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Abstract—Let � and � be positive integers with �������� ��
being odd, for � � and � � , the exponential sum

��
���������� � is studied systematically in this paper,

where � �
���, � ����� is a Galois ring, is the Teich-

müller set of and �	��� is the trace function from the Galois
ring to �. Through the discussions on the solutions of certain
equations and the newly developed theory of �-valued quadratic
forms, the distribution of the exponential sum is completely de-
termined. As its applications, we can determine the Lee weight
and Hamming weight distributions of a class of codes �� over �

and the correlation distribution of a quaternary sequence family
�� , respectively. Furthermore, the Hamming weight distributions
of the binary codes obtained from �� under the most significant
bit (MSB) and Gray maps are also determined. For the MSB map
sequences of �� , the nontrivial maximal correlation value is given
and the correlation distribution is determined for the Gray map
sequences of �� . It should be noted that the distribution of the
exponential sum for the case �������� �� � is obtained for the first
time, and then the corresponding codes and sequences are novel.

Index Terms—Correlation distribution, Galois ring, Gray map,
Hamming weight, Lee weight, most significant bit (MSB) map,
quadratic form.

I. INTRODUCTION

L ET be the ring of integers modulo
. The Galois ring with elements is

the Galois extension of degree over . Due to the easy im-
plementation in modulators and the better correlation properties
than binary sequences according to the Welch and Sidelnikov
bounds [13], [22], many researchers have studied codes and se-
quences over Galois rings in the last decade [3], [5], [8], [9],
[14], [17]–[19], [21].

Throughout this paper, let and be positive integers with
and being odd. A class of exponential sum

over a Galois ring is denoted by

(1)
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where , is the Teichmüller set of and is the
trace function from the Galois ring to (see Section II-B).
Several classes of codes and sequence families have been ob-
tained from the distribution of for some specific values
of the parameters and . The distribution of for
had been studied in [8] to determine the correlation distribu-
tion of the quaternary sequence family . Codes with the
same weight distribution as the Goethals codes and the Del-
sarte-Goethals codes were obtained based on the distribution of

for odd and [5]. Most recently, the
theory of -valued quadratic forms [11] was used to analyze
the exponential sum and new sequence families were ob-
tained in [11] and [12], in which the distribution of for
odd and was also determined.

In this paper, based on the discussions of the properties of cer-
tain equations over a finite field and the newly developed theory
of -valued quadratic forms, the distribution of the exponential
sum is uniformly determined, which generalizes the re-
sults in [5] and [8] and will play an important role in determining
the weight distributions and correlation distributions of several
classes of codes and sequences, respectively. Concretely, as ap-
plications of the exponential sum , we can determine both
the Lee weight and Hamming weight distributions of a class
of codes over . By choosing cyclicly inequivalent code-
words from , a quaternary sequence family is obtained
and the correlation distribution is also determined. The quater-
nary codes extend the results in [5], and the family is a
generalization of family in [8]. In addition, two classes of
binary codes and sequence families are obtained by performing
the MSB and Gray maps on and , respectively. The Ham-
ming weight distributions of both the binary MSB map code

and Gray map code are determined. The binary
sequence family is the MSB map sequences of , and
we only can give a bound on the nontrivial maximal correla-
tion value. The correlation distribution of this family was deter-
mined only for odd and any with [25]. For
the general case, it is still unknown. The other binary sequence
family is obtained from under the modified Gray map
and its correlation distribution is completely determined, which
generalizes the family in [12]. We check all the above dis-
tributions by computer experiments.

The remainder of this paper is organized as follows. Section II
gives some preliminaries. In Section III, we determine the rank
distribution of a class of quadratic forms over a Galois ring, and
the distribution of the exponential sum is determined in
Section IV. As applications of the distribution of , sev-
eral classes of codes and sequence families are discussed in
Sections V and VI, respectively, and the concluding remarks are
given in Section VII.
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II. PRELIMINARIES

A. Correlation Function

For any two sequences and
of period over , the cross correlation function is
defined as

where is a primitive complex th root of unity and
.

