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INTRODUCTORY ADDRESS TO THE EDINBURGH MATHEMATICAL SOCIETY,
Novemsgr 9, 1883

[Phalosophical Magazine, January, 1884.]

knot on an endless string or wire, For, once we have tied a knot, of whatever com-
plexity, on a string and have joined the free ends of the string together, we have ap
arrangement  which, however its apparent form may be altered (as by teazing out,
tightening, twisting, or flyping of individual parts), retains, until the string is again cut,
certain perfectly definite and characteristic properties altogether independent of the
relative lengths of itg various convolutions, :
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very different from our present subject; and the Geometria sitds of Leibnitz, though
mtended (as Listing shows) to have specially designated it, turned out, in its inventor's
hands, to be almost unconmected with it. The subject is one of very great importance,
and has been recognized as such by many of the greatest investigators, including Gauss
and others; but each, before and after Listing’s timé, has made his separate contri-
butions to it without any attempt at establishing a connected account of it as an
independent branch of science,

It is time that a distinctive and unobjectionable name were found for 1t; wnd
once that is secured, there will soon be a crop of Treatises. What is wanted is an
erudite, not necessarily a very original, mathematician. The materials already to hand
arc very numerous. But it is not easy (in English at all events) to find a name
for it without coining some altogether new word from Latin or Greek roots. Topology
has a perfectly definite meaning of its own, altogether unconnected with our subject.
Position, with our mathematicians at” least, has come to imply measure. Situation is
not as yet so definitely associated with measure; for we can speak of a situation to
right or left of an object without inquiring how Jar off.  So that till a better term
is devised, we may call our subject, in our own language, the Science (not the Geometry,
for that implies measure) of Situation.

Listing, to whom we owe the first rapid and elementary, though highly suggestive,
sketch of this science, as well as a developed Investigation of one important branch
of it, was in many respects a remarkable man. It is to be hoped that much may
be recovered from his posthumous papers; for there can be little doubt that in con-
sequence of his disinclination to publish (a disinclination so strong that his best-know
discovery was actually published for him by another), what we know of his work is
a mere fragment of the results of his long and active life.

In what follows I shall not confine my illustrations to those given by Listing,

though I shall use them freely; but I shall also introduce such as have more
prominently forced themselves on my own mind in connection mainly with pure physical
subjects. It is nearly a quarter of a century since I ceased to be a Professor of
Mathematics: and the branches of that great science which I have since cultivated
are especially those which have immediate bearing on Physics. But the subject before
us Is so extensive that, even with this restriction, there would be ample material, in
my own reading, for a whole series of strictly elementary lectures.
1 ought not to omit to say, before proceeding to our business, that it is by no
means creditable to British science to find that Listing’s papers on this subject—the
Vorstudien zur Topologie (Géttinger Studien, 1847), and Der Census rdumlicher Compleze
(Gottingen Abhandlungen, 1861)—have not yet been rescued from their most undeserved
obscurity, and published in an English dress, especially when so much that is com-
paratively worthless, or at least not so worthy, has already secured these honours. + I was
altogether ignorant of the existence of the Vorstudien till it was pointed out to me
by Clerk-Maxwell, after I had sent him one of my earlier papers on Kunots; and
I had to seek, in the Cambridge University Library, what was perhaps the only then
accessible copy.
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direction in which a stone falls, or in which a plummet hangs, and its reverse. Even
below-decks, when the vessel is lying over uunder a steady breeze, and we “have our
sea-legs on,” we instinctively keep our bodies vertical, without any thought of setting
ourselves perpendicular to the cabin-floor. And this definition holds in every region
of space where the earth’s attraction is the paramount force. In an imaginary cavity
at the carth’s centre the terms would cease to have any meaning.

East, in the sense of “Orient” is the quarter in which the sun rises; and this
distinction is correct all over the earth except at the poles, where it has no meaning.
But if we were to define South as the region in which the sun is seen at midday, .
our definition would be always wrong if we were placed beyond the tropic of Capricorn,
and at particular seasons even if we were merely beyond that of Cancer. Still there
1s a certain consensus of opinion which enables all to understand what is meant by South
without the need of any formal definition.

