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Abstract

This survey provides an overview of the concordance group of knots in three-dimensional

space. It begins with a review of the definitions of knots and concordance and then presents

aspects of the algebraic theory of concordance. Following this, Casson–Gordon invariants are

examined in detail. Recent results from the topological locally flat category are presented,

as are new applications from smooth geometry. A discussion of the interplay between

3-dimensional knot properties and concordance is presented. The survey concludes with a

brief list of open problems.
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In 1926, Artin [3] described the construction of certain knotted 2-spheres in R4. The

intersection of each of these knots with the standard R3 , R4 is a nontrivial knot in R3.

Thus, a natural problem is to identify which knots can occur as such slices of knotted

2-spheres. Initially it seemed possible that every knot is such a slice knot and it was not

until the early 1960s that Murasugi [86] and Fox and Milnor [24,25] succeeded at proving

that some knots are not slice.

Slice knots can be used to define an equivalence relation on the set of knots in S3: knots

K and J are equivalent if K# 2 J is slice. With this equivalence the set of knots becomes a

group, the concordance group of knots. Much progress has been made in studying slice

knots and the concordance group, yet some of the most easily asked questions remain

untouched.

There are two related theories of concordance, one in the smooth category and the other

topological. Our focus will be on the smooth setting, though the distinctions and main

results in the topological setting will be included. Related topics must be excluded, in

particular the study of link concordance. Our focus lies entirely in the classical setting;

higher dimensional concordance theory is only mentioned when needed to understand the

classical setting.

1. Introduction

Two smooth knots, K0 and K1, in S
3 are called concordant if there is a smooth embedding

of S1 £ [0,1] into S3 £ [0,1] having boundary the knots K0 and 2K1 in S3 £ {0} and

S3 £ {1}, respectively. Concordance is an equivalence relation, and the set of equivalence

classes forms a countable abelian group, C, under the operation induced by connected sum.

A knot represents the trivial element in this group if it is slice; that is, if it bounds an

embedded disk in the 4-ball.

The concordance group was introduced in 1966 by Fox and Milnor [25], though earlier

work on slice knots was already revealing aspects of its structure. Fox [24] described the

use of the Alexander polynomial to prove that the figure eight knot is of order two in C and

Murasugi [86] used the signature of a knot to obstruct the slicing of a knot, thus showing

that the trefoil is of infinite order in C. (These results, along with much of the introductory

material, are presented in greater detail in the body of this article.) The application of

abelian knot invariants (those determined by the cohomology of abelian covers or,

equivalently, by the Seifert form) to concordance culminated in 1969 with Levine’s

classification of higher dimensional knot concordance, [62,63], which applied in the

classical dimension to give a surjective homomorphism, f : C! Z1%Z1
2 %Z1

4 :

In 1975, Casson and Gordon [8,9] proved that Levine’s homomorphism is not an

isomorphism, constructing nontrivial elements in the kernel, and Jiang [42] expanded on

this to show that the kernel contains a subgroup isomorphic to Z1. Along these lines it was
shown in [72] that the kernel also contains a subgroup isomorphic to Z1

2 : The 1980s saw

two significant developments in the study of concordance. The first was based on

Freedman’s work [26,27] studying the structure of topological 4-manifolds. One

consequence was that methods of Levine and those of Casson–Gordon apply in the
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topological locally flat category, rather than only in the smooth setting. More significant,

Freedman proved that all knots with trivial Alexander polynomial are in fact slice in the

topological locally flat category.

The other important development concerns the application of differential geometric

techniques to the study of smooth 4-manifolds, beginning with the work of Donaldson

[20,21] and including the introduction of Seiberg–Witten invariants and their

application to symplectic manifolds, the use of the Thurston–Bennequin invariant

[2,101], and recent work of Ozsváth and Szabó [96]. This work quickly led to the

construction of smooth knots of Alexander polynomial one that are not smoothly slice,

along with a much deeper understanding of related issues, such as the 4-ball genus of

knots. Using these methods it has recently been shown that the results of Ozsváth and

Szabó [96] imply that the kernel of Levine’s homomorphism contains a summand

isomorphic to Z and thus contains elements that are not divisible [78]. References

are too numerous to enumerate here; a few will be included as applications are

mentioned.

Recent work of Cochran et al. [14,15] has revealed a deeper structure to the knot

concordance group. In that work a filtration of C is defined:

· · ·F 2:0 , F 1:5 , F 1 , F :5 , F 0 , C:

It is shown that F 0 corresponds to knots with trivial Arf invariant,F 5 corresponds to knots

in the kernel of f and all knots in F 1:5 have vanishing Casson–Gordon invariants. Using

von Neumann h-invariants, it has been proved in [16] that each quotient is infinite. This

work places Levine’s obstructions and those of Casson–Gordon in the context of an

infinite sequence of obstructions, all of which reveal a finer structure to C.
Outline: Section 2 is devoted to the basic definitions related to concordance and

algebraic concordance. In Section 3, algebraic concordance invariants are presented,

including the description of Levine’s homomorphism. Sections 4 and 5 present Casson–

Gordon invariants and their application. In Section 6, the consequences of Freedman’s

work on topological surgery in dimension four are described. Section 7 concerns the

application of the results of Donaldson and more recent differential geometric techniques

to concordance. In Section 8, the recent work of Cochran, Orr and Teichner on the

structure of the topological concordance group is outlined. Section 9 relates 3-dimensional

knot properties and concordance. Finally, Section 10 presents a few outstanding problems

in the study of knot concordance.

2. Definitions

We will work in the smooth setting. In Section 6, there will be a discussion of the

necessary modifications and main results that apply in the topological locally flat category.

Knots are usually thought of as isotopy classes of embeddings of S 1 into S3: However, to

simplify the discussion of orientation and symmetry issues, it is worthwhile to begin with

the following precise definitions of knots, slice knots, concordance and Seifert surfaces.
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2.1. Knot theory and concordance

Definition 2.1.

(1) A knot is an oriented diffeomorphism class of a pair of oriented manifolds, K ¼
ðS3

;S1Þ; where S n is diffeomorphic to the n-sphere.

(2) A knot is called slice if there is a pair ðB4;D2Þ with ›ðB4;D2Þ ¼ K; where B4 is the

4-ball and D2 is a smoothly embedded 2-disk.

(3) Knots K1 and K2 are called concordant if K1#2 K2 is slice. (Here 2K denotes the

knot obtained by reversing the orientation of each element of the pair and connected

sum is defined in the standard way for oriented pairs.) The set of concordance

classes is denoted C.
(4) A Seifert surface for a knot K is an oriented surface F embedded in S3 such that

K ¼ ðS3; ›FÞ:

The basic theorem in the subject is the following.

Theorem 2.2. The set of concordance classes of knots forms a countable abelian group,

also denoted C, with its operation induced by connected sum and with the unknot

representing the identity.

Related to the notion of slice knots there is the stronger condition of being a ribbon

knot.

Definition 2.3. A knot K is called ribbon if it bounds an embedded disk D in B4 for

which the radial function on the ball restricts to be a smooth Morse function with no local

maxima in the interior of D:

There is no corresponding group of ribbon concordance. Casson observed that for every

slice knot K there is a ribbon knot J such that K#J is ribbon. Hence, if any equivalence

relation identifies ribbon knots, it also identifies all slice knots. There is however a notion

of ribbon concordance, first studied in [39].