B. Galois Rings

The Galois ring is the Galois extension of
degree over . Let be the modulus 2 reduction.
Naturally, the mapping induces a homomorphism from the
Galois ring to the finite field with elements. For every
element , it can be uniquely expressed in the form

where is the Teichmüller set of defined by
. For more details, the reader is referred to [3],

[8]–[10] and [14].
Unlike in the finite field of size , the addition op-

eration in the Teichmüller set is not closed. Specially, for
any , there exists a unique such that

. For convenience in this paper we define a new
operation on by

Essentially, is isomorphic to the finite field .
The trace functions and are respec-

tively defined as

One can easily check that the trace functions and
are linear functions over and , respectively. Moreover, the
identity holds for all .

C. MSB and Gray Maps

In this paper, two maps are involved. The first one is the MSB
map from to defined by

and another one is the Gray map from to defined by
for , i.e.,

When performing the MSB map and Gray map on the
quaternary sequence , we naturally obtain the MSB

map sequence and the Gray map sequence
, where

.

If is odd, it is more convenient to use the modified Gray map
sequence proposed by Nechaev [10], which
is defined as

.

The correlation functions of the quaternary sequences and
those of their MSB map and modified Gray map sequences have
the following relations.

Lemma 1 ([20]): Let and be two qua-
ternary sequences of odd length . Then

where and represent the real and imaginary parts
of , respectively.

Lemma 2 ([6]): Let and be two qua-
ternary sequences of odd length . Then

if
if .

D. -Valued Quadratic Forms

Definition 1: A symmetric bilinear form on is a mapping
with two properties

1) symmetry: ;
2) bilinearity: for any ,

.
Specifically, is called alternating if for all .

The rank of is defined as ,
where

(2)

Definition 2 ([2]): A -valued quadratic form is a mapping
that satisfies

1) , and
2) ,

where is a symmetric bilinear form. In addi-
tion, is called alternating if its associated bilinear form is
alternating.

Similarly, the rank of the -valued quadratic form is de-
fined as .

Given a -valued quadratic form , we are par-
ticularly interested in the distribution of the values of the expo-
nential sum

when ranges over .
If is alternating, it is well-known that the distribution com-

pletely depends on its rank .
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Lemma 3 ([6]): Let be an alternating -valued quadratic
form of rank , then the distribution of is given
by

Recently, Schmidt developed the theory of -valued
quadratic form and established the similar result.

Lemma 4 ([11]): Let be a nonalternating -valued
quadratic form of rank . Then the distribution of the values in
the multiset is as follows. If is odd, we have

If is even, we have

The following lemma about the greatest common division
will be used in the proofs of our results.

Lemma 5: For positive integers and , we have
and

if

otherwise.

III. RANK DISTRIBUTION OF -VALUED

QUADRATIC FORM

In this section, we mainly discuss the rank distribution of the
quadratic form

where .
Notice that is a -valued quadratic form and its as-

sociated bilinear form is

By (2), to determine the rank of , it is sufficient to con-
sider the roots of

(3)

Taking th power on both sides of (3), then it equivalently be-
comes , where

(4)

and .
Similar to the discussion in [4], [7], and [24], some properties

of the roots of can be obtained. First, we need the
following lemma.

Lemma 6 ([11]): Let with
and . Then has 0, 1, 2 or

solutions in . Assume that denote the number of
such that has exactly roots in , where , 1, 2, .
If is odd, then

Furthermore, if has exactly one solution , then

.

Lemma 7: For , let be defined by (4). Then:
1) The equation has either 0, 1, 2 or solutions

in .
2) If and are two different solutions of , then

.
3) If has at least three solutions , then

for .

4) If has exactly one solution , then
.

Remark 1: The analogy of properties 2) and 3) over a finite
field with characteristic 2 was obtained in [4] and [7], and the
analogy of properties 1), 3), and 4) over a finite field with odd
characteristic was discussed in [24].

Based on Lemma 7 and , one
can deduce that the possible ranks of are ,
or . Moreover, the rank distribution of can be
determined. To achieve this goal, for , define

Proposition 1: When , the distribution
of is given by

Proof: It is easy to see that the rank of is if
and and the rank of is if

and . Hereafter, we focus on the case of and .
Rewrite (4) as

(5)

if and let and . Applying
Lemma 7, we know that has 0, 1, 2, or solutions,
which is discussed case by case as follows.