But the distinction between Right and Left is still more difficult to define. We
must employ some such artifice as “A man’s right side is that which is turned east-
wards, when he lies on his face with his head to the north.” For, in the lapse of
ages of development, one may perhaps be right in saying, with Moliére’s physician,
“Nous avons changé tout cela”; and men’s hearts may have migrated by degrees to the
other side of their bodies, as does one of the eyes of a growing flounder. Or some hitherto
unsuspected superiority of left-handed men may lead to their sole survival ; and then
the definition of the right hand, as that which the majority of men habitually employ
most often, would be false.

I will not speak further of these things, which I have introduced merely to show
how difficult it sometimes is to formulate precisely in words what every one in his
senses knows perfectly well; and thus to prepare you to expect difficulties of a higher
order, even in the very elements of matters not much more recondite.

(2) But there is a very simple method of turning a man’s right hand into his
left, and wice wversd, and of shifting his heart to the right-hand side, without walting
for the (problematical) results of untold ages of development or evolution. We have
only to look at him with the assistance of a plane mirror or looking-glass, and these
extraordinary transformations are instantly effected. Behind the looking-glass the world
and every object in it are perverted (verkehrt, as Listing calls it). Seen through an
astronomical telescope, everything is inverted merely (wmgekehrt). Particular cases of this
distinction, which is of very considerable importance, were of course known to the old
geometers. For two halves of a circle are congruent; one semicircle has only to be
made to rotate through two right angles in dts own plane to be superposable on the
other. But how about the halves of an isosceles triangle formed by the bisector of
the angle between the equal sides? They are equal in every respect except congruency ;
one has to be turned over before it can be exactly superposed on the other.

Listing gives many examples of this distinction, of which the following is the
simplest :—

Inversion :—(English) V and (Greek) A.
Perversion :—(English) R and (Russian) .
Inversion and perversion:—(English) L and (Greek) T.
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He also gives an elaborate discussion of the different relative situations of two
dice whose edges are parallel, taking account of the points on the various sides.

When we flype a glove (as in taking it off when very wet, or as we skin a hare),
we perform an operation which (not describable in English by any shorter phrase than
“turming outside in”) changes its character from a right-hand glove to a left. A
pair of trousers or a so-called reversible water-proof coat is, after this operation has
been performed, still a pair of trousers or a coat, but the legs or arms are inter-
changed ; unless the garments, like those of “Paddius & Corko,” are buttoned behind®.

(3) The germ of the whole of this part of the subject lies in the two ways in
which we can choose the three rectangular axes of z, ¥, 2; and is intimately con-
nected with the kinematical theory of rotation of a solid.

Thus we can make the body rotate through two right angles about one axis, so
that each of the other two is inverted.- Such an operation does not change their relative
situation. --

But to invert one only, or all three, of the axes requires that the body should
(as 1t were) be pulled through dtself, a process perfectly conceivable from the
kinematical, but not from the physical, point of view. By this process the relative
situation of the axes is changed.

When we think of the rotation about the axis of & which shall bring Oy where
Oz was, we see that it must be of opposite character in these two cases. And it
Is a mere matter of convention which of the two systems we shall choose as our
normal or positive one.

That which seems of late to have become the more usual is that in which a
quadrantal rotation about z (which may be any onme of the three) shall change Oy
into the former 0Oz (ie. in the cyclical order =, y, z), when it is applied in the
sense in which the earth turns about the northern end of its polar axis. Thus we
may represent the three axes, in cyclical order, by a northward, an upward, and an
eastward line. So that we change any one into its cyclical successor by seizing the
positive end of the third, and, as it were, unscrewing through a quadrant®

The hands of a watch, looked at from the side on which the face is situated,
thus move round in the negative direction; but if we could see through the watch,
they would appear to move round in the positive direction. This universally employed
construction arises probably from watch-dials having been originally made to behave
as. much as possible like sun-dials, on which the hours follow the apparent daily
coursc of the sun, 7. the opposite direction to that of the earth’s rotation about
1ts axis.

(4) This leads us into another very important elementary branch of our subject,

! When a Treatise comes to be written (in English) on this science, great care will have to be taken
in exactly defining the senses in which such words as inversion, reversion, perversion, &c. are to be employed.
There is much danger of confusion unless authoritative definitions be given once for all, and not too late.

