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ALGEBRAIC KNOTS ARE ALGEBRAICALLY DEPENDENT 

CHARLES LIVINGSTON AND PAUL MELVIN 

ABSTRACT. Algebraic knots are linearly dependent in G the algebraic knot concor- 
dance group. An example of a linear relation between four algebraic knots is 
constructed. 

An algebraic knot is any one component link of an isolated singularity of a 
complex curve. Such knots have been classified [4]. Rudolph [3] asked for a 
description of the subgroup of the knot concordance group generated by this class of 
knots, and whether or not these knots form an independent set. Litherland [2] 
showed that signature functions are not sufficient to rule out linear relations among 
them. In this note we will produce an example showing that no algebraic concor- 
dance invariants will suffice. We will prove: 

PROPOSITION. The algebraic knots are linearly dependent in G, the algebraic knot 
concordance group. 

1. Notation. A satellite knot is any knot in S3 whose complement contains an 
essential torus. Fix an oriented satellite knot S and an essential torus T in the 
complement of S. Let V denote the solid torus bounded by T. Note that V contains 
S. The core of V, called the companion of S (associated with T) will be denoted by 
C. Define the winding number w of S of the homology relation S - wC in V. Orient 
C so that w > 0 (there is a choice to be made when w = 0). Finally, set E ? f(S) 
where f: V 53 is an orientation and longitude preserving embedding onto an 
unknotted solid torus in 53. We shall call E the embellishment of S. 

Set A = Z[t, r'] and Ao = Q(t), the quotient field of A. For any oriented knot 
K, write AK for the Alexander module of K, and BK for the Blanchfield pairing on 
Ak (= linking pairing Ak X AK - AO/A). AK has a square presentation matrix with 
entries in A. Any such matrix AK(t) is called the Alexander matrix of K. The 
associated matrix BK(t) for BK (with entries in A(/A) is called the associated 
Blanchfield matrix. 

2. Example dependence relation. The following result is implicit in Kearton [1]. 

THEOREM. Let S be a satellite knot with core C, embellishment E and winding 
number w. Then 

Bs(t) = BEWt m Bc(tw). 
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EXAMPLE. Let ( p1, q1; P2, q2) denote the ( p1, q) cable about the ( P2, q2) torus 
knot. (The winding number of this satellite knot is q, with respect to (P2, q2).) Let 
J = (13, 2; 3, 2) # (15, 2) and K = (15, 2; 3, 2) # (13, 2). According to [4] these are 
both connected sums of algebraic knots. (The (p, q) torus knot is always algebraic, 
and ( p1, q1; P2, q2) is algebraic if PI > q, P2q2 ) It follows from the above theorem 
that 

BJ(t) = B(13,2(t) + B(3,2)(t2 + B(15,2)(t) = BK(t). 

According to [5], as J and K have the same Blanchfield pairing they are S-equivalent, 
and therefore algebraically concordant. Therefore, the four prime factors of J and K 
(which are distinct) satisfy a relation in G_. 
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