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Localization in quadratic L~theory

by Andrew Ranicki, Princeton University
Introduction
Localization is an indispensable tool in the computation of the
surgery obstruction groups Ln(n) & Ln(Z[n])(n(mod 4)) of Wall (3], at least
for finite groups m. The L-groups Ln(A) of a ring with involution A are

1A) of the localization S-1A inverting

compared with the IL~groups Ln(S-
some multiplicative subset SCA, the difference being measured by certain
L~groups Ln(A,S) depending on the category of S~torsion A-modules,
In particular, if A = Z[nl , S = Z~310}<A and n is finite then S-1A = f[n]
is semi-simple, and it is comparatively easy to compute Ln(Q[n]), Ln(ZIn],S)
and hence Ln(Z[n]).

Localization in algebraic L-theory has alrcady been studied by many
authors, including Wall (13,[2],(6], Passman and Petrie [1], Connolly (1],
Milnor and Husemoller [1], Bak and Scharlau (1], Karoubi {1}, Pardon [1],{2],
Carlsson and Milgram [1], though not in the generality obtained here,

The behaviour of the L-groups under localization is governed by
an exact sequence of the type

oo L () ——> L (5718) —5 L _(4,8) —> L (A) —>L_ (57— ...

Our immediate aim in this paper is to obtain a precise statement of this
sequence (Proposition 2,4)., We shall go some way towards a proof, but the
detailed account is deferred to a projected instalment of the series
"The algebraic theory of surgery" (Ranicki [2]), where we shall also prove
a localization exact sequence of this type for symmetric L~theory.

Apart from the localization exact sequence itself we shall discuss
the following applications:

- Let K = Eig A/sh be the S-adic completion of A, There are defined
8€S

excision isomorphisms

Ln(A,S) —_— Ln(ﬁ,g) (n(moa 4))
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and a Mayer-Vietoris exzact sequence of the type
...—7Ln(A)—>LH(K)eLn(s"1A)-—>Ln(§'1ﬁ)—-> L _,(A)—> ...
(Proposition 3.2).
= If the ring A is an R-module then the symmetric Witt group LO(R) acts
on the localization exact sequence of (A4,S8). This 1%(R) -module structure is
used to prove that natural maps of the type
L (Z{n])——L @[x])  (n(mod 4))
are isomorphisms modulo 8~torsion, and that the L-groups Ln(Z;[n]) are of
exponent 8 (Propositions 4,2,4,4),
- If the ring A is an algebra over a Dedekind ring R and S = R-{o0lCa
there are defined natural direct sum decompositions
L (4,5,8) = %Ln(A,?w,a) (n(mod 4))
with/SD ranging over the non=-zero prime ideals of R such that § =% .
The L~groups Ln(A,ﬁfiE) are defined using quadratic structures on'§)-primary
S-torsion A-modules., (Proposition 5.1).
We shall consistently use the language of forms and formations of
Ranicki [1]., We shall omit the proofs of results of the following nature:

i) some relation, invariably called "cobordism", involving forms
and formations is claimed to be an equivalence relation such that the
equivalence classes define an abelian group with respect to the direct sum e

ii) some function between such cobordism groups is claimed to
be an isomorphism.

The chain complex formulation of quadratic L-=theory in Ranicki [2] lends
itself more readily to proofs of such results, those of type i) being
obtained by an algebraic mimicry of the cobordism of manifolds, and those
of type ii) by identifying cobordism groups of forms and formations with
cobordism groups of quadratic Poincaré complexes. From the point of view
of Ranicki [2] the L=groups Ln(A) are defined for n220 to be the algebraic
cobordism groups of pairs (C,¥) such that C is an n-dimensional

f.g. projective A-module chain complex and V is a quadratic structure
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inducing Poincaré duality 527%(c) = H,(C). The groups Ln(A,S,E) are defined
for n>0 to be the algebraic cobordism groups of pairs (D,8) such that D
is an (n+1)~dimensional f.g. projective A-module chain complex which
becomes chain contractible over S-1A and 6 is a quadratic structure inducing
Poincaré duality Hn+1-*(D) = H,(D), It is relatively easy to prove the
exact sequence

oo B (L (8T T (4, 8) —> I (M) — I8 (T >,
so that to obtain a localization exact sequence for the surgery obstruction
groups it remains only to identify the chain complex I=groups with the
L-periodic L-groups defined using forms and formations. Although this
jdentification can be used to both state and prove the localization exact
sequence in terms of forms and formations we find the chain complex

approach more illuminating, at least as far as proofs are concerned.

§1. Quadratic L=-theory
§2. Localization

§3. Cartesian squares

§4, Products

§5. Dedekind algebra

§6., Polynomial extensions
§7. Change of K~theory
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§1. Quadratic I~theory

We recall some of the definitions and results of Ranicki [1],[2].,

Let A be an associative ring with 1, and with an involution

t Ae—e—m———A ; ar—a
such that
(zb) =b.a , (a#b) =a+3v , 1=1 , a=a¢€4h (a,beA),
A-modules will always be taken to have a left A-action.
The dual of an A-module M is the A~module
M* = HomA(M,A) ,
with A acting by
AX MF ——— M* ; (a,f)—> (x+———f(x)3) .
The dual of an A-module morphism fe_HomA(M,N) is the A-module morphism
£* ¢ N* — 5y M* ; g r— (x —>g(£(x))) .
If M is a f.g. projective A-module then so is the dual M*, and there is
defined a natural A-module isomorphism
Me—— 3 M** ; yxt—— (f —> T(x))
which we shall use to identify M** = M.
Let €€ A be a central unit such that
€ = 8-1 €A
(for example, € = :ﬁ). Given a f.g, projective A~module M define the
£~duality involution
T ¢+ Hom, (M,M*) ——»THom, (M,*) ; ¢ — (£g*:x+—> (y—— e ) ,
let
Qf(m)
Q ()

ker(1-T€:HomA(M,M*)-————»HomA(M,M*))

1

coker(1-TE:HomA(M,M*)—————)HomA(M,M*)) .
and define a morphism of abelian groups

14T ¢ QE(M)-———+ QS(M) 3 ¥V r—— VeV
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g-symmetric (M,q)
An form over A is a f.g. projective A-module M
E-quadratic (M,v)
€
9eq (M
together with an element . A morphism (resp. isomorghism) of such
veQq_(M)
€

forms
£f1 (M) —> (M)
£ (MV)—— (M, ¥")
is an A-module morphism (resp., isomorphism) fe€ HomA(M,M') such that

Tt = o€ QT (M)

f*YIf = \VéQE(M) .
(M,e) wE HomA(M,M*)
The form is non-singular if is an isomorphism,
(M,v) V+£Y* € Hom, (M,M*)
E~-symmetric (M,
A sublagrangian of a non-singular form over A
e-quadratic M,v)

is a direct summand L of M such that the inclusion j €]iomA(L,M) defines a
morphism of forms

i (L,0) ———(M,)

3t (L, 0) ——— (M,V) .
The annihilator of a sublagrangian L is the direct summand L& of M defined by

I+

14

ker(j*e:M — L¥)

It = ker(j*(V+ev*)::M ——>1*) ,

A lagrangian is a sublagrangian L such that

A =15L,
€=gymmetric
A non-singular form over A is hyperbolic if it admits a
€=quadratic

lagrangian, or equivalently if it is isomorphic to the standard hyperbolic

form



107

BS(p (o 1) &
16) = (PeP*, € Q (PeP*))

€ 0

0 1
)e Qg (PeP*))
0

HS(P) = (POP‘, (O

e~symmetric form over A (P*,6¢QS(P*))

.

for some i
f.g. projective A-module P

£-symme tric 1%a,e)
The Witt group of A is the abelian group

€-quadratic LO(A,e)

with respect to the direct sum e of the equivalence classes of non-singular

forms over A under the equivalence relation

{ g-symme tric (My)
€=quadratic (M,v)

C (M) ~ (M ,p")
if there exists an isomorphism of forms
(M,¥) ~ (M)
£ 1 (M,p)eH(P,0) —> (M' ' )eHE(PY ,01)
f: (M,W)oHE(P)———-——7(M',\V')QHE(P')
| €~symmetric forms over A (P*,8),(P'*,0!)
for some .
f.g. projective A-modules P,P!

The g-symmetrization map of Witt groups

147, : Lo(a,e) ——1La,e) ; (M,¥) — (1, (14T )¥)
is an isomorphism modulo 8-torsion.

From now on we shall restrict attention to just those aspects of
symmetric L-theory which we shall use in our treatment of quadratic I~theory.
We refer to Part I of Ranicki {2] for a more thorough development of
symmetric L-theory.

An g=quadratic formation over 4 (M,V;F,G) is a non-singular

g~quadratic form over A (M,¥) together with a lagrangian F and a
sublagrangian G. An isomorphism of formations

£ 1 (M,¥;F,G) ———(M',¥';F!,GY)
is an isomorphism of forms f:(M,¥)——(M',¥') such that

£(F) = F' , £(G) = @ .
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A stable isomorphism of formations

[£] : (M,¥;F,G) ———(M! ,¥1;F!,G")
is an isomorphism of formations
f: (M,W;F,G)Q(HE(P);P,P*)—————————+(M',W';F',G')e(Hs(P');P',P'*)
for some f.g, projective A~-modules P,P'.
An e~quadratic formation (M,V¥;F,G) is pon-singular if G is a

lagrangian of (M,v).

form (M,v)
The boundary of an €-quadratic over A is the
formation (M,v;F,G)
(=g)- formation
non=singular quadratic over A
€~ form

Hu,¥) = (H__ ()M, {(x, (¥+e¥*) (x)) € MeM* |z € M})
b(M,‘V;F,G) = (G"/G,V"'/\V) .
form

An €~quadratic { is non-singular if and only if its boundary
formation

{’formation % stably isomorphic to O
is

form 0
forms (M,v), (M, ¥")
Non=singular e=guadratic over A
formations (M,¥;F,G),(M' W7 ,GY)
an isomorphism forms
are cobordant if there exists of
a stable isomorphism formations

£ (M,¥)e(M',~¥')—> J(V,p;H,K)
[£] ¢ (M,¥;F,G)e(M',~¥!;F ,G!) — I(N,o)

formation (N,p;H,K)
over A

form (N,p)

e .
for some quadratic i
(-€)-

Proposition 1.1 Cobordism is an equivalence relation on the set of

forms
non~singular €~quadratic 3 over A, such that the equivalence classes
formations
LO(A,S)
define an abelian group with respect to the direct sum e.
L,(4,8)

(]
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The cobordism group of forms LO(A,E) is just the Witt group of
€=quadratic forms over A, as defined previously.
Define abelian groups Ln(A,E) for n(mod 4) by
Lo(a, (=) 1) o fat
‘Ln(A,e) ={ i if n =§ )
L,](A,(-) €) 2i+1 .,
For € = 1 €A we shall write
L, =5 , %0, =12 .
In the terminology of Part I of Ranicki [1]
1,(8) = T (A) .
Given a subgroup XS io(A) (resp. XE’I‘{',](A)) which is preserved as a
set by the duality involution
.t ’I\{IO(A)———;EO(A) i [Pl ——— [P*]

(respe. s ¢ 3’(1(.1\)——» ’fi](A) 3 2(£3P——>Q)b—— T(£*:Q* —>P*))

let Lﬁ(A,E) (n(mod 4)) bve the L-groups defined as in Proposition 1,1, but
using only forms and formations involving f.g. projective A=-modules P such

that [P]GXEEO(A) (resp, based f.g. free A-modules such that all isomorphisms

feHomA(P,Q) have torsion 't(f)eng,](A)). In particular, for X = ﬁo(A)
R'O(A)
L, (a,e) = Ln(A,s) .

