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0. Introduction

The purpose of this paper is to develop a geometric approach to Wall's finiteness
obstruction. We will do this for equivariant CW-complexes. The main advantage
will be that we can derive all the formal properties of the equivariant finiteness
obstruction easily from this geometric description. Namely, the obstruction
property, homotopy invariance, the sum and product formulas, and the restric-
tion formula can be stated and proved in a simple manner. Also a characteriza-
tion of the finiteness obstruction by a universal property is quickly available. This
geometric approach is similar to the treatment of Whitehead torsion by Cohen
in [3].

In the first section we define a functor WaG from the category of G-spaces to
the category of abelian groups. We assign to a finitely dominated G-CW-complex
X an element wG(X) e WaG(X) called its finiteness obstruction. The finiteness
obstruction vanishes if and only if X is G-homotopic to a finite G-CW-complex
and satisfies a sum formula and is homotopy invariant.

The notion of a universal functorial additive invariant is introduced in the
second section where its existence and uniqueness are proved. Product and
restriction formulas for the universal additive invariant are obtained by abstract
nonsense.

We define equivariant Euler characteristics in the third section generalizing the
notion of the Euler characteristic of a finite CW-complex.

The goal of the fourth section is to prove that the equivariant Euler
characteristic and finiteness obstruction determine the universal functorial addi-
tive invariant for finite, respectively finitely dominated, G-CW-complexes.

The fifth section contains some algebraic computations of WaG in terms of
reduced projective class groups of certain integral group rings. In the non-
equivariant case Wall's algebraic approach and our geometric one agree.

Finally, in the sixth section, the results of the second and fourth sections are
used to state an abstract product formula, a restriction formula, and a diagonal
product formula.

We make some remarks about the simple-homotopy approach to the finiteness
obstruction due to Ferry. The treatment by Ferry in [7] is extended by Kwasik
in [14] to the equivariant case. In § 6 we construct geometrically an injection
I(Y): WG(Y)^>WhG(YxS1) into the equivariant Whitehead group of Y x S1

sending our geometric finiteness obstruction to that of Kwasik.
A compact Lie group is denoted by G.

1. The geometric finiteness obstruction

A G-CW-complex A!" is a G-space with a filtration 0 = X_x <= Xo <= Xx c X2 <= ...
such that Xn+1 is obtained from Xn by attaching equivariant (n + l)-dimensional
A.M.S. (1980) subject classification: 57S99.
Proc. London Math. Soc. (3) 54 (1987) 367-384.



368 WOLFGANG LUCK

cells G/H x Dn+l, namely, Xn+1 is the G-push-out of

2 GIH, ,x Dn+1 <-^»2 G/Htx Sn

iel iel

We equip X = UXn with the weak topology with respect to the filtration (see
Illman [10]).

We call Xn the n-skeleton of X and qt the attaching map of the cell
G/Hi x Z)rt+1. For G = {1} the notion of a G-CW-complex agrees with the one of
a CW-complex. From now on we write G-complex instead of G-CW-complex.

A G-complex X is finite if X is built from the empty set by attaching a finite
number of cells. We call a G-complex X finitely dominated if X is a homotopy
retract of a finite G-complex, that is, there exists a finite G-complex Y and
G-maps r: Y-+X and i: X-* Y such that r°i is G-homotopic to the identity:
ro /= G ID.

The goal of this section is to construct a functor WaG from the category of
G-spaces into the category of abelian groups, and an assignment wG associating
to a G-space X having the homotopy type of a finitely dominated G-complex an
element wG(X) in WaG(X) such that the following theorem is valid.

THEOREM 1.1. (a) Homotopy invariance.

(i) / / / : X-* Y is a homotopy equivalence of G-spaces of the homotopy type of
a finitely-dominated G-complex, thenf*: WaG(X)^> WaG(Y) sends wG{X)
to wG(Y).

(ii) Iff andg: X-+Yare G-homotopic, thenf^=g^.
(b) Obstruction property. Let X be a G-space of the homotopy type of a finitely

dominated G-complex. Then X is G-homotopy equivalent to a finite G-complex if
and only if wG(X) vanishes.

(c) Additivity. If the following diagram of G-spaces having the homotopy type
of finitely dominated G-complexes is a G-push-out and k a G-cofibration then
wG{X) =h*(wG(X1)) +h*(wG(X2)) -jo*(wG(Xo)):

Given a G-space Y, we want to define WaG{Y) as the set of equivalence classes
of an equivalence relation ~ defined for G-maps / : X-* Y with X of the
homotopy type of a finitely dominated G-complex. We call f0: XQ—> Y and
/4: X4-+Y equivalent, /o~/4, if there exists a commutative diagram

y

such that jx and ;2 are homotopy equivalences and i0 and i3 are inclusions of
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subcomplexes for which XXi respectively X3, is obtained from XQ, respectively XA,
by attaching a finite number of cells. One should notice that Xlf X2, X3 have the
homotopy type of a finitely dominated G -complex since the same is true for Xo

and X4 by assumption. Obviously ~ is symmetric and reflexive. The main part of
the construction of (WaG, wG) and the proof of Theorem 1.1 is the verification
that ~ is transitive.

