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New Constructions of Quadratic Bent
Functions in Polynomial Form

Nian Li, Xiaohu Tang, Member, IEEE, and Tor Helleseth, Fellow, IEEE

Abstract— New quadratic bent functions in polynomial form
are constructed in this paper. The constructions give new Boolean
bent, generalized Boolean bent and p-ary bent functions. Based
on Z4-valued quadratic forms, a simple method provides several
new constructions of generalized Boolean bent functions. From
these generalized Boolean bent functions a method is presented
to transform them into Boolean bent and semi-bent functions.
Moreover, many new p-ary bent functions can also be obtained
by applying similar methods.

Index Terms— Boolean bent function, Galois ring, gen-
eralized Boolean function, p-ary bent function, quadratic
form.

I. INTRODUCTION

BOOLEAN bent functions were introduced by Rothaus
in 1976 [18]. Let Zl = {0, 1, . . . , l − 1} be the

ring of integers modulo l. An m-variable Boolean func-
tion from Z

m
2 to Z2 is bent if it has maximal Hamming

distance to the set of affine Boolean functions. Boolean
bent functions have attracted much attention due to their
important applications in coding theory, cryptography and
sequence design. As a logical extension of Rothaus’ notion
of a bent function, Kumar, Scholtz and Welch generalized
it to p-ary bent functions from Z

m
p to Zp [13], where

p is an integer. In 2009, by adopting the viewpoint of
cyclic codes over Galois rings [20], Schmidt introduced the
generalized Boolean bent functions from Z

m
2 to Zp . When

p = 4, Solé and Tokareva have shown recently close con-
nections between Boolean bent and generalized Boolean bent
functions [21].

Let Fq be the finite field with q = pm elements, where
p is a prime and m is a positive integer. Several classes of
bent or semi-bent functions in polynomial form have been
constructed using the theory of quadratic forms over Fq .
Let f (x) be a quadratic function over the finite field Fq
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defined by

f (x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m−1)/2∑

i=1
trm

1 (ci x pi+1), odd m,

m/2−1∑

i=1
trm

1 (ci x pi+1) + trm/2
1 (cm/2x pm/2+1), even m,

where ci ∈ Fp and trm
n (x) = ∑m/n−1

i=0 x pni
is the trace

function from Fpm to its subfield Fpn . The issue of choosing
the coefficients ci such that f (x) is bent or semi-bent has
been discussed in various papers. When p = 2 and m is
even, a necessary and sufficient condition for f (x) being bent
was given in [16]. This line of work was further investigated
in [23] by Yu and Gong who established the bentness of
f (x) for some special values of m, and Hu et. al. in [11]
generalized it for general even m. Some similar results on
semi-bent functions f (x) were given in [12] when m is odd.
Let k be a positive integer, a modified version of f (x), say
g(x) was discussed in [2] for p = 2 and k = 1, where g(x)
is defined by

g(x) =
� m−1

2 �
∑

i=0

trm
1 (ci x

1+pki
). (1)

For any odd prime p, similar conditions such that f (x) is
p-ary bent were given in [7], [12], and some results were
obtained for special m [12], [15]. Helleseth and Kholosha
proved that g(x) with ci ∈ Fq and k = 1 is bent if and only if a
corresponding m×m symmetric matrix is nonsingular [7], and
they also presented another necessary and sufficient condition
such that g(x) with ci ∈ Fp and k = 1 is bent. For more p-ary
bent functions, the reader is referred to [6] and [8]–[10].

In this paper, we first investigate a class of generalized
Boolean bent functions of the form

Q(x) = T rm
1 (x + 2

� m−1
2 �

∑

i=1

ci x1+2ki
), ci ∈ Z2, x ∈ L, (2)

where Trm
1 (·) is the trace function from the Galois ring

R = GR(4, m) to Z4, and L is the Teichmüller set of R.
A necessary and sufficient condition concerning the bentness
of Q(x) is given based on the theory of Z4-valued quadratic
forms [19]. By choosing the ci ’s appropriately, new general-
ized Boolean bent functions of the form (2) can be obtained.
In addition, a method to construct such generalized Boolean
bent functions is also presented by means of some simple
polynomials over finite fields.
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Further, by virtue of the links between generalized Boolean
bent over Z4 and Boolean bent functions given by Solé and
Tokareva in [21], new Boolean bent and semi-bent functions
of the form

fQ(x) = p(x) +
� m−1

2 �
∑

i=1

trm
1 (ci x1+2ki

), ci ∈ F2, x ∈ F2m (3)

are obtained in this paper, where p(x) is defined as

p(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m−1)/2∑

i=1
trm

1 (x2i+1), odd m,

m/2−1∑

i=1
trm

1 (x2i+1) + trm/2
1 (x2m/2+1), even m.

(4)

Solé and Tokareva’s results together with our discussions show
that the function fQ(x) is bent (resp. semi-bent) if Q(x) is
generalized Boolean bent with even (resp. odd) m.

The third contribution of this paper is that new p-ary
quadratic bent functions of the form (1) can also be obtained
by the same techniques used in the construction of general-
ized Boolean bent functions. As a result, several new p-ary
quadratic bent functions are generated by choosing the ci ’s
appropriately, and a method to construct such bent functions is
also given, which can produce many quadratic bent functions
in a very simple way.