Case 1 When has no solutions, then (3) has only
zero solution; thus, in this case, the rank of is .
Case 2 If has exactly one solution, then by
Lemma 7–4), the solution is a th power in . Thus,
(3) has solutions, i.e., the rank of

is .
Case 3 If has two solutions , then
by Lemma 7–2), are either both th powers
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or both not th powers in . The former cannot be
true since in that case (3) would have exactly
roots in , which contradicts the fact that the number of
roots of (3) is a power of 2. Therefore, both roots are not

th powers in and (3) has no nonzero root in ,
i.e., is .
Case 4 If has solutions, by Lemma 7–3),
all of them are th powers in . Hence, (3) has
solutions, i.e., the rank of is for this case.

According to (5), the number of solutions of is
equal to that of . Suppose that denote
the number of such that has exactly

roots in , where , 1, 2, . Then by Lemma 6, one
has

Note that . By Lemma 5,
since is odd. Thus, for any fixed , runs through

when runs through . Therefore, runs through
times when ranges over . This together with the
cases for or , result in

Similarly, we have

respectively. This finishes the proof.

IV. DISTRIBUTION OF THE EXPONENTIAL SUM

In this section, the distribution of the exponential sum
defined by (1) is completely determined by the rank distribution
of and the theory of -valued quadratic forms.

Let , . Then by (1), the exponential sum
can be rewritten as

where . Note that is al-
ternating if and only if .

Theorem 1: When runs through , the distribution
of the exponential sum is given in Tables I and II for odd

and even respectively.
Proof: Herein we only give the proof for odd since the

case for even can be similarly proven. The values of the ex-
ponential sum can be calculated as follows.

Case 1 and .

TABLE I
VALUE DISTRIBUTION OF ���� �� FOR ODD �

TABLE II
VALUE DISTRIBUTION OF ���� �� FOR EVEN �

TABLE III
LEE WEIGHT DISTRIBUTION OF � FOR ODD �

This is a trivial case, one can easily obtain

(6)

Case 2 and .
For , is alternating and the rank of is

for any . Then by the fact
is even and Lemma 3, one can deduce that the exponential
sum has the following distribution

(7)

when runs through .
Case 3 and .
If , the rank of is for any . In this
case, is nonalternating, then by Lemma 4, when

runs through , has the following
distribution

.
(8)

Case 4 and .
For , the rank of is , or .
Note that is even and is odd if is odd.
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TABLE IV
LEE WEIGHT DISTRIBUTION OF � FOR EVEN �

This fact together with Lemma 4 and Proposition 1 imply
that when runs through and
runs through , has the distribution

.

Similarly, when runs through
and runs through , one can deduce that has
the distribution

and when runs through and runs through ,
has the distribution

respectively.
Hence, combining Cases 1–4 and Proposition 1, the theorem

follows. This finishes the proof.

We have determined the distribution of the exponential sum
in a uniform way, which generalizes the cases discussed

in [5] and [8].

V. SEVERAL CLASSES OF CODES AND THEIR

WEIGHT DISTRIBUTIONS

As an application of the exponential sum , firstly we
are able to determine the Lee and Hamming weight distribu-
tions of a class of quaternary codes and the Hamming weight
distributions of the corresponding binary codes obtained by the
MSB and Gray maps.

A. Quaternary Code and its Lee Weight Distribution

The Lee weight of an element is defined as
. Then, the Lee weight of a codeword

is

Define a quaternary code as

(9)

TABLE V
HAMMING WEIGHT DISTRIBUTION OF � FOR ODD�

where . By the definition of
Lee weight, one has

(10)

Then the Lee weight distribution of follows from Theorem
1 and (10).

Theorem 2: When runs through , the Lee weight
distribution of is given as in Tables III and IV for odd and
even , respectively.

Remark 2: The Lee weight distribution of
for

odd and was determined in [5]. Note that
. Thus, based on the

distribution of , we can easily extend the results in [5] by
a different approach.

B. Quaternary Code and its Hamming Weight Distribution

The Hamming weight of a codeword is
defined as the number of nonzero for , and is de-
noted by . In this subsection, we determine the Hamming
weight distribution of the quaternary code defined by (9).

