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Introduction 

Localization is an indispensable tool in the computation of the 

surgery obstruction groups Ln(~) ~ Ln(~[~]) (n(mod 4)) of Wall [3], at least 

for finite groups ~. The L-groups Ln(A) of a ring with involution A are 

compared with the L-groups Ln(S'IA) of the localization S-IA inverting 

some multiplicative subset S CA, the difference being measured by certain 

L-groups Ln(A,S) depending on the category of S-torsion A-modules. 

In particular, if A = ~[~3 , S = ~-~O}CA and E is finite then S-IA = ~[~] 

is semi-simple, and it is comparatively easy to compute Ln(~[~]) , Ln(~[~],S) 

and hence Ln(~[~]). 

Localization in algebraic L-theory has already been studied by many 

authors, including Wall [q],[2],[6], Passman and Petrie [13, Connolly [q], 

Milnor and Husemoller [1], Bak and Scharlau [1], Karoubi [1], Pardon [1],[2], 

Carlsson and Milgram [1], though not in the generality obtained here. 

The behaviour of the L-groups under localization is governed by 

an exact sequence of the type 

... ~ Ln(A) ~ Ln(S'IA) ~ Ln(A,S) ~ Ln.I(A) ~ Ln_I(S'IA) ~ .... 

Our immediate aim in this paper is to obtain a precise statement of this 

sequence (Proposition 2.4). We shall go some way towards a proof, but the 

detailed account is deferred to a projected instalment of the series 

"The algebraic theory of surgery" (Ranicki [2]), where we shall also prove 

a localization exact sequence of this type for symmetric L-theory. 

Apart from the localization exact sequence itself we shall discuss 

the following applications: 

- Let ~ = Lim A/sA be the S-adic completion of A. There are defined 

excision isomorphisms 

LnCA,S) , Ln(~,~) (nCmod 4)) 
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and a Mayer-Vietoris exact sequence of the type 

^ -1 ^-1 ̂  
• .. ~Ln(A) ~Ln(A)®Ln(S A) ~Ln(S A) ~ Ln_I(A) ~ ... 

(Proposition 3.2). 

- If the ring A is an R-module then the symmetric Witt group LO(R) acts 

on the localization exact sequence of (A,S). This LO(R)-module structure is 

used to prove that natural maps of the type 

Ln(~[~ ] ) ~Ln(~[~ ] ) (n(mod 4)) 

are isomorphisms modulo 8-torsion, and that the L-groups Ln(2~m[~ ] ) are of 

exponent 8 (Propositions 4.2,4.4). 

- If the ring A is an algebra over a Dedekind ring R and S = R-{O~CA 

there are defined natural direct sum decompositions 

Ln(A,S,g) = ~Ln(A~ ,~) (n(mod 4)) 

with~ranging over the non-zero prime ideals of R such that~=~ . 

L-groups Ln(A,~) are defined using quadratic structures on ~ -primary The 

S-torsion A-modules. (proposition 5.1). 

We shall consistently use the language of forms and formations of 

Ranicki [1]. We shall omit the proofs of results of the following nature: 

i) some relation, invariably called "cobordism", involving forms 

and formations is claimed to be an equivalence relation such that the 

equivalence classes define an abelian group with respect to the direct sum 

ii) some function between such cobordism groups is claimed to 

be an isomorphism. 

The chain complex formulation of quadratic L-theory in Ranicki [2] lends 

itself more readily to proofs of such results, those of type i) being 

obtained by an algebraic mimicry of the cobcrdism of manifolds, and those 

of type ii) by identifying cobordism groups of forms and formations with 

cobordism groups of quadratic Poincar6 complexes. From the point of view 

of Ranicki [2] the L-groups Ln(A) are defined for n~O to be the algebraic 

cobordism groups of pairs (C,W) such that C is an n-dimensional 

f.g. projective A-module chain complex and W is a quadratic structure 
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inducing Poincar~ duality Hn'*(C) = H,(C). The groups Ln(A,S,g) are defined 

for n ~ 0 to be the algebraic cobordism groups of pairs (D,e) such that D 

is an (n+l)-dimensional f.g. projective A-module chain complex which 

becomes chain contractible over S-1A and e is a quadratic structure inducing 

• , Hn+I-*(D) Po~ncare duality = H.(D). It is relatively easy to prove the 

exact sequence 

• .. ~ Ln(A) ~Ln(S'IA)-----@Ln(A,S) > Ln_I(A) ~ L~_I(S'IA) ~ ..., 

so that to obtain a localization exact sequence for the surgery obstruction 

groups it remains only to identify the chain complex L-groups with the 

4-periodic L-groups defined using forms and formations. Although this 

identification can be used to both state and prove the localization exact 

sequence in terms of forms and formations we find the chain complex 

approach more illuminating, at least as far as proofs are concerned. 

§I. Quadratic L-theory 

§2. Localization 

§3. Cartesian squares 

~. Products 

§5. Dedekind algebra 

§6. Polynomial extensions 

§7. Change of K-theory 
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§I. ~uadratic L-theor 2 

We recall some of the definitions and results of Ranicki [1] ,[2]. 

Let A be an associative ring with I, and with an involution 

:A ,A ; aL ~a 

such that 

(~) = ~.a , (a--~) = a + b , ~ = 1 , a = a ~ A (a,b 6A). 

A-modules will always be taken to have a left A-action. 

The dual of an A-module M is the A-module 

M* = HomA(M,A) , 

with A acting by 

AX M ~ ~ M ~ ; (a,f) L , (x~ ,f(x)~) . 

The dual of an A-module morphism f~HOmA(M,N) is the A-module morphism 

f* : N ~ ~M" ; gl ~(x~-----*g(f(x))) • 

If M is a f.g. projective A-module then so is the dual M*, and there is 

defined a natural A-module isomorphism 

M ~M ~ ; xl ~ (f~-----~ f-~) 

which we shall use to identify M =t = M. 

Let ~ A be a central unit such that 

~= ~-IEA 

(for example, E = +I). Given a f.g. projective A-module M define the 

e-dualit~ involution 

T : HomA(M,M*) .~HOmA(M,M" ) ; 9: ; (e~*:x: ~ (y~ ~e~-~-~)) , 

l e t  

Qe(M) = ker(1-Te:HOmA(M,M*) ,,HOmA(M,M*)) 

Qe(M) = coker(1-Ta:HOmA(M,M*) )HOmA(M,M*)) , 

and define a morphism of abelian groups 

I+T e : Qe(M) ~ Qe(M) ; ~ ) ~+~" . 
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An Ic_~uadratic 

together with an element 

forms 

g-s~mmetric I (M,~) 
is a f.g. projective A-module M form over A ~(M,¥) 

I; CQCCM) • A morphism (resp. isomorphism) of such ~Qg(M) 

I~ : (M,~) ~(M',~') 
: (N,W) ~(M',V') 

is an A-module morphism (resp. isomorphism) fE HomA(M,M') such that 

i f*~'f = ~EQg(M) 
f*W'f = ¥~QE(M) . 

I(M,~ ) I~HOmACM, M') 
The form ~(M,V) is non-singular if (W+gW* E HomA(M,M*) is an isomorphism. 

i~-sY mine tric I (M,~) 
A subla~ran~ian of a non-singular form over A 

(g-quadratic ((M,~) 

is a direct summand L of M such that the inclusion J £ HomA(L,M) defines a 

morphism of forms 

l j : (L,O) ~(M,~) 

j : (L,O) ~(M,V) • 

The annihilator of a sublagrangian L is the direct summand LA of M defined by 

I LA = ker(j*~:M • L*) 

LA = ker(j*(W+gW*):M ~L*) . 

A lagrangian is a sublagrangian L such that 

L A = L . 

I g-symmetric 
form over A is hyperbolic if it admits a A non-singular L g'quadratic 

lagrangian, or equivalently if it is isomorphic to the standard hyperbolic 

form 
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I e(P,@) = (PEP', (~ i) E Qe(PeP*)) 

HECP) = (PEP*, I~ o)£Qe(P.P')) 

l e-symmetric form over A (P~,@ & qe(p.)) 
for some ° 

f.g. projective A-module P 

Ie'sY mine tric I LO(A, e ) 
The Witt ~roup of A is the abelian group 

E-quadratic Lo(A,e ) 

with respect to the direct sum • of the equivalence classes of non-singular 

I e'symme tric I(M,~ ) 
forms over A under the equivalence relation 

e-quadratic (M,¥) 

I (M,~) ~ CM',~') 
if there exists an isomorphism of forms 

(M,w)~ (M',V') 

I f : (M,~)eHe(P,@) ~(M',~')eHe(P',@ ') 

f : (M,V)eHe(P) ~(M',V')®He(P') 

l e-symmetric forms over A (P*,@),(P'*,@ ') 
for some 

f.g. projective A-modules P,P' 

The e-symmetrization map of Witt groups 

I+T e : Lo(A,e) ~LO(A,e) ; (M,¥), , (M,(I+Te)~) 

is an isomorphism modulo 8-torsion. 

From now on we shall restrict attention to Just those aspects of 

symmetric L-theory which we shall use in our treatment of quadratic l~-theory. 

We refer to Part I of Ranicki [2] for a more thorough development of 

symmetric L-theory. 

An e-quadratic formation over A (M,~;F,G) is a non-singular 

~-quadratic form over A (M,V) together with a lagrangian F and a 

sublagrangian G. An isomorphism of formations 

f : (M,~;F,G) ~(M',VI;F',G l) 

is an isomorphism of forms f:(M,W) ,(M',V') such that 

f(F) = F' , f(G) = ~' . 
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A stable isomorphism of formations 

Ell : (M,V;F,G) ~(M',V';F',G') 

is an isomorphism of formations 

f : (M,~;F,G)e(He(P);P,P~) 

for some f.g. projective A-modules P,P'. 

An E-quadratic formation (M,V;F,G) is non-singular if G is a 

lagrangian of (M,V). 

i f°rm over I (M'w) 
The boundary of an g-quadratic [formation A /(M,¥;F,G) 

L 

I ('E)- I formation 
non-singular quadratic over A 

E- ~form 

~(n,~;~,G) = (QL/Q,V~/~) . 

An E-quadratic I 
form 

formation 

I formation i stably isomorphic to 0 
is 

form 0 

I forms Non-singular E-quadratic (formations 

are cobordant if there exists I an isomorphism 
! a stable isomorphism 

)(M',V';F',G')e(He(P');P',P'=) 

is non-singular if and only if its boundary 

over A 

for some 

is the 

I 
(M,W), (M' ,V' ) 

(M,W;F,G),(M'~¥';F',G') 

of I f°rms 
formations 

I f : (M,¥)e(M',-V') ) 5(N,~;H,K) 

If] : (M,W;F,G)®(M',-~';F',G')-- ,~(N,~) 

I e- I f°rmati°n I (N,~IH, K) quadratic over A . 
(-E)- form [ (N ,~) 

Proposition 1.1 Cobordism is an equivalence relation on the set of 

i forms 
non-singular E-quadratic over A, such that the equivalence classes 

formations 

i Lo(A,E) define an abelian group with respect to the direct sum e. 
LI (A,e) 

[] 
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The cobordism group of forms Lo(A,c) is just the Witt group of 

G-quadratlc forms over A, as defined previously. 

Define abellan groups Ln(A,E) for n(mod 4) by 

= ~Lo(A'(-)IE) 1 21 
Ln(A,C) (LI(A,(.)ic) if n = 2i+I . 

For c = 1 ~A we shall write 

Ln(A,1) = Ln(A) , L0(A,1) = LO(A) . 