The remainder of this paper is organized as follows.
Section II gives some preliminaries. In Section III, we derive
a necessary and sufficient condition for the bentness of Q(x),
obtain some concrete generalized Boolean bent functions
through choosing the ci ’s appropriately, and propose a simple
method to construct generalized Boolean bent functions of
the form (2). In Section IV, as an application of Solé and
Tokareva’s result to Q(x), several classes of new Boolean bent
and semi-bent functions are obtained. By the same techniques
used to construct generalized Boolean bent functions, new
p-ary quadratic bent functions of the form (1) are obtained
in Section V, and Section VI gives some concluding remarks.

II. PRELIMINARIES

A. Galois Ring

Let μ : Z4 → Z2 be the modulus 2 reduction. A monic
polynomial h(x) = ∑m

i=0 hi x i of degree m in Z4[x] is called
primitive basic irreducible if h(x) divides x2m−1 − 1 (mod 4)
and its reduction

∑m
i=0 μ(hi )xi is primitive irreducible in

Z2[x], please refer to [4] and [22] for more details. The quiet
ring Z4[x]/(h(x)), denoted by R = GR(4, m), is called Galois
ring of order 4m with characteristic 4.

Let ξ be a root of h(x), then ξ2m−1 = 1 and the Galois ring
can also be defined as Z4[ξ ]. Then, it can be readily verified
that every element z ∈ R can be uniquely expressed in the
form

z = x + 2y, x, y ∈ L,

where L is the Teichmüller set of R defined by L =
{0, 1, ξ, ξ2, . . . , ξ2m−2}. Notice that R is a local ring and 2R

is its unique maximal ideal. Thus, the mapping μ induces a
homomorphism from the Galois ring R to the finite field F2m

with 2m elements if we identify R/2R with F2m by taking the
elements of F2m to be {μ(x) : x ∈ L}. For simplicity, μ(x) is
sometimes denoted by x .

The trace function T rm
1 (x) : R → Z4 is defined as

Trm
1 (x + 2y) =

m−1∑

j=0

(x2 j + 2y2 j
), x, y ∈ L.

The relation between the trace function over Z4 and the trace
function from F2m to F2 is well known:

1) Trm
1 (x) = trm

1 (x);
2) 2Trm

1 (x) = 2trm
1 (x).

It should be noted that L is not closed under addition.
Specially, for any x, y ∈ L, there exists a unique z ∈ L such
that z = x + y + 2

√
xy. For convenience in this paper we

define a new operation ⊕ on L by

x ⊕ y = x + y + 2
√

xy.

Then (L,⊕, ·) is isomorphic to the finite field (F2m ,+, ·).

B. Three Kinds of Bent Functions

An m-variable Boolean function f is a mapping from Z
m
2

to Z2, where Zl = {0, 1, . . . , l − 1} is the ring of integers
modulo l. The Walsh transform of f is defined by

f̂ (λ) =
∑

x∈Z
m
2

(−1) f (x)+λ·x, λ ∈ Z
m
2 ,

where λ · x denotes the inner product of two vectors λ and x .
Definition 1: ([2], [18]) A Boolean function f is bent if

| f̂ (λ)| = 2m/2 for all λ ∈ Z
m
2 . It is called semi-bent if f̂ (λ) ∈

{0,±2(m+1)/2} for all λ ∈ Z
m
2 .

As an extension of Boolean bent functions, Kumar, Scholtz
and Welch generalized Boolean bent functions to p-ary bent
functions from Z

m
p to Zp [13], where p is an integer. Let

f : Z
m
p → Zp be a p-ary function in m variables, and w be a

primitive p-th root of unity. The Walsh transform of f is

f̂ (λ) =
∑

x∈Zm
p

w f (x)−λ·x, λ ∈ Z
m
p .

Definition 2: ([13]) The p-ary function f is bent if | f̂ (λ)| =
pm/2 for all λ ∈ Z

m
p .

Another extension of a Boolean bent function was intro-
duced by Schmidt in [20]. A generalized Boolean function
f is a mapping from Z

m
2 to Z2s , and its Walsh transform is

given by

f̂ (λ) =
∑

x∈Z
m
2

w f (x)(−1)λ·x, λ ∈ Z
m
2 ,

where s is a positive integer and w is a primitive 2s-th root
of unity.

Definition 3: ([20]) The generalized Boolean function f is
bent if | f̂ (λ)| = 2m/2 for all λ ∈ Z

m
2 .

In this paper, we mainly focus on the constructions of
Boolean bent functions, p-ary bent functions, where p is an
odd prime, and generalized Boolean bent functions over Z4.
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For any prime p, the Walsh transform of a function f from
Fpm to Fp is defined by

f̂ (λ) =
∑

x∈Fpm

w f (x)−trm
1 (λx), λ ∈ Fpm .

It is well known that the finite field Fpm is isomorphic to
F

m
p through the choice of a basis of Fpm over Fp . Hence,

any p-ary function f in m variables can be represented by
a function from Fpm to Fp (2-ary function means Boolean
function). Moreover, the Walsh transform of a function f from
F

m
p to Fp is equivalent to that of its associated function from

Fpm to Fp. For the same reason, let i = √−1, we can consider
the Walsh transform of a generalized Boolean function f over
L instead of Z

m
2 as below

f̂ (λ) =
∑

x∈L

i f (x)+2Trm
1 (λx), λ ∈ L.

