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51. STATEIv1EiVT OF RESULTS 

LET it’f = hf”+’ be a closed (2r + I)-dimensional orientable manifold. The semi-character- 

isric of M with respect to a coefficient field F is defined to be 

o(M; F) = i rank Hi(M; F), 
i=O 

taken as an integer modulo 2. (Compare Kervaire [3]. For most applications one takes 

F = Z,.) 

In general the semi-characteristic of IV depends on the choice of the field F. For example 

if M is a 3-dimensional lens space, then certainly a(lM; F) depends on the choice of F. Our 

main result shows that under certain conditions a(M; F) is independent of F. 

More generally, consider an orientable Poincarl space (that is a space M which satisfies 

Poincare duality over the integers) of dimension 2r + 1. The ith Wu class ui E H’(M; Z,) 

is defined by the condition 

u;x = sq’x 

for all x E Hzr+l -i(M; Z,). 

THEOREM. If M is an orientable Poincare’ space of dimension 2r + 1 wirh r even, then the 

difference 

o(M; z,> - a(M; Q) 

is equal to the Stiefel- Whitney number 

(0, Sq’ Qwl = (% Wzr- ,)[~l* 
As an immediate corollary, we see that the equality a(M; Z,) = o(M; Q) holds whenever 

M is either a spin manifold (w2 M = 0) or a boundary, providing that the dimension of M 

is a number of the form 4q + 1. In these cases it follows that the semi-characteristic a(M; F) 

is completely independent of the field F. For ifp is an odd prime, then the equality 

1@4~~+‘; Zp) = D(M~~+‘; Q) 

follows easily from Browder [2] or de Rham [4]. (See Remark 1 below.) 

Our Theorem can be considered as a clarification and completion of Browder’s results 

in [2]. It replaces the last sentences in Theorems 1 and 2 of [2], which are false as stated. 
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It can also be considered as a generalization of a theorem of C.T.C. Wall. (Compare 

Barden [ 1, p. 3721.) 

Remarks. 1. The difference a(i\li; Z,) - a(h1; Q) can be described more directly as the 

number, modulo 2, of p-primary cyclic summands in a direct sum decomposition of the 

group Hr(iVzr+ ’ ; Z). But if r is even then according to [2, Theorem l] or [4, Th. II, p. 1651 

the torsion subgroup of H,(;CI”“; Z) is isomorphic either to a direct sum A @A of two 

mutually isomorphic groups or to a direct sum A 0 A 8 Z1. Evidently the second alterna- 

tive occurs if and only if o(iV; Z,) # a(Ai; Q). 

2. Note that our Theorem would be false in dimensions of the form 4q - 1. For example 

the real projective space P3 is parallelizable; but a(P3; 2,) # G(P~; Q). 

3. Similarly the Theorem would be false for non-orientable manifolds. For example 

a(P’ x S’ ; Z,) # a(P4 x S’ ; Q). 

4. For each q > 0 there does exist an orientable manifold M of dimension 4q + 1 with 

w1 11~+_i[J4] # 0. In fact for q = I the Wu 5-manifold has this property ([6, p. SO]); and for 

q > 1, using the identity 

a(A4”+’ x MzS; F) = o(M*~+‘; F)x(M*~, 

we see that the product of the Wu 5-manifold and the 4(q - I)-dimensional complex pro- 

jective space has the required property. 

We want to thank M. F. Atiyah and I. M. Singer for asking us about the relationship 

between a(M; Z,) and a(iM; Q). 

$2. PROOF OF THE THEOREM 

For X, y E H’(M; ZJ define a bilinear inner product 

(.u, v> = wq’Y)[Ml E z2 * 
The computation 

(xSqiy + ySq’x)[M] = Sql(xy)[iM] = 0, 

using the fact that ui = 0 since M is orientable, shows that (x, y) = (y, x). Let xi, . . . , x, 

be a basis for H’(M; Z,) and note that the rank of the matrix (xi, xj) is equal to the rank of 

Sqr : H’(M; Z,) + H’+‘(M; Z,) and hence is equal to the number of copies of Zz in the 

primary cyclic decomposition of H,(M; Z). Using Remark 1 above, this rank is congruent 

to a(M; 2,) - cr(M; Q) modulo 2. (The hypothesis that r is even is needed here.) 

Note also the identity (x, x) = <L’, , x), which is proved in 12, Lemma 51. We now 

consider three cases. 

Case 1. If (u,, x> = 0 for all x then (x, x) = 0 for all x and the matrix (xi, xi) can be 

put into a normal form with zeros or copies of (7 A) along the diagonal. Hence it has 

even rank. 

Case 2. If (u,, c,) # 0, then the form (x, y) is non-singular on the l-dimensional 

subspace Vc H’(M; Z,) which is spanned by u,. Hence H’(M; Z2) = V@ VI, and as in 
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Case 1 we see that the form (x, v) restricted to V’ has even rank. Hence (?ci, Xj) has odd 

rank. 

Case 3. If (u,, a,) = 0 but (v,, x) # 0 for some x, then the subspace Xc H’(M; Zz) 

spanned by U, and x has as matrix (y i). So H’(M; ZJ = X@ X1, and it follows that 

(xi, xj) has even rank. 

So in all three cases the rank of the matrix (I;, .yj> is congruent to 

(~1,) r,) = (P, Sq’oJM] modulo 2. 

To finish the proof we show that 

(0, sq ‘a,)CMl = (#.2 Wl,- ,)CMl 

for any orientable (2r + 1)-dimensional Poincare space. Wu’s theorem ([5, p. 3501) states 

that 

Wk = 1 sq’v,_, . 

In partrcular w2 = v2 and wzI_r = Sq’-’ v, (making use of the fact that uj = 0 for 

j > f dim M). Therefore 

w* W&- 1 = u*(sq’-‘U,) = SqZ(Sq’_ 10,) 

= (sqw + (’ ; 2)sq”+, 
= Sq’(Sqlu,) = u,(Sq’v,); 

using the Adem relations to simplify Sq2Sq’- ‘. This completes the proof. (If r is odd, note 

that u, = 0, so that this Stiefel-Whitney number is necessarily zero.) 
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