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Introduction
In Part I ([4]), we defined the Z-groups Un(A), Vn{A), Wn{A) of a ring with
involution A, for n (mod 4).

The main result of Part II is that there exist natural direct sum
decompositions

Wn(A2) = Wn(A)®Vn_1(A)>

where Az = A[z, z-1] is the Laurent extension ring of A, with involution
z h> z~x. (Cf. Part III, [5], for the generalization to twisted Laurent
extensions.)

Similar splittings arise in [3]—indeed, our method of proof follows that
of [3], except that Novikov neglects 2-torsion in the Z-groups, and assumes
that 2 is invertible in A. In the geometrically realizable case A = Z[TT], (TT

a finitely presented group), it is possible to obtain the decompositions by
topological methods ([2], [6], and [8]).

Defining X-theories L^^A) for m < 2, n (mod 4) by

= Wn(A),

= L^\A)®L^(A) (vi ^ 1),

it follows that L$\A) = V*(A), L^(A) = U*(A), and that

where AZx>z%y >Zp = A[zx,z^1,z2,z^-1, ...fZ^Zp-1] is the Laurent extension
ring of A in p variables. It will be shown that we are dealing with natural
isomorphisms

where AMe(z1,z2, ...,zp) is the graded exterior Z-algebra on p generators
zvz2, ...,zp in degree 1. The appearance of exterior algebra in .L-theory
is explained in [3] in terms of the corresponding surgery operations.
Proc. London Math. Soc. (3) 27 (1973) 126-158
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1. Laurent extensions

We refer to [4] as I. Notation, and definitions are as in I. In particular,
we are working over A, an associative ring with 1 and involution, and such
that f.g. free ,4-modules have well-defined dimension.

Let z be an invertible indeterminate over A, which commutes with
every element of A. The Laurent extension of A by z, Az, is the ring of
polynomials J^L_aoai & in z, z"1 with only a finite number of the coefficients
aj G A non-zero. Then Az is an associative ring with 1, under the usual
addition and multiplication of polynomials. The function

00 00

-\ Az-± Az\ a= S a^ -> a = ]] o ^
j=—oo j=—oo

is an involution of Az. The projection

00 00

e: Az ->• A ; £ %z3 (->• 2 aj
j=—CO j=— 00

is a ring morphism which preserves unities and the involutions. Every
f.g. free ^g-module Q has a well-defined dimension, namely that of the
f.g. free ^4-module eQ.

Thus Az satisfies all the conditions imposed above on A.
For example, if A = Z[TT] (as in Example 0-1 of I), with n = TT-^M) for

some compact manifold M, then Az = Z[TT X Z], with TT X Z = Trx(M x S1).
The injection

e: A -» Az; av+ a

splits e, that is ee = 1^, and eA is identified with A. Every ^4s-module Q
can be regarded as an A -module by restricting the action of Az to one
of A.

A modular A-base of an ^4s-module Q is an -4-submodule Qo of Q such
that every x e Q has a unique expression as

X = £ ^ G Q (^ G Qo)
j=-oo

with {^ G Qo I xj # 0} finite, corresponding to an infinite direct sum

Q = £ a%
3 = - o o

of ^4-modules isomorphic to Qo. Hence there is an A -module isomorphism

Q0^Q/(z-l)Q (=eQ)

and modular A -bases of isomorphic ^4s-modules are isomorphic.
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Given an A -module Q, define the Az-modu\e freely generated by Q, Qz,
to be the direct sum

QB = £ JQ
J=-oo

of a countable infinity of copies of Q with the action of Az indicated—that
is, Qz = eQ. Then Q is a modular A -base of Qz.

It is convenient to list here several properties of modular A -bases.
(i) Every modular A -base Qo of an ^4s-module Q determines a dual

modular .4-base Q$ of Q*, with

(z*g){z>x) = g(z).zi-k e Az (g e Q$, x e Q0) j , k e Z).

(ii) For any ^.-modules P, Q, give Hom^(P, Q) a left ^4-module structure
by

A x H.omA(P,Q) -> RomA(P,Q); (a,f) [->(x» a.f(x))

and similary for -43-modules.
Every/ e HomA(Ps,Qz) defines 1 ^ 2 % e (Hom^(P,g))s by

= £ »%(*) e ^ s (* e P, /3(^) £ Q),
j=-CO

and conversely, so that we may identify

Given / 6 Hom^(P,Q), let / also denote the element of Hom^e(PS5 Qs)
defined by

/: Pz -> Qs\ £ z>xt h» £ z?f{xt) {xj e P).
j=—oo j=—oo

(iii) The ^4s-module Qs is

(f.g. proiective .„ , . .„ _ . ff.g. proiective . , .
I* * if and only if© is a L 6 £ J ^4-module.
|f.g. free J ^ (f.g. free

A based A -module Q generates a based yls-module Qz in the obvious
way. Conversely, a based u4s-module Q determines a based modular
A -base Q.

(iv) Given an A -module Q define ^4-submodules

Q+= i
oiQz. Then

(10)

is the positive projection on Q.



ALGEBRAIC L-THEORY, II : LAURENT EXTENSIONS 129

(v) Let F} 0 be two modular A -bases of a f.g. free ^-module Q. Then
F, G are f.g. free A -modules and

zNF+ s G+

for large enough integers N ^ 0. For such N define the A -module

a direct summand of Q (regarded as an A -module), with
G+ = zNF+®B+(F,G).

If H is another modular ^4-base of Q, and if M ^ 0 is so large that
ZMQ+ g H+, then

In particular, for Nx ^ 0 so large that 2^$+ £ F+,
N+Ni-l

G, F) ® B+(F, G) = B++Ni(G, G) = £ a*G
3=0

so that, as C is f.g. free, B^{F, G) is a f.g. projective ^-module.
Moreover, as

and F is f.g. free, the projective class [B^(F, G)] e K§{A) does not depend
on N.