2.2. Algebraic concordance

An initial understanding of C is obtained via the algebraic concordance group, defined by

Levine in terms of Seifert pairings.

Definition 2.4. A Seifert pairing for a knot K with Seifert surface F is the bilinear

mapping

V : H1ðFÞ £ H1ðFÞ! Z

given Vðx; yÞ ¼ lkðx; ipyÞ; where lk denotes the linking number and ip is the map induced

by the positive pushoff, i : F ! S3 2 F:
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(Here and throughout, homology groups will be taken with integer coefficients unless

indicated otherwise.) A Seifert matrix is the matrix representation of the Seifert pairing

with respect to some free generating set for H1ðFÞ:
If the transpose pairing Vt is defined by Vtðx; yÞ ¼ Vðy; xÞ then V 2 Vt represents the

unimodular intersection form on H1ðFÞ: Hence, in general we define an abstract Seifert

pairing on a finitely generated free Z-module M to be a bilinear form V : M £M ! Z
satisfying V 2 Vt is unimodular. (In order for this to make sense for the trivial knot with

Seifert surface B2; the Seifert form on the 0-dimensional Z-module is defined to be

unimodular.)

Definition 2.5. An abstract Seifert form V on M is metabolic if M ¼ M1%M2 with

M1 ø M2 and Vðx; yÞ ¼ 0 for all x and y [ M1: Such an M1 is called a metabolizer for V :

Theorem 2.6. If K is slice and F is a Seifert surface for K; then the associated Seifert form

is metabolic.

Proof. Let D be a slice disk for K: The union F < D bounds a 3-manifold R embedded

in B4: Such an R can be constructed explicitly, or an obstruction theory argument can be

used to construct a smooth mapping B4 2 D! S1 which has F < D as the boundary of

the pull-back of a regular value. (Note that this construction depends on the triviality of the

normal bundle to D:)

A duality argument implies that rankðkerðH1ðFÞ! H1ðRÞÞÞ ¼ ð1=2ÞrankðH1ðFÞÞ: For
any x and y in that kernel, Vðx; yÞ ¼ 0 : since x bounds a 2-chain in R; ipðxÞ bounds a

2-chain in B4 2 R which is disjoint from the chain bounded in R by y:

Since V vanishes on this kernel, it vanishes on the summandM generated by the kernel,

and hence V is metabolic. A

Corollary 2.7. If K1 is concordant to K2 and these knots have Seifert forms V1 and V2

ðwith respect to arbitrary Seifert surfacesÞ; then V1%2 V2 is metabolic.

In general, abstract Seifert forms V1 and V2 are called algebraically concordant if

V1%2 V2 is metabolic. This is an equivalence relation. (The proof is based on

cancellation: if V and V%W are metabolic, then so is W : See [49].)

Theorem 2.8. The set of algebraic concordance classes forms a group, denoted G, with its
operation induced by direct sum. The trivial 0-dimensional Z-module serves as the

identity.

In the following theorem, defining Levine’s homomorphism, we temporarily use the

notation [K ] to denote concordance class of a knot and [VF] to represent the algebraic

concordance class of a Seifert form associated to an arbitrarily chosen Seifert surface F

for K:

Theorem 2.9. The map f : C! G defined by fð½K�Þ ¼ ½VF� is a surjective

homomorphism.
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Proof. That this map is well-defined follows from the previous discussion and, in

particular, Corollary 2.7. Surjectivity follows from an explicit construction of a surface

with desired Seifert form [6,102]. A

3. Algebraic concordance invariants

Levine [62] defined a collection of homomorphisms from G to the groups Z, Z2 and Z4.
These can be properly combined to give an isomorphism F from G to the infinite direct

sum Z1%Z1
2 %Z1

4 : The proof of this will be left to [62].

We should remark that what Levine actually did was to classify the rational algebraic

concordance group, based on rational matrices. He also showed that the integral group

injects into the rational group, with image sufficiently large to contain Z1%Z1
2 %Z1

4 :

Stolzfus [104] completed the classification of the integral concordance group.

In this section, we will describe a collection of invariants that are sufficient to show that

G contains a summand isomorphic to Z1%Z1
2 %Z1

4 : The invariants will be applied to a

particular family of knots, which we now describe.

Figure 1 illustrates a basic knot that we denote Kða; b; cÞ; the curves J1 and J2 can be

ignored for now. The integers a and b indicate the number of full twists in each band.

The integer c is odd and represents the number of half twists between the bands;

those twists between the bands are so placed as to not add twisting to the individual

bands. Figure 2 illustrates a particular example, Kð2; 0; 3Þ; along with a basis for the

first homology of the Seifert surface, indicated with oriented dashed curves on the

surface.

The knot Kða; b; cÞ bounds a genus one Seifert surface with Seifert form represented by

the following matrix with respect to the indicated basis of H1ðFÞ:

a ðcþ 1Þ=2
ðc2 1Þ=2 b

 !

a b

cJ1 J2

Fig. 1. The knot Kða; b; cÞ:
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3.1. Integral invariants, signatures

Let V be a Seifert matrix and Vt its transpose. If v is a unit complex number that

is not a root of the Alexander polynomial of V ; DV ðtÞ ¼ detðV 2 tVtÞ; then the form

Vv ¼ 1
2
ð12 vÞV þ 1

2
ð12 �vÞVt is nonsingular. In this case, ifV is metabolic, the signature

of Vv is 0. To adjust for the possibility of the Vv being singular, for general v on the unit

circle the signature svðVÞ is defined to be the limiting average of the signatures of Vvþ and

Vv2; where vþ and v2 are unit complex numbers approaching v from different sides.

For all v; sv defines a homomorphism from G to Z. It is onto 2Z if v – 1: For the set of

v given by roots of unity e2pi=p where p is a prime, the functions sv are independent on G
(this can be seen using the b-twisted doubles of the unknot, Kð1; b; 1Þ; b . 0), and hence

together these give a map of G onto Z1. In the case of v ¼ 21; this signature, defined

by Trotter [111], was shown to be a concordance invariant by Murasugi [86]. The more

general formulation is credited to Levine and Tristram [110] and is referred to as the

Levine–Tristram signature.

In [43,44] the identification of these signatures with signatures of the branched

covers of B 4 branched over a pushed in Seifert surface of a knot was made. In

[12] it was shown that the set of sv over all v with positive imaginary part are

independent.

3.2. The Arf invariant: Z2

Given a ð2gÞ £ ð2gÞ Seifert matrix V one defines a Z2-valued quadratic form

on Z
2g
2 by qðxÞ ¼ xVxt: This is a nonsingular quadratic form in the sense that

qðxþ yÞ2 qðxÞ2 qðyÞ ¼ x·y where the nonsingular bilinear pairing x·y is given by the

matrix V þ Vt: (Recall that the determinant of V þ Vt is odd.)

Fig. 2. The knot Kð2; 0; 3Þ:
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The simplest definition of the Arf invariant of a nonsingular quadratic form on a

Z2-vector space W is that ArfðqÞ ¼ 0 or ArfðqÞ ¼ 1 depending on whether q takes value 0

or 1, respectively, on a majority of elements in W : See, for instance [5,41]. The Arf

invariant defines a homomorphism on the Witt group of Z2 quadratic forms and in

particular vanishes on metabolic forms. Hence, the Arf invariant gives a well-defined Z2-

valued homomorphism from G to Z2.