In the terminology of Part I of Ranicki [1] 

Ln(A) = Un(A) • 

Given a subgroup X~ ~0(A) (resp. X ~(A)) which is preserved as a 

set by the duality involution 

. : ~o(A) ~o(A) ; EP], , [P*] 

(resp.. : KICA)------,~(A) ; ~(f:P •Q)t ~ ~(f*:Q" ,P*)) 

let L~CA,c) (n(mod 4)) be the L-groups defined as in Proposition 1.1, but 

using only forms and formations involving f.g. projective A-modules P such 

that [P~E X~Ko(A) (resp. based f.g. free A-modules such that all isomorphlsms 

f~HOmA(P,Q) have torsion ~(f) qXC~(A)). In particular, for X = ~o(A) 

L~oCA) 
n CA,G) = LnCA,c) . 

For E = lEA we shall write 

LXCA,1) = LXCA) . 

In the terminology of Part III of Ranicki [1] 

LX(A) = ~n(A) for XC_Ko(A) (resp. LX(A) = ~n(A) for XCK~(A)) . 

Proposition 1.2 Given s-invariant subgroups X_CYC_~m(A) (m = 0 or I) there 

is defined an exact sequence of abelian groups 

...__~ Hn+^ 1 (2Z2; y/x ) ~ LXCA, E) ~ LYCA, ~) ,~n( ~2; y/x ) > LX.ICA,e)_,.,. 

with the Tare 2Z2-cohomology groups defined by 

~n(~2~ix) = ~g~ Ylxl g" = (_)ng} i { h + (-)nh* I h~ :~IX }. 

E~ 

(In dealing with based A-modules it is convenient to assume that A is such 

that the rank of a f.g. free A-module is well-defined and T(~:A--~A)=OEKI(A))o 
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In order to define even-dimensional relative L-groups we shall need 

the following refinement of the notion of formation. 

A split g-quadratic formation over A (F,((~I,e)G) is an g-quadratic 
~ r  ~ 

formation over A (Hg(F);F,G), where (~):G ) FeF* is the inclusion, 

together with a hessian (-g)-quadratic form over A (G,G~Q_~(G)) such that 

~*~= e - ge* : S >G* . 

Such a split formation will normally be written as (F,G). 

An isomorphism of split g-quadratic formations 

(~,~,W) : (F,G) ~ (F',G') 

is defined by A-module isomorphisms ~£ HomA(F,F') , ~ ~ HomA(G,G') together 

with a (-e)-quadratic form (F*,¥ ~ Q_E(F*)) such that 

ii) ~.'Ip = ~, ~, Q , F,. 

iii) e .~*vp= ~*e'~Q_~(G) . 

A stable isomorphism of split g-quadratic formations 

~,~,V3 : (F,G) > (F',G') 

is an isomorphism of the type 

(~,~,V) : (F,G)e(P,P*) ) (F',G')e(PW,P'*) , (o) 
for some f.g. projective A-modules P,P' with (P,P*) = (P,( I ,O)P*). 

An isomorphism of split e-quadratic formations ~,~,V):(F,G)---~(F',G,) 

determines an isomorphism of the underlying g-quadratic formations 

~.-I | (Hg(F);F,G) ,(He(F');F',G') . 

Conversely, every isomorphism of g-quadratic formations 

f : (He(F);F,G) ,(He(F');F',G') 

can be refined to an isomorphism of split g-quadratic formations 

(~,~,¥):(F,G)- ~(F',GV). Similarly for stable isomorphisma. 

The s~lit boundary of an e-quadratic form over A (M,VeQg(M)) is the 

non-singular split (-g)-quadratic formation over A 

seN,v) = (M,( ~ + g ~  j)N) . 
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A morphism of rings with involution is a function 

f : A ,B 

such that 

f(al+a 2) = f(a 1) + f(a 2) , f(ala 2) = f(al)f(a 2) , f ( ~ )  = ~ , f ( 1 )  = I ~ B  

(al,a2,a (A) . 

Given such a morphism regard B as a (B,A)-bimodule by 

B~BXA vB ; (b,x,a)~ ~b.x.f(a) . 

A f.g. projective A-module M induces a f.g. projective B-module B®AM , and 

there is defined a natural B-module isomorphism 

B~AM" ~ CB@AM)= ; b@ft ~ (c@xl ~c.f(x).~) 

which we shall use to identify (B~M)" = B®AM=. Given a central unit ~ ~A 

such that ~ = g-1 (as above) we have that ~ = f(g)-I ~B, and it will be 

assumed that f(~) is central in B. It is convenient to also denote f(~)E B 

I form I (M,V) 
by ~. An ~-quadratic over A induces an g-quadratic 

formation (M,V;F,G) 

~ form over B 

formation 

I B@A(M,~) = (BSAM,I®~) 

and there are induced morphisms in the L-groups 

f : Ln(A,g) , Ln(B,s) ; x, • B@AX (n(mod 4)) . 

We shall now define relative L-groups Ln(f,s) (n(mod 4)) to fit into an 

exact sequence 

... • Ln(A,s) f ~ Ln(B,g) ) Ln(f,g) ~ Ln_l(A,g) ~ .... 

A relative s-quadratic form over f:A ~B ((F,G),(M,V),h) is a 

triple consisting of a non-singular split (-S)-quadratic formation over A 

(F,G), an g-quadratic form over B (M,W), and a stable isomorphism of 

non-singular split (-S)-quadratic formations over B 

h : BeA(F,G) ~ B(M,V) • 
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The relative forms ((F,G),CM,¥),h),CCF',GO),CM',W'),h L) are cobordant if 

there exist a (-E)-quadratic form over A (L,~) and a stable isomorphism of 

non-singular split (-E)-quadratlc formations over A 

k : ~(L,~) ,(F',GO)e-(F,G) (where-(F,G) = (F,(('~),-e)G)) 

such that the non-singular E-quadratic form over B obtained by glueing 

(N,~) = B@ACL,~)U(h,eh)CI~)CCM',-¥')aCM,W)) 

is null-cobordant, that is 

(N,~) = OELoCB,E) 

The gluelng operation was introduced in the proof of Theorem 4.3 of Part I of 

Ranlckl E13, and it has also been described in Wall C6S,E7S. We shall not 

repeat its definition here. 

A relative g-~uadratic formation over f:A , B ((PeS) eQ,h) is a 

triple consisting of a non-singular g-quadratic form over A (P,e), 

a f.g. projective B-module Q, and an isomorphism of non-singular E-quadratic 

forms over B 

h : ~ ( P , e )  , ~ECQ) • 

The relative E-quadratlc formations ((P,e),Q,h),(CP'te'),Q',h') are cobordant 

if there exist an g-quadratic formation over A (M,V;F,G) and an isomorphism 

of non-singular c-quadratic forms over B 

k : B(M,¥;F,G) ~ (P',e')e(P,-e) 

such that the non-slngular E-quadratic formation over B 

(N0v|H,K) = (B@ACM,-¥)eHE(Q) ;(B@AF)eQ , 

~(x. y,Ch'eh)~k)(y))E B~AM-CQ'Q')Ix~ B~AO,Y~ B®ACa*/O)~) 
is null-cobordant, that is 

(N,~;H,K) = OELI(B,E) • 
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Proposition 1.~ Cobordism is an equivalence relation on the set of relative 

c-quadra t ic  I forms 
formations 

over f:A 

define an abelian group 

~B, such that the equivalence classes 

1 LOCf'~) with respect to the direct sum e. 
LI(f,E) 

The L-groups def ined for  nCmod 4) by 

LnCf,~))L0(f'(')i~)12i= if n = 

Ll(f,(-)i~) 2i+I 

fit into an exact sequence of abelian groups 

• .. ~LnCA,E) f ~LnCB,~) ~LnCf,g) ~Ln_I(A,~) ~ ... 

with 

Ln(B ,E) - - - - -~Ln( f ,~ )  ; x~ ;(O,x,O) 

Ln(f,E) ~Ln.I(A,~) ; (y ,x ,g ) .  ~ ~y 

In the case E = I we shall write 

T nCf,1) = ~nC~) . 
Relative L-groups LnCf ) were first defined by Wall [33 Cfor n odd) and 

Sharpe [I] (n even), in the case when all the modules involved are f.g. free. 

The above definition of the relative c-quadratic L-groups Ln(f,E) 

generalizes immediately to the intermediate E-quadratic L-groups. Given 

=-invar iant  subgroups XC_~(A), Y ~ ( B )  (m = 0 or I)  such that B ~ X C Y  
i n  A -- 

are defined L-groups "'L~'Y(f,c) Cn(mod 4)) which fit into an exact there 

sequence of abelian groups 
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§2° Localization 

In setting up the localization exact sequence for quadratic L-theory 

we follow the pattern established for the localization exact sequence of 

algebraic K-theory 

KI(A) ~ KI(S'IA) ~KI(A,S) wK0(A) • K0(S'IA ) 

in Chapter IX of Bass Eli. (The extension of the sequence to the lower 

K-groups K i (i~ -1) of Bass and the higher K-groups K i (i~ 2) of Quillen 

need not concern us here). There are three stages : 

I) For any ring morphism f:A • B there is defined a relative 

K-group Kl(f) to fit into an exact sequence 

KI(A ) f ~KI(B) >Kl(f) ~K0(A) f ~K0(B) • 

Specifically, Kl(f) is a Grothendieck group of triples (P,Q,g) consisting of 

f.g. projective A-modules P,Q and a B-module isomorphism g:B~P----*B®AQ. 

II) For a localization map f:A ~S-fA it is possible to express g 

h for some hE HomA(P,Q) , s@ S such that h induces an isomorphism over S'IA. as 

Thus Kfl(A ~S-flA) can be expressed as a Grothendieck group of triples such 

as (P,Q,h). 

III) Define KI(A,S) = K0(exact category of h.d. I S-torsion A-modules) 

and observe that there is a natural isomorphism of abelian grou~s 

KI(A ,S-IA) ~K I (A,S) ; (P,Q,h) F -[coker(h:P >Q)] . 

We have already developed the L-theoretic analogue ef ~) in §I above. 

(As in the algebraic K-theory of Bass [I] we shall only consider 

localizations A • S-CA inverting subsets S CA of central elements. 

There is some interest in the L-theory of eccentric localizations, inverting 

non-central elements. The work of Smith [1] considers localizations of the 

type A ~S-IA with S = f-l(1)CA for some ring morphism f:A------@B such that 

a morphism gm HomA(P,Q ) of f.g. projective A-modules P,Q becomes an 

isomorphism I @g CHOmB(B~p,B@AQ) if and only if ker(g)= 0 and coker(g) is an 

Smtorsion A-module. In principle, our methods permit a generalization to 

quadratic L-theory of any K-theoretic eccentric localization sequence). 
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Let A be a ring with involution (as in §I). 

A multiplicative subset SeA is a subset of A such that 

i) st~S for all s,tES 

ii) ~CS for all sES 

iii) if sa = 0 for some aEA,s~S then a = 0 

iv) as = sa~A for all a~A,sES 

v) 1~s . 

The localization of A awa~ from S S'IA is the ring with involution defined 

by the equivalence classes of pairs (a,s)@A~S under the relation 

(a,s) "~ (a',s') if s'a = satEA , 

with addition, multiplication and involution by 

(a,s) + (b,t) = (at+bs,st) , (a,s)(b,t) = (ab,st) , ~ = (a,~) • 

As usual, the class of (a,s) is denoted by a~ S-IA. The inclusion 
s 

a A ~SIA ; a~ ,~ 

is a morphism of rings with involution. An A-module M induces an S'IA-module 

S'IM = S-1A®A M 

which can be identified with the s'lA-module of equivalence classes of pairs 

(x,s)E M×S under the relation 

(x,s)~(x',s ') if s'x = sx'~M . 

x Again, the class of (x,s) is denoted by ~S-IM. Given A-modules M,N regard 

HomA(M,N) as an A-module by 

A~HOmA(M,N) ,HOmA(M,N) ; (a,f), > (xF----ef(x)a) , 

and use the natural S-IA-module isomorphism 

S'IH°mA (M'N) -----~H°ms'IA(S-IM'S-IN) ; sf, , (~ix ~ f(.x.)~ ) 

as an identification. In particular, for N = A we have the identification 

(s-IM) * = s "I(E*) . 