The ^.-module isomorphism

B+(F*, G*) -> B+(F, G)*; g\^(x^ [g(x)]0)

is used as an identification, where [a]0 = a0 £ A if a = S^=-ooajz3 e ^-s-
We now quote a principal result of algebraic i^-theory ([1], Chapter XII;

[7], p. 226).f

THEOREM. There exists a natural direct sum decomposition

RX{AS) = R1(A)®K0(A)®m\+(A)®mi-(A),

where Nil*^) is the subgroup of R-^A^ generated by

{r((l + v(z±i- 1)): P. -• Pz)e&x{A2) | v £ Hom^(P,P) nilpotent}.

The splitting is by injections

e: RX{A) -> &x(Au)-t T(«: F -+ F) h> T(«: P S ^ Ps),

6?/ projections

e: RX{AZ) •+ &i{A); r( £ z*o,: P3 -> P3) h> r ( £ a,-: P -* A
\;=-oo / \j=-oo /

f See the Corrigendum on p. 156.
5388.3.27 E
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COROLLARY. The diagram

T
commutes (in the sense that *s = e*, *e = e*), and

RX(AZ) -^ ZM.)

B\\B B\\B

R0(A) -U R0(A)
skew-commutes (*B = -B*, *B = -B*), where

* : RX(A) -> RX{A); r(a: F -> F) H> r(a*: F* -> F*)

*:R0(A)^R0(A); [P]^[P*]

are the duality involutions.
Moreover,

R R
sends Nil±(^) onto

Recalling the definitions of the groups

Q±(4) = {TE RX{A) I r* = ± r G ^!(

S±(^) = {[P] e ^0(^) | [P*] = ± [P] e J8o(^)}/{[Q] ± W*] I [0] e R0(A)}

from I, it follows that there are defined morphisms

e B
Q±(A) * = t Q±(^s) = • J^(A)

e B
and hence a splitting

0We wish to establish an analogous result for algebraic .L-theory.j

THEOREM 1.1. There exists a diagram

... • n(_)n+1(A) • Wn(A) > Vn(A) > Q{_)n(A)

%\e ei\e £l\e
Wn(As) > Vn(As) •

B^B B^B

. • S(_,.(4) >Vn_1(A) >Un_1(A)

f See the Corrigendum on p. 156.
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of abelian groups and morphisms, defined for n (mod 4), in which squares of
shape j:£j, fz£f commute. The rows are the exact sequences of Theorems 4.3,
5.7 in I. The columns are split short exact, with se = 1, BB — 1 whenever
defined, corresponding to direct sum decompositions

Vn(Az) = Vn(A)@Un_1(A)-
The diagram is natural in A.

2. Proof of Theorem 1.1 (n odd)
Given .4s-modules P, Q and 6 e HomAz(P,Q*), define

[6]0EKomA(P,-KomA(Q,A))
by

[0]o(x)(y) = [9(x)(y)]o E A {XE P,yeQ),

where [a]0 = a0 G A if a = YfjL-caajzi G Az.
Given ^-modules P,Q and 6 = I^.^zWj e Hom^2(Ps,g*) (with

0, 6 Hom^(P, g*)), [0]o e Hom^(P2, Q*) is given by

[d]0(zix)(zky) = dk_.j(x)(y) eA (x e P, y eQ,j,k e Z)
and

^(x)(?/) = £ ^([^]o(a;)(z^)) G ^s (x e -P> 2/ e Q)-
j=-oo

LEMMA 2.1. Lê  (Q, <p) be a non-singular ± form over Az, and let C,D be
complementary A-submodules of Q such that C is finitely generated and

Then (C, i*[<p]oi) is a non-singular ± form over A, where t: C -» Q is the
inclusion.

In general, (C, ^[^V) will be denoted by (C, [<j?]o)-
Define

B: V2i+1(AZ) -* UM{A); (Q,r, F,G) h
where F and G are free, with modular A -bases F0,G0 respectively and
N ^ 0 so large that

for some choice of hamiltonian complements F*t G* to F, G in (Q, <p) with
dual modular A -bases F$,G$. Now

P j ^ e n * , G0®G*),z"{F0(BFt)+(B{Q0(BQ*)->9\0 = {0} c A

so that the hypotheses of Lemma 2.1 are satisfied, and

(B+(F0®F*,G0@G*),[<p]0)
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is a non-singular + form over A, and does represent an element of U2i(A).
It does not depend on N because increasing N by 1 adds on H±(zNF0),
which vanishes in U2i(A). Nor does the choice of F* matter: for N ^ 0
so large that

( 0 )
define the A -module

E+{F0,Q0<BQf) = {XE (G0®G*)+ | [ < ^ , 3 > J 0 = W £ A}.

Observe that the ± form defined over A by

coincides with (B^(F0@Fg, G0®G$), [<p]0) when N is so large that
zN(F0®F*)+ c (G0®G*)+, as then

E+(F0,G0®G*) = (F®z»F*-)n(G0®G*)+ = z»F+®B&Ft®Fg, G0®G*).

The choice of F* did not enter in this new definition. The choice of G*
may be dealt with similarly.

Next, suppose (Q,<p; F, G) = 0 e V2i+1{AZ), and consider the generic
cases.

(i) F and G are hamiltonian complements in {Q,<p). Put F% = Go,
G$ = FQ, N = 0 to obtain B+(F0@F*,G0®G*) = 0, and so

B(Q,<p;F,G) = 0eU2i(A).

(ii) F and G share a hamiltonian complement in (Q,<p). Put F$ = G$
to obtain

B{Q, cp\F,G) = B(Q, <p; F*, G*) (by symmetry of definition)

= 0 G U2i{A) (taking N = 0).

I t follows that B{Q,<p; F,G) = 0e U2i(A) whenever

It now remains only to verify that the choice of modular A -bases
Fo, Go for F, G is immaterial to B(Q,<p; F, G) e U2i[A).

Let j ^ o be another modular A -base of F, with dual modular A -base flfi
of F*, and let ft ^ 0 be so large that

Then

, F)) ® (B+(F ®F*,G® G*),

= (B+(F®F*,G®G*),[<p]0) e U2i(A),
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so that Ĵ  will do as well as F. Similarly, the choice of G is immaterial.