The Hamming weight of the codeword can be
expressed as
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TABLE VI
HAMMING WEIGHT DISTRIBUTION OF � FOR EVEN�

Note that , where denotes the complex
conjugate. Then we have

In what follows, we only consider the weight distribution of
for odd because the case for even can be obtained in

the same manner.
Suppose that , , then if

and otherwise. Thus, one has

(11)

if , and for , one can get

(12)

Applying (11) to (6) and (7), when the weight distribu-
tion of is

(13)
Subsequently applying (12) to the distribution of for

, the weight distribution of when is

(14)

Therefore, combining (13) and (14), the Hamming weight
distribution of the quaternary code is obtained.

Theorem 3: When runs through , the Hamming
weight distribution of is given in Tables V and VI for odd
and even , respectively.

C. Binary Code and its Hamming Weight Distribution

In this subsection, assume that and we consider the
binary code obtained from under the MSB map.

Let for
, and define

where .
To determine the Hamming weight distribution of ,

define

for , and . Then the Hamming weight of
is

(15)

In addition, the exponential sum can be rewritten as

Then one gets

associated with (15) which gives

Thus, the Hamming weight distribution of follows
from Theorem 1.

Theorem 4: When runs through , the Ham-
ming weight distribution of the binary code is given in
Tables VII and VIII for odd and even respectively.

D. Binary Code and Its Hamming Weight Distribution

For the Gray map, let for
, and define

where .
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TABLE VII
HAMMING WEIGHT DISTRIBUTION OF ��� � FOR ODD �

TABLE VIII
HAMMING WEIGHT DISTRIBUTION OF ��� � FOR EVEN �

It is well-known that [6]

Therefore, the Hamming weight distribution of is the
same as the Lee weight distribution of , so we omit the Ham-
ming weight distribution of here.

VI. SEVERAL SEQUENCE FAMILIES AND THEIR

CORRELATION DISTRIBUTIONS

In this section, by choosing cyclicly inequivalent codewords
from the codes obtained above, we are also able to obtain some
sequence families and completely determine the correlation
distributions based on the distribution of the exponential sum

.

A. Quaternary Sequence Family and its Correlation
Distribution

For , define the quaternary sequence
by

(16)

where is a primitive element in . Note that
by Lemma 5. Thus, the least positive period of

is for any .
Two sequences and are cyclically equivalent

if there exists an integer such that . This
equivalence relation partitions into

equivalent classes. Define to
be the set formed by choosing one element from each equivalent
class. Clearly

(17)

and such that any two sequences and are not
cyclically equivalent if .

A family of the quaternary sequences is defined by

For two quaternary sequences , their
correlation at shift is

where and .
Given , consider the number of solutions

and to

.

Clearly, for arbitrary fixed (resp. ) and fixed
, there exists exactly one (resp.

) satisfying the above equations system. That is, when
runs through and varies from 0 to ,

ranges over times, and
times.

Next, assume that is a complex value and is the number
of the occurrence of when ranges over

. Since for all
, it follows from the definition of that

occurs times when runs through ,
and times when runs through

. Therefore, when runs through
and varies from 0 to ,

occurs

times for any . Specially,
occurs times since .

Then by Theorem 1, the correlation distribution of the qua-
ternary sequence family is as follows.

Theorem 5: The correlation distribution of family is given
in Tables IX and X for odd and even respectively.

Remark 3: The correlation distribution of family for odd
and had been determined in [8] and [11] by different

methods. In this paper, based on the techniques developed in [1]
and [11], we can generalize the family to for positive integers

and with being odd.
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TABLE IX
CORRELATION DISTRIBUTION OF FAMILY � FOR ODD�

TABLE X
CORRELATION DISTRIBUTION OF FAMILY � FOR EVEN�

B. Binary Sequence Family Obtained From the MSB Map

Let for
. Clearly, for two sequences

and defined by (16), we have
if there exists an integer such that . Thus,
define a binary sequence family as

where and are defined by (16) and (17), respec-
tively.

In order to investigate the properties of the family ,
we need the representation of the set . Definitely, one can
verify that can be expressed as

where ,
and .

For two sequences , by Lemma
1 their correlation is determined by and ,
where . Note that if .
Since the relations between and are
unknown, we can not obtain the correlation distribution from
Lemma 1 and the correlation distribution of . However, we
can give a bound on the nontrivial maximal correlation value
of .

Theorem 6: The nontrivial maximal correlation value of
family is bounded by if is odd and

if is even.

Remark 4: For odd and , the correlation distribution
of is determined by Yu and Gong [23],
and it was generalized to the family for odd and any

with by Zhou and Tang [25]. For the general
case, it is still unknown.