2 These relations, and many which follow, were illustrated by modelss not bv diagrams: and the reader
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spirals. [He devotes a good many pages to showing how great was this confusion, ]

When we compare the tendrils of a hop with those of a vine, we sce that
while they both 8row upwards, as in coiling themselves round a vertical pole, the
end of the hop tendril goes round with the sun (secundum solem), that of the vine
tendril against the sun (contra solem).

Thus the vine tendril forms an ordinary or (as we call it) right-handed screw,
the hop tendril a left-handed screw,

Now, if a point move in a circle in the plane of Yz in the positive direction,
and if the circle itself move in the direction of # positive, the resultant path of
the point will be g vine-, or right-handed screw. But if the circle’s motion as a
whole, or the motion of the point in the circle, be reversed, we have a left-handed
screw; while if both be reversed, it remains right-handed. Every one knows the
combination of the rotatory and translatory motions involved in the use of an
ordinary corkscrew; but there are comparatively few who know that g screw is the
same at either end—that it has, in fact, what is called dipolar symmetry.

With a view to assist the botanists, Listing introduced a fancied resemblance
between the threads of the two kinds of (double-threaded) screws and the Greek
letters A and 8, for the latter of which he also proposed the long [ used as a sign
of integration; thus AMAL and 8888, or [fff.

The first, which is our vine- or right-handed screw, he calls from his point of
view (which is taken n the axis of the screw) laeotrop, the other dexiotrop. He
also proposes to describe them as lambda- or deltq- Windungen. But it is clear that
all this “makes confusion worse confounded.” Every one knows an  ordinary screw.
It is_right-handed or positive. Hence he can name, at a glance, any vegetable or
other helix.

(5) A symmetrical solid of revolution, an ellipsoid for instance (whether prolate
or oblate), has, if at rest, dipolar symmetry. But if it rotate about its axis, we can at
once distinguish one end of the axis from the other, and there is depolar asymmetry.

This distinction is dynamical as well ag kinematical, as every one knows who ig
conversant with gyroscopes or gyrostats. :

A flat spiral spring, such as a watch- or clock-spring, or the gong of an
American clock, if the inner coils be pulled out to one side, becomes a right-handed
screw ; if to the other, a left-handed screw. In either case it retains the dipolar
Symmetry which it had at first, while plane,

But when we pass an electric current round a circle of wire, we at once give
it dipolar asymmetry. The current appears, from the one side, to be going round
in the positive direction; from the other, in the negative. This is, in fact, the point
of Ampere’s explanation of magnetism.

A straight wire heated at one end has dipolar asymmetry, not only because of
the different temperatures of its ends, but because of the differences of their electric
potential (due to the “Thomson effect ”),

T. II., 12
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The same is generally true of every vector (or directed) quantity, such as a
velocity, a force, a flux, an axis of rotation, &ec.

(6) An excellent example of our science is furnished by the Quincunz, which is
the basis of the subject of Phyllotaxis in botany, as well as of the arrangement of
scales on a fish.

A quincunx (from the scientific point of view) is merely the system of points
of intersection of two series of equidistant parallel lines in the same plane. By
a simple shear parallel to one of the two series of lines, combined (if necessary)
with mere uniform extensions or contractions along either or both series, any one
quincunx can be changed into any other. Hence the problems connected with the
elements of the subject are very simple; for it follows from the above statements
that any quincunx can be reduced to square order. The botanist who studies the
arrangement of buds or leaf-stalks on a stem, or of the scales on a fir-cone, seeks
the fundamental spiral, as_he calls it, that on which all the buds or scales lie. And
he then fully characterizes each particular arrangement by specifying whether this
spiral is a right- or left-handed screw, and what is its divergence. The divergence
1s the angle (taken as never greater than m) of rotation about the axis of the
fundamental spiral from one bud or scale to the next.

(7) It is clear that if the stem or cone (supposed cylindrical) were inked and
rolled on a sheet of paper, a quincunx (Plate IIL fig. 1) would be traced, consisting
of continuously repeated (but, of course, perverted) impressions of the whole surface,
Hence if A4, 4,, be successive prints of the same scale, B a scale which can be
reached from A4 by a right-handed spiral, AB, of m steps, or by a left-handed
spiral, 4,B, of n steps, these two spirals being so chosen that all the scales lie on
n spirals parallel to 4B and also on m spirals parallel to A4,B, we shall find a
scale of the fundamental spiral by seeking the scale nearest to A4, within the
space AB4,.

