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Introduction 

In a series of  articles dating f rom 1836-37 STUV, M and LIOUVILLE created a 
whole new subject in mathematical analysis. The theory, later known as Sturm- 
Liouville theory, deals with the general linear second-order differential equation 

(k(x) V'(x))' + (g(x) r -- l(x)) V(x) = 0 for x 6 ]~, fl[ (1) 

with the imposed boundary conditions: 

k(x) V'(x) -- hV(x) = 0 for x ----- o¢, (2) 

k(x) V'(x) + HV(x) = 0 for x = /3 .  (3) 

Here k, g, and l are given positive functions, h and H are given positive constants 
and r is a parameter. The boundary-value problem only allows non-trivial solu- 
tions (eigenfunctions) for certain values (eigenvalues) of  r, which can be considered 
as roots of  a certain transcendental equation 

H(r) = 0, (4) 

namely the equation obtained by inserting the general solution of (1) and (2) 
into (3)*. The questions studied by STt~R~I and LIOUVmLE can roughly be divided 
into three groups: 

1 °. properties of  the eigenvalues, 
2 °. qualitative behaviour of  the eigenfunctions, 
3 °. expansion of  arbitrary functions in an infinite series of  eigenfunctions. 

Of  these, STURM investigated 1 ° and 2 °, and LIOUVlLLE examined 3 °, finding 
further results related to 1 ° and 2 ° in the process. 

Before 1820 the only question taken up in the theory of differential equations 
had been: given a differential equation, find its solution as an analytic expression. 
For the general equation (1) STu~r4 could not find such an expression, and the 
expression found by LIOUVlLLE by successive approximation was unsuited for 

1 On notation and terminology. I have as far as possible unified, simplified and clari- 
fied the notation. For example letters have freely been replaced by others, the La- 
grangean notation V' has been used instead of STrJRM and LIotJvIu.~'s Leibnizian 

dV 
notation Tv-r, parentheses have been inserted, and the variables have been introduced 

in the functions if clarity is gained (i.e. V(x) instead of V). These changes do not alter 
the meaning at all. 

I have freely used modern terms such as: eigenfunctions, eigenvalues, spectrum, 
spectral theory, orthogonality of two functions, etc. 

Use of such modern terms abbreviates the discussion but also presents the danger 
of overinterpretation. For example, the anachronistic term orthogonal suggests a geo- 
metric interpretation of functions as points in a Hilbert space. However, such a way of 
thinking was not introduced before the work of E. Scn~aIOT [1908]. 

The word "Fourier series" has throughout been used in its modern sense to describe 
the development in terms of any set of eigenfunctions of a Sturm-Liouville problem, 
whereas the Fourier series in the sense of the 19 ta century will be called trigonometric or 
ordinary Fourier series. 
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the investigation of the properties 1°-3 ° above. Instead they obtained the infor- 
mation about the properties of the solutions from the equation itself. This shows 
evidence of a new conception of the theory of differential equations characterized 
by a broader kind of question: given a differential equation, investigate some 
property of the solution. 

Most conspicuous among the properties to be investigated in the early 19 t~ 
century was existence. The existence theorem formulated and proved by CAUCnV 
[1824/1981, 1835/40] was the first to indicate the broader concept of differential 
equations. 

The conceptual development in the field of differential equations ran parallel 
to the development in the field of algebraic equations. Here the works of ABEL 
and GALO~S shifted interest from the problem of finding solutions by radicals 
to a question of existence of such solutions and an investigation of their properties. 

Since no workable explicit solutions to the general Sturm-Liouville problem 
could be found, the properties determined from the equation itself were necessarily 
qualitative in nature. Seen in this light, Sturm-Liouville theory was the first 
qualitative theory of differential equations, anticipating POINCARffS approach 
to non-linear differential equations developed at the end of the century. In addi- 
tion the Sturm-Liouville theory gave the first theorems on eigenvalue problems 
and as such it occupies a central place in the prehistory of functional analysis. 
But the Sturm-Liouville theory was important not only as a herald of coming 
ideas. It was, and has remained till this day, of importance in the technical treat- 
ment of many concrete problems in pure and applied mathematics and was as 
such of more than "just" conceptual importance. 

Of the two conceptual novelties in the theory of differential equations in early 
19 th century France, existence theorems have generally received more attention 
in the secondary literature than the Sturm-Liouville theory despite the fact that 
the latter presented a wider range of innovations. It even included the former 
in the sense that the first widely circulated existence proof was published in three 

: of LIouvmLffS papers on the Sturm-Liouville theory. 
In two of the better surveys of the history of mathematics ([KL~tqE 1972, 

pp. 715-717] and [DIEUDONNI" 1978, pp. 140-142]) STURM and LIOUVILLE'S 
theory has received brief treatment. More information, particularly on the role 
of the Sturm-Liouville theory in the history of functional analysis can be found 
in [DIEUDONN~ 1981, pp. 16-21] 2. Richest on details are the two articles in the 
"Encyklop~die der mathematischen Wissenschaften" [Hmu & Sz~sz 1922] and 
[B6cHER 1899/1916] and several of B6CH~R'S other works (e.g. [1911/12, 1912, 
1917]). However it is rather difficult to extract a connected history from these 
older works since their primary goal is exposition of the mathematics, not 
of its history. [B6cHER 1911/12] is an exception. 

This paper is an attempt to supply a comprehensive and coherent treatment 
of the emergence of this beautiful theory, taking all published as well as unpublished 
sources into account. All unpublished material from STURM'S hand seems to be 
lost, but some of LIOUVILLE'S early mdmoires presented to the Acad6mie des 

2 When DIr.UDONN~ found the original theorems and arguments "long-winded and 
not very clear", he replaced them with more elegant formulations. 
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Sciences and his notes have been preserved. The handwritten mdmoires [LIoUVILLE 
1828, 1830/31] are kept in the Archive de l'Acaddmie des Sciences. The Biblio- 
th6que de l'Institut de France preserves LIOUVILLE'S notebooks [LIouVILLE Ms.]. 
I am indebted to the staff at these two institutions and to Professor TATON, 
Paris, who has helped me to get access to the unpublished material. I also wish 
to thank Professor UrFE HAAGERUP, Odense, for having cleared up mathematical 
problems (of Appendix), Lektor KIRSTI ANDERSEN, Aarhus, for encouragement 
and criticism, and LISBET LARSEN, Odense, who has painstakingly typed and 
retyped the manuscript. 

I. The Friendship of Sturm and Liouville 

1. The devoted friendship between STURM and LIOUVILLE began in the early 
1830's [LIoUVILLE 1855]. At that time the Swiss born CHARLES-FRANCOIS STURM 
(1803--1855) had already gained fame for his and D. COLLADON'S prize-winning 
essay on the compression of fluids [1827/34] and for the celebrated theorem, 
called after him, on the number of real roots of a polynomial [1829a, 1835] 3. 
As a foreigner and a protestant, however, he had only in 1830 obtained a modest 
academic post as Professor at the Coll~ge Rollin. The six years younger JOSEPH 
LIOUVILLE (t809-1882) had presented at least five m6moires on analysis and 
mathematical physics to the Paris Academy before he graduated from the t~cole 
des Ponts et Chaussdes in 1830. Though his results were not up to the triumphs 
of STURM, they gained him such a reputation that the following year he got a 
respected position as rdpdtiteur (assistant) at the t~cole Polytechnique. When in 
1838 he advanced to Professor at the same school, his senior STURM was named 
his rdpdtiteur. Later that year STURM got his own chair at the l~cole Polytech- 
nique. 

2. In contrast to this reversed and unjust assignment of jobs STURM was the 
first of the two to be elected to the Acaddmie des Sciences. The remarkable 
circumstances surrounding his election give a strong impression of the friendship 
between the two mathematicians. In 1833 both STURM and LIOUVILLE and their 
common friend J. M. C. DUHAMEL applied for the seat vacated by the death of 

3 Sturm's theorem. Let f ( x )  = 0 be a real algebraic equation of arbitrary degree. 
Define f l ( x )  =if (x)  and f  n (n ~_ 2) successively as the negative of the remainder obtain- 
ed by dividing fn-2 by f~_~ : 

f n -  2 = qn- l(x) f n -  l(x) -- fn(x). 
Let p be the number of variations of sign in the sequence 

f(a), f l  (c0, f2(c¢) . . . . .  f/c(a) 

and let q be the number of variations of sign in the sequence 

f(fl), fl(fl), f2(fl) . . . . .  fk(fl) • 

Then the number of real roots of f (x)  in ]cq 3[ (c~ < fl) is precisely equal to p -- q. 
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A. M. LEGENDRE. A fourth applicant was G. LIBRI-CARUCCI, who was later 
charged with having stolen valuable books and manuscripts from the Academy. 
On March ,18 th, LIBRI was elected with 37 votes against DUHAMEL'S 16 and LtOU- 
VmLE'S 1. Nobody voted for STURM [P. V. 1833, p. 227]. The next opportunity 
was offered after the death of  AMPERE in the summer of  1836. Again the three 
friends applied for the vacant seat, together with a couple of others. Three weeks 
before the election of AMP~RE'S successor, LIOUVILLE presented a paper to the 
Academy [1837a] in which he praised STUR~'S two m6moires on the STURM- 
LIOUVILLE theory as ranking with the best works of  LAGRANGE. Supporting a 
rival in this way was rather unusual in the competitive Parisian academic circles, 
and it must have been shocking when on the day of the election, December 5 th, 
LIOUVILLE and DUHAMEL withdrew their candidacies to secure the seat for their 
friend. STURM was elected with an overwhelming majority. 

3. During the dramatic events preceding LIOUVILLE'S election to the Academy 
three years later STCrR~ repaid LIOUVILLE'S support by pleading for him in his 
disagreements with LIBRI, the mathematician whom the academy had preferred 
to STURM in 1833. The controversy started in February 1838 when L~OUVILLE 
had discovered grave mistakes in a paper by LIBR1. He presented the observation 
as a note to the Academy, which appointed an examining committee consisting 
of  J. B. BIOT, S. D. PoISSON, L. POINSOT and STURM. The fact that the committee 
never made a report was used against LIOUVILLE when LIBRI fought back in the 
Academy more than a year later, at the time when LIOUVILL~ was seeking election 
to the seat vacated by the death of J. F. LALANDE. STURM defended LIOUVILLE 
for the following reason [C. R. May 20 th, 1839]: 

"Malheureusement, M. Libri a voulu renouveler une discussion qui 
semblait termin6e, dans le M6moire qu'il a lu 5. la derni~re s6ance de l'Aca- 
ddmie, il a affirm6 qu'il ne trouve aucun fondement dans les observations de 
M. Liouville, et il a attaqu6 ~t son tour une partie des travaux de ce g6ometre. 
M. Libri a sur M. Liouville l'avantage d'atre membre de l'Acad6mie, et il a 
choisi pour l'accuser d'erreur le moment o~l M. Liouville se prdsente comme 
candidat pour la section d'Astronomie. I1 serait fficheux que le silence de la 
Commission qui avait 6t6 chargde de d6cider la question controvers6e, regfit 
une interprdtation d6favorable 5~ M. Liouville." 

STURM also explained the silence of the commission: 

"M. Liouville, en publiant sa Note quelque temps apr~s, dans son Journal 
[LIOUWLLE 1838b], nous d6gagea de l'obligation de faire un rapport  qui 
pouvait n'Ytre pas favorable gz M. Libri" (my italics). 

After STURM had delivered his note LmRI rose and even the dry factual report of 
the Compte Rendu hints to the dramatic scenes taking place: 

"Pendant que M. Libri continuait de se livrer /~ l 'examen de la Note de 
M. Sturm, celui-ci a brusquement abandonn6 la discussion, malgr6 les in- 
stances r6p6t6es et les efforts inutiles de M. Libri pour le retenir." 
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Possibly as a result of STURM'S intervention, LIOUVILLE was nominated to the 
academy on June 3 rd, 1839. In this learned assembly he continued his quarrels 
with LIBRI. For example he defended DIRICHLET against LmRI'S unjust criticism 
[C. R. Feb. 17th-March 9 th, 1840] which we also find described in LtOUWLLE'S 
letters to DIRICHLET [TANNERY 1910]. In their correspondence they both expressed 
their indignation that STURM was underestimated relative to LIBRI: 

"Parmi ces injustices, il n'y en a pas de plus grandes et qui exigent une 
r6paration plus prompte que celle qui a 6t6 commise envers notre ing6nieux 
ami Sturm qui a 6t6 laiss6 dans une position subalterne et qui s'est vu pr6f6rer 
des charlatans adroits pour qui la Science n'est qu'un moyen de parvenir." 
(DIRICHLET to LtOUVlLLE, May 6 th, 1840 [TANNERY 1910, p. 8]) 

On July 7 th, LIOUVILLE told DIRICHLET about the vacant position as Professor 
of Mechanics at the Sorbonne: 

"Croiriez-vous que les chances se balancent entre Sturm et Libri. Pauvres 
math6matiques!" [TANNERY 1910, p. 14]. 

At that moment, however, LIBRI was losing his popularity 

".. .  M. Libri ... un homme qui, dans l'Acad6mie du moins, commence 
atre m6pris6 presque autant qu'il le m6rite." (LIouVILLE to DIRICHLET May ?, 
1840 [TANNERY 1910, p. 9-10]) 

Finally in 1850 STURM and LIOUVILLE must have been content to see LIBRI ex- 
pelled from the Academy. 

4. Even two years before STURM helped LIOUVILLE against LIBRI, LIOUVILLE 
had supported STURM in his competition with CAUCHY. When CAUCHY claimed 
the superiority of his method for finding the number of real roots of polynomials 
and published a method to calculate the number of imaginary roots inside a given 
contour, the two friends answered by publishing a joint paper [LIouVILLE 
STURM 1836], presenting an alternative solution to this last problem. 

Thus STURM and LIOUVILLE had common friends and common competitors. 
With the exception of the few quarrels described above both STURM and LIOU- 
VILLE seem to have been easy to get on with. At a time when animosity among the 
French scientists was the order of the day, the two friends were generally popular 
among their colleagues and particularly among their students. They were both 
eminent teachers who helped many younger mathematicians on their way [LIou- 
VILLE 1855], [FAYE 1882]. 

5. The friendship of the two great mathematicians lasted till the premature 
death of STURM in December 1855. At the tomb L~OUVILLE gave a moving speech, 
the end of which bears witness to the intimate friendship which had bound them 
together: 
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"Ah! cher ami, ce n'est pas toi qu'il faut plaindre. Echapp~e aux angoisses 
de cette vie terrestre, ton ftme immortelle et pure habite en paix dans le sein 
de Dieu, et ton nora vivra autant que la science. 

"Adieu, Sturm, adieu." [LIouVILLE 1855] 

Two months later, when writing to DIRICHLET, LIOUVILLE was still mourning: 

"Venez et vous serez le bien venu. Nous pleurons ensemble notre pauvre 
Sturm" [Ms 3640, dossier 1846-51, unpublished letter dated February 19th, 
1856]. 

Though STURM and LIOUVILLE wrote only one joint paper on the theory called 
after them, several remarks in their works bear witness to their collaboration. 
They always praise each other's achievements and even cover up each other's 
mistakes (see note 35). They discussed each other's papers before their publica- 
tion with the result that in some cases an elaboration of a certain discovery was 
published before the discovery itself. 

6. The works of STURM and LIOUVILLE on linear differential equations fall 
into four periods. During the first period, 1829-1830, they formed and presented 
their initial ideas independently. In the middle of the period 1831-1835 STURM 
wrote his two large m6moires which were eventually published simultaneously 
with LIOUVILLE'S first famous m6moires during the third period 1836-1837. 
LIOUVILLE had begun his generalisation of the theory to higher-order equations 
in 1835, but his main work in this area falls in the last period from 1838 to approx- 
imately 1840. 

In the text below I break this chronology by analysing STURM'S work before 
LIOUVILLE'S. This is justifiable since LIOUVILLE'S definitive work drew heavily on 
STURM'S results, whereas STURM only accidentally commented on LIOUVILLE'S. 
To throw the work of the two friends into relief, the prehistory of Sturm-Liouville 
theory is recorded in Chapter II. STURM'S tWO impressive m4moires and their 
emergence are treated in the two following chapters, III and IV. In the last chap- 
ters V-VI I discuss LIOUVILLE'S work on second-order and, in Chapter VII, that 
on higher-order equations. The first six chapters are based mainly on published 
sources whereas the LIOUVILLE Nachlass at the Institut de France has supplied 
valuable information on the subject treated in the last chapter. 

At the end of the paper a chronological table is appended. 

II. The Roots of Sturm-Liouville Theory 

7. The following motivating considerations were presented in the opening 
phrases of STURM'S first large paper on Sturm-Liouville theory. 

"La r6solution de la plupart des probl6mes relatifs ~t la distribution de la 
chaleur dans des corps de formes diverses et aux petits mouvements oscilla- 
toires des corps solides 61astiques, des corps flexibles, des liquides et des fluides 
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61astiques, conduit 5. des 6quations diff6rentielles lin6aires du second ordre 
. . . "  [STURM 1836a, p. 106]. 

In his second paper [1836b] he explained in more detail how the partial differential 
equations arising from the problems above can be solved by separating the var- 
iables, leading in general to a second-order ordinary differential equation with 
a parameter. The parameter must be chosen so that certain boundary conditions 
are satisfied. 

As an example he discussed heat conduction in an inhomogeneous thin bar. 
In this case the temperature is governed by the equation 

- - -  t u ,  ( 5 )  
g 8t Ox 

where u(x, t) denotes the temperature at the point x and at the time t, and g, k 
and l are positive functions of x. I f  the surroundings of the bar are maintained 
at ,zero degrees the temperature u must satisfy boundary conditions at the end 
points ~ and/3: 

8u 
k - ~ x - - k u = O  for x = ~ ,  (6) 

8u 
k ~ x +  HU--~O for x = / 3 ,  (7) 

where k and H are positive constants which may become infinite (implying 
u ----- 0). Sometimes the temperature is known when t = 0. That gives rise to the 
initial condition: 

u(x, 0) = f ( x ) .  (8) 

Ignoring (8), STURM first looked for solutions to (5)-(7) of the form 4 

u = V(x) e -f t .  (9) 

When substituted into (5)-(7) the factors e -~t cancel, leaving the boundary-value 
problem (1)-(3) for V. If  V1, Va . . . .  , Vn . . . .  are the eigenfunctions to (1)-(3) 
corresponding to the eigenvalues r~, r z . . . . .  r . . . . .  the linear combination: 

u ~- ~ A nVn(x) e -rnt 
n 

is also a solution of  (5)-(7). The initial condition (8) thus poses the problem of  
determining the An's so that 

~_, A n Vn(X) = f ( x ) .  (1 O) 
II 

This problem was taken up by LIOUVILLE. 

