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COBORDISM OF SATELLITE KNOTS
R. A. Litherland

0. INTRODUCTION

In this paper we study the Casson-Gordon invariants of satellite knots.
Other cobordism invariants of such knots have been studied by various authors:
the (ordinary) signature [23]}, the Tristram-Levine signatures [15] and the
Milnor signatures [10]. In fact, in the last reference the Blanchfield pairing,
and so (implicitly) the algebraic cobordism class, of a satellite is determined.
See also [17]. The most striking feature to emerge is that the algebraic co-
bordism class of a satellite depends only on the constituent knots and the
winding number. It is intuitively clear that this is not true of the geometric
cobordism class, and one motivation for computing the Casson-Gordon invariants
is to verify this intuition, which we do in Theorem 3.

We also apply our results to Kawauchi's group of H-cobordism classes of
homology S1x sz's [9]. The homomorphism from knot cobordism to algebraic co-
bordism factors through this group, and we show that the first factor has kernel

containing a CZG .

1. TERMINOLOGY, AND AN EXAMPLE
All manifolds will be oriented. Our statements may be interpreted in the
PL or the smooth category, according to taste.

Let K be a knot in S3. By an axis for K of winding number w we mean

an unknotted simple closed curve A in S3- K having linking number w with K.
Let V be a solid torus complementary to a tubular neighborhood of A, with
K contained in the interior of V. fThere is a preferred generator x for
HI(V), specified by the condition Lk(x,A)=+1. For anysknot C in 53 there
is an untwisted, orientation-preserving embedding h:V+ S~ taking V onto a
tubular neighborhood of C so that C represents h, (x) in H1(hV). We say
that the knot S=h(K) is a satellite of C with 95215 K, 2555 A and
winding number w. (In [17], the term "embellishment" is used where we use

"orbit".)

The knot S is determined (up to isotopy) by C and the link K UA. We
write S=%(K,C;A). We also denote the set of all satellites of C with orbit
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328 R. A. Litherland

K and winding number w by JZQ(K'C)' Thus we can rephrase the qualitative
result on the algebraic cobordism class mentioned in the introduction by saying
that (for given K, C and w) the image of .9;(K,C) in the algebraic cobordism
group consists of a single element. We remark that the original examples of
non-slice, algebraically slice knots {1] show that there are some Sz(K,C) con-
taining knots from more than one cobordism class. Take K to be the n(n+1)-
twist knot, for n>1, and C to be the torus knot of type (n,n+1). Then
5%(K,C) contains the n(n+1)-twist double of C, which is slice (Casson, un-
published; see [16] for a proof). But &%(K,C) also contains K itself, by
taking a trivial axis A, i.e. one such that KUA 1is a split link. It was
proved by Casson and Gordon in [1] that K is not slice. 1If one disallows
trivial satellites, it is still easy to construct an element of &%(K,C) co-

‘ bordant to K, by using for instance the axis shown in Fig. 1.

oo
I,

2. ALGEBRAIC COBORDISM
In some cases, our formula for the Casson-Gordon invariants of a satellite
involves the algebraic cobordism class (Corollary 2) and for this it is neces-
sary to put the two kinds of invariant on a similar footing. This we shall do
in this section by giving a "Casson-Gordon type" definition of the algebraic
cobordism class. That this can be done is probably well-known to the experts.
We denote the ring Q[t,t_1] of Laurent polynomials with rational coef-
ficients by I, and its field of fractions @(t) by QI'. The involution
£(t) » f(t-l) of I or QI will be denoted by J. The (multiplicative) infinite
cyclic group is written as C_, and we assume that a generator t is fixed
once for all. Let (M,9) be a closed 3-manifold over Cm; that is, M 1is
a closed 3-manifold and ¢ 1is a homomorphism H1(M)» Ce Suppose that M has
the rational homology of S1x 52. Since 93(K(Cw,1»= 0O, we have (M,9) = 3(W,{)

for some compact 4-manifold (W,y¢) over C_.
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REMARK. We do not assume that ¢ is onto, and it may be that ¢=0, 1In
that case we always take W so that H1(M;Q) + H1(W;Q) is injective and
V= 0. Note that the injectivity is automatic if ¢# O, Here ¢ =0 means
that o¢(x)=1 for all x; in general we write Hom(A,B) additively even when
B is multiplicative.

We define twisted homology and a twisted intersection pairing just as in
[11: if W 1is the infinite cyclic covering of W determined by ¢, then

C*(W;Q) is a complex of TI'-modules, and we set
t ~
C,(W;QT) = C,(W;@) @, Qr .

The homology of this complex is written HE(W;QP). There is a pairing
HE(W;QF) x H;(W;QF) + QI', Hermitian with respect to J, given at the chain
level by

<x @ f, y@g>-= ng Yo(xe tiy)ti ; X,¥ € Cz(ﬁ;Q), £,9 € QT .
jz=m

Here x° tiy is the ordinary intersection number. The pairing is non-singular
and so represents an element ¢t (W) = tw(w) of the Witt group W(Qr;J). For
9# 0 this is because the Milnor exact sequence for the infinite cyclic cover-
ing of (M,9) [19] shows that H?(M;QF)= O (even if ¢ 1is not onto). If
¢=0, we have H:(M;QF) = HI(M;Q) QQ Qr and H?(W;QP) = H1(W;0) QQ Qr, so
that H:(M;QF) > H?(N;QF) is injective. (See the remark above.) The ordinary
intersection form on HZ(W;Q) is also non-singular; let to(W) be its image

in W(Qr;J). Define
a(M,¢) = t(W) - to(W) e W(Qr;J) .

The proof that this is well-defined is Jjust like that for the Casson-Gordon in-
variants (for which see [1]).

REMARK. If ¢=0 then ¢y=0 so tw(W) = to(W). Hence a(M,0)=0. Our
reason for being careful about the "trivial" case is that we have to deal with
4-manifolds over Cw of the form (W1,¢1) U (Wz,wz) where one of ¢1,¢2 may
be zero.

Now let K be a knot in Sa. The manifold MK obtained by O-framed sur-
gery along K comes with a preferred isomorphism wx:Hl(MK) + C_ determined

by the orientations of S3 and K. We write a(K) or a for ao(M It is

K k! ¥k

not hard to see that ay = O 1if K 1is slice; together with Theorem 1 below

this shows that « induces a homorphism
m:?a'1 —— W(Qr;J)

where i?3'1 is the knot cobordism group.
We now indicate why this invariant is equivalent to the algebraic cobordism

class., Let (MK,¢K) = 3(W,¥). Under the boundary homomorphism
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3:W(Qr;J) —+ W(Qr/T;J)

of the localization exact sequence for W(Qr;J), to(W) dies and tw(W) is
sent to minus the Witt class of the Blanchfield pairing on H1(EK;Q). where

ﬁK is the infinite cyclic covering of MK. According to Trotter [25] the
isomorphism class of the Blanchfield pairing determines the rational S-equiva-
lence class of a Seifert matrix V for K. It follows that aaK determines the
(rational) Witt class of V, which is to say, the algebraic cobordism class of
K. (Recall that the homorphism from the integral algebraic cobordism group
Ws(z) to the corresponding rational group wS(Q) is injective [12]). 1In

the other direction we have:

PROPOSITION 1. Ei V is a Seifert matrix for K then o(K) is repre-

Sented by the matrix (1-t)V+ (1—t_1)VT.

Here VT is the transpose of V. Actually it can be shown that there is
an isomorphism W({(Qr;J) = WS(Q) ® W(@Q) under which «a(K) corresponds to
([V1,0); an account of this will be found in Appendix A.

Before giving the proof we describe an additivity property that we shall

~

need frequently. Recall that if W1 and W2 are 4-manifolds with 3W1 = -3W2
and W is the closed 4-manifold w1 L% w2 then the signature of W 1is given
by

sign(w) = sign(w1) + sign(wz)

(Novikov additivity). However, if W1 and W2 are glued along only part of

their boundaries, this may fail. This situation was studied by Wall ([28].
Suppose that W, = M, UM and W, E M _U-M_, where for i=1,2, Mi and M

1 1 0 2 2 0 0
are 3-manifolds meeting only in their common boundary, and let w==w1lJM0w2.
Let F= 3M0= M, = aMZ, and let Ai= ke::(H1 (F:@) + I-l1 (Mi;Q)) for i=0,1,2.

Wall showed that the failure of additivity is measured by the signature of a

bilinear form on

Ai ’s) (Aj+Ak)
(4
(Air\Aj)+(Air1Ak)

{i,j,k} = {1,2,3} .

In fact, this holds on the level of the Witt classes of the intersection forms,
and for twisted homology as well. We shall need only the special case in which
at least two of A _,A_ ,A

(VR R
fer to this as Wall additivity.

are equal, when additivity does hold. We shall re-

We remark that Wall's result can be derived from Novikov additivity (or
rather, the easy generalization to the case of gluing along some whole boundary
components) by decomposing W, UW into three pieces as indicated in Fig. 2.

1 2
The "correction term"” is the intersection form of the ©-shaped piece.
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Figure 2

PROOF OF PROPOSITION 1. Let F be a spanning surface for K giving the

Seifert matrix V. Let F C D4 be obtained by pushing intF into intD4.

Set w1= D4— (ﬁ x intDz) and let ¢1:H1(W1) —_— C°° be given by linking

number with F. We shall show by a cut-and-paste construction of the infinite

cyclic cover ﬁ1 that t(w1) is represented by (1-t)V + (1—t—1)VT; c.ft.
[8) Section 5, [27] Section 5. Let Fx [«1,1] be a bicollar of F in S3.