Solé and Tokareva recently studied the connections between
Boolean bent and generalized Boolean bent functions over Z4,
and obtained the following results.

Lemma 1: ( [21]) Let u(x) be a generalized Boolean func-
tion over Z4 and u(x) = a(x)+2b(x) be its 2-adic expansion,
where x ∈ L, a(·) and b(·) are Boolean functions over F2m .
Then,

1) 2|̂u(λ)|2 = â2(λ) + â + b
2
(λ) for all λ ∈ L;

2) If m is even, then u(x) (with x ∈ L) is bent if and only
if both b(x) and a(x) + b(x) (with x ∈ F2m ) are bent.

C. Z4-Valued Quadratic Form

A symmetric bilinear form on L is a mapping B : L×L →
Z2 with two properties

1) B(x, y) = B(y, x);
2) B(x ⊕ y, z) = B(x, z) ⊕ B(y, z).

Specifically, B is called alternating if B(x, x) = 0 for all
x ∈ L.

The rank of B is defined as rank(B) = m −dimZ2(rad(B)),
where

rad(B) = {x ∈ L : B(x, y) = 0, ∀ y ∈ L}. (5)

Definition 4: ([1]) A Z4-valued quadratic form is a mapping
F : L → Z4 that satisfies

1) F(0) = 0, and
2) F(x ⊕ y) = F(x) + F(y) + 2B(x, y),

where B : L × L → Z2 is a symmetric bilinear form. The
quadratic form F is called alternating if B is alternating, and
the rank of the Z4-valued quadratic form F is defined as
rank(F) = rank(B).

If F is alternating, it is well known that the Walsh distrib-
ution completely depends on its rank [5]. Schmidt developed
the theory of Z4-valued quadratic form and established similar
results when f is nonalternating, see [19] for more details,
from which one can easily get the following result.

Lemma 2: ([19]) For a Z4-valued quadratic form F(x),
F(x) is generalized Boolean bent if and only if F(x) is of
full rank.

III. NEW GENERALIZED BOOLEAN

BENT FUNCTIONS OVER Z4

In this section, for any positive integer k, we discuss the
generalized Boolean functions of the form

Q(x) = T rm
1 (x + 2

� m−1
2 �

∑

i=1

ci x1+2ki
), ci ∈ Z2, x ∈ L

based on the theory of Z4-valued quadratic forms.
Firstly, we need the following lemma.

Lemma 3: ([17, p.118]) Let G(x) =
m−1∑

i=0
λi x pi ∈ Fp[x].

Then G(x) = 0 has only one root in Fpm if and only if

gcd(
m−1∑

i=0
λi x i , xm − 1) = 1.

According to Definition 4, one can verify that Q(x) is a
Z4-valued quadratic form, and its corresponding symmetric
bilinear form is given by

2B(x, y) = Q(x ⊕ y) − Q(x) − Q(y)

= 2Trm
1 (xy +

� m−1
2 �

∑

i=1

(ci x
2ki

y + ci xy2ki
)).

Recall that 2Trm
1 (x) = 2trm

1 (x) and L is isomorphic to the
finite field F2m under the mapping μ, therefore we discuss the
above equality over the finite field F2m instead of L in order
to be consistent with Lemma 3. Then by (5), to determine the
rank of Q(x), we have to consider the roots of

x +
� m−1

2 �
∑

i=1

(ci x2ki + ci x2−ki
) = 0, x ∈ F2m . (6)

Since x2−ki = x2m−ki = x2(m−i)k
if x ∈ F2m , then (6) can be

rewritten as

x +
� m−1

2 �
∑

i=1

(ci x
2ki + ci x

2(m−i)k
) = 0, x ∈ F2m . (7)

According to Lemma 2, Q(x) is bent if and only if it has full
rank, i.e., (7) has only one root in F2m . By Lemma 3, one has
that (7) has only one root in F2m if and only if gcd(c(xk),
xm − 1) = 1, where

c(x) = 1 +
� m−1

2 �
∑

i=1

(ci x
i + ci xm−i ) ∈ F2[x]. (8)

From this discussion we obtain the following result.
Theorem 1: Let m and k be positive integers. Then the

generalized Boolean function Q(x) is bent if and only if
gcd(c(xk), xm − 1) = 1, where c(x) is defined by (8).

In what follows we give some specific values on ci , 1 ≤
i ≤ �m−1

2 �, and discuss the bentness of the function Q(x) of
the form (2). To do this, we need the following fact. Let p be
a prime and m, k, r be positive integers, if p � r , then for the
polynomials over Fp[x], we have

gcd(
xrk − 1

xk − 1
, xm − 1) = xgcd(m,rk) − 1

xgcd(m,k) − 1
. (9)
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Observe that xrk−1
xk−1

= 1 + xk + x2k + · · · + x (r−1)k ≡ r

(mod xk −1). Thus gcd( xrk−1
xk−1

, xk −1) = 1 if p � r . This leads

to gcd(xrk − 1, xm − 1) = gcd( xrk−1
xk−1

, xm − 1) · gcd(xk − 1,

xm −1). Thus, (9) holds for p � r due to gcd(xk −1, xm −1) =
xgcd(m,k) − 1. According to (9), one has that gcd( xrk−1

xk−1
,

xm − 1) = 1 if and only if gcd(m, rk) = gcd(m, k). This
will be frequently used to prove our results.