, The technique of separating the variables by searching for solutions of the general 
form F(x) f ( t )  had been introduced by FOURIER in [1822, § 167]. However, for simple 
equations like (5) both FOURIER and his successors knew the equation for f ( t )  and its 
solution so well that they immediately wrote down the expression (9). 
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8. Eigenvalue problems of the form (1)-(3) had turned up in the early 18 th 
century in the study of vibratory motions. In the papers of BROOK TAYLOR on 
the vibrating string [1713] and of JOHANN BERNOULLI [1728] on the hanging chain 
the first eigenvalue was found, corresponding to the fundamental mode. The higher 
modes were discovered by DANIEL BERNOULLI (1700-1782) in his continuation 
of his father's research on the vibrating hanging homogeneous chain [1733]. 
He derived the equation 

c~ --~x x + y - ~ 0  

for the shape y(x) of the chain and found its solution as an infinite series which 
we would denote by 

y = AJo(2 ]/x/o~), 

Jo being the zero th order Bessel function 5. DANIEL BERNOULLI argued that there 

is an infinity of eigenvalues o~ satisfying Jo(2 I//-~) = 0, where l is the length 
of the chain, and investigated the distribution of the n -- 1 zeroes of the n th 
eigenfunction in the interval ]0, l[. Later he discovered also the possibility of 
superposing the eigenfunctions and in connection with the vibrating string he 
claimed that the general shape of the system could be obtained in this way. 

TAYLOR and the BERNOULLIS had derived the ordinary differential equation 
directly from physical principles. When D'ALEMBERT and EULER from 1747 on- 
wards derived the partial differential equations describing vibrating strings, 
chains and membranes, they obtained the eigenvalue problem by separating 
variables. Though they did not believe that they could get the complete solution 
by superposition of eigenfunctions they investigated many specific cases of (5)-(7) 
using this technique (cf [TRuESDELL 1960]). From 1807 separation of variables 
was widely used in the theory of heat, first by FOURIER, and soon thereafter by 
almost all the younger French mathematicians. This vast complex of research 
presented ample motivation for STURN and LIOUVILLE. 

Before 1830, mathematicians almost exclusively studied such particular cases 
of (1)-(3) for which they could find an explicit solution either in finite form or in 
infinite series. STURM and LIOUVILLE, however, could not find any manageable 
expression for the solution in the general case and therefore they had to draw 
their conclusions directly from the equations (1)-(3). This is the characteristic 
feature of the Sturm-Liouville theory. Because such a study of the equations had 
earlier been rendered unnecessary by the explicit knowledge of the solution, one 
can hardly find any anticipation of STURM'S and LIOUVILLE'S methods and results. 
Nevertheless, some exceptional investigations pointing toward the Sturm-Liou- 
ville theory were made by D'ALEMBERT, FOURIER, and POISSON. I shall discuss their 
researches in chronological order below. 

s DANIEL BERNOULLI also studied certain inhomogeneous chains and there he found 
a solution which we recognize as a first-order Bessel function. 
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9. JEAN LE ROND D'ALEMBERT (1717-83), who had solved the problem of the 
vibrations of  a homogeneous string in his famous paper of  [1747], turned to the 
nonhomogeneous string shortly after EULER had published his first investigations 
on this more difficult problem. In a letter of June 11 th, 1769 (later published as 
[1763 (1770)]) to LAGRANGE, D'ALEMBERT set up the differential equation 6 govern- 
ing the transversal amplitude y (x ,  t): 

6q2y 
- -  X ~2y (11) 

t~X 2 ~t  2 ' 

where X ( x )  is the distribution of mass along the string. He sought solutions of 
the form 

y = ~'(x) cos )~t 

for which the equation reduces to the form 

d2~ 
dx  2 - -  -X22~. (12) 

After this separation of the variables he let ( ---- e fpdx and obtained for p the 
Riccati equation: 

dp 
dx  ~- p2 q_ X22" (13) 

Since he required the string to be fixed at the two endpoints, 

y = 0  for x = 0  and y----0 for x - - - - a ,  (14) 

he was faced with the question 

"s'il est toujours possible de satisfaire ~t cette double condition, la valeur de 
X 6tant donn6e; c'est un point que personne, ce me semble, n 'a encore exa- 
rain6 en g6n6ral." [D'ALEMBERT 1763 (1770), p. 242] 

In order to show it possible to determine such a value of 2 he considered the vibra- 
tions of a string of the uniform load m = min X(x) .  It satisfies the equation 

xE[0,a] 

dpl 
dx l  - -  p2 + m 2 2  (15) 

corresponding to (13). He argued that if ~ = e Sp~dxl is 0 at x~ ---- 0, then px 
must have vertical asymptotes at 0 and another point b~, for which ~(b~) ---- 0 
(Fig. 1). A comparison of (13) and (15) shows that if ~(0) = 0, we must have 
x < x~ at points where p = p~. Therefore p must also have a vertical asymptote 
at a point b ~ bl corresponding to ~(b) = 0 (Fig. 2). Finally D'ALEMBERT 
claimed it possible to choose 2 in such a way that b -=- a; the two boundary 

6 The physical constants contained in D'ALEMBERT'S equations have all been set 
equal to 1 in the following. 
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Fig. 1 

X~ 

p~ 

.... i I 
bl 

i ;7 

Fig. 2 

conditions will then be fulfilled. The argument he had in mind, but did not write 
down, must have been the following: 

One can prove that b~-+ 0 ( ~ )  for 2 - +  cx~(0), f rom which it follows that 
b -+ 0(.~) for 2 --~ cx~(0) and therefore 2 can be chosen so as to make b = a. 
But in this argument only the implication (ha -+ 0 for 2 -+ cx~) ~ (b ~ 0 for 
2 --~ ~ )  follows from D'ALEMBERT'S inequality b < ba. In order to get the other 
inequality he could have compared equation (13) with the equation for a string 
of uniform load M = max X(x). 

10. D'ALEMBERT established only the existence of one eigenvalue 2 of  the 
boundary-value problem (11), (14) 7. In spite of  these shortcomings D'ALEMBERT'S 
investigation was a remarkable anticipation of  the Sturm-Liouville theory. Not  
only has the problem of existence of  eigenvalues a central position in this theory, 
but also the method of  basing the existence proof  on a comparison with differen- 
tial equations with constant coefficients points directly to STURM'S comparison 
theorem (cf § 24). However, STURM did not refer to D'ALEMBERT'S paper. 

7 To a modern reader D'ALEMBERT'S assumption ¢ = ef pax for p(x)C R limits 
the discussion to positive values of ~ in which case only the first value of 2 can he found. 
However, this argument does not apply to D'~.LEMBERT who believed that log x = 
log ( -x ) .  In the letter considered here [D'ALEMBERT 1763 (1770), p, 250] gave a new 
argument for this standpoint based on the equation (11) for X constant. 
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11. The work of JOSEPH FOURIER (1768-1830), on the other hand, was well 
known to the young STURM, who was his proteg6. In his main work "Th6orie 
analytique de la chaleur" [1822], FOURIER treated only heat conduction in homo- 
geneous media but was nevertheless led to differential equations with variable 
coefficients when he used spherical and cylindrical coordinates. In both cases he 
succeeded in finding explicit formulas for the solutions of the separated equations. 
When using spherical coordinates he found the solutions to be ordinary trigono- 
metric functions so that the problem of finding the eigenvalues became a simple 
trigonometric problem. Heat conduction in an infinitely long homogeneous cylin- 
der, on the other hand, posed problems similar to those DANIEL BERNOULLI had 
faced in his investigation of the hanging chain. 

12. After having set up the heat equation in cylindrical coordinates [1822 
§ 118-120] FOtmIER assumed as he usually did that the temperature is of the form 
e -mr u(x) and found [1822 § 306] fo r  u(x) the equation 

d2b/ 1 du m 

dx 2 %--x-- ~xx % - T  u = O, (16) 

where k is a positive constant and x is the distance from the axis. FOURIER imagined 
the cylinder to be immersed in a medium of constant temperature. Then u must 
satisfy the boundary condition 

du 
hu %---~x = O for x = fl, (17) 

where h is a constant and fl is the radius o f  the cylinder. 
FOURIER found the solution to (16) expressed as an infinite series8: 

1TIX 2 m 2  x 4 /T/3X 6 

u = 1 -- k2---" T %- k222 . 42 k322 " 42 . 62 %- . . . .  (18) 

Th i s i s t he  Besselfunction J o ( X V k  ) .  Now m must be chosen such that (17) is 

satisfied. Since FOURIER wanted to represent any initial temperaturef(x) as a sum 
of solutions 

f (x )  -~ alul(x) -]- a2u2(x) + ...  %- anun(x) %- . . . ,  (19) 

he needed to show that there is an infinite number of such values of  rn (eigen- 
m f l  2 1 

values). Setting 0 = ~ ano 

02 03 
f ( O ) = l - - O - ~  22 22 3 2 + . . .  

s Here FOURIER has left out one multiplicative constant. Another constant has been 
determined from the implicit boundary value condition that u(x)is regular at x = 0. 
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makes it possible to write the boundary condition as follows: 

h~ ~f'(O) 
T+o?  =o. 

FOURIER noted that f(O) is a solution of the differential equation 

dy ~ d2y 
y -~--~ + O - . ~  = O, 

(20) 

(21) 

from which he deduced the existence of infinitely many roots of  (20) in the follow- 
ing way: Successive differentiation of (21) yields 

diy di+ly di+2y 
- k ( i + l ) ~ + 0 d 0 i +  z = 0 ,  (22) 

which shows that when f (;+ 1) has a root f (° and f (i+2~ have opposite signs. FOURIER 
claimed that if such a relation holds between the real roots of a function and its 
successive derivatives then the function has no imaginary roots. For  polynomials 
this theorem is valid and it is closely related to FOURIER'S earlier investigation 
[1820] of  the number of real roots of  algebraic equations between given limits 9. 
However, in a debate with FOURIER, POISSON pointed out that the theorem is not 
always true for transcendental functions [PoIssoN 1823b, p. 383, and !830]. 
Nevertheless, FOURIER applied it to the transcendental function f(O) above and 
concluded that it had no imaginary roots and hence infinitely many real roots 
(he probably considered f as a polynomial of infinite degree, possessing therefore 
an infinity of  roots) t°. A simple argument, left out by FOURIER, then shows that 
(20) or (17) has infinitely many real roots. In spite of  the inadequacy of  the proof  
the result is correct. 

13. Having thus obtained an inf in i ty& eigenfunctions ut, ~/2 . . . .  to (16) and 
(17) FOURIER desired to prove [1822, § 310-319] that any initial s ta tef(x)  can be 
developed in a Fourier series (19). As in all other cases of  this kind FOURIER 
considered this to be proved if he could find a formula for the Fourier coefficients 
ai. After long calculations involving only the equations (16) and (21) but not the 

9 FOURIER'S theorem states: Let f(x) = 0 be a real algebraic equation of the k th 
degree, let p denote the number of variations of signs in the sequence 

f(~), f'(cQ . . . . .  f(~)(~), 

and let q denote the number of variations of signs in the sequence: 

f(fl), f,(fl) . . . . .  f(k)(fl). 

Then the number of real roots of f (x)  in ]% fl[ (~ </3) is at most equal to p -- q. 
SXURM'S theorem (note 3) was announced as an improvement of this theorem. 
lo FOURIER defended his use of the above-mentioned method against PoissoN's 

criticism in [FouRIER 1831]. 
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formula (18) for the solution he found that 

[0 for i q=j 
# 

/ 

for i = j .  
(23) 

From this statement of orthogonality and (19) it follows that 

2 f xf(x) ui(x ) 
0 

£ l  i - -  [, + Ovj (24) 

FOURmR'S treatment of heat conduction in a cylinder anticipates the Sturm- 
Liouville theory in the sense that the conclusions are drawn directly from the 
differential equations (21) and (16). However, since the deduction of (21) 
rested on the knowledge of the explicit expression (18) for the solution u, this 
equation is foreign to the Sturm-Liouville theory. 

14. The only mathematician who proved general theorems in Sturm-Liouyille 
theory before S T u ~  and LIOUVILLE was SIMt~ON-DENIS POISSON (1781-1840). 
He obtained his results in connection with his above-mentioned debate with 
FOURIER over the reality of the roots of the transcendental equations determining 
the eigenvalues of various problems in heat conduction. Even in the paper 
[1823b] in which he first criticized FOURIER'S proof he had presented what he 
called an "a posteriori" proof of the reality of the eigenvalues for the boundary 
value problem describing heat conduction in a sphere consisting of two concentric 
homogeneous materials. He simply noted [1823b, p. 381] that by using two 
different methods [1823a, § VIII and [1823b, § V] he could express the temperature 
in two ways as a sum ~ Um which were identical except that one sum ranged over 

m 

all eigenvalues whereas in the other only real eigenvalues were taken into account. 
Since the two expressions had to be equal, POISSON concluded that no complex 
eigenvalues existed. 

15. In [1823b, p. 382] he acertained that no "a priori" method of proving 
the reality of the eigenvalues was known, but three years later he presented such 
a method in a note read in the Soci6t6 Philomatique [1826]. The proof was based 
on the orthogonality of the eigenfunctions. He had proved this relation in the 
case of the double layer sphere in [1823b, p. 380] but he had not noticed that it 
implied the reality of the eigenfunctions as a simple consequence. In [1826] 
PoIssoN treated the particular case of (4): 

9u 92u 

Ot ~x 2 + X(x)  u (25) 
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with the boundary conditions 

du 
- ~ x - - h u = O  for x = a ,  (26) 

du 
÷ H u = O  for x = f l .  (27) 

As usual he noted that the function y~(x) e °t solves this boundary value problem 
if y0 is a solution to the ordinary differential equation" 

d2yo 
OY~ -- dx 2 + Xyo. (28) 

and satisfies boundary conditions similar to (26) and (27). In order to arrive at 
the orthogonality relations he considered a particular eigenfunction y¢ and the 
solution of the original problem (25)-(27): 

u = Zyod t, (29) 

where the summation ranges over all the eigenvalues. Multiplying (25) with y¢ 
and integrating over [0¢, fl] he obtained 

d f .y~,dx 

dt 

rfl d 2 u fl 

- -  J -~x2ycdx + f x.yo, ax. 
c¢ 0¢ 

(3o) 

By partial integration the first term on the right-hand side is transformed into 

3 
f dZu d2y~, 

dx = ['___! u - -~d-dx  , (31) ~x~ Yo" 
o¢ a: 

because the boundary terms cancel when both u and y¢ satisfy (26) and (27). 
Similarly multiplication of  (28) by u and integration over [~x, fl] yields 

3 3 d2~,. 
¢' f uyo, dx--- f u ~ dx + f Xuyo, dx. (32) 

c¢ C¢ d X  c¢ 

From (30)-(32) Poisso~r deduced the equation 

d f uy~, dx 
c¢ 

dt 

which can readily be integrated to give 

f uy e, dx -- Ae e't, 
3 

(33) 
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where A is an arbitrary constant. By reintroducing the particular form (29) of u 
into (33), and equating the coefficients of similar exponentials POISSON demon- 
strated orthogonality: 

f YoY¢ dx = 0 for e 4= (34) 
c¢ 

16. POISSON then assumed 9 to be a complex eigenvalue with the eigenfunction 
Yo. Since he implicitly assumed X(x), h and H to be real, he concluded that 
must also be an eigenvalue with the eigenfunction v--~ = v~, and since 9 4= ~, 
equation (34) implies 

f [y.o[ 2 dx = f yffi£~ dx ~ O. (35) 
¢¢ c* 

Hence ),~ --~-- 0 in [a, fl]. This is a contradiction and therefore POlSSON concluded 
that all eigenvalues must be real. 

In his "Th6orie math6matique de la chaleur" [1835] POtSSON carried over this 
proof to the more general boundary-value problem 

c (x ) -~ -=  ~ 0xi in A, (36) 
i = 1  

k (grad u.  70 + pu = 0 on 8A, (37) 

where A is a domain in N a and ~ is the outer normal of its boundary 8A t~. This 
is the three-dimensional analogue of STURU'S problem (5)-(7). In this case POISSON 
found the following orthogonality: 

f c(f)  P,(x-) Pj(x-) d~ = 0 for i + j .  (38) 
A 

17. In the two works mentioned above PolSSON provided both theorems and 
methods of lasting value for the Sturm-Liouville theory. The orthogonalities 
(34) and (38) and the theorem on the reality of the eigenvalues were adopted 
with due credit in STURM'S papers and the method used to obtain (33), particularly 
the application of partial integration, is still used, though in a slightly simpli- 
fied form found by SXURM. Nonetheless, POISSON'S researches are of a limited 
scope compared with the gigantic advances in the field made by STURM and 
LIOUVlLLE within two years of the publication of POISSON'S last results. 

HI. Sturm's First M6moire 

18. SXURM'S mathematical masterpieces grew out of the blend of theorems 
on differential equations and roots of equations found by FOURIER and POISSON. 
His famous algebraic theorem, improving FOUmER'S theorem on the determination 

11 POISSON did not use vector notation but wrote his equations in components. 
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of real roots (note 3), was presented to the Academy on May 25 th, 1829 [1829a], 
and during the following half year he presented a series of papers on transcendental 
equations and differential equations [1829b-f]. The papers are all lost 12 but, 
from the short summaries of some of them [c and d] in the Bulletin de F&ussac 
and from CAUCHV'S report on [f], one sees that STUR~ got most of his ideas on 
the Sturm-Liouville theory during this period. He proved that certain systems 
of differential equations [c] and algebraic equations [d] have real eigenvalues, he 
determined Fourier coefficients [c], he found a version of his oscillation theorem 
If], and he applied the theorems to determine the temperature distribution in diffe- 
rent bodies for large values of the time. 