Cutting W, open along the trace of the push yields D4, and the faces exposed

1
by the cut are Fx [-1,-1/2) and Fx [1/2,1). Thus W1
copies t]'D4 of D4 for ieZ and identifying tl(Fx [-1,-1/2]) with

e1*1(Fx [1/2,1]). It follows that H, (i, ;@)

is obtained by taking

H1(F;m) 90 I's If x 1is a cycle

o3 H

on F, let C. x be the cone on x x 1 in D, and let
5x = (C_x) - t(c+x) ’

a 2~cycle in W.,. This represents the element of Hz(ﬁ1;Q) corresponding to

1
[x] @ 1. If © is the Seifert form on H1(F;Q) it follows easily that

<sx,Sy> = (1-t)8((x],[y]) + (1-t")e(lyl,(x]) .

This gives the result claimed. Note also that the oré&nary intersection form
on HZ(WI;Q) is identically zero.
Now let H be a solid handlebody with 2H = F\JEZ, where E2 is a disc,

and let W=W ¥ Hx BDZ. Then ¢
1 2

FxaD t 2

I(W,p) = (MK,¢K). We have HZ(Hx aD";Qr) = 0, and the intersection form on

1 extends to W:H1(W) —— Cm, and

Hz(Hx anz;m) is identically zero. Finally, Wall additivity applies to

W= W1 Hx aD2 in both ordinary and twisted homology {in this case, all three

kernels are the same) to complete the proof.
Our next aim is to determine the algebraic cobordism class of a satellite

it
i

knot. Although this follows from the results on the Blanchfield pairing in

[10] and [17], we include a proof because it seems particularly simple from the



332 R. A. Litherland

point of view introduced above, and because it serves as a model for the proof
of our theorem on the Casson-Gordon invariants. Before stating the result, we
must discuss induced homomorphisms of W(Qr;J).

Suppose f:(r,J) — (F,J') is a homorphism of rings-with-involution,
where F is a field. Let V be a finite dimensional vector space over QT
with a non-singular Hermitian pairing ¢:VxV + QI'. For any I-lattice L in V

let
L# = {xe V|]g(x,y) ¢ T for all yelL} .

We can choose L so that Lf_L#. Make F into a T-module via f£. Then we

have an induced Hermitian pairing 9 oON the F-vector space L ©@_ F, namely

T

Jl
¢ (x@a, yOB) = af fo(x,¥), X,y € L, «¢,8 ¢ F ,

In general, may be singular. However, one can show that the set of ele~

?
f
ments of W(Qr;J) represented by (V,9) for which L can be so chosen as to

make non-singular forms a subgroup Def(f.), say, and that the assignment

Pe
[V,9] — [L@_ F,9]

is a well-defined homomorphism f*:Def(f*) — W(F;J'). If o e Def(f)) Iis
represented by a matrix A over I then £, (a) is represented by £f(a), pro-
vided this is non-singular. Clearly Def(f,) = W(Qr;J) if f is injective;
the same is true if £(t)=1. (See Appendix A, where Def(f,) is determined.)
If f(t)=x and a e Def(f,) we shall also write o[x] instead of
f*(a). In particular, we shall sometimes write an element o of W(QT;J) as
aft]. For o e W(QTr;J) and =tce S‘, afgz]l e W (L, conjugation) is defined for
all but finitely many ¢. We define o;(a) to be the signature of a[g] when-
ever possible, and elsewhere to be the average of the one-sided limits. (These
signatures were introduced in a slightly different context by Casson and Gordon
[1].) This gives a step function o.(a):s1+ Z, all of whose discontinuities
occur at points where a[gz] 1is not defined. 1In view of Proposition 1, for a
knot K, ac(aK) is equal to the Tri?tram-Levine signature of K at z, except
perhaps at finitely many points of S . We abbreviate o;(aK) to cK(;).
THEOREM 1. Let S be a satellite of C with orbit K and winding num-

ber w. Then

_ w
aS[t] = aK[t] + aC[t |

We shall need the following lemma.

LEMMA 1. Let (M,9) be a closed 3-manifold over C_. and suppose that
M has the rational homology of S1x Sz. Then

a(M,we) [t] = a(M.cp)[twl
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for any integer w. In particular,

a(M,9){1] =0 .

PROOF OF THEOREM 1, ASSUMING LEMMA 1. Let (wx,wx) and (wc,wc) be compact

4-manifolds over C°° such that

and Q(WCIWC) = (Mclwc) .

Let UC C MC be the surgery solid torus, and let UK

neighborhood of the axis of K used to form §. We can construct

(o MK be a small tubular

(1) (stws) = (WKIWK) 9 (Wc;wwc)
UK=UC

so that a(ws,ws) = (MS,QS). wall additivity applies to (1) in both ordinary
and twisted homology, since the kernels corresponding to the two pieces of

awC are the same. Therefore

G(MS'¢S) = a(MK'vK) + Q(Mcvw@c)
W
= a(MK.¢K) + G(MC.¢C)[t ]

by Lemma 1. This is the assertion of the theorem.
PROOF OF LEMMA 1. Let (M,9) = 3(W,¢¥). First suppose that w# O, Let

WW' Www be the infinite cyclic coverings of W determined by ¢, w¢y re-
spectively. Since to(W)[tw] = to(W), we need to show that

w
t w)ylt] =t (W)t .
ww( ) [t] w( ) (7]
But this is easy, since ﬁww consists of |w| copies of Ww; t permutes these
copies cyclically, with t¥ acting on each copy like t on W¢°

It remains to prove that a(M,¢){1] =0, We may assume that ¢ 1is onto,
sinceif ¢ =0 there is nothing to prove, and otherwise we can use the previous
case to replace ¢ by an epimorphism. Since QI is torsion-free over the

PID T,
H:(W;QP) = H:(W;P) ®.QT .

The intersection pairing on H:(W;Qr) comes from a pairing

H;(W;r)x H;(W;F) —+ I' by tensoring with QrI. This pairing induces one on
L = Hg(w;r)/r-torsion,

and L 1is a P-lattice in HS(W;QP). Now H:(W;r) is just the ordinary
rational homology of the infinite cyclic covering W, regarded as a T-module.
By doing surgery on W we may assume that v1(W) = C_. Then W is simply

connected. Also H1(M) —_— H1(W) is onto, so H3(W:Q)= 0. From the exact
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sequence for the covering W + W [19] we therefore have
o+ H;(W;I‘) 1=, H;(W;I’) — HZ(W:Q) — 0

exact. Thus HZ(W;Q) = H;(w;ri erQ ; hote that the intersection f:rm on
HZ(W;Q) comes from tha: on az(w;r) by tensoring with @. Also Hz(w;r) has
no (1-t)-torsion, so Hz(w;r) QTQ gL OFQ . Therefore tw(W)[1] = to(W),
proving that a(M,9)[1}= 0.

REMARK. We could have defined oa(M,¢) without the assumption that M
has the rational homology of S‘x Sz, since this was only used to ensure non-
singularity of the intersection forms and any Hermitian form over a field gives
rise to a non-singular form on the guotient by its radical. However, the case
w=0 of Lemma 1 would no longer hold. For instance, if M is the manifold
obtained by O-surgery on both components of the Whitehead link, and if ¢ sends
the meridians of the components to t and 1 respectively, then a(M,¢) is the
rank 1 form <1>,

There is a related result that we shall need. 1In [6], Section 13 an in-
variant o(M,9) e @ is associated to any closed 3-manifold (M,¢) over Cm, the

finite cyclic group of m'th roots of unity.

LEMMA 2, lLet K be a knot, let m be a power of a prime, and let

g:C_ -+ Cm be a homomorphism. Let 7=g(t). Then aK[c]e W(L; conjugation) is

defined and
GK(I;) = O(MK,WK) .

PROOF. That aK[c] is defined follows from Proposition 1 and the fact
that, if 4 1is the Alexander polynomial of K, A{z)#0O since ¢ 1is a prime-
power root of unity. (See {24}, Lemma 2.5.) The second assertion follows from
the identification of o(M,¢) with an eigenspace signature ({1], pp. 5-6),
Lemma 3.1 of [2) and Proposition 1.

We conclude this section with a remark on surgery presentations of a knot
K. In [22], Rolfsen shows how such a description gives rise to a presentation
matrix A(t) for the Alexander invariant of K. This matrix satisfies
A(t)T = A(t_1), and A(1) is a diagonal matrix with diagonal entries 1. It
is evident from the definition that A(t) represents the intersection form on
Hg(w;or) for a certain 4-manifold (W,y) over C. with 3(W,y) = (MK,¢K); ]
is obtained by attaching 2-handles to B4 as specified by the surgery descrip-
tion, and removing a neighborhood of an unknotted 2-disc spanning K. The in-

tersection form on HZ(W;Q) is represented by A(1), and so

a, = [A(H)] - [A(1)]

where [..] denotes Witt class. (That the Tristram-Levine signatures of K

can be computed from A(t) was observed in [14], Section 12.)
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3. THE CASSON-GORDON INVARIANTS...

In this section we set out our notation for these invariants and prove a
technical lemma. If (M,¢) is a closed 3-manifold over me Cr there is an
invariant T (M,9) € W{(C(t),J) OzQ djfinfd 3? in {6), Section 13, (The ig-
volution J of €(t) 1is given by £(t) = £(t ).) Let K be a knot in S7.

