T D} : 2 P\ mik

O /D
We remark that if x € — and A\\' € ZZ/D2', then

o -1
A € D"Di 75 +0 . as X(c.Di) = X(Dé): we obtain
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_ 2y 1 v\ K
C s = otn >
( DI,y ®) = ¢ (3{)(3n) iz uO(J)(Fi)(ﬁé') “’(Nn'lk .
red ™t /B
AN = %-1,‘- Z
>
We write f%fl: ﬁ?% . For D"DiDé =D = 1 mod 4, we have:
tp! ]
2 1, _ . -1
(57 (59 (Bp) (5P = (Hr) (o) = €DéD., fD.l Ep) - - Gp)-
Hence, we rewrite: .
\ W
k
(Cy o) = e L Gt )u ) (@) E) o
Disx et ORI e,
JeD”Z —
keD!'Z /D
A - J%

and the distribution CX is proportional to the distribution

where
1 Kk A %
(V,om) = D'jﬂ 2 Gp (ﬁ?{) (Egmo(ﬁir) ("
jed"Zm A
keDiZ 7%
-z

. . k
We obtain the identity QX('\';Zl;Z2) = (Vx,tv (1529,25)) . Let

n(z1s25) =
-k
= Z q (l%)(l#)(l;)( )(Xz pHA 'z +% —Nvz
DD e ® 0'D"/ 'Dr’ DT 27N 1%
ueD"Z
1
veDlZ
A\ '-uv=Dn

Then we obtain an identity analogous to Zagier identity [25].
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2.9.19. Theorem: We have the identity:

(o]

0

k-1 n(T)
n=1 %0

QX(T;zl,zg) = (zl,zg) n G

(o]

z
n=1

k~1 2imnq
e .

wx,n(zl’ZQ) n

It remains to see that the forms wy n(zl,z2) are Hilbert
E
modular forms for the congruence subgroup FO(N,G). This will

follows from the:

2.9.20. Proposition: The distribution VX is semi-invariant

under TO(N,@).
Proof: Let us consider the automorphism of E given by

1 0) x(l 0)-1 )

x> (5 y 0 N

The transformed distribution V& under this automorphism is:

, -1 K 7D
(o) = 5 5 G 205 () (35 co( .

AED = At
jeD"z /D
keDiZ

W -dez

and we need to prove that V& is semi-invariant under the
action of the subgroup Tﬁ(@) = {(? g) e SL(2,8); b € N&}.

Iet us consider the distribution

) N
(DX:co) = xia‘l uo(bgrr) ) (i (ii)
jeD"Z /D

keZZ
Xx'——ﬁez
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Recall that we have defined the function v on LO

DI

in 2.9.10. We have V! = v, ,D . Thus, as v_, is invariant
x  D'x D

under the full group SL(2,0), we only have to prove that DX

is semi-invariant under I‘I‘}((?). We have:

3y . , u 9
$/ a N’b) A 73 (d -Nb) ] 7—5
Ve d ﬁ N c! at E ut
/D
with J, = aa'j; - N°(bb')k; + N(a'bx' - ab')) VD .
) " Ik o
Now if J; € D"Z and ' - 5 € Z , this implies

D\\' € D"Z, hence (/D) e D"O+ & /D and (a'®br' - ab'\)/D ¢ D"Z.

As D" divides N, we see that Iy € D"Z and that

J J
3?.- = ga! 3’1" mod N; the proposition is then clear.



330

Bibliographical Notes.

Section 2.1: The model of the representation W as an
induced representation by a cocompact subgroup of N 1is due to
P. Cartier [4] in view of applications to theta functions. A
further reference is also L. Auslander and R. Tolimieri [2].

Section 2.2: The results of this section are classical.

We have benefitted from notes of Harold Stark [32] and of
the articles of G. Shimura [30] and T. Shintani [31].