In the concluding remarks of the first of his large printed papers on the Sturm- 
Liouville theory STURM shed more light on his approach to both the algebraic 
and the analytical theorems: 

"La th6orie expos6e dans ce m6moire sur les 6quations diff&entielles 
lin6aires de la forme 

d a V dV  
L-~x 2 + M-~x  + N U  -= 0 (39) 

correspond ~ une th6orie tout-/~-fait analogue que je me suis faite ant&ieure- 
merit sur les 6quations lin6aires du second ordre/ t  diff6rences finies de cette 
forme 

LUi+I q- MUi q- NUi_I = 0 (40) 

i est un indice variable qui remplace la variable continue x; L, M, N, sont des 
fonctions de cet indice i et d'une ind6termin& m, qu'on assujettit h certaines 
conditions. C'est en 6tudiant les propri6t6s d'une suite de fonctions Uo, U1, 
U2, U3, ... li6es entre elles par un syst6me d'6quations semblables h la pr6c6- 
dente que j'ai rencontr6 mon tMor~me sur la d&ermination du nombre des 
racines r6elles d'une 6quation num&ique comprises entre deux limites quel- 
conques, lequel est renferm~ comme cas particulier dans la th6orie que je ne 
fais que indiquer ici. Elle devient celle qui fait le sujet de ce m6moire, par le 
passage des diff&ences finies aux diff6rences infiniment petites. [Sa-URM 1836a, 
p. 1861 

However, in the extant summaries of STURM'S early papers there is no explicit 
mention of this theory of difference equations. To be sure, one of the papers 
[1829d] deals with systems of equations resembling (40) but the aim of the paper 
is so different from the one described in the quotations that it cannot be the work 
STURM had in mind. Where, how and why did STURM then study the difference 
equation (40) ? A convincing answer to these questions has been given by B6CHER 
in his interesting pape r [1911/12]. B(3CHER argues that the problem of STUR~'S 
paper "Sur la distribution de la chaleur dans un assemblage de vases" [1829e], 
of which only the title is known, lead STURM to the difference equation (40), and 

12 Many letters in STURM'S personal file bear witness to several fruitless attempts 
to find the m6moires. 
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he shows how an analysis of this equation can lead to STURM'S theorem as well as 
to a discrete version of  the theorems found in STURM'S first published paper on 
the Sturm-Liouville theory. The reader is referred to B6CHER'S paper for a further 
discussion of STURM'S unpublished papers on algebraic and differential equations. 

19. The publication of a comprehensive version of STURM'S ideas was delayed 
until 1836 when LIOUVILLE urged STURM [of LIOUVILLE 1855] to publish in his 
newly founded journal a m6moire presented to the Academy three years earlier 13 
[STURM 1836@ A summary of  STURM'S paper had appeared in the journal L'In- 
stitut of [1833 a] ~4 but it contained only the main results, not the methods. Thanks 
to its conciseness, however, the summary displayed a clarity which the eighty 
pages of the m6moire lacked. In the latter every detail was proved, sometimes 
with several proofs, and this combined with the lack of  emphasis on the important 
theorems created a rather unreadable paper. STURM'S reason for being so elaborate 
was probably the novelty of his methods. 

"Le principe sur lequel reposent les th6or6mes que je d6veloppe, n'a 
jamais, si je ne me trompe, 6t6 employ6 dans l'analyse". [STmtM 1836a, 
p. 107] 

The paper dealt with the general second-order linear differential equation (39) 
in which the coefficient functions depends on a real parameter r. For convenience 
STURM transcribed the equation into its self-adjoint form 

(K(r, x) V;(x))' + G(r, x) gr(X) = O, X E 10¢, fi[ (41) 

which generalizes the equation (1) ls'16. However, in the first paper STURM did 
not discuss a boundary-value problem with two boundary conditions of the kind 
(2) and (3). He postponed the treatment of  spectral theory to the second paper 
[STORM 1836b] and imposed in the first paper only one boundary condition of 
this kind: 

K(r, x) V;(x) - -  h(r) Vr(x) = 0 for x ---- o~, (42*) 

or equivalently 

K(~, x) V;(x) 
Vr(x) - -  h(r) for x ---- 0~, (42) 

13 STURM'S m6moire was presented to the Academy on September 28 th, 1833 and 
not on September 30 th, as is stated in [STORM 1833a] and [PROUHET 1856]. 

14 The analysis of STURU'S m6moire in [1833 a] is written in the third person; thus 
it is not certain but is most probable that STURM is the author. 

1~ For L(x) + 0 in (39) Sxusu found the functions of (41) to be 

fM(x) cM(x) 
K(x) e j Z ~  ,tx N(x)  eJZ~'~" dx = and G(x) -~ 

16 In this paper '  as i n f '  always means differentiation with respect to x; ~ will denote 
differentiation with respect to the parameter r. 
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in which he even allowed the "constant" h to vary with r. STURM remarked that 
the following proposition secured the existence of a solution and its uniqueness, 
to within a multiplicative constant, to (41) and (42)~7: 

Proposition A. Suppose Vr is a solution to (41) and suppose Vr(~) and V~(a) are 
given. Then V~ "a une valeur ddterminde et uinque pour chaque valeur de x". 

By the 1830's this basic theorem of existence and uniqueness had been generally 
believed for a century, but the first proof  had only recently been provided by 
LIOUVILLE (see § 34). 

Thus the problem (41), (42) leads to a continuous family of solutions Vr, 
one for each r. The aim of STURM'S first paper was to study the qualitative behaviour 
of  these solutions V~(x) and particularly how it varied with r. STURM was primarily 
interested in the oscillatory properties of  the V~(x)'s, for example their zeroes, 
their changes of sign, and their maxima and minima in the interval ]~,/3[. He 
obtained this information "par la seule consid6ration des 6quations diff&entielles 
en elles-mSmes, sans qu'on air besoin de leur int6gration" [STURM 1836a, p. 107]. 
In this way he made explicit the method which had been indicated by FOURIER 
and used rather unconsciously by POISSON. 

20. Central in STURM'S paper is his investigation of  the number of roots of  
Vr in ]oc, fl[, from which all the other results follow as easy corollaries. This in- 
vestigation has two components: 

1 °. Proof  that under variation of the parameter r a root x(r) of  Vr can appear 
or disappear from the interval ]~, fl[ only if it crosses one of  the boundaries 
(x(r) = oc or x(r) = 13). 

2 °. Determination of  how the roots x(r) of  V, move for varying r (also outside 
]0¢, riD, particularly how they enter the interval ]o¢, fl[. 

The first property is easily established for if a root x(r) appears or disappears 
without passing oc or/3 it gives rise to a double root (Fig. 3). However, this cannot 
happen according to STURM'S proposition: 

'l 
Fig. 3 

17 STORM formulated only one theorem (here called theorem E) in the whole paper. 
In order to make this discussion easier to grasp than STORM'S paper, I have formulated 
as propositions many of the properties proved by STURM. 
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Proposition B. When V, is a non-trivial solution to (41), then Vr and V~ have no 
common roots. 

STURM offered two proofs of  Proposition B. First he pointed out that if  V~(e) = 
V~(c) =- 0 it follows from (41) that all the higher derivatives V~")(c) will vanish 
in e "et  par suite [by TAYLOR'S theorem] V serait nulle pour routes les valeurs de 
x".  This simple proof  is followed by a second "dfmonstrat ion plus rigoureuse" 
which rests on the constancy of the Wronskian [STrORM 1836a, p. 109-110]: 

K(v,v  - v2v ) = c ,  

where V~ and V2 are two arbitrary solutions to (41) and C is a constant ~8. 
The two proofs reflect the radical changes taking place in the foundation of 

analysis during the early 19 th century. The first proof  reveals an author attached 
to the tradition of LAGRAN6E, whereas the need to give an alternative proof  
would occur only to a mathematician influenced by the new standards of  rigour. 
In particular, CAUCHY'S example [CArOCtaY 1829, 10. leqon] of  a function whose 
Taylor series converges to a sum different f rom the function expanded, shows that 
STURM'S first proof  is invalid. 

21. Proposition B shows that it makes sense to follow a particular root Xr 
of V~, when r varies, as is required in 2 °) above. In order to describe this variation 

V K V '  
STURM studied the behaviour of  the two fractions ~ and ---~--. For brevity 

KV" 
I shall discuss only the thorems concerning 7 of  which the first and most 
central stated [STURM 1836a, p. 116]: 

Proposition C. I f  V is a solution to (41) and (42) and i f  

K >  0 Vr, VxE [0¢,fi], 

G is an increasing function of r 

K is a decreasing function of r Vx 8] 

[ff-~]x=~ = h( r ) i s  a decreasing function o f r ,  I 

K V '  
then ~ is a decreasing function o f  r f o r  all vahtes o f  x ~? [~, fl]19. 

(43) 

18 STURM'S second proof: If V1 ~ 0, there is a point a such that Vl(a) =t = O. 
STURM then takes a solution //2 with such values of V2(a) and V2(a) that the Wronskian 
evaluated at the point a is different from zero. Then the Wronskian is everywhere different 
from zero and hence V1 and 11; can not both be equal to zero. 

Without comment STURM has here used the existence part of Proposition A when 
he chose V2. On the other hand, Proposition B is a simple consequence of the uniqueness 
part of Proposition A. STURM clearly did not see these relations between Propositions A 
and B for he would probably consider the assertion of existence of A as a stronger state- 
ment than the assertion of uniqueness. 

19 When Vr(x) for fixed x and variable r becomes zero the quotient KV" ...... thus jumps 
from -- eo to oo. V 
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Since both the proposition and its proof  are fundamental in STURM'S theory, I 
shall consider the proof  in detail. 

Without bothering about differentiability 2°, STtJRM differentiated equation 
(41) with respect to r and found: 

d6(gv ' )  
+ G 6 V +  V6G = 0 ,  (44) 

where he has interchanged differentiation with respect to x (denoted d) and 
differentiation with respect to r (denoted 8). Multiplying (41) by 6Vdx ,  and sub- 
tracting (44) multiplied by V dx yields 

6 V d (Kr ' )  -- V d6(KV') = V 2 6G dx, (45) 

which, integrated by parts between ~ and x, gives 

OV(KV') -- V3(KV' )  = C + f V2 6Gdx  -- f ( v ' )  2 6Kdx,  (46) 
0¢ o¢ 

where C is the value of  the left-hand side for x = ~. Since this left-hand side is 
equal to 

STURM finally obtained 

_v2 6 - v2  6 v jjx= + f a x -  f 6x ~, (47) 

I f  the assumptions (43) of Proposition C are fulfilled, we have 

and 

[6 
\ v ]Jx=~ < °  

6G > 0 and 6K < 0 for x C [~,/3]. (48) 

Hence the left-hand side of (47) is positive, i.e. 

6(K--~V')<0 for xE[o~,/3], (49) 
\ v /  

which proves Proposition C. 

20 In the 1830's the concept of differentiability had not been introduced. Following 
CAUC•Y, the rigorists differentiated only continuous functions, but even continuity 
of V with respect to r is never questioned by STURM. DOVVlLLE raised this question once, 
when he had obtained completely inadmissible results (ef. § 56). In the following pre- 
sentation I take for granted sufficient smoothness in V r as a function of r. 
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22. From Proposition C STURM easily obtained the desired description of 
the variation of a root x(r), satisfying V~(x(r)) = 0, when the conditions (43) are 
fulfilled. When r increases to r + dr, x will change to x -k dx and V to the value 

. 8 V r ( x ) .  
Vr+dr(X(r -~ dr)) = Vr(x(r)) + dx 5 - ~  ar. Since V,+a~(x(r -k dr)) = 

Vr(x(r)) = 0  we have: 

8V 8V 
--~x dX @-~r dr ----- 0 

o r  

8 v  

dr 8x 
- -  ( 5 0 )  

dx 8 V "  

8r 

8V 8V 
STURM then used (46) to see that -~r (or ~ V) and ~ (or V') have the same 

signs when V = 0. Therefore 

dr 
-~-x < O, 

which implies the proposition: 

Proposition D. I f  the assumptions (43) are satisfied, the roots x(r) of  the solution 
V~(x) to (41) and (42) are decreasing with r. 

Thus new roots of Vr may enter the interval ]a,/3[ through its right-hand end point 
/3, but no roots can leave the interval through/3. This means, according to property 
1 ° (§ 20) that, if Vr(a) 4 = 0 for all r (i.e. h(r) 4= oo in (42) or (43)), the number of 
roots of Vr in ]a,/3[ increases with r. 

23. STURM could then easily deduce what he considered his main theorem: 

Theorem E. Let Vt and Vz denote solutions to the equations 

(K, Vi')' + 6iV, = 0 Vx ~ ]o,,/3[, (50  

KiV; 
= h i  for x = o ~  (52) 

Vi 

for i = 1 and i ---- 2 respectively. Suppose further that 

and 

C2(x) > ~l(x), Ks(x) < Kl(x) Vx ~ [o~,/31 (53) 

h2 < hi .  (54) 
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Then V2 vanishes and changes sign at least as many times as I11 in ]~,/3[; and if  
one lists the roots of  V1 and V2 in increasing order fi'om o~ the roots o f  V1 are 
larger than the roots of  V2 o f  the same order. 

In order to deduce Theorem E from the remarks following Proposition D, 
STURM "connected" the two situations (i : 1 and i = 2) by a continuous family 
of equations (41), (42) satisfying: 

G(x, ri) = 6 , (x) ,  

and 

K(x, ri) = Ki(x) i = 1, 2 (55) 

h(r~) = hi (56) 

in such a way as to satisfy the conditions (43). The possibility of selecting such a 
continuous family is secured by (53) and (54). 

The introduction of the continuous family of equations also allowed STURM 
to evaluate the difference A between the number of roots of  V1 and Vz in ]o~,/3[. 
He showed that 

Proposition F. A = the number o f  roots of  Vr(fl) for r E ]rl, r2[; 

that is, the number of zeroes which the solution V of the continuous family (41) 
and (42) assumes at the right-hand end point of the interval, when r varies from rl 
to r2. This is the theorem which most clearly shows the connection between 
STURM'S theorem in algebra [el note 3] and his analytical investigations. 

24. The rest of the m6moire consists of consequences, refinements and varia- 
tions of  Theorem E and Proposition F. Of these I shall in the following only 
discuss the most important, particularly those that were used in the subsequent 
development of  the Sturm-Liouville theory. The first interesting consequence of  
Theorem E can be found in Section 16 of  [Sa'URM 1836a]. It is: 

Sturm's Comparison Theorem. I f  V~ and V2 satisfy (51) for i : 1 and i : 2 
respectively, and Gi, Ki (i : 1, 2) satisfy (55), the interval between two conse- 
cutive roots of  V1 will contain at least one root of  Vz. 

Sections 19 to 35 investigate how 

KV'  -k HVI 
(57) 

behaves as a function of r (H is a constant) and how 

KV'  + p(x) V (58) 

behaves as a function of x and r when Vr(x) is a solution to (41) and (42). As a 
result of  this analysis STURM proved 

Proposition G. [KV' + HV]x=~ considered as a function of  r vanishes A or A ÷ 1 
times for r E Jr1, r2] 



332 J. LOTzEN 

whereA has the meaning explained above by Proposition F. A related consequence 
[STORM 1836a, p. 141] of the analysis is 

Storm's Oscillation Theorem. Let ~ and ~" be two consecutive values o f  r which 
satisfy KV~ + HVr = 0 for  x =/3.  Then V~, has one more root in ]~, /3[ than V~. 

25. In the last seven sections STURM gave methods of  approximating the solu- 
tions Vto (41) and their roots. During this part of the investigation he transformed 
the general equation (41) into the simpler form 

v;'(x) + ; (x ,  r) vr(x) = o (59) 

by altering either the independent variable x or the dependent variable V. He 
obtained the approximations by comparing equation (59) with the corresponding 
two differential equations which emerge when/~  is replaced by its maximum and 
minimum in [~,/3]. The solution of  these two differential equations with constant 
coefficients are trigonometric functions and from their familiar properties STORM 
could get approximations to V using the main Theorem E. This important method 
had, as we saw in § 9, been perceived by D'ALEMBERT. 

By way of this method STtJP, M also proved in passing [STURM 1836 a, section 40] 

Proposition H. I f  F(x ,  r) -+ cx~ for  r ---> oc , x E [~, fi] and i f  (43) is satisfied and 
i f  Vr(o:) has the same sign for  all r, then 

[KV'  -k HV]x=¢ 

vanishes infinitely many times when r ~ oc. 

An immediate consequence of Proposition H is that the boundary value problem 
(1)-(3) has an infinity of eigenvalues, but STORM did not make this observation 
explicit here. 

26. I have treated STURM'S paper in such detail to give an impression of  the 
wealth of new ideas and new results it presents. Of the Propositions A - H  only the 
first two had been known earlier, and even the idea of proving theorems like C - H  
was new with STORM. The results were to constitute the basis of  all the work of  
STORM and LIOUVILLE in the theory called after them. The individual elements 
in STURM'S proofs, such as differentiation with respect to a parameter and partial 
integration, were all well known but STORM combined them in an original way to 
obtain qualitative statements about the solutions. 

As in all early 19 th century analysis STURM'S methods do not meet the modern 
standards of  rigour, but only minor alterations are needed to make them accept- 
able to a modern reader. Nevertheless STORM'S exposition differs considerably 
from the presentation in modern textbooks. Today the solutions V r are thought 
of  as vectors in a HtLBERT space and therefore their oscillation becomes uninter- 
esting. I f  it is discussed at all, both boundary conditions (e.g. (2) and (3)) are 
usually introduced from the beginning, and so only the behaviour of the eigen- 
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functions is studied, whereas the continuous family of  equations and solutions 
V r do not occur. In addition the modern presentation generally concentrates-on 
specific types of  coefficients (e.g. as in (1)). Such limitations were applied by 
STURM in his second m6moire on Sturm-Liouville theory, devoted to spectral 
theory. 

IV. Sturm's Second M6moire 

27. STURM'S m6moire on spectral theory was published later in the year of  
1836 in LIOUVlLLE'S Journal [STuR~ 1836b]. In its final form it must have been 
composed during that year for it includes some comments on results obtained by 
LIOUWLLE towards the end of  1835 [LIotrVtLLE 1836C &d]. However, it is clear 
both from LIOUVILLE'S reference to the m6moire in the papers mentioned above 
and from a one-page summary in "L ' Ins t i tu t"  of  1833 [STuRM 1833b] that 
STURM had written a preliminary version in 1833 in connection with the composi- 
tion of the first paper [1836 a]. As discussed in § 18, the scanty evidence of  STURM'S 
early works even shows that he must have had some of the ideas even in 1829, 
but probably not in the polished form he gave them in the mdmoire of  1836. 