We will symbolize a diagram

by c , respectively —>, if it is commutative and k is the inclusion of a subcomplex
such that X+i is obtained from Xn by attaching a finite number of cells,
respectively k is a homotopy equivalence. Hence the diagram defining ~
corresponds to the sequence c -»<-=>. To prove transitivity we have to show
that a diagram c —* <— DC-»•<— 3 can be reduced to c —• « - 3 without changing
the ends. For this purpose we will introduce some operations we are allowed to
do with diagrams given by a sequence of symbols c , 3,—>, <—.

(1) 3 c z$> c =>. The sequence 3 c= stands for

n + 2

If f'n+1: Xn+1^> Y is defined by the push-out, one gets c 3 by

n+2

(2)
(3)
(4)

and <— c= ^> <= <—. This is analogous to (1).
-. Glue the mapping cylinders together.
—> <— and 3 <— ^> —> <— 3 —>. Consider the diagram

Let v be a homotopy inverse to ;„. Since in+1 is an equivariant cofibration, we
can choose a homotopy h: Xn+2xI^>Ywith ho\Xn+1=fn°v and h1=fn+2. This
yields the commutative diagram:

Ln+2
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(5) -•-»=> -* and <-<-=><-, c c = > c and

Now we get using the operations (1) to (5):

CZ

This finishes the proof that ~ is an equivalence relation. Hence we can define
WaG(Y) as the set of equivalence classes. The topological sum induces an
addition on WaG(Y) by

The inclusion of the empty set defines a zero element. Given an element
[/: X-+ Y], we can construct an inverse element in the following way, because X
has the homotopy type of a finitely dominated G-complex.

Choose a finite G-complex Z and G-maps r: Z^X and i: X-+Z with
r ° / = c I D . Let Q, respectively Cr, be the mapping cylinder of i, respectively r.
Construct a map F: Q-*X with F\X = I D * and F | Z = r. Then an inverse for
[/] *s g i v e n by the composition

Namely, let

g:

be an extension of ID + FUXF: X + Q Ux Q-+X, and let

h: Z-+CrUzGUxG

be a homotopy equivalence. This yields the following commutative diagram:

This implies that \f] + \f°FUxF] = [0-+ Y] = 0. Hence WaG(Y) is an abelian
group. A G-map / : Y—* Y' induces a homomorphism of abelian groups
/*: WaG(Y)-* Wa (Y1) by composition. So WaG is a functor from the category
of G-spaces into the category of abelian groups.
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DEFINITION 1.2. Let AT be a G-space of the homotopy type of a finitely
dominated G-complex. Define its finiteness obstruction wG(X) e WaG(X) by the
class of the identity map of X.

Proof of Theorem 1.1. (a) The verification of the homotopy invariance is
trivial.

(b) Obstruction property. Let X be a G-space having the homotopy type of a
finitely dominated G-complex with wG(X) = 0. Hence there are a G-space Y, a
G-map r: Y—>X, and a G-homotopy equivalence Y-*Z into a finite G-complex
Z such that Y is obtained from X by attaching finitely many cells and r ° i = ID is
valid for the inclusion i: X<-*Y. The mapping cylinder Cr is built up from the
mapping cylinder C, by attaching a finite number of cells. Choose a G-homotopy
equivalence g: Q-»Z. Consider the push-out

r <• • r

4 ['•
z c—>z'

Since g is a G-homotopy equivalence, the same is true for g' (see Whitehead [21,
p. 26]). Hence X is homotopy equivalent to the finite G-complex Z ' .

(c) Additivity. Consider the push-out

Choose a finite G-complex Z and r: Z^X0 and i: X^-^Z with r°*—GID. If
F: Q-*Xo is a map with F | A^ = ID and F | Z = r, an inverse for [y0] in W
is given by [Jo°F\JXoF]. To prove that

in WaG(X), construct a commutative diagram with a homotopy equivalence h:

X, + QUXoQ + X2 <—+ X1l)XoCrUzQUXoCiUzCrUXoX2 J>- XxUXoX2

I
X

2. Universal functorial additive invariants

In this section the notion of a universal functorial additive invariant is
developed. Later this is used to characterize the finiteness obstruction by a simple
universal property.

Let C be a small full subcategory of the category of G-spaces containing 0 and
{pt}. We assume that C is closed under G-equivalences and G-push-outs, that is,
if X is an object in C and Y a G-space equivalent to X, then Y also belongs to C,
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and if X is the push-out of

X\ < XQ*- > X\

with k a G-cofibration and XQ, Xlt X2 are objects in C, then X is an object in C.

DEFINITION 2.1. A functorial additive invariant (B, b) for C consists of a
functor B from C into the category of abelian groups and an assignment b
associating to an object X in C an element b{X) e B(X) such that the following
conditions are fulfilled.