This invariant was first defined by Robertello [97]. Murasugi [87] observed that

ArfðVÞ ¼ 0 if and only if DV ð21Þ ¼ ^1 mod 8:

3.3. Polynomial invariants: Z2

The Alexander polynomial of a Seifert matrix is defined to be DV ðtÞ ¼ detðV 2 tVtÞ [
Z½t; t21�: If different Seifert matrices associated to the same knot are used to compute an

Alexander polynomial, the resulting polynomials will differ by multiplication by a unit in

Z½t; t21�; that is by ^tn for some n: Hence, two Alexander polynomials are considered

equivalent if they differ by multiplication by ^tn for some n:

If V is metabolic, then DV ðtÞ ¼ ^tnf ðtÞf ðt21Þ for some integral polynomial f :

For concordance considerations, if pðtÞ is an irreducible symmetric polynomial

ðpðt21Þ ¼ ^tnpðtÞÞ then the exponent of pðtÞ in the irreducible factorization of DV ðtÞ
taken modulo 2 yields a Z2 invariant of G. Fox and Milnor [25] used this to define a

surjective homomorphism of G to Z1
2 : The knots Kða;2a; 1Þ (see Figure 1) are of order

at most 2 in C since for each, Kða;2a; 1Þ ¼ 2Kða;2a; 1Þ: On the other hand, these

have distinct irreducible Alexander polynomials if a . 0: The existence of an infinite

summand of G isomorphic to Z1
2 follows. Note that the knot Kð1;21; 1Þ is the figure

eight knot.

3.4. W(Q): Z2 and Z4 invariants

The matrix V þ Vt defines an element in the Witt group of Q, WðQÞ: We will now

summarize the theory of this Witt group and associated Witt groups of finite fields. Details

can be found in [41]. Notice that the determinant of V þ Vt is odd; hence, in the following

discussion we restrict attention to odd primes p:

Recall that the Witt group of an arbitrary field F consists of finite dimensional F-
vector spaces with nonsingular symmetric forms and forms W1 and W2 are equivalent if

W1%2W2 is metabolic. Addition is via direct sums.

There is a surjective homomorphism %›p : WðQÞ!%WðFpÞ: Here Fp is the field with

p elements, and the direct sums are over the set of all primes. For p odd, the groupWðFpÞ is
isomorphic to either Z2 or Z4, depending on whether p is 1 or 3 modulo 4. We next define

›p and then discuss the invariants of WðFpÞ: (For completeness, we note here that the

kernel of %›p is WðZÞ which is isomorphic to Z via the signature [41].)

3.4.1. Reducing to finite fields. There is a simple algorithm giving the map ›p: A
symmetric rational matrix A can be diagonalized using simultaneous row and column
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operations, and this form decomposes as the direct sum of forms: %n
i¼1ðaipe iÞ where

gcdðai; pÞ ¼ 1; e i ¼ 1 for i # m and e i ¼ 0 for mþ 1 # i # n: The map ›p takes A to the

Fp form represented by the direct sum %m
i¼1ðaiÞ:

3.4.2. W(Fp): Z2 and Z4 invariants. For p odd, any form on a finite dimensionalFp-vector

space can be diagonalized with ^1 as the diagonal entries. In the Witt group the form

represented by thematrix (1)%(21) is trivial. A little more work shows that the form 4(1) is

Witt trivial: find elements a and b such that a2 þ b2 ¼ 21 and consider the subspace

spanned by ð1; 0; a; bÞ and ð0; 1; b;2aÞ: Hence, WðFpÞ is generated by (1), an element of

order 2 or 4.

In the case that p ; 1 modulo 4, 21 is a square. It follows quickly that WðFpÞ ø Z2.

On the other hand, in the case that p ø 3 modulo 4, 21 is not a square, and WðFpÞ ø Z4:

As a simple example, if one starts with the Seifert form for the knot Kð1;25; 1Þ;

V ¼
1 1

0 25

 !
; V þ Vt ¼

2 1

1 210

 !
:

Diagonalizing over the rationals yields

V ¼
2 0

0 2ð2Þð3Þð7Þ

 !
:

With p ¼ 3 this form maps to the element (214) ofWðF3Þ;which is equivalent to the form
(1), a generator of order 4. The same is true working with p ¼ 7:

As a consequence of the next theorem we will see that this particular form V is actually

of order four in G.

3.5. Quadratic polynomials

A special case of a theorem of Levine (Section 23 of [63]) gives the following result,

which implies in particular that the form just described is of order 4 in G.

Theorem 3.1. Suppose that DV ðtÞ is an irreducible quadratic. Then V is of finite order in

the algebraic concordance group if and only if DV ð1ÞDV ð21Þ , 0: In this case V is of

order 4 if lDV ð21Þl ¼ paq for some prime p congruent to 3 modulo 4, a odd, and p and q

relatively prime; otherwise it is of order 2.

3.6. Other approaches to algebraic invariants

There are alternative approaches to algebraic obstructions to a knot being slice that do not

depend on Seifert forms. For instance, Milnor [83] described signature invariants based on
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his duality theorem for the infinite cyclic cover of a knot complement. The equivalence of

these signatures and those of Tristram and Levine is proved in [82]. There is also an

interpretation of the algebraic concordance group in terms of the Blanchfield pairing

of the knot.

4. Casson–Gordan invariants

In the case that K is algebraically slice, Casson–Gordon invariants offer a further

obstruction to a knot being slice. We follow the basic description of [8].

4.1. Definitions

We begin by reviewing the linking form on torsion ðH1ðMÞÞ for an oriented 3-manifoldM:

If x and y are curves representing torsion in the first homology, then lkðx; yÞ is defined to be
ðd > yÞ=n [ Q=Z; where d is a 2-chain with boundary nx: Intersections are defined via

transverse intersections of chains, and of course one must check that the value of the

linking form is independent of the many choices in its definition. For a closed oriented

3-manifold the linking form is nonsingular in the sense that it induces an isomorphism

from torsion ðH1ðMÞÞ to homðtorsionðH1ðMÞ;Q=ZÞ:
Such a symmetric pairing on a finite abelian group, l : H £ H !Q=Z; is called

metabolic with metabolizer L if the linking form vanishes on L £ L for some subgroup L

with lLl2 ¼ lHl:
LetMq denote the q-fold branched cover of S

3 branched over a given knot K; and let �Mq

denote 0-surgery on Mq along ~K; where ~K is the lift of K to Mq: Here q will be a prime

power.