Corollary 1: Let m and k be positive integers, then

Q(x) = T rm
1 (x + 2x1+22k + 2x1+23k

), x ∈ L,

is bent if and only if gcd(m, 3k) = gcd(m, k).
Proof: The c(x) associated to Q(x) by (8) is given by

c(x) = 1 + x2 + x3 + xm−3 + xm−2 and then

gcd(c(xk), xm − 1) = gcd(c(xk) · x3k, xm −1)

= gcd(x6k +x5k +x3k + xk +1, xm − 1)

= gcd((
x3k − 1

xk − 1
)3, xm − 1).

This implies gcd(c(xk), xm − 1) = 1 if and only if
gcd( x3k−1

xk−1
, xm − 1) = 1, i.e., gcd(m, 3k) = gcd(m, k)

according to (9). Then the result follows from Theorem 1.
This completes the proof.

Corollary 2: Let m, k and t be positive integers with even
(resp. odd) m and t < m−2

4 (resp. m−1
2 ), then

Q(x) = T rm
1 (x + 2

t∑

i=0

x1+2(2i+1)k
), x ∈ L,

is bent if and only if gcd(m, (2t + 1)k) = gcd(m, k) and
gcd(m, (2t + 3)k) = gcd(m, k).

Proof: For this case, according to (8), one obtains that

c(x) = 1 + x + x3 + · · · + x2t+1 + xm−(2t+1) + · · · + xm−1.

Observe that gcd(c(x), xm − 1) = gcd(c(x) · x2t+1, xm − 1)
and c(x) · x2t+1 (mod xm − 1) = x2t+1(1 + x + x3 + · · · +
x2t+1) + (1 + x2 + x4 + · · · + x2t). By the equality 1 + x +
x2 + · · · + x2t+1 = x2t+2−1

x−1 , one has

c(x) · x2t+1 mod(xm − 1)

= (x2t+1 − 1)(1 + x + x3 + · · · + x2t+1) + x2t+2 − x

x − 1

= x2t+1 − 1

x − 1
(1 + x + x2 + · · · + x2t+2)

= x2t+1 − 1

x − 1
· x2t+3 − 1

x − 1
which implies

gcd(c(xk), xm − 1) = gcd(c(xk) · x (2t+1)k, xm − 1)

= gcd(
x (2t+1)k−1

xk − 1
· x (2t+3)k−1

xk −1
, xm −1).

Then the result follows from (9) and Theorem 1. This com-
pletes the proof.

Corollary 3: Let m, k and t be positive integers with even
(resp. odd) m and t < m

4 (resp. m−1
2 ), then

Q(x) = T rm
1 (x + 2x1+2k + 2

t∑

i=1

x1+22ik
), x ∈ L,

is bent if and only if gcd(m, (2t − 1)k) = gcd(m, k) and
gcd(m, (2t + 3)k) = gcd(m, k).

Proof: According to Theorem 1 and (8), to prove
this result, it is sufficient to prove that gcd(c(xk), xm −
1) = 1 if and only if gcd(m, (2t − 1)k) = gcd(m, k) and
gcd(m, (2t + 3)k) = gcd(m, k), where

c(x) = 1+x +x2 + · · · + x2t + xm−2t + · · · + xm−2+xm−1.

To calculate gcd(c(xk), xm − 1), similar as in Corollary 2, we
consider c(x) · x2t (mod xm − 1) instead of c(x). Through
a detailed computation, we have c(x) · x2t (mod xm − 1) =
1+x2+x4+· · ·+x2t−2+x2t−1+x2t +x2t+1+x2t+2+x2t+4+
· · · + x4t which can also be rewritten as (1 + x + x2 + · · · +
x2t+2)+ (x + x3 + · · ·+ x2t−3)+ x2t+4(1 + x2 + · · ·+ x2t−4).
Then by 1 + x + x2 + · · · + x2t+2 = x2t+3−1

x−1 , one can derive

c(x) · x2t mod(xm − 1)

= x2t+3 − 1

x − 1
+ (x2t+4 − x)(1 + x2 + · · · + x2t−4)

= x2t+3 − 1

x − 1
(1 + x(x − 1)(1 + x2 + · · · + x2t−4))

= x2t+3 − 1

x − 1
(1 + x + x2 + · · · + x2t−2)

= x2t+3 − 1

x − 1
· x2t−1 − 1

x − 1
.

This leads to

gcd(c(xk), xm − 1) = gcd(c(xk) · x2tk, xm − 1)

= gcd(
x (2t+3)k−1

xk − 1
· x (2t−1)k−1

xk − 1
, xm −1).

Therefore, according to (9) and Theorem 1, the desired result
is obtained. This completes the proof.