For € = 1€A we shall write
Lh(a,1) = ) .

In the terminology of Part III of Ranicki [1]

Lﬁ(A) = UJ:(A) for XEX (A) (resp. Li(A) = V}:(A) for XX, (4)) .

End
Proposition 1.2 Given s=-invariant subgroups XSYC Km(A) (m = O or 1) there

is defined an exact sequence of abelian groups

ant1 ( Z

ese—>H 2;Y/x) —_— I‘};(A’E) —_— Li(A,s) —>a¥ ZZ;Y/X) —9L§_1 (A,e) .0,

with the Tate Z_.~cohomology groups defined by

2
BN Z,57/%) = fge 1/x|g* = (<)%} / {0+ (-)"n*|ne1/x}.
(1
(In dealing with based A-modules it is convenient to assume that A is such

that the rank of a f.g. free A~module is well-defined and t(e:A—rA)-_—OeiE,\(A)).
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In order to define even-dimensional relative L-groups we shall need

the following refinement of the notion of formation,

A split €=-quadratic formation over A (F,((g),e)G) is an €~qguadratic
formation over A (HE(F);F,G), where (g):G—————+-FeF* is the inclusion,
together with a hessian (=£)~quadratic form over A (G,GeQ_e(G)) such that

\‘*'.,\z‘ 6 = €0% ¢ G —>G* ,
Such a split formation will normally be written as (F,G).
An isomorphism of split €-quadratic formations
(%,B,¥) ¢ (F,G) ——— (F',G")
is defined by A-module isomorphisms X€ HomA(F,F'), ﬁ&HomA(G,G') together
with a (~€)-quadratic form (F*,VeQ_E(F‘)) such that
Doly+ (V-e¥y)*p= y'B: 6 —> F'
ii) ot"1rA= rA'p 1 G———>F1*
i1i) o +prvp= pretBe q_(6) .

A stable isomorphism of split €=-quadratic formations

[«,B,¥] t (F,g) ——> (F',G")
is an isomorphism of the type
(o, By¥) & (F,&)e(P,P*)——(F',G')e(P!,P!*) ,
for some f.g. projective A-modules P,P' with (P,P*) = (P,((?),O)P*).
An isomorphism of split e~quadratic formations (¥,B,¥):(F,e)— (F!,a")
determines an isomorphism of the underlying €-quadratic formations

- >: (B (F);F,6) —— (H (F')3F',6') .
0 &

<<x K(Y = ey*)*
Conversely, every isomorphism of c~-quadratic formations
fs (HE(F);F,G)-——»(HE(F');F',G')
can be refined to an isomorphism of split €-quadratic formations
(,P,¥):(F,G)—— (F',G"). Similarly for stable isomorphisms.
The split boundary of an E=-guadratic form over A (M,WGQE(M)) is the

non=singular split (-E)-quadratic formation over A

i
a(M,W) = (M,((W'E'EV*) !W)M) .
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A morphism of rings with involution is a function
f i1 A—»B
such that
f(a1+a2) = f(a1)4-f(a2) , f(a1a2) = f(a1)f(a2) , f(a) = T(a) , £(1) = 1€B
(a1,a2,a€A) .
Given such a morphism regard B as a {B,A)-bimodule by
BXBXA ———=>B ; (b,x,a)—>b,x.f(a) .
A f.g. projective A-module M induces a f.g. projective B-module B®M, and

A

there is defined a natural B~module isomorphism

BO M*—— (BEM)* ; b&f! > (o®x + »c.£(x). D)
which we shall use to identify (B%M)‘ = B@AM‘. Given a central unit € €A
such that € = €~ (as above) we have that F(e) = £(g)”  €B, and it will be

assumed that f(€) is central in B, It is convenient to also denote f(£)€ B

 form (M,¥)
by €. An €=quadratic over A induces an £~quadratic
formation (M,¥;F,6)
form
over B
formation

B@A(M,\V) = (B®AM,‘I®‘V)
B®A(M,W;F,G) = (B®AM,1®¥;B®AF,B%G) s
and there are induced morphisms in the L-groups
fo: Ln(A,e)——'an(B,z-:) i X +——> B®x (n(mod &4)) .
We shall now define relative L~groups Ln(f,e) (n{mod 4)) to fit into an
exact seguence

cee—— L (8, 8) L 5L (B,8) —5 I (£,6) —> I (A,8) —> ... .

A relative £~quadratic form over f:A—sB ((F,0),(M,¥),h) is a

triple comsisting of a non-singular split (-£)-quadratic formation over A
(F,G), an £-guadratic form over B (M,¥), and a stable isomorphism of
non~singular split (=g)~quadratic formations over B

hos B@A(F,G)——ya(M,W) .
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The relative forms ((¥,G),(M,¥),h),((F?,G*),(M',¥!) h*) are cobordant if
there exist a (=€)=quadratic form over A (L,p) and a stable isomorphism of
non=-singular split (=€£)=quadratic formations over A

k: ¥L,p)—>(F!,G!)e~(F,G) (where -(F,G) = (F,(("f),-e)e))
such that the non~singular e-quadratic form over B obtained by glueing

(N0) = BB (Lyp) Y (11 1) (165c) (T 4=¥ D 0(M,¥))
is null=cobordant, that is
(Nw) = 0€L(B,e)

The glueing operation was introduced in the proof of Theorem 4,3 of Part I of
Ranicki (1], and it has also been described in Wall [6],[7]. We shall not

repeat its definition here.

A relative e-quadratic formation over f:A—— B ((P,8),Q,h) is a

triple consisting of a non=singular €-quadratic form over A (p,0),
a f.g. projective B-module Q, and an isomorphism of non-singular €-quadratic
forms over B
bt B%(P,S)——*HE(Q) .
The relative £-quadratic formations ({P,e),3,h),((P',06'),Q',h"') are cobordant
if there exist an c-quadratic formation over A (M,V¥;F,G) and an isomorphism
of non-singular €=-quadratic forms over B
k : 9(M,¥;F,G) ——> (P',8")e(P,~0)
such that the non-singular €~quadratic formation over B
(N2w;H,K) = (Bﬁi(M,-W)eHE(Q);(B@hF)OQ,

{(x+y,(h1en)(16k) (y))€ BEMe(Qeq?) |x € BE,G,y€ BQA(G&/G)})

is null=cobordant, that is

(Nv;H,K) = 0€L,(B,E)
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Proposition 1.3 Cobordism is an equivalerice relation on the set of relative

forma
€~-quadratic over f:A——B, such that the equivalence classes
formations
Lolf,€)
define an abelian group with respect to the direct sum e.
L1(f,s)

The Legroups defined for n(mod 4) by
Lo(£,(=)Te) 21
L (£,e) = 4 ifn=
L,(f,(~)7€) 2i+1
fit into an exact sequence of abelian groups
..._->Ln<A,e)—_f_un(s,s)-_>Ln<f,a>—->Ln_1(A,e)——y vee s
with
Ln(B,s)-————-»Ih(f,a) ; x—(0,x,0)
L(f,e) ——1L _.(4,8) 5 (y,x,8)—y .
0l
In the case € = 1 we shall write
L(2,1) = L(2) .
Relative Legroups Ln(f) were first defined by Wall {3] (for n odd) and
Sharpe [1] (n even), in the case when all the modules involved are f.g. free.
The above definition of the relative €~quadratic L~groups Ln(f,e)
generalizes immediately to the intermediate e-quadratic L-groups. Given
* =invariant subgroups XSim(A) ’ Ygi‘m( B) (m= O or 1) such that B®AX Cy
there are defined L-groups Li’y(f,s) (n(mod 4)) which fit into an exact
sequence of abelian groups

aoo—_)Li(A,s)—f_)LlYl(B,e) —éLi’Y(f,a) > LIXI-/I(A’E) P 40 o
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§2, Localization

In setting up the localization exact sequence for quadratic L-theoxry
we follow the pattern established for the localization exact sequence of
algebraic K-theory

Ky (&) ——> K, (871 8)— K, (4,8) ——> K (A) ——> K (57 2)
in Chapter IX of Bass [1]. (The extension of the sequence to the lewer
K-groups K, (i€ =1) of Bass and the higher K-groups Ki (12 2) of Quillen
need not concern us here). There are three stages

I) For any ring morphism f:A-——»B there is defined a relative

K=group K‘l(f) to fit into an exact sequence
T

K, (8) —E > K, (B) K, (£) Ko(A) K(B) .
Specifically, K1(f) is a Grothendieck group of triples (P,Q,g) consisting of
fege projective A-modules P,Q and a B-module isomorphism g:B‘%P———»B@ .

II) For a localization map f:A——»S-1A it is possible to express g
as % for some he€ HomA(P,Q) , 8€ 5 such that h induces an isomorphism over s .
Thus K1 (A—> S-']A) can be expressed as a Grothendieck group of triples such
as (P,Q,h).

III) Define K‘l (4,38) = Ko(exact category of h.,d, 1 S~torsion A-modules)
and observe that there is a natural isomorphism of abelian groups

K, (a—>5""8) —K, (4,8) 5 (P,Q,B) —— [coker(ntP—>Q)] .

We have already develeped the L-theoretic analogue of I) in §1 above.

(As in the algebraic K-theory of Bass [1] we shall only consider
localizations A ——> S-1A inverting subsets SCTA of central elements,
There is some interest in the L-theory of eccentric localizations, inverting
non=central elements. The work of Smith [1] considers localizations of the
type A——s5"a with 5 = f-1(1)C A for some ring morphism f:A——>B such that
a morphism gGHomA(P,Q) of f.gs projective A-modules P,Q becomes an
isomorphism 1®g€HO%(BQP,B%Q) if and only if ker(g) =0 and coker(g)is an
S=torsion A-module, In principle, our methods permit a generalization to

quadratic L~theory of any K-theoretic eccentric localization sequence).
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Let A be a ring with involution (as in §1),

A multiplicative subset SCA is a subset of A such that

i) steS for all s,t€S

ii) S€S for all s€ S

iii) if sa = O for some a€A,s€S then a = 0
iv) as = sa€A for all a€A,s5€S

v) 1€8 .

The localization of A away from S S-1A is the ring with involution defined

by the equivalence classes of pairs (a,s)€ A XS under the relation
(a,s8) ~ (a',s') if s'a = sa'ed ,
with addition, multiplication and involution by
(a,s8) + (b,t) = (at+bs,st) , (a,s)(b,t) = (ab,st) , (a,s) = (3,s) .