Let x be an element of self-linking 0 in H1ðMqÞ and suppose that x is of prime power

order, say p: Linking with x defines a homomorphism xx : H1ðMqÞ! Zp: Furthermore, xx
extends to give a Zp-valued character on H1ð �MqÞ which vanishes on the meridian of ~K: In

turn, this character extends to give �xx : H1ð �MqÞ! Zp%Z: Since x has self-linking 0,

bordism theory implies that the pair ð �Mq; �xxÞ bounds a 4-manifold, character, pair, ðW ;hÞ:
More generally, for any character x : H1ðMqÞ! Zp; there is a corresponding character

�x : H1ð �MqÞ! Zp%Z: This character might not extend to a 4-manifold, but since the

relevant bordism groups are finite, for some multiple r �Mq the character given by �x on each

component does extend to a 4-manifold, character pair, ðW ;hÞ:
Let Y denote the Zp £ Z cover of W corresponding to h: Using the action of Zp £ Z on

H2ðY ;CÞ one can form the twisted homology group Ht
2ðW ;CÞ ¼ H2ðY ;CÞ^C½Zp£Z�CðtÞ:

(The action of Zp on CðtÞ is given by multiplication by e2pi=p:) There is a nonsingular

Hermitian form on Ht
2ðW ;CÞ taking values in CðtÞ: The Casson–Gordon invariant is

defined to be the difference of this form and the intersection form of H2ðW ;CÞ; both
tensored with 1=r, in WðC½t; t21�Þ^Q: (In showing that this Witt class yields a well-

defined obstruction to slicing a knot, the fact that V4ðZp%Z) is nonzero appears, and as a
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consequence one must tensor with Q to arrive at a well-defined invariant, even in the case

of xx in which it is possible to take r ¼ 1:)

Definition 4.1. The Casson–Gordon invariant tðMq;xÞ is the class ðHt
2ðW ;CÞ2 H2ðWÞ;

CÞ^1=r [ WðCðtÞÞ^Q:

4.2. Main theorem

The main theorem of [8] states:

Theorem 4.2. If K is slice, there is a metabolizer L for the linking form on H1ðMqÞ such
that, for each prime power p and each element x [ L of order p; tðMq;xxÞ ¼ 0:

The proof shows that if K is slice with slice diskD; then covers of B4 2 D can be used as

the manifold W ; and for this W the invariant vanishes.

Comment. There are a number of extensions of this theorem. With care the definition of

the Casson–Gordon invariant can be refined and t can be viewed as taking values in

WðQ½zp�ðtÞÞ^Z½1=p�. This yields finer invariants (see, for instance [34]). The observation
that L can be assumed to be equivariant with respect to the deck transformation ofMq can

give stronger constraints (see, for example [57]). In [50] it is demonstrated that a

factorization of the Alexander polynomial of a knot yields further constraints on the

metabolizer L:

4.3. Invariants of W(CðtÞÞ^Q

In the next section, we will describe examples of algebraically slice knots which can be

proved to be nonslice using Casson–Gordon invariants. We conclude this section with a

description of the types of algebraic invariants associated to the Witt group WðCðtÞÞ^Q:

4.3.1. Signatures. Let j be a unit complex number. Let A^a=b [ WðCðtÞÞ^Q: Then A

can be represented by a matrix of rational functions, AðtÞ: The signature sjðA^a=bÞ is
defined, roughly, to be ða=bÞsðAðjÞÞ where s denotes the standard Hermitian signature.

There is the technical point arising that AðjÞ might be singular, so the precise definition of

sjðA^a=bÞ takes the two-sided average over unit complex numbers close to j: This limit is

defined to be the Casson–Gordon signature invariant, sjðK; xÞ: For j ¼ 1 this is

abbreviated as sðK; xÞ:

4.3.2. Discriminants. If the matrix AðtÞ represents 0 [ WðCðtÞÞ; the discriminant,

disðAðtÞÞ ¼ ð21ÞkdetðAðtÞÞ (where k is half the dimension of A) will be of the form f ðtÞ�fðtÞ
for some rational function f : Let gðtÞ ¼ t2 þ ltþ1; lll . 2 be an irreducible real

symmetric polynomial. It follows that for a matrix AðtÞ; the exponent of gðtÞ in

the factorization of disðAðtÞÞ gives a Z2-valued invariant of the Witt class of AðtÞ:
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More generally, in the case that p is odd, the exponent of g in the determinant of AðtÞa gives
a Z2 invariant of the class represented by AðtÞ^a=b in WðCðtÞÞ^Z½1=p�:

These discriminants were first discussed in unpublished work of Litherland [68]. Later

developments and applications are included in [34].

In [56,57] a 3-dimensional approach to the definition of Casson–Gordon discriminant

invariants is presented. In short, the representation �x : H1ð �MqÞ! Zp £ Z determines the

twisted homology group:Ht
1ð �Mq;QðzpÞ½t�Þ: This is aQ½zp�½t�module, and the discriminant

of the Casson–Gordon invariant is given by the order of this module. Although this 3-

dimensional approach does not give the signature invariant, it has the advantage of being

completely algorithmic in computation via a procedure first developed in [66,112] and

applied in [56–58]. A computer implementation of that algorithm facilitated the

classification of the order of low-crossing number knots in concordance [108] and the

proof that most low-crossing number knots which are not reversible are not concordant to

their reverses, in [107].

In a different direction, we note that some effort has been made in removing the

restriction on prime power covers and characters. In the case of ribbon knots, it was known

that stronger results could be attained. Recent work of Kim [52] has developed examples

of nonslice algebraically slice knots for which all prime power branched covers are

homology spheres. Other work in this realm includes that of Letsche [61] and recent work

of Friedl [28,29].

5. Companionship and Casson–Gordon invariants

In Casson and Gordon’s original work the computation of Casson–Gordon invariants was

quite difficult, largely limited to restricted classes of knots. Litherland [69] studied the

behavior of these invariants under companionship and, independently, Gilmer [31] found

interpretations of particular Casson–Gordon invariants in terms of signatures of simple

closed curves on a Seifert surface for a knot. Further work addressing companionship and

Casson–Gordon invariants includes [1]. In this section, we describe the general theory and

its application to genus one knots.

5.1. Construction of companions

Let U be an unknotted circle in the complement of a knot K: If S3 is modified by removing

a neighborhood of U and replacing it with the complement of a knot J in S3 (via a

homeomorphism of boundaries that identifies the meridian of Jwith the longitude ofU and

vice versa) then the resulting manifold is again diffeomorphic to S3: The image of K in this

manifold will be denoted KðJÞ (the choice of U will be suppressed in the notation). In the

language of classical knot theory, KðJÞ is a satellite knot with companion J and satellite K:

IfMq is the q-fold branched cover of S
3 branched over K; then U has q0 lifts, denoted Ui;

i ¼ 1;…; q0; where. q0 ¼ gcdðq; lkðU;KÞÞ It follows that M0
q; the q-fold branched cover

of S3 branched over KðJÞ; is formed from Mq by removing neighborhoods of the
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Ui and replacing each with the q/q0-cyclic cover of the complement of J: If x is a

Zp-valued homomorphism on H1ðMqÞ; there is a naturally associated homomorphism

x 0 on H1ðM0
qÞ:

5.2. Casson–Gordon invariants and companions

In the case that lkðU;KÞ ¼ 0; we have the following theorem of Litherland [69] (see

also [35]).

Theorem 5.1. In the situation just described, with lkðU;KÞ ¼ 0

sðKðJÞ;x 0Þ ¼ s ðK; xÞ þ
Xq

i¼1

sx ðUiÞ=pðJÞ:

The main idea of the proof is fairly simple. If ðW ;hÞ is the chosen pair bounding ð �Mq; �xÞ
in the definition of the Casson–Gordon invariant, then for the new knot K 0 a 4-manifold

W 0 can be built fromW by attaching copies of a 4-manifold with character ðY ;hÞ bounding
0-surgery on J with its canonical representation to Z. Signatures of cyclic covers of Y are

related to the signatures of J: A similar analysis can be done for the discriminant of the

Casson–Gordon invariant. This was detailed in [34], and further explored in [58] where it

was no longer assumed that J was null homologous.

