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Introduction. The paper exhibits a general change of rings theorem in homo-

logical algebra and shows how it enables to systematize the computation of the

stable homotopy of projective spaces.

Chapter I considers the following situation : R and S are rings with unit, h:R-+S

is a ring homomorphism, M is a left S-module. If an S-free resolution of M and

an R-free resolution of S are given, Theorem 1.1. shows how to construct an R-free

resolution of M.

Chapter II is devoted to computing the initial stable homotopy groups of

projective spaces. Here the results of Chapter I are applied to the homomorphism

tx:A-* A of the Steenrod algebra over Z2 (see 1.3). The main tool in computing

stable homotopy is the Adams spectral sequence [1]. Let RPX, CP™, HPm be the

real, complex, and quaternionic infinite-dimensional projective spaces, respec-

tively. If X is a space, let n£(X) denote the mth stable homotopy group of X [1].

Part of the results of Chapter II can be presented as follows :

m: 123456 7 8

RPœ: Z2      Z2      Z8      Z2      0        Z2 Zi60Z2 z2®z2®z2

CPœ: 0 Z        0 Z        Z2       Z Z2 Z©Z2

7TP°°: 0 0 0 Z        Z2       Z2 0 Z

Chapter I. Homological algebra

1. A change of rings theorem. Let R and S be rings with unit, h : R-* S a

homomorphism of rings ; under h, any left S-module can be considered as a left

R-module.

Let M be a left S-module. Let Y be an S-free resolution of M : Y = E^o Yq,

with differential d' and augmentation e'. Let Xq be an R-free resolution of Yq:

differential d" and augmentation e4 onto Yq.

Let   C=E9Ï.0X,.   Ck= E9+r=tX?r,   and   augmentation   e = e'( E,e4).   If
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/ : C -» C is a homomorphism which lowers total degree, then / = ££°= 0fk, where

ft-   Xq~* Xq-k-

Theorem 1.1. There exists a differential d.C^C such that {C,d,e} is an

R-free resolution of M. The differential d can be chosen to have the properties:

(1) d0 is induced from d",

(2) d'Eq+x=eqdx,

(3) ZUdA-^0;
conversely, any map with properties (1), (2), (3) is a differential which makes C

acyclic.

Remark. Let G be a finite group, H a normal subgroup of G, X a ring;

let R = X[G], S = X[G//Í], M = X.Theorem 1.1 was proved by Wall [14] in

this special case. The proof presented here is a straightforward translation to

the general case.

Proof of Theorem 1.1. Let us show that any d with properties (1), (2), (3)

makes C acyclic. Filter C by F"C = 2^q¿pXq. The differential d preserves filtra-

tion, and the associated spectral sequence converges to H(C). The differential

in E° is precisely d0, hence E1 = Y, with d1 corresponding to d' because of (2).

Since y is a resolution of M, E2 = £°° = M, hence C is acyclic.

To prove that d with properties (1), (2), (3) exists is easy. Since the Xk are

R-free resolutions of Yk, we can construct an R-map dx: XqtF-+Xq-x r such that

eq-xdx = d'sq. To construct the maps dk, k _ 2, we use induction on the total

degree q + r of Xq¡r. We set dk = 0 if it lands in Xq, r. with q' < 0. Suppose d has

been defined on Xq%r. with q' + r' <q + r, and d0, ■•■, dk have been defined on

Xqr. Let/= — 2Zlj=1didk+x-i. We claim there exists a map dk+x such that

d0dk+x =/. To prove this it suffices to prove that d0f= 0 and eq_k_xf= 0, but

this is easy :

t+i t+i    ¡

d0f= - £ d0didk+x-i= Z    £ djdi-jdk+x-¡
i=l i=l   j=l

k + l       k + l-j

= I dj Z ât-jd^-i-o,
7=1 i=J

which completes the proof of Theorem LI.

2. Hopf algebras. Let E, F be graded, connected, associative Hopf algebras

over field a X [12]. Suppose that F is a Hopf subalgebra of E. Then, according to

Theorem 2.5 of [12], F is free as a right (or left) F-module. Therefore we have

Proposition 1.2. £®F is an exact functor of left F-modules into left E-modules.

We shall say that F is normal in E if FE = EF, where F denotes the augmen-

tation ideal of F. Let B = EjjF = EjEF.
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Proposition 1.3. If W is an F-free resolution of K, then E®FW is an E-free

resolution of B.

Proof. Proposition 1.2 and £®f K = B.