As usual, the class of (a,s) is denoted by -:;e S-1A. The inclusion

A—>S1A H a\-———»-:‘—

is a morphism of rings with involution. An A-module M induces an S-1A-module

1 -1
M= 8T AR N

<"
which can be identified with the S_1A-modu1e of equivalence classes of pairs
(x,8)€ Mx S under the relation

(x,8)~ (x',s') if s'x = sx'€M ,
Again, the class of (x,s) is denoted by §€S-1M. Given A-modules M,N regari
HomA(M,N) as an A-module by

A x Hom, (M,N) —— Hom, (M,N) ; (a,f) —> (x+— £(x)a) ,

and use the natural S-1A-module isomorphism

-1 Ay a=Tyy . £ x £(x)
s HomA(M,N)———»HomS-‘lA(S M, W) 5 S (?’_"'t?)

as an identification., In particular, for N = A we have the identification
(s"m* = s™qux)y

For example, if A = Z, S = %Z~$0} then s~y = B.
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let Li(s-1A,E) (n(mod 4)) be the intermediate £~quadratic L-groups
of 5”14 associated to the s~imvariant subgroup S=im(§6(A)—>ﬁb(S-1A))Qﬁb(S'1A)
of the projective classes of f.g. projective S-1A-modules induced from
f.g. projective A-modules. Let Li(A»——»S-qA,a) (n{mod 4)) be the relative

L-groups appearing in the exact sequence

1

oo I (4,8) — 1387 "8,8) ——> 15— 57"a,6) —— L (A,0) ... .

1

2i
In the first instance we shall express Li(A———*S- A,e) for n = { as the

2i+1

, “split (-)1-1E-quadratic formations
cobordism group of non-singular over A

L(-)la-quadratic forms

stably isomorphic to O
which become

over S-1A, corresponding to stage II) of
hyperbolic

the above programme, We shall then use this expression to identify

Ii(A——-»s'1A,s) = L (4,5,&) (n(mod ¥))

LZi(A,S,s) 1
with (i(mod 2)) the Witt group of non-singular (=) €=-quadratic
Lps41(Re54E)
forms
linking defined using h.d., 1 S=-torsion A-modules, corresponding
formations

to stage III).

An A-module morphism fe,HomA(M,N) is an S-isomorphism if the induced

s~ a~module morphism

1 1

M-————)S- N ; % ——

s 8"
is an isomorphism,
An S-isomorphism of £~-quadratic forms over A
£f3 (M¥)——(N,p)
is a morphism of €-quadratic forms such that f'eHomA(M,N) is an S~isomorphism.
There is induced an isomorphism of e€~quadratic forms over S-1A

-1 -1
s*Vr:s (V) —— S (N,9) .
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An e-quadratic form over A (M,¥) is non-degenerate if V+EV*€H°@A(M,M?)
is an S~isomorphism,

An S-lagrangian of a non-degenerate €~quadratic form over A (M,V¥)
is a f.g. projective submodule L of M such that the inclusion j€ HomA(L,M)
defines a morphism of forms over A

it (L,0)——(M,V)

which becomes the inclusion of a lagrangian over S-1A. The inclusion J
extends to an S-isomorphism of non-degenerate €=quadratic forms over A

8

0
(3 %) ¢ (LeL*,(\ >)-———+(M,v>
0

[¢]
for some keHomA(L"‘,M), sES,

A non~degenerate £-guadratic formation over A (M,V¥;F,G) is a

non-singular €=-quadratic form over A (M,V) together with a lagrangian F and

an S-lagrangian G,

form (M,¥)
A non-degenerate £=-quadratic over A induces a
formation (M,¥;F,G)
form 1 (57w
non-singular €~-quadratic over 5 A -1 N
formation s (M,v;F,G)
13(s™'a,e)
representing an element of S, =1 « Conversely, every element of
L1(S A,€)
ALg(S-1A,€) form
S, is represented by a of this type.
L1(S A,g) formation

(We could achieve a more systematic terminology by calling
non~degenerate objects over A 'S-non-singular'!. We prefer to bow to the
tradition of calling forms over Z which become non-singular over R

'non~degenerate!),
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An g-quadratic S-form over A (M,¥;L) is a non-degenerate €=-quadratic

form over A (M,V) together with an S-lagrangian L. The S-form is non-singular
if the form (M,¥) is non-singular, in which case there is defined an
associated relative e=quadratic formation over A-——»S-1A
(1,9),57",(3 51+ 57w — B (57'1))
with je HomA(L,M) s k €HomA(L‘ M), s€S as above,
An isomorphism of £€-quadratic S-forms over A
£ (MV;L)——>(M',¥1;11)
is an isomorphism of forms
£ (My)—>(M,v!)
such that
#((L) = 1! .
A stable isomorphism of €-quadratic S-forme over A
[£] + (Myy; L) —>(M' ¥t ;Lt)
is an isomorphism of the type
£ 2 (M,¥;L)e(H (P);P)—>(M' ¥';L1)e(E_(P');P')
for some f,g. projective A-modules P,P?,

An g=quadratic S-formation over A (M,V¥;F,G) is a non-degenerate

e=quadratic formation over A such that the A=~module morphism
G ——> M/F ; x+— [x]
is an S-isomorphism. The S-formation is non-singular if G is a lagrangian
of (M,¥).
An isomorphism of €-quadratic S-formations over A

£ 3 (M,¥;F,G) —> (M' ,W!;F ,G")
is an isomorphism of e=-quadratic forms over A

£ (V) — (M, ¥')
such that

£(F) = F' , £(G) = G,
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A stable isomorphism of e€~quadratic S-formations over A

[£] ¢ (M,¥;F,G) ——> (M',¥';F! ,G)
is an isomorphism of the type
£ (M,W;F,G)e(HE(P);P,P*)'——>(M' ,w';F',G')o(HE(P');P',P'*)

for some f.g. projective A=-modules P,P'.

A split €=quadratic S-formation over A (F,((K),G)G) is an e=quadratic
S-formation over A (HE(F);F,G), where (ﬁ):G-———’FoF* is the inclusion,
together with a hessian (~=£)-quadratic form over A (G,6 GQ_E(G)) such that

¥*p=16 - €6* ¢ G ~—»G* ,
Such a split S-formation will normally be written as (F,G), denoting
(F,((}E),-G)G) by -(F,G). Note that pe Hom,(G,F*) is an S-isomorphism.
A split e-quadratic S-formation (F,G) is non-singular if G is a

lagrangian of HE(F), that is if the sequence of A~modules
X ( o

e )
() FeF* ¥ —> G*

—0

0———>G
is exact., For non-singular (F,G) define the associated relative (-€)-quadratic
form over A——»S™ A ((r,@,0,0).
An isomorphism of split €-quadratic S~formations over A
(x,B,¥) : (F,G) —— (F1,G")

is defined by A-module isomorphismstXéHomA(F,F'),PeHomA(G,G') together with
a (=g)=quadratic form (F*,WGQ_E(F*)) such that

i) ay+ (V=ev*)*p= y'B: G —F!

1) o™= WPt @ ——>F1*

111) 6 + p*Wp - P*6!A €ker(s™ 1Q_ (@ —_c(s7'e)) .

A stable isomorphism of split e-quadratic S=formations over A

[&569“’] t+ (F,G) — (Ft,G")
is an isomorphism of the type
co‘!P,W) H (F,G)O(P,P"’)u——)(pl’G')O(P',Pu,)

for some f.g. projective A-modules P,P'.



120

form
The boundary of a non-degenerate €=quadratic over A
formation
(M,v) split (=€)=-quadratic S~formation
is the non=-singular over A
(M,¥;F,G) €=quadratic S-form

1
B(M,‘l’) = (Mg( W+EV‘>’W)M)

oM, ¥; F,G) = (M,v;G)
€=quadratic S-forms
Non~-singular over A
split €-quadratic S=-formations
(M,v;L), (MY, ¥ ;10)
are cobordant if there exists a stable isomorphism
(F,c),(F,G")
TLE] ot (M,v;L)e(M',-¥!;L!) ——>(N,p;H,K)
(«,8,¥] : (F,3)e=(F',G')———>3(N,q)

€= formation (N,p;H,K)
over A such that

quadratic &
(N,e)

form

for some non-degenerate §
(=€)~

s (M,038,K) = 0€L5(s7"a,e)

sT'(N,0) = 0€L3(s™a,me)

Proposition 2,71 Cobordism is an equivalence relation on the set of

€=quadratic S-forms
non~singular over A, such that the equivalence
split €=-quadratic S-formations

classes define an abelian group with respect to the direct sum e.

(-)ie-quadratic S=forms
The cobordism group of non=-singular i
split (~)"e~quadratic S-formations

formation

over A is naturally isomorphic (via the associated relative
form

- 2i+1
construction) to the relative L-group Li(A-———)S 1A,e) for n = g .
2i+2
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The morphisms of the exact sequence

vee—— L (4,8) —>15(s78,8) —> 15 (a—> 57"

=1

A,E)-—-)Ln_,](A,E)’_—" e

. S

involving I.n(A——>S A,e) are given in terms of S-forms and S-formations by
S - - -

{L5;(s7a a)-—>LS (A—s"a s€) 3 S 1(M V) ———3(M,v)

3 s

| 21+1(s Ta s)—)LZi L(h—57 Ta,e) 5 8710, ¥;F,6)—— (M, ¥;F,G)

S

i' J(a—s sl €)= Loy (4,8 5 (F,6)—— (H_yi=1(F);F,6)
21+1(A——78 Ta s)——»L (A g) 3 (M,v;L)——> (M,¥) .

]
An A-module M is S-torsion if
s™M=0,

or equivalently if for every x¢M there exists s€S such that sx = O€M,

An A-module M is h.d., 1 ( = homological dimension 1) if it admits
a f.g. projective A-module resolution of length 1

0o—sP—2sp —M—>0.

An h.ds. 1 S-torsion A-module is thus an A-~module which admits a

f.g. projective A-module resolution of length 1 with d€HomA(P1,PO) an

S~=isomorphism,

Regard the abelian group S-1A/A as an A-module by

axsa/m ——ss™Ta/m (a,:z-)!———) 359 .

The S=dual of an A-module M is the A~module
M = HomA(M,S-1A/A)
with A acting by
AxM ——> M (a,f) — (x—> £(x)2) .
The S~dual of an A-module morphism f €HomA(M,N) is the A-module morphism
i nr—a M gr— (x—>g(£(x))) .
The S=dual of an h.d. 1 S-torsion A-module M = coker(d:P,]—'*Po) is an
h.d. 1 S-torsion A-module M" s with resolution

0 P2 i — P2 M

where
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The natural A=-module morphism
M M s (£ T(x))
is an isomorphism if M is an h.d, 1 S-torsion A~module, in which case we
shall use it as an identification, and to define the £=duality involution
T ¢ Hom (M,M")——Hom, (M,M") ; o — (g¢™ 1x— (y—> eo(y) (X)) .

An g-symmetric linking form over (A,3) (M,A) is an h.d., 1 S~torsion

A~module M together with an element A€ ker(‘l-Te:HomA(M,MA)-——» HomA(M,MA)) .
Equivelently, A\ is given by a pairing
Nt MXM ——>S’1A/A i (x,7) —— A () (y)

satisfying

i) Mzx,ay) = a)«(x,y)cs-1A/A

11) Max,g+y') = Mx,y) + Mx,y)€ 87 A/A

iii) M (y,x) = 8m€S-1A/A (x,y,y'eM) .