28. I have already (§ 7) summarized how STURM in the second m6moire de- 
duced the equation (1) with the boundary conditions (2)-(3) from a problem of 
heat conduction and how the eigenvalues can be considered as roots of  a transcen- 
dental equation H(r) = 0 (4). This is the situation about which STURM proved 
a number of  results, the most impor tant  being propositions J -N.  

Proposition J .  There are infinitely many roots (eigenvalues) of  the equation H(r ) = O; 
they are all real and positive and there are no multiple roots. 

Let r~ < r 2 < . . .  < r n < . . .  be the eigenvalues 21 with the corresponding eigen- 
functions V~, V2 . . . . .  V,, . . . .  In this notation STURM formulated the following 
results: 

Proposition K (orthogonality). 

t~ 
f g(x) v,.(x) Vn(x) dx -- o for m =~, n. (60) 

Proposition L. Vn never becomes infinite in [oc, fl] and has in ]oc, fl[ n -- 1 roots, 
at each of which it always changes sign. 

Proposition M. Between two consecutive roots of  Vm there is precisely one root 

Of Vm-1. 

21 STURM did not argue in favor of such an ordering of the eigenvalues. However, 
it is a consequence of L~OUVXLLE'S expression for the asymptotic behaviour of the eigen- 
functions (96). 
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Proposition N. Let  m < n E N and A m, A,,+I . . . . .  An be constants which are not 
all zero. Define 

~o(x) =- AmVm(X ) 4- Am+lVm+l(x ) 4 - . . .  4- AnVn(x ). (61) 

Then ~p(x) has at least m --  1 roots and at most n - -  1 roots counted with multi- 
plicity. 

I f  h or H are infinite, the boundary conditions (2) and (3) must be read V(~) = 0 
and V(/3) = 0. Then these roots must be given particular treatment in L, M, and 
N. STURM painstakingly took care of these particular cases 22. In the following 
brief discussion of the proofs such details will be ignored, and so the principal 
ideas will become clearer. 

29. ad J and K STURM offered three proofs that the eigenvalues are real. 
The third was inspired by a method used in perturbation theory by LAPLACE 
in his M6canique Celeste [1799, book II, chapter 6] and the second was a revis- 
ion of  PoISSON'S proof, to which STURM referred. Instead of PO~SSON'S use of 
one solution to the ordinary differential equation (1) and one solution to the 
partial differential equation (5), STURM started out at once with two different 
solutions Vn, V m of  the ordinary differential equation. This idea made the proof  
easier and independent of  the partial differential equation. Following POlSSON, 
he demonstrated orthogonality as an intermediate step. 

ad J STURM'S proof  that there are infinitely many eigenvalues has now become 
standard. It rests upon comparing equation (1) with the equation 

U~' + n(r) 2 0-1 = 0, (62) 

where n(r) is a constant independent of  x, so selected that 

g(x) r --  l(x) > n(r) z sup k(x)  for x E [c~, fl] 
x E [~,~1 

and that n(r)--->cx~ for r - + ~ .  I - n ( r ) ( R -  ocY1 
The well known solution C sin (nx ÷ c) of (62) has [;" ~- ' j  roots 

in ]~,/3[ and according to the comparison theorem of  STURM'S first paper Vr(x) 
has at least as many roots. SXtXRM had shown that V~(x) has no roots in ]~,/3[; 
hence it follows from Proposition G of the first paper that KV~(/3) ÷ HVr(/3) 

-- roots when r runs through [0, R]. Therefore there are 

infinitely many eigenvalues of (1)-(3). The proof  is only a slight modification 
of the proof  of  Proposition H in the first m6moire. 

ad L and M They are simple consequences of the oscillation theorem and the 
observation that Vl(x)  has no roots in ]~, fl[. 

22 In the last paragraph of [STURM 1836b, section 9], STURM claimed that the root 
x = fl must be counted among the n -- 1 roots of F n. This mistake was corrected in 
the Errata. 
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ad N SXURM obtained this result through careful investigation of the solution of  
the original boundary-value problem for the partial differential equation (5)- 
(7): 

CmVm(X) e -rmt -5 Cm+lV,,,+l(x) e rm+l t + ...  -? CnVn(x) e -~n', (63) 

where r m < rm+i < ... < r,. For  large positive values of  t the solution (63) 
will be dominated by the first term, which has m --  1 roots, and for large negative 
values of  t it will be dominated by the last term which has n - -  1 roots. STURM 
proved that for other values of  t the number of  roots lay between these extremes. 

In connection with the argument above S~URM concluded that the temperature 
distribution in the bar 

C1Vle  -~lt + CzV2e -r't  @ .. .  @ CnVne -rnt @ ...  

will eventually have m nodes where m is the smallest value of i for which (7,- 
is different from zero. This value of m can be found from the initial temperature 
distribution f (x)  since, in virtue of  orthogonality Ci is determined by 23 

f g(x)  V i (x ) f ( x )  dx 

C~ : ~ (64) 

f g(x) V?(x) dx 
c¢ 

This result, which generalizes some of FOURIER'S and Po~SSON'S theorems, had 
already been indicated by STURM in [1829b]. 

30. Few other papers in the history of mathematics can rival STURM'S tWO 
papers [1836a, b] for novelty of  problem, methods, techniques and results. Above 
I have tried to summarize the theory as it appeared in 183324. When preparing 
the last paper for publication STURM added a few remarks caused by LIouvlLLE'S 
entrance on the scene (c f  § 50). He returned to the subject only once, namely 
in the following year with a paper written in collaboration with LIOUVILLE [LIOu- 
V1LLE & STURM 1837b] ( c f  § 49). Otherwise he left it to LIOUVILLE to extend his 
researches on differential equations. 

V. Loiuville's Youthful Work  on Heat  Conduction 

31. LIOUVILLE'S work on the Sturm-Liouville theory concentrated on two 
major problems: expansion of functions in Fourier series of  eigenfunctions and 
generalisation of the theory to other types of  differential equations. In his cele- 

23 STURM did not question the interchange of integration and summation involved 
in determination of the Fourier coefficients C/. 

2, In the above account of SXURM'S second m6moire I have referred only to those 
ideas which do not result from LIOUVILLE'S improvements. I think that thereby I have 
referred to STURM'S original (1833) approach but it can not be excluded that in rewriting 
his m~moire of 1833 STORM made alterations other than those due to LIOUVILLE'S in- 
tervention. 
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brated papers on these two problems published during the three years 1836-1838 
he built directly on STLrRM'S research. His repeated reference to STURM creates 
the impression that the work of his friend had been the starting point of his 
interest in these matters. However, an inspection of LIOUWLLE'S youthful works 
reveals that in fact his interest goes as far back as STURM'S earliest investigations, 
and has the same inspiration, namely the study of FOURIER'S and especially of 
POISSON'S work on the theory of heat. 

LIOUVlLLE presented his first papers on the theory of heat to the Academy 
on June 29 th, 1829, February 15 th, 1830 and August 16 th, 1830. In the case of  
LIOUVILLE we are not reduced to guessing what these early papers dealt with, 
as we were in STORM'S case, because the last of them entitled "Recherches sur la 
th6orie physico-math6matique de la Chaleur" is still preserved in extenso in the 
Archive de l'Acad6mie des Sciences and is partially published [1830/31125. Accord- 
ing to LIOOVILL~'S introduction its main merit is the determination of the law 
of radiation of heat between the molecules of a medium as a function of distance 
and temperature. This law, which was a matter of much discussion among the 
physicists and mathematicians of the day, was derived in the fifth and final 
section of LIOUVlLLE'S paper. However this part of the paper was rejected by 
J. D. GERGONNE 26 to whom LIOUWLLE submitted his m6moire for publication in 
"Annales de Math6matiques". The major part  of the rest of the m6moire was 
accepted for publication [1830/31] only because its author bore the double title 
of engineer and former student at the t~cole Polytechnique. In fact GERGONNE 
had not read the paper properly before accepting it because he had misplaced 
it during a removal (cf. [LIOUVlLLE 1830/31, p. 181, footnote]). When he finally 
came to read L1OUVILLE'S paper he found the style so awful that he felt obliged 
to apologize in a footnote to the reader for its publication: 

"Je crois devoir m'excuser, vis-~t-vis du lecteur, de lui livrer un m6moire 
aussi maussadement, je puis mSme dire, aussi inintelligiblement r6dig6 . . . .  
Je ne pr6tends contester aucunement la capacit6 math6matique de M. Liou- 
ville; mais ~ quoi sert cette capacit6, si elle n'est accompagn6e de l 'art de 
disposer, de l 'art de se faire lire, entendre et gofiter. [LIOUVlLLE 1830/31, p. 181, 
footnote] 

In fact LIOUVILLE'S paper is rather confused but not much worse than STURM'S 
first published paper, so perhaps STURM ranks among the " too many young people" 
whom GERGONNE accused of this indifference to style. LIOUVILLE'S style improved 
in his later works. 

25 The paper presented on February 15 th bears the same title as the paper presented 
on August 16 th. The two seem to have been identical, or almost so. In [1830/31] LIOU- 
VILLE stated that the paper, which is almost word for word the same as that of August 
16 th, was an extract from the m6moire of February 15 th. 

26 AS a prot6g6 of AMPERE, LIOUVILLE seems to have valued mathematical physics 
more than pure mathematics in his youth. Early in the 1830's his interests shifted to- 
ward pure mathematics. GERGONNE possibly saw LIOUVILLE'S greater talent for mathema- 
tics earlier than did LIOUVILLE himself and therefore excluded the most physical part 
of LIOUVILLE'S paper. 
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32. It may have been the harsh criticism in GERGONNE'S footnote which re- 
strained LIOUVILE from referring to this paper in his later works. Otherwise such 
references would have been appropriate since many of his most important ideas 
in the Sturm-Liouville theory can be found here in a preliminary or fully developed 
form. In order to give an account of these ideas I shall discuss in some detail those 
sections of the printed part of the m6moire [LrouvILLE 1830/31] where they were 
set forth. The bulk of the paper was devoted to a generalization of PoIssoN's 
theory of heat conduction in a thin metallic bar to the case where the surface is 
unequally polished and the material is inhomogeneous 27. 

27 According to LIOUVILLE [1830/31, § 1] the problem offers "des difficult& presque 
insurmontables" if the bar is not very thin. In the original m6moire from August 16 tla, 
1830, LIOtJVn~LE indicates what kind of problems were involved in determining the sta- 
tionary distribution of temperature in a metal plate (Fig. 7) kept at zero degrees along 
its two horizontal edges and radiating heat into a medium of constant temperature along 
its left, unequally polished, and vertical edge. 

Fig. 7 

The mathematical formulation of this problem is the boundary-value problem 

d2u d2u 
a) dx---i + ~yZ = O, 

b) u = O  for y =  ± 9-2--' 

~tt 
c) - - f ( y ) ( 1  --u)  for x :  O, 

~x 

Under the condition that f ( y )  : f ( - - y )  LIOUV1LLE solved a) and b) by separating the 
variables and inserted the result into c). Thus he got the equation 

oo oo 

d) Y~ mAm cos my = f ( y )  -- f ( y )  Y. Am cos my 
m = 0  m = 0  

which he could not solve for A m . 

During the next few years he often wrote notes on this problem in his notebooks 
[Ms. 3 615 (3, 4)] and on March 17 th, 1834, he presented a partial solution to the Aca- 
demy. He converted equation d) into an integrodifferential equation, which he could 
solve for a particular class of functions f. His m6moire was printed in full in [1838d], 
but an extract of it had appeared in [1836b]. 

In a note from December 1835 [Ms. 3615 (4), pp. 87v-90v], LIOUVlLLE returned to 
the solution of d) but this time he substituted eigenfunctions V m to a general Sturm- 
Liouville problem for the trigonometric functions cos my. The note ends with the words 
"cela ne se peut". 
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First LIOUVILLE considered the homogeneous bar for which the temperature 
u(x, t) must satisfy the following special case of (5)28: 

~u ~2u 
~t --  8x a - - f ( x )  u, x E ]0, fl[, (65) 

where f ( x )  > 0 in [0, fl]. 
He assumed the temperature at the end points 0 and fl of the bar to be fixed 

at 0 and O' degrees: 

u(x, t) -~ 0 for x -- 0, (66) 

u(x, t) = 0' for x = ft. (67) 

Since these boundary conditions, unlike STURM'S conditions (6) and (7) are not 
homogeneous, the temperature distribution has a nontrivial stationary state. 
In the first part of [1830/31] LIOUVILLE described two different determinations 
of this stationary state u from the equation 

u" : f ( x )  u (68) 

and the boundary conditions (66) and (67). 
The first method [§ IV-~ XI] consisted in approximating f ( x )  by a polygon, 

solving the equation in this case and letting the number of sides of the polygon 
tend to infinity. LIOUVILLE claimed, without proof, that the process would con- 
verge to a solution of the original equation. This polygon method, already de- 
veloped in the mdmoire of June 1829 [LIOUVILLE 1830/31, p. 157], is of little in- 
terest to us whereas the second method, invented in 1830, is very important. 

33. LIOUVILLE began the second method by observing that if Uo, ul, ~12 . . . .  

are solutions of the infinite system of differential equations: 

then their sum 

d2/ . /o  d 2 u t  d 2 u 2  

dx 2 = 0 ,  dx  2 = f ( x )  Uo, dx  2 = f ( x )  ul . . . . .  (69) 

U "~- U 0 -~- U 1 @- U 2 -@ . . .  

is a solution of (68). The solutions of (69) can be written 

Uo(X) = A + B x ,  

x x 

u,(x) =- f dx f (.4 + Bx)f(x) dx,  
0 0 

X X X 

u2(x) = dx  f f(x) dx f dx f (A + B x ) f ( x )  dx ,  
0 0 0 0 

(70) 

(71) 

2s I have set all the physical constants appearing in LIOUVILLE'S paper equal to 1, 
and have from the start assumed the interval to be of the form [0, fl]. In LIOUVILLE'S 
paper this simplification is made only in the last part. 
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and so the general solution of (68) is of the form 

.4 1 + dx f f(x) dx + f dx f f(x) dx f f(x) dx +. . .  + 
0 0 0 0 0 
x x x x ~ ~ (72) l x 

B 
0 0 0 0 0 0 

Substituting M ~ max f(x) for f (x)  in the first series in (72), LIOUVlLLE 
obtained the series ~to,~l 

{ MX2 M2X4 } 
1 + ~ ÷ ~ + . . . .  (73) 

Since this series converges, LIOUVII.LE concluded that the first series of (72) con- 
verges as well. Similarly he proved that the second series in (72) converges. The 
two arbitrary constants A and B can finally be determined from the boundary 
conditions (66) and (67). 

34. In the above argument LIOUVILLE has used the method of successive 
approximation, later ascribed to E. PICARD [1890], to show that a solution of  
the differential equation (68) such as to fulfil conditions (66) and (67) exists. 
Thus LIOUVILLE'S anticipation of PLCARD'S proof  of  existence did not originate 
in [1836c and 1837c] as is generally believed but was developed six years earlier. 

It is now a well established fact that CAUCHY gave another type of existence 
proof  for a general first-order differential equation in his lectures at the I~,cole 
Polytechnique during the 1820's [CAUCHY 1824/1981] (publ. [1835/40]) and it 
is often conjectured (e.g. by KLINE [1972, p. 719] and by BIRKHOFF [1973, p. 243]) 
that CAUCHY at that time knew also the proof  of existence using successive approx- 
imation. The only argument in favour of that conjecture is MOIONO'S inclusion 
of  the method in his "Legons de calcul diffdrentiel et de calcul int6gral r6digdes 
principalement d'apras les m6thodes de M.A.-L.  Cauchy" [1844, pp. 702- 
707]. Recently C. GILAIN (cf [CAuCHY 1824/1981]) has argued convincingly that 
CAUCHY did not apply successive approximation to prove existence but only used 
this method to find approximate solutions. Further GILAIN is of the opinion that 
MO1GNO got his proof  there. However it is striking that MOmNO used the method 
of  successive approximation to a second-order linear differential equation, just 
as LIOUWLLE did, whereas CAUCHY proved existence for first-order equations 
and partial differential equations. This fact more than indicates that MomNo 
borrowed this part of his "Le?ons" directly from LIOUVmLE (probably from 
[1837c]). Therefore I think LIOUVILLE'S proof  in [1830/31] is his own original 
contribution to the theory of  differential equations. I f  that is true, LIOUVlLLE 
[1830/31] both presented the first published proof  of the existence of a solution 
of a differential equation and the first application--published or unpublished-- 
of  the method of  successive approximation for that purpose 29. 

29 Admittedly LIOUVlLLE never formulated as explicitly as CAUCHY the central 
question: Given a differential equation and certain boundary conditions or initial condi- 
tions; does a solution exist? In [1830/31] LIOUVILLE differed from CAUCVlY also by 
focusing on boundary-value problems. In [1836d, 1837c] LIOOVlLLE imposed Cauchy 
data at only one point. 
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35. After having thus found the stationary solution, hereafter called Vo(x), 
of (65) with the boundary values (66) and (67) LIOUVmLE supposed the general 
solution to (65)-(67) to be of the form 

"Vo(x)  -~- C l V I ( x )  e - r l t  + C 2 V 2 ( x )  e -r2t @ C a V a ( x )  e -r3t . . . .  (74) 

where each of the eigenfunctions must satisfy the special case of (1), 

"rVr = V'/--f(x) Vr, (75) 

and the homogeneous boundary conditions, 

Vr(x) = 0 for x = 0, (76) 

V~(x) = 0 for x = ft. (77) 

Again the method of successive approximation produces an expression for the 
solution as a sum of two series of which one vanishes if we take the boundary 
condition (76) into account (corresponding to A = 0 in (72)). In the remaining 
expression for Vr 

X X 

vr = x + f dx f x(f(x) -- r)dx (78) 
o o 

X X X X 

-}- f dx f ( f ( x ) -  r)dx f dx f x ( f ( x ) -  r)dx -]-... 
o o o o 

the eigenvalue r must be chosen so that the boundary condition (77) is satisfied. 
As usual this gives rise to a transcendental equation (4) for r. 