Here continued fractions perforce come in. Let p/v be the last convergent to
m/n. Then, if it be greater than m/n, count u leaves or scales from A along AB,
and thence » leaves or scales parallel to BA,, and we arrive at the required leaf or
scale. If the last convergent be less than m/n, count » leaves along A,B, and
thence u parallel to BA. If the leaf, a, so found in either case, be nearer to 4
than to 4,, the fundamental spiral (as printed, ze. perverted) is right-handed ; and
vice versd. Thus the first criterion is settled.

To find the divergence, take the case of ufv zreater than m/n; and «, so found,
nearer to A than to A4,. Draw ac perpendicular to AA4,, and let the spirals through
«, parallel to BA and BA, respectively, cut 4A, in d and e. Then the divergence
s 2mdc/AA4,. This is obviously greater than 27Ad/Ad, (ie. 2my/n), and less than
2wdeldA, (ie. 2mu/m); and can be altered by shearing the diagram parallel to AA,,
or (what comes to the same thing) twisting the stem or come. To find its exact
value, draw through B a line perpendicular to A4, (ie. parallel to the axis of the

<tfom or enarna) o mwd T4 Y a1 9 ~
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seen to be 2 (us+vr)[(ms+nr); and we have the complete description of the object,
so far as our. science goes.

In the figure, which is taken from an ordinary cone of Pinus pinaster, we have
m=>5, n=8; whence pu=2, v=3. Also r=3, s=2; and the fundamental spiral
(perverted) is therefore right-handed, with divergence 2713/34.

Should m and n# have a common divisor p, it is easily seen that the leaves
are arranged in whorls; and, instead of one fundamental spiral, there is a group of
p such spirals, forming a multiple-threaded screw, Each is to be treated by a process
similar to that above.

(8) The last statement hints at a subject treated by Listing, which he calls
paradromic winding. Some of his results are very curious and instructive.

Take a long narrow tape or strip of paper. Give it any number, m, of half-
twists, then bend it round and paste its ends together.

If m be zero, or any other even number, the two-sided surface thus formed has
two edges, which are paradromic. If the strip be now slit up midway between the
edges, it will be split into two. These have each m/2 full twists, like the original,
and (except when there is no twist, when of course the two can be separated) are
m[2 times linked together.

But if m be odd, there is but one surface and one edge; so that we may draw
a line on the paper from any point of the original front of the strip to any point
of the back, without crossing the edge. Hence, when the strip is slit up midway, it
remains one, but with m full twists, and (if m > 1) it is knotted. It becomes, in
fact, as its single edge was before slitting, a paradromic knot, a double clear coil
with m crossings.

[This simple result of Listing’s was the sole basis of an elaborate pamphlet
whiéh’ a few years ago had an extensive sale in Vienna; its object being to show
how to perform (without the usual conjuror’s or spiritualist’s deception) the celebrated
trick of tying a knot on an endless cord.]

The study of the one-sided autotomic surface which is generated by increasing
indefinitely the breadth of the paper band, in cases where m is odd, is highly
interesting and instructive. But we must get on.

(9) I may merely mention, in passing, as instances of our subject, the whole
question of the Integral Curvature of a closed plane curve;  with allied questions such
as “In an assigned walk through the streets of KEdinburgh, how often has one
rotated relatively to some prominent object, such as St Giles’ (supposed within the
path) or Arthur's Seat (supposed external to it)?” We may vary the question by
supposing that he walks so as always to turn his face to a particular object, and
then inquire how often he has turned about his own axis. But here we tread on
Jellinger Symonds’ ground, the non-rotation of the moon about her axis!

But the subject of the area of an autotomic plane curve is interesting. It is one
of Listing’s examples. De Morgan, W. Thomson, and others in this country have also
developed it as a supposed new subject. But its main principles (as Muir has shown
in Phil. Mag. June, 1873) were given by Meister 113 years ago. It is now so well
known that T need not dilate upon it.

12—2
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(10) A curious problem, which my colleague Chrystal recently mentioned to me,
appears to be capable of adaptation as a good example of our subject. It was to
this effect :—

Draw the circle of least area which includes four given points in one plane.