Define the abelian groups

Q. (4,8) = 57'a/farcalacal

QE(S-1A/A) = (s7'a/a)/fb-€B|veat
and the abelian group morphism

14T, 8 QE(S-1A/A)—>Q€(A,S) ; C————> C+EC

An g-quadratic linking form over (A,S) (M,A,) is an e-symmetric

linking form over (4,S) (M,1) together with a function
P M—q (4,8)
such that
i) p(ax) = af&(x)EEQE(A,S)
11) ulxey) = p(x) = p(y) = A(x,y) + EXTK, ) €Q (4,8)
iid) [p(x)] = M) € S-1A/A (z,y,7' €M, a €4A).
The linking forms appearing in the work of Wall (2], Passman and
Petrie [1], Connolly [1] and Pardon [1],[2] on odd-dimensional surgery
obstructions are just the €~quadratic linking forms over (Z[=] ,Z-{O}),

with € = 41 and n & finite group.
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A split e-quadratic linking form over (4,8) (M,)\,») is an c-symmetric

linking form over (A4,S) (M,\) together with a function
¥ M——pq (s a/8)
such that
1) Max) = a(x)7 eq (s 4/8)
11) Mxey) = ¥(x) = Xy) = (A=) ()] €Q (5™ A/A)
111) »(x) + €9(x) = AMx)(x) €87 A/A (x,y€M, a€h).
Split €~quadratic linking forms were introduced by Karoubi [1].
€~gymme tric
A morphism (resp., isomorphism) of | e~quadratic linking forms
split €-quadratic
over (4,8)
£t (MN) ———> (M, )
£t (M5 ) —— (M, N, ')
£ 1 (MANP) ————— (M7, N ,t)
is a morphism (resp. isomorphism) fe;HomA(M,M') such that
AT =N € HomA(M,M")
and also
peu—Sow Mg (4,8
%_v: M—E o w —i’l-»QE(s'1A/A) .
It can be shown that the forgetful functor
(split e-quadratic linking forms over (4,S))
——— (e-quadratic linking forms over (4,8)) ;
(M,d ) (M3, = (14T IV 3 B AN Qe(s‘”A/A)-Ti»QE(A,s))
defines a surjection of isomorphism classes, which is a bijection if %68-1.&,
esge if A = Z[n] , S = E-—{O}, S-1A = (n]. (This may be deduced from
Proposition 2,2 below)., In § we shall give examples of triples (4,S,e) for
which there is a perceptible difference between split €-quadratic and

€=quadratic linking forms over (4,S).
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e~symme tric (M,))
An | e-quadratic linking form over (4,S) | (M,\u) is
split e=quadratic (M,\,»)

non-singular if A¢Hom, (M,M") is an isomorphism.

Ag in §1 we shall concentrate on the €~gquadratic L~-theory, leaving
the €=~symmetric L-theory of linking forms to the relevant part of
Ranicki (2].

There is a close connection between linking forms over (4,S) and
S~formations over A, which was first observed by Well [1] in the case
A=2z,5=2z-§0}, 572 =Q.

€=quadratic
Proposition 2.2 The isomorphism classes of (non-singular)

split e~quadratic
(M, %,1)

linking forms over (A,S) § are in a natural one~-one correspondence
(M,X,U)

(-g)=-quadratic
with the stable isomorphism classes of (non~singular)
split (=€)=quadratie

(N,“’;F,G) (M’X,P)
S=formations over A . The linking form corresponding to
(F,&) (M, ,»)
(N,¥;F,G)

the S~-formation i s defined by

(F,(G{),e)e) '
‘M = N/(F+G) , N t M—a M § x+—> (y»—-—->%(‘¥-€\v‘)(x)(g))
pi M——s Q_(4,5) § y— 2(¥-e¥*)(y)(®) = ¥(N()

(x,y€N, seS, geG, sy ~ g€ F)
M = coker(piG—>F*) , A1 M——M" ; xr—r (yr— 1;8‘(::)(3))
Vi M——q (sa/A) ; yu——-)«e—(f%f(ﬁl

(x,y€F*, s€S, geG, 8 = pge F*).

{1
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A sublagrangian of a non-singular split e-quadratic linking form
over (4,8) (M,\,») is a submodule L of M such that
i) L, M/L are h.d. 1 S~torsion A-modules
ii) the inclusion jé:HomA(L,M) defines a morphism of linking forms
it (L,0,0)—(M,),0)
iii) the A-module morphism
(Mt WL——>1" ; [x]—> (y—> XN () (xeM,yel)
is onto.
The annihilator of a sublagrangian L in (M,A,») is the submodule
14 of M defined by
It = ker(PAs M—— 1) ,
which is such that LC I+,
A lagrangian of (M,\,») is a sublagrangian L such that
It =4,
A non-singular split e€-quadratic linking form which admits a lagrangian is
hyperbolic. For example, if L is a sublagrangian of (M,A\’) then there is
defined a non=-singular split €-quadratic linking form (L&/L,\t/x,ut/us)
such that (M,\,M)e(Ls/L,~\4/\ ,~p+/p) is hyperbolic, with lagrangian
L' = §(x,[x]) € MeId/L|x €1r} .
Given an he.d., 1 S-torsion A-module P define the standard hyperbolic split
€-quadratic linking form over (A,S)
H (P) = (PeP" X\ 1PeP" —(PeP*)" ; (x,#)—s ((y,8) — £(3) + €8(x)) ,

V:PoPA—+Q8(S-1A/A) i (%, D) —s £(x) )

A split e=guadratic linking formation over (A,S) (F,((}),G)G) is
defined by a sublagrangian G in a standard hyperbolic split €=-quadratic
linking form over (A,S) HE(F), together with a hessian (-g£)-quadratic
linking form over (A,S)

(G,KAPEHomA(G,G") 1816 —>Q__(4,5))
where (g):G-————»FoFA is the inclusion. Such objects first appeared in the

work of Pardon [1], and similar structures have been studied by Karoubi [1].
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We shall normally write (F,((})B)G) as (F,G), denoting (F,((;f),-e)G) by
-(F,q),
An isomorphism of split €=-quadratic linking formations over (A,S)

£ : (F,6)———(F',G")

is an isomorphism of the hyperbolic split €~-quadratic linking forms
f HE(F)——vHe(F')

such that
£(F) =F' , £(G) = @'

and also

o1 a—tl ya e'A,Q_s(A,s) .
A sublagrangian of a split €-quadratic linking formation over (4,8)
(F,G) is a sublagrangian L of HE(F) such that
i) 1L€G, with G/L an h.d, 1 S~torsion A-module
i1) FNL = §0)}, FeF =F + 14 ,

Such a sublagrangian determines an elementary equivalence of split

e~quadratic linking formations over (4,S8), the transformation
(F, ) —— (F' ,G") ,
with (F',G') defined by
Ft = Fnl+ , G' = G/L
¥' 2 G'——F' ; [x]t+—> ¥(x)
@ Gt ——F'"  [x]— (y—— p(x) (7))
o' : G'—>q_.(4,5) ; {x] t—>0(x) (x¢G,yeF ).
Elementary equivalences and isomorphisms generate an equivalence
relation on the set of split €~quadratic linking formations over (4,8},

which we shall call stable eguivalence.

A split e-quadratic linking formation over (4,S) (F,G) is

non-singular if G is a lagrangian of HE(F), or equivalently if the sequence

3 A A
o > G (")A,FoF"LEH XQG"

> 0
is exact. Any linking formation stably equivalent to a non-singular one is

itself non-singular.
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There is a close connection between linking formations over (4,S)

and S-forms over A.

Proposition 2.3 The stable equivalence classes of (non=singular) split

g=quadratic linking formations over (A,S) (F,G) are in a natural one-one
correspondence with the stable isomorphism classes of (non-singular)
g=quadratic S-forms over A (M,¥;L), The linking formation (F,G) corresponding
to the S-form (M,¥;L) is defined as follows: extend the inclusion ;jeHomA(L,M)
to an S~isomorphism of e£=-quadratic forms over A

-]

0
(3 k) : (LaL*,( ))-—»(M,W)
0

0
for some keHomA(L‘,M), s€S, set
F = coker(s:L —>1L) , G = coker((j k):Lel* —> M) ,

define (;{): G — FeF”® via the resolution

0 yLelr — B oy 3G ——>0
€ () X* (V+EW*) X
0 )
0 1 J*(v+ev*) P
0 8 ~
) > LoL* » LoL* — 5 FeF ' —>0 ,

and let (G,{‘p@HomA(G,GA) ,e:G—->Q_€(A,S)) be the (-£)=-quadratic linking

form over (A,S) corresponding to the e~quadratic S~-formation over A

-€¥3j  V*k
(HE(M*);M*,im( tLol* > M*eM)) .
j k
[
form
The boundary of a split £=quadratic linking over (A,8)
formation
(M, ,») (=€)~ formation
is the non-singular split quadratic linking
(r,a) €= form

over (4,S)
ga(m,,\,u) = 01, ((3) a1

a(F,@) = (G2/G,M/\w2/0) , where H_(F) = (FeF™,\,00)
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form
A split e-quadratic linking is non-singular if and only if its
formation

formation stably equivalent to O
boundary linking is

form [o]
forms
Non=-singular split €-quadratic linking over (4,S)
formations
(M0 ,0) , (MP N 0t) [an isomorphism
are cobordant if there exists

(r,q),(Fr,G") a stable equivalence

(M)A, 2)e(M! =2t j=pt) — = O(K,L)
(F,@)e-(F!,G!)——> O(N,q,¥)
€~ formation (K,L)
for some split quadratic linking over (A,S) .
(=)= form (N,p,¥)

Proposition 2,4 Cobordism is an equivalence relation on the set of

forms
non-singular split €~quadratic linking over (A,S), such that the
formations
LO(A,s,s)
equivalence classes define an abelian group with respect to the
L, (4,8,8)

direct sum e. The L=~groups defined for n{mod &) by

[ 1,(4,5,(-) %) 24

L (A,S8,6) = ;. ifm
n L,(4,8,(=)"€) 2i+1

fit into the localization exact sequence
coo—> L (4,8) —>L3(s7"8,8)—> L (4,5,6) ——>L__(4,8)—> ... .
The fit is achieved by natural isomorphisms

Ln(A,S,s)-—+LISl(A—->S-1A,s) (n(mod 4)) ,

form
defined by sending a non-singular linking over (A,3) to the
formation
| S=formation 2.2
corresponding non-singular over A (given by Proposition ).
S~form 2.3

€]
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Note that LO(A,S,E) can also be viewed as the abelian group of
equivalence classes of non-singular split €=~quadratic linking forms over (a,s)
under the relation

(My2y») ~(M',AY 1) if there exists an isomorphism
£ (M,A, D) e(N,0,¥) ——— (M, 0,20 e (N ot ,¥!)
for some hyperbolic split €~quadratic linking forms (N, ,¥),(N',e',¥').

‘Phe localization exact sequence of Proposition 2.4 was first obtained
by Pardon [1] in the case A= Z[n] {(n finite), S=Z =50} following on from the
earlier work of Wall [1],(2], Passman and Petrie [1], Connolly [1] and his
own work on rational surgery (Pardon [2]), These authors only work with
f.g. free A-modules - we shall discuss the effect of this restriction in
§7 below,

Karoubi [1] obtained a localization exact sequence in the context
of hermitian K-theory. However, the methods of that paper are not sufficient
for a localization sequence in the surgery obstruction groups, since it is
frequently assumed that 1/2 €A, the formula for the quadratic function §Q on
Pe366 of Part I is not well=defined in general, and the quadratic linking
formations do not include the hessian 6 appearing in the definition of (F,G)
(introduced by Pardon [1]) which carries delicate quadratic information
such as the Arf invariant,

The localization exact sequence is natural, in the following sense.

