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§1. STATEMENT OF RESULTS

LET M = M?"*! be a closed (2r + I)-dimensional orientable manifold. The semi-character-
istic of M with respect to a coefficient field F is defined to be

o(M; F) = .Zo rank H(M; F),

taken as an integer modulo 2. (Compare Kervaire [3]. For most applications one takes
F= Zl')

In general the semi-characteristic of M depends on the choice of the field F. For example
if M is a 3-dimensional lens space, then certainly ¢(M; F) depends on the choice of F. Our
main result shows that under certain conditions o(M; F) is independent of F.

More generally, consider an orientable Poincaré space (that is a space M which satisfies
Poincaré duality over the integers) of dimension 2r + 1. The ith Wu class v; € H'(M; Z,)
is defined by the condition

v:x = Sq'x
for all xe H*>"**7{(M; Z,).
THEOREM. If M is an orientable Poincaré space of dimension 2r + 1 with r even, then the
difference
o(M;Z,) —o(M; Q)
is equal to the Stiefel-Whitney number
(©.8q'0,)[M] = (w; wy,-)[M].

As an immediate corollary, we see that the equality o(M; Z,) = a(M; Q) holds whenever

M is either a spin manifold (w, M = 0) or a boundary, providing that the dimension of M

is a number of the form 4q + 1. In these cases it follows that the semi-characteristic o(M; F)
is completely independent of the field F. For if p is an odd prime, then the equality

o(M**15 Z,) = o(M***; Q)
follows easily from Browder [2] or de Rham [4]. (See Remark | below.)

Our Theorem can be considered as a clarification and completion of Browder’s results
in [2]. It replaces the last sentences in Theorems 1 and 2 of [2], which are false as stated.
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It can also be considered as a generalization of a theorem of C.T.C. Wall. (Compare
Barden [1, p. 372].)

Remarks. 1. The difference (M ; Z,) — o(M; Q) can be described more directly as the
number, modulo 2, of p-primary cyclic summands in a direct sum decomposition of the
group H,(M?*"*'; Z). But if r is even then according to [2, Theorem 1] or [4, Th. II, p. 165]
the torsion subgroup of H (M3 *!; Z) is isomorphic either to a direct sum 4 @ A of two
mutually isomorphic groups or to a direct sum 4 @ A @ Z, . Evidently the second alterna-
tive occurs if and only if 6(M; Z,) # o(d; Q).

2. Note that our Theorem would be false in dimensions of the form 4g — 1. For example
the real projective space P is parallelizable; but ¢(P?; Z,) # o(P?; Q).

3. Similarly the Theorem would be false for non-orientable manifolds. For example
o(P* x S';Z,) # o(P* x §*; Q).

4, For each g > O there does exist an orientable manifold M of dimension 49 + 1 with
wy wya—1[M] # 0. In fact for ¢ = 1 the Wu 5-manifold has this property ([6, p. 80]); and for
g > 1, using the identity

O,(M‘_’r+1 % Mls; F) = O_(M2r+1; F)X(MZA‘)’
we see that the product of the Wu 5-manifold and the 4(g — 1)-dimensional complex pro-
jective space has the required property.

We want to thank M. F. Atiyah and I. M. Singer for asking us about the relationship
between o(M; Z,) and o(M; Q).

§2. PROOF OF THE THEOREM
For x, ye H'(M; Z,) define a bilinear inner product

(%, 3> =(xS5q'y)[M]eZ,.
The computation
(xSq'y + ¥Sq'x)[M] = Sq' (xy)[M] = 0,

using the fact that v, = 0 since M is orientable, shows that {x, yD> = {y, x). Let x,, ..., x,
be a basis for H(M; Z,) and note that the rank of the matrix {x;, x;) is equal to the rank of
Sq': H'(M; Z,)— H™*'(M; Z,) and hence is equal to the number of copies of Z, in the
primary cyclic decomposition of H,(M; Z). Using Remark 1 above, this rank is congruent
to o(M; Z,) — o(M; Q) modulo 2. (The hypothesis that r is even is needed here.)

Note also the identity {(x, x) = {v,, x>, which is proved in [2, Lemma 5]. We now
consider three cases.

Case 1. If (v,, x> = 0 for all x then {(x, x) = 0 for all x and the matrix {x;, x;> can be

put into a normal form with zeros or copies of (§§) along the diagonal. Hence it has
even rank.

Case 2. If {v,,t,> #0, then the form {x, y> is non-singular on the l-dimensional
subspace ¥ < H'(M; Z,) which is spanned by v,. Hence H(M;Z,) =V @® V*, and as in
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Case 1 we see that the form (x, y) restricted to ¥* has even rank. Hence {x;, x;) has odd
rank.

Case 3. If (v,, v, =0 but {v,, xy # 0 for some x, then the subspace X = H'(M; Z,)
spanned by v, and x has as matrix (}!). So H"(M;Z,)= X@® X*, and it follows that
{x;, x;) has even rank.

So in all three cases the rank of the matrix {x;, x;> is congruent to
{v,, v,y = (2,5q'v,)[M] modulo 2.
To finish the proof we show that
(v,8q'0)[M] = (w3 wy, - )[M]

for any orientable (2r + 1)-dimensional Poincaré space. Wu's theorem ([5, p. 350]) states
that

we =, Sq'v,_;.

In particular w, =v, and w,,_; =Sq !

Jj >4 dim M). Therefore

v, (making use of the fact that v; =0 for

WaWy = UZ(Sqr— lvr) = Sql(sqr— 1Ur)
= (Sq'Sq1 + (r 5 Z)Sq’“)v,

= 8q'(Sq'v,) = v,(8q'v,);
using the Adem relations to simplify Sq®Sq"~'. This completes the proof. (If r is odd, note
that v, = 0, so that this Stiefel-Whitney number is necessarily zero.)
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