Corollary 4: Let m and k be positive integers with 1 ≤ t <
m/2, then

Q(x) = T rm
1 (x + 2

t∑

i=1

x1+2ik
), x ∈ L,

is bent if and only if gcd(m, (2t + 1)k) = gcd(m, k).
Proof: For the Q(x) given in this case, by (8), one obtains

that c(x) = 1 + x + x2 +· · ·+ xt + xm−t +· · ·+ xm−2 + xm−1

and c(x) · xt (mod xm − 1) = (1 + x + x2 + · · · + xt ) · xt +
(1 + x + x2 + · · · + xt−1) = 1 + x + x2 + · · · + x2t = x2t+1−1

x−1 .
This implies

gcd(c(xk), xm − 1) = gcd(c(xk) · xtk, xm − 1)

= gcd(
x (2t+1)k − 1

xk − 1
, xm − 1),

and then the result follows from (9) and Theorem 1. This
completes the proof.

Note that by choosing different values for the ci ’s, 1 ≤ i ≤
�m−1

2 �, different generalized Boolean bent functions can be
obtained if gcd(c(xk), xm − 1) = 1, where c(x) is defined
by (8). Thus, in order to construct generalized Boolean bent
functions, in the following we present a simple method to
produce the polynomial c(x) of the form (8) such that the
condition gcd(c(xk), xm − 1) = 1 can be easily determined.
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e3(5, x) = x6(1 + (x2 + x−2) + (x5 + x−5) + (x6 + x−6)
)
,

e2(3, x)e(7, x) = x5(1 + (x + x−1) + (x4 + x−4) + (x5 + x−5)
)
,

e(3, x)e(5, x)e(7, x) = x6(1 + (x3 + x−3) + (x5 + x−5) + (x6 + x−6)
)
. (10)

For any positive integer j , define e( j, x) = x j−1
x−1 ∈ F2[x].

Then, from these simple polynomials e( j, x) over F2, many
polynomials of the form (8) can be derived. For example, from
e(3, x), e(5, x) and e(7, x), we can easily have (10), as shown
at the top of this page.

According to Theorem 1 and (10), new generalized Boolean
bent functions can be obtained as follows.

Corollary 5: Let m and k be positive integers, then we have

1) Q(x) = Trm
1 (x + 2x1+22k + 2x1+25k + 2x1+26k

) is bent
if and only if gcd(m, 5k) = gcd(m, k);

2) Q(x) = Trm
1 (x +2x1+2k +2x1+24k +2x1+25k

) is bent if
and only if gcd(m, 3k) = gcd(m, k), and gcd(m, 7k) =
gcd(m, k);

3) Q(x) = Trm
1 (x + 2x1+23k + 2x1+25k + 2x1+26k

) is bent
if and only if gcd(m, 3k) = gcd(m, k), gcd(m, 5k) =
gcd(m, k), and gcd(m, 7k) = gcd(m, k).

Proof: We only give the proof for Case 1) since the other
cases can be proven similarly. By Theorem 1 and (8), Q(x) =
T rm

1 (x + 2x1+22k + 2x1+25k + 2x1+26k
) is bent if and only

if gcd(c(xk), xm − 1) = 1, where c(x) = 1 + x2 + x5 +
x6 + xm−6 + xm−5 + xm−2. Observe that c(x) mod(xm − 1) =(
1 + (x2 + x−2) + (x5 + x−5) + (x6 + x−6)

)
. This together

with the first equality in (10) implies

gcd(c(xk), xm − 1) = gcd(c(xk)x6k, xm − 1)

= gcd(e3(5, xk), xm − 1)

= gcd((
x5k − 1

xk − 1
)3, xm − 1).

Thus, gcd(c(xk), xm − 1) = 1 if and only if gcd( x5k−1
xk−1

, xm −
1) = 1, i.e., gcd(m, 5k) = gcd(m, k) due to (9). This
completes the proof.

Remark 1: It should be noted that many equalities as the
ones in (10) can be easily obtained by taking different combi-
nations of e( j, x), where j is a positive integer. Thus, many
new generalized Boolean bent functions can be obtained in a
very simple way based on this method.

To end this section, we point out the following facts. In [20],
Schmidt derived the conditions for a ∈ R and b ∈ L such that
T rm

1 (ax + 2bx3) is generalized Boolean bent, and recently
Solé and Tokareva proposed as an interesting open problem
in [21] to characterize the functions of the form fa,b(x) =
T rm

1 (ax + 2bx1+2k
) which are bent. Actually, we have done

this for odd m/ gcd(m, k) in [14].
Theorem 2: ([14]) Let m and k be positive integers such

that m/ gcd(m, k) is odd. Let a ∈ R, b ∈ L. Then fa,b(x) =
T rm

1 (ax + 2bx1+2k
) is generalized Boolean bent if

1) a �= 0 and b = 0;

2) ab �= 0 and b
2k

x1+2k + c2k+1
x + b = 0 has either zero

or two roots in F2m .

Moreover, the number of (a, b) such that fa,b(x) is gener-
alized Boolean bent has also been given in [14]. However, the
case of m/ gcd(m, k) being even still remains open.

IV. NEW BOOLEAN BENT FUNCTIONS OBTAINED FROM

GENERALIZED BOOLEAN BENT FUNCTIONS

In this section, by virtue of the connections between
Boolean bent and generalized Boolean bent functions over Z4,
new Boolean bent and semi-bent functions of the form

fQ (x) = p(x) +
� m−1

2 �
∑

i=1

trm
1 (ci x

1+2ki
), ci ∈ F2, x ∈ F2m

can be obtained based on the generalized Boolean bent func-
tions Q(x) constructed in Section III.