Remark. Let R = £, S = B, and h: R-> S the projection map. Let M be a B-

module, Y = B®Y a B-free resolution of M, U = F ® Ü an E-free resolution

of K. Then, according to the proposition above, we can take for Xq in Theorem 1.1.

the complex E®fq®0 with the differential induced from U (see [10]).

3. The Steenrod algebra. Let A be the Steenrod algebra [11] over Z2.

The graded dual A* is a polynomial algebra and the squaring map in A* is a Hopf

algebra map a*. Let a: A-+A be the dual of a* ; a is defined by

aiSq2r+1) = Sq2\

If 7 is a finitely nonzero sequence of non-negative integers, then we let Sq1

denote the Milnor basis element corresponding to I. Let A¡ be the sequence

consisting of 1 in the ith place and zeros elsewhere. Define the elements

a = sA R; = s<z2Ai.

Let C be the subalgebra of A generated by 1 and Qk, k = 0,1, • ■ • ; B the subalgebra

of A generated by 1, Q0, and Rk, k = 0,1,

Proposition 1.4. B and C are normal Hopf subalgebras of A, and

Kernel a = AC,

Kernel a o a = AB.

Proof. Immediate consequence of Lemma 2.4.2 of [2].

Remarks. 1. The preceding proposition states that we may consider a and

a o a as the projection maps A-> A//C, A-> A//B, respectively.

2. The map a halves the grading. Let Ä denote A with the grading of every

element multiplied by two. Then a : A -» Ä preserves grading. The reader is asked

to make such adjustments in the following pages.

It will be necessary to know the groups Extc'(Z2, Z2), Ext j'f(Z2, Z2). The

first is easily determined, for C is a Grassman algebra :

Extc'*(Z2,Z2) = Z2[go, -,<&. -].

where the polynomial generator qkeExt1'2"+l~1.

We compute Exts¿'(Z2,Z2) using Theorem 1.1. We shall use the standard

minimal resolution of Z2 over C. Generators will be in one-to- one correspondence

with finitely nonzero sequences of integers / (the free C-generater corresponding

to I will be denoted by  [7]).  Let I = (i0,  iy, •■■, ik, ■•■), then degree [/]
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= Efcifc, grade [/] = ¿Zkik(2k + i ~ 1). The differential in the minimal resolution

is defined by

äm = i er[/-Ar],
r = 0

where we set [/ — A J = 0 if ir = 0.

According to Proposition 1.4, Keroc | B = BC, and C is normal in B. For the

module XtJ in Theorem 1.1 we take the free B-module on generators [/] ® [J],

where degree [/] = i, degree [J] = / and grade ([/] ® [J]) = 2 grade [/] +

grade [J]. The augmentation e¡ is defined by e¡([/] ® [■/]) = 0 if degree [J] > 0,

£,([/] ® [•/]) = [/] if degree [J] = 0. Both d0 and d' are defined by the formula

for (/above. An easy induction on the degree of [J] shows that we can define the

maps dk for k _ 1 as follows :

diV\ ® [J] = I RkU - Ak] ® [J] + Z (Á+1 + 1) [/ - AJ ® [J - A0 + At+xl
k k

diU\ ® [J] = Z C/I+1 + 1) So [/ - A0 - AJ ® [J + Ai+J,

d3[7] ® [J] = Z a*+i + D(/r+i + D[/ - A0 - A, - A,] ® [J + A,+ 1 + A( + 1]

+ Z   (A+^ + 2 )[/ - A0 - 2AJ ® [J + 2A( + 1],

í/„ = 0 for n = 4.

Since we will only use the groups Extg''(Z2,Z2) for t — s < 13, it is sufficient to

consider the generators [/] ® [J] in the resolution for which ik = 0 for k _ 2,

jr = 0 for r = 3. Thus for í - s < 13 Ext£'(Z2, Z2) is additively the homology

of the bi-graded algebra Z2[x0,x1,y0,y1,y2], where grade (xi) = 2'+2—2,

grade(yf) = 2-/ + 1 — 1, degree (x¡) = degree(yj) = 1, under the differential ôx + ö2,

where ôx is a derivation and

ox(x¡) = 0, ôx(y0) = 0, ôx(yj) = yoXj-! ;

ô2 is a map of Z2[x0,x1,y0]-modules with

ô2(xj)  = 0,     <52(y0) = 0,

s2(yryT) = mxm2x2xxyT-lyT-1 +( m2l)xlyr-2yV

* ( ^2 )¡w&Tj
,    IM2-2
/2 >

and 5^2 + ¿2¿! = 0. We list some obvious cycles under ôx + ô2 in the following

table, and give classes in ExtBl which they determine. (Bx is the subalgebra of B

generated by Q0, R0, Rx, and Ext*¿í(Z2,Z2)s Exts/(Z2,Z2)   for í — s < 13)'
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Table