For example, if A = ~. , S = 2Z-~O~ then S'IA = ~. 
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Let L~(S'IA,E) (n(mod 4)) be the intermediate e-quadratic L-groups 

of S'IA associated to the .-invariant subgroup S =im(Ko(A)-~Ko(S 1A))~0(S-1A) 

of the projective classes of f•g. projective S-1A-modules induced from 

f.g• projective A-modules. Let L~(A ~ S'IA,E) (n(mod 4)) be the relative 

L-groups appearing in the exact sequence 

• .. ~ Ln(A,E) )L~(S'IAse) • L~(A , S-IA,e) 

In the first instance we shall express L~(A ~S'IA,g) for n = 12i 
t 2i+1 

J split (-)i-le-quadratic formations 
cobordism group of non-singular ~ i over A 

((-) E-qua ratic forms 

~stably isomorphic to 0 
which become over S'IA, corresponding to stage II)of 

hyperbolic 

the above programme. We shall then use this expression to identify 

L~(A ~S'IA,E) = Ln(A,S,c) (n(mod 4)) 

(i(mod 2)) the Witt group of non-singular (-)iE-quadratic with I L2i(A'S'E) 

(L2i+I(A,S,g) 

linking I forms 
formations 

• L n I(A E)--*.. 

as the 

to stage III). 

An A-module morphism f~HOmA(M,N) is an S-isomorphism if the induced 

S'IA-module morphlsm 

s-lf : S-IM ~S-IN ; x, , f(x) 
s s 

is an isomorphism• 

An S-isomorphism of g-quadratic forms over A 

f : CM,v) ~(N,~) 

is a morphism of g-quadratic forms such that f CHOmA(M,N) is an S-isomorphlsm. 

There is induced an isomorphism of E-quadratic forms over S'IA 

S-1 S'If :S'I(MeW) > (N,~) . 

defined using h.d. I S-torsion A-modules, corresponding 



117 

An e-quadratic form over A (M,V) is non-degenerate if V+c¥*~HOmA(M,M*) 

is an S-isomorphlsm. 

An S-lagranglan of a non-degenerate e-quadratic form over A (M,¥) 

is a f.g. projective submodule L of M such that the inclusion j~ HomA(L,M) 

defines a morphlsm of forms over A 

j : (L,O) ,CM,¥) 

which becomes the inclusion of a lagrangian over S'IA. The inclusion j 

extends to an S-isomorphism of non-degenerate g-quadratic forms over A 

(J k) : (LeL*, ) ~(M,V) 
0 

for some k 6HOmA(L*,M), s ~S. 

A non-degenerate e-quadrati c formation over A (M,V;F,G) is a 

non-singular e-quadratic form over A (M,V) together with a lagrangian F and 

an S-lagrangian G. 

I f°rm ICM, w) 
A non-degenerate C-quadratic formation over A ((M,¥;F,G) induces a 

Iform IS'I (M,¥) 

non-singular g-quadratic [ formation over S-IA ~ ~S_I(M,¥;F,G) j 

( L~(S'IA, g) 
representing an element of ~ S 1 . Conversely, every element of 

LLI(S- A,c) 

I L~(S'IA'C)~ I "fOrm 
L~(S.1A,c) is represented by a formation of this type. 

(We could achieve a more systematic terminology by calling 

non-degenerate objects over A 'S-non-singular I . We prefer to bow to the 

tradition of calling forms over ~ which become non-singular over 

'non-degenerate'). 



118 

An E-~uadratic S-form over A (Mg~;L) is a non-degenerate E-quadratic 

form over A (M,¥) together with an S-lagrangian L. The S-form is non-sinEula F 

if the form (M,~) is non-singular, in which case there is defined an 

associated relative E-quadratic formation over A ~ S'IA 

k-1 ((M,¥),S'IL,(J ~) : S'I(M,¥) )HE(S-IL)) 

with J ~ HomA(L,M) , k EHOmA(L~,M) , s E S as above. 

An isomorphism of E-quadratic S-forms over A 

f : (M,¥;L) ~(M',Vt;L ') 

is an isomorphism of forms 

f : (M,V) ~CM',~') 

such that 

f(L) = L' . 

A stab!e isomorphism of E-quadratic S-forms over A 

If] : (M,¥;L) )(M',~';L') 

is an isomorphism of the type 

f : (M,V;L)e(HE(P);P) ~(M',¥';L')e(HE(P');P') 

for some f.g. projective A-modules p,pI 

An E-quadratic S-formation over A (M,¥;F,G) is a non-degenerate 

E-quadratic formation over A such that the A-module morphism 

G ~ M/F ; x, ~ Ix] 

is an S-isomorphism. The S-formation is non-singular if G is a laEranEian 

o f  (M,¥). 

An isomorphism of E-quadratic S-formations over A 

f : (M,¥;F,G) ~ (MI,V|;FI,G v) 

is an isomorphism of E-quadratic forms over A 

f : (M,~) ~ (M',~') 

s u c h  that 

f(F) = F' , f(G) = G' . 
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A stable isomorphism of c-quadratic S-formations over A 

If] : (M,¥;F,G) ~ (M',¥';F',G') 

is an isomorphism of the type 

f : (M,V;F,G)s(Hg(P);P,P') ~(M',V';F',G')®(HE(P');P',P") 

for some f.g. projective A-modules p,pi. 

A split E-quadratic S-formation over A (F,((~),e)G)is an E-quadratic 

S-formation over A (Hg(F);F,G), where (~):G ~FeF* is the inclusion, 

together with a hessian (-g)-quadratic form over A (G,e 6 Q.£(G)) such that 

~*~= e - Ee* : S *a* . 

Such a split S-formatlon will normally be written as (F,G), denoting 

(F,(~'~,-e)G) by -(F,G). Note that ~GHOmA(G,F*) is an S-isomorphism. 

A split ~-quadratlc S-formation (F,G) is non-singular if G is a 

lagrangian of HE(F) , that is if the sequence of A-modules 

is exact. For non-singular (F,G) define the associated relative (-e)-quadratic 

form over A ~S'IA ((F,G),O,O). 

An isomorphism of split g-quadratic S-formations over A 

(~,~,V) : (F,G) ~(F',G') 

is defined by A-module Isomorphisms ~HOmA(F,F'), ~EHOmA(G,G') together with 

a (-g)-quadratlc form (F*,¥~Q.E(F*)) such that 

±) ~+ C¥-gv*)*~= ~'p: Q ~F' 

il) ~.-I~ ~ ~, ~, a , F" 

iii) 8 + ~*W~ - ~*e'~ eker(S'1:Q_g(G) ~Q.E(S'IG)) • 

A stable isomorphism of split E-quadratlc S-formatlons over A 

[~,~,~] : (F,G) )(F',G') 

is an isomorphism o f  the type 

(~,~,V) : (F,G)e(P,P*) ~(F',G')s(P',P'*) 

for some f.g. projective A-modules p,pt. 
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(M,¥;F,G) 

The boundar~ of a non-degenerate g-quadratic I f°rm 
~formation 

I split (-E)-quadratic S-formation 
is the non-slngular ~-quadratic S-form 

I ~(M,~) = (M,( +E~ ,v)M) 

~CM,¥;F,G) = (M,¥;G) 

I E-quadratic S-forms over A 

Non-singular I split g-quadratic S-formations 

over A 

(F,G),(F',G') 

over A 

are cobordant if there exists a stable isomorphism 

i If3 : (M,¥;L)e(M',-V';L') ~(N,~;H,K) 

[~,~,~3 : (Z,G)e-(F',Q') ~(~,~) 

I E- Iformation 
for some non-degenerate (E) quadratic 

- - ~form 

I S'I(N,~;H,K) = 0EL~CS'IA,E) 

S-I(N,~) = 0(L~(S-IA,-E) 

over A I (N,~;H,K) such that (~,~) 

Proposition 2.1Cobordism is an equivalence relation on the set of 

~ E-quadratic S-forms 
non-singular ~split g-quadratic S-formations over A, such that the equivalence 

classes define an abelian group with respect to the direct sum e. 

I(-)ig-quadratic S-forms 

The cobordism group of non-singular I split (.)iE_quadrati c S-formations 

~formation 
over A is naturally isomorphic (via the associated relative for m 

2i+1 
construction) to the relative L-group L~(A ~ S'IA,E) for n = . 

2i+2 
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The morphisms of the exact sequence 

... ~ Ln(A,g) • LS(s'IA,E) , LS(A ~S-1A,~) ~ Ln.I(A,~) • ... 

involving LSn(A ) S-1A,g) are given in terms of S-forms and S-formations by 

L2Si(s'IA,~) ~L2Si(A )S'IA,a) ; S-1(M,¥)~ ~(M,¥) 

~L2Si+I(S-1A,~) ~LS2i+I(A ,S'IA,c); S'I(M,V;F,G); ~ B(M,¥;F,G) 

I L2Si(A ~ S'IA,~) ' L2i.I(A,c) ; (F,G), 

LSi+I(A ~S'IA,~) ~L2iCA,~) ; CM,W;L) I 

, (Hc.)i-lg(F) ;F,G) 

• (M,~) . 

[] 

h.d. I S-torsion A-module M A with resolution 9 

0 ,p p~ d* , p~ 

where 

~M ̂  • 0 

-~ = dy ~ P0 ) . 

An A-module M is S-torsion if 

S-1M= 0 , 

or equivalently if for every x~M there exists s~S such that sx = 0 (M. 

An A-module M is h.d. 1 ( = homological dimension 1) if it admits 

a f.g. projective A-module resolution of length 1 

0 ~ P1 d'~--~ P0 ~M 70 • 

An h.d. I S-torsion A-module is thus an A-module which admits a 

f.g. projective A-module resolution of length 1 with d(HOmA(PI,P 0) an 

S-isomorphism. 

Regard the ahelian group S'IA/A as an A-module by 

b a~b Ax S-1A/A ~S'IA/A ; (a,~)l > s " 

The S-dual of an A-module M is the A-module 

M ̂  = HomA(M,S'IA/A) 

with A acting by 

AXM ^ • M ̂  ; (a,f)~ , (x, • f(x)a) . 

The S-dual of an A-module morphism f ~HOmA(M,N) is the A-module morphism 

: N ̂  *M ^ ; g, ~(x; ~gCfCx))) • 

The S-dual of an h.d. 1 S-torsion A-module M = coker(d:P1-----~P 0) is an 
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The natural A-module morphlsm 

M ~ M ̂ ^ ; xl ~(f, , f-~) 

is an isomorphism if M is an h.d. 1 S-torsion A-module, in which case we 

shall use it as an identification, and to define the E-duality involution 

T e : HOmACM,M^) ~HOmACM,M^) ; ~, ~C~^:x, ,Cy, ,£~-"~")) • 

An E-symmetric linkins form over (AtS) (M,~) is an h.d. I S-torsion 

A-module M together with an element ~ ~ ker(1-Te:HOmA(M,M ^) , HomA(M,M^)) • 

Equivalently, ~ is given by a pairing 

k : MXM ~ S'IA/A ; (x,y)l ,k(x)(y) 

satisfying 

i) ~(x,ay) = a~(x,y)~S-IA/A 

ll) ~(x,y+y') = X(x,y) + X(x,y')~ S-IA/A 

iii) ~ (y,x) = g~-~(S'IA/A (x,y,y' ~ M) . 

Define the abelian groups 

Qe(A,S) = S'IA/~a+e~Ia~A ~ 

Qe(S'IA/A) = (S-1A/A)/[b-E~IbEA~ 

and the abelian group mcrphism 

I+T e : Qe(S'IA/A) ,Qe(A,S) ; c: r c+e~ . 