Let L=1L be the n-fold branched cyclic covering of K, and let M=M

K,n K,n
be obtained from L by O-surgery along the lift K of K. Thus MK 3 is the
[4
manifold MK of the last section, and MK n is an n-fold cyclic covering of
’

MK,1' We identify H1(M) with H1(L) 0 Cm, ) where the generator t of t&e
C°° summand is represented by a meridian of K. Let Chn(K) = Hom(H,(L), c)
be the group of characters of H1(L). We shall always assume that n is a
power of a prime, so that L 1is a rational homology sphere, and any X ¢ Chn(K)

. +
takes values in Cm for some m. Define ¥ :H1(M) —— me C_ by

+
x (X,¥) = (x(x)oy) , xe H (L), yeC_
and set
+
(K, X) = T(M,X )

(In (6] it is assumed that m is the order of X, but it is easy to see that
the choice of m 1is immaterial.)

Linking number gives a non-singular symmetric pairing
Lk:H1(L)x HI(L)——+Q/Z, which yields another such pairing on Chn(K), also
denoted by Lk. We shall always think of Chn(K) as carrying this form, and
-Chn(K) will denote Chn(K) with the form -Lk. The theorem of Casson and
Gordon {[1],[6]) is that if K is slice then (for any prime power n) Chn(K)
has a metaboliser .# such that 1(K,x)=0 for all xe¢.# of prime-power order.
(A metaboliser is a subgroup which is equal to its orthogonal complement.) The
case n=2 has received most attention; in Section 5 we shall have need of odd
primes. We remark that the above makes sense for n=1; in this case there is
only one character, 0O, and 1(K,0) 1is the image aK of QK in W({C(t),J)e Q.
(If 0n is the zero of Chn(K), T(K,On) may be non-zero for some n>1 as
well; it is determined by the algebraic cobordism class of K. See Appendix B.)

If K is a composite knot KI# K2, Chn(K) may be identified with the
orthogonal direct sum Chn(K1) ® Chn(Kz)' and then

t(K,x10x2) = T(K1.x1) + T(szxz) .

This is proved in [5], Proposition 3.2 for the case n=2; it is a special
case of Corollary 1 below.
Induced homomorphisms on W(EC(t),J) are defined just as for @(t) in

Section 2.
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LEMMA 3. Let K C S3 be a knot. Let xe Chn(K) take values in Cm'

and suppose that m and n are both powers of primes. Let xe¢ me C_, Ca(r).

If x has finite order suppose further that n=1. Then <t(K,x)[x] 4is defined

and

T(K,x) [X] = T‘Mx,n' fx+)

where f:cmx c — me C is defined by f(y)=y for ve Cm and f(t) = x.

PROOF. By 1(K,x)([x] we mean the image of (K, x) under the homomorphism
W(C(t),J) @ @ —> W(C(t),J) € @ induced by

~

f:m[t,t-1] — T(t);

fa) =a , a €@,

£(t)

X .

~

If x has infinite order, £ 1is injective, and the proof is similar to the
case w# O of Lemma 1. We leave this case to the reader. Suppose then that

x has finite order, i.e. xe¢ Cm. By assumption n=1, and so

x+:H1 (M) — C_x C_ is given by x (2) = (1,9(2z)) where 9= g il (M)—C_
is the canonical isomorphism of Section 2. Define g:Cm-—vcrn by g(t)=x.
Choose a compact 4-manifold (W,y) over Cm such that 23(wW,y) = r(MK,g¢) for
some r> 0. Let j:Cﬁ—* qu C°° be the inclusion. Then 3(W,jy) = r(M,fx+)
over me C_. Now the me C_ covering of W determined by j¥ is a trivial
infinite cyclic covering of the Cm covering determined by . It follows
that r(M,fx+) lies in the image of W(&, conjugation) @ @ and has signature
o(MK,g¢). On the other hand, Tt(K,x)= aﬁ. By Lemma 2, aK[x]e W(€, conjuga-
tion) is defined and has signature o(MK,g¢). The result follows (remembering

that signature gives an isomorphism W(C, conjugation) = Z).

4., ....OF SATELLITE KNOTS
First we identify the character groups of a satellite.

LEMMA 4. Let S be a satellite of C with orbit K and winding number

w. let n be a power of a prime, and set h=h.c.f.(n,w) and k=n/h. Then

Chn(S) = Chn(K) ® h(Chk(C)) ’

with the linking form on Chn(S) being the orthogonal sum of the forms on the

summands.

PROOF. We prove the corresponding statement for the dual groups H1(L n).
“r
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let A be the axis of K used to construct S. In L A is
1,...,'&“. Let U1,...,U
borhoods of the A . Let L: o

’
S3 less an open tubular neighborhood of C. Let X= LK n" 1nt(U1|J'°' U Uh)-
’

K,n'

covered by h curves A be disjoint tubular neigh-

h
be the unbranched k-fold cyclic covering of

We can construct L by gluing a copy of L: to X along each 13U, via
[4

S,n k
an appropriate gluing map. A Mayer-Vietoris argument gives

i

H (LS,n) = HI(LK,n) ® h(H1(Lc,k)) .

It remains to determine the linking form. First let x belong to the i'th

copy of H1(Lc ). Then x can be represented by a cycle § which lies in

,k

M and represents a torsion element of H (Lu ) ¥ H (L ) ® Z. Let D be

c,k g 1 ¢,k 1" "¢,k

a 2-chain in Lc K with 8D=rf , r>0. For any vye H1(Ls n) represented by
’ 4

a cycle n,

1
Lk(x,y) = Y {(D*n) modZ .

It follows that each H1(Lc ) is an orthogonal summand and inherits the cor-

S,n)*

!,

Finally, if xe Hl(LK n), represent x by a cycle § nmissing
r

k
[
rect form from H1(L

u U-'-LJUn, and let D be a 2-chain in with @D=rf , r>0, and

1
transverse to the A

LK,n
We get a 2-chain D' in L with 2aD'=r§ by replac-

i* sS,n
ing each component of DﬁUi with a 2-chain in a copy of Lb It follows that

ok’

for ye H1(LK,n) we get the same value of Lk(x,y) by working in LK,n'orLS,n'

THEOREM 2. Let S be a satellite of C with orbit K, axis A and

winding number w. Let n be a power of a prime, h=h.c.f.(n,w), k=n/h,

Let xie H1(LK,n) be represented by the i'th lift of A, i=1,...,h, Identify
Chn(S) with Chn(K) ® h(chk(C)) as in Lemma 4. Let Xg ™ (XK'XI""’Xh) €

Chn(S) be of prime-power order. Then

/h

h
T(Sixg) (8] = T(Kyx) () + ] T(Coxp) I (x )01

i=1
NOTES. (1) The terms under the summation sign are defined by Lemma 3,

since either w# O or X; € Ch1(C).
(2) It is understood that the i'th lift of A corresponds to the i'th

copy of Chk(C).
The two extreme cases of this theorem embodied in the following corollaries
are probably of most interest.

COROLLARY 1. 1In the situation of Theorem 2, suppose that n is coprime to

w. Then Chn(S) H Chn(K) ® Chn(C) and for Xg= (xK, xc) € Chn(S) of prime-

power order we have

T(S,xo) = T(Kex,) + T(C,x_)IE"] .
S K (o]
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If w=1 this is always the case, and the Casson-Gordon invariants are
the same as those of K# C. 1In general, if n is coprime to w, the in-
variants associated to Chn cannot distinguish between elements of 5§(K,C).

PROOF. 1In the situation of Theorem 2 we always have x1+ cest X, = 0. 1In

the present case, h=1 and so X, = 0. i

COROLLARY 2. In the situation of Theorem 2, suppose that n divides w.

Then Chn(S) H Chn(K) and for e Chn(S) of prime-~power order we have

n
T(S,x) (L] = Tk [E) + ] e lxx) e

i=1

] .

PROOF. Here Chk(C) = Ch1(C)= {0} and 1(C,0) 1is the image of ac in
W(T(t),J) © @ . &
PROOF OF THEOREM 2. Let m be the order of Xge and regard

XK'X1"'°’Xh as taking values in Cm. Take compact 4-manifolds (WK,WK),
(W1,¢1).---,(Wh,¢h) over me C_ such that

+

r (MK,n ' XK)

f

AW o)
+ .
a(wil\pi) = r(Mc’kl Xi) ? 1=1,o-o,h ’

w/h

+
for some r > 0. Note that xK(xi) = (xK(xi), t y for i=1,...,h. Recall

that Mc K is obtained from LC K by O-surgery on the 1lift of C. Let
’ ’
ucC Mc K be the sur8ery solid torus, and let Vi C MK n be a tubular neigh-
r 14
borhood of the i'th lift of A, with V_,...,V disjoint., For i=1,...,h

1 h
and 3j=1,...,r, let Uij be the copy of U 1in the j'th boundary component

of Wi’ and let vij be the copy of Vi in the j'th boundary component of

WK' We can construct

h
(2) W. =W, U u w

where each Uij is glued to vij' so that 3W_= . Define

rM
S S,n w/h
fi:cmx c_— me C, by fi(y)= y for ye Cm and fi(t) = (xK(xi),t ).
. W, .. i tifi ion,
Then wKIHI(Vij) and flwliﬂi(Ulj) agree under the identification, so we can

combine wK and the fiwi to give wS:H1(WS) —_— me Cw , and then
3 (W =t (M_,x0)
( SIWS) = r SIXS .

Wall additivity applies to (2) in both ordinary and twisted homology, since the
kernels corresponding to the pieces of the awi are the same. Therefore

h
+ + +
P xg) = TM ex) ¥ iz,T(MCrk' £.x) -

/h] by Lemma 3, completing the proof.