Hence

is well-defined.
The composition

V2i+1(A) - ^ V2i+1(AZ) > U2i{A)

is 0 because

Be(Q,<p; F,G) = B(Qg,r, FS,GS) = (Bi(F®F*,G®G*),<p) = 0 e UM{A).

The diagram

s

commutes, because given. (Q,<p; F,G) e V2i+1(AS) and

ir-\Q,r> F,G) = ((«>X): (Q,?) -> {Q,cp)) e W

with <x{F) = G (in the notation of Theorem 4.2 of I), then

B(r(a)) = [B%{Fo®F$M

for any modular A -base .Fo of F, with Ĝo = oc(FQ).
Define

where — Q is any f.g. projective A -module such that Q® — Q is free and

/I 0 \
\ 0 z J' z z z s

This is well defined because

{((x,0),(0,g),(0,y))E(P®P*)z®(P®P*)z

®(-(P©P*).©(-(P©P*).)*)|a;6P.>flf6P*,ye(-(P©P*).)*}

is a hamiltonian complement to both AH (Pi)® — (P@P*)S and
± . in H±(PS)@-H±(P1!)®H±(-IP®P^S), SO that

^(^(P)) = 0 G
for any f.g. projective A -module P.

The composite

U2t(A) JL V2i+1(AZ)
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is 0 because

eS{Q,<p) = {(Q®Q,<p®-<p)@H±{-Q); A( Q >,>0-Q,

= 0 e V2i+1(A)-

The diagram
U2i(A) > X+(A)

B\ \B

commutes because, given (Q, cp) e U2i{A) (with was in Theorem 4.2 of Parti) ,

: (QS®QS)®{-Qz®-Qf) -> {QS®QZ)®{-QS®-Q%))

e C1_(AZ).

The composite

UM(A) - ^ V2i+1(A) > U2i{A)

is the identity because, for each (Q, <p) e U2i(A),

BB(Q,<p) = B((Qs@Qs)(p®-<p)®H±{-Qs); /S,(Qz<l))®-QB,^lQt<<p)®-Qs)

= {B+(k{QiV>) ® A * w ) , ?(A(OtV) 8 A* ( o ^ , ) ) , 9? 8 - <p) ® H±{ - Q)

= (B+(Q®Q,Q®zQ),?®-<p)®H±{-Q)

= {Q,9)eUM(A),

where A^Q.^) is any hamiltonian complement to A(G(?) in (Q®Q,<p@ — <p),
in the terminology of Lemma 1.4 of I.

It now remains only to verify that the sequence

V2i+1(A) —*-+ V2i+1(Ae) > U2i(A)

is exact. This will be done by first characterizing the ± formations over
A z equivalent to ones obtained from + formations over A via e: A -> Az

(in Lemma 2.2 below), and then using the hamiltonian transformation of
Lemma 2.3 to show that every element of ker(J?: V2i+1{AZ) -> U2i{A)) has
a representative satisfying that criterion.

LEMMA 2.2. A ± formation (Q,<p; F,O) over As is equivalent to
e(Q0,<p0', FQ,GQ)for some ± formation {Q0,<p0; F0,O0) over A if and only if
F has a modular A-base Fo such that, for some hamiltonian complement F*
to F in (Q, (p), the positive projection on FQ®F$,

V:Q = F®F*->(F0®F*)+,

preserves 0, that is v(G) c= G.
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Proof. It is clear that e(Q0, y>0; Fo> GQ) satisfies the condition, for any ±
formation (Qo, <p0; Fo, Go) over A.

Conversely, assume that the condition holds for (Q, <p; F,G), a ±
formation over Az.

The A -module morphism

£ = z(l-v)z-iv.Q^Q

sends Q onto F0®F$, and has the property that

x = £ dfr-ix e (FO®F*)S = Q
j=—oo

for every x e Q.
Now v(G) g G, so that

and Go = $(G) is therefore a modular A -base of G contained in F0®F$.
Thus, up to equivalence of ± formations over As,

(Q,<p; F,G) = (H±(F); F,G) = e(H±(F0); F0,G0).

LEMMA 2.3. Given a morphism of ± forms over A

(f,x):(P,6)^(Q,<p),

define the self-equivalence

1

(Q, ?) e H±(P) -> (Q, 9) e H±(P).

If (Q, (p) is non-singular, the self-equivalence h' = H(f) ® 1 of

(Qf, ?') = ((Q, ?) © HJJP)) ®((Q,-<p)@ H±( - P) e H±( - Q))

is a hamiltonian transformation, that is

for any free lagrangian L' of (Q', <p').

Proof. The self-equivalence h': (Q'} <p') -+ (Qr, cp') preserves the free
lagrangian

L = {{x,y,x) G Q@(P®P*)@Q \xeQ,ye P*}®-P*®-Q

so that it is necessarily a product



136 A. A. RANICKI

of elementary hamiltonian transformations, for any hamiltonian
complement L* (cf. Theorem 4.2 of I).

We now prove the exactness of

V,i+1(A) - ^ V2i+1(Ae) - ^ U2i(A).

Given (Q,<p; F,G) e ker{B: V2i+1{AZ) -> U2i{A)), there exists N > 0 so
large that (B^(F0® F$, G0®G$), [<p]0) is trivial, for some choice of modular
A -bases Fo, GQ and hamiltonian complements F*, G* for F, G respectively.
Denoting the ,4-module B+{F0®F*,G0®G*) by Po, let P = (P0)s, the f.g.
projective ^4s-module freely generated by Po. Define an ^4s-module
morphism

f:P->Q

by sending elements of the modular J.-base Po to themselves in Q, and
extending ^-linearly. Then/*??/G Hom^2(P,P*) can be expressed as

V = [?] + W\ + M 6 Hom^2(P, P*)+
with

j=l j=-co

Choose hamiltonian complements LOiL$ in (P0J[9?]0)) and let L = (LQ)B.
Denote H±{L) by (P, 0), so that

for some + form (P,x) over ^4S (of the type e(Po,xo)> f°r some + form

Consider now the self-equivalence

o o \ / i -K o

0 0 / \ f(9±9)
(Q,<p)®H±(P)^(Q,<p)®H±(P),

where

rj = I ^ T
Q

Z V P* = L*@L -> L@L* = P,

\ ):P = L®L*->L@L* = P,

and
» = W+ ± W* + 0 e Hom^jP, P*).