C. Binary Sequence Family Obtained From the Modified Gray
Map

In this subsection, a family of binary sequences with period
is obtained under the modified Gray map, and the

correlation distribution is determined by making use of the ex-
ponential sum.

Let be a primitive element in and with ,
define the quaternary sequence as

where , , , and
.

By performing the modified Gray map on sequences ,
a family of binary sequences with period is obtained
as follows:

For odd and , if one takes , then family
, and its correlation distribution has been de-

termined in [12]. In this paper, the correlation distribution of
family is completely determined for all positive integers

and satisfying is odd. The key technique is
to use distribution of , from which the correlation distri-
bution can be similarly determined as in [12], [15], [16]. Hence,
we just describe a sketch of the proof here, see [12], [15], [16]
for more details.

For , let ,
according to Lemma 2, the correlation function of the sequences

and at shift , , is
discussed as follows. For simplicity, define

and let and
.

For fixed and , one gets

and

Thus, it follows from Lemma 2 that the correlation distribution
of for and is the distribution of the
multiset

(18)
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TABLE XI
CORRELATION DISTRIBUTION OF FAMILY ��� � FOR ODD �.

TABLE XII
CORRELATION DISTRIBUTION OF FAMILY ��� � FOR EVEN �

Similar to the proof of Theorem 7 in [12], one can conclude that
runs through times for given

when ranges over , where
. Furthermore, when ranges over

and runs through , the numbers
take the values 0, 1, 2, and 3 that occur 3, 1, 1, and 3 times
respectively. This implies the multiset (18) has the following
distribution: occurs times, occurs
times, occurs times, and occurs
times, respectively, where ranges over . Thus, we can
calculate the values of for and as
below.

Suppose that , where and
, then we have

(19)

Firstly, by (6) and (7) and Theorem 1, one can derive the distri-
bution of when runs through .

Next, based on the fact that has the same distribu-
tion as for any fixed one can determine the
distribution of when runs through and
derive that the distribution of

is times of that of
. Then, the correlation distribution of the

family for and is determined.
Similarly, from the proof of Theorem 7 in [12], we can obtain

that the correlation distribution of for is as follows:
occurs times, occurs times, and

occurs times respectively, where ranges over ,
and the correlation distribution of for is as
follows: occurs times, occurs times,
and occurs times respectively, where ranges over

. Thus, for the cases and , we
need to discuss for .

If , then . From (19), we have
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For , one gets if , and
otherwise. Then by (7), when runs

through , the distribution of is

Moreover, if , we have
for each . Therefore, the distribution of

is the same for any fixed . On the other hand, for
, we have if and

otherwise, since the mapping is a permutation on
due to . Hence, one can derive that

the distribution of is

when runs through , and when runs
through , the distribution is given by

Thus, the correlation distribution of for and
can also be obtained from the above analysis.

Then the correlation distribution of can be completely
determined as follows.

Theorem 7: The correlation distribution of family is
given in Tables XI and XII for odd and even , respectively.

Remark 5: Note that a different form of -valued quadratic
forms were considered to construct large family of sequences
in [11] and [12]. However, comparing with the -valued
quadratic form they used, our parameters are more flexible.

VII. CONCLUSION

In this paper, based on the properties of the roots of certain
equations over a finite field and the newly developed theory of

-valued quadratic forms [11], the distribution of a class of
exponential sums over a Galois ring is completely determined.
As its applications, both the Lee weight and Hamming weight
distributions of a class of codes over are determined. By
choosing cyclicly inequivalent codewords from , a family
of quaternary sequences is obtained and its correlation distri-
bution is also determined. The quaternary codes extend the
results in [5], and the family is a generalization of family

in [8].
Furthermore, by performing the MSB and Gray maps to

and , two classes of binary codes and sequence families are
obtained, respectively. The Hamming weight distributions of
the binary codes are determined. For the binary sequence fami-
lies, the correlation distribution of the sequence family obtained
from under the modified Gary map is completely deter-
mined, which generalizes the family in [12]. While the

nontrivial maximal correlation value of the sequence family ob-
tained from under the MSB map is given, the correlation
distribution remains open except for odd and any with

[25].
All the distributions in this paper have been verified by com-

puter experiments. While for even case, it is more
complicated and is a good topic for further research.
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