T(M

+ W
But T(Mb,k' fixi) = t(C.xi)[xK(xi)t
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3,1
S. SATELLITES WHICH ARE INDEPENDENT IN €.
In this section we shall prove:

THEOREM 3. Let we Z be given. There exist knots K and C such that

& (K,C) contains r>2 knots representing linearly independent elements of
r-1

€ 1 provided that at least 2 1 distinct primes divide w.

Note in particular that for w# f1 the condition holds with r= 2.
Further, if w=0 then r can be any integer. On the other hand, we know
that the algebraic cobordism class and all the Casson-Gordon invariants are
consistent with a positive answer to the following:

QUESTION. Is every member of 5%(K,C) cobordant to K# C?

Combining Theorems 1 and 3 we have the following result of Jiang [7].

COROLLARY 3. The cobordism group of algebraically slice knots contains a

free abelian group of infinite rank.

We are going to use Corollary 2. To get any mileage from this we need
axes for a knot K whose lifts represent different elements of H1(LK,n) for
some factor n of the winding number. This motivates the following defini-
tions. Let A be an axis for K of winding number w, and let n divide w.
and let x

Let L=1L seerX € H1(L) be represented by the lifts of A,

‘ '
We say thzén A 1is n-trivi;l if xi= 0O for i=1,...,n, and that A is
n-generating if XyreoerX, generate HI(L)' Note that, for any factor n' of
n, if A is n=-trivial then it is n'-trivial and also (since

H1(LK,n) — H1(LK,n') is onto) if A 1is n-generating then it is n'-generating.
Given K, wand n it is easy to find an n-trivial axis for K of winding
number w. In order for K to have an n-generating axis it is necessary for
H1(L) to be cyclic as a Z[t,t_1]-module. It is not hard to see that this

is also sufficient, but we shall not make use of this, as we now give specific
examples of n-generating axes. If K is a torus knot of type (p,qg) then K

has two obvious "standard" axes Ap and Aq of winding numbers p and 9 re-

spectively. (The satellite .9%K,C;Aq) is the (p,q)=-cable of C.)

LEMMA 5. Let K be a torus knot of type (p.q), where p,g>1, and let

n be a factor of qg.

~

(i) H1(LK n) = (n-1)(z/p).

’
(ii) The standard axis Aq ig_n-generating.
PROOF. Let L=1L

K,n' and let §1,...,Kn be the lifts of Aq to L, rep-
resenting X ,...,x € H (L). Let A' be the single lift of Ap. Let U be
a small tubular neighborhood of K, and let t" € L be the n-fold cyclic
covering of 83— int (U). Let Yyreeer¥ o y'e H1(Lu) be represented by
§1""'5n' A', respectively. The decomposition of 83— int (U) into two solid
tori with cores Ap and Aq lifts to a decomposition of Lu into (n+1) solid

tori. The Mayer-Vietoris sequence yields
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u
H (L)

<Y1IO-OJYn'Y'IPYi = {(g/n)y', i=1,...,n>

n

Z @& (n-1)(Z/p)

since p and g/n are coprime. Hence H1(L) £ (n-1)(Z/p). Since y, maps

to xi. and y' to O in H1(L), x1,...,xn generate HI(L)' i

PROPOSITION 2. Let K be a torus knot of type (p,q), where p,q>1.

let g=g'q" be a factorization of q into coprime integers, and let w be

a multiple of q. Then there is an axis for K of winding number w which is

g'-generating and q"-trivial.

PROOF. Let L'= LK q* and L"= LK g * Let A™ be the standard axis
1 14

for K of winding number q; it is both q'-generating and q"-generating by

Lemma 5(ii). Modify A" by winding it locally around K as in Fig. 3 to

give an axis A" of winding number gq'. Because the modification

/

Axis K New axis

2

e

N

Figure 3

lifts to L' to give an isotopy of each lift of A™, A" is also g'~-genera-
ting. On the other hand, A" is covered by a single, null-homologous curve
in L". Now let A' be a (1,q")-cable about Aa"; A' 1is an axis of winding
number . Since each lift of A' to L' is homologous to qg" times the cor-
responding lift of A", A' is still q'-generating (by Lemma 5(i)). Each 1lift
of A' to L" is homologous to the single curve over A", and hence to zero;
i.e. A' is q"~trivial. Finally use the modification of Fig. 3 again to give
an axis A of winding number w. This time the modification lifts to both L®
and L", so A has the desired properties.

The whole process is illustrated in Fig. 4 for the case p=5, g=6, g'=3,

q"=2 and w=12.
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In order to avoid calculating T(K,Xx) when applying Corollary 2, we want
that term to be swamped by the contributions from C, The next lemma enables
us to arrange this.

LEMMA 6. Given an integer N and a neighborhood U of 1 in S’, there

is a knot C such that o.(z) >N for g¢U.

PROOF. There are several ways of constructing such knots. For instance,
the torus knot Tn of type (-2.3“) has T (eZnix) > 2 for
1/2 3n<:x< 1=-1/2° 3n. (See (15}, Propositign 1.) Thus we can take C to be
the connected sum of M copies of Tn' M>N/2, where n is so large that
eZ"ix e U for |[x]| < 1/2°3n. In fact a single copy of Tn will do if n is
large enough; ezﬂix e U for |[x]| < N/4‘3n-1 +1/3n—1 will certainlysuffice.i
We also need a simple piece of linear algebra.

LEMMA 7. let F be a field and V a vector subspace of F“. Suppose

that any element of V has fewer than u non-zero coordinates, for some fixed

pe Then dimV < yu.

PROOF. Let wi:V+ F be the restriction of the i'th coordinate function,

l'
“i ,...,ni for v, where d=dimV. There is an element v of V such that
ni1(v)= 1 dfor j=1,...,d, so d<u.

3

*
i=1,.44,v. Then = ...,ﬂv generate the dual V , s0 we can pick out a basis

PROOF OF THEOREM 3, First observe that if K is a torus knot of type

{(p,q) (p,9>1) then, for any knot C and any multiple w of g, each satel-
lite Se.ﬂL(K,C) maps to an element of infinite order in Ws(z). This is be-
cause .GS(C) = cK(;) if §w= 1 (by [15] Theorem 2, or Theorem 1 above), while
K(ezn/q);‘ 0 (by (15], Proposition 1).
Now let w and r be as in the theorem. Choose distinct primes qI
dividing w, one for each non-empty subset I of {1,...,r-1}, and let p be
any prime distinct from all the ‘qI. Let g= gql, and let K be the torus

knot of type (p,9). Set
N = max|o1T(K,x)[

where x ranges over UChq (K). For the definition of OCT' where

I 41
Te W(C(t),J) @ @, see [1] or [6], Section 13.) By Lemma 6, we can take a knot
C so that

0.{z) > 4N vhenever Fa1, g#1 .

It remains to choose r axes for K. For 1i=t,...,r we have a factorization

q=‘qiq; where and qI = By Proposition 2 there is an

¢ = I 1 .
9 % r:ier U I:if1 %1
axis Ai for K of winding number w which is qi-generating and q;-trivial.
Let Si =.9%K,C;Ai). We claim that § ,...,Sr represent linearly independent

1
elements of @,
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Suppose they do not. Any non-trivial relation can be written in the form

9"
s, ~ I s.

(3)
1 X k=1 Ik

[ e I

k

L]

where "~" means "is cobordant to", 2>0, 1<i <r and ik# jk' for

k' jk—-
any k,k'. Since all the Si map to the same element of infinite order in
WS(Z), we have £'= L. Let 1I= {ik|k=1,...2}: I is non-empty and we may
assume (by switching the sides of (3) if necessary) that rfI. Set n= 95
Note that Ai is n-generating if ie I, and n-trivial if not.
We shall use the t-invariants associated to Chn. Let
. L
Ch (S, ) ® ] (~Ch (S, )) .
1 M % k=1 M X

M =

| e ¥

k
Since njw, Lemma 4 gives

Chn(Si ) = Chn(Sj ) = Chn(K) ’
k k
which is isomorphic to (n-1){(Z/p) by Lemma 5(i). In particular, 9 has
prime-power order, so the relation (3) implies that 9¥ has a metaboliser M

such that
2 L
(4) I t(s, oxy ) = 1 T8, ixy)
k=1 v % k=1 I Ik
whenever (xi ) ® (xj ) eM. For any Si and xe¢ Chn(K), Corollary 2 gives
k k
0, 1(S,,x) = o, t(K,x) + 3 o (xx(i))
1 i’ 1 ! c'*Ms
s=]
(i) -{i) . .
where X, ,...,xn € H1(LK n) are represented by the lifts of Ai' If if1
14

this simplifies to
011(Si,x) = 01T(K'x)
(Ai being n-trivial). Therefore (4) gives
n (1k) L

2
(5) ) I o (x. x ) = J (0,1(Kyx. ) - o, T(K,x, )) < 2N
k=1 s=1 © 1 ° k=1 | Iy ! e T

for (x. ) ® (x. ) € Now for any xe Ch (K) and xe H, (L ) we have
] n 1" K,n

1
k .
x(x)p= 1, so elther ac(x(x»> 4N or x(x)=1. Thus (5) implies that there
(i)
are fewer than %& values of k for which some X; X k' #1. Since Ai is
n-generating (i) k k
X, X K =1 for s=1,.e.,n =% y, =0,
1k S 1k

Thus we have shown that if (x.l ) © (xj ) € .4 then X5 is non-zero for fewer
k k k
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than %% values of k.

Write 9 as Qi] 0%, where %- z Ch (S and %= }:(—Chn(sj )).