An E-quadratic linkin ~ form over (AIS [ (M,A,~) is an e-symmetric 

linking form over (A,S) (M,~) together with a function 

: M ~ Q~(A,S) 

such that 

i) ~Cax) = a~Cx)a~Qe(A,S) 

ll) ~(x+y) -~Cx) -~Cy) = ~(x,y) + E~-~(Q~CA,S) 

lii) E~(x)] = ~(x)(x)CS'IA/A (x,y,y'~M, a~A). 

The linking forms appearing in the work of Wall [2], Passman and 

Petrie [I], Connolly CI] and Pardon [1],[2] on odd-dimensional surgery 

obstructions are just the E-quadratic linking forms ever (Z~C~] ,Tz. ~0}), 

with e = +1 and ~ a finite group. 



123 

A split E-quadratic linkin~ form over (AIS) (M,~,~) is an E-symmetric 

linking form over (A,S) (M,~) together with a function 

: M , Qa(S'IA/A) 

such that 

i) ~(ax) = a~x)~GQa(S-1A/A) 

li) l~x+y) , ~(x) - ~(y) = [kCx)Cy)] ~QcCS'IA/A) 

iii) ~(x) + a~--~x~ = A(x)(x) E s'SA/A (x,~M, sEA). 

Split E-quadratic linking forms were introduced by Karoubi [4]. 

A morphism ( r e s p .  isomorphism) o f  

over  (A,S) 

I 
~-symmetric 

E-quadratic 

split E-quadratic 

I f : (M,~) ,(M',~') 

f : (M,X,,) ,(N',X',~') 

f : (N,X,v) ~(N',~,~') 

linking forms 

i s  a morphism ( r e s p .  isomorphism) f EHomACM,MI) such t h a t  

f~*f = X E HomA(M,M^) 

and also 

I 
~: M f ~M' ~' ,QE(A,S) 

~: M f ~ M' ~' Qa(S'IA/A) 

It can be shown that the forgetful functor 

(split E-quadratlc linking forms over (A,S)) 

(E-quadratic l~n~ug forms over (A,S)) ; 
I +Ta 

(M,~,~): :(MIX,~= (I+Ta)~ | M ~ ,Qa(S'IA/A) ,Qa(A,S)) 

1 a surjection of isomorphism classes, which is a bijectlon if ~6S'IA, defines 

e.g. if A = ~ , S = 2Z-~0~ , S'IA ~ ~[~. (This may be deduced from 

Proposition 2.2 below). In ~6 we shall give examples of triples (A,S,E) for 

which there is a perceptible difference between split ~-quadratlc and 

E-quadratlc linking forms over (A,S). 
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I g-symmetric (M,~) 

An g-quadratic linking form over (A,S) (M,~,~) is 

split g-quadratic (M,~,R) 

non-singular if ~HOmA(M,N^) is an isomorphism• 

As in §I we shall concentrate on the g-quadratic L-theory, leaving 

the g-symmetric L-theory of linking forms to the relevant part of 

~ . c i . ~ .  [2]. 

There is a close connection between linking forms over (A,S) and 

S-formations over A, which was first observed by Wall [11 in the case 

A= =,s= ~-[O},S'IA=~. 

I g-quadratic Proposition 2.2 The isomorphism classes of (non-singular) (split g-quadratic 

linking forms over (A,S) (M,~,~) are in a natural one-one correspondence 

with the stable isomorphism classes of (non-singular) I (-g)-quadratic split (-g)-quadratic 

• The linking form ~(M,~,~) corresponding to i (N,W;F,G) S-formations over A ~(F,G) 

I (N,V;F,G) 
the S-formation (F,(~l~v~ 8)G) is defined by 

M ~ M • Qg(A,S) ; y, ,~(¥-g¥*)(y)(g) - ¥(y)(y) 
(x,y~N, s~S, gaG, sy - g~ F) 

coker(~:G rF*) , k : M ~ M A ; xl ~(y; -~ ~*(x)(g)) 

M ~Qo(S'IA/A) ; y, ) 8(g!(g) 
ss 

(x,y~F*, s~S, g~G, sy = ~gEF*). 

El 
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A sublasransian of a non-singular split e-quadratic linking form 

over (A,S) (M,~,~) is a submodule L of M such that 

i) L, M/L are h.d. 1 S-torsion A-modules 

ii) the inclusion j ~ HomA(L,M ) defines a morphism of linking forms 

j : (L,O,O) ~(M,~,~) 

iii) the A-module morphism 

IX] : M/L )L ^ ; [x]; ~ ( y l  "k(x) Cy)) (x£M,y£L) 

is onto, 

The annihilator of a sublagrangian L in (M,A,~) is the submodule 

LA of M defined by 

LA = ker(~ : M ,L  ̂) , 

which is such that LC L A. 

A lagrangian of (M~k,~2) is a sublagrangian L such that 

LA=L. 

A non-singular split e-quadratic linking form which admits a lagrangian is 

hyperbolic. For example, if L is a sublagrangian of (M,k~)) then there is 

defined a non-singular split e-quadratic linking form (L'/L,~'/X ,~/,;) 

such that (M,X,~)e(LA/L,-xA/X ,_~A/~) is hyperbolic, with lagrangian 

T., = {¢x, l :x~)~M*~/~. l~ ~ } .  

Given an h.d. I S-torsion A-module P define the standard hyperbolic split 

e-quadratic linking form over (A,S) 

HeCP) = (PeP~,X:PeP ~ , (PePA) ̂ ;(x,f), ,((y,,g)i i fCy) +eg~x-~) , 

v:pep a ~Qe(S-1A/A) i (x,f)l , f(x) ) . 

A split e-quadratic linkin5 formation over (AIS) (F,(C~),e)G) is 

defined by a sublagranglan G in a standard hyperbolic split e-quadratic 

linking form over (A,S) He(F) , together with a hessian (-e)-quadratic 

linking form over (A,S) 

^ 
(G,~pEHOmA(G,G^) ,e:G • Q_e(AiS)) 

where t~):G ~FeF ̂  is the inclusion. Such objects first appeared in the 
j-. 

work of Pardon [1], and similar structures have been studied by Karoubi [1]. 
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We shall n o r m a l l y  w r i t e  (F,( ~e)G) as (F,G), denoting (F,(~-~),-e)G) by 
i 

-(F,G). 

An isomorphism of split E-quadratic linking formations over (AtS) 

f : (F,G) ,(F',G') 

is an isomorphism of the hyperbolic split E-quadratic linking forms 

f : HE(F) • HE(F') 

such that 

and also 

f(F) = F' , f(G) = G' 

e : G f[ ~G' 8' •Q_E(A,S) • 

A sublagranwian of a split E-quadratic linking formation over (A,S) 

(F,G) is a sublagrangian L of HE(F) such that 

i) L~G, with G/L an h.d. I S-torsion A-module 

ii) FIlL = ~0~ , FeF ̂ = F + L A . 

Such a sublagrangian determines an elementary e~uivalence of split 

E-quadratic linking formations over (A,S), the transformation 

(F,G) ~ (F',G') , 

with (F',G') defined by 

F' = F~L A , G' = G/L 

~' , G' ,F' ; [x]: ~(x) 

~' : G' ,F '^ ; [x]l ~(y: 

0' : G' "Q.E(A,S) ; Ix]: • ~e(x) (x~G,~F). 

Elementary equivalences and isomorphisms generate an equivalence 

relation on the set of split E-quadratic linking formations over (A,S), 

which we shall call stable e~uivalence. 

A split E-quadratic linking formation over (A,S) (F,G) is 

non-singular if G is a lagrangian of HE(F), or equivalently if the sequence 

0 ¥ G ~ FeF ̂  G ̂ • O 

is exact. Any linking formation stably equivalent to a non-singular one is 

itself non-singular. 
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There is a close connection between l~nk~ng formations over (A,S) 

and S-forms over A. 

Proposition 2.~ The stable equivalence classes of (non-singular) split 

e-quadratic linking formations over (A,S) (F,G) are in a natural one-one 

correspondence with the stable isomorphism classes of (non-singular) 

e-quadratic S-forms over A (M,¥;L). The idn~ug formation (F,G) corresponding 

to the S-form (M,¥;L) is defined as follows: extend the inclusion J 6 HomA(L,M) 

to an S-isomorphism of e-quadratic forms over A 

for some k~HOmA(L*,M) , se S, set 

F = coker(~:L • L) , G = coker((J k):LeL* 

define {Sh:G , FsF ̂ via the resolution 

0 ~ LeL* (5 k) >M .~G ~0 

~, LeL* ~LeL* ~ ~0 , 

and let (G,¢~eHOmA(G,G^),e:G 

,M) , 

) Q_e(A,S)) be the (-e)-quadratic linking 

form over (A,S) corresponding to the e-quadratic S-formation over A 

(HeCM*)lM*,im ( :LeL* , )M*eM)) . 

~ form 
The boundar 7 of a split e-quadratic linking (formation 

I:: I 
{ CM,k,~) 

is the non-singular split quadratic linking 
CF,Q) 

o v e r  (A,S) 

[3 

over (A,S) 

formation 

form 

I BCM,X,u) = CM,CC~,CI+Te)~)M) 
9(F,G) = (GA/G,~'/~,¢A/~) , where He(F) = (FeFA,~,~) . 
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l form 
A split e-quadratic linking ~ formation is non-singular if and only if its 

I formation I stably equivalent to 0 
boundary linking is 

form 0 

I forms 
Non-singular split e-quadratic linking over (A,S) 

formations 

I CM,~ ,~) ,(m ,~' ,.') fan Isomorphism 
are cobordant if there exists 

(F,G),(F',G') La stable equivalence 

I CM,X,~)eCM',-~',-~') • ~(K,L) 
(F,G)e-(F',G') , ~(N,~,V) 

for some split quadratic linking over (A,S) -- N,@,W) 
- - form 

Proposition 2.4 Cobordism is an equivalence relation on the set of 

forms 
non-singular split g-quadratic linking b over (A,S), such that the 

formations 

ILo(A,S,c) 
equivalence classes define an abelian group ~ |LI(A'S'C) with respect to the 

direct sum e. The L-groups defined for n(mod 4) by 

I L0(A'S'(-)ie) I 2i 
Ln(A,S,C) = if n = 

LI(A,S,(-)iE) 2i+I 

fit into the localization exact sequence 

... • Ln(A,E) ~L~(S'IA,c) ~ Ln(A,g,e) >Ln_I(A,c) ~ .... 

The fit is achieved by natural isomorphisms 

Ln(A,S,c) ,L~(A ~S'IA,C) (n(mod 4)) , 

I form 
defined by sending a non-singular linking over (A,S) to the 

formation 

I S'formation 12.2 
corresponding non-singular[ S-form over A (given by Proposition [2.3)" 

[] 
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Note that Lo(A,S,~) can also be viewed as the abelian group of 

equivalence classes of non-singular split ~-quadratic linking forms over (A,S) 

under the relation 

(M,~,~)~(M',~',~ ') if there exists an isomorphism 

f : CM,~,~)®CN,~,V) ,(M',~',~')e(~',~',V') 

for some hyperbolic split ~-quadratic linking forms (N,~,¥),(N',~',¥'). 

The localization exact sequence of Preposition 2.4 was first obtained 

by Pardon [1~ in the case A=~[~ (~ finite), S=~-~O~ following on from the 

earlier work of Wall E13,[2~, Passman and Petrie ~13, Connolly [1~ and his 

own work on rational surgery (Pardon ~2~). These authors only work with 

f.g. free A-modules - we shall discuss the effect of this restriction in 

§7 below. 

Karoubi [13 obtained a localization exact sequence in the context 

of hermitian K-theory. However, the methods of that paper are net sufficient 

for a localization sequence in the surgery obstruction groups, since it is 

frequently assumed that 1/2 EA, the formula for the quadratic function Q on 

~.366 of Part I is not well-defined in general, and the quadratic linking 

formations de not include the hessian e appearing in the definition of (F,G) 

(introduced by Pardon [lJ) which carries delicate quadratic information 

such as the Arf invariant. 