(a) Homotopy invariance.
(i) If/: X^> Y is a G-homotopy equivalence in C, then B(f)(b(X)) = b(Y).

(b) Additivity. Given a G-push-out in C with k a G-cofibration

V r - V

the following formula is valid:

b{X) = *0*i)(*(*i)) + B{j2){b{X2)) - B(jo)(b(Xo)).
(c) 6(0) = 0.

Because of Theorem 1.1 the pair (WaG, wG) is a functorial additive invariant if
C is the category of G-spaces having the homotopy type of a finitely dominated
G-complex. In § 4, (WaG, wG) is characterized by the following universal
property.

DEFINITION 2.2. A functorial additive invariant (£/, u) for C is universal if there
exists for any functorial additive invariant (B, b) of C a natural transformation
F: L/-» B uniquely determined by the property that F(X)(u(X)) = b(X) is valid
for all objects X in C.

This notion is a generalization of the well-known notion of an additive
invariant.

DEFINITION 2.3. An additive invariant {B, b) for C consists of an abelian group
B and an assignment sending an object X to b{X) € J? with 6(0) = 0, such that
b(X) = b(Y) holds for G-homotopy equivalent objects X and Y and the sum
formula

is valid for a G-push out as above.
We call an additive invariant (£/, u) universal if for any additive invariant

{B, b) there is a homomorphism F: £/—» B uniquely determined by F(u(X)) =
b{X) for all objects X.

In other words, an additive invariant is a functorial additive invariant (B, b)
where B is a constant functor. In particular, each additive invariant can be



THE GEOMETRIC FINITENESS OBSTRUCTION 373

regarded as a functorial additive invariant. Given a functorial additive in-
variant (B, b), we can define an additive invariant (B, 6) by B: = B({pt}) and
6 : = B(X-+{pt})(b(X)).

PROPOSITION 2.4. (a) There exists a universal functorial additive invariant
unique up to natural equivalence.

(b) There exists a universal additive invariant unique up to isomorphism. It is
given by (U,u) for the universal functorial additive invariant (U,u).

Proof, (a) The uniqueness is a direct consequence of the universal property. It
remains to construct a universal functorial additive invariant (U, u).

Given an object Y in C, define U(Y) as the quotient of the free abelian group
generated by the G-homotopy classes [/] of G-maps / : X—> Y in C and the
subgroup generated by elements:

[/] ~ [#L if there exists a G-equivalence h with f°h—Gg;
[/] ~~ E/i] ~ 1/2] + [/oL if there exist representatives f0, flf f2, f and a G-push-out

with k a G-cofibration

A G-map g: Y-+Z induces U(g): U(Y)-+U(Z) by composition. We assign to
an object X in C the element u(X) e U{X) represented by the identity,

(b) This is left to the reader.

For an object Y let C(Y) be the category of morphisms over Y in C. The
universal additive invariant for C(Y) is given by U(Y) and (/: X-*Y)-*
U(f)(u(X)). Hence (U, u) can be described by the universal additive invariants
for all C(Y).

Table 1 gives the universal functorial additive invariant (U, u) and the universal
additive invariant (U, u) for three categories C. Here n is a finite group. For a set
M let T{M) be the free abelian group generated by M, and let (1) in 1{M) be the
element E

TABLE 1

c
U(X)
u(X)

u
a

finite
sets

I(X)

(1)

-n
a.

cardinality

finite
^r-sets

Z(Orbitsof*)

(1)
Burnside
ring A(K)

finite
CW -complexes

Ho(X)
componentwise

Euler-characteristic
-71

a.
Euler-characteristic

The universal additive invariant for C as the category of G-spaces having the
homotopy type of a finite G-complex has been computed by torn Dieck
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[4, p. 98 ff]. We can re-prove this result by applying Proposition 2.4(b) to
Theorem 4.1.

Now we will show that we can derive the existence of a product and restriction
formula by abstract nonsense.

Let G and G' be compact Lie-groups and C, respectively C respectively D, be
subcategories of the category of G-spaces, respectively G'-spaces respectively
G x G'-spaces, as defined above such that C x C" is contained in D. Let (U, u),
respectively (If, u') respectively (V, v), be the universal functorial additive
invariant for C, respectively C respectively D. Given an object Y' in C , we
denote by T(Y') the abelian group of natural transformations from £/(?) to
V(? x Y'). A map / : Y'~> Y" in C induces a homomorphism T(Y')^> T(Y") by
composition with F(ID x / ) . As (F(? x Y'), v(l x Y')) is a functorial additive
invariant for C, there exists a natural transformation f(Y'): ( / (? ) ->V(?xy)
uniquely determined by the property that t(Y')(Y) sends w(Y) to u(Y x Y') for
all objects Y in C. Then (7, t) is a functorial additive invariant for C", so that
there exists exactly one natural transformation F: £/-* T with F(Y')(w(Y')) =
t(Y') for all objects Y' in C . This can be interpreted as a natural pairing

P(Y, Y')\ U(Y) <8> U'(Y')-+ V(Y x Y')

uniquely determined by the property that P(Y,Y') sends w(Y)®w'(Y') to
v(YxY').