)
i k
Let ./{(1 be the projection of .# into 9}3 and let ,,{(2 =.,l(ﬁ¢lf2 ' so that
uﬂazuﬂZA?z. Identify Chn(K) with (n-1)(Z/p), and hence identify Qﬁ with
2({n=-1)(Z/p}. Under this identification, each element of=4% has fewer than

%2 (n-1) non-zero coordinates, so by Lemma 7

u{(1 < %4 (n-1) = % dim 9

im
Z/p zZ/p "1

or

%

RN

Hence

| > (o)

But ul(z is a self-annihilating subgroup of 9[’2, so this is impossible. This
contradiction establishes the independence of Sl""'sr in ?3'1.
6. HOMOLOGY HANDLES.
. . 1 . . . .
In [9], Kawauchi defined a group Q(S «x 52) which fits into a commutative
diagram

@3 —-9-->sz(s sz)

N/

Wy (Z)

and which may be described as follows. A homology handle is a 3-manifold with

the integral homology of S1x SZ, and a special homology handle is a homology

handle M together with an isomorphism w:H1(M)+~CQ. (In comparing this with
Kawauchi's definition, remember that all our manifolds are oriented.) Two such
objects (M1,¢1), (M2,¢2) are H-cobordant if there is a compact 4-manifold

(W,9) over C_  such that
I(W,¥) = (M17‘01) v (‘MZI‘PZ)
and
t
H,(W;Qr) = O .

The elements of Q(S1x 52) are the H-cobordism classes of special homology
handles. The group operation will be described later; the zero is represented
by S1x 82 (with either ¢), and the inverse of ([M,¢] is [-M,¢]l. The
homomor phism eﬁ€3'1——ﬁixs1x 52) is given by (Kl — [M.,q.1.

Now if (M, r0,) and (M,,9,) are H-cobordant, it is clear that

a(MI.w‘) - a(M ) = a(M1,¢1)[1] - a(Mz.wz)U] ’

2%
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which is zero by Lemma 1. Therefore we have a commutative diagram

¢ e nzs x 2 )

N, /-

w(Qr,J)

It can be shown (see below) that a:ﬂ(s1x sz) ~+r W(Qr,J) 1is a homomorphism.
It can also be shown, exactly as in Section 2, that it is equivalent to the
homomorphism Q(S1x 52) —_— WS(Z) defined by Kawauchi.

We now define operations on Q(S‘x 52) analogous to forming satellite

knots. Let (M1,¢1) and (M be special homology handles, and let w be

2!4’2)
an integer. Choose embeddings

ji: S‘x D2 —_— Mi , i=1,2,

such that j' is orientation preserving, is orientation reversing and

12
. 1 w
¢1]1*[S xO] = t ’
. 1
¢2]2*[s xo] t A4
Define a special homology handle (M,¢) by
M= m14jﬁs1xnw0%) U
3, (x)=d, (x)
1 2
xeS xaD

. 1 . 2
(Mz— ]Z(S x intD"})) ,

elH, (M) = ¢, + 9|H (M) = wo, .
We write
(M,q) = (M11‘P1) 0w (M2,¢2) .

The case w=1 was considered by Kawauchi, who called it circle union. This
construction is not well-defined, since in general (M,¢) depends on the choice
of j1 and j2. However, we have:

PROPOSITION 3. (Kawauchi [9] in case w=1), Fix w# O. Then the H-cobor~-
dism class of (M1,¢1) 0w (M

2,¢2) depends only on those of (M1,¢1) and

(M2:€P2) .
PROOF. (cf [9], Lemma 1.6) For i=1,2 let (W, ¥,) be an H-cobordism
1] 1
from (Mi,¢i) to (Mi,vi), and let

, 1 2 . 1 2
Ji:SxD ——’Mi . Ji:SxD -—’Mi

be embeddings as in the definition of ow. Let

(M,9) = (M,9,) O (My,0,) ,

w 292
(M',0") = (M;.v;) o, (Ménvi) p
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constructed using ji' ji respectively. We must show that (M,9) is H-cobor-
dant to (M',9'). Let W be obtained from the disjoint union W1 [ W2 by
making the identifications
. . . 1 2

4 = ’ = 41

3.(x) = 3,0x) Jpx) 2 35(x) , xe S xD
Define biH (W) — C, by

VIH W) = vy $H (W) = Wi, .
Then

I(W,¥) = (M) U (-M',0') .

That H:(W,Qr)= 0 follows from the Mayer-Vietoris sequence. (Note that, ex-
panding the notation for twisted homology to indicate the twisting homorphism,

Hi((wz,wwz);or)= O because the infinite cyclic covering of W, determined by

2

wwz consists of |w| copies of the one determined by wz. This fails for

t 31
w=0; H*((Wz,O);QF) = H*(Wz;o) 9@ Qr.)
Thus we have, for each w# O, a well-defined binary operation 0w in
1
Q(s1x Sz). The addition in Q(S x Sz) is 01.
The next result if immediate from the definitions.

PROPOSITION 4. Let S be a satellite of the knot C with orbit K and

winding number w. Then

Mgrog) = (MK.wx) 0w (MC.¢C) .
Observe that the proof of Theorem 1 actually shows that if

(M,9) = (M1'tp1) OW (M ) then

292
_ w
a(M,q) [t] = a(M1.¢1)[t] + a(M2.¢2)[t ]

(even for w=0). The case w=1 Jjustifies our earlier claim that o induces
a homomorphism Q(S1x 52) — W(Qr;J) .

From Propositions 3 and 4 we see that for any knots K and C and any non-
zero integer w, Sz(K,C) maps to a single element of Q(S1x sz). Together
with Theorem 3 this gives:

THEOREM 4. The kernel of the homorphism e:%;'1A——+ 9(S1x SZ) contains

a free abelian group of infinite rank. i

Of course, whether or not this is really stronger than Corollary 3 depends

on whether a(s1x sz) _ WS(Z) has kernel or not, which is an open question.

APPENDIX A. The Witt group of Hermitian forms over a function field.

AO. PREAMBLE. Let K be a field of characteristic different from 2,
provided with an involution x=+ X (which may be trivial). Let the involution
J of the rational function field k(t) be given by f(t)J = f(t-1). We study

the Witt group W(k(t),J) of Hermitian forms over k(t), and prove a version
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of Milnor's exact sequence for the Witt group of symmetric forms (20}. If the
involution of k is trivial then Milnor's proof can be carried over virtually
unchanged, because the fixed field of k(t) is k(t+t_1). In the general case
this does not work; our approach was suggested by Trotter's proof that the
Blanchfield pairing of a knot determines its Seifert form. As special cases we
obtain the isomorphism W(@(t),J) = WS(Q) ® W(@) mentioned in Section 2, and a
computation of the group W(C(t),J) used by Casson and Gordon.

At the heart of Trotter's proof is his "trace" function Q(t)/o[t,t-1]

—+ @([25),1(26]). We use a slightly different function which has a nice geo-
metric interpretation, given in Section A4, We also give a new proof of a
result of Matumoto [18}.

Al. GENERALITIES

We recall the definitions and elementary results on Witt groups that we
need. General references for this are [21) and [3]. In what follows, T 1is a
PID with involution J, <charT #2, Qr 1is the field of fractions and r' is
the group of units. Also (k,-) 1is a field-with-involution, chark #2, and
k[t,t-1] is given the involution f(t)J= E(t—1). The case of trivial involu-
tion is allowed.

Let N be a I'-module with an involution, also called J, such that
(yn)J= YJnJ for ye ', neN. If M is a I'-module and ¢:Mx M+ N 1is a sesqui-
linear pairing (linear in the first variable, conjugate linear in the second) we
denote by ¢* the pairing ¢*(x,y)= ¢(y,x)J. Let ue T have form uu’=1. If

¢ = u¢* then ¢ issaid tobe u-Hermitian. We have the adjoint homomorphism

adg: M — Hom(M,N) ;
ad ¢ (x) (Y) = o(x,y) ’

where Hom denotes the module of conjugate-linear maps. We say that ¢ is
non-singular if ad¢ and ad¢* are isomorphisms.

We need four kinds of Witt groups; we now list the objects from which they
are formed.

(a) Wu(r,J) for uel of norm 1. The objects are u-Hermitian spaces

(Viyp); 1i.e. V 1is a.finitely-~generated free I'-module and ¢:Vx V+ T is
u-Hermitian and non-singular.

(b) WwW(Qr/r,J). Torsion forms (M,¢); i.e. M 1is a finitely-generated

torsion I-module and ¢:MxM —— QI'/T is Hermitian and non-singular.

(c) W‘(Cw;k,-). Skew-isometric structures (V,¢,t); i.e. (V,9) is a

skew-Hermitian space over k and t 1is an isometry of (V,9¢). Here a metab-
oliser is required to be t-invariant.

(d) ws(k,-). Seifert forms (V,%), i.e. V is a finite dimensional

k-vector space and &:VxV —— k 1is sesquilinear and non-singular, with

F-P* also non-singular.
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REMARK. The last group was defined by Levine [12] for the case of trivial
involution, with two differences. Namely, he did not require that & be non-
singular, but did require P+&FP* to be so. As to the first, it is shown in
[13] that every Witt class has a non-singular representative. It will follow
from Section A5 below that the second change does not affect the Witt group
either.

If vel and ¢:Vx V—T is u-Hermitian then vp |is (uv/vJ)-Hermitian

and we get an isomorphism V:Wu(P,J)-—* W g(r,J). By Hilbert's Theorem 90

uv/v
this gives:

PROPOSITION Al.

o] if - is trivial and u = -1 ;

n

Wu(k'_) . -
wW(k,-) otherwise . i
Since W(k,-) is generated by rank1 forms, the same is true of Wu(k,-).
For «ye P. with y= uyJ we denote the corresponding rank 1 form, or its class
in wu(r,J), by <y>.

