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THE BLOCK STRUCTURE SPACES OF REAL PROJECTIVE
SPACES AND ORTHOGONAL CALCULUS OF FUNCTORS

TIBOR MACKO

Abstract. Given a compact manifold X, the set of simple manifold structures
on X×∆k relative to the boundary can be viewed as the k-th homotopy group

of a space S̃s(X). This space is called the block structure space of X.
We study the block structure spaces of real projective spaces. Generalizing

Wall’s join construction we show that there is a functor from the category
of finite-dimensional real vector spaces with inner product to the category of
pointed spaces which sends the vector space V to the block structure space
of the projective space of V . We study this functor from the point of view of
orthogonal calculus of functors; we show that it is polynomial of degree ≤ 1 in
the sense of orthogonal calculus.

This result suggests an attractive description of the block structure space of
the infinite-dimensional real projective space via the Taylor tower of orthogonal
calculus. This space is defined as a colimit of the block structure spaces of
projective spaces of finite-dimensional real vector spaces and is closely related
to some automorphisms spaces of real projective spaces.

Introduction

The central objects of study in this paper are the block structure spaces of
certain topological manifolds. These spaces arise as follows. For a closed topological
manifold X, a simple manifold structure on X is a simple homotopy equivalence f
from some closed manifold M to X. Two simple manifold structures f0 : M0 → X
and f1 : M1 → X are equivalent if there exists a homeomorphism g : M0 → M1 and
a homotopy from f1 ◦g to f0. The set of equivalence classes is called the simple
structure set of X and is denoted by Ss(X). More generally, if X is a compact
manifold with boundary, there is a simple structure set Ss

∂(X) whose elements
are represented by simple homotopy equivalences of pairs f : (M, ∂M) → (X, ∂X)
where the restricted map ∂M → ∂X is a homeomorphism.

For a given compact manifold X, Quinn constructed in [Qu] a space S̃s(X), the
block structure space of X, such that

(0.1) πk(S̃s(X)) ∼= Ss
∂(X × ∆k).

This space is related to the automorphism spaces of X via the homotopy fibration
sequence

(0.2) T̃OP(X) → Gs(X) → S̃s(X).
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Here the space T̃OP(X) is the block version of the space TOP(X) of self-homeo-
morphisms of X and Gs(X) is the space of simple self-homotopy equivalences of
X. See [WW], [BLR].

The simple structure sets Ss(X) have been studied in many special cases. In
particular they were calculated for real projective spaces, lens spaces and complex
projective spaces in the work of many authors, especially Wall [Wa, chapter 14],
Browder [Br], Browder-Livesay [BL] and López de Medrano [LdM]. A useful tool
used by these authors is the join construction (see [Wa, chapter 14]). It provides
us with maps between simple structure sets in different dimensions. For example
in the case of real projective spaces we get maps Ss(RPn) → Ss(RPn+m). We
generalize the join construction to define maps between the block structure spaces.

In principle the homotopy type of the block structure space of any manifold is
well understood as the homotopy fiber in the Sullivan-Wall-Quinn-Ranicki homo-
topy fibration sequence of surgery (see [WW, Theorem 2.3.1.]). Unfortunately, if
m > 2 this description of the block structure space does not easily extend to an
illuminating description of the maps S̃s(RPn) → S̃s(RPn+m) induced by the join
construction (Ranicki showed me how to handle the cases m = 1, 2). We propose
to remedy this defect by using ideas from functor calculus.

For this purpose we formulate the join construction as a certain continuous
functor. In the case of real projective spaces it is a functor, which we denote F ,
from the category J of real finite-dimensional vector spaces with inner product to
the category Spaces∗ of pointed spaces which sends the vector space V to the block
structure space of RP (V ), the real projective space of V . There are variants of
this for the lens spaces and complex projective spaces. The general methods we use
apply to all cases. However, in this paper we specialize to the case of real projective
spaces. We make remarks on the other cases at the end of the Introduction.

The advantage of the formulation of the join construction as a continuous functor
is that it enables us to use the orthogonal calculus of functors to study the block
structure spaces of real projective spaces. The orthogonal calculus provides us with
a general theory for studying continuous functors from J (as above) to Spaces∗. It
was developed by Weiss in [We]. He associates to a given continuous functor E the
tower of functors

· · · → TkE → Tk−1E → · · · → T0E,

called the Taylor tower. For each k the functor TkE is a polynomial functor of
degree ≤ k in a certain sense, and it is also the best approximation of E by such
a functor. Therefore it should be thought of as the k-th Taylor polynomial of E.
For example, the functor T0E is defined by T0E(V ) = hocolimnE(V ⊕ Rn). It is
the best approximation of E by an essentially constant functor (all induced maps
T0E(V ) → T0E(W ) are homotopy equivalences). Thus the expansion is at infinity.
The functor E is related to its Taylor tower via natural transformations E → TkE
which fit together to form a commutative diagram. In favorable circumstances the
maps E(V ) → TkE(V ) are highly connected for k large.

The idea of the calculus of functors is to obtain some information about the
functor E by investigating its Taylor tower. For this purpose we need to estimate
the connectivity of the maps E(V ) → TkE(V ). The best situation happens if the
functor E is polynomial of some degree ≤ k. Then the maps E(V ) → TkE(V ) are
homotopy equivalences for all V ∈ J .
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A continuous functor E is called polynomial of degree ≤ k if the canonical map

E(V ) → holim
0�=U⊆R

k+1
E(V ⊕U)

is a homotopy equivalence for all V ∈ J . The homotopy limit is over the topological
poset of all non-zero vector subspaces of Rk+1 (in section 3 we give some details
about homotopy limits in this setting). There is a way to verify that a given functor
is polynomial of degree ≤ k; in the case k = 1 we discuss it in detail in the paper.

Once the convergence question is established (that means the connectivity of
maps E(V ) → TkE(V ) is known), the goal is to determine the Taylor tower itself.
This can be done via an important theorem in [We] which says that the difference,
hofiber∗(TkE(V ) → Tk−1E(V )), between the stages of the Taylor tower of the func-
tor E is determined by a certain spectrum ΘE(k) with an action of the orthogonal
group O(k). This spectrum should therefore be thought of as the k-th derivative
of E at infinity.

The main theorem of this paper says that the functor F defined above is essen-
tially polynomial of degree ≤ 1. It can be formulated as follows.

Theorem 5.1. Let F : J → Spaces∗ be the functor defined by V �→ S̃s(RP (V )).
Then the canonical maps

F (V ) → holim
0�=U⊆R

2
F (V ⊕U)

are homotopy equivalences if dim(V ) ≥ 6.

This implies that the maps F (V ) → T1F (V ) are homotopy equivalences if
dim(V ) ≥ 6 (see Corollary 5.2) and therefore in high enough dimensions the Taylor
tower of F has only two interesting stages, namely T1F and T0F . As mentioned
above, the difference between them is measured by the first derivative of F at in-
finity, which is a certain spectrum ΘF (1) with an action of the orthogonal group
O(1). The homotopy groups of the spectrum ΘF (1) are also determined.