In this form it is a question of ordinary geometry. But we may modify it as
follows :-—

Given three points in a plane; divide the whole surface into regions such that
wherever in any one of those regions a fourth point be chosen, the rule for construct-
tng the least circle surrounding the four shall be the same.

There are two distinct cases (with a transition case which may be referred to
either), according as the given points A, B, C (suppose) form an acute- or an
obtuse-angled triangle. -

(@) When ABC is 7dcute-angled (fig. 2). Draw from the ends of each side
perpendiculars towards the quarter where the triangle lies, and produce each of them
indefinitely from the point in which it again intersects the circumscribing circle.

The circle ABC is itself the required one, so long as D (the fourth point) lies
within it.

If D lie between perpendiculars drawn (as above) from the ends of a side, as
AB, then ABD is the required circle.

If it lie in any other region, the required circle has D for one extremity of a
diameter, and the most distant of A, B, C for the other.

(8) When there is an obtuse angle, at C say (fig. 3). Make the same con-
struction as before, but, in addition, describe the circle whose diameter is A4B. All
is as before, except that AB is the circle required, if D lie within it; and that if
D lie within the middle portion of the larger of the two lunes formed the required
circle 18 ABD.

[In figs. 2, 3, 4, which refer to these two cases in order, and to the intermediate
case in which the triangle is right-angled at C, each region is denoted by three or
by two letters. When there are three, the meaning is that the required circle passes
through the corresponding points; when there are but two, these are the ends of
a diameter. The separate regions are, throughout, bounded by full lines; the dotted
lines merely indicate constructions.]

(11) A very celebrated question, directly connected with our subject, is to make
a Knight (at chess) move to each square on the board once only till it returns to
its original position. From the time of Euler onwards numerous solutions have been
given. To these I need not refer further.

A much simpler question is the motion of a Rook, and to this the lately
popular American “15-puzzle” is easily reduced. For any closed path of a rook

contains an even number of squares, since it must pass from white to black altemately
T'Thic fiirniches o  cemerd  Sovcdbom mm o e o e & e ey a oy
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even number of interchanges of pieces will give the required result, the puzzle can
be solved; if not, the arrangement is irreducible.

(12) A few weeks ago, in a railway-train, I saw the following problem proposed :—
Place four sovereigns and four shillings in close alternate order in a line, Required,
in four moves, each of two contiguous pieces (without altering the relative position
of the two), to form a continuous line of four sovereigns followed by four shillings.
Let sovereigns be represented by the letter B, shillings by A.

One solution is as follows :—

Before starting :— . ABABABARB

1st move ......... BAABABA . . B
2nd , ......... BAAB . . 4A4BB
3rd ... B . . BAAAABBEB
4h ... B B BAA4AA4A4a

If we suppose the pieces to be originally arranged in circular order, with two
contiguous blank spaces, the law of this process is obvious. Operate always with the
penultimate and antepenultimate, the gap being looked on as the end for the time
being. With this hint it is easy to generalize, so as to get the nature of the
solution of the corresponding problem in any particular case, whatever be the number
of coins. It is also interesting to vary the problem by making it a condition that
the two coins to be moved at any instant shall first be made to change places.

(13) Another illustration, commented on by Listing, but since developed from a
different point of view in a quite unexpected direction, was originated by a very
simple questiori propounded by Clausen in the Astronomische Nachrichten (No. 494).
In -its general form it is merely the question, “What is the smallest number of
pen-strokes with which a given figure, consisting of lines only, can be traced?” No
line is to be gone over twice, and every time the pen has to be lifted counts one.

The obvious solution is:—Count the number of points in the figure at each of
which an odd number of lines meet. There must always be an even number of such
(zero included). Half of this number is the number of necessary separate strokes
(except in the zero case, when the number of course must be unity). Thus the
boundaries of the squares of a chess-board can be traced at 14 separate pen-strokes;
the usual figure for Euclid 1. 47 at 4 pen-strokes; and fig. 5 at one,

(14) But, if 2n points in a plane be joined by 3n lines, no two of which
intersect, (i.e. so that every point is a terminal of 3 different lines), the figure requires
n separate pen-strokes. It has been shown that in this case (unless the points be
divided into two groups, between which there is but one connecting line, fig. 7) the
3n lines may be divided into 3 groups of n each, such that one of each group ends
at each of the 2n points. See fig. 6, in which the lines are distinguished as a, B,
or . Also note that aBaB &c., and ayzry &c, form entire cycles passing through all
the trivia, while ByBy &c. breaks up into detached subcycles.