Defining the positive projection
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and also the A -module projection

jB: Q = P0®(zN(F0®F*)+®(G0®G*)-) - ^ l Po,
note that

iHx'y) (xm[x>y) \h(o, £-W£(y)-*)) (x 6 ̂ , y e P0-),
whence

vh{F®P) £
The product decomposition used to define h shows that the self-

equivalence h' = h ® 1 of {Q\ cp') = {{Q, <p) ® H±{P)) ® H±( -P) is a
hamiltonian transformation over Az. The matrix involving the even +
product 7] e Hom^s(P, P*) is an elementary hamiltonian transformation,
while the other is the hamiltonian transformation generated (in the sense
of Lemma 2.3) by the morphism of + forms over Az

The lagrangians F' = F@P@-P, G' = 0®P®-P of (Q',<p') are
such that

{Q,r, F,G) = (Q',?
f; F',G') = (Q't?'; h'(F'),<?) 6 V2i+1(AZ),

using the V-theory sum formula of Lemma 3.3 of I. The last representative
+ formation satisfies the hypothesis of Lemma 2.2 with the roles played
by F and G reversed—this is clearly all right for non-singular +
formations. Thus

(Q,<p; F,G) e im(s: V2i+1(A) -> V2i+1(AB))>

completing the proof of the part of Theorem 1.1 relating to Vn(A3) with
n odd.

We now give the analogous constructions for JF-theory.
Define

B: W2i+1(Az) "> V«(A); (Q, 9; F, G) t-> (B+(F0 ® F*, Go ®G*), [rf0),

where Fo is the modular A -base generated by the given ^-base of F, and
similarly for Go, G. Then

because it is the image under B: R-^A^) -> RQ{A) of an automorphism
of Q taking a hamiltonian base extending F to one extending G, which is
simple by construction (cf. §5 of I), so that B: W2i+1(AS) -+ V2i(A) is
well defined.

The composite

Ki+M) - ^ W2i+1(AS) - ^ V2i(A)

is 0, as for F-theory.
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The square

JB \B

commutes, sending T(«: P S -> JPS) e Q+(4g) to H±{B%{F, ot{F))) e V2i{A)
both ways.

Define

S: V2i{A) -> W2i+1(AZ); (Q,?) f"> ((Q®QL<P®-r> ^W&IQ*)).

where ^ = I )'• Qs®Qe->Qz@Qs, Q is free with any base, and

{Q®Q,<p® — <p) is any hamiltonian base extending A(Q)(?). Then B(Q,<p)
is just

TT'((£,O): (^seQs)95e-9?) -> {Q3@QS,<P®-<P)),

in the terminology of Theorem 5.6 of I, as

so that we are dealing with an element of the special unitary group
"*±(A.).
The composites

B B

are 0, 1 as for F-theory.
The square

B\ lB

C1+(AS) • W2i+1(At

commutes, sending [P] 6 S_(-4) to

e W2i+X{AZ)

both ways round, where {Q,<p) = H±(P) with any base for P@P*.
The (split) exactness of

0 > W2i+1(A) - ^ W2i+1(AS) - ^ V2i(A) > 0
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follows from a diagram chase round:

Cl+{A) - ^ U W2i+1(A) > V2i+1(A) — ^ Q_(A)

s\\e

B \B

in which all the squares commute, and the rows are the exact sequences
of Theorems 4.3 and 5.7 of I. The inside left and right columns are exact—
we wish to verify that the centre column is exact as well:
let x e W2i+1(AZ) be such that B(x) = 0 e py^4); then

BP(x) = vB(x) = 0 G U2i{A) and p(x) ekerB = im£ £ V2i+1(As)l
let y e V2i+1(A) be such that j8(x) = e(y) e V2i+1{AZ); then

ey(y) = ye(y) = yP(x) = 0e &4AB) and

let s e W2i+1(A) be such that j8(s) = y e V2i+1(A); then

P{z-i(8)) = (y-p(s)) = 0 e V2i+1(A2),
and

(*-e(5)) G kerjS = i m « c W2i+1(AZ);

let ^ G Q.+(Az) be such that a(^) = x — e(s) e W2i+1(AS); now

t = BB{t) + ee{t),
so

(x-s(s + oce(t))) = *BB(t) E W2i+1(Az);
also

lxB(t) = Ba(t) = B(x)-Be(s) = 0 e V2i(A);
and

5(0 G ker/x = i m A c 2_(4);

let w G C/2i+1(̂ 4) be such that A(w) = B(t) E S_(^4); then
aBB(t) = *B\(u) = oc8B(u) = 0 G W2i+1(AZ);

hence
a: = e(s + oce(t)) e im(e: TT2m(^) -> Tf2m(^J).

This completes the proof of Theorem 1.1 for n odd.

3. Proof of Theorem 1.1 (n even)
We define B: V2i{Az) -> U2i+1(A), using

LEMMA 3.1. Given a non-singular ± form (Q, <p) over Az, and a modular
A-base Q0for Q, let
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be the positive projection, and let N ^ 0 be so large that

Then the A-submodule

= {(zN(l - v)zr»xt v{9 ± <p*)x) eQ®Q*\xe £+

ofQ@Q* is a lagrangian of H-^{ YJJJQ^QQ)
 such that

does not depend on N and Qo.