The Theorem 2.2.10 is a symmetric way to express
reciprocity relations between these Gauss sums b(ﬂl,lg)
(Formula 2.2.8),

We follow in the proof of 2.2.18 the text of S. Lang [18]
and refer to it for basic definitions and properties of the
quadratic residue symbol (we have adopted the convention of
Shimura [30]).

The computation of k(g) is due to Igusa [13]. The proof
given here relies on the Theorem (1.7.6) of Part I.

The function v (2.2.33) appears as the "lowest energy

z
state” in meny contexts. We didn't discuss here the Fock model
for the representation W of the Heisenberg group, to which
this vector is intimately related. We refer to Bargmann [3]
as the basic reference, for this realization.
The article of Weil [36] is an underlying reference.
Section 2.3: More information omn the group SL(2,R) and on the

K-decomposition of the representation Tk o can be found in the
£

book [19] of S. Lang.
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For Poincare series and the Petersson inner product, we
refer to Lehner J. ([20], Chapter VIII).

Section 2.4: The Theorem 2.4.9 in this precise form is due
to G. Shimura [30]. The fact that the representation R 1is a
sum of two irreducible representationsof the symplectic group in
even and odd functions goes back to D. Shale [29].

Section 2.5: The main references for this section are
Rallis-Schiffmann [22]-[23], R. Howe [11l] and M. F. Vigneras [35].

The Proposition 2.5.6 is due to I. Segal [27].

The decomposition of the representation R_. of SL(2,R) x O(p)

S
is given by M. Saito [26].

The isomorphism of the symplectic Lie aglebra sp(B) with
the Lie algebra of differential operators [piqj + qui’ pipj, qqu]
with Q = BSI’ pj = xj, is at the basis of the infinitesimal
formula 2.5.13. We refer to A. A. Kirillov [16] for the infinitesi-
mal corresponding formulas.

The Theorem 2.5.24 is basically due to M. F. Vigneras [35].

We explicit from 2.5.25 to 2.5.31 the following idea of
R. Howe [12]: the explicit decomposition of the tensor product

of representation T of the holomorphic discrete series with

k
the representation Tk’ of the antiholomorphic discrete series,
as determined by E. Gutkin [9] and J. Repka [25] should lead us
to the results of Rallis and Schiffmann. Following this line, we
obtained the Theorem 2.5.28, which gives a simple proof of the

needed results of ([22]-[23]).
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We are indebted to Victor Kac for pointing out to us the
modular forms constructed by Hecke in [10], and to Dale Petersson
for discussing the proof of Hecke [10] that we reproduce here
(2.5.34).

The paragraphs 2.5.37-2.5.44 summarize results of [15]:

We determined in this article all possible covariant holomorphic
maps from the Siegel upper-half plane D to the space of RS
transforming according to the automorphy factor +(CZ+D), for

+ & finite dimensional representation of GL(n,C).

Section 2.6: The Theorem 2.6.9 in this precise form is due
to G. Shimura [30].

The Proposition 2.6.11 in this form is due to T. Shintani [31].

The Theorem 2.6.16 is due to Hecke [10].

The Theorem 2.6.20 is due to A. Andrianov [1]. Our proof
is based on the Theorem 1.7.6 of Part I.

Section 2.7: The main reference of this section is
G. Shimura [30].

The idea of using the Weil representation associated to a
form of signature (2,1) is due to Niwa [21] and Shintani [31].

The proof of 2.7.25 is based on the general approach of
Rallis-~Schiffmann [24] to Zagiler identity.

Section 2.8: The main reference is D. Zagier [37]. Our

approach is based on Rallis-Schiffmann [24].
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The Theorem 2.8.16 is due to Zagier. Our proof follows
the general line of Rallis-Schiffmann [24].

Section 2.9: The main result (Theorem 2.9.1) of this
section is due to the author. This theorem was conjectured by
H. Cohen [5] who also determined transformation properties of
C? on some subgroup of TO(N,G) [61.

Our approach is based on the explicit computation of the
kernel of this correspondence in the form of a 6a-series. This

approach was suggested to us by the article of Kudla [17].
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