Thus, if a Labyrinth or Maze be made, such that every intersection of roads is
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Trivium, it may always be arranged so that the several roads meeting at each
ntersection may be one a grass-path, one gravel, and the other pavement. To make
ure of getting out of such a Labyrinth (if it be possible), we must select two kinds
f road to be taken alternately at each successive trivium. Thus we may elect to
ake grass, gravel, grass, gravel, &c., in which case we must either come to the exit
oint or (without reaching it) return to our starting-point, to try a new combination.
Tor it is obvious that, if we follow our rule, we cannot possibly pass through the
ame trivium twice before returning to our starting-point.

(15) This leads to a very simple solution of the problem of Map-colouring with
our colours, originally proposed by Guthrie, and since treated by Cayley, Kempe,
nd others.

The boundaries of the counties in a map generally meet in threes. But if four,
r more, meet at certain points, let a small county be inserted surrounding each
uch point; and there will then be trivia of boundaries only. These various boundaries
ay, by our last result, be divided (usually in many different ways) into three
ategories, a, B, y suppose, such that each trivium is formed by the meeting of one
om each category. Now take four colours, 4, B, C, D, and apply them, according to
ile, as follows; so that

o separates 4 and B or € and D,
B » A and C , B and D,
v » 4 and D ,, B and C,

nd the thing is done. For the small counties, which were introduced for the sake
f the construction, may now be made to contract without limit till the boundaries
ecome as they were at first.

The connection between these two theorems gives an excellent illustration of the
rinciple involved in the reduction of a biquadratic equation to a cubic.

Kempe has pointed out that four colours do mot in general suffice for a map
rawn upon a multiply-connected surface, such as that of a tore or anchor-ring.
his you can easily prove for yourselves by establishing ome simple instance. (This
- an example of a case of Listing’s Census.)

(16) From the very nature of our science, the systems of trivia, as we described
iem in § 14, may be regarded as mere distorted plane projections of polyhedra which
we trihedral summits only. There are two obvious classes of exceptions, which will
e at once understood from the simple figures 7 and 8. Their characteristic is that
arts of the figure containing closed circuits (i.e. fuces of the polyhedron) are connected
> the rest by one or by two lines (edges) only. The lines are always 8n in number,
nd, excluding only the first class of exceptions, can be marked in 3 groups a, B, v,
ie of each group ending at each point (trikedral angle).

Now in every ome of the great variety of cases which I have tried (where the
gure was, like fig. 6, a projection -of a #rue polyhedron) I have found that a
mplete circuit of edges, alternately of two of these groups (such as aBaB &ec.) can
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each of the angles. That is, in another form, every such polyhedron may be projected
in a figure of the type shown in fig. 9, where the dotted lines are supposed to lie
below the full lines. But, in the words of the extraordinary mathematician Kirkman,
whom I consulted on the subject, “the theorem...... has this provoking interest, that
it mocks alike at doubt and proofl.” Probably the proof of this curious Pproposition
has (§ 11) hitherto escaped detection from -its sheer simplicity.  Habitual stargazers
are apt to miss the beauties of the more humble terrestrial objects.

(17) Kirkman himself was the first to show, so long ago as 1858, that a “clear
circle of edg:s” of a unique type passes through all the summits of a pentagonal
dodecahedron. Then Hamilton pounced on the result and made it the foundation of
his Jcosian Game, and also of a mew caleulus of a very singular kind. See figures
9, 10, 11, which are all equivalent projections of a pentagonal dodecahedron.

At every trivium you must go either to right or to left. Denote these operations
by » and [ respectively. In the pentagonal dodecahedron, start where you will, either
7® or I’ brings you back to whence you started. Thus, in this case, » and I are to
be regarded as operational symbols—each (in a sense) a fifth root of +1. In this
notation Kirkman’s Theorem is formulated by the expression

rlrlrrrlllrlrlrrrlll =1

or, as we may write it more compactly,
[l =1, or [(lrypr]=1.