Let f:A———>B bve a morphism of rings with involution such that
£(S)CT for some multiplicative subsets SCA, TCB, Given an h,d, 1 S-torsiom

4-module M with a f.g. projective A~module resolutiom
d

0 > P 3 P > M -0

1 0

we have that deHomA(P1,P0) is an S-isomorphism, and hence that

1®4€ Hom’.B(Bﬁ.P’l ,B@APO) is a T~isomorphism., Also, the functor
B® - ¢ (A-modules) ——» {B-modules) ; Pi——-——)BﬁP

is right exact, so that we have a f.g. projective B-module resolution
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0 ——»BgP, 1®4d >BQ P, — B®M ——>0

and BSKM is an h.d, 1 T~torsion B~module. Thus f induces a functor

B~ ¢ (h.d. 1 S-torsion A-modules)——>(h.d., 1 T-torsion B-modules) ;
Mk————?B@hM
and there are defined abelian group morphisms

f: Ln(A,S,a)—————>Ih(B,T,e) i X—>B®x (n(mod &4)) ,

Proposition 2,5 A morphism of rings with involution f:A——>B such that

£(8) ST for some multiplicative subsets SCA, TCB induces a morphism of
exact sequences of abelian groups
vee——> L (4,8) ——>15(s74,6) ——> L_(4,8,8) —L__(A,e)—> ...
i‘l s"1fl fl fl
...——)Ln(B,s)——yLle(T'”B,e)——)Ln(B,T,e)——>Ln_1(B,a)———> vee
(]
Were it necessary we could define relative L-groups Ln(f,s,a) for
n({mod 4) (as cobordism groups of relative linking forms and formations)
to fit into exact sequences
...—)Ln(A,S,e) —f->Ln(B,T,8)__>Ln(f,s,e)-_.>Ln_1(A,S,s)-—)...

oon__>Ln(f,€)_—)Li(s-1f,€)_an(f,s'€>-_7Ln_1(f,€)‘——’ ese o
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§3. Cartesian squares

We shall now investigate the conditions under which a morphism of
rings with involution and multiplicative subsets
£ : (4,8) ——(B,T)
induces excision isomorphisms
£ Ln(A,S,S)-————+Ih(B,T,€) (n(mod %))
and a Mayer-Vietoris exact sequence
vor—rL (4,6)—> 15(s7'a,)e1_(B,e) —> L(T B, &) —> L (4,8)— .uv &
Define a partial ordering on S by
sg 8' if there exists t€ S such that s' = stes ,
Define also a direct system of abelian groups {A/sAlse S&with structure maps
A/sA——>A/8tA § x——>tx
The abelian group morphisms

A/sh —> S~ /0 5 ar—

olp

allow the identification

Iim A/sA = ST TA/A .

—

€

[+]
72}

The involution

~ s aa—>sTam ; 2

allmi

is identified with the involution

Tt Lim A/sA —— 13.1; A/8A 3 {aseA/sA|s€S}v—)§a_-B-€A/sA|seSk .
8€S B€

A morphism of rings with involution and multiplicative subsets
£+ (A,8)—>(B,T)

is cartesian if £(S) = T and if for every s¢S the map

f: A/SA——>B/tB ; x+——1(x) (t = f(8)ET)
is an isomorphism of abelian groups. It follows that there is induced an

isomorphism of abelian groups with involution
£+ lin A/ah = 5"A/A — 1im B/tB = TT'B/B ; x> 2(x) ,
8¢ teT

and hence that the commutative square of rings with involution
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| L ‘

B——T B
is cartesian, in the sense that there is defined an exact sequence of

abelian groups with involution

1 1

0 ———3A ——>5 AeB——T B——0
Cartesian morphisms were introduced by Karoubi [1] (Appendix 5 of Part I),
who proved that a cartesian morphism f:(A,S) ——>(B,T) induces an
isomorphism of exact categories
f ¢ (heds 1 S~torsion A-modules)—— 3 (h.,d. 1 T-torsion B-modules) ;
MF——————9B6§AM (= M as an A-module) .
As an immediate consequence of this and of the localization exact sequence

of Proposition 2.4 we have:

Proposition 3,1 A cartesian morphism f:(A,S)—————*(B,T) induces excision

isomorphisms of relative L-groups
£ Ln(A,S,e)———-———+lh(B,T,e) (n(mod &)) ,
and there is defined a Mayer=Vietoris exact sequence of absolute IL-groups
...————)Ln(A,a)—)Li(s-1A,€)oLn(B,8)—)Li(T-1B,€)——>Ln_1(A,e) —> eee
(]
A Mayer-Vietoris exact sequence of the above type was first obtained
by Wall [6] for a cartesian square of arithmetic type (cf. Proposition 3.2
below), by a direct proof which avoided relative L-theory at the expense of
invoking the strong approximation theorem. In fact, it is possible to obtain
both the Mayer-Vietoris sequence and the excision isomorphisms avoiding the
localization sequence, by directly constructing appropriate morphisms

A
3 Li(B—»T 1

B,s)——»Ln_,l(A,e) (n(mod &))
(generalizing the method of Wall [6]), using the characterization of the
relative IL-groups in terms of relative forms and formations of §1. The idea

of combining a localization exact sequence with the above isomorphism of

categories is due to Karoubi [1], who obtained excision isomorphisms and a
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Mayer-Vietoris sequence in hermitian K~theory (with the qualifications
regarding the L-groups expressed at the end of §2). Bak [2] has obtained
similar results in the context of the KU-theory of Bass [2].
In §7 below we shall generalize the excision isomorphisms and the
Mayer-Vietoris sequence of Proposition 3.1 to the intermediate L=-groups.
Given a multiplicative subset SCA of a ring with involution A

define the S=adic completion of A to be the inverse limit

ﬁ = %:1._@1_: A/shA
s€S

of the inverse system of rings {A/sAlsesk with structure maps the natural
projections
A/stA————rA/sh (s,t€8) .
N
Then A is a ring, with involution by
- A A o

$A— A {aSeA/sAISGS}\—-———-b&a—S- GA/sAIs&S} .

The inclusion
[
£f1A—2; a—>faea/sa|sesh
is a morphism of rings with involution, such that the image of S is a
N

multiplicative subset S = f(S)CA.

~
Proposition 3,2 The inclusion f:(A,S)————»(ﬁ,S) is a cartesian morphism,

so that there are induced excision isomorphisms
A A
f: Ln(A,s,e)—aLn(A,s,e) (n(mod &))
and there is defined a Mayer-Vietoris exact sequence
A
- ~ A
vee—> L (A,6)—> Li(s 1A,€)0Ln(A,8) ———>Li(s 12,5)———->Ln_1(A,e)———>... .
]
A
In particular, we have a cartesian morphism f:(%,zZ-{0%)—> (Z,Z-40%),
with &: I.‘_i_mz/mz the profinite completion of Z. The associated cartesian
m

square

_—
_—

7 2
Lol
Z )

is the 'arithmetic square', with Q the finite adéle ring of f. In Wall [6]
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there was obtained an I~theoretic Mayer-Vietoris exact sequence for the

cartesian square

Z@ 8 —> 2B, A

l/ (=4)
ﬁ“ﬁzﬁ ——————)QQ%ZA
for any ring with involution A such that the additive group of A is finitely
generated, For torsion~free A (e.g., A = Z[n], with n a finite group) this is
just the cartesian square considered in Proposition 3.2 with S = E—{O}CA.
Given a ring with involution A we shall say that multiplicative
subsets S,TCA are coprime if for any se€S, t€l the ideals sA,tA<dA are
coprime, that is if there exist a,beA such that
as + bt = 1€4 ,
The multiplicative subsets
ST = {st|ses,teTica , T7's = {£[ees}cTA
are such that there is a natural identification
(r-is) (™) = (517

Proposition 3,3 If S,TCA are coprime multiplicative subsets then the

inclusion f:(A,S)—»(T"1A,T-1S) is a cartesian morphism, inducing
excision isomorphisms

£ Ln(A,S,t-:)——?Ln(T-1A,T-1S,e) (n(mod ) ,
and there is defined a Mayer-Vietoris exact sequence

oe v_—’Ln(Age) —ﬁLi(s-']A,S)’Li(T-']A ,e) —— LiT( (ST)-1A ’S)ALIL-‘] (‘,E)‘*o o0

.

0]
k, k k J J
1
For example, if S = {p11p22...prr|k1,kz,...,kr2 0} and T={q1 ..q:|j1..jsz0}

for some disjoint collections of primes P = {p,l,pz,...}, Q = {q,],qe,...l

such that PuQ = {all primes in Z} then S-1

Z= ZE%] = Zq) (= localization
away from P = localization at Q) and S,TCZ are coprime multiplicative

=1
subsets with (87) Z =(@.
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§h. Products
We shall now show that the localization sequence
—-—>Ln(A,a)——>Li(s‘1A,a)-—>Ln(A,s,,e) —>L__ (A, —> ...
is an exact sequence of LO(R)-modules if A is an R-module for some ring
with involution R. As in §1 LO(R) denotes the symmetric Witt group of R.
We shall use . this LO(R)-action to prove that the natural maps
Ln(A,e)——-»Li(Q@ZA,e) (n(mod &) , 8 = Z=f0}YCA)
are isomorphisms modulo 8-torsion for any torsion~free ring with involution
A, along with other results of this nature.
A ring with involution A is an R=-module for some ring with involution
R if there is given a morphism of rings with involution
R@ZA —A } r@a——a>ra ,
with the involution on R&ZZA defined by
T 1 R@ A ——> R@A ; r@ar—>TrQ®s .
Note that each r'lAeA (reR) is central in A, so that given an R~-module M
and an A-module N there is defined an A=-module
NN = M@zN/grmy - x@(r1A)y|xé M,yEN,r€ RY
with A acting by
AXMEN ——M&N ; (a,x®y)—>xgay .
In particular, we have a pairing
(f.g. projective R=-modules)X (£f.g. projective A-modules)
—— > (f.g. projective A-modules) ; (M,N)—MR N ,
with natural identifications
(M®RN)" = M*@RN* .
Given a multiplicative subset SCA we have that S-1A is an R-module by
R® ST A —— 57 ; r@2—> 2
and that there is defined & pairing

(f.g. projective R~modules) X (h.d. 1 S-torsion A-modules)

———> (h,d, 1 S~torsion A-modules) ; (M,N)r—> M®.N ,
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with natural identifications
A A
(M@ N)" = M*@ N .
Define LO(R)-actions on quadratic L-theory by
0
L (R)@ZLn(A,a)——-an(A,s) ;
(M,0)®(N,¥)—> (MSpN,o@V) 24
if n =

(M,¢)®(N,\V;F,G)b————>(M®RN,¢®W;M®RF,M®RG) 2i+1
(In terms of the products defined in Part I of Ranicki [2] these are just
the composites

0 )
L (R)®ZLn(A,s)—>Ln(R®ZA,1®a)————>Ln(A,e) (n{mod #))).