Theorem 5.11. We have

πk(ΘF (1)) ∼= Lk(1) for k ∈ Z,

where the groups Lk(1) are the 4-periodic L-groups from surgery theory associated
to the trivial group.

There is another spectrum L• whose homotopy groups are πk(L•) ∼= Lk(1) for
k ∈ Z (see [Ra2, chapter 13]). The relationship between ΘF (1) and L• is not yet
clear to us, because we do not know any map between the two spectra.

The results of Theorems 5.1 and 5.11 can be used to provide a functorial de-
scription of spaces F (V ) 	 T1F (V ) via the Taylor tower of F , if dim(V ) ≥ 6. For
example by comparing the Taylor tower of F evaluated at 0 and at V we obtain
the homotopy fibration sequence

(0.3) Ω∞[(S(V )+ ∧ ΘF (1))hO(1)] → T1F (0) → T1F (V ),

where S(V ) is the unit sphere in V with the antipodal involution, the subscript
+ denotes added base point and the subscript hO(1) denotes the homotopy orbit
spectrum. We expect to determine the homotopy type of T1F (0) and the first map
of the homotopy fibration sequence (0.3) jointly with Weiss in [MW]. In any case,
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this yields a surprising similarity of the homotopy fibration sequence (0.3) with
the Sullivan-Wall-Quinn-Ranicki homotopy fibration sequence of surgery theory for
RP (V ) (see [WW, Theorem 2.3.1]). However, an important difference between
the two homotopy fibration sequences is that (0.3) is functorial in V , whereas the
surgery theoretic description is NOT.

The Taylor tower of F can also be used to give a satisfying description of the
block structure spaces of the infinite-dimensional real projective space, that means
the colimit

F (R∞) = colim
n∈N

F (Rn) 	 T0F (0).

Namely, the Taylor tower of F evaluated at 0 becomes the homotopy fibration
sequence

(0.4) Ω∞[(ΘF (1))hO(1)] → T1F (0) → T0F (0) 	 F (R∞).

If the promised results of [MW] are obtained, this yields the desired description of
F (R∞).

The ultimate goal in the study of the block structure space of a manifold X
is to provide some information about the automorphism spaces of X, the space
of self-homeomorphisms TOP(X) and the space of simple self-homotopy equiv-
alences Gs(X). The relation between these spaces is via the homotopy fibration
sequence (0.2), which involves the block version of the space of self homeomorphisms
T̃OP(X). If A(X) is any of the automorphism spaces above, the join construction
provides us with maps A(RP (Rn)) → A(RP (Rm)) for n ≤ m, and the automor-
phism space A(RP∞)) of the infinite-dimensional real projective space is defined
as the colimit of A(RP (Rn)) over n ∈ N. The join maps commute with the maps
in (0.2), and so we obtain the homotopy fibration sequence

(0.5) T̃OP(RP∞)) → Gs(RP∞)) → S̃s(RP∞)) = F (R∞).

Closely related to these spaces are also certain equivariant automorphism spaces
discussed in a more detail below. We remark that the space colimn∈NGs

Z2
(S(n ·V ))

defined below is a trivial double cover of Gs(RP∞)), and in [BS] it is shown that this
space is homotopy equivalent to Q(RP∞

+ ), where Q = Ω∞Σ∞ and the subscript +
denotes the added base point. Therefore any information about the homotopy type
of F (R∞) gives us also information about T̃OP(RP∞)) which is closely related to
TOP(RP∞)) (see [WW] for more information about the relation between various
automorphism spaces, also note that for real projective spaces the word simple can
be dropped as Wh(Z2) = {0}).

There is also a more direct way to relate the space F (R∞) to certain honest
(not block) equivariant automorphism spaces as follows. Let W be the regular
representation of the group Z2. Denote by GZ2(S(n ·W )) the topological monoid of
equivariant self-homotopy equivalences of the unit sphere S(n · W ) of the induced
representation n · W = Rn ⊗ W and by TOPZ2(S(n · W )) the topological group
of equivariant self-homeomorphisms of S(n · W ). The join map induces inclusions
GZ2(S(n · W )) ↪→ GZ2(S(m · W )) and TOPZ2(S(n · W )) ↪→ TOPZ2(S(m · W )) for
n ≤ m, and there are also inclusions TOPZ2(S(n · W )) ↪→ GZ2(S(n · W )) which
commute with the join map. Therefore we get the maps between quotients induced
by the join construction. After passing to the colimit over n ∈ N there is the
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following splitting:

(0.6) colim
n∈N

GZ2(S(n · W ))/TOPZ2(S(n · W )) 	 F (R∞)1 × G/TOP,

which relates the left-hand side to the space F (R∞). Here F (R∞)1 is the base
point component. For the classical space G/TOP see e.g. [WW, section 1].

Here is a sketch of how the splitting (0.6) is obtained. Let W = V ⊕U , where V
is the free part of the representation and U is the trivial part. There is the splitting

(0.7) colim
n∈N

GZ2(S(n · W )) 	 colim
n∈N

GZ2(S(n · V )) × colim
n∈N

G(S(n · U)).

See [Cr, Proposition 3.5] for the statement on the level of homotopy groups. Simi-
larly there is the splitting

(0.8) colim
n∈N

TOPZ2(S(n·W )) 	 colim
n∈N

T̃OPZ2(S(n·V ))× colim
n∈N

TOP(S(n·U)).

This is obtained by passing to the colimit over n with the splittings

(0.9) TOPZ2(S(n · W )) 	 TOPZ2(S(n · W ), rel S(n · U)) × TOP(S(n · U)),

where rel S(n · U) means that the equivariant self-homeomorphisms of S(n · W )
are fixed to be the identity on S(n ·U) ↪→ S(n ·W ). The splitting (0.9) is analogous
to the splitting in [Cr, Lemma 3.4]. The second factor in (0.8) is the colimit of the
second factors of (0.9). The first factor of (0.8) is obtained by relating the first factor
of (0.9) to the equivariant bounded self-homeomorphisms of S(n·V )×(n·U) using a
trick of [AH, section 3] and then relating the bounded self-homeomorphisms to block
self-homeomorphisms as in [WW, Proposition 1.4.2]. Finally, these equivariant
automorphism spaces of S(n · V ) map into automorphism spaces of RP (n · V ) by
passing to quotients, and this map is a trivial double cover. The splitting (0.6) then
follows from (0.5) because the join maps commute with the splittings (0.7), (0.8)
and we have

GZ2(S(n · V ))/T̃OPZ2(S(n · V )) ∼=
G(RP (n · V ))/T̃OP(RP (n · V )) ∼= S̃s

1(RP (n · V )).