Cycle Degree    Grade   Class

y0 1 1 g0

Xq 1 2 Kq

Xy 1 6 ky

^0^2  + Xyyy 2 9 y

yt>yî + xfoi 3 7 t0

y0y22 + x0Xyy2 3 15 t,

y\ 4 12 toy

y\ 4 28 to2

01y0yiy2  + x0yyy2 5 21 T

+ x0xyy2yy2

Proposition 1.5. ExtsB'*(Z2,Z2) is generated as an algebra by the classes

go>fco>fci>y>To>'t'i,T01,cu1,a>2.

Furthermore, it is a free Z2[a>y,to^-module with the following monomials as

generators:

g"o,  sS*o»   g"oTi>   So*oi>   n^O,

kok{,  0zgizg2,  Ozgj   iif i > 0, then j i% 1),

V0k{y,   k{y2,   k{y3.

Proof. Find the homology under Sy, decompose the homology into a tensor

product of standard complexes under S2, and use the Kiinneth theorem over

the ring Z2[x0].

Remark. Once ExtB|(Z2,Z2) is known, it is very easy to construct a minimal

resolution for Z2 over By. The task is left to the reader.

4. Operations of Ext and the Adams spectra] sequence. Let A be the Steenrod

algebra over Zp, L a left ,4-module. There is a natural map

p: Extr(E,Zp) ® Ext7(Zp, Z„) -» Extf P'U+"(L,ZP)

which makes Ext^^Zp) into a right Ext4(Zp,Zp)-moduIe. For the definition of p

see, for example, [2]. We write a * ß for p(a ® ß).
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For the Adams spectral sequence see [1].

Theorem 1.6 (Adams).  The spectral sequence for the sphere S° operates on

the spectral sequence for any arbitrary space X. In particular, if

h e Exti»(Zp, Zp),       a e Exta/(H*(X), Zp),

and   dj(h) = 0, j = 2,---,r,   dk(a) = 0,   k = 2, •■•,r— 1,   then

dr({a*h}) = {dra}* h.

Proof. The proof of Theorem 2.2 of [1] ; see also Théorème IIB, Exposé 19

of [6].

Chapter II. Stable homotopy of projective spaces

1. The prime p = 2. Let RPX, CP™, HP00  be the real, complex, and quater-

nionic infinite-dimensional projective spaces, respectively. It is well known that

(1)

(2)

(3)

H*(RPX;Z2) = Z2[x],

//*(CPC0;Z2)= Z2\y\

H*(HPco;Z2) = Z2[u],

where x, y, u are the nonzero 1,2,4-dimensional classes, respectively. Let L,M,N

be the elements of positive degree in (1), (2), (3), in the order given. Let a : A -» A

be the dual of the squaring map (see Proposition 1.3).

Proposition ILL There are Z2-isomorphisms f : M-*L, g: N-+M such that

the following diagram is commutative:

A®N ■+N

a®g 8

(4) A®M->M

a®/ /

A®L -»L,

where the horizontal arrows indicate the action of A.

Proof. According to [11], if 9 e A, then

(5) öx =z<£n,0>x2':

Let h-.RP™ -tCP™ be a map such that h*(y) = x2; h* is a monomorphism.

Thus from (5) and h*
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By =   I<£2,0>v2\
n=0

Let/: M -* L be the algebra map given by f(y) = x. Then/(0y) = a(6)f(y), for

<|2,0> = <«*(£„), 0> = <£„,a(0)>. With this choice for/ the bottom rectangle

of (4) is commutative. The proof is completed by defining giu) = y and consid-

ering a map k: CP00 -4 HP™ such that fc*(w) = y2.

Remark. Proposition II. 1 is used by S. P. Novikov in his investigation of

Thorn spectra (dissertation - unpublished).

According to the proposition M and N are isomorphic to L as /1-modules through

the homomorphisms a, a o a, respectively. We are all set to apply the change of

rings Theorem 1.1. since we know the cohomology of the subalgebras C and B

(at least in low dimensions, see Proposition 1.3).

Before we introduce the results, let us define some elements in

Ext^(Z2Z2): g0eExtu\     hxe Ext1,2'*1,     ¿ = Ô,1,—

(the element g0 corresponds to the element h0 of [2]; our n¡ corresponds to hi + t

of [2]).