Proof. The hessian ± product on BN{QQ, <p) in H^i^fjQ1 zjQ0) is given by

(zN(l-v)z-"x,v(<p±<p*)x) h> {(z"(l-v)z-»x' M

which is clearly even, as required for a lagrangian.
A hamiltonian complement to BN(Q0,<p) in H*{T,?j£z?Q0) is given by

(i - v)y) eQo®Qt\y

Every {s,t) e (SjLl1^)© (SJL^1^*) c a n b e expressed as

eBN(Q0,<p)®B*(Q0)<p)
with

2/ = ( - (<P ± <P*)-M<P ± <P*)s + zN(l - v)z-"(<p ± 9*)-H) 6 5+(Q 0 , {cp ± <p*)-*Q*).

The associated + product of Hzpi^j^ zjQ0) restricts to an A -module
isomorphism

i-vy,v{<p±<p*){l-v)y) h> ({zN{l-v)z-Nx,v{<p±<l

so that we are dealing with hamiltonian complements.
Increasing N by 1, we have

BN+1(Q0,?) = BN(Q0,<p)®{(zW(l-v)z-^x,(<P±?*)(x))
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Now B%(Q0, <p) © zNQ0 is a hamiltonian complement in H±(%ffizfQ0) to

both BN+1(Q0, ?) a n d SN(QO> ?) © zNQt» s o t n a t

/ (N-l \ N-l \

\ \j=0 / j=0 /

j=O

Q B { Q ) ) £

Hence the choice of N is immaterial.
Let Qo be another modular A -base of #, with

the new positive projection. Let M ^ 0 be so large that
M M

j=-M j=*-M

Then $ = JV + 2if is large enough for B$(Q0, <p) to be defined, and

B^vt^QtA)
= (<p± <p*)-HzM+NB+(Q*,Q*)) e z*B+{{9 ± ^QtQo) e B+(Q0, Qo)

so that

© {(a, (^ ± ?*)x) | a; e
© {(x, % ± cp*)x) I a; e B+f(Q0> Qo)}.

Moreover,

and
^ + J V 5 ( C o , Go) © *MB%{QQ,cp) © 5 (

is a hamiltonian complement in H^Y^^Z^QQ) to both B$(Q0,<p) and
8^+^Bt (Qf, Qo*) © Z ^ G o , p) © ££(£0, Co).
Thus

( /N-l a \ N-l -
^F 2 4 ; S*>Co,

\,-=o / j=o

j=0 / j=0

3=0

Hence there is independence of choice of Qo.
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Define

J=O / 3=0

for any modular ^4-base Qo of Q (which may be assumed to be free). As
shown in Lemma 3.1 this does not depend on the choices made of N and Qo.

Given a f.g. free ^4s-module F, with modular .4-base Fo, we have

/

= 0 e U2i_

Hence B{Q, <p) = 0 e U^^A) whenever {Q, p) = 0e V2i{AB), and

B-.V^AJ + U^A)
is well defined.

The composite

V2i(A) - ^ V2i(Az) ^L
is 0, because it sends (Q,<p) e V2i(A) to

Bi(Q,?) = (#T(0); 0,B0(Q,<P)) = 0 e

The square
Cl+(Ae)

•1
commutes, for given {Qz,<p) e V2i(Az), with Q a f.g. free ^4-module

[BN(Q,?)] = [£+(#*> ( p i ^ Q ) ] = Br(Qs,<p) E L_(4).

We define £: C/^.^^) -> F2i(4s), using

LEMMA 3.2. Let (Q, <p) be a trivial + form over A, with lagrangian L, and
a hamiltonian complement L*, so that

where y + S* = 1: L* -> L*.
Then the equivalence class of the ± form over Az,

does not depend on the choice of L*.
If (Q, <p) = H^(P), then (Qs, 6) is a non-singular ± form over Az such that

((Q,,e)®H±(-L,)) e ker(e: V2i(Az) -> V2i(A))
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with torsion
B([L]-[P*])eQ+(Az).

Moreover,
((Qe,e)®H±(-Lz)) = 0eV2i{Az)

if L is a hamiltonian complement in (Q, <p) to either P or P*.

Proof. Change of hamiltonian complement L* corresponds to an
automorphism

Q - \:L®L*^L®L*,

for some ± form (L*, «•). The + form over Az, (Qz, 6'), determined by this
new choice of hamiltonian complement to L is given by

where y',8',X[ are defined by

Now

I (1-Z)(K±K*)\ / 0 -(X±ZX*)(K±K*)/ / I (1-Z)(K±K*)\ /

\\0 1 / ' \ 0 (1 -Z)(K* ± K)X(K ± K*) ))'

is an equivalence of + forms over Az. Hence the choice of L* is immaterial.
Define w e B.omAz(Qz,Qz) by

and <L e Hom^(Q*,Q*) by

Note that there is an identity

&{0±O*) =

Similarly, defining

and

there is an identity

w(^ ± d*) = (cp + z<p*)a>: Q*
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If (Q,<p) = HT(P), then

and combining the two identities above, we obtain

CJ{6 ± 0*)(0 ± 0*) = {<p + z$*)u>{6 ± 0*)

and similarly
a>(d

Both a) e HomAz(Qs,Qz) and u> e HojnAii(Q*,Qf) are monomorphisms, so

0±0~* = ( 0 ± 0 * ) - i : g * ^ £ s

and {Qs, 6) is a non-singular ± form over Az.
The projection e: V2i{Az) -> V2i(A) sends {{Qz,6)® H±{-Lz)) to

© H±(-L)}
which vanishes in ^(^4) because X*© —X* is a free lagrangian. Thus the
component of

r(((Qz,d)@H±(-Lz))) 6 Cl+(AZ) = e£l+(A)®BI,_(A)

in eQ.+{A) is 0, and

T({Q., 0) ® H±( - L.)) = BBr((Qs, 6) © H±( - L.))

= B[B+(Q*®(-L*®-L),

(6±6*)Q®(-L*®-L))]eQ+(Az).
Computing directly,

Bt((O±d*)-*Q*,Q)

)
z)(l-z-i)(A1±\*)y e zL-j

= L®{((l-z)x,y) e Lz®Lf \xeL,yeL*, <p{x,y) = 0 e Q*}.