Now we would like to briefly discuss the study of the block structure spaces of
lens spaces and complex projective spaces. Using the join construction we obtain in
these cases a functor from the category of complex vector spaces with inner product
to Spaces∗ which sends the vector space V to S̃s(L(V )) or S̃s(CP (V )). Here we can
employ the unitary calculus which is the complex analogue of orthogonal calculus,
and we can try to run the study parallel to the case of real projective spaces.
The case of lens spaces was studied by Madsen and Rothenberg in [MR], where
they show that the join maps induce isomorphisms on homotopy groups (they
also determine the homotopy groups, and later Madsen in [Mad] determines the
homotopy type localized at 2 and away from 2). Hence, from our point of view, the
corresponding functor is polynomial of degree 0. The case of complex projective
spaces is not covered in [MR], so the parallel study would be interesting. We note
that the main ingredient in the proofs of Theorems 5.1 and 5.11 is the codimension
1 surgery theory, whereas in the case of complex projective spaces we have to use
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codimension 2 surgery theory, which is considerably more complicated (see [Ra1,
chapter 7.8]). At the moment we are unable to carry over the whole proofs of
Theorems 5.1, 5.11. We hope to do this in the future.

The paper is organized as follows. In section 1 we introduce the block structure
spaces. In section 2 we construct the functor F . In section 3 we give an overview of
the basic constructions from orthogonal calculus that we use in the paper. In par-
ticular for a continuous functor E : J → Spaces∗ we recall a necessary and sufficient
condition for E to be polynomial of degree ≤ 1 (Theorem 3.6). This involves study-
ing a certain functor E(1) : J → Spaces∗ with some additional structure, which is
called the first derivative functor of E. Section 4 contains background material
about codimension 1 surgery theory, which is used to give a description of the first
derivative functor F (1). Up to now we claim no originality. The description of F (1)

will then be the main tool in the proofs of Theorems 5.1 and 5.11 which are given in
section 5. The proofs are our contribution, and they are the core of the paper. We
note that section 3 is a short survey of orthogonal calculus, however, for complete
information we refer the reader to the original source [We]. Throughout the paper
we also assume basic knowledge of surgery theory (that means the book [Wa] up to
chapter 10), but we provide some background about the less standard parts, such
as codimension 1 surgery theory.

Notation 0.1. For V ∈ J , by RP (V ) we denote the real projective space of V , by
S(V, r) we denote the sphere with radius r ≥ 0 in V , and S(V ) = S(V, 1).

1. The block structure space of a manifold

In this section we introduce the block structure space of a closed manifold X in
general and we also introduce a method for constructing other models for the block
structure spaces. The method will be used in section 2 to obtain a functorial model
of the block structure spaces of the real projective spaces.

In the Introduction we have defined for a given closed manifold X its simple
structure set Ss(X) and more generally for a compact manifold with boundary
(X, ∂X) the simple structure set Ss

∂(X). These are the basic objects of study of
surgery theory which have been calculated in many special cases (see for example
[Wa], [LdM]).

For a compact manifold X the structure sets Ss
∂(X × ∆k) become groups when

k ≥ 1. The block structure space of X is designed to be a space such that

(1.1) πk(S̃s(X)) ∼= Ss
∂(X × ∆k).

It is constructed as a ∆-set (see [RS]). If X is a closed manifold, then a k-simplex
of S̃s(X) is a simple homotopy equivalence f : M → X × ∆k between (n + k)-
dimensional manifold (k + 2)-ads, where n = dim(X) (the notion of a manifold
(k + 2)-ad is discussed below). The face operators are given by restrictions, and
the base point in dimension k is id : X × ∆k → X × ∆k.

The construction of the space S̃s(X) was given by Quinn in [Qu]. As indicated
in the Introduction the main motivation for studying this space comes from the
fact that it is closely related to the automorphism spaces of X. We refer the reader
to the survey article [WW] for more information about this application. In [WW,
Theorem 2.3.1] it is also stated that S̃s(X) fits into the homotopy fibration sequence
of surgery theory of Sullivan-Wall-Quinn-Ranicki, which in principle determines its
homotopy type.
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As already mentioned, when X is the real projective space RP (V ) for some
V ∈ J , we obtain an additional structure of maps between the block structure
spaces of real projective spaces in different dimensions. These maps, called the join
maps, were described on the homotopy groups by Wall [Wa] for π0 and by Madsen
and Rothenberg [MR] for πk, when k ≥ 1. We generalize these maps to the level of
spaces in a functorial way. For this we need another model of the block structure
space of RP (V ), that means a space homotopy equivalent to S̃s(RP (V )). The
method for constructing such a space, which we describe in this section, is based
on a careful analysis of Quinn’s model. The desired model is then constructed in
two steps. In this section we construct an intermediate model S̃s

Z2
(S(V )), which

also admits the join maps, as explained in [MR]. However, these do not define a
functor because they do not behave well w.r.t. the composition. Then, in the next
section, we construct the functorial model S̃s

Z2
(V ).

Remark 1.1. Each of the models S̃s(RP (V )), S̃s
Z2

(S(V )), S̃s
Z2

(V ) has convenient
properties in different situations. As they are all homotopy equivalent (at least in
high dimensions) and as many of the results we need are only ‘up to homotopy’ we
switch between these models throughout the paper according to our needs.

First we elaborate on the definition of a manifold (k+2)-ad. It is a generalization
of a cobordism between manifolds, namely a cobordism is a special manifold 3-ad.
According to [Mi] (or [Lu]) a cobordism between two n-dimensional manifolds M0,
M1 is a 5-tuple (M, M0, M1, h0, h1), where M is an (n + 1)-dimensional manifold
with two disjoint pieces of boundary ∂0M , ∂1M and hi : Mi → ∂iM for i = 0, 1 are
homeomorphisms of n-dimensional manifolds. A manifold (k + 2)-ad is a general-
ization where the manifold M has (k + 1) pieces of boundary which fit together in
a nice way. We formalize this notion below.

More precisely we give an abstract construction of a ∆-set which consists of
objects formally resembling manifold (k+2)-ads as an associated ∆-set to a certain
∆-groupoid. This is done in Construction 1.3 and then applied to the special case
of the block structure spaces in Construction 1.6.

We recall basic definitions for ∆-sets of [RS] (see also [Ra2, chapter 11]). A
∆-set K is a functor K : ∆op → Sets, where ∆ is the category with objects finite
totally ordered sets k = {0, . . . , k} and morphisms injective monotone functions
α : m → k for m ≤ k. Thus a ∆-set K can be described as a collection of sets
{Kk}k∈N together with face maps ∂α : Kk → Km. The standard k-simplex is a ∆-
set in the following way: the set of m-simplices ∆k

m is the set of monotone injective
functions σ : m → k, and for β : l → m the face map ∂β : ∆k

m → ∆k
l is defined by

∂β(σ) = σ◦β. Also α : m → k defines a map of ∆-sets ∆m → ∆k. More generally,
a ∆-groupoid K is a functor K : ∆op → Groupoids, that means for each k the set
of k-simplices Kk is a groupoid (a category where all morphisms are isomorphisms)
and the face maps ∂α are functors. Note that the standard simplex ∆k is also a
∆-groupoid in a trivial way. A ∆-set K is pointed if for every k ∈ N there is a base
simplex ∗ ∈ Kk such that ∂α∗ = ∗ for all α.

Now we recall the following well-known construction for the special case of a
∆-groupoid.