Hence one gets a product formula. Because of Proposition 2.4(b) this also
yields a product formula for the universal additive invariant.

Let H be a closed subgroup of G and C, respectively D, a subcategory of the
category of G-spaces, respectively //-spaces, as defined above. Assume for each
object Y of C that its restriction res(Y) lies in D. The universal functorial additive
invariant of C, respectively D, is denoted by (U, u), respectively (V, v). The
restriction defines a functor res: C-+D. Since (V°res, u°res) is a functorial
additive invariant for C, there exists exactly one natural transformation
R: U^>V°res such that R(Y) sends u(Y) to u(res(Y)) for all objects Y in C.
Hence one gets a restriction formula. This also yields a restriction formula for
the universal additive invariant. Applying this to a finite group n and the trivial
subgroup and C as the category of finite jr-sets and D as the category of finite
sets, one gets the homomorphism A(JZ)-*Z associating to a finite jr-set its
cardinality.

Let C be a subcategory of G-spaces as defined before. Given two G-spaces Y
and Y' we equip Y xY' with the diagonal G-action. Assume that C is closed
under the product. Combining the product and restriction formula we get a
diagonal product formula. Namely, if (U, u) is the universal functorial additive
invariant for C, there is a natural pairing

P(Y, Y')\ U(Y) <g> U(Y')^> U(Y x Y')

uniquely determined by

P(Y, Y'){u(Y) (8) u(Y')) = u(Y x Y').

Because of Proposition 2.4(b) this also yields a diagonal product formula
0<8)U-*U for the universal additive invariant U sending u(Y)®w(Y') to
u(Y x Y'). Hence U is a commutative ring with unit «({pt}) and U becomes a
functor into the category of [/-modules by the diagonal product formula. If C is
the category of finite ;r-sets for a finite group n, the universal additive invariant



THE GEOMETRIC FINITENESS OBSTRUCTION 375

A{n) is just the Burnside ring of n (see torn Dieck [4, p. 1 ff]). For C as the
category of G -spaces having the homotopy type of a finite G -complex the ring
structure of the universal additive invariant is computed in [4, p. 101 ff].

Finally we mention that the notion of a functorial additive invariant can be
introduced in more general situations than above and can also be applied to
modules and chain complexes. For example, the projective class group of a ring is
the universal additive invariant for the category of finitely generated projective
modules.

3. Equivariant Eider characteristics

In this section we introduce the notion of an equivariant Euler characteristic.
They appear in the next section in the universal functorial additive invariant of
finite, respectively finitely dominated, G-complexes.

Define a functor AG from the category of G-spaces to the category of abelian
groups in which the equivariant Euler characteristic lives. Given a G-space X,
denote by {G/?-» Z} the set of all G-maps G/H-+X for all closed subgroups H.
Call x: G/H-+X and y: G/K^X equivalent, x~y, if there is a G-
isomorphism / : G/H^G/K with y°f—cx- Obviously ~ is an equivalence
relation. Let {G/1-+X}/~ be the set of equivalence classes.

DEFINITION 3.1. Define AG(X) as the free abelian group generated by the set
{G/?-»Z}/~. A map/: AT-» Y induces a homomorphism

AG{f): AG{X)^>AG(Y)
by composition.

A G-map x: G/H—>X is the same as a point x = x(lH) in the //-fixed point
set X" = {x e X\ hx=x for all h e / / } . Denote by WH the Weyl group NH/H of
H. It acts on XH by gH, x*-+gx and hence on JZO(XH). For a G-map JC: GIH^X
we write V(x) for the component of XH containing x(\H), and [V(x)] for its class
in JZO(XH)/WH. Let C(G) be a complete system of representatives for the
conjugacy classes of closed subgroups of G.

LEMMA 3.2. There is a natural bijection

C{G)

sending the class of x: G/H-*Xto [V(x)] e JZO(XH)/WH.

Thus AG(X) can be written as

0 0 Z.
C(G) no(X

H)IWH

If n is a finite group, the additive group of the Burnside ring A{n) is just
^({pt}) . For the trivial group {1} we can identify A{l)(X) with the singular
homology H0(X).

Sometimes an element feAG(X) is written as a function from {G/?-^>X}/-~
to the integers. For V e nQ{XH) let I(V) c WH be the isotropy group of
V e KQ{XH) under the W//-operation. The operation of WH on XH induces an
operation of I(V) on V. Let V>H be {v e VH\ there exists heG, h$H with



376 WOLFGANG LUCK

hv = v}. Given a pair (Y, B) of spaces such that H^(Y, B) is finitely generated,
define X(Y, B) as E:=o (-l)nrk(Hn(Yt B)).