Now ker(??: Q -> Q*) = P and Q = L®L* = P®P* so

Finally, suppose that X is a hamiltonian complement to either P or P*,
choosing X* accordingly. Then Ax = 0 and the annihilator of X* in

is given by
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Let x e ker((y* + 28): La -> Lg). As y + 8* = 1: L* -> L*,

x = {z-l)(±Sx) e(z-l)Ls

and (± Sx) e ker(y* + z8): Lz -> Lz) as well. By induction on N,
x e (z — l)NLz for every N ^ 1. This is impossible unless x = 0. Thus
.L*x = Z>* and X* © — Lf is a free lagrangian of

making it vanish in V2i{Az).

Define

(Q,<P;F,G)^1(GZ®G?,( g ( 1 _ 2 ^ r
+ A * } ) )©#±( -

by choosing hamiltonian complements F*,G* to F, G in (Q, cp), and
expressing

/ 0

as

We have already shown, in Lemma 3.2 above, that this does not depend
on the choice of G*, and that B(Q,<p; F,G) = 0e V2i(As) if

Hence the choice of hessian ± form (G, A) in (Q, <p) is also immaterial: for

B(Q@Q,<p®-<p; F®F*,G®G*) = 0 e V2i(As),
so that

B{Q,9; F,G) = -B(Q, -cp; F*,G*) G V2i(As),

and — B(Q, —<p\ F*, G*) can be defined without a choice of (G, A).
It remains to verify the invariance of the definition under changes of F*.

In order to do this, it is convenient to have available a more intrinsic
characterization of the ± product over Az

6±0*:Qz-+Q*

associated with the + form (Qz,6) defined in Lemma 3.2, as follows:
given a lagrangian L of a + form (Q, <p) over A, let
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be the unique .4s-linear extension of the even ± product

(l-z)<p±(l-z-i)<p*:Qz-*Q*
such that

+(R) = 0,

where R = {{{z— l)e,e) e LZ@QZ\ e e L}.

Then ifj induces an even ± product over Az

<A: (L.®Q.)/B. -• ((LZ®QS)/RS)*: [e,x] h> ([f,y] K t(e,z)(f,y)),

writing [e,x] for the residue class mod is!s of (e,x) ELZ@QZ. A choice
of hamiltonian complement L* to L in {Q,<p) determines an ^4s-module
isomorphism

ri\Le®L*-* (LzeQz)/Rz; (e,w) h> [e,«]
such that

7i*ifo = e±0*:Q,-+Q*.

Now let (Q, 93) = HT(P), and let ^* be any hamiltonian complement to P
in HT(P), so that P* = r(P«>/() for some ± form {P*,[x) (by Lemma 1.3
of I). Then the isomorphism

LZ®QZ^ LZ®QZ; (e,x) h> (e,

induces, via TJ, an equivalence of ± forms over Az

where j8 is the projection on P* along P, and (Qs, @) is defined as (Qs> 8),
but with P* in place of P*.

Thus B(Q,<p: F,O) e 1^(4 s) does not depend on the representative +
formation of (Q, <p; F, 0) e C/2i_1(̂ 4). In other words

is well defined.
It should be noted that we can give a more symmetric definition.

,9; F,G)

where (^, 9?) = HT(P) and
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for hamiltonian complements F*, Cr* to F, G in (Q, <p). The two definitions
agree because

;F,G) = (H^(P) ;P,G)® (HT(P) ;F,P)

(H^(P); P,F) e U^A)

by the sum formula for [/-theory of Lemma 3.3 of I.
It is immediate from Lemma 3.2 that the composite

B e

is 0, and that the diagram

\B

V2i(Az) > n+(Az)

commutes.

LEMMA 3.3. The composite

B B

is the identity.

Proof. Given (Q, (p\ F,G) e U2i_x(A) we may assume (Q, <p) =
so that

B(Q)?;F,G) = ((Qz,e)®H±(-Gz))eV2i(Az),
where

and

for some hamiltonian complement (r* to G in (Q, <p). Thus

BB(Q,r,F,G)

= B((Qz,d)@H±(-Fz))

= (HT(Q);Q,B1(Q,6))®(HT(-F®-F*);-F®-F*,rH±{_F))

= {Hf(Q);Q,B1(Q,0))eU^1(A),

where

BX{Q, 6) = {(2(1 - v)z-^x, v{6 ± d*)x) eQ@Q*\xE B+((6 ± d*)~lQ*, Q)}
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with v: {Q®Q*)S^-[Q®Q*)+ the positive projection. As in the proof
of Lemma 3.2,

Bt((d±d*)-iQ*,Q) = G®{(\-z)x+y EQZ \xeG,yeG*, x + yeF},

so that

B1(Q,6) = {(*>?>*) 6 Q®Q* | x E G}®{(y, ±<p*y) e Q@Q* \yeF}.

The equivalence of + forms over A,

J((
sends F® F* onto Q, and G® F onto BX{Q, 6). So

BB{Q,<p; F,G) = {H^-Q^^))

= (Q®Q,<p®-<p; F®F*,G®F)

= (Q,<P')F,G)eU2i_1(A)-

We need just one more result to prove that the sequence

0 > V2i(A) - ^ V^AZ) > U2i_M) • 0

is spht short exact.
Let zvz2 be independent commuting indeterminates over A. The

double Laurent extension of A by (zl5 z2), ASltZ2, is the ring of polynomials
in zlt Zj-1, z2, z2~

x with involution by zx h-> zx~
x, z2 (-> z2~

x. I t is clear that
AZl>Z2 may be regarded as either {AZl)Zi or {AZz)Zl and satisfies all the
conditions imposed above on the ground ring A.

LEMMA 3.4. The diagram

V2i(AZl)

B(z2)\ \B(Z2)

W2i+1(AZ1>Z2) - ^ V2i{ASi)

skew-commutes.