Construction 1.2 ([Dw]). Let K be a ∆-groupoid. The Grothendieck construction
Gr(K) of K is the category with objects pairs (k, x), where k ∈ ∆, x ∈ Kk, and
morphisms (k, x) → (m, y) are pairs (α, h), where α : m → k is a morphism in ∆
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and h : ∂αx → y is a morphism in Km. We also define the degree of the object (k, x)
to be k ∈ N. Note that the construction is functorial. In particular for α : m → k
we have a functor Gr(α) : Gr(∆m) → Gr(∆k).

Construction 1.3. Let K be a ∆-groupoid. We define the associated ∆-set of K
to be the ∆-set K� defined as follows. The set of k-simplices of the ∆-set K� is
the set of degree-preserving functors σ : Gr(∆k) → Gr(K) which satisfy the extra
condition that for β : l → m the morphism σ(β, id) equals (β, hβ) for some hβ ∈ Kl.
For α : m → k the face map ∂�

α : K�
k → K�

m is defined by ∂�
ασ = σ◦Gr(α).

A k-simplex σ ∈ K� can be described by a list σ = (xα, hα), where xα ∈ Km

and hα : ∂αx → xα is an isomorphism in Km for α : m → k a morphism in ∆,
satisfying various compatibility conditions. Here x = xid. Note that if K is a
trivial ∆-groupoid (all morphisms are the identity), then a k-simplex of K� is just
a collection σ = (xα, id), where xα = ∂αx. Thus we recover the underlying ∆-set of
K. If K is a non-trivial ∆-groupoid a k-simplex of K� is a collection σ = (xα, hα),
where objects xα are just isomorphic to ∂αx.

Remark 1.4. The assignment K �→ K� is a functor from ∆-groupoids to ∆-sets.
Suppose that K is a topological ∆-groupoid, that means the category Kk is a
topological category for each k and the face operators are continuous functors. Then
K�

k can also be endowed with a topology (the subspace topology of the product
topology) and K� becomes a ∆-space, also in a functorial way. The geometric
realization then converts the ∆-set (or the ∆-space) K� into a genuine space again
in a functorial way. In the notation we do not distinguish between the underlying ∆-
set (or ∆-space) and its geometric realization. We note that all these constructions
have pointed versions.

Definition 1.5. A k-block M is a manifold with boundary such that the boundary
∂M is decomposed into codimension 0 submanifolds ∂iM , for i ∈ k, whose inter-
sections ∂iM ∩ ∂jM are codimension 0 submanifolds of the boundaries of ∂iM and
∂jM , and so on. For α : m → k a morphism in ∆ we denote ∂αM =

⋂
i∈im(α) ∂iM .

A block map f : M → N between two k-blocks is a map, such that f(Mα) ⊂ Nα

for α ∈ k. A k-block is special if
⋂

i∈k ∂iM = ∅.

An example of a special k-block is X ×∆k for X a closed manifold. Now we are
ready for the definition of the block structure space S̃s(X).

Construction 1.6. Let X be a closed n-dimensional manifold. The block struc-
ture space S̃s(X) of X is the associated pointed ∆-set of the pointed ∆-groupoid
whose k-simplices are pairs (M, f), where M is a special k-block, and a block map
f : M → X × ∆k is a simple homotopy equivalence between (n + k)-dimensional
k-blocks. Face operators ∂α are obtained by taking the face ∂αM and restricting
f to f |∂αM : ∂αM → X × ∂α∆k. An isomorphism between (M, f) and (M ′, f ′)
is a block homeomorphism h : M → M ′ such that f = f ′ ◦ h. The base point in
dimension k is id : X × ∆k → X × ∆k.

A k-simplex of S̃s(X) can be described by a list ((Mα, fα), hα), where for
α : m → k the Mα is a special m-block, the map fα : Mα → X × ∂α∆k is a
simple homotopy equivalence of m-blocks, hα : Mα → ∂αM is a homeomorphism
of m-blocks and the maps fα, hα satisfy various compatibility conditions. The list
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(Mα, hα) is the correct formalization of a manifold (k + 2)-ad. In the case k = 1,
the manifold 3-ad is a cobordism in the sense of [Mi], [Lu] as described earlier.

The block structure space S̃s(X) as defined above is a Kan ∆-set for any manifold
X. For Kan ∆-sets there is a convenient combinatorial formula for homotopy groups
(see [Ra2, chapter 11]), and using it we immediately obtain the isomorphisms (1.1).

The following lemma provides us with a method for constructing other models
of the block structure space.

Lemma 1.7. Let L → K be a map of pointed ∆-groupoids such that L� and K�

are Kan ∆-sets. If Lk → Kk induces a bijection on equivalence classes of objects
for every k, then the induced map L� → K� is a homotopy equivalence.

Proof. Using the combinatorial expression of πk it is easy to see that the map
L� → K� induces isomorphisms on homotopy groups. �

Now we specialize to the real projective spaces. Note first that any homotopy
equivalence f : M → RP (V ) × ∆k is simple because Wh(Z2) = {0} (see [Lu]).
Therefore we drop the word simple when dealing with the real projective spaces.
Here is the promised intermediate model S̃s

Z2
(S(V )) for the block structure space

of RP (V ).

Construction 1.8. Let S̃s
Z2

(S(V )) be the associated pointed ∆-set of the pointed
∆-groupoid whose k-simplex is a pair (T, f), where:

• T is a free involution on S(V )×∆k, which, as a map, is a block map,
• f : S(V )×∆k → S(V )×∆k is a block map which is an equivariant homotopy

equivalence w.r.t. T on the source and Ta on the target, where Ta is the
product of the antipodal involution on V (restricted to S(V )) with the
identity on ∆k.

Face maps are defined by restriction, and an isomorphism between (T, f) and
(T ′, f ′) is an equivariant block homeomorphisms h : S(V )×∆k → S(V )×∆k such
that f = f ′ ◦ h. The base point is the pair (Ta, id). A pair (T, f) which represents
a k-simplex in S̃s

Z2
(S(V )) will be shortly referred to as a structure on S(V ) × ∆k.

There is a map S̃s
Z2

(S(V )) → S̃s(RP (V )) defined on the underlying ∆-groupoids
by taking quotients.

Proposition 1.9. The map S̃s
Z2

(S(V )) → S̃s(RP (V )) is a homotopy equivalence
if dim(V ) ≥ 5.

Proof of Proposition 1.9. Using Lemma 1.7 it is enough to show that for each k ∈ N

the map from the k-simplices of the underlying groupoid of S̃s
Z2

(S(V )) to the k-
simplices of the underlying groupoid of S̃s(RP (V )) induces an isomorphism on the
equivalence classes of objects. We proceed by induction on k. From the general-
ized Poincaré conjecture in dim(V ) ≥ 5 we have that any manifold M homotopy
equivalent to RP (V ) has the universal cover homeomorphic to S(V ) which proves
the statement for k = 0. For the induction step we apply the h-cobordism theorem
which implies that the universal cover of any manifold (k + 2)-ad M mapping via
a homotopy equivalence to RP (V ) × ∆k is homeomorphic to S(V ) × ∆k. �
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2. The join construction

In this section we construct a continuous functor F : J → Spaces∗, such that for
an object V ∈ J with dim(V ) ≥ 5, the space F (V ) is homotopy equivalent to the
space S̃s(RP (V )) and for a morphism ξ ∈ J the map F (ξ) is a generalization of
the join construction of Wall.