The localization exact sequence is natural, in the following sense. 

Let f:A ~B be a morphism of rings with involution such that 

f(S) ~T for some multipllcative subsets SeA, TCB. Given an h.d. I S-torsion 

~-module M with a f.g. projective A-module resolution 

d 
O ) P1 ~ PO > M > O 

we have that d~HOmA(P1,Po) is an S-isomorphism, and hence that 

I@d~HOmB(B~P1,B~AP O) is a T-isomorphlsm. Also, the functor 

B® A- : (A-modules) > (B-modules) ; P l > ~P 

is right exact, so that we have a f.g. projective B-module resolution 
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l ~ d  
0 ~ B~P 1 ~ B~P 0 ~ B@AM • 0 

amd B@AM is an h.d. I T-torsion B-module. Thus f induces a functor 

~- : (h.d. 1 S-torsion A-modules) ~(h.d. 1 T-torsion B-modules) ; 

M~ ;B@AM 

and there are defined abelian group morphisms 

f : Ln(A,S,E) ~Ln(B,T,E) ; x% ~B@AX (n(mod 4)) . 

Proposition 2.~ A morphism of rings with involution f:A ~B such that 

f(S)C--T for some multiplicative subsets SCA, TCB induces a morphism of 

exact sequences of abelian groups 

... ~ Ln(A,c) ~LS(s'IA,E) )Ln(A,S,~) ~Ln_I(A,E) 

... ~ Ln(B,~) ~LT(T'IB,~) ~ Ln(B,T,~) ~Ln.I(B,~) .oo 

D 

Were it necessary we could define relative L-groups Ln(f,S,E) for 

m(mod 4) (as cobordism groups of relative linking forms and formations) 

to fit into exact sequences 

• .. ~ Ln(A,S,~) f >Ln(B,T,~) >Ln(f,S,~) ~ Ln_I(A,S,~) > ... 

"'" ~ Ln(f'~) ~ LS(s'If'~)n 'Ln(f'S'~) ~ Ln-l(f'~) ~ .... 
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§3. Cartesian squares 

We shall now investigate the conditions under which a morphism of 

rings with involution and multiplicative subsets 

f : (A,S) 

induces excision isomorphisms 

f : Ln(A,S,~) 

and a Mayer-Vietoris exact sequence 

° ° •  ,LnCA,~) ) L~(S-IA,¢)eLn(B,~) 

,(BJ) 

• LnCB,T,E) (nCmod 4)) 

>L~(T-IB,E) • Ln_1 CA ,~) ---~ . . . .  

A/sA 

The abelian group morphisms 

A/sA 

allow the identification 

The involution 

)A/stA ; X' ,tx . 

_a 
~S-la/A,Z ; al " s 

Lira A/sA = S'IA/A . 

-- : S'IA/A 

is identified with the involution 

f : (A,S) • (B,T) 

is cartesian if f(S) = T and if for every s~S the map 

f : A/sA )B/tB ; xl 

s-1 a .  A/A ;--. -~- 
s s 

A I ~  ~ ~SS A/sA ; {a~A/aAIs~S}l ' ~"~A/sAIs~S~  • 

A morphism of rings with involution and multiplicative subsets 

If(x) (t = f(s)eT) 

is an isomorphism of abelisn groups. It follows that there is induced an 

isomorphism of abelian groups with involution 

f : ~ AIsA -- S'IA/A > ~ B/tB = T'IB/B ; x: .~ f(x) 

a n d  h e n c e  t h a t  t h e  c o m m u t a t i v e  s q u a r e  o f  r i n g s  w i t h  i n v o l u t i o n  

Define a partial ordering on S by 

s~ s t if there exists t~S such that s' = st~S • 

De~ine also a d~eot syste= of abelian groups {A/~AIs~S~ with st~cture maps 
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A ) S'IA 

B ~ tT'IB 

is cartesian, in the sense that there is defined an exact sequence of 

abelian groups with involution 

0 >A > S-IAeB ) T'IB • O . 

Cartesian morphisms were introduced by Karoubi [I] (Appendix 5 of Part I), 

who proved that a cartesian morphism f:(A,S) ~(B,T) induces an 

isomorphism of exact categories 

f : (h.d. I S-torsion A-modules) ~(h.d. I T-torsion B-modules) ; 

M, ~B~AM (= M as an A-module) . 

As an immediate consequence of this and of the localization exact sequence 

of Proposition 2.4 we have: 

Proposition 7.1A cartesian morphism f:(A,S) ~(B,T) induces excision 

isomorphisms of relative L-groups 

f : Ln(A,S,~) ,Ln(B,T,~) (n(mod 4)) , 

and there is defined a Mayer-Vietoris exact sequence of absolute L-groups 

• . .  >Ln (A ,8 )  > L ~ ( S ' I A , g ) e L n ( B , s )  > L : ( T - 1 B , s )  ~ L n _ l ( A , e )  ) . . . .  

[ ]  

A Mayer-Vietoris exact sequence of the above type was first obtained 

by Wall [6] for a cartesian square of arithmetic type (cf. Proposition 3.2 

below), by a direct proof which avoided relative L-theory at the expense of 

invoking the strong approximation theorem. In fact, it is possible to obtain 

both the Mayer-Vietoris sequence and the excision isomorphisms avoiding the 

localization sequence, by directly constructing appropriate morphisms 

: L~(B ~T'IB,~) ~Ln_I(A,c) (n(mod 4)) 

(generalizing the method of Wall [6]), using the characterization of the 

relative L-groups in terms of relative forms and formations of §I. The idea 

of combining a localization exact sequence with the above isomorphism of 

categories is due to Karoubi [I], who obtained excision isomorphisms and a 
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Mayer-Vietoris sequence in hermitian K-theory (with the qualifications 

regarding the L-groups expressed at the end of §2). Bak [2"I has obtained 

similar results in the context of the KU-theory of Bass [2S. 

In §7 below we shall generalize the excision isomorphisms and the 

Mayer-Vietoris sequence of Proposition 3.1 to the intermediate L-groups. 

Given a multiplicative subset S CA of a ring with involution A 

define the S-adic completion of A to be the inverse limit 

A = ~ A/~A 
saS 

of the inverse system of rings ~A/sAIs~S~ with structure maps the natural 

projections 

A/etA ~A/sA (s,t ~S) . 

Then ~ is a ring, with involution by 

: ~ ~.~ ; ~as~A/sAls~S~ ~A/sAIs~S ~ • 

The inclusion 

f : A ,~ ; a~ >~a~A/sAls~S~ 

is a morphism of rings with involution, such that the image of S is a 

multiplicative subset ~ = f(S)CA. 

Proposition ~.2 The inclusion f:(A,S)-----~ (A,S) is a cartesian morphism, 

so that there are induced excision isomorphisms 

f : Ln(A,S,~) -~Ln(~,S,~) ^ (n(mod 4)) 

and there is defined a Mayer-Vietoris exact sequence 
A 

Sn ~ S ^-I^ (A,~) -----~. ... ~Ln(A,~)-----~L (S'IA,~)eLn(A,~) ~Ln(S A,~) ~Ln_ 1 ... 

[l 

In particular, we have a cartesian morphism f:(~,2Z-[O~)---*(~,Z~-~O~), 

with ~= ~.~__m2~/m2~ the profinite completion of 77. The associated cartesian 
m 

square 

is the 'arithmetic square' 

2Z" 

, with ~ the finite adele ring of Q. In Wall [6] 
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there was obtained an L-theoretic Mayer-Vietoris exact sequence for the 

c a r t e s i a n  s q u a r e  

for any ring with involution A such that the additive group of A is finitely 

generated. For torsion-free A (e.g• A = ~[~], with ~ a finite group) this is 

just the cartesian square considered in Proposition 3•2 with S = Z~-~O~CA. 

Given a ring with involution A we shall say that multiplicative 

subsets S,TCA are coprime if for any s~S, t~T the ideals sA,tA4A are 

cop~ime, that is if there exist atbaA such that 

as + bt = I~A , 

The multiplicative subsets 

ST = ~stls~S,t~CA , T-1S = ~IS~SICT-1A 

are such that there is a natural identification 

(T-1S)'I(T'IA) = (ST)-IA , 

Proposition 3,3 If S,TCA are coprime multiplicative subsets then the 

inclusion f:(A,S) ~(T'IA,T'Is) is a cartesian morphism, inducing 

excision isomorphisms 

f : Ln(A,S,g) ,Ln(T'IA,T-1S,C) (n(mod 4)) , 

and there is defined a Mayer-Vietoris exact sequence 

• .. ~Ln(A,~) ~LS(S'IA,~)eLT(T'IA,c) ~ LS~(ST)'IA,E)--+L 1(A,¢)-~.°. 
n n n 

[] 

kl k2 ~ Jl. Js 
For example, i f  S = ~Pl P2 >" o} and e= q I qs IJ1" '4  

some d is jo in t  col lect ions of primes P = ~PI'P2 ' ° ° °~ '  Q = ~ql 'q2 ' . . ' ~  for  

such that P~JQ = ~ a l l  primes in ~Z.~ then S-12Z= ~ = ~,(Q) (= lo@alization 

away from P = localization at Q) and S,TCZZ are coprime multiplicative 

subsets with (ST)'I~z =~° 
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~4. Products 

We shall now show that the localization sequence 

... ~Ln(A,c ) >L~(S'IA,~) ~ Ln(A,S,E) ~ Ln_I(A,~) , ... 

is an exact sequence of L0(R)-modules if A is an R-module for some ring 

with involution R. As in §1 LO(R) denotes the symmetric Witt group of R. 

We shall use this L0(R)-action to prove that the natural maps 

Ln(A,~) ~L~(Q@~,~) (n(mod 4) , S = ~--~0}CA) 

are isomorphisms modulo 8-torsion for any torsion-free ring with involution 

A, along with other results of ~hia nature. 

A ring with involution A is an R-module for some ring with involution 

R if there is given a morphism of rings with involution 

With the involution on R ~  defined by 

, R ~  ' R ~  ; real , r@a • 

Note that each rIA~ A (rER) is central in A, so that given an R-module M 

and an A-module N there is defined an A-module 

M~N = M~/~rx@y - x@(rl A) y lx~ M,y q N,r~ R% 

with A acting by 

A~M~N , M~N ; (a,x~y)~ ~x~ay . 

In particular, we have a pairing 

(f.g. projective R-modules) X (f.g. projective A-modules) 

• (f.g. projective A-modules) ; (M,N)~-------*M~RN , 

with natural identifications 

Given a multiplicative subset SCA we have that S'IA is an R-module by 

R@~-IA ~S'IA ; r@~ ~ r_~a 
"8 

and that there is defined a pairing 

(f.g. projective R-modules) ~ (h.d. 1 S-torsion A-modules) 

(h.d. 1 S-torsion A-modules) ; (M,N)I ~ M~N , 
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with natural identifications 

^ = 

Define LO(R)-actions on quadratic L-theory by 

LO(R)@~n(A, c) ,Ln(A,~) ; 

I (M'~>z(N'~)' ' (M®RN'~®~) if n= 1 21 
~ (M,~)®(N,W;F,G)I ~ (M @RN,~ ~¥;M ~DRF,M~R G ) 2i+1 . 

(In terms of the products defined in Part I of Ranicki [23 these are just 

the composites 

LO(R)@~n(A,~) @ ~Ln(R@~,I@~) ~ Ln(A,g) (n(mod 4))). 

Define also LO(R)-actions 

LO(R)~2zLSn(S'IA,~) ~ LS(s'IA,8) ; 

if n= 
(M,@)~S'I(N,¥;F,G)I ~S'I(M®RN,~W;M~RF,MQR G) 2i+I , 

LO(R)@zzLn(A,S,g) ~ Ln(A,S,~) ; 

I@~ if n 
i+1 " 

In each case the element 

(R,I:R ~R*;q, ~(r~ ~r~))~LOCR) 

acts by the identity. (In general R is not itself an R-module. However, if 

R is commutative then it is an R-module in the usual fashion, and the 

symmetric Witt group L0(R) is a commutative ring with 1). 