Proposition II.2. As an ExtA(Z2,Z2)e module, ExtAs'' (L,Z2) has the fol-

lowing elements as generators for t — s zg 10 (if s zg 2) and t — s zg 9 (if s > 2):

^O.l'^O.S^O 7'e2,10'e4,13

where est denotes a nontrivial class in ExfJ¡'(L, Z2). A Z2-basis in these dimen-

sions is given by the following set of classes:

e0,i>   e0A*h0,  e0i*hy,   e0A*h2,    e0i*h0h2,

eo,i*h2y,    e0>3>    e0i3* g0,    e0>3* g2.,    e0,3*"i>

e0.3*h2,    e03*g0h2,    e0,7*£o» fc = 0,l,2,3,

eo.7*"o>    e01*h0,    e210,    e2 i0* h0,    e4yy3.

Proof. Explicit minimal resolution, using the methods of [8].

Remarks.  Compare Proposition II.2 with the results of Adams vanishing

Theorem [4]. Also e4 13 = Pe0 y (see Theorem 5 of [4]).

Proposition II.3. Exts/(M,Z2) has the following Z2-basis for t — s zg 11:

e0 2* go>    eo,6* go,    ey 5* gô,    e2 y2* gl,    e3Al* gn0,    n = 0,l,---,

e0,2* hy,    e0,2* g0hy,    eoa* h2go,        k = 0,1,2,3,

e0.6*h0,    e06*h2,    e2X3*g^,        fe = 0,1,2,3,   e3tX4.

Proposition II.4. ExtA'(N,Z2)for i —szg 13 has the following Z2-basis:
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^0,4* go»    ^o,12* go»    ¿3,11* So»      n = 0,1,2, •••,

e0,4* "0>      e0,4* "0'      el,10>

Ci,io* V    ei,io*h2,    e1>12* gk0,        k = 0,1,2,3,

«1,12*^0»      «2 13»      e2,13*^0»      e2,13*^0»       ^5,18»       e0¡x2*h0.

Proposition II.3 and II.4 are proved by using the constructions of Theorem

1.1. In the proof of Proposition II.3 we take an ^-minimal resolution Y of L and

take the tensor product of Y with a minimal resolution of Z2 over C. In the proof

of Proposition II.4 the tensor product of Y with a minimal resolution of Z2 over

B is examined. In both cases, for the range of s and t given, only the map dx need

be examined.

We give a sample computation. The minimal resolution of L over A for t — s zg 5

can be taken as follows:

0*-L¿-C0¿Cx¿C2So*-0---,

where C0 is free on c01, c0>3, Cx is free on c1>3, cxA, clj5, C2 is free on c2>5 ; the

maps e, d are defined to be

£(co,i) =  *»£(c0,3) = x >

d(ci,3) = axc0tX,

d(cXA) = Q0c0 3 + GiCo.i,

d(Ci,s) = a2c0tX,

d(c2¡5) = Q0c1A +aiCi.3,

where a, = Sq2', Qi+X = [ai+1, Qj].

Take generators [/] of a minimal resolution W of Z2 over C in one-to-one

correspondence with finitely nonzero sequence / of non-negative integers. We

denote by A, the sequence consisting of 1 in the ith place and zeroes elsewhere;

we let I — J be the sequence of term-by-term differences (we set [/ — J] = 0 if at

least one entry is negative). The differential d" in   W is defined by

d'Vl = f QiU-M
¡ = o

Let us show as an example that we can define dx on cx 5 ® [nA0] as

a3co,i ® [iA0] + axa2c0 x ® [(n - 1)A0 + AJ + axc0 x ® [(n - 1)A0 + A2]

. + a2c0 j ® [(n - 2)A0 + 2AJ +c0 x®[(n- 2)A0 + Ax + A2]

+ «ico i ® [O - 3)A0 + 3AX] +c0il® [(n - 4)A0 + 4AJ.
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We shall need relations in addition to those exhibited in Chapter 1.3 :

6o«3 =   «360 + «10201 + <*102 ,

ôo«2 = «2Ô0 + «1Ô1 •

The proof that (6) is admissible by induction on n. Since a(a3) = a2, (6) is fine

for n = 0. Suppose (6) is acceptable for n > 0:

dyd0(cls ® [(n + 1)A0]) = dyQ0c1¡5 ® [nA0]

= 6oa3co,i®["A0]

+ Q0aya2c01 ® [(« - 1)A0 + Ai]