Construction 2.1. Given an object V ∈ J , let S̃s
Z2

(V ) be the associated pointed
∆-set of the pointed ∆-groupoid whose k-simplex is a pair (T, f) where:

• T is an involution on V × ∆k, which, as a map, is a block map, it leaves
S(V, r)×∆k invariant for each r ≥ 0, its restriction to S(V, r)×∆k is free
for r > 0, and its restriction to 0 × ∆k is trivial,

• f : V × ∆k → V × ∆k is a block map, which is equivariant w.r.t. T on the
source and Ta on the target, it leaves S(V, r)×∆k invariant for each r ≥ 0,
the restriction of f to S(V, r)×∆k is an equivariant homotopy equivalence
for r > 0, and the restriction of f to 0 × ∆k is a homeomorphism.

Face maps are defined by restriction, an isomorphism from (T, f) to (T ′, f ′) is an
equivariant block homeomorphism h : V ×∆k → V ×∆k such that f = f ′ ◦ h, and
the base point is the pair (Ta, id). A pair (T, f) which represents a k-simplex in
S̃s

Z2
(V ) will be shortly referred to as a structure on V × ∆k.

Construction 2.2. Given a morphism ξ : V → W in J , let S̃s
Z2

(ξ) : S̃s
Z2

(V ) →
S̃s

Z2
(W ) be a map defined as follows. The linear inclusion ξ induces a direct sum

decomposition W = ξ(V ) ⊕ ξ(V )⊥ and the product decomposition W × ∆k =
ξ(V ) × ∆k × ξ(V )⊥. First we obtain the structure (ξ ◦ T ◦ ξ−1, ξ ◦ f ◦ ξ−1) on
ξ(V ) × ∆k. The desired structure on W × ∆k is defined by

(ξ ◦ T ◦ ξ−1, ξ ◦ f ◦ ξ−1) × (Ta, id)ξ(V )⊥ .

Theorem 2.3. Given an object V ∈ J , let F (V ) be the geometric realization of
S̃s

Z2
(V ), and given a morphism ξ ∈ J , let F (ξ) be the geometric realization of

S̃s
Z2

(ξ). Then F defines a functor from J to Spaces∗.

The statement is easy to verify and we leave it for the reader. In order to show
that the space S̃s

Z2
(V ) defines another model for the block structure space of RP (V )

we use the method of the previous section to prove the following proposition.

Proposition 2.4. For each V ∈ J there exist maps

res : S̃s
Z2

(V ) → S̃s
Z2

(S(V )) and cone: S̃s
Z2

(S(V )) → S̃s
Z2

(V )

which are homotopy inverses of each other.

Remark 2.5. As already indicated, throughout the paper we also work with the
models S̃s(RP (V )) and S̃s

Z2
(S(V )), which is legal for the statements which are ‘up

to homotopy’. Similarly, we work with the join maps on these models. For example
in section 5 the model for the join map is (res ◦ F (ξ) ◦ cone).

Construction 2.6. The maps res and cone are induced by the maps between the
corresponding pointed ∆-groupoids. Since we think of S(V ) × ∆k = S(V, 1) × ∆k
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as a subspace of V × ∆k, we can define

res : S̃s
Z2

(V ) → S̃s
Z2

(S(V ))

by (T, f) �→ (T |(S(V )×∆k), f |(S(V )×∆k)).
The map

cone: S̃s
Z2

(S(V )) → S̃s
Z2

(V )
is defined by a certain ‘iterated cone construction’ which we now describe. Let (T, f)
be a structure on S(V ) × ∆k and let (T ′, f ′) = cone(T, f), which is a structure on
V × ∆k. We describe a general procedure for constructing a block self-map of
V × ∆k, which preserves S(V, r) × ∆k for each r ≥ 0, from a block self-map of
S(V ) × ∆k. The maps T ′, f ′ are constructed from T , f using this procedure.

The case k = 0. Let X be a topological space. The open cone on X is the space
C+X whose points are linear expressions rx, where r ∈ [0,∞). This includes the
identifications 0 = 0x = 0y. The point 0 is called the cone point. We have a
decomposition C+X = CX ∪ C1+X, with CX = {rx | r ∈ [0, 1]}, and C1+X =
{rx | r ∈ [1,∞)}. For r ≥ 0 we distinguish the subspaces r ·X = {rx | x ∈ X} and
we identify X = 1 ·X. Sometimes we want to give the cone point some other name
than 0, e.g. c. In that case the points of the subspace CX are linear combinations
rx + (1 − r)c for x ∈ X and r ∈ [0, 1]. Note that, if X is S(V ), then C+X can be
identified with V , so that r · X is identified with S(V, r) for r ≥ 0.

Let h : X → Y be a map. Then the rule rx �→ rh(x) defines an extension C+(h)
of h such that C+(h)(r · X) ⊆ r · Y .

The cases k > 0. Let h : X×∆k → Y ×∆k be a block map. We define its extension,
a block map C+(h) : C+X×∆k → Y ×∆k, such that C+(h)(r ·X×∆k) ⊆ r ·Y ×∆k.

We have the decomposition C+X×∆k = CX×∆k∪C1+X×∆k. On C1+X×∆k

the extension is defined as in the case k = 0, i.e. if h(x, s) = (h(x, s)1, h(x, s)2),
then C+(h) : (rx, s) �→ (rh(x, s)1, h(x, s)2). On CX × ∆k we use the following
‘iterated cone construction’.

Starting with X × ∆k we define the iterated cone Ck(X × ∆k) by

(2.1) Ck(X × ∆k) = C
(
X × ∆k ∪

⋃
τ

Ck−1(X × τ )
)
,

where τ < ∆k, |τ | = k − 1.

← 0 × ∆1

Bar(∆1)0 1

X × ∆1

Figure 1. Picture of C1(X × ∆1) for X = S0.

Figure 1 depicts the special case when X = S0 and k = 1. (Here mutually
distinct cone points should be used for different cones in sight.)
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The spaces CX×∆k and Ck(X×∆k) can be identified by choosing suitable cone
points in the above description. Namely, if τ ≤ ∆k, then choose the cone point of
C|τ |(X × τ ) to be the barycenter Bar(τ ). Explicitly, we obtain a homeomorphism
C|τ |(X × τ ) → CX × τ as follows. Suppose that for all σ < τ a homeomorphism
C|σ|(X × σ) → CX × σ was constructed. Then define a homeomorphism from
C(X × τ ∪ CX × ∂τ ) to CX × τ by{

r(x, t) + (1 − r)Bar(τ ) �→ (rx, rt + (1 − r)Bar(τ )), if (x, t) ∈ X × τ,

r(sx, t) + (1 − r)Bar(τ ) �→ (rsx, rt + (1 − r)Bar(τ )), if (sx, t) ∈ CX × ∂τ.

By induction over τ ≤ ∆k we obtain the desired identification. Again, Figure 1 in
the special case when X = S0 and k = 1 might be helpful.