Proposition 4.1 Let A,R be rings with involution such that A is an R-module, 

and let SCA be a multiplicative subset. The localization sequence 

• .. ~ Ln(A,~) ~LS(s'IA,~) ~Ln(A,S,~) ~ Ln.I(A,~) ~ ... 

is an exact sequence of LO(R)-modules. 

[3 

(More generally, if f:A ~B is a morphism of rings with involution which 

is a morphism of R-modules then the symmetric Witt group LO(R) acts on the 

exact sequence of Proposition 1. 3 

°.. ~ LnCA,~) f , LnCB,g) > Ln(f,E) > Ln_ICA,~) , ..° ). 
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In our applications of Proposition 4.1 we shall need to know the 

symmetric Witt groups LO(~m ) of the finite cyclic rings ~m = ~/m~. 

k I k 2 k r 
Let m = Pl P2 "''Pr be the factorization of m into prime powers, so that 

m m 

~'m : im--1 ~ k i  ' T'O(~'m) : i ~  L°(z~ k i )  . 
Pi Pi 

Lemma 5 of Wall [4] and Theorem 3.3 of Bak [I] on reduction modulo a 

complete ideal (alias Hensel's lemm~) apply to show that the projections 

i , k~3 m2 k'----~ ~8 induce isomorphisms 

k-----*Z~p , p odd , k>~1 
P 

LO(m2k) ' LO( m 8) = Z~8em 2 

17Z2e~ 2if p=--l(mod 4) 
LO( ~.pk ) ~ LO(mp) = 

2Z 4 if p=- 3(rood 4) . 

Moreover, 

LO(~ )= m~em2 , L°(~2 )= m2 " 

For each integer m~ 2 define the number 

I 2 if m = d or 2d 

= exponent of L0(~ m) = 4 if m = 4d,e,2e or ¥(m) 4e 

8 otherwise 

with 

d = a product of odd primes p~ 1(mod 4) 

e = a product of odd primes, including at least one p~ 3(mod 4). 

A ring with involution A is of characteristic m if m is the least 

integer ~ 2 such that ml = O~A, in which case ma = 0 for all aEA and 

A is a ~ -module. 
m 

Proposition 4.2 If the ring with involution A is of characteristic m then 

the localization sequence 

... ~Ln(A,~) ~L~(S-IA,~) >Ln(A,S,~) >Ln_I(A,E) > ... 

is an exact sequence of LO(~m)-modules, so that all the L-groups involved 

are of exponent W(m). 

[] 
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The symmetric Witt groups LO(~,m ) of the rings of m-adic integers 

Lim ~,/mk~z are computed as follows. Again, let m = Pl P2 "''Pr 
m- ~ r 

To(~,m) r LO (~Pi) 
;'m = ; 'P i  ' = 2 1  . 

and 

I T.°(~. 8) = m,8®~, 2 

T'O(;'P) = f Z~2®~'Z ~ T,O(~,p) = ~,~ 

For each integer m~ 2 define the number 

if p= 2 

if p - 1(mod 4) 

if p -= 3(mod 4) . 

so that 

2 if m is a product of odd primes p -- l(mod 4) 

4 if m is a product of odd primes at least one 
0(m) = exponent of LO(2z m)^ = 

of which is p m 3(mod 4) 

8 if m is even . 

The method of Wal~ [5] applies to show that the symmetric Witt group 

of the profinite completion ~. =~m m ~,/m~Z = p~ ~p is the infinite product 

A ring with involution A is m-torsion-free if S = ~mklk$ O~CA is a 

multiplicative subset, so that the localization away from m S-1A = A[~] is 

defined. The m-adic completion ~ = ~ A/mkA is a ~.m-module. 

A ring with involution A is torsion-free if S = ~-[O~CA is a 

multiplicative subset, so that the localization S'IA = ~ is defined. 

The profinlte completion ~ = Lim A/mA is a 2~-module . 
m 

Proposition 4.3 Let A be a ring with involution which is m-torsion-free 

(resp. torsion-free) and let S = ~mklk~ O}C A (resp. S = m- ~O~C A). 

The localization sequence of the S-adic completion ~ = Lim A/sA 

•.. , ,~) ~ ~) > (A,S,~) • ,~) > ... 

is an exact sequence of LO(~, m) (resp. LO( ~,))- modules, so that all the 

L-groups are of exponent ~(m) (resp. 8). Thus the L-groups 

Ln(A,S,e) = Ln(A,S,E) are of exponent ¥(m) (resp. 8) and the natural maps 

^Ln(A,~) ) LS(s'IA,~) (n(mod 4)) 

are isomorphisms modulo W(m) (resp. 8)-torsion. 
r] 
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The integral group ring ~.[~] of a group ~ is torsion-free, with 

localization S'1~[z] = ~[E] (S = ~-~) the rational group ring, so that as 

a particular case of Proposition 4,3 we have: 

Pro~osltion 4.4 The natural maps 

• T.SnC~[~,]) CnCmod 4)) 

a r e  i s o m o r p h i s m s  modulo B - t o r s i o n ,  f o r  any  g r o u p  ~ .  

[] 

Results of this type were first obtained for finite groups ~. 

If we take for granted the result that the natural maps L2i(~[E ]) > L2i(R[~]) 

are isomorphlsms modulo 2-primary torsion (E finite, i(mod 2)) then 

Theorems 13A.3, 13A.4 i) of Wall [3] can be interpreted as stating that the 

natural maps L2i(~[z]) , LSi(~[E ] ) are isomorphisms modulo 2-primary 

torsion. The results of Passman and Petrie CI] and Connolly [13 can be 

S interpreted as stating that the natural maps ~i+I(~[~]) ~L~i+1~[~]) 

are isomorphisma modulo B-torsion (~ finite, i(mod 2)). 

Results similar to those of Propositions 4.3,$.4 were first obtained by 

Karoubi [I], for hermltian K-theory. 
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§5. Dedekind al~ebra 

We shall now investigate the general properties of the L-groups 

Ln(A,S,~) (n(mod 4)) in the case when the ring with involution A is an 

algebra over a Dedekind ring R and S = R-~O~. An S-torsion A-module has 

a canonical direct sum decomposition as a direct sum of~-primary S-torsion 

A-modules, with~ ranging over all the (non-zero) prime ideals of R, and 

there is a corresponding decomposition for Ln(A,S,~). 

Given a multiplicative subset SC A in a ring with involution A we 

shall say that the pair (A,S) is a Dedekind al~bra if R = S~O} is a 

Dedekind ring with respect to the ring operations inherited from A. 

The localization S'IA = F SRA is the induced algebra over the quotient 

field F = S'iR. For example, a torsion-free ring wlth involution A is the 

same as a Dedekind algebra (A,~-~). A Dedekind ring with involution R 

is the same as a Dedekind algebra (R,R-[0~). In dealing with Dedeklnd 

algebras (A,S) and the prime ideals~ of R we shall always exclude the 

case ~ = ~0}. 

let (A,S) be a Dedekind algebra. 

The annihilator of an S-torsion A-module M is the ideal of R 

defined by 

annCM) = ~s~IsM = 0~4 R . 

Like all ideals of R this has a unique expression as a product of powers 

of distinct prime ideals ~ ,22,...,~r 

ann(M) =~ Ip ...~r r Cki~1) . 

If M is such that the natural map M ~M ̂ ^ is an isomorphism (e.g. if M is 

h.d. I) then 

ann(M ̂ ) =ann-~-~ R . 

An S-torsion A-module M is ~-primary for some prime ideal ~ of R if 

ann(M) = ~k 

for some k~1. 
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Define the localization of A at~ for some prime ideal~of R to 

be the ring 

A~= (R-~)-IA . 

If~=~there is defined an involution 

- : A~------~ ~ ; ~1 ~ ~ (a~A, r~R-~ ) . 
r 

(IrOn'there is defined an involution --:A~A~----~AxA} ; (x,y)~ ~(~,~)). 

Given an h.d. ~ S-torsion A-module M define an h.d. i~-primary S-torsion 

A-module 

Mp = Ay@AM 

kl k 2 k 
If ann(M) = ~ ~2 "''~r r it is possible to identify 

• " ± - I  Ji;1 " - ~  M 

g = 0 

so that 
r 

M = i ~  M~ i , CM~), ° ( M ~  ^ , 

if~=~i for some i, I .~i..~ r 

ifp~E2~ ~2, 2r~ 

HOmA(M,~') = ~) 1~OmA(~,M~,) • ~P 

We thus have a canonical identification of exact categories 

(h.d. I S-torsion A-modules) = ~(h.d. I ~ -primary S-torsion A-modules) , 

with~ ranging over all the prime ideals of R. The S-duality functor 

M~ ~ M ~ sends the~-primary component to the P-primary component. 

Express the spectrum of prime ideals of R as a disjoint union 

with~ ranging over all the prime ideals such that~=~ . 

I form A non-singular split c-quadratic linking over (A,S) 
tformatlon 

I 
(M,% ,p) 

(F,G) 
has a canonical direct sum decomposition 

f (M,~,~ ~(M, ~ ~ ) . ~ . M ~  ~ ~) 
(F,G) = (B(F~,Q~)e(B(~ e ~ , G  ea~) 

r ~ Q q Q Q ~ 

such that for each 
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I (MQoM~,~Q,~) = 0~L0(A,S,C) 

(FQeF ,%.GC  = o . 

For each prime ideal~ of R such that ~=~ define the L-groups 
O~ 

Ln(A,~ ,~) (n(mod 4)) in the same way as Ln(A,S,E) but using only~-primary 

h.d° I S-torslon A-modules. There is a natural identification 

(h.d. l~-primary S-torsion A-modules) 

= (h.d. I S~-torsionAO-modules) 

where S = ~ EA~ S~S~CA~, SO that we can also identify 

Ln(A,P ,e) = Ln(A~,S~,~) (n(mod 4)) . 

If~= ~R is a prime ideal of R which is principal, with generator ~, 

then ~ = mu~ for some unit u~R such that uu = 16R and there is defined a 

multiplicative subset S = {~Juklj ~ O,kE~Z}CA such that 

(h.d. 1 ~-primary S-torsion A-modules) 

= (h.d. 1S -torsion A-modules) 

Ln(A,~J:)~) = Ln(A,S ,~) Cn(mod 4)) . 

Proposition ~.1 The L-groups of a Dedeklnd algebra (A,S) have a canonical 

direct sum decomposition 

= (~LnCA,~,~) (n(mod 4)) LnCA,S,~) 

with~ranging over all the prime ideals of R such that ~ =~ . 

The localization exact sequence of (A,S) can thus be expressed as 

• .. >Ln(A,~) >L~(S'IA,~) ~n(A,~) >Lm.I(A,E) ~ .... 

[3 

The localization sequence in the case (A,S) = (R,R-[O~) 

. . .  ~C~,~) ~ ~n(F,~) >~nCR,P~) " ~n.IC~,~) > . . .  

is closely related to the original localization exact sequence of Milnor 

(Corollary IV.3. 3 of Milnor and Husemoller [I]) for the symmetric Witt group 

of a Dedekind ring R 

0 >LO(R) ~ LOCF) > (BLO(R/9) • 
? 

(In the part of Ramlckl [2] devoted to localization we shall extend this to 

an exact  sequence 
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0 , LO(R,e) ~ LO(F,~)----~LO(R/9,C) ~ LI(R,-e) • 0 

with LS(R,e) the cobordism group of non-singular g-symmetric formations 

over R). Now Lq(F,~) = 0, so that the above sequence of quadratic L-groups 

breaks up into two sequences of the type 

o -0. 