Example. Consider the knot illustrated in Figure 1 with a ¼ 0; b ¼ 0 and c ¼ 3: The

bands have knots J1 and J2 tied in them. (We will also refer to the pair of unknotted circles

as J1 and J2 in this situation, as the meaning is unambiguous.) Call the resulting knot

KðJ1; J2Þ: The homology of the 2-fold cover is isomorphic to Z3%Z3 with the linking form

vanishing on the two summands. Call generators of the summands x1 and x2: An analysis

of the cover shows that x x1
is a Z3-valued character that vanishes on the lifts of J1 and

takes value ^1 on the two lifts of J2: Similarly for xx2 :
Since K is slice, by the Casson–Gordon theorem, either s ðK;xx1Þ or s ðK;xx1 Þ must

vanish. Hence, using Theorem 5.1, if KðJ1; J2Þ is slice, either 2s1=3ðJ1Þ or 2s1=3ðJ2Þ must

vanish. By choosing J1 and J2 so that this is not the case, one constructs basic examples of

algebraically slice knots which are not slice.

5.3. Genus one knots and the Seifert form

Gilmer [31,32] observed that for genus one knots the computation of Casson–Gordon

invariants is greatly simplified. Roughly, he interpreted the Casson–Gordon signature

invariants of an algebraically slice genus one knot in terms of the signatures of knots tied

in the bands of the Seifert surface. The previous example offers an illustration of the
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appearance of these signatures. This work is now most easily understood via the use of

companionship just described.

In short, if an algebraically slice knot K bounds a genus one Seifert surface F; then some

nontrivial primitive class in H1ðFÞ has trivial self-linking with respect to the Seifert form.

If that class is represented by a curve a; the surface can be deformed to be a disk with two

bands attached, one of which is tied into the knot a: If a new knot is formed by adding the

knot 2a to the band, the knot becomes slice and certain of its Casson–Gordon invariants

will vanish. However, the previous results on companionship determine how the

modification of the knot changes the Casson–Gordon invariant. The situation is

made somewhat more delicate in that a is not unique: for genus one algebraically

slice knots there are two metabolizers. The following represents the sort of result that

can be proved.

Theorem 5.2. Let K be a genus one slice knot. The Alexander polynomial of K is given

ðat2 ðaþ 1ÞÞððaþ 1Þt2 aÞ for some a: For some simple closed curve a representing a

generator of a metabolizer of the Seifert form and for some infinite set of primes powers q;

one has

Xq

i¼1

sbmi=pðaÞ ¼ 0

for all prime power divisors p of ða2 1Þq 2 aq; and for all integers b:

(The appearance of the term ða2 1Þq 2 aq represents the square root of the order of the

homology of the q-fold branched cover.) Since the sum is taken over a coset of the

multiplicative subgroup of Zp; by combining these cosets one has the following.

Corollary 5.3. If K is a genus one slice knot with nontrivial Alexander polynomial, then

for some simple closed curve a representing a generator of a metabolizer of the Seifert

form, there is an infinite set of prime powers p for which

Xp21

i¼1

si=pðaÞ ¼ 0:

A theorem of Cooper [17] follows quickly:

Corollary 5.4. If K is a genus one slice knot with nontrivial Alexander polynomial, then

for some simple closed curve x representing a generator of a metabolizer of the Seifert

form

ð1=2

0
stðxÞdt ¼ 0:
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(This theorem reappears in [15] where the integral is reinterpreted as a metabelian von

Neumann signature of the original knot K; giving a direct reason why it is a concordance

invariant. For more on this, see Section 8.)

Example. Consider the knot Kð0; 0; 3Þ; as in Figure 1. Replacing the curves labeled J1 and
J2 with the complements of knots J1 and J2 yields a knot for which the metabolizers of the

Seifert form are represented by the knots J1 and J2: The knot is algebraically slice, but by

the previous corollary, if both of the knots have signature functions with nontrivial

integral, the knot is not slice.

6. The topological category

Freedman [26] developed surgery theory in the category of topological 4-manifolds,

proving roughly that for manifolds with fundamental groups that are not too

complicated (in particular, finitely generated abelian groups) the general theory of

higher dimensional surgery descends to dimension 4. The most notable consequence of

this work was the proof the 4-dimensional Poincaré conjecture: a closed topological 4-

manifold that is homotopy equivalent to the 4-sphere is homeomorphic to the 4-sphere.

Two significant contributions to the study of concordance quickly followed from

Freedman’s original paper. The first of these, proved in [27], is that a locally flat surface in a

topological 4-manifold has an embedded normal bundle. The use of such a normal bundle

was implicit in the proof that slice knots are algebraically slice. It is also used in a key step in

the proof of the Casson–Gordon theorem, as follows. Casson–Gordon invariants of slice

knots are shown to vanish via the observation that for a slice knot K; if 0-surgery is

performed onK; the resulting 3-manifoldMðK; 0Þ bounds a homology S1 £ B3;W :ThisW is

constructed by removing a tubular neighborhood of a slice disk for K in the 4-ball. The

existence of the tubular neighborhood is equivalent to the existence of the normal bundle.

In a different direction, Freedman’s theorem implied that in the topological locally flat

category all knots of Alexander polynomial one are slice. To understand why this is a

consequence, note first the following.

Theorem 6.1. For a knot K; if MðK; 0Þ bounds a homology S1 £ B3; W ; with p1ðWÞ ¼ Z
then K is slice.

Proof. We have that MðK; 0Þ is formed from S3 by removing a solid torus and replacing

it with another solid torus. Performing 0-surgery on the core, C, of that solid torus returns

S3: Attach a 2-handle to W with framing 0 to C: The resulting manifold is a homotopy

ball with boundary S3; and hence, by the Poincaré conjecture, is homeomorphic to B4:

The cocore of that added 2-handle is a slice disk for the boundary of the cocore, which

can seen to be the original K: A

Freedman observed that a surgery obstruction to finding such a manifold W is

determined by the Seifert form, and for a knot of Alexander polynomial one that is the only

obstruction, and it vanishes.
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6.1. Extensions

Is it possible that more delicate arguments using 4-dimensional surgery might yield

stronger results, showing that other easily identified classes of algebraically slice knots are

slice, based only on the Seifert form of the knot? The following result indicates that the

answer is no.

Theorem 6.2. If DKðtÞ is nontrivial then there are two nonconcordant knots having that

Alexander polynomial.

This result was first proved in [76] where there was the added constraint that the

Alexander polynomial is not the product of cyclotomic polynomials fnðtÞ with n divisible
by three distinct primes. The condition on Alexander polynomials is technical, assuring

that some prime power branched cover is not a homology sphere. Kim [52] has shown this

condition is not essential in particular cases, and in unpublished work he has shown that

the result applies for all nontrivial Alexander polynomials.

7. Smooth knot concordance

In 1983, Donaldson [20] discovered new constraints on the intersection forms of smooth

4-manifolds. This and subsequent work soon yielded the following theorem.