With this identification, starting with a block map h : X × ∆k → Y × ∆k we
construct a block map Ck(h) : CX ×∆k → CY ×∆k by iterating the construction
of the cone map as described in the case k = 0. The resulting map clearly has the
property Ck(h)(r ·X ×∆k) ⊆ r ·Y ×∆k, and it is our definition of the map C+(h)
on CX × ∆k. It is easy to verify that the maps T ′, f ′ defined via this procedure
define a structure on V × ∆k as required.

Proof of Proposition 2.4. The composition res ◦ cone is the identity. It remains
to show that the composition cone ◦ res is homotopic to the identity. We start
with a structure (T, f) on V ×∆k, consider its restriction, the structure (T |, f |) on
S(V ) × ∆k, and the image (T ′, f ′) = cone(T, f), a structure on V × ∆k. We need
to find compatible homotopies between T and T ′ and f and f ′ satisfying certain
restrictions.

Similarly as in the previous construction we give a general procedure as follows.
Suppose h : C+X × ∆k → C+Y × ∆k is a block map such that h(r · X × ∆k) ⊆
(r · Y × ∆k). Consider the restriction block map h| : X × ∆k → Y × ∆k and
the block map C+

k (h|) : C+X × ∆k → C+Y × ∆k obtained via the iterated cone
construction. We give a construction of a homotopy, say ht, between h and C+

k (h|)
with the property that each ht is a block map C+X × ∆k → C+Y × ∆k such that
ht(r · X × ∆k) ⊆ (r · Y × ∆k). Applying this homotopy to the maps T , f in place
of h produces the desired homotopies between T , f and T ′, f ′.

The case k = 0. The required homotopy is obtained using the Alexander trick.
We can think of the map h as of a perturbation of C+(h|) and refer to the part
of C+X on which the two maps h and C+(h|) do not agree as the domain of the
perturbation. Further we consider C+X = CX ∪ C1+X and we give a different
description of the homotopy on the two pieces. In words, the trick consists of
shrinking the domain of the perturbation in CX and of pushing the domain of the
perturbation towards ∞ in C1+X.

Formally, the homotopy ht on CX is parametrized by t ∈ [0, 1] and given by

(2.2) ht(rx) =

{
rh(1x) for r ≥ t,

rh(x, r/t) for r < t.

The homotopy ht on C1+X is parametrized by [1,∞] and given by

(2.3) ht(rx) =

{
rh(1x) for r ≤ t,

rh((1 + r − t)x) for r ≥ t,
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if t ∈ [1,∞) and by h∞(rx) = rh(1x). After reparametrizing, using a suitable
homeomorphism [1,∞] ∼= [0, 1] which maps 1 to 1 and ∞ to 0, we obtain that
h0 = C+(h|X) and h1 = h. Moreover, clearly ht(r · X) ⊆ r · Y for all t ∈ [0, 1].

The cases k > 0. Again, the homotopy is described on the two pieces of the
decomposition C+X ×∆k = CX ×∆k ∪C1+X ×∆k differently. On C1+X ×∆k it
is given by pushing the domain of the perturbation towards ∞ just as in the case
k = 0; the formula is left for the reader.

To describe the homotopy on CX×∆k, recall that in the definition of Ck(h|) we
iterated the cone construction. Further, in the case k = 0 the homotopy between
h and C(h|) was given by the Alexander trick. In analogy, in the case k > 0 the
homotopy between h and Ck(h|) is given by iterating the Alexander trick.

To start, recall the identification of Ck(X × ∆k) with CX × ∆k and apply the
Alexander trick homotopy to h considered as a block map from Ck(X × ∆k) to
Ck(Y ×∆k). The resulting map, say h1, coincides with Ck(h|) on C(X ×∆k), but
is possibly different on the complement, the union of C(Ck−1(X×τ )) where τ < ∆k,
|τ | = k − 1 (see Figure 1). Note however, that if we consider C(Ck−1(X × τ )) for
each such τ as the quotient of Ck−1(X × τ )× [0, 1], then the restriction of h1 is the
quotient map of the product map of the restriction of h to Ck−1(X × τ ) with the
identity on [0, 1] (again see Figure 1). Hence, we can perform a homotopy given as
the product of the Alexander trick homotopy on Ck−1(X × τ ) and the identity on
[0, 1]. The resulting map now agrees with Ck(h|) on a larger portion of CX × ∆k.
We proceed inductively until we take care of all the faces of ∆k. Then the resulting
map agrees with Ck(h|) on the whole CX×∆k. Again, it is clear that the homotopy
ht is such that for all t we have ht(r · X × ∆k) ⊂ r · Y × ∆k for all r ≥ 0. �

Before we discuss continuity of the functor F recall that, since the maps T , f

can vary continuously, the set of k-simplices of the ∆-groupoid S̃s
Z2

(V ) (similarly
S̃s

Z2
(S(V ))) is endowed with a topology, namely the subspace topology of the prod-

uct topology of the compact-open topology on the space of self-maps on V × ∆k.
So we have a topological ∆-groupoid, and the associated ∆-set S̃s

Z2
(V ) becomes a

∆-space.

Lemma 2.7. The geometric realization of S̃s
Z2

(V ) as a ∆-space is homotopy equiv-
alent to the geometric realization of the same object as a ∆-set.

Proof. To see this we resolve the ∆-space version of S̃s
Z2

(V ) by taking the singular
simplicial set of the space of k-simplices for each k ∈ N. We obtain a combined
simplicial-∆-set, which has its geometric realization homotopy equivalent to the
geometric realization of the ∆-space. We can ‘change the order’ of realization and
realize first spaces maps(∆k, S̃s

Z2
(V )) for each k ∈ N as ∆-sets and then realize the

resulting simplicial set. The lemma will be proved if we show that all degeneracy and
face maps between maps(∆k, S̃s

Z2
(V )) and maps(∆k+1, S̃s

Z2
(V )) induce homotopy

equivalences. This can be verified using the Kan property of S̃s
Z2

(V ). �

Now we show that the functor F is a continuous functor in the sense of Definition
3.1. First, note that one can define a continuous functor from J to topological ∆-
groupoids or to ∆-spaces to be a functor for which for all k the evaluation maps

evk : mor(V, W ) × E(V )k → E(W )k
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are continuous. Given such a continuous functor from E : J → top−∆−groupoids∗,
composing with the functor E �→ E� and taking the geometric realization of E� we
obtain a continuous functor to Spaces∗.

Theorem 2.8. The functor F : J → Spaces∗ is a continuous functor.

Proof. In view of the previous remarks it is enough to show that the functor F : V �→
S̃s

Z2
(V ) is continuous. That means we need to show that the evaluation map

evk : mor(V, W ) × F (V )k → F (W )k

is continuous for each k.
If dim(V ) = dim(W ), then evk is given by (ξ, (T, f)) �→ (ξ ◦ T ◦ ξ−1, ξ◦f ◦ξ−1)

which clearly gives continuity.
For the case when dim(V ) < dim(W ) we work locally and reduce to the above

case as follows. Choose ξ : V → W . We prove that the evaluation map is continuous
on some neighborhood Vξ of ξ. There is a map mor(W, W ) → mor(V, W ) given by
ζ �→ ζ◦ξ, which is a bundle map. Therefore there is a neighborhood Vξ ⊂mor(V, W )
of ξ over which we have a section s of this bundle. Then the evaluation map evk

can be factored as

Vξ × F (V )k
s×F (ξ)k−−−−−→ mor(W, W ) × F (W )k

evk−−→ F (W )k.