DEFINITION 3.3. Let X be a G-space of the homotopy type of a finitely
dominated G-complex. Define its equivariant Euler characteristic xG(X)eAG(X)
by

XG(X)(x:

Since X is finitely dominated, the homology of

is finitely generated, so that this definition makes sense. If X is a finite
G-complex, xGW(x: G/H-+X) can be computed by counting equivariant cells.
Namely, x' (X)(x: G/H-+X) is T,%0(-l)

nP(n,x) with p(n,x) the number of
n-dimensional cells in the relative CW-complex (V(x)//(V(x)), V(x)>M/I(V(x))).
The number of free n-dimensional cells /(V(x)) x Dn in V(x)\V{x)>H is also
P(n,x).

PROPOSITION 3.4. The pair (AG, x°) is a functorial additive invariant for the
category C of G-spaces having the homotopy type of a finitely dominated
G-complex.

Proof. The homotopy invariance (see Definition 2.1) is obviously fulfilled, so
that it remains to verify additivity. Using mapping cylinders and homotopy
invariance one shows that it suffices to regard finitely dominated G-complexes
Xo, Xlt X2, X with X = Xx UX2 and XQ = Xx n X2. Let jk: Xk^>X be the inclusion
for fc = 0,1, 2 and x: G/H^X a G-map. We have assigned to x a space
V(x)<=X" with /(V(x))-action for I(V{x)) c WH. Because of the relations

(V(x) n xx) u (V(x) n x2) = v(x),
(V(x) n x,) n (v(x) n x2) = v(x) n x0>

{V{x)>H n xx) u (V(x)>H n x2) = v{x)>H,
and

(y(x)>H n x,) n (v(x)>H n z2) = v(x)>H

one obtains

n ^//(v{x)), v(x)>H n Ai
+ X(v(x) n jf2//(V(x», y(x)>w n x2/i(v(x)))
- X(v(x) n zo//(v(x)), v(x)>H n zo/

Hence it suffices to prove for k = 0, 1, 2, that

*(v(x) n Ai//(v(x)), v(x)>

is E ^(A^Cy: GIH^>Xk) where the sum is taken over all y e
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with jk°y~x in {G/?-*A}/~. Choose a complete system of representatives
yt: G/H-+Xk for i = l, . . . ,r for these classes in { G / ? - * - ^ } / - . Now one
verifies that V(x) n Zfc//(V(A:)) is the topological sum E'=i V(yi)/I(V(yi)). This
finishes the proof.

4. The universal property of the Euler characteristic
and the finiteness obstruction

In this section a characterization of the equivariant Euler characteristic and the
finiteness obstruction by a universal property is given in:

THEOREM 4.1. (a) The pair (AG, xG) is the universal functorial additive
invariant for the category C of G-spaces having the homotopy type of a finite
G-complex.

(b) The pair (AG 0 WaG, (x°, wG)) is the universal functorial additive
invariant for the category C of G-spaces having the homotopy type of a finitely
dominated G-complex.

Proof, (a) Because of Proposition 3.4 it remains to verify the universal
property. Given an arbitrary functorial additive invariant (B, b), define a natural
transformation F: AG-*B: for a G-space X and rjeAG(X) represented
by a function r\\ {G/1-+X}/—>1 the homomorphism F(X): AG(X)^>B{X)
sends r) to E *?(*: G/H-+X) • B(x)(b(G/H)) where the sum is taken over

Each element rj eAG(X) can be written as a sum over {G/?-»Z}/~ by

2»?(*: G/H-*X)-AG{x: G

Hence the natural transformation F is uniquely determined by the property that
F{GIH): AG{GIH)-^B{GIH) maps xG(G/H) to b(G/H). It remains to prove
that for any finite G-complex X the relation F(X)(jG(X))| = b(X) is valid. Use
induction over the number of cells. If X consists only of one cell, A" is a
homogeneous space G/H and the relation holds by definition of F.

Suppose that the assertion is true for X and that Y is obtained from X by
attaching one equivariant cell. Namely, we have the G-push out

G/H x 5" »> X

I I
G/HxDn+1 > Y

Applying additivity to this G-push out and homotopy invariance to G///-^
G/H x Dn+1 for both {AG, xG) and (B, b) one proves the assertion for Y.

(b) Let (£, b) be any functorial additive invariant for C and F: AG ®WaG-*B
be a natural transformation with F(X)(xG(X), wG(X)) = b(X) for all objects X in
C. Then F is already determined by (B, b). Namely, let Y be any object in C and
r]\ {G/l^Y}/—>Z be a function representing rjeAG(Y) and / : X^Y a
G-map with X of the homotopy type of a finitely dominated G-complex
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representing [/] 6 WaG(Y). Consider the following computation. The sums are
taken over {G/?-» Y}/~, respectively {G/?->Z}/~.