Theorem 7.1. Suppose that X is a smooth closed 4-manifold and H1ðX;Z2Þ ¼ 0: If the

intersection form on H2ðXÞ is positive definite then the form is diagonalizable. If

the intersection form is even and definite, and hence of the type nE8%mH; where

H is the standard 2-dimensional hyperbolic form, then if n . 0; it follows that m . 2:

This result is sufficient to prove that many knots of Alexander polynomial one are not

slice. The details of any particular example cannot be presented here, but the connections

with Theorem 7.1 are easily explained.

Let MðK; 1Þ denote the 3-manifold constructed as 1-surgery on K: Then MðK; 1Þ
bounds the 4-manifold W constructed by adding a 2-handle to the 4-ball along K with

framing 1. If K is slice, the generator of H2ðWÞ is represented by a 2-sphere with self-

intersection number 1. A tubular neighborhood of that sphere can be removed and

replaced with a 4-ball, showing that MðK; 1Þ bounds a homology ball, X: If MðK; 1Þ
also bounds a 4-manifold Y (say simply connected) with intersection form of

the type obstructed by Theorem 1, then a contradiction is achieved using the union of

X and Y :

As an alternative approach, notice that if K is slice, the 2-fold branched cover of S3

branched over K;M2;bounds the Z2-homology ball formed as the 2-fold branched cover of

B4 branched over the slice disk. Hence, if M2 is known to bound a simply connected

4-manifold with one of the forbidden forms of Theorem 7.1, then again a contradiction is

achieved.
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It seems that prior to Donaldson’s work it was known that either of these approaches

would be applicable to proving that particular polynomial one knots are not slice, but these

arguments were not published. In particular, following the announcement of Donaldson’s

theorem it immediately was known that the pretzel knot Kð23; 5; 7Þ and the untwisted

double of the trefoil (Akbulut) are not slice. Early papers presenting details of such

arguments include [36] where it was shown that there are topologically slice knots of

infinite order in smooth concordance. See [13] for further examples.

7.1. Further advances

Continued advances in smooth 4-manifold theory have led to further understanding of the

knot slicing problem. In particular, proving that large classes of Alexander polynomial one

knots are not slice has fallen to algorithmic procedures. Notable among this work is that of

Rudolph [99–101]. Here, we outline briefly the approach using Thurston–Bennequin

numbers, as described by Akbulut and Matveyev in the paper [2].

The 4-ball has a natural complex structure. If a 2-handle is added to the 4-ball along a

knot K with appropriate framing, which we call f for now, the resulting manifold W will

itself be complex. According to Lisca and Matić [67], W will then embed in a closed

Kahler manifold X: Further restrictions on the structure of X are known to hold, and

with these constraints the adjunction formula of Kronheimer and Mrowka [59,60]

applies to show that no essential 2-sphere in X can have self-intersection greater than or

equal to 21.

On the other hand, if K were slice and the framing f of K were greater than 22, such

a sphere would exist. The appropriate framing f mentioned above depends on the

choice of representative of K; not just its isotopy class. If the representative is K, then

f ¼ tbðKÞ2 1; where tbðKÞ is the Thurston–Bennequin number, easily computed from a

diagram for K.

Applying this, both Akbulut–Matveyev [2] and Rudolph [101] have given simple

proofs that, for instance, all iterated positive twisted doubles of the right handed trefoil are

not slice.

Although these powerful techniques have revealed a far greater complexity to the

concordance group than had been expected, as of yet they seem incapable of addressing

some of the basic questions: for instance, the slice implies ribbon conjecture and problems

related to torsion in the concordance group.

8. Higher order obstructions and the filtration of CC

Recent work of Cochran, Orr and Teichner has demonstrated a deep structure to the

topological concordance group. This is revealed in a filtration of the concordance group by

an infinite sequence of subgroups:

· · ·F 2:0 , F 1:5 , F 1 , F :5 , F 0 , C:
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This approach has successfully placed known obstructions to the slicing problem – the Arf

invariant, algebraic sliceness, and Casson–Gordon invariants – as the first in an infinite

sequence of invariants. Of special significance is that each level of the induced filtration of

the concordance group has both an algebraic interpretation and a geometric one. Here, we

can offer a simplified view of the motivations and consequences of their work, and in that

interest will focus on the F n with n a nonnegative integer.

To begin, suppose thatMðK; 0Þ; 0-surgery on a knot K; bounds a 4-manifoldW with the

homology type and intersection form of S1 £ B3#nS
2 £ S2: Such aWwill exist if and only if

the Arf invariant of K is trivial. Constructing one suchW is fairly simple in this case. Push

a Seifert surface F for K into B 4 and perform surgery on B 4 along a set of curves on F

representing a basis of a metabolizer for its intersection form, with the additional condition

that it represents a metabolizer for the Z2-Seifert form. (Finding such a basis is where the

Arf invariant condition appears.) When performing the surgery, the surface F can be

ambiently surgered to become a disk, and the complement of that disk is the desired W :

If a generating set of a metabolizer for the intersection form on H2ðWÞ could be

represented by disjoint embedded 2-spheres, then surgery could be performed on W to

convert it into a homology S1 £ B3: It would quickly follow that K would be slice in a

homology 4-ball bounded by S3:

In the higher dimensional analog (of the concordance group of knotted ð2k2 1Þ-spheres
in S2kþ1; k . 1), there is an obstruction (to finding this family of spheres) related to the

twisted intersection form on Hkþ1ðW ;Z½p1ðWÞ�Þ; or, equivalently, related to the

intersection form on the universal cover of W : In short, the intersection form of W

should have a metabolizer that lifts to a metabolizer in the universal cover of W : In this

higher dimensional setting, if the obstruction vanishes then, via the Whitney trick, the

metabolizer for W can be realized by embedded spheres and W can be surgered as

desired. This viewpoint on knot concordance has its roots in the work of Cappell and

Shaneson [7].

Whether in high dimensions or in the classical setting, the explicit construction of a W

described earlier in this section yields aWwith cyclic fundamental group. This obstruction

is thus determined solely by the infinite cyclic cover and vanishes for algebraically slice

knots. Of course, in higher dimensions algebraically slice knots are slice. Clearly

something more is needed in the classical case.

In light of the Casson–Freedman approach to 4-dimensional surgery theory, in addition

to finding immersed spheres representing ametabolizer forW ; one needs to find appropriate

dual spheres in order to convert the immersed spheres into embeddings. TheCochran–Orr–

Teichner filtration can be interpreted as a sequence of obstructions to finding a family of

spheres and dual spheres. To describe the filtration, we denote pð0Þ ¼ p ¼ p1ðWÞ and let

pðnÞ be the derived subgroup: pðnþ1Þ ¼ ½pðnÞ;pðnÞ�:

Definition 8.1. A knot K is called n-solvable if there exists a (spin) 4-manifold W with

boundary MðK; 0Þ such that: (a) the inclusion map H1ðMðK; 0ÞÞ! H1ðWÞ is an

isomorphism; (b) the intersection form on H2ðW ;Z½p=pðnÞ�Þ has a dual pair of self-

annihilating submodules (with respect to intersections and self-intersections), L1 and L2;

and (c) the images of L1 and L2 in H2ðWÞ generate H2ðWÞ:
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(Here and in what follows we leave the description of n.5-solvability to [14].)

There are the following basic corollaries of the work in [14].