+ 6o«iC0,i ® [(« - 1)A0 + A2]

+ ßo^o.i ® [(« - 2)Ao + 2At]

+ Q0C0.1 ® [(" - 2)Ao + Ai + A2]

+ 60^1 Co, 1 ® [(» - 3)A0 + 3AX]

+ ßoc0 1 ® [(» - 4)A0 + 4AX]

= (a3QQ + aifl2öi + ayQ2)c0>1 ® [nA0]

+ (aya2Q0 + a2Qy + Q2)c0tl ® [(n - 1)A0 + AJ

+ (flißo + öi)co.i ® [(« - 1)A0 + A2]

+ (a2Q0 + ayQy)c0¡1 ® [(n - 2)A0 + 2AX]

+ ßoC0 1 ® [(» - 2)A0 + Ax + A2]

+ (aiQo + ßi)c0.i ® [(« - 3)A0 + 3AJ

+ ßoC0,i ® [(« - 4)A0 + 4Aj],

which is precisely d0 of (6) for n + 1, which completes the inductive step.

Let n*(X ; p) be the mth stable homotopy group of X [1] modulo the subgroup

of elements having finite order prime to p. n*(X;p) may be computed up to

extensions by the Adams spectral sequence for the prime p; the extension can

often be determined if we remark that *g0 corresponds to multiplication by p

inn*.

Proposition 11.5. In the Adams spectral sequence (p=2) for RP™ all dif-

ferentials vanish in total degrees zg 10.

Proof. Since in the Adams spectral sequence for the sphere dr(go) = ^Xno)

= dThy) = dr(h2) = Ofor all r [4] according to Theorem 1.6. it suffices to prove
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that all differentials vanish on e0 x, e03, e0 7, e2 10, eA Xi, but this is easy  for

the differentials land on groups which are zero according to Proposition II.2.

Since RPX = K(Z2,1) we do not have to consider the spectral sequences for

p odd: they are all zero. Since *g0 corresponds to multiplication by 2 we have:

Theorem II.6.  The stable homotopy groups nf(RP°°) are as follows for

fe^9:
k:Tlsk:

0 0

1 Z2

2 Z2

3 Z8

4 Z2

5 0

6 Z2

7 Z160Z2

8 Z2©Z2©Z2

9 Z2 © Z2 © Z2 © Z2.

We precede the next theorem by a proposition about stable secondary coho-

mology operations.

Proposition II.7 (Adams).   There  exists  a  stable  secondary  cohomology

operation *P of degree 4 such that if y ei/2(CP°°;Z2)  then \F(y) is defined and

*¥(y) = y3 modulo zero.

Proof. This is Theorem 4.4.1 of [2].

Theorem II.8.   In the Adams spectral sequence for CPX (p = 2) the only

nontrivial differential in total degrees ^ 9 is

d2(e06) = e0 2* g0hx.

Furthermore, the groups n*(CP°°;Z2) are as follows for m ^ 8:

m:    01234567        8

n£:   0   0   Z   0   Z   Z2 Z   Z2   Z©Z2.

Proof. Suppose a * g'0 = 0 for some j. Then if dr(a) = b, b * gJ0 = 0  in Er,
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according to Theorem 1.6. This settles all differentials in total degrees ^ 9, except

d2(e0i6). According to Proposition II.7, e06 cannot be a ¿L-cycle for all r, since it is

not in the image of the mod 2 Hurewicz homomorphism. This implies that r = 2,

for dr, r>2 is automatically zero on e06.

Theorem II.9. In the Adams spectral sequence for HPco (p = 2) all differen-

tials vanish in total degrees _ 11. Furthermore, the groups Yl^(HP™;2) for

m _ 10 are as follows:

m:    0       12       3       4       5      6        7        8

n*:   0       0       0       0       Z       Z2   Z2       0       Z

Proof. Proposition II.4 and argument as for Theorem II.8.

2. The primes p > 2. In order to complete our study of the initial stable

homotopy of projective spaces, we must examine the Adams spectral sequences

for CP™ HP™, for primes p > 2.

The following two propositions are proved by constructing minimal resolutions

for low total degrees. The task is straightforward and is left to the reader.

Let M = fí*(CP™ ;ZP) the augmented cohomology of CP™, p an odd prime,

A the Steenrod algebra over Zp.