= F(Y)(ri, 0) - F(Y)(AG(f)(X
G(X)), 0) + F(Y)(AG(f)(X

G(X)),

= 2 V(y- G/Hr* Y) • F(Y)(AG(y)(X
G(G/H)), 0)

-F(Y)(AG(f)(Z XG(X)(x: G/H-+X) • AG(x)(X
G(G/H))), 0)

+ F(Y) o (AG(f) 0 WaG(f))(X
G(X), wG(X))

= 2v(y: GlH-*Y)-B{y){b{GlH))

- 2 XG(X)(x: GIH-+X) • B(foX)(b(G/H)) + B(f)(b(X)).

This shows uniqueness.
To prove the existence of F define F just by the formula above. Namely,

F(Y): AG(Y) 9 WaG(Y)^B(Y) sends (IJ, [/]) to the element

GIH^Y)-B{y){b{GlH))

- 2 XGm(x: GIH^X) • B(foX)(b(G/H)) + B(f)(b(X)).
The verification that F is well defined is left to the reader. One has to check

that this is compatible with the equivalence relation appearing in the definition of
WaG. Obviously F(Y) sends (x°(Y), wG(Y)) to b(Y).

5. Computations of the obstruction group

Firstly WaG is computed for G as the trivial group {1}, written briefly as 1.
Then w1 is related to Wall's finiteness obstruction.

Let X be a connected finitely dominated CW-complex with universal covering
X. If C(X) is the cellular Zt^AOJ-chain complex, we can choose a finitely
generated projective Z[^:1(A

r)]-chain complex P which is homotopy equivalent to
C(X). The finiteness obstruction [X] e K0(J.[nx{X)\) of Wall is defined by
E : = o ( - i m i (see Wall [20, p. 138]).

If Y is a topological space, define KQ(Z[7V(Y)]) by

Veno(Y)

A map / : Y—>Z induces

n:0(f): JT0(Y)^7t0(Z) and n,{f\V): 7ix{y)^7ix{W)

for V e no{Y), W e Jto(Z), with no(f)(V) = W. This yields a homomorphism

so that K0(Z[n(?)]) becomes a functor from the category of topological spaces
into the category of abelian groups.

Given a not necessarily connected finitely dominated CW-complex X, define its
Wall obstruction

[X]eK0(Z[n(X)])= 0 Ktfl
Veno(X)
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by the collection of the finiteness obstructions [V] e £o(2[tfi(V)]) for each
component V of X.

PROPOSITION 5.1. (a) Let X be a finitely dominated CW-complex. Then X is
homotopic to a finite CW-complex if and only if [X] e K0(Z[JT(X)]) vanishes.

(b) The pair (K0(Z[n(?)]), [?]) is afunctorial additive invariant for the category
of finitely dominated CW-complexes.

Proof (a) This follows from [19, p. 66; 20].
(b) Additivity is proved by Siebenmann in [18].

Given a topological space Y with nx(Y, v) finitely represented, define a
homomorphism F(Y): Wa\Y)^ K0(Z[jt(Y)]) by [/: X^> Y] -+

THEOREM 5.2. This induces a natural equivalence

F: Wal^KQ{J.[iz{l)])

such that for a finitely dominated CW-complex X the relation F(X)(w\X)) = [X]
holds.

Proof. Given a topological space Y one has to show that F(Y) is bijective.
(a) Injectivity. Let X be a finitely dominated CW-complex and / : X—* Y a

map such that F(Y) sends [/] e Wa\Y) to zero. By attaching finitely many cells
one can extend / to a map g: Z-+Y such that no(g): JTO(Z)—> JZO(Y) is bijective
and nx(g \ V): nx(V)-+ n^W) an isomorphism for all V e Jto(Z) and W e JTO(Y)

with ^oG>)(̂ O = W. Hence the homomorphism

g*: K0(Z[JZ(Z)])-*K0(Z[JZ(Y)])

is bijective, so that [Z] e K(Z[JI:(Z)]) vanishes because

0 =

Proposition 5.1 implies the existence of a finite CW-complex Z' and a homotopy
equivalence h: Z'^*Z.

Because of the following diagram [/] vanishes in Wa\Y):

(b) Surjectivity. Since K0(Z[JZ(Y)]) is the direct sum S v ^ o d O o ^ t i C ) ] ) ,
we can assume without loss of generality that Y is connected. Choose a finite
connected complex Yx and a map g: YX^Y inducing isomorphisms on the
fundamental groups. As

is an isomorphism, it suffices to show that F ^ ) is an epimorphism. Given
r] e AT0(Z![tti(Yi)]), a retraction r: Y2-> Yx with Y2 a finitely dominated CW-
complex and r#([Y2]) = r) can easily be constructed (see Wall [19]). Therefore
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There is also an unreduced version for Wall's finiteness obstruction [X] e
K0(Z[n(X)]). For any group n the unreduced projective class group KQ{I[JZ])

splits as K0{I\JZ\) 0 Z. This induces a natural isomorphism

sending [X] e K0(Z[n(X)]) to ([X], x\X)) e K0(Z[n(X)]) ® A\X) for a finitely
dominated CW-complex X.