Theorem 8.2. If the Arf invariant of a knot K is 0; then K is 0-solvable. If K is 1-solvable;

K is algebraically slice. If K is 2-solvable; Casson–Gordon type obstructions to K being

slice vanish. If K is slice; K is n-solvable for all n:

One of the beautiful aspects of [14] is that this very algebraic formulation is closely

related to the underlying topology. For those familiar with the language of Whitney towers

and gropes, we have the following theorem from [14].

Theorem 8.3. If K bounds either a Whitney tower or a grope of height nþ 2 in B4; then K

is n-solvable.

Define F n to be the subgroup of the concordance group consisting of n-solvable knots.

One has the filtration (where we have dropped the n.5-subgroups).

· · ·F 3 , F 2 , F 1 , F 0 , C:

Beginning with [14] and culminating in [16], there is the following result.

Theorem 8.4. For all n; the quotient group F n=F nþ1 is infinite and F 2=F 3 is infinitely

generated.

Describing the invariants that provide obstructions to a knot being in F n is beyond the

scope of this survey. However, two important aspects should be mentioned. First, Cochran

et al. [14] identifies a connection between n-solvability and the structure and existence of

metabolizers for linking forms on

H1ðMðK; 0Þ;Z½p1ðMðK; 0ÞÞ=p1ðMðK; 0ÞÞðkÞ�Þ; k # n;

generalizing the fact that for algebraically slice knots the Blanchfield pairing of the knot

vanishes.

The second aspect of proving the nontriviality of F n=F nþ1 is the appearance of von

Neumann signatures for solvable quotients of the knot group. Though difficult to compute

in general, Cochran et al. [14] demonstrates that if K is built as a satellite knot, then in

special cases, as with the Casson–Gordon invariant, the value of this complicated

invariant is related to the Tristram–Levine signature function of the companion knot.

More precisely, if a knot K is built from another knot by removing an unknot U that lies in

pðnÞ of the complement and replacing it with the complement of a knot J; then the change

in a particular von Neumann h-invariant of the pðnÞ-cover is related to the integral of the

Tristram–Levine signature function of J; taken over the entire circle. The Cheeger–

Gromov estimate for these h-invariants can then be applied to show the nonvanishing

of the invariant by choosing J in a way that the latter integral exceeds the estimate.

This construction generalizes in a number of ways the one used in applications of the

Casson–Gordon invariant described earlier, which applied only in the case that U [ p ð1Þ
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and U � pð2Þ: Furthermore, the Casson–Gordon invariant is based on a finite dimensional

representation where here the representation becomes infinite dimensional. In the

construction of [16] it is also required that one work with a family of unknots; a single

curve U will not suffice.

9. Three-dimensional knot properties and concordance

9.1. Primeness

The first result of the sort to be discussed here is the theorem of Kirby and Lickorish [55]:

Theorem 9.1. Every knot is concordant to a prime knot.

Shorter proofs of this were given in [70,94]. In these constructions it was shown that the

concordance can be chosen so that the Seifert form, and hence the algebraic invariants, of

the knot are unchanged. Myers [89] proved that every knot is concordant to a knot with

hyperbolic complement, and hence to one with no incompressible tori in its complement.

Later, Soma [103] extended Myers’s result by showing that fibered knots are (fibered)

concordant to fibered hyperbolic knots.

In the reverse direction, one might ask if every knot is concordant to a composite knot,

but the answer here is obviously yes: K is concordant to K#J; for any slice knot J:

However, when the Seifert form is taken into consideration the question becomes more

interesting. Here we have the following example, the proof of which is contained in

[74 version 1].

Theorem 9.2. There exists a knot K with Seifert form VK ¼ VJ1
%VJ2

; but K is not

concordant to a connected sum of knots with Seifert forms VJ1
and VJ2

:

Notice that by Levine’s classification of higher dimensional concordance, such

examples cannot exist in dimensions greater than 3.

9.2. Knot symmetry: amphicheirality

For the moment, view a knot K formally as a smooth oriented pair ðS;KÞ where S is

diffeomorphic to S3 and K is diffeomorphic to S1: Equivalence is up to orientation

preserving diffeomorphism. (In dimension three it does not matter whether the smooth or

locally flat topological category is used.)

Definition 9.3. A knot ðS;KÞ is called reversible (or invertible), negative amphicheiral,

or positive amphicheiral, if it is equivalent to Kr ¼ ðS;2KÞ; 2K ¼ ð2S;2KÞ; or 2Kr ¼
ð2S;KÞ respectively. It is called strongly reversible, strongly positive amphicheiral, or

strongly negative amphicheiral if there is an equivalence that is an involution.
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Each of these properties constrains the algebraic invariants of a knot, and hence can

constrain the concordance class of a knot. For instance, according to Hartley [40], if a knot

K is negative amphicheiral, then its Alexander polynomial satisfies DKðt2Þ ¼ FðtÞFðt21Þ
for some symmetric polynomial F: It follows quickly from the condition that slice knots

have polynomials that factor as gðtÞgðt21Þ that if a knot K is concordant to a negative

amphicheiral knot, DKðt2Þmust factor as FðtÞFðt21Þ: Further discussion of amphicheirality

and knot concordance is included in [18], where the focus is on higher dimensions, but

some results apply in dimension three.

Example. Let K be a knot with Seifert form

Va ¼
1 1

0 2a

 !
:

If a is positive, it follows from Levine’s characterization of knots with quadratic

Alexander polynomial (Theorem 3.1) that K is of order two in the algebraic concordance

group if every prime of odd exponent in 4aþ 1 is congruent to 1 modulo 4. It follows as

one example that any knot with Seifert form V3; for instance the 3-twisted double of the

unknot, is of order 2 in algebraic concordance but is not concordant to a negative

amphicheiral knot.

This gives insight into the following conjecture based on a long standing question of

Gordon [38]:

CONJECTURE 9.4. If K is of order two in C, then K is concordant to a negative

amphicheiral knot.

(Gordon’s original question did not have the “negative” constraint in its statement.)

In a different direction, it was noted by Long [81] that the example of a knot K for which

K#2 Kr is not slice (described in the next subsection) yields an example of a nonslice

strongly positive amphicheiral knot. Flapan [23] subsequently found a prime example of

this type. It has since been shown that the concordance group contains infinitely many

linearly independent such knots [73].

9.3. Reversibility and mutation

Every knot is algebraically concordant to its reverse. A stronger result, but the

only proof in print, follows from Long [81]: if K is strongly positive amphicheiral

then it is algebraically slice. For any knot, K#2 Kr is strongly positive amphicheiral,

so K and K r are algebraically concordant. It is proved in [71] that there are

knots that are not concordant to their reverses. Further examples have been developed

in [56,90,107].

Kearton [48] observed that since K#2 Kr is a (negative) mutant of the slice knot

K#2 K; an example of a knot which is not concordant to its reverse yield an example of
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mutation changing the concordance class of a knot. Similar examples for positive mutants

proved harder to find and were developed in [56,58].

9.4. Periodicity

A knot K is called periodic if it is invariant under a periodic transformation T of S3 with the

fixed point set of T a circle disjoint from K: Some of the strongest results concerning

periodicity are those of Murasugi [88] constraining the Alexander polynomials of such

knots. Naik [91] used Casson–Gordon invariants to obstruct periodicity for knots for

which all algebraic invariants coincided with those of a periodic knot.