The following remarks apply to both (b) and (¢). 1In case (b), let (M,q)
be a torsion form over T. 1In case (c¢), let (V,p,t) be a skew-isometric
structure over k. Set T= k[t,t-1], and think of (V,t) as a finitely gen-
erated torsion T'-module M. 1If we restrict M to be -torsion, where is a
symmetric ( = J) prime ideal of T, we obtain Witt groups W(Qr/I',J) and
W_(Cw;k,-) + For any prime ideal of ' let M denote the -~torsion part
of M. Then M 1is the orthogonal sum of M for = J and M & M for

J
J . . . \ .
# , and the latter summands are metabolic. This gives canonical isomor-

phisms
(A1) w(r/r,J) = J w(Qr/r,J) ’
(A2) W_(C :k,-) = J W_(C_:k,-) .

We denote by WO(QI'/I‘,J), W‘j(cm;k,—) the sum of those terms on the right-hand
side of (A1), (A2) (respectively) for which # (t-1).

One can further show that any element of WwW(Qr/r,J) or w_(Cm;k,-) can
be represented by a form for which M= 0. In case (c) it follows that

w_(cw;k,-) can be identified with W_(k,=). In particular, if the invo-

(t-1)
lution of k 1is trivial, W_(Cm;k) = W?(Cm;k). In case (b) it follows that
the summands of (A1) are (non-canonically) isomorphic to groups of type (a).
For let 1m be a generator of . Then nJ= un for some ue r'. Since ¢

takes values in c%r)/r, we have a pairing

'qu;: Mx M =T/
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Regarding M as a T/ - vector space, this is a non-singular, (-Hermitian
form, where ~ denotes reduction modulo . It can be shown that

(M,p) — (M,nJ¢) (for M= 0) induces an isomorphism.

Tyt WQI/T,I) — WalT/ ,3) .

Finally, we recall the "localization" exact sequence and deal more fully

with the subject of induced homorphisms treated in Section 2. The sequence is
i
0 — W(r,J) — wW(or,J) & wr/r,3 .

The first homomorphism is induced by the inclusion © — QI'. (Homomorphisms
induced by injections cause no problems, of course.) The definition of the
second runs as follows. Let (V,9) be a Hermitian space over Qr. If L is

#

a r-lattice in V with L<L (definition as in Section 2) then 23[V,¢9] is

represented by the torsion form
9': L‘/LXL#/L‘-" Qr/T ;
' (Ix],Iyl) = e(x,y) modT .

We denote the composition of 3 with the projection to W(Qr/r,J) by a3 ,
and if w 1is a generator of we write 3" for nia tW{Qr,J) —-WG(F/ eJ)e
Now W(Qr,J) is generated by <y> for vy ¢ QP., Y= YJ. We may assume that
vye I and that either vy is coprime to ©® or y=%8§ with & coprime to .

Computation shows that
a“<y> = Q for Yy coprime to = ;
a"<n6> = <8> for & coprime to 1w .

(cf.[21]1, Chapter 1IV,(1.2).)
If Lj_L# we obtain a Hermitian pairing ¢ on the T/ vector space

L =L 9rr/ by setting
J ~
¢ (X@oa,y®B) = aB o(x,y) , xX,ye L, a, Bet/ .

PROPOSITION A2. We can choose L so that ¢ is non~-singular if and

only if 3 [V,¢}=0.
PROOF. 1Identifying L# with EEEF(L,T) we have an exact sequence

o-1 e, Enru.,r) — it —o.

Tensoring with [/ gives an exact sequence
$ ade __ s
Tor (L/L,T/ ) — L —-—-oﬂomr/ (L ,/ ) = (L'/L) .1/ ~—o.

Thus ¢ is non-singular iff L’/L has no -~torsion. 1If this is the case,
certainly 3 [V,e]l = 0. PFor the converse, let L1 be any lattice with

#

< .

L2y

M with torsion coprime to .

Set M= L,/Lf, and write M=M @© M where M is the part of
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This is an orthogonal sum. If 3 [V,9]=0, M. has a metabolizer N. Let
-1
p:Lt + M be the gquotient map. Then L=p (N) is a lattice with L1§_L§_Lf.
# -1, * -1
L"=p (N)=p (NeM ),
so LE_L# and L#/L =M has no -torsion. i
It is now not hatrd to show that one can define a homomorphism

ker 3 -—+ w(r/ ,J3) by (V,9] — [L , ¢ 1, where L is chosen so that ¢ is

non-singular. If €£:(r,J) — (I'',J') is a homomorphism of PID's-with-involu-
tion and = ker f, one gets an induced homomorphism
£,¢ kerd3 —+W(L/ ,J) =>WwW(r',J') .

*

Thus ker 3 is the subgroup called Def(f,) in Section 2. If T = k[t,t-1]

we use the notation 1t([x] = £, (1) introduced in Section 2,

A2, THE LOCALIZATION SEQUENCE FOR A FUNCTION FIELD

For the rest of this appendix, (k,-) 1is a field-with-involution,
char(k)#2, T'= k[t,t-I], QI is the quotient field k(t) and J is the in~-
volution f(t)J = f(t-1) of T or Qr.

LEMMA A1. The sedquence

0 —+ W(ks=) —— W(Qr,J) -2+ w(Qr/T,J)

is exact, where i, is induced by the inclusion k — Qr.

PROOF. This amounts tc showing that the map W(k,~) — W(I,J) induced by
inclusion is an isomorphism. It has a left inverse = given by a(t)=1[1],
so it is enough to show that # 1is injective. First we show that ker(w) is
generated by forms of rank 2. Let (L,9) be a Hermitian space over T, and
suppose that w[(L,9]=0. This means that (L,p) becomes metabolic upon ten-
soring with k, so there exists a non-zero x in L such that ¢(x,x)=f and
£(1) = 0. Without loss of generality we may assume that x is primitive, so
there exists y in L with ¢(x,y)=1. Let W be the submodule of L spanned
by x and y. Suppose that 2zeW F\WL, and let 2z=ax + by, a,bel. Then

0 = 9(z,X) = ap(X,X)+b

and

0= ¢(2,y) a+ boly,y) -

It follows from the first equation that b(1)=0, and then from the second
that a(1)=0. Hence =z= (1-t)z' with z'eWwn WL. Since this process can be
repeated indefinitely, 2z must be zero, and we have W N W1= O. Therefore
L= WL ® th, and wlw&L is a rank 2 form representing an element of ker(m).
By induction, ¢ is a sum of such forms.

Now consider a rank 2 form (L,¢) representing an element of Kker(w).

Let A be a matrix for ¢. Then detA(l) = -aa for some ace k'. Since ¢ is
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non-singular over T, detA ek., so detA = -ax. Changing basis, we may
assume that detA =-1. Let the corresponding basis of L be x,y. Set
f=09(x,x),9=9¢(x,y) and h=e¢(y,y). If h=0, ¢ is metabolic. If not,
let z=hx + (1-g)y# O. We have

h%t + h(1-g)°g + h(1-g)g° + (1-g) (1-g)°h

¢(z,2)

J
h2f + h{(l=-gg )
0 since fh-gg = detA = -1,
Thus ¢ 1is metabolic in any case, and so ker(n)=0 as claimed. ii

The formula (A1) and the discussion following it show that the computation
of W(Qr/r,J) reduces to the computation of the Hermitian Witt groups of
finite extensions of k. These are known if k 1is a finite extension of the
rationals (Landherr [11]), or Ror T. Below we determine the image of 3 and
show that the sequence splits, which determines W(Qr,J) = W(k(t),J) in these
cases.

A3, A TRACE FUNCTION, TORSION FORMS AND SKEW ISOMETRIC STRUCTURES

We are going to define a k-linear function x:QI/I' + k. Let TI* be the
r=-module of all Laurent power series E aiti, aie k, and extend J to TI*.

j=—c

There are two fields

-
n

{] aitllme Z , a; e k} ,
i=m

and

—
"

n .
i
) bt |nez, b, € k}

inside T*. These give rise to two I'-linear embeddings i+,i_:Qr# I'*, Since
r+ NnNr_=r, i+- i_ induces a r-lin?ar embedding Jj:Qr/r-+ r*, Let
const:T*+ k be given by const(2a1t1)= ao, and let x be the k-linear map
(const) j. The properties of ¥ that we need are:

PROPOSITION A3.

(i) x(x”) = -X(x) for xe QI/T 4

(ii) x*:HomP(M,Qr/r)-» Homk(M,k) is an isomorphism for every torsion
T-module M.

Part (ii) says that x 1is a universal element for the functor Homk(-,k) of
torsion I'-modules.

PROOF (i) This follows from the observation that
. J .
1+(f ) = 1_(f)J for feQr .