36. LIOUVILLE went on to prove the orthogonality (60) (for g ~-~ 1) in essen- 
tially the same way as STURM later did, that is without using the partial diffe- 
rential equation as POISSON had done in [1826]. Apparently LIOUVILLE did not 
even know of PoIssoN's paper, for he used orthogonality only to determine the 
arbitrary constants Ci in (74) from a given initial temperature distribution 
f(x) + Vo(x) (as in (64) with g~--_ 1), but used another method to prove the 
eigenvalues real: 

"Nous ferons voir 1 ° que l'6quation &off rdsultent les valeurs de m [r] a 
toutes ses racines r6elles et positives; 2 ° nous prouverons que la s6rie que 
forme la valeur de u [(74)] est une s&ie convergente, ce qui est ndcessaire 
pour compl&er la solution." [LIoUVmLE 1830/31, p. 164] 

37. LIOUVILLE'S proof of 1 ° is both clumsy and unrigorous compared with 
POISSON'S proof. It rests on the inspection of the transcendental equation H(r) = 0 
found by substituting (78) into (77) (in the following arguments he takes fi = 1): 

1 x 1 x x x 

1 + f dx fx( f (x)- -r)dx+ fdx f (f(x) --r)dx f dx fx(f(x) --r)dx+ . . . .  O. 
0 0 0 0 0 0 

(79) 
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Since f ( x )  > 0, it is clear that no negative value of  r solves this equation. LIOU- 
VILLE believed that he would exclude all non-real eigenvalues if only he could 
prove the existence of  an infinity of positive eigenvalues. In the most far-reaching 
of  the two proofs he supplied for the latter, he substituted for f (x) a loosely de- 
scribed "mean value" P~ independent of x, reducing (79) to 

(r -- P,)  (r --  pr)a (r --  p~)s 
1 3! q- 5 ~  7-----7--. q- . . . .  0 (80)  

o r  

sin]/r --  P, 
- -  0 .  (81)  

] / r  - -  

In fact this argument is not valid, since one can not use the same "mean value" 
in the different terms of (79). But taking this for granted and accepting LIOUVILLE'S 
loose argument that P, remains bounded as a function of  r becausef(x) is bounded 
as a function of  x, we can conclude with LIOUVILLE that there are infinitely many 
positive solutions of (79) or (81) of  the form: 

r = Pr  @ r/2~2, //E N. (82) 

The argument even shows that for large values of n the eigenvalues are "trrs- 
approcMe r = n2~C '' in the sense that I r ,  - -  nZze 2 [ ~ max P~ < oo. 

38. This approximation of the eigenvalues was applied by LIOUVILLE in his 
subsequent proof  of the convergence of  the Fourier series (74) for t ----- 0, which 
will imply the convergence for t > 0. I f  we consider only large values of  r (which 
suffices in a proof  of  convergence)f(x) can be ignored in the expression (78) 
of Vr leaving the approximate eigenfunction: 

sin ¢ r  x 
Vr -- ] / r  (83) 

Using this value of  Vr in (74) and in formula (64) for the Fourier coefficients, 
LIOUVILLE was led to the approximate value of  u for t = 0: 

Z sin ] / r  x ~ 
- -  f f(x) sin ] / r  x dx. (84) 

fi o 

I f  the "approximate" value n2Jr 2 is substituted for r, (84) reduces to an ordinary 
Fourier series. LIOUVILLE believed that FOURIER and POISSON had provided proofs 
of convergence for the ordinary Fourier series and concluded that since its terms 
coincided with the terms of (74) for large values of  r, the latter, more general Fou- 
rier series must also converge. 

In the last sections [1830/31, § 24-27] LIOUVmLE generalized all these consider- 
ations to equation (5) for the heterogeneous bar a°. 

3o LIOUVILLE correctly deduced the orthogonality (60) [LIOUVILLE 1830/31,p. 179] 
but when he used it to derive the expression (64) for the Fourier coefficients he forgot 
the factor g(x) .  [LIoUVILLE 1830/31, pp. 179--180] 
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39. In spite of the lack of rigour in the last arguments LIOUVILLE'S [1830/31] 
is of the greatest importance in the development of Sturm-Liouville theory because 
it constitutes the germ of LIOUVILLE'S subsequent contributions to this theory. 
Together with STUmVfs now lost m6moires from 1829 and PoISSON'S [1826], 
it presents the earliest advances in this branch of analysis. I have argued that 
LIOUVmLE did not know POISSON'S work and according to his own testimony in 
the introduction of [1830/31] he also did not know STtJRM'S works: 

"Ces questions jusqu'ici n'avaient 6t6 trait6es par aucun g6om6tre: elles 
semblent offrir des difficult6s presque insurmontables, lorsqu'on suppose aux 
corps leur trois dimensions [cf. note 27]. Si l'on fait abstraction de deux d'entre 
elles, le probl6me est compl6tement r6solu par mon travail." 

There is also a striking difference between STURM'S and LIOUVILLE'S approaches 
to the theory. Though they share some theorems in common, as for example the 
statement of orthogonality, the reality of eigenvalues and the determination of the 
Fourier coefficients, the bulk of their papers have different goals, STURM tending 
toward the qualitative behaviour of the eigenfunctions, and LIOUVILLE toward 
expansion in Fourier series. 

VI. Liouville's Mature Papers on Second-Order Differential Equations. 
Expansion in Fourier Series 

40. Though LIOUVILLE'S interests after 1830 turned to other fields, such as 
fractional differentiation and integration in finite terms, he continued to work on 
problems related to those treated in the paper of [1830/31] (cf. [LIouVILLE 1836a, 
1836b, 1836c]; see note 26). However, these problems were all concerned with 
trigonometric series and he did not publish anything on the more general type of 
Fourier series until the three large "M6moires sur le d6veloppement des fonctions 
ou parties de fonctions en s6ries dont les divers termes sont assujettis ~t satisfaire 
~t une marne 6quation diff6rentielle du second ordre, contenant un param~tre 
variable" [1836d, 1837c, 1837e]. 

In these three important papers LIOUVILLE was chiefly concerned with the 
questions he had treated in the m6moire of [1830/31]. However he now succeeded 
in rigorizing the theory considerably, partly by building on STURM'S much more 
detailed investigation of the eigenfunctions, partly by refining his own earlier 
arguments. He immediately turned to SXURM'S general equation (1) with the 
boundary conditions (2) and (3) and repeated the solution [1830/31] by successive 
approximation, in this case for the CAUCnY problem (1) and (2). In the first 
m6moire [1836d, p. 255] he merely wrote down the formulas similar to (72) and 
did not write one word on the question of convergence. However, in the second 
paper [1837c, pp. 19-22] he amply made up for this omission by supplying in 
addition to the proof of convergence [1830/31] another proof based on conversion 
of the differential equation into an integral equation [cf. L/3TZEN 1981]. 
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41. Otherwise LIOUVILLE devoted his second large m6moire [1837c] to the 
other great question of convergence treated in the [1830/31] m6moire, that of the 
Fourier series 

G(x)  f g(x) G(x ) f ( x )  dx 
c¢ 

g(x) ~- ~ ~ (85) 

.=1 f g(x) v~.(x) dx 
o~ 

The central idea of the improved proof  of convergence is the following uniform 
inequality" 

" . . .  si l 'on d6signe par n u n  indice tr4s grand, par un la valeur absolue 
du n i6me terme de la sarie (85) et par M un certain nombre inddpendant de 

M 
n . . . .  on a un < ~ - .  [LIOUVILLE 1837c, p. 18] 

To obtain this conclusion LIOUVILLE introduced the new dependent and indepen- 
dent variables z and U defined by 

J¢ 

= fl/ (X) ax, z a V k ( x )  
(86) 

and 

1 
V(x) = O(x) U(x), where 0 -- 4 _ _  , (87) 

Vg(x) k(x) 

r = ~  z. 

Expressed in these new variables, the original problem (1)-(3) is reduced to the 
simpler problem 

where 

u"(z) + e2U(z) = ,~(z) U(z), z ~ [0, 7], (88) 

U'(z) -- h'U(z) = 0 for z -- 0, (89) 

U ' ( z ) + H ' U ( z ) = O  for z = y  (90) 

" l/g(x) ax, 
c¢ 

2 - -  l o gO (91) 
-- dz dz dz 2 ] 

and h', H '  are constants which are not necessarily positive. The elegant transfor- 
mation (86) and (87) is now called the Liouville transformation after its inventor. 
It combines STURM'S transformations of the dependent and independent variables 
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(see § 25) in such a way that the function k disappears in the transformed equation 
(88) at the same time as the coefficient to the undifferentiated term U retains its 
simple form. 

42. From the transformed equation (88)-(90) LIOUVILLE deduced the integral 
equation for U al : 

h' sin 0z 1 z 
U(z) = cos 0z + - - - - - 7 -  + -~- of 2(z') U(z') sin O(z -- z') dz'. (92) 

Various estimates applied to this integral equation then lead to the desired bounds 
of the numerator and denominator of the Fourier series (85): 

i i 1 (  v , f  g(x) V,(x)f(x) dx < "~ K1 1 + 

f g(x) V2(x)dx > 1(2 1 + ~ , /  / 
c¢ 

K1, K2 being positive constants. Hence the absolute value of the n th term un 
of the Fourier series is bounded by 

M 
[u, I < - - .  (95) 

rn 

As in the proof  of [1830/31] LIOUWLLE then needed only show that r,  tends to 
infinity fast enough when n tends to infinity. The idea of the proof  is the same as in 
[1830/31] but in [1837c] the trigonometric behaviour of the eigenfunctions for 
large values of r was established from the integral equation (92). Using this 
asymptotic behaviour of  (Jr and STURM'S oscillation theorem, a2 LIOUVILLE ri- 
gorously established the asymptotic behaviour of the eigenvalues: 

~- ]/~ ~ (n -- 1) ~ eo 
= - -  + (96) 

7 (n - 1 ) ~  

where Po is a constant. Combining this statement with (95), he finally obtained 
the desired estimate: 

M'  
luo[ < - -  //2 

implying the convergence of the Fourier series (85). 

3~ In equation (92) LIOUVILLE has fixed the arbitrary multiplicative constant in such 
a way that U ( 0 ) = I .  

32 In the first place LIOUVILLE'S analysis shows only that U n behaves asymptotically 
m ~  

like c o s - - x .  This has m -- 1 roots in ]0, 7[, and since Un, according to STURM'S 
7 

oscillation theorem, has n -- 1 roots in ]0, 7[, LIOUVmLE concludes that m = n. 
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43. LIOUVILLE'S deduction contained several innovations in addition to the 
convergence theorem itself. I have already mentioned the LIOUVILLE transforma- 
tion (86) and (87). Just as important are the asymptotic expressions for the eigen- 
values (96) and the corresponding approximate eigenfunctions to be found from 
(92). According to LIOUVILLE the latter complemented STURM'S methods of approxi- 
mating the eigenfunctions (§ 25), which was manageable only for small values 
of n. 

Finally the ingenious application of the equation (92) marks an important 
instance in the early theory of integral equations (see [L/3TZEN 1981]). 

In the above proof  of  convergence LIOUVrLLE had explicitly assumed that 
g(x), k(x), f(x) and their "d6riv6es premi&es et secondes conservent toujours des 
valeurs finies" (g, k, f c  cg2[o¢,/3]). Implicitly he also assumed that f(x) satisfies 
the boundary conditions (2) and (3). Under these assumptions LIOUVILLE'S proof  
even proves rigorously that the Fourier series converges uniformly. However, 
LIOUWLLE could not appreciate this virtue of the proof  since the difference be- 
tween pointwise and uniform convergence had not been realized by then. 

44. In November of the same year LIOUVILLE published a new proof  of con- 
vergence [1837e] which did not make use of  the too restrictive assumptions 
mentioned in the last section. 

"Je me propose ici de faire disparaitre, autant qu'il me serh possible, ces 
restrictions diverses, et surtout celles relatives ~ la fonction f (x) . "  [LIouVILLE 
1837e, p. 419] 

In particular he had discovered that it was unnecessary to impose the boundary 
conditions (2) and (3) on f :  

"ces conditions, que j 'ai impos&s mal ~t propos ~t la fonct ionf(x)  dans mes 
deux premiers m6moires, sont inutiles et doivent ~tre absolument mises de 
cot6". [L~ouVlLLE 1837e, p. 421]. 

In place of them LIOUVILLE assumed f to be continuous, and instead of 
g, k, IE ~2[~, 13] he assumed only that 2 defind by (91) be absolutely integrable 33. 

An investigation of LIOUVILLE'S proof  reveals that he actually used more 
assumptions on g, k, l and 2 such as differentiability of k and piecewise mono- 
tonicity o f f  The last property is implicitly used in the proof  [1837e, Sect. 4] 

a3 LIOUVlLLE wrote: "clue l'int6grale f t/-ffdz air une valeur finie et puisse 6tre 
o 

regard6e comme 6quivalente 5, la somme de ses 616ments". The last remark no doubt 
means that the integral is not be taken in its 18th-centnry sense, as the opposite of the 
differential, but must be defined as a sum in the way FOURIER and more precisely CAU- 
crIv had done. LIOUVILLE probably thought of CAUCHY'S extension of the integral to 
functions with isolated discontinuities. 
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of a strong version of RIEMANN'S lemma: 

off(z) sin ~z dz < - - ;  (97) 

further it is presupposed at the end of the proof because LIOUVILLE referred to 
DIRICHLET'S proof of convergence [1829] for trigonometric Fourier series, which 
was explicitly carried through for piecewise monotone functions. 

45. In spite of these insufficiencies LIOUVILLE'S attitude towards the relation 
between assumption, proof, and theorem was very modern, He had realized that 
a theorem may be improved by relaxing its assumptions and he had seen that 
the best assumptions can be found by examining the proof. For example, the 
assumption on 2 clearly stems from the proof. In this respect LIOUVILLE was more 
far-sighted than his leading compatriot CAUCHY, who did not understand this 
interplay a*. By 1837 the mathematician who had most explicitly put forward such 
proof-generated assumptions was DIRICHLET in his paper on Fourier series [1829]. 
LIOUVILLE may have been influenced by his friend DIRICHLET but he took a 
step further by searching a new, and according to himself less elegant, proof of 
an already established theorem with the sole aim of weakening the assumptions. 
Such an understanding of the interplay between assumptions and proofs did not 
catch on until the end of the 19 th century. 

46. Clearly LIOUVILLE could not use under the new assumptions the proof 
of convergence [1837e] with its uniform estimates. Instead he produced a rigorized 
version of the proof [1830/31] by using instead of the loose argument concerning 
the asymptotic behaviour of the eigenfunctions an intricate application of the 
integral equation (92), leading again to the asymptotic eigenvalues (96). In this 
way he obtained the following expression for the terms of the Fourier series: 

2 
u,,(x) = - -cos  nz (F(z)  cos nz dz -1- ~pl(x, n___._~) (98) 

)' 0 n2 ' 

where ~01(x, n) is bounded. From this expression the convergence follows easily 
from the convergence of trigonometric Fourier series, for which LIOUVILLE this 
time referred to CAUCHY'S "et surtout l'excellent M6moire de M. LEJEUNE DI- 
RICHLET", [1829]. 

47. In his two proofs of convergence [1837c, 1837e] LIOUVILLE did not have 
to concern himself with finding the limit of the Fourier series because he had al- 
ready settled that problem in the first of the three large m6moires [1836d], pre- 
sented to the Academy on November 30 th, 1835. LIOUVILLE claimed to prove 
"par un proc6d6 rigoureux" that the "valeur de la s6rie" (85) is f(x). The proof 
rests on two lemmas. 

3* CAUCHY usually made the stereotype assumption that the functions be con- 
tilmous no matter what properties he actually used in his proofs. Related remarks have 
recently been made by GILAIN (cf. [CAucHY 1824/1981, pp. XLI-XLIX]). 
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Lemma I. Define inductively the functions P:i(x) by 

P](x) = Vl(al) Vi(x) -- Vi(al) V~(x), i = 2, 3 . . . .  

P](x) = P~(a2) P](x) -- P](a2) P~(x), i = 3, 4 . . . .  

P[(x) = Pj- l(ai)  P{-1(x) -- P]-1(aj) P~-~(x), i = j  + 1 , j  @ 2, . . .  

) x where al, a2 . . . . .  a: . . . .  are different points o f  ]~,/3[. Then PJ+I( ) vanishes and 
changes sign at a~, a, . . . . .  aj . . . . .  and it has no other roots. 

It is easily verified that al, az . . . . .  a s are roots of  Pj+I, and since P]+I is of the 
j + l  

form ~] AiV,.(x), it follows from STURM'S proposition N (§ 28) that it has at 
i = l  

most j roots counted with multiplicity. Thus : Pj+I has precisely the simple roots 

a l ,  a 2 ,  . . . ,  a j .  

Lemma II. Let q~(x) be a function o f  x E [~,/3]. I f  

3 

f q~(x) V.(x) dx = o 
o¢ 

(99) 

for  all eigenfunetions Vn o f  (1)-(3), then q: ~ O. 

LIOUVILLE gave an indirect proof:  Suppose q~ changes sign j times, say in 
al, az, . . . ,  as. As in the first lemma he constructs Pf.+~ corresponding to this 
series of  roots. Since P]+I is a linear combination of  eigenfunctions, we have 

3 

f ~(x) Pj+l(X) dx = 0, (100) 
0¢ 

which contradicts the fact that ~c(x) P]+1(x) is not identically zero in [a, fl] where 
it conserves its sign. Therefore c?(x) cannot change sign a finite number of  times. 
Consequently, L1OUVILLE says, qJ must be identically zero in [o~,/3]. 

It was an easy matter for LIOUVILLE to deduce the main theorem from this 
lemma. He multiplied both sides of  (85) by g(x) Vm(x) dx and integrated from 
to t3. Because of the orthogonality relations (60) only the mth term on the right- 
hand side survives: 

o r  

f g(x) Vm(x ) r(x) dx = f g(x) Vm(X)f(x ) dx Vm = 1, 2 . . . .  

f g(x) (F(x) - - f ( x ) )  V,,(x) dx = 0 ¥m -- 1, 2 . . . . .  (101) 
¢x 

According to Lemma 2 F(x) - - f ( x )  =- 0, so that the sum in question equalsf(x).  
This completes LtOUWLLE'S proof. 
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48. In spite of its simplicity this proof presents the most profound mistake 
in STURM'S and LIOUVILLE'S theory of second-order linear differential equations. 
I do not refer to the curious neglect of the problem of convergence, solved the 
following year 35, nor to the term-by-term integration 36, but to the last step in 
Lemma 2, where LIOUVILLE concludes that a function with infinitely many roots 
in [~, 13] must be identically zero there. This would be true for an analytic func- 
tion ~, but it is not easy to prove that F is analytic even if f is analytic. In fact one 
has to use a totally different approach to prove the theorem. 