Proof. Given (Q, <p) e V2i{AZl), we may assume that Q is free, as usual.
Choose a modular .4-base Qo of Q, so that

&0 = {(X,X)EQ®Q\XEQ0}

is a modular A -base of A(<3>(p).
Let (Q*, i/r)bea ± form over AZi such that there is an equivalence

((?±<P*),x)--(Q><p)->(Q*>±t)
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(cf. Lemma 1.4 of I). Then

il>±*l>*
a n d

is the modular A -base dual to Ao of the hamiltonian complement A*(Q,
to k^) in {Q@Q,<p®-<p).

Let N ^ 0 be an integer so large that

±?*)(Q)^ S *i'Gif, (*I>±*I>*)(Q$)^ L «i^0-

Adding on some even + product to «/r, if necessary, it may be assumed
that

3=0

This ensures that
^(Ao&^^Ao

where

0 z2

because every (s, s) e ZI^AQ)^1 can be expressed as

(s,5) = (x,z&) + (4iy, +z2ifjy*) e J J
with

y = (1 - 2,-1)^ ± ̂ *)(5) e (Q*)s+S x = (s-ty)e (Qo)J.
For any -4£l-base of Q

Thus

where

= {w; G WAo)t0 £.(AJ)f I ( ^ ( A o ) ; 1 ^ ) ^ © - ^ ^ = {0} s

= {(a, (0 ± 0*)(v + z«(l - v))(p ± ?>*)«) e (Q0)S2

e ((o, (0 ± «/,*)&) G (Q0)2ae (^0)2a I b e ' s

(using the alternative definition of i?: W2i+1(AZ) -> ̂ (-4) given for
F-theory in § 2) with

the positive projection.
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Next, let P = SjL'o1 zijQo ( a n ^4-module), and define an
isomorphism

(0,6) K (o,(0±
so that

Define a ± form over AS2, (PZ2®P'*2,9), by

± 0*
± $*>{? ± ?>*)a') - ((1 - v){cp ± f»*)o)((0 ±

I t is not difficult to verify that 9 differs from/*[<£>© — 9?]Sl=0/ by a n even
+ product (over ^4C2)5 and also that

where

is an expression for

• 0
0 ) : BN{QO'

 ?) ® ^ ( ^ 0 5 ?) ~* BN{QO>

with BN{QQ,(p), B%(Q0,<p) the hamiltonian complements in HT(P) of
Lemma 3.1.

Defining the ^.-module isomorphism

note that

Finally,

B(Zl)B(z2)(Q,<p) = B(z2)(HT(P); B*(Qo,?),P*)

using the C/-theory sum formula of Lemma 3.3 of I.
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Applying B(z2) to the decomposition :

obtained in § 2, it is now immediate that

This proves the part of Theorem 1.1 relating to Vn(Az) for n even.

To complete the proof, we give analogous constructions for TF-theory.
^Define

i=o I 3=0

with QQ the modular A -base of Q generated by the given ^g-base. and
BN(Q0, <p) as in Lemma 3.1. Then

&N(QO,<P)] = BT(Q,<P) = 0 e £0(A),

as required for F-theory, since

by construction of W2i{Ae) (cf. § 5 of / ) .
The composite

W«{A) - ^ W2i(As)

is 0, as for F-theory.
The square

•\ I-
commutes: for

Q_(AS) = eQ_(A)® BZ+{A)

and elements of sQ,_(A) are sent to 0 both ways round the square, while
the composition

S+(4) -^L a_(Az) > W2i(Az) - ^ V^iA)
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sends [P] e I,+(A) to

BhP®-P)s®(P®-P)f,l/l )

= {H?(P*®P®-P®-P*); P*®P®-P®-P*,

= (H?{P*®P®-P®-P*); P*®P®-P@-P*}

(P*)*e(P)*e-Pe(-P*)*)
-P); p@-p,p*@-p)

-P); P®-P,P®-P*) e V^A),

agreeing with the map !>+{A) -> V^^A) defined in Theorem 4.3 of I.
Next, define

where (Q, 9?) = H^(F) for any base of F (assumed free) and (Qs, 6) is the +
form over Az defined in Lemma 3.2 (with F, 0 replacing P, L respectively),
so that

r(Qe,d) = B([G]-[F*]) = 0 e Q+(Ae),
and

is an automorphism of a based -4s-module R such that

T(QS, 0) + T(,£) + T(+*) = 0 e &M*), T(0) G

The composites

VzUA) • W2i(As) - ^ W2i(A),

are 0,1 as for F-theory.
The exactness of

WM(AB)

0 > W2i{A) - 1 * W2i(As) - ^ V2i_M) > 0

follows from that of

0 > V2i[A) - ^ V2i(Az) -^-> U2i_x{A) > 0
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by diagram chasing as at the end of § 2. The square

i
commutes because its commutator lies in

ker(e: WM(A.) -> WM(A)) nker(£: WM(A.) -> V

This completes the proof of Theorem 1.1.

4. Multiple Laurent extensions
Let T(p) be the free abelian group of rank p, for p ̂  0, written

multiplicatively. The group ring A[T(p)], with involution

g ^
geT(p) geTiv)

is the p-fold Laurent extension of ^4. We may identify

and also
(p.? ^ 0),

so that each A[T(p)] satisfies the conditions imposed on the ground ring A.
Denoting some set of generators of T(p) by zx, z2, ...,zp (for p ^ 1), we can
also write

A[T{p)] = AZyM_^

extending the previous notation.
In order to give a full description of the ^-theory of AZlZ2> z we recall

first the 'lower iT-theory' of Chapter XII of [1], involving iT-groups
Rm{A) for m < 0, and subgroups N+^A), N^(A) of Km+1{AB). There are
defined morphisms

B
^(A.) =Z &JA) (m<0)

JB
such that

giving natural direct sum decompositions

4 + i ( 4 ) = Km+M)®gm(A)®N+(A)®N-(A) (m < 0).

Duality involutions
RR
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are defined for all m < 0, with

&JA) -U Rm{A)
commuting, and

B\\B B\}s

RJA) -*->. Rm(A)

skew-commuting. Moreover, the duality involution on .flm+1(As) sends
N±(A) onto N%(A) for all ra < 0. In short, Rm+1(Ae) is related to Rm{A)
in exactly the same way for m < 0 as for m = 0.