The first map is continuous because by the assumption both of its factors are
continuous and the second one is the previous case. �

3. Orthogonal calculus

Our method of study of the functor F defined in the previous section is the
orthogonal calculus of functors. In this section we review some of the terms and
tools of orthogonal calculus which we use in this paper. It is intended as a short
survey which describes the context in which we work. For the full account we refer
the reader to the paper of Weiss [We] in which orthogonal calculus was developed.

We recall some notation. By J we denote the category of finite-dimensional real
vector spaces with (positive definite) inner product. Morphisms are linear maps
preserving inner product, in particular, they are linear inclusions. The objects of
J are usually denoted by the letters U, V, W . Morphism sets mor(V, W ) are Stiefel
manifolds and so have a topology. By ι we will denote the inclusion of V into V⊕U
for any objects V , U in J . In special cases, by ι1 we will denote the inclusion of
V ⊕R into V ⊕R⊕R where R is mapped isomorphically onto R⊕{0} in R⊕R and
by ι2 the inclusion where R is mapped onto {0}⊕R in R⊕R. For U ∈ Ob(J ), Uc

denotes the one-point compactification of U . Furthermore R+ = {u ∈ R | u ≥ 0}
and Rc

+ = R+ ∪ {∞}. We also write k · U for Rk ⊗ U .
The orthogonal calculus works for functors E : J → Spaces∗ satisfying the fol-

lowing axiom.

Definition 3.1 ([We]). A functor E : J → Spaces∗ is called continuous if for each
V, W ∈ Ob(J ) the evaluation map

ev : mor(V, W ) × E(V ) → E(W )

is continuous.
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We have shown in Theorem 2.8 that the functor F satisfies this axiom. There
are many other functors of this type. For example, the functor V �→ BO(V ), where
BO(V ) is the classifying space of the orthogonal group O(V ), has been studied in
[Ar]. Other examples come up in the study of automorphisms of manifolds; see
papers [We], [WW].

We have already presented the basic philosophy of orthogonal calculus in the
Introduction. Recall that a continuous functor E : J → Spaces∗ is studied by
means of its Taylor tower which is a tower of functors

(3.1) · · · → TkE → Tk−1E → · · · → T0E,

where the functor TkE is the k-th polynomial approximation of E. The tower
should be thought of as the expansion at infinity. There are two aspects of the
Taylor tower which one needs to understand. First, one needs to find out whether
the Taylor tower converges to E, that means to estimate the connectivity of the
canonical maps E(V ) → TkE(V ). Second, one needs to determine the differences,
hofiber∗(TkE(V ) → Tk−1E(V )), between the stages of the tower.

Both issues can be investigated using the derivatives in orthogonal calculus.
These arise as follows. Given a continuous functor E : J → Spaces∗ there is defined
for each k ∈ N its k-th derivative functor E(k) which is again a continuous functor
from J to Spaces∗ with the additional structure of a coordinate-free spectrum of
multiplicity k. That means there are maps

σk : (k · U)c ∧ E(k)(V ) → E(k)(V ⊕U).

On objects, E(k+1) is defined inductively as

E(k+1)(V ) = hofiber∗(σ̃k : E(k)(V ) → ΩkE(k)(V ⊕R)),

where σ̃k is the adjoint of σk. For the definition on morphisms, take ξ∈mor(V, W )
and define ξ′ ∈ mor(V ⊕R, W ⊕ R) by ξ′(v, x) = (ξ(v), x). The pair (ξ, ξ′) then
defines the map E(k+1)(ξ) between the homotopy fibers E(k+1)(V ) → E(k+1)(W ).
In Construction 3.2 we confine ourselves to a description of the maps σk for k = 1,
as we will not need the maps σk for k > 1.

Construction 3.2. The values E(1)(V ) are defined as homotopy fibers of the
stabilization maps E(ι) : E(V ) → E(V ⊕ R), where ι : V → V ⊕ R is the linear
inclusion. A point in E(1)(V ) is described as a pair (x, λ), where x ∈ E(V ) and
λ : Rc

+ → E(V ⊕R) satisfies λ(0) = E(ι)(x) and λ(∞) = ∗.
We give a description of the adjoints of the maps σ1, that means the maps

σ̃1 : E(1)(V ) → ΩUE(1)(V ⊕ U).

Given (x, λ) ∈ E(1)(V ) we describe the image (x′, λ′) := σ̃(x, λ) ∈ ΩUE(1)(V ⊕U),
where

x′ : Uc → E(V ⊕ U),

λ′ : (U ⊕ R+)c → E(V ⊕ U ⊕ R),

such that x′(∞) = ∗, λ′|(U⊕{0})c = E(ι)(x′) and λ′(∞) = ∗.
Each vector u ∈ U , such that ‖u‖ = 1, defines a morphism ξu : V ⊕R → V ⊕ U

in J by ξu : (v, 1) �→ (v, u).
Similarly, each vector w ∈ U ⊕ R+, such that ‖w‖ = 1, defines a morphism

ζw : V ⊕R → V ⊕ U ⊕ R in J by ζw : (v, 1) �→ (v, w).
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All such unit vectors u ∈ U , w ∈ U ⊕R+ define rays 〈u〉 and 〈w〉 from 0 through
u and w, which cover U and U ⊕ R+, respectively. We define x′, λ′ on the closures
〈u〉c ⊆ Uc, 〈w〉c ⊆ (U ⊕ R+)c as the compositions

x′ : 〈u〉c
∼=−→ Rc

+
λ−→ E(V ⊕R)

E(ξu)−−−−→ E(V ⊕ U),

λ′ : 〈w〉c
∼=−→ Rc

+
λ−→ E(V ⊕R)

E(ζw)−−−−→ E(V ⊕ U ⊕ R).

Here the fact that the functor E is continuous is used. It guarantees that the maps
x′, λ′ are continuous.

Figure 2. Schematic picture of the map σ̃1

Figure 2 describes the map σ̃1. Lines inside the half-disk represent the rays 〈w〉,
and the half-circle represents the unit hemisphere inside U ⊕ R+. The morphism
ζw ∈ mor(V⊕U, V⊕U ⊕R) which is used to define λ′ on each ray 〈w〉 is determined
by the point on the unit hemisphere which the ray 〈w〉 intersects.

Now we turn our attention to the convergence question. We will not address
this issue in full generality, that means we will not discuss a notion of an analytic
functor analogous to such a notion in [Go]. We will only consider the case when a
functor E is polynomial of some degree ≤ k. In this case the Taylor tower ‘stops’
at the k-th stage, that means the canonical maps E(V ) → TkE(V ) are homotopy
equivalences and thus the k-th stage TkE gives us complete homotopy theoretical
information about the functor E. Polynomial functors are defined as follows.