Define also LO(R)-actions

0 S, =1 Sy =1
L (R®,,L, (8 Aje)——L (57 AE)
(M,¢)®S-1(N,W)r———-)S-1(M®RN,¢p®W) s 2i
i1 n =
(M,0)®8 1(N,W;F,G)»———>s"1(M®RN,¢®W;M®RF,M®RG) 2i+1 ,

1RIS L (4,5,6) ——>T_(4,5,6) ;

(My0) ® (N2 ) ——> (MDD N, 00X ¢V 1xQy+——> e(x)(x)»(y)) 25
if n = .
2i+1

(M) ® (F,((D,e)e)r—-> (M ®RF,(<;ZI>,¢® 8 M@ G)
In each case the element
(R,1:R——> R*;q—>(r —> 79)) €LOR)
acts by the identity., (In general R is not itself an R-module., However, if
R is commutative then it is an R-module in the usual fashion, and the

symmetric Witt group 1%(R) is a commutative ring with 1).

Propasition 4,1 Let A,R be rings with involution such that A is an R-module,

and let SCA be a multiplicative subset., The localization sequence
veem—> I (4,€) __>Li<s‘1A,s) —> L (8,5,6) —> L _ (A,e)—F ...
is an exact sequence of 19(R) ~modules.

]

(More generally, if f:A——>B is a morphism of rings with involution which
is a morphism of R-modules then the symmetric Witt group LO(R) acts on the
exact sequence of Proposition 1.3

soe—> LII.(A’E) —"f_—) Ln(B,E) _ Ln(f,s) —_— Ln_1 (A,S)'__) Xy ).
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In our applications of Proposition 4.1 we shall need to know the
symmetric Witt groups LO(Zm) of the finite cyclic rings Zm= Z/n% .

let m = p?pz ...pl:r be the factorization of m into prime powers, so that
N 0 & 0
z, = &, Zp’f‘i » LUz = B L (Zpki) .

i i
Lemma 5 of Wall [4] and Theorem 3.3 of Bak [1] on reduction modulo a

complete ideal (alias Hensel's lemma) apply to show that the projections

B, —>%g , k33
2 induce isomorphisms
Z,——Z, , podd , k1
P 0
9]
2 "2

1%z k)-——)LO(Z ) =
P Z,  if p=3(mod 4) .

{zz eZ. if p=1(mod &)
P

Moreover,

0 Z_8 0

L(Zh)= %@@(Eé , L (Z2)= ZE .
For each integer m2» 2 define the number

2 ifm =4 or 24

¥(m) = exponent of Lo(Zm) =Lk if m=lkd,e,2e or he
8 otherwise ’
with
d = a product of odd primes pZ 1{(mod %)

e = a product of odd primes, including at least ome p= 3(mod 4).
A ring with involution A is of characteristic m if m is the least
integer » 2 such that m1 = O€A, in which case ma = O for all a€A and
A is a %m-module.

Proposition 4.2 If the ring with involution A is of characteristic m then

the localization sequence
...——-»Ln(A,e)——»Li(s"1A,s)—->Ln(A,s,s)—>Ln_,|(A,a)——>
is an exact sequence of LO( Zm)-modules, so that all the L~groups involved

are of exponent ¥(m).

[l
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The symmetric Witt groups Lo(ﬁm) of the rings of m=adic integers
R k, k k
Zm= I.(ni;l_l z/mkzz are computed as follows., Again, let m = Pq pza...prr so that
k r r
A
Z =@z , 1%2)- £1%% )
m ~ i=1 Tp, m i=1 D
i i
and

1Az = ZgeZ, if p = 2

OA
LAz ) = Z_eZ, if p
P LO(Z)= 2 2

P z, if p

1(mod &)

3(mod 4) .
For each integer mjy 2 define the number
2 if m is a product of odd primes p = 1(mod 4)
N 0, A 4 if m is a product of odd primes at least one
¥(m) = exponent of L (Zm) =
of which is p & 3(mod &)
8 if m is even .
The method of Wall [5] applies to show that the symmetrie Witt group
of the profinite completion Z = Idim Z/m7Z = l;l ﬁp is the infinite product
m
O, 0,5
L(Z) = TL(Z ) .
p ( P "
A ring with involution A is m~torsion-free if S = {m |k2 O}CA is a

1

multiplicative subset, so that the localization away from m 8T A = A[%] is

”~
defined, The m-adic completion 1= Lim A/mkA is a Z -module.
k
A ring with involution A is torsion~free if § = Z~{0YC A is a
multiplicative subset, so that the localization S-1A = Q®ZA is defined,

The profinite completion K = IE A/mA is a @-module .
m

Proposition 4.3 Let A be a ring with involution which is m~torsion-free

(resp., torsion-free) and let § = {mk|k) 0YC A (resp. S = Z=303C 4).

)
The localization sequence of the S-adic completion A = 1&31 A/sA
SES

~ g Amla A A A
coe—> Ln(A,e) —)Ln(s A,s)——aLn(A,S,e)-—-) Ln_,‘(A,s) — ..
is an exact sequence of Lo(ﬁm) (resp. LO( i))-modules, so that all the
A
L-groups are of exponent ¥(m) (resp. 8). Thus the L-groups
AN A
L (a,8,8) = Ln(A,S,E) are of exponent ¥(m) (resp. 8) and the natural maps

Ln(A,e)——)Li(s"1A,€) (n(mod 4))
are isomorphisms modulo \?f(m) (resp. 8)-torsion.

(]
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The integral group ring Z[n] of a group n is torsion-free, with
localization S-1Z[n:] = @fx] (S = Z~0}) the rational group ring, so that as
a particular case of Proposition 4.3 we have:

Proposition 4.4 The natural maps

L (Z[r])—>15(R[x])  (n(mod 4))
are igomorphisms modulo 8~torsion, for any group =.
0

Results of this type were first obtained for finite groups x.
If we take for granted the result that the natural maps Lai(Q[n])—->I-21(R[1t])
are isomorphisms modulo 2-primary torsion (n finite, i(mod 2)) then
Theorems 13A,3, 13A.4 1) of Wall [3] can be interpreted as stating that the
natural maps Lai(Z[n])—-—v Lgi(Q[n:]) are isomorphisms modulo Z-prix;xary
torsion., The results of Passman and Petrie [1] and Connolly [1] can be
interpreted as stating that the natural maps L2i+1(Z[1:])———-> L§i+1(‘Q[“])
are isomorphisms modulo 8-torsion (n finite, i(mod 2)).

Results similar to those of Propositions 4,3,4,4 were first obtained by

Karoubi [1], for hermitian K-theory.
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8§5. Dedekind algebra

We shall now investigate the general properties of the L-groups
Ln(A,S,t-:) (n(mod 4)) in the case when the ring with involution A is an
algebra over a Dedekind ring R and S = R-§0}. An S-torsion A-module has
a canonical direct sum decomposition as a direct sum of ?—primary S~-torsion
A-modules, with? ranging over all the (non-zero) prime ideals of R, and
there is a corresponding decomposition for Ln(A,S,E).

Given a multiplicative subset SCA in a ring with involution A we

shall say that the pair (A,8) is a Dedekind algebra if R = suio} is a

Dedekind ring with respect to the ring operations inherited from A.
The localization S-1A = F@RA is the induced algebra over the gquotient
field F = S-1R. For example, a torsion-free ring with involution A is the
same as a Dedekind algebra (4,Z-10}). A Dedekind ring with involution R
is the same as a Dedekind algebra (R,R-{0}). In dealing with Dedekind
algebras (A,S) and the prime ideals P of R we shall always exclude the
case ?= 50}.

Let (A,S) be a Dedekind algebra.

The annihilator of an S-~torsion A-module M is the ideal of R
defined by

ann(M) = $ser|sM = O} 4 R,

Iike all ideals of R this has a unique expression as a product of powers

of distinct prime ideals SZI,.’PZ,...,G’r

ann(M) =?::1?:2...’9ir (g2 1) .
If M is such that the natural map M — M™ is an isomorphism (e.g. if M is
h.d, 1) then
ann(M™) = ann(M) 4R .
An S~torsion A-module M is ?—Erimarz for some prime ideal Porrir
ann(M) =P¥

for some k)1,
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Define the localization of A at® for some prime ideal ® of R to

be the ring
-1
Ap= (R=P)" 2 .

I£D =P there is defined an involution

- .8 2 -
B :A?——HA,P, P2 (aeh, TreR-®)
(If P#® there is defined an involution —: AxAg _')A'prjs i (x,7)—>(§,%)).

Given an h.d. 1 S-torsion A-module M define an h.d, 1 ?-primary S=torsion
A-module

Mo=A®M .

ky k, k)
If ann(M) =P, P,°...P " it is possible to identify

?k’r)kz 0k1-19 i+1 ?}%

" 2 +eeVaeq Jgpn ceeSy M i P =P, for some i, 1<igr
9 . :
0 lf?¢{?19?2900.?r§

s0o that
r

2, M@i )

We thus have a canonical identification of exact categories

M= (MA).P = (M3—>)A , HomA(M,M') = gﬂomA(M?,M'?) .

(h.d, 1 S-torsion A-modules) = @(h d. 1 ¥ -primary S=-torsion A-modules) ,
w:.thfs) ranging over all the prime 1deals of R. The S-duality functor
Mt—— M" sends the G)—primary component to the ?-primary component,

Express the spectrum of prime ideals of R as a disjoint union

spec(R) = {P} o {Q.} uiQtl
with? ranging over all the prime ideals such that?:? .

form
A non~singular split €-guadratic linking over (4,S)
formation
(M,A )
has a canonical direct sum decomposition
(F,q)
(M,A,v) = §(My';\§" J>)e@(M eM=,Aq, Q)
¥,6) = ®(F,,¢ Yo D(F eF~,G oG-
( 9 ) §(:P’ })QQ(Q Q,Q Q) L

such that for each @
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(MaeMé,aq,vQ) = 0€Ly(4,8,¢)
(FQGFQ,GQQGQ) = oeL,(4,8,8) .

For each prime ideal P of R such that ?:? define the L~groups
Ln(A,T?is) (n(mod 4)) in the same way as Ln(A,S,E) but using only P-primary
h.ds 1 S=torsion A~modules. There is a natural identification

(beds 13 -primary S-torsion A-modules)

= (h.d. 1 Sg-torsion A;;modules)
where S_? = {-1§ GA?I BGS}CA?, so that we can also identify
Ln(A,P°°,s) =L(a +894€) (n(mod ¥)) .
it ?: nR is a prime ideal of R which is principal, with generator 11:6?,
then ¥ = n:uep for some unit u€R such that ug = 1€R and there is defined a
mltiplicative subset 5_ = §xdu®|5%0,k€Z} < A such tnat
(heds 1 P~primary S~torsion A-modules)
= (h.de 1 § -torsion A-modules)

L(a,5%e) = 1 (4,8 ,8) (nlmoa &) .

Proposition 5.1 The L-groups of a Dedekind algebra {4,S) have a canonical

direct sum decomposition
L (4,5,8) = ?Ln(A,PM,&:) (n(mod 4))
with P ranging over all the prime ideals of R such that =3 .