Regarding Rm(A) as a Z2-module via *, there are denned Tate
cohomology groups

^ Hn(Z2; &JA))

depending only on n (mod 2), which are abelian of exponent 2. This
generalizes to m < 0 the definitions of

The induced maps

e B
give natural splittings

\A) (m^0,n (mod 2))

as for m = 1.
We now define the 'lower L-groups'

L^(A) = ker(e: L%?\A.) ^ L%+»{A))

for m < 1, n (mod 4) with iy^2)(^) = W*{A)- It is clear from Theorem 1.1
that Ll£](A) = V*(A), L^^A) = U*(A) and that there is a natural exact
sequence

of abelian groups and morphisms for m = 0,1. Hence all the Zrtheories
difiFer in 2-torsion only. More precisely:
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THEOREM 4.1. There is a natural exact sequence of abelian groups

defined for all m ^ \,n (mod 4).

Proof. Use induction on m, downwards.

THEOREM 4.2. There is defined an isomorphism of graded abelian groups

where A*(p) is the graded exterior Z-algebra on p generators zvz2,...,zp

of degree 1. The isomorphism has components

(interpreting zixA ... Azir as 1 if r = 0) and is natural in both A and T(p).

Proof. It is sufficient to consider the case W*(AZx >S8), the others following
by induction on p.

We need first the odd-dimensional counterpart to the result of
Lemma 3.4, that the diagram

V2i+1(AZ1) ? H U2i(A)S{z*]l \B{Z*]

skew-commutes. The proof of this is left to the reader. [It is known that
y I A \ — p(z W (A)m Biz \TJ (A)

2l4-ll Si/ — \ 1/ 2 t+ l \ / ^ ^ • J ^ \ 1/ QiV / *

The elements of e(z\)V2i+1(A) are sent to 0 in V2i+1(AZl) both ways round
the square, so it is sufficient to verify that the composite

Biz-,) B(z9) Biz-,)
TJ i A\

 v % y (A \ ——I W (A \ > V (A \

coincides with _
-B(z2):U2i(A)->V2i+1(AS2)-]

Thus
B(zx)B(z2) = -B(z2)B(z1): Vn(AZi) -> Vn(AH)

for all n (mod 4), and as

it follows that

B(Zl)B(z2) =

= B(z2)( - B(Zl)B(z2))B(z2)

= -B(z2)B(Zl): Un_2(A) ->
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and similarly that

B(z1)B{H) = -B(z2)B(Zl): Wn{ASlM) -+ Un_2{

Accordingly, we have an isomorphism of abelian groups

^ 7 z A , ( 2 ) (n (mod 4))
j=0

sending
J L ^ A to

to

A) to L™2(A)® (ZIAZ2).

Naturality with respect to T(2), and more generally T(̂ >), follows on
noting that a morphism

/ : T(p) -> T(q)

is determined by the p x q integer matrix {fjk)l^j^Pt i^k^a s u c n that

the composition of such morphisms corresponding to multiplication of the
matrices. Every such matrix can be expressed as the product of elementary
matrices, such as

or their enlargements
/ 1 \ / I 1 0 \
\ o ) ' \ o i o ,/'"••

It is easy to show directly that, for p, q ^ 2, the elementary JP x
matrices induce the corresponding morphisms

in the exterior algebra, where

/ : A*(p)-*A*{q);zhAZhA...AZjrH. A
7 7 1 = 1

Naturality with respect to A is obvious.

CORRIGENDUM (added in proof 24 March 1973). I am grateful to
M. K. Siu for pointing out the following error in the statement (on p. 129)
of the theorem on the K-theory of Laurent extensions. The original
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theorem ([1], Chapter XII, 7.4) states that

KX(AZ) = Kx(A)®K0(A)®mi+(A)®^i\-(A).

In passing to the reduced groups R^A) = coker(iQ(Z) -» K^A)) (* = 0,1),
there is obtained a direct sum decomposition

KX{AZ) = Rx

of
RX(AZ) = o o k e r ^ Z . ) -* KX{AZ)),

where

and not of
RX(AZ) = coker(Z1(Z) -> KX{AS))

as stated. The corresponding decomposition of the Tate cohomology
groups is

where _
U{_)n(Az) = ff«(Za; KX{AZ)) (n (mod 2)).

For n (mod 4) let Wn(Az) be the abelian groups defined as Wn(Az) except
that torsions are to vanish in KX{AZ) rather than RX(AZ). Theorem 3.3
of III, [5], shows that there is defined an exact sequence

... -> n(_)n+1(^) -• Wn(Az) -> Vn(Az) -+ U{_)n(As) - ...

(by analogy with the sequence of Theorem 5.7 of I).
The statement and proof of Theorem 1.1 become valid on the application

of the following

CORRECTION. For RX(AZ), Q±(AZ), Wn(Az) read KX(AZ), U±(AZ), Wn{As)
throughout.

As Km(Z) = 0 for m < 0, there is no need to correct the decomposition

Rm+Mz) = Rm+1(A)®Rm(A)®N+(A)®N-(A).

(In fact, Rm(A) = Km{A) for m < 0. The reduced notation is used for
uniformity with RO,RX.) The correction for RX{AZ) does not affect the
lower X-theories Dg^A), except in the case m = 2 of Theorem 4.2, where

is to be interpreted as the group defined in the same way as
but with torsions vanishing in

coker^ZlTM]) -> Kx(A[T(p)])
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rather than K^AlTip)]). Theorem 3.3 of III, [5], gives an exact
sequence

R > Wn(A[T(p)]) -

Now

£Rx{Z[T{p)}) = 2 £ W ( Z ) , K0(Z) = Z,
3 = 1

so that

In particular, for p = 1 there are exact sequences

0 -> W2i+1(AS) -* ^«+i(^ . ) - • Z2 •+ W2i(As) -* ^ 2 i ( ^ s ) -> 0

for i (mod2).
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