A theory of periodic concordance has been developed. Basic results in the subject

include those of Cha and Ko [11] and Naik [92] obstructing knots from being periodically

slice and those of Davis and Naik [19] giving a characterization of the Alexander

polynomials of periodically ribbon knots.

9.5. Genus

The 4-ball genus of a knot K; g4ðKÞ; is the minimal genus of an embedded surface bounded

by K in the 4-ball. It is a concordance invariant of a knot which is clearly bounded by its

3-sphere genus.

This invariant has been studied extensively. It is known to be bounded below by half the

classical signature and the Tristram–Levine signature [43,44,86,110]. In the case that a

knot is algebraically slice, Gilmer developed bounds on the 4-ball genus using Casson–

Gordon invariants [30]. In [51] it is shown that for any pair of nonnegative integersm and n

there is a knot K with a mutant K p such that g4ðKÞ ¼ m and g4ðKpÞ ¼ n; a knot and its

mutant are algebraically concordant. Beyond that, there are many results giving bounds on

the 4-ball genus in the smooth setting based on differential geometric results. See, for

instance [101,109].

Nakanishi [93] and Casson observed that there are knots that bound surfaces of genus

one in the 4-ball but which are not concordant to knots of 3-sphere genus 1. In [77] this

observation was the starting point of the definition of the concordance genus of a knot K:

the minimum genus among all knots concordant to K: It is shown that this invariant can be

arbitrarily large, even for knots of 4-ball genus 1, and even among algebraically slice

knots.

9.6. Fibering

A knot is called fibered if its complement is a surface bundle over S1: It is relatively easy to

see that not all knots are concordant to fibered knots, as follows. The Alexander

polynomial of a fibered knot is monic. Consider a knot K with DKðtÞ ¼ 2t2 2 3t þ 2: If K

were concordant to a fibered knot, then DKðtÞgðtÞ ¼ f ðtÞf ðt21Þ for some monic polynomial

g and integral f : However, since DKðtÞ is irreducible and symmetric, it would have to be a
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factor of f ðtÞ and of f ðt21Þ; giving it even exponent in DKðtÞgðtÞ; implying it is a factor of

gðtÞ; contradicting monotonicity.

As mentioned above, Soma [103] proved that fibered knots are concordant to hyperbolic

fibered knots.

The most significant result associating fibering and concordance is the theorem of

Casson and Gordon [10].

Theorem 9.5. If K is a fibered ribbon knot, then the monodromy of the fibration extends

over some solid handlebody.

9.7. Unknotting number

The unknotting number of a knot K is the least number of crossing changes that must

be made in any diagram of K to convert it to an unknot. This is closely related to the

4-ball genus of a knot (see the discussion above) and questions regarding the slicing of

a knot in manifolds bounded by S3 other than B4; for instance, a once punctured

connected sums of copies of S2 £ S2: A related invariant that is more closely tied to

concordance was introduced by Askitas [4,95], which we call the slicing number of a

knot: usðKÞ is the minimum number of crossing changes required to convert a knot into

a slice knot. It is relatively easy to see that the 4-ball genus of a knot provides a lower

bound on the slicing number; it was shown in [85] and later in [75] that these two need

not be equal.

10. Problems

Past problem sets that include questions related to the knot concordance group include

[38,54].

(1) Is every slice knot a ribbon knot? A knot is ribbon if it bounds an embedded disk in

B4 having no local maxima (with respect to the radial function) in its interior. In the

topological category this is not defined, so one asks the following instead: is every

slice knot homotopically ribbon? (That is, does K bound a disk D in B4 such that

p1ðS3 2 KÞ! p1ðB4 2 DÞ is surjective?) In the smooth setting one then has the

additional question: is every homotopically ribbon knot a ribbon knot?

One has little basis to conjecture here. Perhaps obstructions will arise (in either

category) but the lack of potential examples is discouraging. On the other hand,

topological surgery might provide a proof in that category, but would give little

indication concerning the smooth setting.

(2) Describe all torsion in C. Beginning with [25] the question of whether there is any

odd torsion has been open. More generally, the only known torsion in C is two

torsion that arises from knots that are concordant to negative amphicheiral knots,

and Conjecture 9.4 (first suggested in [38]) states that negative amphicheirality is

the source of all (two) torsion in C.
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As described in Section 9, the Seifert form

V3 ¼
1 1

0 23

 !

represents 2-torsion in G but cannot be represented by a negative amphicheiral knot.

The prospects for understanding 4-torsion look better. A start has been made in

[79,80] where it is shown, for instance, that no knot with Seifert form

V5 ¼
1 1

0 25

 !

can be of order 4 in C, although every such knot is of order 4 in G.
Closely related to questions of torsion is the question: Does Levine’s

homomorphism split? That is, is there a homomorphism c : G! C such that

f +c: is the identity? An affirmative answer would yield elements of order 4 in C as

well as elements of order 2 that do not arise from negative amphicheiral knots.

See [45,84] for computations of the algebraic orders of small crossing number

knots.

(3) If the knots K and K#J are doubly slice, that is cross-sections of unknotted 2-

spheres in R4, is J doubly slice? The study of double knot concordance has a

long history, with some of the initial work appearing in [106]. Other references

include [33,46,47,64,65,105]. The property of double sliceness can be used to

define a double concordance group which maps onto C and there is a

corresponding algebraic double concordance group formed using quotienting by

the set of hyperbolic Seifert forms rather than metabolic forms. Algebraic

invariants show that the kernel is infinitely generated, and Casson–Gordon

invariants and Cochran–Orr–Teichner methods apply in the case that

algebraic invariants do not [33,53]. Although a variety of questions regarding

double null concordance can be asked, this problem points to the underlying

geometric difficulty of the topic.

(4) Describe the structure of the kernel of Levine’s homomorphism, A ¼
kerðf : C! GÞ: It is known [42,72] that A contains a subgroup isomorphic to

Z1%Z1
2 . A reasonable conjecture is that A ø Z1%Z1

2 . It has recently been

shown by the author [78] that results of Ozsváth and Szabó [96] imply that A has

a summand isomorphic to Z. This implies that A contains elements that are not

divisible and that A is not a divisible group. There remains the unlikely

possibility that A does contain infinitely divisible elements, perhaps including

summands isomorphic to Q and Q/Z.

(5) Describe the kernel of the map from C to the topological concordance group,

Ctop. It is known that the kernel is nontrivial, containing for instance nonsmoothly

slice Alexander polynomial one knots. (See [13,36] for early references.) In fact

it contains an infinitely generated such subgroup [22]. What more can be said

about this kernel?
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(6) Identify new relationships between the various unknotting numbers and genera of

a knot. Here is a problem that seems to test the limits of presently known

techniques. If K can be converted into a slice knot by making m positive crossing

changes and n negative crossing changes, then a geometric construction yields a

surface bounded by K in the 4-ball of genus max{m,n}. Conversely: If the 4-ball

genus of K is g4; can K be converted into a slice knot by making g4 positive and

g4 negative crossing changes? A simpler question ask the same thing except for

the 3-sphere genus g3 instead of g4: (It is interesting to note that at this time it

seems unknown if the classical unknotting number satisfies uðKÞ # 2g3ðKÞ:)
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