LIOUVrLLE later came to realize at least a part of the problem. On March 
28 th (or 29 m) 1838 he noted in his notebooks [Ms. 3616 (2), p. 56v] that q~(x) 
could be different from zero for isolated values of x, but if ~ is continuous that 
can not happen 37. Both here and in his repetition of this insufficient argument in 
[1838c, p. 603, 612] LIOUVILLE dismissed the difficulty as a minor detail. However 
his subsequent attempts to supply another proof  reveals that he was disturbed 
by the problem. 

49. Even in 1837 LIOUVILLE had devised a different proof of the expansion 
theorem in collaboration with STURM [LIoUVILLE & STURM] 1837b. They proved 
that ~(x) ~= F(x) - - f (x)  satisfies the equation 

f q~(x) Vr(X) dx = 0 Vr E R (102) 
cv, 

a5 It is impossible to tellwhether LIOUVILLEin [1836d] had forgotten the convergence 
problems of the succesisve approximation and of the Fourier series, which he had discussed 
in [1830/31], or whether he consciously postponed treatment of these problems to the 
following papers. As LIOUVILLE expressed himself in [1836d], he must have created the 
impression that he was unable to reach CAUCHY'S standards of rigour, which he had 
earlier explicitly stressed: 

"Les s6ries divergentes, amenant le plus souvent des r6sultats fautifs, doivent 
~tre tout-~t-fait bannis de l'analyse". [LIouVILLE 1832, p. 77] 

When STURM in [1836b, p. 411] referred to LIOUVILLE'S theorem he was kind enough to 
formulate it not as LIOUVILLE had done in [1836d] but as he ought have done: 

"... la somme de la s6rie [85], si cette s6rie est convergente, ne peut qu'6tre 6gale 
f(x), pour toutes les valeurs de x comprises entre ~ et/3." 

In [LIoUVILLE 1838c, §35] LIOUVILLE formulated the theorem in this way as 
well. 

36 Under the assumptions made in LIOUVILLE'S first convergence proof [1836d] 
term-by-term integration is allowed since the Fourier series converges uniformly. 

a7 In a note from September 7 th, 1840 [Ms. 3 616 (5), pp. 45r-46r] LIOUVILLE showed 
a deeper understanding of the problem. There he mentioned the difficulties occurring 
if 9 can "s'Ovanouir un nombre infini de fois dans chacun des intervalles infinimens 
petits compris entre c~ et c~ + e, fl -- e et fl" (LIoUVILLE does not use the letters c~ 
and/3). 
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for all solutions Vr of (1) satisfying only the boundary condition (2) 38. However, 
in order to conclude that (102) implied q~ ~ 0 they referred to LIOUVlLLE'S 
original proof  in [1836d], and so their argument was no more convincing than the 
original. SXURM & LIOUVtLLE'S proof  was a small extract of a large m6moire on 
Sturm-Liouville theory presented to the Academy on May 8 th, 1837. Unfortunately 
the rest of the m6moire is lost. 

LrOUVlLLE returned to this approach to the expansion theorem three years 
later. However he left only an unfinished and insufficient sketch of a proof  in 
a draft of a letter to an unnamed colleague [Ms. 3616 (5), pp. 45r-46r]. 

Indications of  other approaches can be found in LIOUVILLE'S notes from March 
8 th, 1838 [Ms. 3616 (2)], August 21 st, 1839 [Ms. 3616 (1)] and September 1839 
[Ms. 3 616 (5)]. Of these notes only the second, written in Bruxelles, led anywhere. 
The central idea in the proof  is to make the coefficients depend upon a new para- 
meter m. 

At first the new method did not work satisfactorily 39, but after some revision 
LIOtlVILLE was so content with it that he sent the proof to DIRICHLET in a letter 
dated by TANNERY February 1841 [TANNERY 1910, pp. 17-19]. He considered the 
simplified form (88)-(90) of the problem and chose 2(z, m), h'(m), H'(m) such 
as to converge to zero as m -+ 0. Thus for m = 0 the eigenfunctions were simple 
trigonometric functions and in that case LIOUVILLE knew that q~(x, m) =- F(x, m) 
- - f ( x )  ~- O. He then argued that if q~(x, m) ~ 0 for some value o f m  it vanishes 
necessarily in a whole neighbourhood of m. Hence he concluded that q~(x, m) ~ 0 
for all m *°. 

Unfortunately there is a grave mistake in this proof  as well, namely in the proof  
of convergence of a certain series which he claimed to be "tr~s facile" in the letter 
to Dm~crtL~T. His faulty proof  has been preserved in a note from the first half 
of 1840 [Ms. 3616 (5), pp. 14v-15r] 41. 

38 STURM and LIOUVILLE built their conclusion on a development of 

vr 
~(r) 

in simple fractions (II(r) being defined by formula (4)). 
39 LIOUVILLE rejected the first deduction because it used the Taylor theorem. He 

explicitly referred to CAUCHY'S objections to this theorem. 
,o LIOUVlLLE did not notice that the size e of the neighbourhood ]m -- e, m + e[ 

was dependent on m. Therefore he thought he could exhaust an interval [0, M] with a 
finite number of neighbourhoods. This part of LIOUVILLE'S argument can be made ri- 
gorous if we note that in modern terms L1OUVILLE claims that 

(m > 0 I ~(m, x) ~ 0} 

is an open subset of R+. Under sufficiently strong conditions of regularity it is clear 
that the set is also closed and hence it is equal to R+. 

,1 The crucial mistake in this note occurs at the end where LIOUVILLE states that 
a series of the form 

Z f(z,  i) cos iz 
i ~ l  l 
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50. LIOUVILLE'S work on second-order linear differential equations almost 
exclusively dealt with Fourier expansion of "arbitrary" functions. However, 
in his second publication on Sturm-Liouville theory from 1836 [1836e] he gave 
a time-independent analysis leading to STURM'S proposition N (cf. § 28). Using 
the techniques of STURM, he showed that 

Am(tin - -  ra) Vm -+- A m + l ( r m + l  - -  rl) Vm+l + .. .  + A,(rn - -  rl) Vn (103) 

has at least as many roots in ]~,/3[ as 

AmVm + Am+lVm+l + .. .  + A,,Vn. (61) 

Repeated use of  this observation shows that 

(r m - -r l lk  (rm+l 2~r1.~ k 
Am Vm + Am+l ~- . . .  + A , V ,  (104) 

\ rn - -  rl / \ rn - -  rl / 

has at least asmany roots as (61) and since ( rm+l---2 r , ]  < 0, LIOVV~LLE concluded 
\ r n - - r a  / 

that in the limit k = ~ the number of roots of Vn ( =  n - -  1) is greater or equal 
to the number of roots of (61) 42. A similar argument gives the lower bound on 
the number of roots of (61). Inspired by LIOUVILLE, STURM added a similar proof 
to his [1836b]. It was built on the observation that 

A,nrmVm + Am+Irm+lVm+l @ ... @ Anr, Vn (105) 

has at least as many roots as (61). His proof  had the advantage of taking into 
account possible roots at the end points, a problem LIOVVIrLE had left aside (as 
have I in §§ 28 and 29). 

LIOUVILLE'S new proof  of proposition N can be viewed as the last step in a 
process of establishing Sturm-Liouville theory as a self-contained subject, in- 
dependent of  the physical problems and partial differential equations whence 
it had emerged. STtJRM had taken the first step by freeing POISSON'S proof  that 
the eigenvalues were real from the unnecessary use of a solution of the partial 
differential equation. After [LIouVILLE 1836e] all theorems in Sturm-Liouville 
theory rested only on the equations (I)-(3). 

51. In addition to these papers on second-order linear differential equations 
LIOUVILLE published some results which were inspired by specific ideas in Sturm- 

is convergent when f (z ,  i) is a bounded function. He probably thought that this could 
be inferred from the behaviour of the Fourier series 

n COS iz 
E - -  

i-1 i 

42 The argument works only because V n has no double root. LIOUVILLE'S careful 
argument in [1836e, p. 275] takes this fact into account. 
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Liouville theory 43. For  example he proved that  Lemma I I  is valid when x ~ is 
substituted for  V, [1837b], and concluded that  the Fourier  expansion o f f ( x )  

,s In secondary sources it is often claimed that LIOUVILLE proved BESS~L'S 
inequality for the general Sturm-Liouville problem (1)-(3) (see e.g. [KLINE 1972, p. 716-- 
717], [BmKHOFF 1973, p. 276] and (DmuDONN~ 1981, p. 21]). BESS~L'S inequality states 
that 

Y, C 2 ~ f g(x) f2(x) dx, 
n = l  o~ 

where C,, are the Fourier coefficients and the orthogonal system V, has been normalized 

f g(x) v.(x) v,.(x) dx = ~ .... . 
o¢ 

At the place referred to in the secondary sources [LIouVILLE 1836d, p. 265] LIOUVILLE 
proves that if 

%(x) = Z GV~(x), 
i = l  

oo 

0.(x)-- £ GV~(x), 
i = n + l  

then 

f g(x) f(x)  2 dx = f g(x) (%(x) 2 + 9n(X) 2) dx, 
o¢ o~ 

from which 

(*) f g(x) f (x)  2 dx ~ f g(x) an(x) 2 dx. 
ex o¢ 

Now it is true, but not pointed out by LiouviI-tE, that the right-hand side of (*) is equal 

to ~ C 2, and so one obtains BESSEL'S inequality in the limit n = ~ .  LIOUVILLE himself 
i=l 

made the following comment on (*): 

Cette derni6re formule nous prouve clue l'int6grale f go 2 dx, quelque grand qu'on 
eX 

prenne l'indice n, ne peut jamais avoir une valeur num6rique sup6rieure ~ la limite 
¢ 

f gf(x) 2 dx avec laquelle elle coincide lorsque n = e~. 

Thus for LIOUVlLLE (*) was important because it is valid for a finite n, whereas BESSEL'S 
inequality has n = oo. According to LIOUWLLE the two sides of  (*) coincide for n = oo; 
this has made KLINE [1872, p. 716-717] attribute PARSELVAL'S equality ( =  BESSEL'S 
inequality) to LIOUVltLE. For LIOVVXLL~, however, the equality was a simple conse- 
quence of the expansion theorem, ~ ( x )  = f (x ) ,  and therefore he did not consider it 
a theorem in its own right. 

The modern mathematician evaluates the inequality (*) differently from LIOUVILLE 
because he knows that one cannot always take the limit inside the integral sign whereas 
LIOUVlLLE did not doubt the identity 

f g(x) f (x)  2 dx = f g(x) lira (%(x) 2) dx = lira f g(x)% (x) 2 dx. 
o~ ~ n - - >  o o  n - +  o o  

To ascribe BESSEL'S inequality, and particularly PARS~VAL'S equality to LIOUVlLLE, 
therefore, is an overinterpretation. 
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on the orthogonal set of Legendre polynomials "have the value"f(x) [1837d] 44. 
Three years later LIOUVILL~ complemented CAUCI-IY'S convergence criteria of 
[1821] with a new "condition de convergence d'une classe g6n6rale de s6ries" 
[1840]. The series in question were power series of the form 

q~(x) + o¢~vl(x) + . . .  + o¢"qJ,(x) + . . .  x E [o~,/31 (106) 

where q0n is successively defined from the positive function g(x)  and the arbitrary 
function 9(x) by 

x x 
~gn+l(X ) = f dx f g(x) ~n(X) dx. (107) 

He obtained the convergence criterion by remarking that the series (106) is of 
the form 9 + as where s arises from solving, by successive approximation, the 
boundary value problem 

d2s 
dx 2 o~gs = go? (108) 

with 

ds 
s = 0  for x = ~ ,  ~xx=0 for x = f l .  (109) 

This application of the method of successive approximation to the case where the 
boundary values are given at two points is an improvement over the formulas 
from [1830/31] (cf. §§ 33 and 34). 

Finally Sturm-Liouville theory provided the background for LIOUVILLE'S 
short paper on spectral theory of general integral operators with symmetric kernel 
[1845], though this time his inspiration came from some formulas for Lain6 
functions (c f  [Lf3TZEN 1981]). LIOUVlLLE did remark the resemblance between the 
results he obtained for the integral operators and those found in Sturm-Liouville 
theory but it was left to HILBERT [1904/10] to unveil the profound connection be- 
tween the two theories provided by the Green's function. 

Apart from these few short papers LIOUVlLLE stopped publishing on second- 
order Sturm-Liouville theory in 1837. His further contributions to spectral 
theory provided generalizations of Sturm-Liouville theory to different types of 
problems, particularly to higher-order differential equations, to be discussed in 
the next chapter. 

VII. Liouville's Generalization of Sturm-Liouville Theory 
to Higher-Order Equations 

52. 
"Le principe sur lequel reposent les th~or6mes que je d6veloppe n'a jamais, 

si je ne me trompe, 6t6 employ6 dans l'analyse et il ne me paralt pas suscep- 
tible de s'6tendre h d'autres 6quations diff6rentielles." [STURM 1836a, p. 107] 

44 The proof has the same weaknesses as the original deduction and there is no 
proof of convergence. 
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LIOUVILLE'S greatest effort in Sturm-Liouville theory was an only partially suc- 
cessful attempt to disprove the last part of  STURM'S conjecture by generalizing his 
and STURM'S theory to other types of equations. Thus in LIOUVILLE'S notebooks 
[LIouVILLE Ms.] the first recorded note inspired by STURM'S work, dating from 
April or May 1835 [Ms. 3615 (4), pp. 79v-80r], dealt with the equation 

du dau 
dt -- dx a ' (110) 

"qui nous a &e propos6 par Mr. PolSSON" seven years earlier "comme &happant  
~t plusieurs des proc6dds connus" [LIotJVILLE 1828, I I I , §  7] 4s. He presented his 
new results to the Academy the following year (November 14 th, 1836) and had 
them published in [1837a]. In some of his notes (e.g. [Ms. 3615 (5)]) LIOUVILLE 
attempted to apply STURM'S general methods to investigate the separated equa- 
tion 

V(3)(x) + rV(x) = 0 for xE  [0, 1] (111) 

with the boundary conditions 

V ( x ) = V ' ( x ) = O  for x----O, (112) 

V ( x ) = 0  for x - = l .  (113) 

However, in the published account [1837a] he based his arguments on the explicit 
expression for the solution of  (111) and (112): 

1 
V = 3-~ (e-XO -k/~e -~X'° -k/z2e-~2x°), 

where Ca = r and /z 3 = 1, /z 4= 1. He showed that all of  STURM'S theorems were 
valid for the boundary-value problem (111)-(113) except for the orthogonality 
(60). This relation was replaced by the biorthogonality 

f gin(X) U.(x) dx = 0 for m =~ n, (114) 
cx 

where o~= 0, /3 = 1 and U, is the n th eigenfunction of the related boundary- 
value problem 

u(g)(x) -- rU(x) = 0 for xE  ]0, 1[, (115) 

U(x) = 0 for x --~ O, (116) 

U(x) = U'(x) = 0 for x = 1. (117) 

45 The three unpublished "M6moires sur le calcul aux diff6rences partielles", pre- 
sented to the Academy on December 1 st, 1828, are the earliest purely mathematical papers 
written by LIOUVILLE. With a theorem due to PARSEVAL on the term-by-term product 
of two infinite series as his starting point the young LIOUVILLE herein presented a peculiar 
way to express solutions of partial differential equations as integrals. Both aim and 
method differed from those employed in Sturm-Liouville theory. The problem of 1828 
is not a boundary-value problem and when applied to (110) the variables are separated 
by considering a solution of the form ebXF(t) and not of the form e-rtV(x) as in [1837a]. 
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Therefore the Fourier series of  a function f ( x )  has the altered form 

v. f f(x) U.(x) dx 
fc F(x) = 

f v.(x) v.(x) ax 
o: 

(118) 

LIOUVILLE showed, with a proof  similar to the one given in [1836d], that if the 
Fourier series converges it has the value F(x)  = f ( x ) ,  but he did not prove con- 
vergence (see Appendix). 

53. The boundary-value problem (115)-(117) is today called the adjoint of  
the original problem (111)-(113). At first LIOUVILLE did not appreciate the pro- 
found difference between self-adjoint problems (e.g. (1)-(3)) and non-self-adjoint 
problems like (111)-(113). For example early in 1835 he apparently tried to 
prove ordinary orthogonality for the third-order differential equation (111) 46. 
He seems to have become aware of the importance of the adjoint equation 
during the winter of 1837-1838, when he taught his first course at the Coll6ge 
de France as a substitute for BIoT. This "Cours de Physique g6n6rale et Math6- 
matique" was mainly a course on differential equations and covered for example 
LAGRANGE'S methods of  integration using the adjoint equation [LIOUVlLLE Ms. 
3615 (5), pp. 42v-54r]. It stimulated LIOUVlLLE to take up his researches from 
1835 on higher-order Sturm-Liouville theory, this time for equations with variable 
coefficients. 

In [1838c] LIOUVlLLE published the investigations of the most general of these 
equations: 

(K(L . . .  (M(NV ' ) ' ) '  . . . ) ' ) '  + r V  = 0 for xE [o¢,/31 (119) 

with the boundary conditions: 

and 

V = A, N V '  = B . . . . .  K ( L . . .  ( M ( N V ' ) ' ) ' . . . ) '  = D for x ---- ~ (120) 

aU + b(NV' )  + . . .  + cK(L . . .  ( M ( N V ' ) '  . . . ) '  ---- 0 for x ----/3, (121) 

where K(x),  L ( x ) , . . . ,  M(x) ,  N(x)  > 0 for x E [o¢, fl] and A, B . . . .  D, a, b , . . . ,  
e > 0 .  

He found that the biorthogonality (114) would hold if U n is the n th eigen- 

46 In the very first note in the first notebook [Ms. 3615 (1)] LIOUVILLE wrote 
daV d3V" 
dx 3 + rV  = O, ~ + r ' V ' =  O, and tried without success to find an expression 

for (r - r') f VV'. Next to this calculation he succesfully carried out the corresponding 
d4V 

calculation ford- ~ + rV---- O. Most of the notes in [Ms. 3615 (1)] seem to stem 

from around 1830, but the above mentioned note is probably from a later date. 
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function of the adjoint problem: 

( N ( M . . .  (L(KU')')" ...) ') '  4- (--1)" rU = 0 for xE [o¢, fl], (122) 

D U - -  .. .  + (--1) u-2 B ( M . . .  (KU') '  . . . )  + (--1) ~'-~ A N ( M . . .  (KU')" ...)" ~-- 0 

for x = o~, (123) 

U = c . . . . .  N ( M . . .  (L(KU') ' ) ' . . . )"  = (--1) ~-1 a for x =/3 ,  (124) 

where # is the order of the differential equation 47. Thus LIOUVILLE extended 
LAGRANGE'S concept of an adjoint (conjugu6) differential equation to include the 
boundary values as well, though he did not introduce a term for the adjoint 
boundary values. During the spring of 1838 he found many other remarkable 
results pertaining to the general boundary-value problem (119)-(121) some of 
which he presented to his students at the Coll6ge de France (c f  [LIouVILLE 1838 C, 
Introduction]). 