Proposition 11.10. A Zp-basis (p > 2) for Ext£'(M,Zp) for t - s ^ 6p -4 is

furnished by classes

e0,2j* go>       el,2k+2p-l * go> e2,2r + Ap-2* go>

el 4p-2>        el,4p-2* go>

where j = l,--,p—l,2p — 1, k = 1, ■■■,p — 1, r = 2,---,p — 1 (p > 3 for r),

n = 0, !,■■•; if p = 3, we have in addition

eo,i*hx,   e1Ap-2*h0,   e0:2*hxg0,   e0¡2*hxgl.

LetN = ñ*(HP™;Zp).

Proposition 11.11. Let p > 2. Then Ext^'(A/,Zp) for t-s^6p-2 has the

following elements as a Zp-basis:

e0,4k* go>      el,4-j+2p-l* go>      e2,Aj + Ap-2* go<

e0A*h0,     e04.*h0g0,   e0¿*h0g2,,

where n = 0,1,■■-,k = l,---,%(p- 1), \(3p - l),j= 1,—, KP - !)■

We are now ready to examine the Adams spectral sequence for CP™, HP™ for

an odd prime p.

Proposition II. 12. There exists a stable secondary cohomology operation A of

9       10

Z2     Z2.
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degree 4p — 4, defined on cohomology classes x such that ß0x = 0, QyX — 0,

P2x = 0, such that

My) = by21"'1 modulo zero,

where b^Oand yeH\CPm;Zp).

Proposition 11.13. There exists a stable secondary cohomology operation

r of degree 6p — 6 such that

(i)   T is defined on ye H2iCPœ ;Zp) ue H^HP œ; Zp)

(ii)   r(y) = cy3p~2, modulo zero, where c #0 in Zp,

(iii) T(u) = 2cu(3p_1)/2, modulo zero.

Propositions 11.11 and 11.12 are proved as in [9] using [2].

Proposition 11.14. (i) The only nontrivial differential in the Adams spectral

sequence for CPm and p ^ 5 for total degree zg 6p — 4 is given by

d2(e0Ap-2)= beiAp-2* go,

where b # 0 in Zp.

(ii) Statement (i) is valid for p = 3 in total degrees zg 13.

Proof. Consider the case p 2: 5. According to Proposition 11.10 all nonzero

elements of Extw (M, Zp) have even total degree—-except eiAp-2 and ey Ap_2 * g0.

The only elements in total degree 4p — 4 are the basis elements ei,2p-2+2p-i * g^.

Theorem 1.6. shows that all differentials vanish on eiAp_2 for e1Ap-2* g2, =0.

In order to prove (i) it remains to show that the stable modp Hurewicz homo-

morphism is zero in dimension 4p — 2. This is taken care of by Proposition 11.12.

Theorem 11.15. (i) If p^5 the groups n£(CP°° ;p) for k zg 6p - 4 are as

follows :

nts(CPœ;p) = Z if k = 2„ 1 zg i zg 3p - 2,

n^(CP°°;p) =0 if k = 2i + 1, i # 2p - 2

UskiCPco;p)= Zp        ifk = 4p-3;

(ii) the groups n*(CP°°;3)/or k zg 12 are as follows:

k:     2       3       4       5       6       7       8       9       10     11      12

n£:   Z      0       Z      0       Z      0       Z      Z3     Z      0       Z®Z3.

Proof. Propositions 11.10,11.14.

Proposition 11.16. In the Adams spectral sequence for HP° and p^3 the

only nontrivial differential for total degrees zg 6p — 2 is

^2(e0,6p-2) = be0A* h0g0,

where b / 0 in Zp.
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Proof. According to Proposition 11.11 the only elements of odd total degree

zg 6p — 2 are the classes e0<4* h0gr0, r = 0,1,2. All differentials on e0A vanish,

thus we only need to evaluate d2 and d3 on e0j6p_2. Proposition 11.13 implies

that one of these two differentials is nonzero on e0>6/>_2 • We use a folk theorem,

which can be proved using the approach of [8] to the Adams spectral sequence :

suppose a stable secondary cohomology operation corresponding to an element

u e£2 *,has a minimal /1-generator as image; suppose this generator determines

the class v e E2'* then d2iv) = u. The proof is completed by remarking that the

operation T of Proposition 11.13 corresponds to e0 4* h0g0.

Theorem 11.17. If p 2: 3, the groups n^HP00 ;p) for m zg dp —2 are as follows

TllkiHPco;p) = Z 0 < 4fe zg 6p - 2,

Tls2j-yiHPx;p) =0 2j - 1 zg 6p - 2,   j # 3p - 1,

ns6p_3(//Pco;p)= Z„.

Proof. Proposition II. 16.
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