First of all, we need the following representation of the trace
function over Galois rings.

Lemma 4: ( [4]) The trace function over GR(4, m) has
2-adic expansion given by

T rm
1 (x) = trm

1 (x) + 2 p(x), x ∈ L

where p(x) is defined by (4).
By Lemma 4, the function Q(x) defined by (2) can be

expressed as

Q(x) = a(x) + 2b(x), x ∈ L,

where a(x) = trm
1 (x), and b(x) = p(x)+

� m−1
2 �∑

i=1
trm

1 (ci x1+2ki
).

Note that b(x) with x ∈ F2m is in fact the Boolean function
fQ(x) defined by (3). For even m, by Lemma 1 one has
that both b(x) and a(x) + b(x) are Boolean bent if Q(x) is
generalized Boolean bent. If m is odd and Q(x) is generalized
Boolean bent, again by Lemma 1, one can get

b̂2(λ) + â + b
2
(λ) = 2|Q̂(λ)|2 = 2m+1, ∀ λ ∈ L,

which leads to (|̂b(λ)|, |â + b(λ)|) = (0, 2(m+1)/2) or
(2(m+1)/2, 0) for all λ ∈ L due to the well known results about
the solution to the diophantine equation, i.e., the diophantine
equation x2 + y2 = 22k has exactly two nonnegative integer
solutions as (x, y) = (0, 2k) and (x, y) = (2k, 0) for a
nonnegative integer k [3]. This implies b(x) is semi-bent.

Thus, we can obtain the following result from Theorem 1.
Theorem 3: Let m be even (resp. odd), k be a positive

integer, and p(x) be defined by (4). Then the Boolean function
fQ(x) defined by (3) is bent (resp. semi-bent) if and only if
Q(x) defined by (2) is bent, i.e., gcd(c(xk), xm − 1) = 1,
where c(x) is defined by (8).

In particular, let m, k be positive integers and t be defined
as in Corollaries 1-4 of Section III, if Q(x) is chosen as one
of the functions obtained in Corollaries 1-4, then the following
bent and semi-bent functions can be obtained.
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Corollary 6: Let m be an even (resp. odd) positive integer,
and p(x) be defined by (4). Then

1) fQ(x) = p(x) + trm
1 (x1 + 22k

) + trm
1 (x1 + 23k

) is bent
(resp. semi-bent) if and only if gcd(m, 3k) = gcd(m, k);

2) fQ(x) = p(x) +
t∑

i=0
trm

1 (x1 + 2(2i + 1)k
) is bent (resp.

semi-bent) if and only if gcd(m, (2t + 1)k) = gcd(m, k),
and gcd(m, (2t + 3)k) = gcd(m, k);

3) fQ(x) = p(x) + trm
1 (x1 + 2k

) +
t∑

i=1
trm

1 (x1 + 22ik
) is bent

(resp. semi-bent) if and only if gcd(m, (2t − 1)k) =
gcd(m, k), and gcd(m, (2t + 3)k) = gcd(m, k);

4) fQ(x) = p(x) +
t∑

i=1
trm

1 (x1 + 2ik
) is bent (resp. semi-

bent) if and only if gcd(m, (2t + 1)k) = gcd(m, k).

Notice that fQ(x) = p(x) +
t∑

i=1
tr(x1+2ik

) is bent in F2m

for even m if and only if gcd(m, (2t + 1)k) = gcd(m, k).
This result in fact has been obtained in [11] and we apply a
different approach to obtain it in this paper.

Corollary 7: Let m be even (resp. odd), Q(x) be any of
the functions obtained in Corollary 5 and let p(x) be defined
by (4). Then

1) fQ(x) = p(x) + trm
1 (x1 + 22k

) + trm
1 (x1 + 25k

) +
trm

1 (x1 + 26k
) is bent (resp. semi-bent) if and only if

gcd(m, 5k) = gcd(m, k);
2) fQ(x) = p(x) + trm

1 (x1 + 2k
) + trm

1 (x1 + 24k
) +

trm
1 (x1 + 25k

) is bent (resp. semi-bent) if and only if
gcd(m, 3k) = gcd(m, k), and gcd(m, 7k) = gcd(m, k);

3) fQ(x) = p(x) + trm
1 (x1 + 23k

) + trm
1 (x1 + 25k

) +
trm

1 (x1 + 26k
) is bent (resp. semi-bent) if and only if

gcd(m, 3k) = gcd(m, k), gcd(m, 5k) = gcd(m, k), and
gcd(m, 7k) = gcd(m, k).

Remark 2: According to Theorem 3, a new Boolean bent or
semi-bent function fQ(x) can be obtained once a generalized
Boolean bent function Q(x) over Z4 is constructed. It can be
shown from Remark 1 that many generalized Boolean bent
functions Q(x) can be constructed in a simple way. Thus,
many new Boolean bent and semi-bent functions can also be
obtained accordingly.

By Theorem 2 and Lemma 4, we can also obtain the
following result.