The localization exact sequence of (4,S) can thus be expressed as
oo (4,00 —>15(s7Th, ) —> @1 (4, F ) —> L (h,0) —> .l
®

{1
The localization sequence in the case (4,5) = (R,R-{O})
oo™ L (R,€) —> L (F,e) —> % Ln(R,P"’,e)———a L _,(RE)——>us
is closely related to the original localization exact sequence of Milnor
(Corollary IV.3.3 of Milnor and Husemoller [1]) for the symmetric Witt group

of a Dedekind ring R

0 »1.0(R) > 1.9(r) —> B 1Or/p) -
(In the part of Ranicki [2] devoted to localization we shall extend this to

an exact sequence
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0 —>19(R,e) — 10(F,e) —> eL O(r/p,e) —> L1 (R,~€) —> 0
with L (R,e) the cobordism group of non-s:.ngular g~gymmetric formations
over R). Now L,(F,€) = O, so that the above sequence of quadratic I-groups
‘breaks up into two sequences of the type

o—+§L1<R,@°°,e)-—» LO<R,5)—_>LO(F,5)—,§L0<R,3>°°,s)—->L1(R,-s)——+o .
A standard devissage argument shows that the forgetful functors
(f.d. vector spaces over the residue class field R/®)

——>(h.d, 1P-primary S-torsion R-modules) ; Vim——> ¥V
induce isomorphisms in algebraic K-theory and symmetric Letheory. There are
induced morphisms in quadratic L-theory

L (B/p,e) — L (R, ) (n(mod 4),%=F)
but these may not be isomorphisms (particularly if R/Pis a field of
characteristic 2, cf, Appendix 1 of Part II of Karoubi [1]). For example,
neither of the morphisnms
Ly(Zyo1) = % ———)Lo(z,(zzz)”n) = Zgo, ;1 O,

2

Ly (Zy,1) = 0 ——> L,(Z,(22)7,~1) = Z,
is an isomorphism.

Next, we shall describe the Mayer-Vietoris exact sequence of the

L-groups of a localization-completion square of a Dedekind algebra (4,S)

(Proposition 3.2) in terms of the prime ideal structure of the Dedekind
ring R = Su{0} , We sball confine the discussion to the case when® = § for
every prime ideal P ot R, leaving the general case for the reader.

The ¥-adic completion of A for some prime ideal ® of R is the ring

~ k

A = Lim A A
p = W AFA

with involution

A k - k
: ﬁ?———-—+ R, 5 fa ea/Palky 1} —— (T e/ A1} .
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A
The ¥ -adic completion A? of A can be identified with the S};adic completion

of the localization A’P of A at P

i = (= lim A/x"A it P = R, ne®).
AP ﬁ__din A,P/SAQ f /% AL nR, n€
1?k2

X
Given s¢S = R=}0} let sR = P, o P AR, 5o that

A/sh Aﬂ’k1A 2 r
= OA/PZ Ae, . oOA/:P A
leAPcs A if PEiP 0. P X

It is thus possible to define morphisms of rings with involution

l\

= Lim 4/sA —> ﬂA
seS

and hence also abelian group morphisms
A ~
Ln(A,s) — 1 Ln(A?,e)

Li(§'1ﬁ €) —-)]:[(Ln(g;'lﬁy,s),Ln(Ky,e)) (n(mod 4)) .

(The restricted product ]SI;'.(G?,H?) of a collection of pairs of objects
(G?,H?) indexed by §PYand equipped with morphisms E,—> G.P is defined to
be the direct limit

]I(G ,H)=Lim(ner\H)
P T ®a¥ 1t

taken over all the finite subsets I of {?}). Wall [5] and Bak [2] have studied
some of the circumstances under which the above morphisms are isomorphisms,
roughly speaking when A is finitely generated as an R-module and s A F@RA
is a semi-simple F-algebra (e.g. if (A,S) = (Z{n],Z-{0}) for a finite group
®, with R = Z). At any rate, it is possible to obtain a Mayer-Vietoris

exact sequence relating the L-groups of A,S-1A to those of &ll the®-adic

" A
completions A_, S

P AP.

Propositions 3,2, 5.1 give morphisms of exact

sequences
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ceo—sL (a, s)———>L (s" a e)——>q5L (A’? e)——>L (A,E)—’...
| l T
...——)L (A €)——-——>L (s =12 JE) ?L (133> 5 ,8)———> 1(3,8)—?...
l 8o L 611 I
...—ngn(Ay,a) —-»g[(Ln(s:‘> A?,e) ,Ln(A’,e))—)%Ln(A?,Sy,s)—’f;Ln_1(A?,e)—»...
involving the isomorphisms

Ln(A,P‘”,a) = L(Ap,8,,8) —— L (a ,s?,e) (n(mod 4))

We deduce the following exact sequence, which is valid even in the case when
the Dedekind ring R has prime ideals ¥ such that® #®@.

Proposition 5,2 Given a Dedekind algebra (4,S) there is defined a

Mayer-Vietoris exact sequence 3

-']A

-] A
cee—L (4, s)—>L (s™'a s€)eflL (Ap,e)—)H_(L?( p8) oL (Bp,E))
I () —>een
with P ranging over all the prime ideals of R = Su{0} such thatP=TF,

(]
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§6. Polynomial extensions

Given a central indeterminate x over a ring A there is defined a
multiplicative subset S = ixklkgokcA[x] with localization S A[x] = A[x,x-1].
An heds 1 S=-torsion A[x]-module M is the same as a f.g., projective A-module M
together with a nilpotent endomorphism e:M—>M;y+—>xy, and there is in fact
a canonical identification of exact categories

(hods 1 S-torsion A[x]I-modules M)
= (f.g. projective A-modules M with a nilpotent endomorphism e:M—M).
As in Chapter XII of Bass [1] it is possible to combine this identification
with the localization exact sequence of algebraic K-theory

K, (ALx])— K, (ALx,x™ 1) —>K, (ALx] ,8)—> K (ALx]) — K (Alx,x 1)
to obtain split exact sequences

0 —— K, (A[x]) — K, (A[x,x~ 1) — K, (A[x],8) —> 0

0—K, (8) —> K, (A[x]) ek, (A[x-1])—>K1 (arx,x"17) —> Ky(d) —> 0,
i.e. the 'fundamental theorem of algebraic K=-theory'.

It is likewise possible to use an L~theoretic localization exact
sequence to describe the L-groups of the polynomial extensions A[x],A[x,x-1]
of a ring with involution A, where x = x. Indeed, such was the approach
taken by Karoubi [1]., On the other hand, we have already shown in Part IV of
Ranicki [1] that there are defined split exact sequences

0 ——»Ln(A[x]) ——>Li(A[x,x'1] ) ——>L§(A[x-1] )—>o0

0 —1_(8) —>1¥arx)) erXtarx™"1) — a0, D — 1 () —>0

(n(mod 1), K = im(E () —>K (ar"1))) ,
by & modification of Part II of Ranicki [1] (which concerned the L~theory of
the Laurent extension A[z,z-1] of A, with z = z-1). We shall now explicitly
identify
L_(A[x],8,€) = LI:(A[x-qj,e) (n(mod ¥)) .
The Witt class of a non-singular split €~-quadratic linking form over (A[x],S)
corresponds to the Witt class of a non-~singular €-quadratic form over A[x-1],

whereas €~-quadratic linking forms over (A[x],S) correspond to even
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€=gymmetric forms over A[x'1], so that the extra structure of split
€-quadratic linking forms over (A[x],S) iz seen to carry delicate quadratic
information such as the Arf invariant.

The polynomial extensions of a ring with involution A are the rings

ACx],ACx"'1,A[x,%" '] with involution by
T=x.
Then S =£xk|k>, O}CA[x] is a multiplicative subset in the sense of §2, such

that
-1 - -1 3
Alx]/A(x] = x A[x '] = .,Z x"A .,
J="00

Given an h,d, 1 S-torsion A[x]-module M we have a f.g. projective A~-module

s™larx] = Arx,x'7 , 877

together with a nilpotent endomorphism
et M—=M; yr—xy ,
in which case the dual M* = HomA(M,A) is a f.g. projective A~module with a
nilpotent endomorphism
e* : M*— M* ; £+—> (y+—> f(ey))
and there is defined a natural A[x]=-module isomorphism
1 — ¥ = Homy - (,5"Arx1/A0x]) 5 £—> (3 —> j;):iag:jf(e-j-1y))
Given h.d. 1 S-torsion A[x]-modules M,M! there is a natural identification
Homy . - (M, M) = j £ €Hom\ (M,M")| fe = o'f } .
An e~gymmetric linking form over (A[x],S) (M,A) is the same as a
pair (M,e) (as above) together with an element (per(M) such that
ge = e*o QM) = ker('l-TE:HomA(M,M*):—rHomA(M,M*))
A MXM——aS-1A[x]/A[x] 3 (y,z)t—rjg_wxj<p(y,e-j-1z) .
An e-quadratic linking form over (A[x],S) (M,\,p) is the same as a
triple (M,e,p) (as above) such that both (M,p) and (M,pe) are even
E=-gymmetric forms over A, that is
¢+ ge € Qv S = dm(14T 10 (M) —>Q5(W) ,
in which case
p2 M——>Q_(A[x1,8) = 8T A[x]/ {b+€E | be AL} ;
-1

y— I xj(p(y,e
j=-b°

-3=1 )
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A split e-quadratic linking form over (A[x],S) (M,\,») is the same
as a triple (M,e,p) (as above) together with elements \VO,W1€Q8(M) such that

£
@ = Vo+EVE |, pe = ¥, +EV] € vy (M),

in which case
-1

= 4= xJQ (a) ;

Y M ——— (57 ALx1/A[x])

y—> k::im<x2k“wo<y>(e'2k'2y> + 2, () (7252,
Define an abelian group wmorphism
Lo(ALx] ,8,6) —> LE(ALx™11,€) 5 (M) —> (MEx T Vg + XY,
where M[x™'] = ALx™1§M, K = in(R(8)—F, arx"1).
A split e-quadratic linking formation over (A[x],S) (F, ((X) 8)G)
is the same as an €-quadratic formation over A (H (F);F im((m G——>FOF*))
tdogether with nilpotent endomorphisms féHomA(F,F), g€ HomA(G,G) such that

X8 = feromA(G,F) y pE = f*PEHomA(G,F*) , X‘PgEQ(vo)-s(G) ,

in which case

83 G—Q_ (A[x] 8) y.-—»jg:_ x"(x*y j'1:;) .
Define an abelian group morphism
L, (A[x],8,¢) ———->L§[{(A[x'1] 1€)
(F,G):——»(HE(F[{'H ) ;F[x-1] ,dm( ¥ - :G[x_1]—->F[x-1]oF[x-1] *)).