(ii) First we show that x, is injective. Note that if N is a I'-submodule
of T* and const(N)=0 then N=0. Let g¢¢ kerx, . Then const(joM) =0,
so JjoeM=0 and since j 1is injective ¢M=0, i.e. ¢=0. If M is finitely

generated then HomP(M,Qr/r) and Homk(M,k) have the same finite dimension
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over k, so x, is an isomorphism. The general case follows because M is
the union of its finitely generated submodules. i

Let M be a finitely generated torsion T'-module. We claim that there is
a bijection between Hermitian forms ¢:Mx M — QI'/T and skew-Hermitian forms
P:Mx M+ kK with the property that VP(tx,y) = w(x,t-1y) for x,ye M, given by
¢+ x9. To see this, let M denote M with the conjugate action of TI. Re-
gard forms of the first type as elements of Homr(M orﬁ , Qr/T) such that

Mo, M - Qqr/r

lo [a

Mo M 2 or/r

commutes, where o switches the factors. Similarly, forms of the second type

are elements of Hom, (M @, M,k) such that
M BI'

[o
M BP

commutes, where a(xX) = -X. The claim follows on using Proposition A3. More-

¥

M —

7"——-;——-)77

TR SR

over, ¢ is non-singular if and only if x¢ is, as one sees by regarding them
as elements of Homr(M,Homr(ﬁ,QF/r)) and Homr(M,Homk(M,k)) respectively and
using the universal property of x. Therefore if (M,9) 1is a torsion form
over T then (M,xe) is a skew-isometric structure over k. Further, (M,9)
is metabolic if and only if (M,x¢9) is. (Use the universal property again for
the "if" part.) Thus we have:

LEMMA A2. The trace function x induces on isomorphism

X4 W(QT/T,J) —-'W_(Cw;k,-) . i

This isomorphism respects the splittings (A1) and (A2); in particular it takes
WO(QF/P,J) onto WE(Cc;k,-). Recall the homomorphism 3:W(Qr,J) — W(Qr/Tr,J).
Let forgetzwﬂ(cm;k,-) — W_(k,-) be the homomorphism which forgets the action
of ¢t.

LEMMA A3. x,(Im 3) < Ker (forget).

PROOF. Consider an arbitrary generator <y> of W(Qr,J), where vye Qr.

J .
and y=vy . We may assume that ye . Then 23<y> is represented by a form ¢

on a cyclic 'module M of order vy, where for a generator x we have
e(x,x) = 1/y modTl .

n .
et vy = Z ait1 where a_i = Si and an# O. Then as a k-vector space M
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has a basis t'x, -n<i<n, and

. i3
i t
xe (e x,thx) = x(==—) .
o+ i L i + -
Now 1 (V/y)= Jbt, i (1/y) = ] b.t" for some b, ,b, ¢ k, and so
+ i - i i i
i=n i=-
JQO/y) = Zbiti with bi=° for -n<i<n. It follows that

xrp(tlx,tjx) =0 for |i-=j|<n .,

In particular, x,tx,...,tn'1x span a metaboliser for x¢ (considered just
as a skew-Hermitian form over k). i

Consider the splitting

(a3) W(er/r,3) = W (Qr/r,3) @ W@r/T,3) . -
Since the restriction of forget to W_(Cw;k,-) is an isomorphism it fol-

lows that (Im3) N wW(Qr/r,J)

(t-1)
0

(t-1) =0, so if we let 3 :W(Qr,J)— W (Qr/r,J)

be the composite of 3 and projection on the first factor in (A3), we have

proved:

LEMMA A4. The sequence

O = W(k,-) — W(Qr,J) i»wo (Qr/r,J)

is exact. i

BA4. A KNOT-THEORETIC INTERLUDE

In this section the base field k will be the rationals. lLet K C 83 be
a knot. The rational Blanchfield pairing B of K represents an element of
w(Qr/r,J), while the skew-symmetric Milnor pairing u defined in (19), repre-
sents an element of W_(C_:®. It can be seen by computing matrix representa-
tives in terms of a Seifert matrix for K that X8 = -u (cf. Section A6; this
is also true for Trotter's trace function), We give here a direct geometric
proof of this; in fact this suggested our definition of x in the first place.

We first recall the definitions of B8 and u. Let M= MK' the result of
O-surgery along K, and let M be the infinite cyclic covering of M. Let
H= I-I1 (M;®, a finitely generated torsion T-module. Let x be a (rational)
1-cycle in M. There exist fe T, £ 0, and a 2-chain C such that 3aCs= fx.

Then one defines
o«

Blixl, (vl = £ [ (treepe™?

i:-m
where * denotes ordinary intersection number. The Milnor pairing arises from
an isomorphism a:H;(ﬁ;Q)«—» H1(ﬁ;Q) where H: is homology based on infinite
chains. The desired pairing u is the composite

-1 .
HxH A—J—Lg*ﬂz(ﬁzﬂ)xﬁ -~ D
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where the final arrow is the ordinary intersection pairing. To see u geo-
metrically we need the definition-of 3. Let €, (respectively €_) be the
end of M such that for =xe¢ ﬁ, tlx > €, (respectively € ) as i 4o
(respectively =-w). The chain complex c:(ﬁ;Q) has subcomplexes C*(ﬁ,e+;m),
C*(ﬁ,e_;m) consisting of those chains whose support lies outside some neigh-

borhood of €_r €, respectively. There is an exact sequence

0+ C, (M; @) — C, (H,e ;0 © C (Me_;@) — C (H;@ 0 .
One shows that H*(ﬁ,ei;0)= 0, and defines 3 to be the connecting homomor-
phism in the long exact homology sequence. Thus given (finite) 1-cycles x and

y there;are 2-chains C_e C,(Me ; ), C_ e C (Me_; ) with aC_=x=3C_ and

u(lxl,ly]) = (C_-C)*y .

REMARKS. (1) There is lots of scope in this area for conflicting sign
conventions. The one we use means that for a fibered knot ¢ 1is the same as
the intersection pairing on the fiber,

{2) Milnor {19] used the dual cohomology pairing.

THEQOREM A1. 1If B8,u are the Blanchfield and Milnor pairings of the knot

K, then u=-x8. In particular, x*aaK = [u] in w_(C_; D).

PROOF. Note that if Ac ci(ﬁ;o) and ye I_ there is a chain

Y& € ci(ﬁ,e+;m) and 3(yA) = y3A. Similarly if vyeT_.
Let x,y be (finite) l1-cycles; and choose f and C as in the definition
of 8. Then we have
i, (1/6)C e C,(M,e ;@)
Mi (V/E)C) = i (1/£)Ex = x .

Hence

w(Ixl, [y]) = (G_(1/6) - i (1/£))C} ey

= - .Z ai(tIC'y)
jz=c

o s
where i _(1/€) = i_(1/€) = | a.t’. On the other hand,

jz=c

xig 1 (tlepe™h

i=-o

x8 ({x1,(y])

® i, 02 i -i
const{( [ a,t")( ] (t'Cy)t )}

1= 1=™o

) ai(tlc'y) .

{F=c
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That is, xB([x],(y] = -u([x},[y}). i

A5, SKEW-ISOMETRIC STRUCTURES AND SEIFERT FORMS
let V be a finite dimensional vector space over K. There is a 1-1
correspondence between skew-isometric structures (V,¢,t) such that 1-t is

an automorphism of V, and Seifert forms (V,%#), given by the formulae
¢ =P-P*: Vx V+k
t = (adP) adP % VoV

and

(84) Plxy) = o((1-6)"'%,9) , xyye V.

Moreover a subspace W of V is a metaboliser for & iff it is a t-invariant
metaboliser for ¢. (We leave it to the reader to supply the easy proofs of
these assertions, which are straightforward generalisations from the case of a
trivial involution.) Thus we have:

LEMMA A5, There is an isomorphism

At wg(cm;k,—) — W (k,=)

given by the formula (A4).

Note that if (V,9,t) and (V,%) correspond as above then
(1+t) = (adP) ad(P+P ") .

Thus P +P* is non-singular if and only if (1+t) is an automorphism of V.

If the involution on k 1is trivial then W_(Cm;k) 2 W_(k)=0, so we can

+
always assume that 1+t 1is an automorphism., This(;uglifies the assertion made
in Section Al that it does not affect W (k) if we insist that P+@P* is
non-singular.

A6, DETERMINATION OF W(Qr,J).

THEOREM A2, (cf. [20) Theorem 5.3). The sequence

P

0+ W(k,-) — W(Qr,J) = w%(ar/r,J)+0

is split exact.

35995. In view of Lemmas A4, A2 and AS, it is enough to produce a homo-
morphism v:Ws(k,-)-—a'W(Qr,J) such that Ax*aov is the identity of Ws(k,-),
where X 1is as in Lemma A5. Let o¢ ws(k,-) be represented by a matrix S,
and define v(o) to be the element of W(Qr,J) represented by

s, = (1-t)s + (1-t'1)s* .

Note that det(St) = (1-t)ndet(s—t-1s*) if 8 is nxn, and since
det (S-S5*) # O, St is non-singular. It is straightforward to check that v is
a well-defined homomorphism. The proof that Ax*§‘v = id is a simple matrix

calculation. First, 3v(o) = a{st] is represented by a form ¢ on the
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r-module M presented by St’ and ¢ 1is given by

e(X,y) = xSE‘y* mod T

where X,y are the images in M of the row vectors x,y. Since
St= (1—t)(S-t-TS*) and det(s-t-1s*) is coprime to 1-t, a°[st] is repre-

C s o (o) . ,
sented by the restriction ¢ of ¢ to M = (1-t)M. A presentation matrix for

o 1

M is s-t s*, and relative to this presentation ¢° is given by

(1-t) (1—1:"):;5;1 y*

O ~ ~
9 (x,¥)

(1-t Hyx(s-t g% ™! y* modrl .

Making a change of basis we see that M° also has a presentation matrix

ti- S*S-1, and the corresponding representation of ¢° is

(-t e xs) s-t7Ts%) (e lysy

(l-t)x(S*S“I-tI)-I S*y* modT

O ~ ~
¢ (x,Y)

Thus as a vector space over Kk, Mo has dimension equal to the size of S,
and the automorphism t has matrix S*S-I. In other words, if S represents
the Seifert form &, ¢t= (ad&?)-1(ad67’).(The order is reversed since matrices
act on the right of row vectors.) If £ and n are row vectors over k we
have

1

xo®(E,n) = x{(1-t)E(5*s™ - £1) " 's*n*)

i+1) ti)s*l']*}

const{ (1-t)E( f (s*s™ Ty

js—x

£(s-s*)n* .