It may be put in a great many apparently different, but really equivalent, forms; for,
so long as the order of the operations is unchanged. we may begin the cycle where
we please. Also we may, of course, interchange r and ! throughout, in consequence
of the symmetry of the figure.

It is curious to study, in such a case as this, where it can easily be done, the
essential nature of the various kinds of necessarily abortive attempts to get out of
such a labyrinth. Thus if we go according to such routes as (rI)rl2, or 73y (sequences
which do not occur in the general cycle), the next step, whatever it be, brings us
to a point already passed through. We thus obtain other relations between the symbols
r and . We can make special partial circuits of this kind, including any number of
operations from 7 up to 19. '

All of these remarks will be obvious from any one of the three (equivalent) diagrams
9, 10, or 11.

(18) As I have already said, the subject of knots affords one of the most typical
applications of our science. I had been working at it for some time, in consequence
of Thomson’s admirable idea of Vortex-atoms, before Clerk-Maxwell referred me to
Listing’s Essay; and I had made out for myself, though by methods entirely different
from those of Listing, all but one of his published results. Listing’s remarks on this
fascinating branch of the subject are, unfortunately, very brief; and it is here especially,
I hope, that we shall learn much from his posthumous papers. In the Vorstudien he

1 ‘Reprint of Math. Papers from the Ed. Times,’ 1881, p. 113,
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looks upon knots simply from the point of view of screwing or winding; and he
designates the angles at a crossing of two laps of the cord by the use of his A and
8 notation (§ 4). Fig. 12 will show the nature of such crossings. Figs. 13, 14, and
15 show what he calls reducible and reduced knots. In a reducible knot the angles
in some compartments at least are not all A or all & (the converse is not necessarily
true). In a reduced knot, each compartment is all A or all §.

(19) My first object was to classify the simpler forms of knots, so as to find to
what degree of complexity of knotting we should have to go to obtain a special form
of knotted vortex for each of the known elements. Hence it was necessary to devise
a mode of notation, by means of which any knot could be so fully described that
1t might, from the description alone, be distinguished from all others, and (if requistte)
constructed in cord or wire.

This I obtained, in a manner equally simple and sufficient, from the theorem which
follows, one which (to judge from sculptured stones, engraved arabesques, &c.) must have
been at least practically known for very many centuries.

Any closed plane curve, which has double points only, may be looked upon as
the projection of a knot in which each portion of the cord passes alternately under
and over the successive laps it meets. [The same is easily seen to hold for any number
of self-intersecting, and mutually intersecting, closed plane curves, in which cases we
have in general both linking and locking in addition to knotting.]

The proof is excessively simple (§ 11). If both ends of one continuous line lie
on the same side of a second line, there must be an even number of crossings.

(20) To apply it, go continuously round the projection of a knot (fig. 16), putting
4, B, C, &c. at the first, third, Jifth, &c. crossing you pass, until you have put letters
to all.  Then go round again, writing down the name of each crossing in the order
in which you reach it. The list will consist of each letter employed, taken twice over.
4, B, €, &c. will occupy, in order, the first, third, fifth, &ec. places; but the way n
which these letters occur in the even places Jully characterizes the drawing of the pro-
Jected knot. It may therefore be described by the order of the letters in the even
places alone; and it does not seem possible that any briefer description could be
given.

To prove that this description is complete, so far as the projection is concerned,
all that is required is to show that from it we can ab once construct the diagram.
Thus let it be, as in fig. 16, EFBACD. Then the full statement is

AEBFCBDAECFDIA &e.

(21) To draw from such a statement, choose in it two apparitions of the same
letter, between which no other letter appears twice. Thus A ECF D/A (at the end of
the statement) forms such a group. It must form a loop of the curve. Draw such
a loop, putting A4 at the point where the ends cross, and the other letters in order
(either way) round the loop. Proceed to fill in the rest of the cycle in the same
way. The figures thus obtained may present very different appearances; but they are
all projections of the same definite knot  Tha arlo fowih e Sl ops 97
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This can be at once supplied by a + or — sign attached to each letter where it oceurs
in the statement of the order in the even places.