A standard devissage argument shows that the forgetful functors 

(f.d. vector spaces over the residue class field R/~) 

~ ,  (h.d. l Y-primary S-torsion R-modules) ; V~ > V 

induce isomorphisms in algebraic K-theory and symmetric L-theory. There are 

induced morphisms in quadratic L-theory 

LnCR/9,E ) • Ln(R,~?°~,e) (nCmod 4),'~=~ "~ ) 

but these may not be isomorphisms (particularly if R/~ is a field of 

characteristic 2, cf. Appendix I of Part II of ~aroubi [I]). For example, 

neither of the morphisms 

L0(~2'1) = ~2 

Lq(~2,-q) = 0 

is an isomorphism. 

c~ 

~Lo(Z~,(2ZZ ) ,q) = ~se2Z2 ~-~(O,A3 

LI (~'(22Z)~°''I) = ~2 

Next, we shall describe the ~yer-Vietoris exact sequence of the 

L-groups of a localization-completion square of a Dedekind algebra (A,S) 

A ~ S'IA 

A ~S IA 

(Proposition 3.2) in terms of the prime ideal structure of the Dedekind 

ring R = S~O} . We shall confine the discussion to the case when~ = P for 

every prime ideal ~ of R, leaving the general case for the reader. 

The ~-adic completion of A for some prime ideal ~ of R is the ring 

A/ kA 
with involution 

m ,~ /% 

: Ap .~ A 9 ; ~akg A/ykAlk>1 13 > ~k ~ A/~kAN k ~1~ . 
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A 
The~-adic completion A~ of A can be identified with the S-adic completion 

of the localization A~ of A at ~> 

~ = s~/sA ~ (= ~ A/~kA if ~= ~R, ~E~)° 

Given sES R-~O~ let sR =~1~2~°o~:r~ = R, so that 

k 2 k 
= . • eA/~rrA A/sA A~I AeA~2 Ae° 

Sp Ap , .... 

It is thus possible to define morphisms of rings with involution 

s~S 
S 1~ liI~i. (Si A~iA~ 

and hence also abelian group morphisms 

Ln(~ ,~) • ~ Ln(~'l :,,Iz) 
^ 

c % ' < ) ' " n < 4 ' < > )  <n<mod ,+>) . 

(The restricted product '~(G,~,tt~ of a collection of pairs of objects 

(G~iH) indexed by ~and equipped with morphlsms H~-----iG~ is defined to 

be the direct limit 

taken over all the finite subsets I of ~). Wall [5] and Bak [2] have studied 

some of the circumstances under which the above morphisms are isomorphlsms, 

roughly speaking when A is finitely generated as an R-module and S-IA = F~ 

is a semi-simple F-algebra (e.g. if (A,S) = (~[~] ,~z-~o~) for a finite group 

~, with R = ~). At any rate, it is possible to obtain a Mayer-Vietoris 

exact sequence relating the L-groups of A,S-1A to those of all the~-adic 

-1 Propositions 3.2, 5.1 give morphisms of exact completions A~, S~ A~. 

sequences 



1 4 5  

~Ln( ~ ' E) 

. ,, Ln(2,e) 

> LS(s'IA ,e) 

LSn(S 1A,~). 

JO 

~ ~Ln(A,~ ,~) ,Ln_l(A,e)---~ • • ° 

(A,~)--, ~ ~Tn( ,s~,c~--~Tn. 1 ^ ... eBo 

! i i, i S~^ 1 . . . .  ^ 
...---~Ln(~,e) ---w[[CL'(S~ A~,e) ,L (A,,E))---~)L (A~,S..e)-~nL ~(A ,~)-*... 

::p - . ,  ~ - - ~ n ~ J "  p n - l  ¥ 

involving the isomorphlsms 

L n ( A , 3 : P ° , E : )  = Ln(A, ,S~ , , e )  , L n ( ~ p , ~ , , e )  (n(mcd 4)) . 

We deduce the following exact sequence, which is valid even in the case when 

the Dedekind ring R has prime ideals ~ such that ~ #~. 

Proposition ~.2 Given a Dedekind algebra (A,S) there is defined a 

Mayer-Vietoris exact sequence ^ 
S ^ 

...---~ L n(A,e ) --9 LSn(S -1A, E),NL n (4t~)--~I~(Ln~(S-1 ~_, e)tL n(~PIE) ) 
:P 

) Ln.l(i,e) ~... , 

with ~ ranging over all the prime ideals of R = S u{O~ such that~=~. 

[] 
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~6. Pol~nomial extensions 

Given a central indeterminate x over a ring A there is defined a 

multiplicative subset S = ~xklk ~ 0 ICA~x~ with localization S-1A~x~ = A~x,x-I~. 

An h.d. I S-torsion A~x~-module M is the same as a f.g. projective A-module M 

together with a nilpotent endomorphism e:M ~M;yl ,xy, and there is in fact 

a canonical identification of exact categories 

(h.d. 1 S-torsion AEx~-modules M) 

= (f.g. projective A-modules M with a nilpotent endomorphism e:M ~M). 

As in Chapter XII of Bass ~1~ it is possible to combine this identificatiou 

with the localization exact sequence of algebraic K-theory 

~ (A[x]) , K1(A[x,x'l] ) ~KI(AEx] ,S) , Ko(A[x]) ~ Ko(A[x,x'l] ) 

to obtain split exact sequences 

0 , KI(A[x] ) , KI (A[x,x'1]) ~ KI(A[x] ,S) -----* 0 

O ~KI(A) , KI(A[xJ)eKI(A[x-I]) ~K1(A~x,x'I]) ~ Ko(A) ~ 0 , 

i.e. the 'fundamental theorem of algebraic K-theory'. 

It is likewise possible to use an L-theoretic localization exact 

sequence to describe the L-groups of the polynomial extensions A[xJ,A[x,x'1j 

of a ring with involution A, where ~ = x. Indeed, such was the approach 

taken By Karoubi [11o On the other hand, we have already shown in Part IV of 

Ramicki [I I that there are defined split exact sequences 

O ~Ln(A[x ~ ) ~L~(A[x,x'1~) 

O---~Ln(A) ~L~(ACxl)eL~(A[x'13) 

(n(mod 4), K = im(Ko(A) 

, LK(AEx-13 ) ,- 0 

, LS(A[x,x-I~ ) Y Ln(A) 

""  r x ± l  Ko(A 1) ) )  , 

~O 

by a modification of Part II of Ranicki Ell (which concerned the L-theory of 

- z-1 the Laurent extension AEz,z'l~ of A, with z = ). We shall now explicitly 

identify 

Ln(AEx~,S,C ) = L~(AEx-I~,c) (n(mod 4)) ° 

The Witt class of a non-singular split c-quadratic linking form over (AEx~,S) 

corresponds to the Witt class of a non-singular c-quadratic form over AEx'I~, 

whereas c-quadratic linking forms over (AEx~,S) correspond to even 
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E-symmetric forms over A[x'l], so that the extra structure of split 

E-quadratic linking forms over (A[x] ,S) is seen to carry delicate quadratic 

information such as the Arf invariant. 

The polynomial extensions of a ring with involution A are the rings 

A[X] ,A[x "1] ,A[x,x'I] with involution by 

x = x . 

•hen S = ~x~Ik>.O}CAEx] is a ~Xtiplicative subset in the sense of §2, such 

that 
-I 

S'IA[x] = A[x,x "1] , S-1A[x]/A[x] = x'lA[x "1] = . N xJA . 

Given an h.d. 1 S-torsion A[x]-module M we have a f.g. projective A-module 

together with a nilpotent endomorphism 

e • M-----~M ; y~ .xy , 

in which case the dual M* = HomA(M,A) is a f.g. projective A-module with a 

nilpotent endomorphism 

e* : M* > M* ; f~ > (yl ~f(ey)) 

and there is defined a natural A[x]-module isomorphism 
-I 

M* ) M ̂  = HomA[x](M,S'IA[x]/AKx]) ; f, ~ (y~--~ j__E_ xJf(e'J-ly)) @ 

Given h.d. 1 S-torsion A[x]-modules M,M I there is a natural identification 

HomA[x](M,M') = ~faHomA(M,M') Ife = e'f ~ . 

An E-symmetric li~k~ug form over (A[x],S) (M,~) is the same as a 

pair (M,e) (as above) together with an element ~ ~QE(M) such that 

~e = e*~Q~(M) = ker(1-T :Hom^(M,M*)~ ;Hom^(M,M*)) 
-1 

k: M~M ~S'qA[x]/A[x] ; (y,z), , .2  xJ~(y,e'J-lz) • 
S=-oo 

An E-quadratic linking form over (A[x] ,S) (M,~,~) is the same as a 

triple (M,e,~) (as above) such that both (M,~) and (M,~e) are even 

E-symmetric forms over A, that is 

, ~e ~ Q<Vo>e(M) --- ~(I+~:Qe(M) ~Qc(N)) 

in which case 

~: M" 'Q~(A[x],S) = S'qA[x]/~b+~l b~A[x]} ; 

YÁ 
-q 
Z xJ~(y,e-J'ly) 
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A split E-quadratic linking form over (A[x~,S) (M,X,~) is the same 

as a triple (M,e,~) (as above) together with elements WO,Wl~Qg(M) such that 

= ~0 + g¥~ , ~e = ~1 + g~ ~ QQVo >g(M) ' 

in which case 

~:M 
il 

QgCS'IA[xJ/A[x]) = j:Z.~xJQECA) ; 

-1 
y, 2 k=~Cx2k+lWoCy) Ce-2k-2y) + x2k~l(Y)(e'2k'2y)). 

Define an abelian group morphism 

Lo(AEx],S,g) ~L~(A[x'13,E) ; (M,I,~)~---~(M[x-1],Vo+x-lWl) , 

where Mix "I] = AEx'I]~M, K = im(~o(A)----*Ko(A[x'I])). 

A split E-quadratic linking formation over (A[xS,S) (F,((~I,0)G) 

is the same as an E-quadratic formation over A (Hg(F);F,im((~:G )FeF*)) 

t@ogether with nilpotant endomorphisms f 6 HomA(F,F), g~ HomA(G,G) such that 

~g = f ~HOmA(G,F )  , pg  = f *~eHOmA(G,F*)  , ~ *~geQ(Vo~-g (G)  , 

in which case 

0 : G •Q_~(A[xJ,S) ; yn 

Define an abelian group morphism 

LI(A[x] ,S,~) ~L~(A[x'I~ ,g) ; 

-1 
, ~ xJC~g-j'ly) 
S=-oo 

(F,~)~'-"C~gCF[x'1]);F[x'1],~(/ ¥I ~ :G[x-l~'-~[x'1]®F[x'l]'))" b(l+x" g)) 
In this way there are defined abelian group morphisms 

Ln(A[x],Ssg ) ~L~(A[x-1],g) (n(mod 4)) 

which fit into a mor~hism of exact sequences 

Ln+l(A[x ] ,S,c) ,Ln(AKx] ,g) > L~(AEx,x "1 ] ,g) ~Ln(A[x] ,S, g)-*Ln.l(A[x] '~) 

s n ~L~(AEx-13 ,g) O O ) Ln(AEx3,g) ~Ln(A[x,x" ],g) ~ " 

The top sequence is the localization sequence given by Proposition 2o4, while 

the bottom sequence is one of the split exact sequences obtained in the proof 

of Theorem 4.~ of Part IV of Ranicki [1] (- only the case g = ~IEA was 

considered there, but the proof generalizes to arbitrary g~A). We deduce: 
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Proposition 6.1 The abelian group morphisma 

K -1 ,e) Ln(A[x ] ,S,E) > Ln(A[x ] 

are isomorphisms. 