54. One can follow LIOUVILLE'S successive progress with these questions in 
the approximately 200 pages of disorganized notes jotted down in his notebooks 
[Ms. 3615 (5), Ms.3616 (2)] from February 1838 and later. In order to facilitate 
the understanding of the questions considered pell mell in the notes I shall discuss 
the ideas in their logical order sacrificing partly the chronology. 

LIOUVILLE'S goal was still to expand arbitrary functions in series of eigenfunc- 
tions of the boundary value problem. In order to find the Fourier coefficients he 
needed the biorthogonality (114). In some of his notes, for example [Ms. 
3616 (2)] from February 19 th, 1838, he experimented with suitable boundary 
conditions and corresponding adjoint conditions, but the problem does not seem 
to have caused him much trouble. Next he wished Lemma II (§ 47) to hold so that 
he could show that the Fourier series (118) if convergent has the value F(x) = f(x). 
The proof of this lemma could be taken over from [1836d] if only the problem 
would have an infinity of (positive) eigenvalues and if STURM'S oscillation theo- 
rem would hold, i.e. if Vn has in ]o~, fl[ exactly n -- 1 roots, all of which are simple. 
The existence of infinitely many positive eigenvalues is not dealt with in the notes. 
In the published paper [1838c, § 7] LIOUVmLE based his proof on a comparison 
with the equation with constant coefficients for which he could prove the theorem 
as he had done in (1837a). However, since LIOUVlLLE had nothing like STURM'S 
comparison theorem (§ 24) at his disposal, the proof necessarily differed from 
STURM'S, and it is in fact insufficient. 

55. The proof of STURM'S oscillation theorem caused LIOUVILLE the greatest 
troubles. The vast majority of the notes from the first half of 1838 are related to 
this problem. He indicated several ways to prove that the solutions of the equa- 
tion with suitable boundary values at 0~ (for example (120)) had no multiple roots. 
Some proofs are wrong, for example the second given on February 22 no, 1838 

4-7 LIOUVILLE proved, both for equations with constant coefficients [1837a, p. 102] 
and with variable coefficients [1838 c, pp. 604-606] that the adjoint problem has the same 
eigenvalues as the original problem. 
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[Ms. 3616 (2), pp. 21r, 21v], whereas the first proof  found that day [Ms. 3616 (2), 
p. 18v] and repeated on April 14 th, 1838 is essentially right. 

This proof, which he published in [1838c, § 9], amounted to a rather simple 
accounting for successive roots of  the quantities V, NV' . . . .  , which are supposed 
to be positive for x = o~ (120). Such an investigation shows that no two of these 
quantities can vanish simultaneously; in particular V = 0 and V' = 0 can have 
no roots in common. As LIOUVILLE indicated in a note from April or May, 1848 
[Ms. 3616 (2), pp. 68v, 77r] and published in [1838c, § 10-11] such an argument 
also shows that the quantity on the left-hand side of (121) has a root between 
two consecutive roots of V. Therefore, following L~OtJVILLE, we shall concentrate 
on problems where the boundary condition in/3 is of the form 

Vr(x) = 0 for x =f l .4s  (125) 

Following STURM (see §20), LIOUVILLE argued as follows [1838c, § 14]: Since 
V, has no multiple roots, the number of roots of Vr(x) in ]o~,/~[ can change only 
if a root passes one of the two end points, i.e. when r has a value for which 
Vr(~X ) = 0 or Vr(~) = 0. Now LIOUVILLE always imposed boundary conditions 
on Vr at ~, which allow no root V,(o¢) = 0 (e.g. conditions (120)). Therefore 
it is clear that if V~ and V,+I are two consecutive eigenfunctions of (119), 
(120), and (125), the numbers of  their roots in ]o¢,/3[ differ by at most one. 
Since Vl(x) can easily be seen to have no roots in ]o¢, fl[, this implies that V, 
has at most n --  1 roots in ]e~, fl[. 

56. Thus we are led to the problem which troubled LIOUVILLE more than any 
of the other problems: to show that Vn has precisely n -- 1 roots. In his notebooks 
one can distinguish at least three different methods of  proof. 

LIOUVmLE called the first method "la m&hode Sturmienne" [Ms. 3616 (2), 
p. 19v] because it was adapted from the method used in [STuRM 1836a]. LIOUVILLE 
had already applied this method with success in July 1836 [Ms. 3 615 (5), pp. 18v- 
20r] to an alternative treatment of the equation (111) with constant coefficients. 
Therefore it is natural that in his very first note on the equation with variable 
coefficients from February 1838 [Ms. 3615 (5), pp. 30v-35r] he tried this method 
again. Recall (§ 21, 22) that STURM'S idea was to show that the roots of Vr(X) 
decreased with increasing r. This fact would obviously complete LIOUVILLE'S 
proof  since it implies that Vn+a has one more root (and not one less) in ]o¢, fl[ 
than Vn. STURM had proved the decrease of the roots by showing that 

dVr(.¥) > 
6Vr(X) ~ 0 when V(x) = O, which is in turn implied by 

dV d 6V 
0 = OV-~x -- V--~--x > O, (126) 

4s Consult [LIouVmLE 1838C] for the treatment of the more general boundary 
condition. 
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or corresponding to (49) *9 

Therefore LIOUVILLE started out investigating the quantity 0 defined by (126). 
After some pages of calculations he believed he had established the inequality 
(126) and wrote enthusiastically: 

"I1 est bien prouv6 par ce qui pr6c6de que la th6orie de Mr Sturm s'6tend 
aux 6quations lin6aires de tous les ordres par la consid6ration des 6quations 
conjugu6es [adjoint] de Lagrange dont j 'ai parl6 dans rues lemons au coll6ge 
de France. Ce r6sultat que Sturm, d'apr6s les premi6res lignes de son M6moire 
[quoted in § 52] doit regarder comme tout ~t fait inattendu, est au moins tr6s 
remarquable. Mais il importe de le g6n6raliser autant que possible 5°''. [Ms. 
3615 (5), p. 32r] 

However his continued calculations led to properties which he found strange and 
after 10 pages he finally arrived at a contradiction. He felt so uncomfortable with 
this result that he began to reflect upon the continuous dependence of Vr(X) on 
r, which he everywhere else considered as self-evident: 

"L'explication serait-elle dans le d6faut de continuit4 de la fonction [V] 
par rapport ~t r. Cela parait absurde aussi. Toutefois je n'imagine pas d'autre 
cause. Les exemples y sont favorables." [Ms. 3615 (5), p. 35r] 

In the end he saw that the beginning of the note contained a simple miscalcula- 
tion which invalidated the whole argument. 

57. LIOUVILLE did not lose courage after this initial failure. On the contrary, 
it seems to have become almost an obsession for him to make the Sturmian method 
work. Thus during February, March and April he made over a dozen mostly 
fruitless attempts to apply the method to different higher-order equations with 
variable coefficients (cf. [Ms. 3615 (5), Ms. 3616 (2)]). I shall summarize the one 
partly successful application of the Sturmian method in order to show how far 
LIOUVlLLE got with this approach. In this calculation he showed that the first 
root of Vr(x) = 0 greater than ~ decreases with r when Vr(X) is a solution of the 
equation 

g~3)(x) + g(x) rG(x)  = 0 (128) 

satisfying suitable boundary conditions at x = o~. He proved it on February 
10 th, 1838, in the case where Vr(o 0 = 0 [3615 (5), pp. 38v-40r] and one month 
later [3616 (2), pp. 58v-61r] with the general boundary-value condition 

Vr'(X) = aVe(x) -- bV~(x) for x = ~, (129) 

,9 In LIOUVILLE'S m6moire K(x) does not depend on r. 
50 In this note LIOUVILLE had only treated the equation 

VO)(x) + a(r, x) V(x) = O. 
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where a, b > 0, and V,(~x) =t= 0 say Vr(o¢ ) = c > 0. After having arrived at 
the main lines of  a proof  in a messy way on March 10 th, 1838, he immediately drew 
up a tidy version: 

"Revenons sur la m&hode pr6c6dente que nous avions si souvent essay6 
d'employer et qui se trouve obtenir tout ~t coup un succ6s inattendu." [Ms. 
3616 (2), p. 59v] 

He combined (128) with the adjoint equation 

to find that 

U~3)(x) --  g(x) rU~(x) = 0 (130) 

Ur(x) V~'(x) --  U~(x) V~(x) -]- U;'(x) Vr(x) = const. (131) 

Under the conditions imposed on Ur: 

U~(x) = aU(x), Uff(x) = bU(x) for x = ~, (132) 

the constant in (131) is zero. By differentiation of (128) he obtained 

OVff'(x) -+- g(x) r 0 Vr(x) -k g(x) V,(x) Or = 0, (133) 

which combined with (130) yields 

X 

Ur(x) OV;'(x) -- U;(x) OV;(x) q- Uff (x) OV,(x) = --Or f g(x) U~(x) Vr(x ) dx. 
o¢ 

LIOUVILLE finally combined (131) and (134) and obtained 

U~(x) O;(x) - -  Or(x) U;(x) = &Vr(x) f g(x) Vr(x ) Vr(x ) dx 
o¢ 

o r  

(134) 

(135) 

I C \ V,(x) Or X 

I°r'x)~ ' - f g(x) vxx)  vr(~) dx. (136) 
\ t4(x)l  WXx))  2 

If  now we choose U(o 0 > 0  and r > 0 ,  it is easily seen that U ( x ) > O  and 
U'(x)> 0 for xE [~,fl]. If  further 0 r >  0, (136) implies that0r(x) increases 
with x in the interval [oc, xl(r)] where xl(r) is the first root of Vr(x) = 0. Since 
Or(oO = O, we have 

Or(x~(r)) > O; (137) 

hence by the analysis above (126), xl(r) decreases when r increases. 
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LIOUVILLE tr ied to app ly  the me thod  to the second roo t  as well, as he had  done  
for  the equa t ion  ( l l l )  in July o f  1836 [Ms. 3615 (5), p. 19v], but  this t ime he could  
no t  ca r ry  out  the general izat ion.  Thus the "succ6s i n a t t e n d u "  was very l imi ted  51. 

58. In  spite o f  these d i scourag ing  results LIOUVILLE appa ren t ly  con t inued  to 
have confidence in the S turmian  method .  I t  was clear ly the me thod  he l iked the 
best. Thus he cont inued  to use it af ter  he had  found  the more  successful a p p r o a c h  
(Feb rua ry  18 t~) which he la ter  chose to publ i sh  in [1838c] 52. He even re tu rned  to 

51 On February 22 nd, 1838, LIOUVILLE [Ms. 3 616 (2), p. 22-23r] believed that he had 
another success with the Sturmian method. He considered the equation 

(K(x) (L(x) (V'(x))')" -i- g(x) rV(x) = O, (138) 

where 

K(x), L(x), g(x) > 0 for xE [% t31. 

By successive differentiation he obtained the differential equation 

(L(K(L0)') ') '  = grO (139) 

which he integrated three times to give 

X 

r / .x [~'.d_x fg(x) O(x).x. (140) O(x) = F(x) + ~ ~ J r(x)  
cx c~ c~ 

The function F(x) depends on the initial conditions at x = c~. LIOUVlt.LE chose the 
conditions: 

LV" = a(r) V, K(LV')" = b(r )LV'  for x = c~ (141) 

and showed that if 

da db 
a , b > O ,  -~r < 0 ,  -~-r < 0 ,  (142) 

then F(x) > 0. In that case (140) implies that 0 > 0 which was the desired result. 
However, his derivation of (139) contains an error, for in the beginning of the proof  

he chose V, V1 to be two solutions to (138), with the same value r of the parameter.  

At  the end of the proof,  however, he set V1 = V + d V  where dv=--dVdr .  In that 
dr 

case V~ in fact satisfies (138) for the value r ÷ dr instead of the value r of the parameter.  
LIOUV~LLE did not cross out this proof  as he usually did with erroneous calculations 

in his notebooks. That indicates that he did not discover the flaw. Yet his continuous 
search for alternative derivations shows that he was not content with the result.The reason 
can be that the proof  does not work in the most interesting case of constant boundary 

da db 
conditions. In fact if dr -- dr -- 0 LIOUVlLLE would get F(x) _~ 0, and so nothing could 

be concluded from (140.) 
s2 LIOUVILLE also tried a related method in notes from February 8th-10 th, March 8 th, 

and August 5 th, 1838 [Ms. 3615 (5), 3616 (2)]. It consisted in studying solutions V of 
(138) of the form 

V =  U W ' - -  WU' ,  

where U and W are solutions to the adjoint equation with suitable boundary conditions. 
The investigations end without result. 
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the method in two short notes as late as 1843/44 and 1845/46 [Ms. 3617 (4), 
Ms. 3618 (3)1. 

Before I discuss the published approach I shall mention a third method, 
which is in a way a geometrical version of the Sturmian method. This method, 
thought out on February 19 th, 1838 and developed in three notes during the follow- 
ing few days (February 19th--22 ~d [Ms. 3616 (2), pp. 3v-7r, llv-12r], consisted 
in a geometric investigation of the curves V(r, x)  = O. Recall that the main 
problem is to show it impossible that a root of V(r, x) in ]o~, fl[ can leave the inter- 
val at fl for increasing r. L~OUVILLE neatly argued that the only way that could 
happen was if a branch of the curve V(r, x) - - 0  had the form (Fig. 4): 

V(r,x)=O~ 
Fig. 4 

But that would mean that V(r~, x)  and V(r2, x) has the same number of roots in 
]o~, fl[, and LIOUVILLE considered that to be absurd. LXOUVlLLE tbund this geometric 
argument "tr6s claire mais difficile h r6diger" [Ms. 3616 (2), Feb. 19th], but ob- 
viously the "absurdity" found at the end of the proof only arises when STURM'S 
oscillation theorem is used. Thus he argued in a circle. 

59. One day before L1OUVILLE conceived the geometrical argument he had 
thought out the central idea of the proof of STURM'S oscillation theorem that he 
eventually published in [1838c]. The inspiration clearly came from STURM'S 
proposition N (§ 28), more specifically from STURM'S alternative version of LIOU- 
WLLE'S proof of the theorem (§ 50). Thus his aim was to prove 

Lemma III. 

A mr m V,~ -t- . . .  -~- A ,r , V, (105) 

has at least as many roots in ]o~, fl[ as 

10 = AmVm ÷ . . .  + A,,Vn s3. (61) 

5a At first LIOUVILLE had m = 1 but when he began his investigations of (146) he 
applied his results in the general case without comment. 



The Emergence of Sturm-Liouville Theory 361 

In the note of February 18 th, 1838 [Ms. 3616 (2), pp. lr, v] he gave the following 
rigorous proof  of this theorem when V,, n = 1, 2 . . . .  are the eigenfunctions of 
the equation (128) (g(x) > 0) with the boundary conditions 

V ' : a V ,  V " : b V  for x ~ ,  (143) 

V" + AV" ~- B V = O  for x : / 3 ,  (144) 

where a, b, A, B > 0. 
Since ~ satisfies (144), either 

1) both F(fl) and ~o'(fi) are of  the opposite sign of ~//'(fl), or 
2) only one of ~0(fl) and ~0'(/3) is of the opposite sign of  ~o"(fl). 

In the first case LIOUVILLE argued as follows (Fig. 5): 

(1) 

, (5) .... ' , ,  

/ (r2 ]]'x~-~" ((LII ~ [ 

I F ..... (2) ..... (4) / 

Fig. 5 

C1) 

\ ((3)) (3) ((5))~ 

Fig. 6 

Let # denote the number of roots of ~/J in ]~,/3[. Then there are at least # roots 
of~0' in ]~,/3[, namely one between ~ and the first root o f% and at least one between 
each of the consecutive roots of ~ according to RO1,LE'S theorem. Next he showed 
that ~," has at least # + 1 roots in ]~,/3[, namely the # -- 1 roots secured by 
RoLLz's theorem plus one to the left of the first root of ~'  and one to the right of  
the last root of ~0'. A similar proof  applies to the second case (Fig. 6). Therefore, 
according to ROLLE'S theorem, ~//" has at least/~ roots in ]~,/3[ and by the differen- 
tial equation (128) we have 

~l/'(x) = --g(x) (Amrm Vm + . . .  '-- Anr, Vn). 

This establishes the theorem. As in [STuRM 1836b] and [L~ouvmLz 1836e], 
L~OUVmLE concluded that I~ has at least as many roots in ]o~, fl[ as ~0, which has 
in turn at least as many roots as V,,. 
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60. Let us follow LIOUVILLE [1838C] and introduce the notation 

p = number of roo ts  of I'm, 

q = number of roots of Vn, 

# = number of roots of ~. 

Then the above theorem states that 

p ~ # __<__ q. (145) 

In the next note from the same day L1OUVILLE considered'the special case where 
m = n -- 1 and An_l = Vn(e~), An = --Vn_a(~)54: 

~)(X) ~ Vn(o~ ) V n _ l ( X  ) - -  V n 1(o~) Vn(X  ) . (146) 

According to (143) this particular function has ~o"(e 0 ----0 and therefore ~o'" 
has an extra root between o~ and the first root of ~p" in ]~, fl[. Hence 

'P()C) = Vn(o~ ) F n_  1 Vn -- 1 (X)  - -  V n_  1(0~) F n V n ( x  ) 

has at least # + 1 roots. The second inequality of (145) applied to v(x) thus yields 
# + 1 ~ q and the first inequality applied to ~p yields p ~ #. Therefore 
p + 1 _<_ q. Since V1 has no roots in ]o~, fl[ Vn has at least n -- 1 roots in ]~,/3[. 
On the other hand LIOUVILLE knew that V, has at most n -- 1 roots in ]o~, fl[, 
and he had completed the desired proof  of STURM'S oscillation theorem. 