}*(1”: g)
In this way there are defined abelian group morphisms
L (Afx] ,S,s)——*Lg(A[x-H ,&)  (n(mod &)
which fit into a morphism of exact sequences

(a[x],8,e)—>L (A[x], e)——>L (A[x,z" ] e)— L, (arx3,s, s)—>L -1 (ALX], €)

o l l

0——— I_(ALx1,8) —LE (Alx,x 11, 8)—> LAl 1] ,8) ——— 0 .

n+’|

The top sequence is the localization sequence given by Proposition 2.4, while
the bottom sequence is one of the split exact sequences obtained in the proof
of Theorem 4.1 of Part IV of Ranicki [1] (- only the case € = #1€ A was

considered there, but the proof generalizes to arbitrary €€h). We deduce:
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Proposition 6,1 The abelian group morphisms

L (A[x1,5,8) ——> IA(A[x"'1,8)  (n(mod 1))
are isomorphisms.
2
Define non-singular split (=1)-quadratic linking forms over
(Z[x1,5 = § x5y 01 (MA ), M,2,0") by
M= ZeZ , xM =0
Nt MXM———>Z[x,x'1]/Z[x] ; ((y,z),(y',z'))'——*x-1(yz".‘i'z)
Vi1 M— Q_1(m[x,x'1]/2zcx]) = Z0x,x"11/(Zx] +2%[x,x-1]) H
(y,2)—— x-q(y2 + ¥z + 22) R
pUiM——s Q_ (Z(x,x""1/Z(x]) ; (3,2)— x ¥z
with the same associated (~1)-quadratic linking form over (ZIx],S)(M,k,rO
Wi M——> Q_ (Z[x,x"1,8) = Zx,x ]} (y,20—>0.
The isomorphism given by Proposition 6.1
LO( Z[%] 4Sy=1)—> LI({)( Z[x-1] y=1) = Za"?
sends (M,\,V) to the element (1,0) (= the image of the Arf invariant element
1 1
(ZeZ, (o 1)éQ._,](ZoZZ))eLo(Z,-'\) under the map induced by the natural
inclusion Z-———?Z{x-qj), while (M,\,»') is sent to O, Thus split e£=-quadratic

linking forms carry more information than €=-guadratic linking forms,

in general.
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§7. Change of K~theory
We shall now describe the localization exact sequence for quadratic
L-theory in the case when all the algebraic K~theory around is restricted
to a prescribed s=invariant subgroup X;ﬁm(A) (m=0or 1).
Let A,S,€ be as in $§2,
An h.d. 1 S=torsion A=-module M has a projective class
(M = [Pyl - (By1e€Xy(a)
with PO,P1 the f.,g. projective A-modules appearing in a resolution
0—> P1—d-> Py—rM—> 0.
As deHomA(P1,Po) is an S-isomorphism [M] Eker(io(A)-—-» EO(S'1A)).
Given a short exact sequence of h.d, 1 S-torsion A-modules
i o—utow dywm_ o
there are defined f.g., projective A-module resolutions

0—sp, 2 5P M — 0

T

o—p Lspr w0

n o, Lo |

O—VP',"———»P'é-—-‘*M"————ro ,
and there exists a chain homotopy k¢ HomA(Po,P‘,l') such that
dotg= d"keHomA(Po,P'(')) y Jqiq = kdéHomA(P1,P',|') .

Thus there is defined an acyclic f.g. projective A~module chain complex

( d ) <io at
-1, k 1 (-JO d")s

C(f) + 0—> P, ———> PeP! PPy

M—>0,
giving the sum formula

(M - ('] + (] = 0eR(a) .
The S=dual M” = EomA(M,S-1A/A) of an h.d, 1 S-torsion A-module M has
projective class

(M) = [B2] - [P = -[M]* € Ko(a)
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form

The projective class of a split €=quadratic linkdng
formation

M,
over (A,S8) is defined to be
F,G)
[aLAT = (M €X(A)
[(F,&)] = [6] - [F1€K, ) .
(M4, )
If is non~singular then
(F,@)
[O1,2,2)]% = =[(M,2,2)] €X(R)
[(F,@)1* = [(F,6)]e K (a) .
Given a »-invariant subgroup XCX,(A) let LX(4,5,8) (n(mod 4)) be the
Witt groups of non~singular split +E€=quadratic linking forms and formations
over (A,S) defined exactly as L (4,8,6), but using only h.d. 1 S-torsion
A-modules with projective class in XGrIZO(A). In particular,
K (8)

1 ©

' (a,s,¢€) = Ln(A,s,e:) (n(mod &)) .,

Define s~invariant subgroups
x5 = Xnker(s™ & () —E (570 €E (1)
| ] AN ]
sT'x = {187 P | (P e XFCR(5TA) ,

80 that there is defined a short exact sequence of Z[Zzaj-modules
0—X°—x—35"x—0

inducing a long exact sequence of Tate Ez-cohomology groups

——)ﬁn(ZZ;XS)-—)ﬁn(%Z;X)——) ﬁn(za;s"1x)—>ﬁn'1(z2;xs) — ..

The exact sequences of Propositions 1.2,2.% can be generalized to

the intermediate projective L-groups, as follows.,



152

Proposition 7.1 Given #-invariant subgroups XG;Ys;i%(A) there is defined a

commutative diagram of abelian groups with exact rows and columns

| | J
...——»L(A s)-——yLs X(s Aa)——rL (Ass)-—rL (A €) > 440

l | l 1

...———»L(A 8)——>Ls Y(s As)——»L (Asa)—>L Ja,e)— ...

! ! ! i

oo e — BN Z,51/0) 82,58 /57 x) -2V (z 2;ys/xs')—>ﬁn'1(zz;z/:x)—>...

} L | !

14, e)——)LS X(S-1A a)——-rLX (4,8 E)—->L L8, —> L.,

! ! | 1

—e

coe —> I?

: : :
]
In dealing with based A~modules we shall assume (as in §1) that
f.g. free A-modules have a well-defined rank, and that T(g€:tA—4) = ()Gi;(A).
An h.d, 1 S-torsion A~module M is based if there is given a
f.gs free A~module resolution
0—>p 250 — M—>0

such that PO and P1 are based, in which case there is defined a torsion

PR Py |
ts(M) =T(8 'da:8

-1 >~ =1
P,—>s" P)EK, (5 4) .
The S~dual M is also based, with torsion
LY * ¥ -1
T () = e K (s
A short exact sequence of based h.de 1 S-torsion A-modules
E:1 00— —a3 M — M —350
has a torsion

TAE) = e(c®NER )

such that

§(€) = ) - 2 )+ T meR (s .
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form
The torsion of a non-singular split €-quadratic linking
formation
M, 2,0) M
over (4,S) with based is defined by
(rF,q) F,G

TMAW) = (E(E:0—> M —L»M“——»o—>0),rs(M))
1+T o ~ ~ _1 ~ ~ _1
€ kex( - : K (B)eK, (ST A) —>K, (A)eK, (57 '4))
-5 1-T

¥ A A
T(F,G) = (t(€:0 —> G (“): FeF® e L)G"

> 0), % (@) - T (FY)
-7 0 - . o o S
€ ke::-(<_s_,l ) ): K, (R)ekK, (57'8) —— K ()oK, (57°4))
+T

with Tix+—sx* the duality involution,

Given *-invariant subgroups xg'ﬁ’1 (a), YQ%;(S”A) such that

sx = e e X (s [wnexlcy

let Li’Y(A,S,e) (n{mod 4)) be the Witt groups of non-singular split
+E=quadratic linking forms and formations over (4,8) defined exactly as
Ln(A,S,a) , but using only based h.d., 1 S-torsion A-modules and requiring
the torsions to lie in

L €xer |z = (7 'x , §7x = 3+ (IS K@K (570

In particular,

T, ), %, (s7"8) fore® (a)

L (a,8,e) = Ln

. (4,8,e) (n(mod %)) .

Given a morphism of Z[?sz-modules
f:+: G—H

define relative Tate Zz-cohomology groups

-1 n-1_,°
ﬁn(Zz;f:G—ﬂ-I) - { (x,y) €GoH | x* = ()" 'x fx=73+ ()" 'y*3 (n(mod 2))

Cus ()2 fu s v (<)) | (u,v)e GeH }

to fit into a long exact sequence
e > B2 @) L B2 B) ——r BN Zyi 0) —> B (2 i) —> o
The exact sequences of Propositions 1.2, 2.4, 7.1 can be generalized

to the intermediate torsion L=-groups, as follows,
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Proposition 7.2 Given #-invariant subgroups XS:X'QrIE;(A), YCYrS %;(5-1-‘\)
such that S-1XE£Y, S-1X'§;Y' there is defined a2 commutative diagram of
abelian groups with exact rows and columns

| f i 1

oo _—'-)LIXI(A,E) —‘%Li(s-"A,E)——)L}I(l,Y(A,S,E)—ﬁ X ,I(A,E)‘“""é eoe

L
l l "
L] 1 - ' 1
eoe ———-—ali (4,8) ———#Ii (s 'A,8) —~—+I§ ¥ (A,S,e)———>L§_

} | |

.
ceo '-——)ﬁn(ZZ;X'/X)-—ﬁﬁn(ZZ;Y'/Y)—)ﬁn(ZZ;X'/X—)Y'/Y)—»ﬁn-’] (Zy; X' /D).,

} } l \

vee — IF (A,E)-—-)L§_1(S-1A,E)—.9L§1¥(A,s,a)——+L§_2(A,e)—-—-—’r

T I

v

1 (A,E)———? see

1

. .
. »
. .

]
Let - ~
§ 0K (A) K, (4)
Vn(A,E) =L, (hye) = L (4,e) (n(mod %))
be the L~groups defined using only f.g. free A-modules, and let
{0l (8) T, (8),K (57w
v (a,5,8) = L (a,8,8) = L, (4,5,e) (n(mod 4#))

be the L-~groups defined using only h.d., 1 S~torsion A-modules which admit a
fege free A-module resolution of length 1. As a special case of either of
the localization sequences of Propositions 7.1, 7.2 we have an exact sequence
of V-groups

e V(B,8) — U (STAE) —5V_(8,5,8) —>V__(8,8) —> ... .

For example, the localization exact sequence of Pardon [1] is of this type.
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The excision isomorphisms and the Mayer-Vietoris exact sequence for

the I-theory of the cartesian square

A———s

)
B—> 773
associated to a cartesian morphism f:(A,S)—>(B,T) (Proposition 3,1)
can be generalized as follows,
Proposition 7.3 Let f:1(A,8)——(B,T) be a cartesian morphism of rings with
involution and multiplicative subsets, and let X‘C_'ffm(A), Ygfm(s-1A),
Zg'im(B), ngm(T-1B) (m = O or 1) be s-invariant subgroups such that
1

s /X

and such that the sequence

XSY , BRXCZ , T 'zCW , T 'Bg_, YW, ker(R (A)-F (57 )6k (B))C X
s™a

o—>¥/ker(E_(A)—E (570) oK (B))—>Tez —>W —>0
is exact. Then there are defined excision isomorphisms

£ 1 10N,8,0)—12"(8,1,6)  (n(moa #))

and a Mayer-Vietoris exact sequence

...——’L}:(A,e)—» Li(s'1A,e)eLIZl(B,e) —yLz(T"']B,e) —_ L§_1 (A, €)—> s0e &

]

(In the case m = O the groups Ii’Y(A,S,e) are to be interpreted as the

1A,e) appearing in the exact sequence

1

relative groups Ii’Y(A-——’S-

voe—sTh(a,8) —> L1(sT'A ) — X (A —rs”

For I = S-1X these are the groups defined previously

Age)—'—"L}é_,] (Age)_" ss0 o

L}:’s-1x(A,s,s) = T4,5,6) (n(mod ) ,
but for general X,Y it is not possible to express these relative L~groups
in terms of linking forms and formations over (4,S)).

For example, the Mayer-Vietoris sequence of Theorem 6.6 of Wall [6]

r’S
is a special case of the sequence of Proposition 7.3, with (B,T) = (2,5) and

X = ker(% (1) — K (570)) , 7 = ker(’x',\(s"‘A)—#i',I(g"'X))
2 = ker(X,(N—sK (578 , w - §o}e®, (5™ .
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