COROLLARY 5.3. There is a natural equivalence F: Wa10 A1 -=-> K0(Z[JI(1)]).

Given a finitely dominated CW-complex X, the homomorphism F(X) sends
(w\X), X\X)) to [X].

Because of Theorem 4.1, K0(Z[JT(1)]) with Wall's finiteness obstruction is the
universal functorial additive invariant for the category of finitely dominated
CW -complexes.

For a G-space Y there is a natural homomorphism Q(Y): WaG(Y) -* Wa\Y/G)
sending [/: X^Y] to [f/G: X/G^Y/G].

THEOREM 5.4. The natural homomorphism Q(Y): WaG(Y)->Wa\Y/G) sends
wG(Y) to wl(Y/G) ifYis a finitely dominated G-complex. If Y is free then Q(Y)
is an isomorphism.

Proof. For a free G-complex Y an inverse map Wa1(Y/G)—> WaG(Y) is given
by the pull-back construction. It sends [/: X-* Y/G] to [/: X-^> Y] where / is
obtained from the pull-back construction applied to / and the principal G-bundle
y-> Y/G.

Combining Corollary 5.3 and Theorem 5.4 one gets a natural isomorphism

for a free finitely dominated G-complex Y. It sends wG(Y) to [Y/G].
Using induction over the orbit bundles one can show the following splitting

theorem.

THEOREM 5.5. / / Y is a G-space of finite orbit type, there exists a natural
isomorphism

WaG(Y) -=• 0

The definition of V(x) and I(V(x)) for x: G/H^Y was given in §3 and
EI(V(x)) is the classifying bundle of the Lie group I(V(x)) cz WH. This result is
proved algebraically by the author in [15] for a discrete group G. The arguments
given there can be generalized to arbitrary compact Lie groups and yield an
analogous statement for the equivariant Whitehead group defined by IUman in
[10]. The splitting theorem for equivariant Whitehead groups is also proved
algebraically by Illman [11] and geometrically by Hauschild [9] and Kunihiko [13]
and under some restrictions also by Baglivo [2]. See also [1].
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6. Product and restriction formulas

In this section the existence of a product and restriction formula is easily
derived from the universal property of the finiteness obstruction. In contrast to
the geometric approach it is difficult to give an algebraic description. One reason
for this is the complicated structure of the splitting Theorem 5.5 and the bad
behaviour of the orbit bundles under restriction to subgroups.

Applying the remarks of §2 about product and restriction formulas to
Theorem 4.1 we get:

THEOREM 6.1. Product formula. Let G and G' be compact Lie groups and Y,
respectively Y', a finitely dominated G-complex, respectively G'-complex. There
exists a natural pairing

P(Y, Y'): (AG(Y) 0 WaG(Y)) 0 (AG'(Y') 0 WaG'(Y'))

- • AGxG\Y x Y') 0 WaGxG'(Y x Y')

uniquely determined by the property that P(Y, Y') sends

(*G(Y), wG{Y)) 0 (xG'(Y')t wG\Y')) to (*GxG'(Y X Y'), wGxG'(Y x Y')).

THEOREM 6.2. Restriction formula. Let H be a closed subgroup of G and Y a
finitely dominated G-complex. There exists a natural homomorphism

R{Y): AG{Y) 0 WaG(Y)^> A"(res(Y)) 0 Wa"(res(Y))

uniquely determined by

R(Y)(xG(Y), wG(Y)) = (*"(res(Y)), w"(res(Y))).

THEOREM 6.3. Diagonal product formula. Let X and Y be finitely dominated
G-complexes. There exists a natural pairing

P(X, Y): (AG(X) 0 WaG(X)) $ (AG{Y) 0 WaG(Y))

-+AG(X X Y) 0 WaG(X x Y)
uniquely determined by

P(X, Y)((xG(X), wG(X)) (8) (*G(Y), wG(Y))) = (xG(X x Y), wG(X x Y))

with G acting diagonally on XxY.

To get these formulas we have always worked with G -spaces having the
homotopy type of a finitely dominated G-complex and not only with finitely
dominated G-complexes. The restriction to a subgroup if of a G-complex does
not have the structure of an //-complex canonically but has the homotopy type of
an //-complex.

Now some explanations of these formulas and computations of them are given.
Using Corollary 5.3 the product formula in Theorem 6.1 reduces to the product
formulas for Wall's finiteness obstruction in [8,18] for G as the trivial group. One
can also give an explicit version of the product formula using the algebraic
computation of WaG in Theorem 5.5. This was stated for G as a discrete group in
[15]. The arguments given there can be generalized to compact Lie groups
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without difficulty and can also be applied to the equivariant Whitehead group (see
also Illman [12]).

The existence of the product formula implies some interesting facts.