61. Four days after having designed the above proof  LIOUVILLE generalized 
it to equation (138) with variable coefficients and with the boundary conditions 
(143)-(144) and V(a) = 1 [Ms. 3616 (2), Feb. 22nd]. in this general case LIOI~- 
VlLLE counted roots of U, U' and (LU')' by reasoning as he had done a few days 
earlier. However this time there is a flaw in the argument because one cannot 
conclude that (LU')' has a root between a and the first root of U'. At first LIOU- 
VILLE did not see the mistake, but later he seems to have discovered it. At least 
he altered the boundary conditions in the published version of the proof  [1838c] 
from the conditions (143), (144) and V(o~) = l, which made V, V', V" positive 
at o~ to the conditions (120) and (121), which made V, V', (NV')' positive at ~. 
Under the new conditions LIOUVILLE'S argument of February 22 ha, 1838, is correct. 
Before publishing the m6moire [1838c] LIOUVlLLE showed parts of it to STURM 
who suggested that the above simple proof  of Lemma III by ROLLE'S theorem 
should be replaced by a more elegant argument resting on a generalization of 
FOURIER'S theorem on the number of roots of a function [LIouVILLE 1838C § 17]. 
With this revision the proof  of February 18th--22 nd of STURM'S oscillation theorem 
was published in [LIoUVlLLE 1838C, § 17]. 

62. The only published result of LIOUVILLE'S hard work during February, 
March, and April of 1838 in the field of higher-order Sturm-Liouville theory was 
the paper "Premier M6moire sur la Th4orie des l~quations diff4rentielles lin6aires 
et sur le d6veloppement des Fonctions en s4ries" from December [1838c] and a 

54 LIOUVILLE wrongly wrote A,, = --Vn(o. ). 
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brief note published in May that year [1838a] announcing the theory later to 
appear. Let me briefly summarize the contents of [LIouwLLE 1838C]. First the 
solutions of (119) and (120) are found by successive approximation, and it is 
shown, by comparison with the equation with constant coefficients that (119)- 
(121) have infinitely many positive eigenvalues. Then it is shown that V~ has only 
simple roots, and the crucial proof of STURM'S oscillation theorem is given. Next 
comes the argument for Lemma II (see § 47) and the introduction of the dual 
problem (122)-(124) followed by the proof of the biorthogonality (114). Finally 
it is proved that the Fourier series (118) o f f  has the value f if it converges, and 
L1OUVILLE argues that all eigenvalues are positive. 

63. The title of the m6moire "Premier M6moire . . . "  indicates that LIOUVILLE 
had planned a more comprehensive treatment of the generalized Sturm-Liouville 
theory. A gigantic project appears from the announcement of his new results 
in [1838a]: 

"D4s que l'abondance des mati6res me permettra de prendre dans ce 
Journal une place suffisante, je m'empresserai d'y punier  le M6moire dont je 
viens d'indiquer les principeaux rdsultats, et qui n'est du reste 5- rues yeux 
qu'une petite partie d'un tr4s long travail que j'ai entrepris sur la th6orie 
gdn6rale des 6quations diff&entielles et sur le d4veloppement des fonctions en 
s4ries". [LIouVILLE 1838a, p. 256] 

In some of LIOUWLL~'S notes one can even get some idea of his general plan for 
this larger project. For example on July 3 rd, 1838, he began to reflect about the 
presentation of the material and remarked that in the first m4moire the principal 
aim must be very clear; therefore unnecessary difficulties such as problematic 
boundary conditions should be avoided. Here he aluded to the boundary values 
mentioned in a note from March 31 St, where he suggested setting U or U' equal 
to zero at three different points. Such subtleties were apparently postponed to 
the later papers in the sequence. On August 5th--10 th, 1838, LIOUV1LLE drew up 
a few more points for his programme of research: 

"Nos recherches sur les propri6t6s g6ndrales des int6grales des t~quations 
lindaires prendent tous los jours plus d'importance, il est n6cessaire de s'occu- 
per avec soin 

1 °. de la convergence des s6ries auxquelles nous conduit notre analyse 
2 °. de l'6tude des l~quations simultane4s &c.&c. 

dU 
d-~4 r V = O  

dV 
- - - - r U = O .  
dx 

[LIouVILLE Ms. 3616 (2), p. 87v] 

The question of convergence of the Fourier series (I 18), mentioned in 1 °, was left 
open in both [1837a] and [1838@ LIOUVILLE had already stressed its importance 
in a note from February 22 nd, 1838 saying: "I1 est tout 5. fait indispensable de 
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s'occuper tr6s s&ieusement de la convergence de ces s6ries" [Ms. 3616 (2), 
p. 25r], but he left only one (or perhaps two) inconclusive notes on the question 
from February 23 ra and March 5 th of 1838 [Ms. 3616 (2), pp. 32, 36]. In fact, 
U. HAAaERUe has pointed out that even for the boundary-value problem (111)- 
(113) with constant coefficients the Fourier series converges only for very special 
functions f (cf Appendix). 

The theory of simultaneous equations mentioned in 2 ° was studied in several 
particular cases in notes from March 11 th, 1838 (two second-order equations), 
August 5th--10 th, 1838 (two and three first-order equations) [Ms. 3 616 (2), pp. 51v, 
87v, 88] and one as late as March 1839 (three second-order equations) [Ms. 3 616 
(5), pp. 8v-9v]. 

64. On July 3 ~d, 1838, LIOUVILLE planned another "grande extension" [3616 
(2), p. 80v]. In the note he seems to suggest that the expressions NV', M(NV')" ... 
of (119) and (120) be replaced by 

V V = MV" + NV, 

V2V = MI(VV )' @ N 1 V V  - -  PaV, 

V3V = M2(V2U) ' + N2 V2U--  P2 VU 

Half  a year later, on January 3 to, 1839, he began to study Sturm-Liouville theory 
for complex functions, and he intended to "suivre cette th6orie qui peut devenir 
tr& importante, introduire dans nos fonctions une param&re; voir les propri&& 
correspondantes des fonctions et de leurs int6grales dans un contour &c.&c". 
[Ms. 3616 (3), p. 6r]. 

Finally, a note probably from 1842 [Ms. 3617 (2), pp. 66v-67r] shows that 
LIOUVILLE continued to be occupied with Sturm-Liouville theory many years after 
1838. This note contains a few results on "les propridt6s des puissances ou des 
produits des fonctions V de Mr. Sturm". Again he put off further investigations 
though "tout  cela parait m6riter d'&re &udi6 avec soin". (LIoUVILLE'S under- 
lining). 

65. In spite of his extensive research programme for the generalized Sturm- 
Liouville theory LIOUVlLLE never composed the subsequent m6moires in the series 
he had planned in 1838. What was the reason his interruption of the series? 
An explanation cannot be found in a new absorbing interest taking all of LIOU- 
WLLE'S time; he did turn to many other problems of analysis, algebra, mechanics 
and celestial mechanics but from his published papers and his notebooks it 
appears as if none of these interests was so strong that it could have beaten him 
offthe track 5s. A more likely explanation will present itself after a view of the sub- 
sequent development of Sturm-Liouville theory. Such a view will be given in the 
concluding section. 

5s To judge from his notebooks potential theory, particularly for ellipsoids, was the 
next problem to occupy him as much as Sturm-Liouville theory had done. But this new 
problem did not really catch his attention until 1841 or 1842. 
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VIII. Concluding Remarks 

66. The subsequent development of the Sturm-Liouville theory can be divided 
roughly into two mutually interacting categories : generalizations and rigorizations. 
The following brief summary of the late 19 th century and early 20 th century 
advances in these two directions and makes no claim to be complete. More details 
and references to primary sources can be found in the relevant artMes of the 
"Encyklop/idie der Mathematischen Wissensehaften" [B6CHER 1899/1916] and 
[HII.B & Sz~isz 1922]. 

Around 1880 the problem of vibrating rods and plates led Lord RA','LHGH 
[1877], G. KIRCHHOFF [1879] and others to develop theorems similar to STURN'S 
for higher-order boundary value problems. At the same time the Sturm-Liouville 
theory of singular differential equations, where for example k(x) in (1) has zeroes 
in the interval [~, fl], was studied first in special cases such as the Bessel equation 
(16) (e.g. [ScHL)IVI.~ 1876]) and later in more generality by B6CHER and others. 
A third kind of generalization was undertaken by F. KLEIN [1881], who studied 
ordinary differential equations with several parameters. By allowing the solutions 
to have prescribed types of infinities at the boundary of the intervals considered 
he was able to adapt his theory to the Lain6 functions. Thereby he combined the 
two hitherto entirely separate theories of boundary-value problems and polyno- 
mial solutions of ordinary differential equations. Finally POINCAR~ initiated spectral 
theory of partial differential operators with his study of the Laplace operator 
[1894]. 

67. The rigorization of Sturm-Liouville theory took place on two levels. To 
adjoin to STURM'S and LIOUV~LLE'S essentially correct arguments the lacking proofs 
of continuity, differentiability, and uniformity constituted the simpler task. It 
was undertaken piecewise in several papers from the 1890's and systematically 
carried through for the Sturmian theorems by B6CHER [1898, 1899]. Other mathe- 
maticians took up the much more difficult problem of finding a rigorous replacement 
for LrOUVILLE'S essentially wrong proof that a Fourier series converges to the 
function that gives rise to it. H. HEINE [1880] and U. DIN~ [1880] applied CAUC~Y'S 
theorem of residues to this problem and POINCAr~ [1894] developed this idea in 
his proof of a general theorem on expansion in eigenfunctions for the Laplace 
operator. POINCARI~ also used complex function theory. An improvement of this 
method was carried over to the Sturm-Liouville problem by STEKLOFF [1898] 
to get the first rigorous proof that a twice differentiable function satisfying the 
boundary conditions (2) and (3) could be expanded in a Fourier series. By com- 
bining the method of POI~CAR~ and STEKLOVF, based on the theory of functions, 
with LIOUVILLE'S original second proof of convergence [1837e] (see § 46) A. KNE- 
SEa [1904] succeeded in proving the expansion theorem for any piecewise contin- 
uous function of bounded variation (though taking the values 21-(f(x + O)+ 
f (x  -- 0)) at points of discontinuity). He here provided a parallel to the classical 
result of DXRrCHLET [1829] for trigonometric Fourier series. 

68. An entirely new approach to Sturm-Liouville theory was opened up by 
the rise of the general theory of integral equations, beginning at the end of the 
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1890's. The correspondence between spectral theory for differential and integral 
equations is established by the Green's function. I f  r is not an eigenvalue of (1)-(3) 
and ~(x) > 0 in [o~, fl], there is a solution u of 

(k(x) u'(x))" + (g(x) r -- I(x)) u(x) = --q~(x) for x E ]o~,/3[ (149) 

satisfying the boundary conditions (2) and (3). This solution can be expressed 
in the form 

t~ 
u(x) -~ f G(r, x, ~) q~(~) d~. (150) 

c* 

G(r, x, ~) is called Green's "function". If  r~ is an eigenvalue to the boundary- 
value problem (1)-(3) and if V, is the corresponding eigenfunction, it follows from 
(149) and (150) that 

V, = % -- r) f g(~) G(r, x, ~) Vn(~ ) d~. 

Therefore the eigenvalues and eigenfunctions of (1)-(3) correspond to eigenvalues 
and eigenfunctions of the integral operator 

+ f g(~) c(r, x, ~) ~(~). (151) 
o¢ 

This idea is found in the work of POINCARI~ [1894] on the Laplace equation. 
However its full importance was not revealed until HILBERT [1904/1910] and 
SCHMIOT [1907] had proved that any continuous function of the form 

t~ 
f (x)  = f g(~) a(r, x, #) ~(~) 

0¢ 

can be expanded in a Fourier series of eigenfunctions to the integral operator 
(151). When applied to the Sturm-Liouville problem this theorem almost imme- 
diately gives the expansion theorem for twice differentiable functions which 
satisfies the boundary conditions. Thus, as long as mainly pointwise convergence 
was considered, HILBERT and SCHMIDT'S method could not compete with KNE- 
SER'S, but later in the 20 th century when mathematicians became interested in 
L2-convergence the new methods proved more valuable. Nowadays the Sturm- 
Liouville theory is treated in close connection to the general theory of operators 
in Hilbert space which developed from HILBERT and SCHMIDT'S investigations. 

69. Of the generalizations listed in § 67 only the study of higher-order equa- 
tions belongs to LIOUVILLE'S research programme. He had also touched upon 
spectral theory for the Laplacian in his remark of 1830/31 about heat conduction 
in bodies of more than one dimension, but he had given it up because he could 
not even find the stationary temperature distribution explicitly (cf. note 27). A 
further comparison of LIOUVlLLE'S research programme with the late 19 th cen- 
tury development is interesting because it may throw some light on LIOIJV~LLE'S 
failure to carry out his plans. 
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What distinguishes LIOUVILLE from his successors is not so much the difference 
between their problems as their different motives for studying them. The generaliza- 
tions of the Sturm-Liouville theory obtained in the late 19 th century were motivated 
by physics or by a desire to link up different trends of  analysis. LIOUVILLE, on the 
other hand, appears in this case as a blind generalizer who wanted to extend his 
and his friend's new theory as far as possible just for the sake of generality. Of  
course he may have had other motives, Which he did not reveal to his readers or 
to his notebooks, but at least in the case of  third-order equations his only motiva- 
tion seems to have been POISSON'S remark about the difficulty of  the problem 
(§ 52). Thus lack of genuine motivation may have been a reason why LIOUVILLE 
lost interest in the problems. 

The missing physical inspiration had a serious consequence, for in analysis, 
and particularly in the type of analysis cultivated in early 19 th century France, 
theorems and methods had generally been suggested by physical reality. For ex- 
ample, Sa'VRM and LIOUVILLE'S research on second-order differential equations 
had been guided by their knowledge of heat conduction and vibratory motion. 
In the extended research programme, however, LXOUVmLE did not have such 
physical guidance for what were the important  questions and even what were the 
correct theorems to prove. A manifestation of LXOUV~I, LE'S failure of  intuition in 
the broader field was his belief in the convergence theorem for Fourier series. 

To conclude, LIOUVILLE'S lack of  physical motivation, his resulting failing 
intuition and more specifically his inability to prove the central expansion theorem 
for higher-order equations explain at least in part  why the first chapter of  the 
history of the Sturm-Liouville theory ended in 1838, only a few years after it had 
started. Yet during these few years STURN and LIOUVlLLE had advanced the theory 
to such a degree of completeness that no substantial additions were made during 
the next half  century. 

Appendix 

On the Convergence of the Fourier Series for a Third Order 
Sturm-Liouville Problem 

The following remarks have been communicated to me by Professor UFFE HAAGE- 
RUP, Odense. He has made a more detailed investigation of the boundary-value prob- 
lem (111)- (1 l 3) in a course at Odense University [HAAGERUP 1982]. 

LIOUVILLE noted that the eigenfunctions 
(111)-(113) were of  the form G(~nx), where 

G(x) = e -~ + #e -"~ @ #2e-~2x; 

of  the boundary-value problem 

/~ = - - -~-  @ i , 

and the positive eigenvalues 01 < 02 < ~3 < ..- are the positive roots of  G(x). 
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T h e o r e m .  A necessary condition that a function f on ]0, 1 [ can be written in the 
form 

f ( x )  = ~ c,G(9nx), c,, E C 

(pointwise convergence) is that f has an analytic continuation f to the open tri- 
angle with vertices 1,/~,/~2, such that the Taylor expansion o f f  around z = 0 
is of  the form 

f ( z )  = a2z 2 + asz s -k asz 8 + . . . .  (152) 

I n  particular, the polynomials 1, x ,  x 3 , x  4, x 6 . . . .  cannot be expanded in the above 
form. 

Proof. Note that G ( x ) =  2e 2 sin x -  + e -x. The roots o, are solu- 

tions of  the equation 

1 - T  
= _ -  

s i n  x -  2 e , 

which gives the asymptotic expression 

2=(+) 
~, = )--~ n +  + e n ,  

where e , - + O  as n - + c ~ .  (Note that G h a s  a double root at x = 0 ,  
other roots close to 0.) 

Let p E N, p ~ 2. By the assumptions the series 

but no 

converges. Hence there is a constant Kp such that 

By the asymptotic formula for ~ ,  we get 

the error of  which grows less rapidly than e z \ p I. 

all n. 

-(. 
Since 
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for all n, there are a constant Kj and a number np such that 

]G@.(I --I))I>=Kje~('-~) if n>=np. 

Therefore 

Kp 1--p ll > Hp, 
I c . l  < -~p e - , = 

which implies the existence of a constant K~', such that 

_~°n(1 1 ) 
[e . [<=Kp '  e 2~ , n = 1 ,2 ,3  . . . .  

For  r > 0 we let 7". denote the triangle with vertices r, /zr, ~2r. The function 

G(x)  = e - x  + i~e - : ~  + #2e- :"~  

has an extension to the whole complex plane given by the same formula. Since 

{ . r +} 
T . =  z E C I  R e z ~ > - - - -  R e ( ~ z ) >  - - - -  R e ( # Z z ) >  - -  

- -  2 '  = 2 '  : 

it follows that 

r m 
sup ]G(z)I ~ 3e 2. 
zCT r 

Let r 6 ] 0 , 1 [ .  Choose p 6 N  and such that 1 - - - -  
1 

> r .  For z E T ,  
P 

... ,__j 
[c.l [ G(~.z)l <= Kj' 2 e 2\ p / 3eT = 3K;' ~ e 2, p . 

n=l n=l n=l 

Since ~, :-- ~ n + and r < 1 - -  - - ,  the last sum is finite. This shows that 
V J  P 

~ c , , G ( ~ , , z )  converges uniformly on every triangle Tr, r < 1. Hence there is 
n = l  
an analytic function)Tdefined on the interior of  the triangle T1, such that 

f(z) = ~ c.vc.(z), z c T1. 
n = l  

Since G ( # z ) =  # : G ( z ) ,  z 6  C, we have also 

= ¢?(z), . L. 

This condition is equivalent to saying that the Taylor expansion of f around z = 0  
is of  the form 

f ( z )  = azz  2 4- asz s 4- asz s 4- . . . .  (152) 
Q.E.D. 
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R e m a r k .  By a more detailed analysis of  the problem one can obtain a partial 
converse, namely : 

I f  a function f on [0, 1] has a b o u n d e d  analytic extension to the interior o f  the tri- 

angle with vertices 1, #,  #2, such that  f ( l~Z)  = #zjT(z), t henf (x )  can be written in 
the form (152). In  particular the Fourier  series converges when f ( x )  = x a, x 5, x 8, 
e tc .  (see [HAAGERUP 1982]). 
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