(22) Furnished with this process, we find that it becomes a mere question of
skilled labour to draw all the possible knots having any assigned number of crossings.
The requisite labour increases with extreme rapidity as the number of crossings is
increased. For we must take every possible arrangement of the letters in the even
places, and try whether it is compatible with the properties of a self-intersecting plane
curve. Simple rules for rejecting useless or impracticable combinations are easily formed.
But then we have again to go through the list of survivors, and reject all but one of
each of the numerous groups of different distortions of one and the same species of knot.

I have not been able to find time to carry out this process further than the
knots with seven crossings.  But it is very remarkable that, so far as I have gone,
the number of knots of each class belongs to the series of powers of 2. Thus:

Number of crossings ......... 3, 4,5, 6,7,
Number of distinct forms... 1, 1, 2, 4, 8.

It is greatly to be desired that some one, with the requisite leisure, should try to
extend this list, if possible up to 11, as the next prime number. The labour, great
as 1t would be, would not bear comparison with that of the calculation of # to
600 places, and it would certainly be much more useful. [But see Nos. XL, XLI, which
are of later date than this Address, 1899.]

Besides, it is probable that modern methods of analysis may enable us (by a single
“happy thought” as it were) to avoid the larger part of the labour. It is in matters
like this that we have the true “raison d’8tre” of mathematicians,

(23) There is one very curious point about knots which, so far as T know, has
as yet no analogue elsewhere. In general the perversion of a knot (ve. its image in
a plane mirror) is non-congruent with the knot itself. Thus, as in fact Listing points
out, it is impossible to change even the simple form (fig. 14) into its Image (fig. 15).
But I have shown that there is at least one form, for every even number of crossings,
which is congruent with its own perversion. The unique form with four crossings gave
me the first hint of this curious fact, Take one of the larger laps of fig. 17, and
turn it over the rest of the knot, fig. 18 (which is the perversion) will be produced.

We see its nature better from the following process (one of an infinite number)
for forming Amphicheiral knots, Knot a cord as in fig. 19, the number of complete
figures of “eight” being at pleasure. Turn the figure upside down, and it is seen to
be merely its own image. Hence, when the ends are joined, it forms a knot which is
congruent with its own perversion,

(24) The general treatment of links is, unless the separate cords be also knotted,
much simpler than that of knots—i.e. the measurement of belinkedness is far easier
than that of beknottedness.

I believe the explanation of this curious result to lie mainly in the fact that it is
possible to interweave three or more continuous cords, so that they cannot be separated,
and yet no one shall be knotted, nor any two linked together.

T. I 13
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This is obvious at once from the simplest possible case, shown in fig. 20. Here the
three rings are not linked but locked together.

Now mere linkings and mere lockings are very easy to study. But the various
loops of a knot may be linked or locked with one another. Thus the full study of a
knot requires in general the consideration of linking and locking also.

(25) But it is time to close, in spite of the special interest of this part of the
subject. And I have left myself barely time to mention the very interesting portion
of the Topologie which Listing worked out in detail. You will find a brief synopsis
of a part of it prefixed to Clerk-Maxwell’s Electricity and Magnetism, and Cayley has
contributed an elementary statement of its contents to the Messenger of Mathematics
for 1873; but there can be no doubt that S0 important a paper as the Census rdum-
licher Complexe ought to be translated into English.

To give an exceedingly simple notion of its contents I may merely say that Listing
explains and generalizes the so-called Theorem of Euler about Polyhedra (which all of
us, whose reading dates some twenty years back or more, remember in Snowball’s or
Hymers’ Prigonometry), viz. that “if S be the number of solid angles of a polyhedron,
F the number of its faces, and £ the number of its edges, then

S+F=E+2”

The mysterious 2 in this formula is shown by Listing to be the number of spaces
involved; <e. the content of the polyhedron, and the Amplexum, the rest of infinite
space.

And he establishes a perfectly general relation of the form

V-8S+L-P=0,

where V' is the number of spaces, S of surfaces, L of lines, and P of points in any
complex ; these numbers having previously been purged in accordance with the amount
of Cyclosis in the arrangement studied. But to make even the elements of this
ntelligible I should require to devote at least one whole lecture to them.

Meanwhile I hope I have succeeded in showing to you how very important is
ur subject, loose and intangible as it may have at first appeared to you; and in
roving, if only by special examples, that there are profound difficulties (of a kind
lifferent altogether from those usually attacked) which are to be met with even on the
ery threshold of the Science of Situation.