Comparing this with Section A5 we see that x*aolst] = A-I[S], as claimed., @

We have isomorphisms

W

W(Qr,J) = w(k,-) @ W (Qr/T,J)

'3

W(k,~) ® Wo(C_sk,-)

n

W({k,-) ® Ws(k'*)

ADDENDUM TO THEOREM. Let K C S3 be a knot with Seifert form o,

Blanchfield pairing g and (skew-symmetric) Milnor pairing u. Under the

above isomorphisms with k=@, a«, 6 corresponds to (O,[-B]), (O,[n]) and

K

(0,[0]) respectively.

PROOF. By Theorem A%, it is enough to show that v[®]= ay. But this is
Proposition 1.

A7. THE GROUP W(&(t),J).
In this section we take (k,-) = (€, conjugation), so that I = G[t,t—Il

and Qr= €(t). By a balanced function we mean a function f:S‘* Z with a
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finite number of discontinuities such that (in an obvious notation)
£(8) = 1/2(£(5+) + £(5-)) for all ke s‘. Recall that for <t¢ W(Qr,J) and

Ee s1. oEt is defined to be sign(t[§])) whenever <t[f] exists, and for the

remaining § it is defined to make 0.1381* % a balanced function (see [1]).

Thus we have a homomorphism o from W(Qr,J) to the group of balanced func-

N
tions,

We can also associate signatures to an element v of W(Qr/r',J), in two
equivalent ways. The symmetric prime ideals of I are (t=f) for ¢Ee S1, so
we have

w(r/r,J) v _ WwW(Qr/r,J

fes! (t=£)

and isomorphisms

(t-E)' "

(t=§) — W g1 /(8. D)

w(Qr/r,J)

—_ W_Ez (C, conjugation)

--15-*' W(€, conjugation) .

Denote the image of the £{'th component of v in W(&, conjugation) by v
)D

14

Then we have the signatures sign(u€

Secondly, we have
W_(C_;C, conjugation) & ces! w_(C_:C, conjugation)(t_g)
and each summand is isomorphic to W_(C, conjugation) by forgetting the action
of t. Denote the £'th component of Xy by (X*U)€° We claim that
(X4V), = =iv_. It is enough to check this when u is represented by the form

13 11
¢ on a cyclic I-module M of order t-f, Ee S1, given by

¢(x,x) = it/(t-§) modr
where x generates M. For c¢# £ we have uc- O= (x*u);, while
= <1>
Ve
it
=2 Ky (=—=—=}> B <=~ .
(X*U)E X(t-E) <=i>
Thus we can define

OCU = sign(uc) = sign(i(x*u)c) .

REMARK., 1In [18] Matumoto studies two families of signatures associated to
a Seifert matrix S over €. These are essentially the same as the signatures
of v[S] and 3av(S] defined above. Thus our next result, which says that the
signatures of 31 are the jumps in o,Tr, Te W(Qr,J), is just that part of
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Matumoto's theorem which does not consider the value at a discontinuity. Our
proof is a trivial computation.

THEOREM A3. (Matumoto [18])
For te W(C(t),J) and ¢e S1 we have

6 T =-0_71T=20_(31) .
g+ z- C( )

PROOF. It suffices to consider the cases

-~
]

<y> , Yye T coprime to (t-z)

and T <(t-g)6> , e I' coprime to (t-z) .

In the first, (81); =0 so 1t(g] 1is defined and both sides of the asserted

equality are zero. In the second, for Ee¢ S1 close to ¢ we have
T[E] = <(E-)8(E)> = <(E-g)8(&)/|E-¢|>
whence
O;iT = sign(*izé(g)) .
On the other hand
(a1) = <ig8> = <izé(g)> .

Combining this with Theorem A2 we have:

COROLLARY Al. The map o, is an isomorphism from W(C(t),J) to the

group of balanced functions. i

One can deal similarly with the cases k= R or k an algebraic number
field. In the first case, W(R(t),Jd) is isomorphic to the group of balanced
functions f for which £(g) = f£(z). In the second, W(k(t),J)/torsion is
determined by the functions o, associated to the involution-preserving embed-
dings of k in €.

APPENDIX B. RELATIONS BETWEEN CASSON-GORDON INVARIANTS.

Let K be a knot, and 1let n and N be powers of the same prime with
n<N. Let p:LK,N - LK,n be the covering projection. Each xe Chn(K) gives
rise to xp, ¢ ChN(K). We show how <t (K,x) determines 1(K,xp,). The main
purpose of this is to shed some light on the multiplicative behavior of o (K,x)
for certain K noted in [2]. In fact, we show that T(K,x) has the same
behavior, and identify the properties of the knots responsible. Throughout,
r= G[t,t-1], and for ye I we write y|x instead of vy(x).

THEOREM B1. In the above situation, let v=N/n. Then we have

o t(Kyxp,) = ] o, t(Kx) - ] o (w) + v I o.(n) .
¢ ' g:gV=¢ ¢ wswN=1 K n:nn=1 K

REMARK. This determines 1t(K,xp,) by Corollary Afl.
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COROLLARY Bi. In the situaticn of the theorem, suppose further that K

is algebraically slice and that <t(K,x) is_in the image of W(C, conjugation)

@ @®. Then

T(K'xp*) = \,T(K'x) . i

REMARK. By Theorem (3.5) of [5], the last hypothesis is satisfied when
n=2 and K has genus 1. This is the case in {2].
COROLLARY B2. Let K be a knot and v a prime power. Let Ov denote

the zero of Chv(K). Then

o t(K,0) = ] o (&) - I o w .
¢ v g:gV=g K wioVal K

PROOF. In the theorem take n=1 , N=v, and recall that t(K,0 )= ag. !l
REMARK. Of course, one is only interested in Tt(K,x) for K alge-
braically slice. However, if K is a sum of two non-algebraically-slice knots
then this result shows that some care must be taken. Note however that

011(K,0v) is always zero.

PROOF OF THEOREM B1. Let x take values in Cm' Let p denote also the

projection MK N > MK n we have
’ [4

+ +

X P, = (XP,) @ H1(MK,N) - Cm xC_ .
Choose (W4,w) such that

+

I(W,9) = r(MK,n' X) » r>0 .

There is a v-fold cyclic covering q:wv¢-w such that
+

a(wvl va,) = r(MK,N' X Py

From the approach to knot signatures via branched covering spaces (see [4] or

[15])) it follows that

1
—(sign(W ) - sign(®)) = [ o (@) -v [ o.(n)
r v wswN=1 K nini=1 K

and hence that the desired result is equivalent to

(B1) ot w) = o .t (W) .
C ‘vq* v g=£V=c E "

In what follows, w and n will be variables ranging over the v'th roots of
unity. Let e,ewzr* Qr be the injections given by
v
e(y) = y|t" , e, = vlot .
We show that

Styq, M) " E 0ty
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from which (B1) follows upon taking aE
Let L= H;(w;r)/torsion and L_= Hg(wvgr)/torsion, which are I'-lattices
in Hg(w;Qr) and H;(wv;or) respectively, with Lj_L#, L*S'Lt. Now the

for some vth root £ of .

me c°° covering W of W determined by Vv is also the covering of wv de-

termined by V9., so as (-vector spaces
t t ~
Hz(w,r) = az(wv.l‘) H2(W,¢) .

For xeg H;(w;r), let x, be the corresponding element of H;(wv;F). The

I-module structures are related by

v
tex, = (t X),

*
Then L and L. are related in the same way. Further, the intersection forms

9,9, on L,L, are connected by the formulae

<«

(B2) ?(x,y) = Z aitl r PL(x,,Y,) = 2 avit

i
j== izem
for x,y ¢ L, Let QI with the I'-module structures induced by e,e be de-

noted by QPe Qrw . Then e,t is represented by (L, ® Qre,¢e) where

wq*(wv)
| v

P (%Xe ® YiY, 8 8) = v8 (9, (x,h¥,)|t")

and ew*tw(W) by (L & Qrw' ¢m) where
J

cpw(x ® v,y ® 8) = v§ (o(x,y)|ut) .

There is an isometry T of (L, ® Qre, ¢e) defined by
T(x, ® v) = (tx),  ® v

and Tv is multiplication by tv. Therefore L,k ® Qre splits as an orthogonal

direct sum & Em where Em is the wt~-eigenspace of T. The proof is completed
W

by showing that

1}

(E s+ 9,|B) = (LOQT , 0 ) .

Define homomorphisms aw:L* ® or, — L ® Qrw and Bw:L ® Qrw-—» L, ® Qr, by
1
a (%, 8y) = — (x0®7),
1 -i i
B (x®y) = = ] (ut) T (x,®7y).
“ V' o imod v
We leave it to the reader to verify that these are well-defined and satisfy

B (LeQr ) <E ,
w 0 -
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Thus Bw maps L @ Qrw isomorphically onto Ew' Finally, we have

we(sw(x ®v) ., Bw(y ® §))

=L ) w3 ™ o x, 01, 7Ny, 0 1))
i,j mod v

=ve? T Wt K, xRy 1Y

kmod v
From (B2),
e,y = 1 R, 0x,. ) 1Yy
kmodv
SO

J
9, (B (x8vy) , 8 (v &35)) =y (p(x,y) |ut)

= wm(x ® vy, y®3s§) . i
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