Theorem 4: Let fa,b(x) be defined as in Theorem
2, and a, b be chosen in L such that fa,b(x) (with
x ∈ L) is generalized Boolean bent. Then, the Boolean
function

p(ax) + trm
1 (bx1+2k

), x ∈ F2m ,

is bent (resp. semi-bent) for even (resp. odd) m.
Notice that it is not clear how to obtain the new Boolean

bent and semi-bent functions fQ(x) of the form (3) from
the theory of quadratic forms over finite fields. However, we
can easily obtain them from Z4-valued quadratic forms and
relationships between Boolean bent and generalized Boolean
bent functions over Z4.

V. NEW p-ARY QUADRATIC BENT FUNCTIONS

In this section, we derive new p-ary quadratic bent functions
g(x) of the form (1), i.e.,

g(x) =
� m−1

2 �
∑

i=0

trm
1 (ci x

1+pki
), ci ∈ Fp

for odd prime p by the same techniques used in Section III.
Helleseth and Kholosha in [7] proved that the p-ary function

g(x) with k = 1 is bent if and only if gcd(cp(x), xm −1) = 1,
where cp(x) is defined by

cp(x) =
� m−1

2 �
∑

i=0

(ci x
i + ci x

m−i ) ∈ Fp[x]. (11)

By the squaring technique used in [7] and Lemma 3, one
can easily improve the result in [7] by deriving a sufficient
and necessary condition for arbitrary k rather than k=1.

Theorem 5: Let m, k be positive integers, and p be an odd
prime. Then the p-ary function g(x) is bent if and only if
gcd(cp(xk), xm − 1) = 1, where cp(x) is defined by (11).

Similar as in Section III, new p-ary bent functions can be
obtained from specific values on ci , 0 ≤ i ≤ �m−1

2 �. To begin
with, for the polynomials xr +1, xm −1 ∈ Fp[x], we calculate
the gcd(xr + 1, xm − 1) for a positive integer r and an odd
prime p. Note that gcd(xr + 1, xr − 1) = 1 which implies
xgcd(2r,m) − 1 = gcd(x2r − 1, xm − 1) = gcd(xr + 1, xm − 1) ·
gcd(xr − 1, xm − 1) = gcd(xr + 1, xm − 1) · (xgcd(r,m) − 1).
This leads to

gcd(xr + 1, xm − 1) = xgcd(2r,m) − 1

xgcd(r,m) − 1
, (12)

and then gcd(xr + 1, xm − 1) = 1 if and only if gcd(2r, m) =
gcd(r, m), i.e., m/ gcd(r, m) is odd.

Corollary 8: Let m, s, t and k be integers that satisfy 0 ≤
t ≤ s ≤ �m−1

2 �, then

g(x) = trm
1 (x ptk+1 + x psk+1)

is bent if and only if both m/ gcd(m, (s − t)k) and
m/ gcd(m, (s + t)k) are odd.

Proof: According to Theorem 5 and (11), to prove
this result, it is sufficient to derive the conditions such that
gcd(cp(xk), xm−1) = 1, where cp(x) = xt+xs+xm−s+xm−t .
Note that

gcd(cp(xk), xm − 1) = gcd(cp(xk) · xsk, xm − 1)

= gcd((x (s+t)k+1)(x (s−t)k+1), xm−1).

Thus, according to (12), gcd(cp(xk), xm − 1) = 1 if and only
if both m/ gcd(m, (s − t)k) and m/ gcd(m, (s + t)k) are odd.
This completes the proof.

Remark 3: This corollary implies

1) If s = t > 0, then g(x) = trm
1 (2x psk+1) is bent if and

only if m/ gcd(m, 2sk) is odd;
2) If s > t = 0, then g(x) = trm

1 (x2 + x psk+1) is bent if
and only if m/ gcd(m, sk) is odd.
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ep(1, x)2ep(2, x) = x2(2 + 2(x + x−1) + (x2 + x−2)
)
,

ep(2, x)ep(5, x)2 = x6(2(x + x−1) + (x4 + x−4) + (x6 + x−6)
)
,

ep(1, x)ep(2, x)ep(3, x) = x3(2 + (x + x−1) + (x2 + x−2) + (x3 + x−3)
)
,

ep(2, x)(x5 − 1)/(x − 1) = x3(2 + 2(x + x−1) + (x2 + x−2) + (x3 + x−3)
)
, p �= 5. (13)

Corollary 9: Let p be an odd prime, m, k and t be positive
integers such that t < m and p � t , then

g(x) =
t∑

i=1

trm
1 (x1+pik

)

is bent if and only if m/ gcd(m, (t + 1)k) is odd and
gcd(m, tk) = gcd(m, k).

Proof: For the given function g(x), by (11), one obtains
that

cp(x) = x + x2 + x3 + · · · + xt + xm−t + · · · + xm−1.

Notice that

cp(x) · xt mod(xm − 1)

= (x + x2 + · · · + xt )xt + (1 + x + · · · + xt−1)

= (1 + x + · · · + xt−1)(xt+1 + 1)

= xt − 1

x − 1
· (xt+1 + 1)

which implies

gcd(cp(xk), xm − 1) = gcd(cp(xk) · xtk, xm − 1)

= gcd(
xtk − 1

xk − 1
· (x (t+1)k + 1), xm − 1).