(n(mod 4)) 

Define non-singular split (-1)-quadratic linking forms over 

(m[x],S= ~xklk>. 0~) (M,I,~), (M,A,w') by 

M= ZSeTZ 

k : M×M 

~): M 

~':M 

[] 

, xM=O 

)~[x,x'1]/~[x] ; ((y,z),CT',z'))' ,x'l(Tz '-y'z) 

> Q.1(~[x,x'1]/~[x]) = ~[x,x'l]/(~[x] + 2~[x,x'1]) ; 

(y,z)l > x'1(y 2 + yz + z 2) , 

Q.1(~[x,x'q]/~[x]) ; (y,z), , x'17z 

with the same associated (-1)-quadratic linking form over (~[x],S) (M,~,~ 

~: M ) Q_l(~[x,x'1],S) = ~[x,x -1] ; (y,z)| ~0 . 

The isomorphism given by Proposition 6.1 

LO(~[x],S,-1) >L~(~[x-1],-1) = ~2e? 

sends (M,A,~) to the element (1,0) (= the image of the Arf invariant element 

(Z~, EQ.I(ZZe~)) ~ LO(~,-1) under the map induced by the natural 
1 

inclusion ~ >~[x'l]), while (M,A,~') is sent to O. Thus split E-quadratic 

linking forms carry more information than E-quadratic linking forms, 

in general. 
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~7. ChanRe o f  K~theory 

We shall now describe the localization exact sequence for quadratic 

L-theory in the case when all the algebraic K-theory around is restricted 

to a prescribed .-invariant subgroup X~Km(A) (m = 0 or I). 

Let A,S,s be as in §2. 

An h°d. I S-torsion A-module M has a projective class 

[M] = [Po] - [P1] CKo(A) 

with Po,PI the fog° projective A-modules appearing in a resolution 

d 
0 ~ P1 > PO ~ M ~ 0 . 

AS d 6HOmA(P 1 ,PO ) is an S-isomorphism [MS6 ker(Ko(A)----*Ko(S A)). 

Given a short exact sequence of h.d. I S-torsion A-modules 

: 0 > M i~M' J >F~' ~ 0 

there are defined f.g° projective A-module resolutions 

0 )P1 d---~-~Po ?M ~ 0 

0 ~p~ d' ~p~ >M' ~0 

and there exists a chain homotopy k6 HomA(Po,P~) such that 

Solo= d"keHOmA(Po,P ~) , Sli I = kd~HOmA(P 1,p~) • 

Thus there is defined an acyclic f.g. projective A-module chain complex 

c'l c:o "I "i i  Jl (-J o d") 

giving the sum formula 

[M] - C M'] + [M"] = O~o(A) ° 

The S-dual M ̂ = HomA(M,S'IA/A) of an h.d. I S-torsion A-module M has 

projective class 

[M ̂] = [p;] - [P~] =, -[M'J*EKo(A) • 
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The projective class of a split E-quadratic linking 

over (A,S) 

I form formation 

(F,G) 
is defined to be 

i [CM,~,~)] = [M]E~0CA) 

[CF,G)] = [G] - [F A]6~0CA) . 

1 (M,~,~) If is non-singular then (F,G) 

I [(M,~,~)]" = -[(M,~,~)]a~0(A) [(F,G)]" = [(F,G)]a~o(A) 

a *-invarlant subgroup X~o(A) let LX(A,S,e) (n(mod 4)) be the Given 

Witt groups of non-singular split +E-quadratic linking forms and formations 

ever (A,S) defined exactly as Ln(A,S,e) , but using only h.d. I S-torslon 

A-modules with projective class in XC-K0(A). In particular, 

0(A)(A,S,e) = Ln(A,S,E) (n(mod 4)) 
n • 

Define .-invariant subgroups 

X S = X 0 ker( S'I :% (A) -----~0 (S-1A)) C--Ko(A) 

S'Ix -- ~[S'IP] I[P]~: X~CKo(S A) , 

so that there is defined a short exact sequence of Z~[gz2]-modules 

O ) X S • X ~ S'Ix ~ 0 

inducing a long exact sequence of Tate Z52-cchemelegy groups 

... ~ Hn(ma;xS) ~n( ~2;X)---+ ~n(~2;S'IX) ~ ~n'1 (m2;xS) > .... 

The exact sequences of Prepositions 1•2,2.4 can be generalized to 

the intermediate projective L-groups, as fellows. 
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Proposition 7 .1  Given .-invariant subgroups XqY~K%(A) there is defined a 

commutative diagram of abelian groups with exact rows and columns 

: : : : 

i _~ i " " 
... , ~XCA,~ ,~o xc~" A,~ ;~XCA,~,~ , ~X_~<A,~ ~... 

LS'Iy S-1A,E LY( L Y o., ~ LY(A,e) ' ( ) • A,S,g) * (A,e) ) ... 
n n-1 

' fin ( ~2;  z / x )  -~¢r'~( m a ~ s "1 z / s  "1 x)  - ,  ~n-1 ( ~z 2 ~ yS/xS ) _,  ~n-1 (m2;x/x)~... 

such that 

In dealing with based A-modules we shall assume (as in §I) that 

f.g. free A-modules have a well-defined rank, and that ~(~:A ?A) = O~K~(A). 

An h.d. I S-torsion A-module M is based if there is given a 

f.g. free A-module resolution 

0 ) PI d ~ P0 ~ M ~ 0 

such that P0 and PI are based, in which case there is defined a torsion 

~(M) = '~(s'ld:s'IP1---@S'Ip 0) ~KI (S'IA) " 

The S-dual M A is also based, with torsion 

rsCMA) = ~s(M)* e ~ (S'IA) . 

A short exact sequence of based h.d. 1 S-torsion A-modules 

~. : 0 >M ~M' )~' >0 

has a torsion 

~C~) -- ~Cc~)) 6~ CA) 

s'Iz(~) = ~ s C M )  - ~s(~,) + ~S(~')e~CS-IA) . 

• • • • 

[] 
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The torsion of a non-singular split e-quadratic linking 

I (M,I,~) 1 over (A,S) [(F,G) with 

F T(N,X,~) = (w(6,o 

t 
form 
formation 

based is defined by 
F,G 

,M ~, N~-----~ 0 ~ O),~s(M)) 

--/I+T 1-TO ), {I(A),%(S.IA ) ,~I(A)~I(S_IA) ) C ker( ~_S. 1 

^ 
~(F,G) = (~(~:0 ~G ~FeF A ~0),%(G)-~(FA)) 

(1-T 0 / 
ker( : ~I(A)e~I(S-1A) ' ~ ( A ) e ~ ( S ' I A ) )  , 

S "1 I+T 

with T:x: ~ x* the duality involution. 

Given * - i nva r ian t  subgroups XCK%(A), Y~(S'IA) suoh that 

s'lx m ~(s'lf)Eg1(s'lA)l~(f)eX}% Y 

let L~'Y(A,S,e) (n(mod 4)) be the Witt groups of non-singular split 

~e-quadratie linking forms and formations over (A,S) defined exactly as 

Ln(A,S,e) , but using only based h.d. I S-torsion A-modules and requiring 

the torsions to lie in 

~(x,y)~XeY I x* = (-)n'lx , s'lx = y + (_)n-ly,~C~I(A)s~(S-IA) 

In particular, 

{oI  o(A  L~I(A)'~I(S'IA)(A,S ~) = L - (A,S,E) (n(mod 4)) . 
n ' n 

Given a morphism of ~[Tz2]-modules 

f : G )H 

define relative Tate ~2-cohomologygroups 

~n(m2;f:G.__~H ) = [(x,y) eGeHI x*= (-)n'lx Ifx=~+_(-)n-ly*~ 
(u+ ( - )n ' lu* , fu+  v+ ( - )nv*)[  C~,v)e ae~ } 

(n(mod 2)) 

to fit into a long exact sequence 
An ~n-1 

... >~n(~2;G ) f ~Hn(~2;H) ~H (~2;f)----P (m2;G) ~ .... 

The exact sequences of Propositions 1.2, 2.4, 7.q can be generalized 

to the intermediate torsion L-groups, as follows. 
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Proposition 7.2 Given *-invariant subgroups X ~X' ~ K~ (A), Y~Y'~ K~ (S-IA) 

such that S'Ixcy, s-lxIc Y' there is defined a commutative diagram of 

abelian groups with exact rows and columns 

~L~(A,g) 

I 
X w 

) L n (A,g) 

: : : 

>L~ (S'IA'g) ~LX'Y(A'S'~)n 'L~-I(A'g)--'---~ ''' 

X v 
>L~WCS-1A,g) ~L~v'YVCA,S,C) >Ln_I(A,C)- ~ ... 

~n ~H (me;x,lx) --+~=( ~2; Y'/~)-~n( ~2 ;x'/x-,~'/Y)-,~n-1 ( me; x'/x)-~... 

~, LXn. I (Av~)~LYn.I (S-1A,E) .-,LnX_'IY(A,S,a) ~ LnX_2cA ,~ )~  . • .  

Let 
0}~K0(A) K~ (A) 

Vn(A,g) = L n (A,~) = L n (A,g) (n(mod 4)) 

be the L-groups defined using only f.g• free A-modules, and let 

{0]-CK~o(A) ~(A)'K~(S'IA)(A,S,~) (n(mod 4)) 
Vn(A,S,E) = L n (A,S,g) = L n 

be the L-groups defined using only h.d. I S-torsion A-modules which admit a 

f.g• free A-module resolution of length I. As a special case of either of 

the localizatiom sequences of Propositions 7.1, 7.2 we have an exact sequence 

of V-groups 

• .. ~ Vn(A,~) > Vn(S'IA,~) -----> Vn(A,S,~) ~ Vn.I(A,~) ~ .... 

For example, the localization exact sequence of Pardon [1] is of this type• 
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The excision isomorphisms and the Mayer-Vietoris exact sequence for 

t h e  L L t h e o r y  o f  t h e  c a r t e s i a n  s q u a r e  

A ~ S-IA 

B ) T-1B 

associated to a cartesian morphism f:(A,S) )(B,T) (Proposition 3.1) 

can be generalized as follows. 

Proposition 7.~ Let f:(A,S) ~(B,T) be a cartesian morphism of rings with 

involution and multiplicative subsets, and let X~m(A) , Y~m(S-1A), 

ZOO(B), WgKm(T'IB) (m = 0 or 1) be .-invariant subgroups such that 

S'Ix~y, B®AX~Z , T'Iz~w, T'IB~s_IAYCW, ker(Km(A)-~m(S-IA)e~m(B))~X 

and sudh that the sequence 

0 , X/ker (Km(A)---~ ~(S'IA) eKm(B) ) ~YeZ ~W •0 

is exact. Then there are defined excision isomorphisms 

f : LX'Y(A,S,8)---*LZ'W(B,T,8) (n(mod 4)) 
n n 

and a Mayer-Vietoris exact sequence 

... ~ L~(A,~) ~ L~(S'IA,e)eL~(B,~) , L~(T'IB,~) ~ L~.I(A,e) • e e .  • 

[] 

(In the case m = 0 the groups LXn'Y(A,S,E) are to be interpreted as the 

relative groups LXn'Y(A ~S'IA,E) appearing in the exact sequence 

... ~LX(A,~) ~ LY(s'IA,e) • LXn'Y(A ~S-IA,~) ~LX.I(A,~) ~ .... 

For Y = S'Ix these are the groups defined previously 

X'S'Ix LX(A,S,E) (n(mod 4)) , 7~ n (A,S,e) = 

but for general X,Y it is not possible to express these relative L-groups 

i n  t e r m s  o f  13nk iug  fo rms  and f o r m a t i o n s  o v e r  ( A , S ) ) .  

F o r  e x a m p l e ,  t h e  M a y e r - V i e t o r i s  s e q u e n c e  o f  Theorem 6 . 6  o f  W a l l  [6]  

is a special case of the sequence of Proposition 7.3, with (B,T) = (A,S) and 

(S 1A) ) Y X = ker(~l(A) '~1 ^" ~ ' = ker(~ (S'IA) ~1 (~-1~)) 

z = ker(%(A  , w = 
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