COROLLARY 6.4. Let X be a finitely dominated G-complex and Y a connected
finite CW-complex with vanishing Euler characteristic. Then XxY is G homoto-
pic to a finite G-complex.

Proof. This follows from Theorem 6.1 for G' = {1} because (x\Y), w\Y)) = 0
in A\Y) 0 Wa\Y).

In particular, this can be applied to Y as the one-dimensional circle S1. The
geometric proof of Mather [17, p. 93] that X x S1 is up to homotopy finite if X is
a finitely dominated CW-complex can be generalized directly to the equivariant
case. Let X be a G-complex and K a finite G-complex and r: K-*X and
i: X—>K G-maps with r ° /= G ID . Define the mapping torus T(i°r) as the space
obtained from the mapping cylinder ClV of i°r by identifying the top and the
bottom using the identity map. Now C|V is homotopic to QUxCr relative to
K + K and CrUKQ is homotopic to Xx/ relative to Xx dl because r°i=GID.
This yields a homotopy equivalence O: T(i°r)^>XxS1. But T(i°r) is a finite
G-complex.

Mather's idea was used by Ferry [7] to develop a simple homotopy approach to
Wall's finiteness obstruction. This was extended by Kwasik [14] to the equivariant
case. Here is a reformulation using our approach to the finiteness obstruction.

Given a G-space Y, define a homomorphism <p(Y): WaG(Y)^>WhG(YxSl).
Let AT be a finitely dominated G-complex and / : X-* Y be a G-map representing
[/] in WaG(Y). Choose a finite G-complex K and G-maps r: K—>X and
i: X^>K with r°i-GIDX. Let O: r ( i ° r ) - > I x 5 1 be the G-homotopy equiv-
alence above and O"1 be a homotopy inverse. If 6: S 1 - ^ 1 sends z to z'1,
denote by C the mapping cylinder of the homotopy equivalence

between finite G-complexes. Then the pair (C, T(i ° r)) determines an element in
WhG(T(ior)) called the torsion of 4)1 ° (ID x 0) ° <I>. Define v(Y)([f]) by the
image of (C, T(i ° r)) under

(/XHXD)*: WhG(T(i°r))^>WhG(Y x Sl),

namely (p(Y)([f]) is represented by (CUfxlDa<t>Y xS\ YxS1). Using the argu-
ments in [7] one proves that q>(Y) is a well-defined homomorphism.

The invariant OG(X) e WhG(X x S1) defined by Kwasik [14, p. 366] for a finitely
dominated CW-complex is just <p(X)(wG(X)). The statement in [14, p. 366] that
X is homotopy equivalent to a finite G-complex if and only if OG(X) vanishes is
equivalent to the statement that cp(Y) is injective.

An algebraic computation of the restriction formula for finite groups is given in
[15] using Theorem 5.5. It turns out, however, that this cannot be generalized to
compact Lie groups directly if the dimension of the subgroup H is smaller than
the dimension of G. As an illustration consider the following special case.

Let Y be a free connected finitely dominated G-complex. Applying the
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restriction formula to the trivial subgroup one gets a homomorphism

WaG(Y) @AG(Y)^> Wa\rcs(Y)) ®A\res(Y))

sending (wc(Y), *G(Y)) to (w\Tes(Y)), x\Y)). Corollary 5.3 and Theorem 5.4
yield a homomorphism /^(Z^CY/G)])-*KQ{Z[KX{Y)]) mapping [Y/G] to [Y] if
[ ] denotes the non-equivariant flniteness obstruction due to Wall. One easily
checks that this coincides with the geometric transfer homomorphism
p\ K0(Z[jz1(Y/G)])^K0(Z[jt1(Y)]) associated by Ehrlich [6] to the principle
G-bundle p: Y-+Y/G regarded as a fibration

If G is finite, the homomorphism /?*: Ji1(Y)^>nl{YlG) is injective with finite
cokernel. Then restriction with/?* defines a homomorphism

which turns out to be p\ For an arbitrary compact Lie group G such a simple
algebraic computation of p ! is not available. An algebraic description of p! is
stated in [16]. It can be used, for example, to show for connected G that pl

vanishes if G is not isomorphic to SO(3)n x (S1)"1 or if n^Y/G) is finite.
Combining the methods of [15] and [16] one can give an algebraic description of
the formula of Theorem 6.2 generally. This can also be done for the Whitehead
torsion.

The same problems arise for the diagonal product formula of Theorem 6.3
which is completely treated in [15] for G as a discrete group (see also torn Dieck
[5]). For example, one can prove for a finite group n and a finitely dominated
^r-complex X and a free finite jr-complex Y that X x Y is ^-homotopy equivalent
to a finite ^-complex.

The diagonal product formula implies that (AG({pt}) is a commutative ring
with unit and AG © WaG is a functor from the category of finitely dominated
G-complexes into the category of y4G({pt})-modules. We recall that for a finite
group n the ring An{{\>\.}) is just the Burnside ring of n.
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