Since p � t , then by (9), one has gcd( xtk−1
xk−1

, xm − 1) = 1
if and only if gcd(m, tk) = gcd(m, k). On the other hand,
by (12), one has gcd((x (t+1)k + 1), xm − 1) = 1 if and only
if m/ gcd(m, (t + 1)k) is odd. Thus, the result follows from
Theorem 5. This completes the proof.

Corollary 10: Let p be an odd prime, m, k and t be positive
integers such that 1 ≤ t < m−1

2 and p � (t + 1), then

g(x) =
t∑

i=0

trm
1 (x1+p(2i+1)k

)

is bent if and only if gcd(m, (2t + 2)k) = gcd(m, 2k).
Proof: To complete the proof, according to Theorem 5

and (11), it suffices to show that gcd(cp(xk), xm − 1) = 1
if and only if gcd(m, (2t+2)k) = gcd(m, 2k), where p � (t+1)
and

cp(x) = x + x3 + · · · + x2t+1 + xm−(2t+1) + · · · + xm−1.

By a simple computation, one obtains that

cp(x) · x2t+1 mod(xm − 1)

= (x + x3 + · · · + x2t+1)x2t+1 + (1 + x2 + · · · + x2t )

= (1 + x2 + · · · + x2t )(x2t+2 + 1)

= x2t+2 − 1

x2 − 1
· (x2t+2 + 1)

= x4t+4 − 1

x2 − 1
.

This leads to

gcd(cp(xk), xm − 1) = gcd(cp(xk) · x (2t+1)k, xm − 1)

= gcd(
x (2t+2)·2k − 1

x2k − 1
, xm − 1).

Then by (9), for p � (t + 1), one has that gcd(cp(xk), xm −
1) = 1 if and only if gcd(m, (2t + 2)k) = gcd(m, 2k). This
completes the proof.

Through the construction of the polynomials cp(x), new
p-ary bent functions g(x) of the form (1) can also be con-
structed from some simple polynomials over the finite field Fp

as below. For an odd prime p and a positive integer j , define
ep( j, x) = x j + 1 ∈ Fp[x]. Then many polynomials cp(x) of
the form (11) can be obtained from ep( j, x) = x j + 1. For
example, by a direct computation, we can have (13), as shown
at the top of this page.

Then, according to Theorem 5 and (13), we can derive the
following results.

Corollary 11: Let m and k be positive integers, then

1) g(x) = trm
1 (x2 +2x1+pk + x1+p2k

) is bent in Fpm if and
only if m/ gcd(m, k) is odd;

2) g(x) = trm
1 (2x1+pk + x1+p4k + x1+p6k

) is bent in
Fpm (p �= 5) if and only if both m/ gcd(m, 2k) and
m/ gcd(m, 5k) are odd; and it is bent in F5m if and only
if m/ gcd(m, k) is odd;

3) g(x) = trm
1 (x2 + x1+pk + x1+p2k + x1+p3k

) is bent in
Fpm if and only if m/ gcd(m, k) is odd;

4) g(x) = trm
1 (x2 + 2x1+pk + x1+p2k + x1+p3k

) is bent in
Fpm (p �= 5) if and only if m/ gcd(m, 2k) is odd, and
gcd(m, 5k) = gcd(m, k).

Proof: We only prove Case 1) since the other cases can
be proven in the same manner. According to Theorem 5,
g(x) = trm

1 (x2 + 2x1+pk + x1+p2k
) is bent in Fpm if and

only if gcd(cp(xk), xm − 1) = 1, where cp(x) = 2 + 2x +
x2 + xm−2 + 2xm−1. By the fact

cp(x) mod(xm − 1) = 2 + 2(x + x−1) + (x2 + x−2)

and the first equality in (13), one has

gcd(cp(xk), xm − 1) = gcd(cp(xk)x2k, xm − 1)

= gcd(ep(1, xk)2ep(2, xk), xm − 1)

= gcd((xk + 1)2(x2k + 1), xm − 1).

Thus, gcd(cp(xk), xm −1) = 1 if and only if both gcd(xk +1,
xm − 1) = 1 and gcd(x2k + 1, xm − 1) = 1, i.e.,
both m/ gcd(m, k) and m/ gcd(m, 2k) are odd due to (12).
Then, the result follows from Theorem 5 and the fact that
m/ gcd(m, 2k) is a factor of m/ gcd(m, k). This completes the
proof.
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It should be noted that many equalities as the ones in (13)
can be obtained by taking different combinations of ep( j, x)

and x j−1
x−1 over Fp , where p is an odd prime and j is a positive

integer. Thus, many new p-ary bent functions can be obtained
accordingly as the ones in Corollary 11.

VI. CONCLUSION

The quadratic bent functions, including Boolean bent func-
tions, generalized Boolean bent functions and p-ary bent
functions, in polynomial forms are investigated in this paper.
New generalized Boolean bent functions Q(x) of the form (2)
are obtained based on the theory of Z4-valued quadratic forms,
and a method to construct such functions is also proposed.
From these constructions together with the links between
generalized Boolean bent and Boolean bent functions [21],
new classes of Boolean bent and semi-bent functions fQ(x) of
the form (3) are presented. Moreover, by the same techniques,
many new p-ary bent functions g(x) of the form (1) are
obtained, and a simple method to construct such functions
is also given.
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