Definition 3.3. A continuous functor E : J → Spaces∗ is called polynomial of de-
gree ≤ k if for every V ∈ J the following canonical map is a homotopy equivalence:

E(V ) −→ holim
0�=U⊆R

k+1
E(V ⊕U).

The homotopy limit is taken over the topological poset of all non-zero vector sub-
spaces of Rk+1 (see [We, section 5]).

In general, for a functor E : C → Spaces∗ from a small category C, the homotopy
limit of E over C can be defined as the total space of a cosimplicial space given by

(3.2) l �→
∏

σ : l→C
E(σ(l));

see [BK]. If C is a topological category, this affects the definition of the homotopy
limit. In our case, when C is {0 �= U ⊆ Rk+1} with objects non-zero vector
subspaces of Rk+1 and one morphism for every inclusion U ⊆ V ⊆ Rk+1, the sets
{σ : l → C} become a disjoint union of Stiefel manifolds. Then the disjoint union
of spaces E(σ(l)) becomes a bundle over {σ : l → C}. The space of l-cosimplices of
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the cosimplicial space which defines the homotopy limit then becomes the space of
sections of this bundle; see [We, sections 4,5] for more details.

The property above is an extrapolation property. Note that the value of the
functor E at V is determined by the values of E at vector spaces between V and
V ⊕Rk+1 which are strictly greater than V . For more details see [We, section 5].

The derivatives are related to the polynomial functors via the following propo-
sition [We, Proposition 5.3].

Proposition 3.4. For any V ∈ J the value E(k+1)(V ) is homotopy equivalent to
the homotopy fiber of the canonical map

E(V ) → holim
0�=U⊆R

k+1
E(V ⊕U)

over the base point of the target.

Thus if the functor E is polynomial of degree ≤ k, then the (k +1)-th derivative
functor E(k+1) vanishes. If the target of the map from Proposition 3.4 is path-
connected for all V , then the converse is also true. If the target is not path-
connected, then we also have to investigate the homotopy fibers over other points
than the base point. This leads to a necessary and sufficient condition for E to be
polynomial of degree ≤ k which we state in Theorem 3.6 in the case k = 1. It is due
to Weiss (but did not appear in [We]), and we are grateful to him for showing it to
us. Before we state it we need to define a modification of the map σ̃1 presented in
Construction 3.5.

We also need some new notation because we will use compactifications of Eu-
clidean spaces other than the one-point compactification. For V ∈ Ob(J ) by V
we denote the compactification of V by the sphere ∂V = {w | w ∈ V, ‖w‖ = 1}
at infinity. In special cases, R is the 0-sphere compactification of R, with the
points at infinity ±1, and R ⊕ R is the 1-sphere compactification of R ⊕ R with
points at infinity ∂ R ⊕ R = {w | w ∈ R2, ‖w‖ = 1}. Here we also distinguish
∂±R ⊕ R = {w | w = (w1, w2), ±w2 ≥ 0}. By R⊕R+ we denote the 1-disk com-
pactification of R ⊕ R+, points at infinity are {w | w ∈ R ⊕ R+, ‖w‖ = 1}.

Construction 3.5. Denote E(1)(V, y) = hofibery(E(V ) → E(V ⊕R)), where
hofibery means the homotopy fiber taken over some point y ∈ E(V ⊕R).

Let Xy denote the space of pairs of maps (x′, λ′) where

x′ : R → E(V ⊕R),

λ′ : R⊕R+ → E(V ⊕R2),

such that x′(±1) = ±y, where −y denotes the image of the point y under the
self-map of E(V ⊕R) induced by the reflection of R. Furthermore we require that
λ′|

R⊕{0} = E(ι1)(x′) and λ′(w) = E(ζw)(y), where ζw is as in Construction 3.2.
Note that in the case y = ∗ the space Xy is homotopy equivalent to the loop

space ΩE(1)(V ⊕R). If y �= ∗ the space Xy can be thought of as a certain space
of paths in E(1)(V ⊕R, y′), where y′ = E(ζw′)(y) and where w′ = (0, 0, 1). This is
depicted in Figure 3.

The map σ̃1 : E(1)(V, y) → Xy is defined similarly as the map σ̃1 in Construction
3.2. For (x, λ) ∈ E(1)(V, y) we define (x′, λ′) = σ̃1(x, λ) ∈ Xy as follows. Given
unit vectors u ∈ R, w ∈ R ⊕ R+ we now have rays 〈0, u〉, 〈0, w〉 from 0 to u or w.
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R

R+

−y y

y′

E(ζw)(y)

Figure 3. Schematic picture of λ′ and of the map σ̃1.

These rays cover R, R⊕R+ respectively. Define

x′ : 〈0, u〉
∼=−→ Rc

+
λ−→ E(V ⊕R)

E(ξu)−−−−→ E(V ⊕R),

λ′ : 〈0, w〉
∼=−→ Rc

+
λ−→ E(V ⊕R)

E(ζw)−−−−→ E(V ⊕R2).

If y = ∗, then the map σ̃1 obviously coincides with the map σ̃1 from Construction
3.2; see Figure 3 again.

Now we are ready to state the promised necessary and sufficient condition.

Theorem 3.6. A continuous functor E : J → Spaces∗ is polynomial of degree ≤ 1
if and only if for all V ∈ J and for all y ∈ E(V ⊕R) the map σ̃1 : E(1)(V, y) → Xy

defined in Construction 3.5 is a homotopy equivalence.

Proof. We sketch the proof. We need to show that the map

(3.3) E(V ) → holim
0�=U⊂R

2
E(V ⊕U)

is a homotopy equivalence if and only if for all choices of V and y the map σ̃1 is
also a homotopy equivalence.

Consider the map E(V ) → E(V ⊕R) induced by ι : V → V ⊕R and the map
holim0�=U⊂R2E(V⊕U) → E(V⊕R) obtained by the restriction via ι1 : V⊕R → V⊕R2.
For y ∈ E(V ⊕R) consider the induced map, say σ̃y, between the homotopy fibers
over y of both maps. The second map is a fibration, so the target homotopy fiber
can be replaced by the fiber over y. In Lemma 3.7 below we show that the space Xy

is homotopy equivalent to this fiber. The map σ̃1 is such that it is homotopic to the
composition of the map σ̃y, a suitable homotopy equivalence from the homotopy
fiber to the fiber over y of the map holim0�=U⊂R2E(V ⊕U) → E(V ⊕R) and the
identification of this fiber with the space Xy given in Lemma 3.7 (this should
be clear after reading the proof of Lemma 3.7 below). Now the map (3.3) is a
homotopy equivalence if and only if for all choices of y the map σ̃y is also a homotopy
equivalence. �

Lemma 3.7. The space Xy is homotopy equivalent to the fiber of the map

holim
0�=U⊂R

2
E(V ⊕U) → E(V ⊕R)

over the point y.
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Proof. As a topological space the category {0 �= U ⊆ R2} is RP (R2)
∐
{R2}, with

one morphism (an inclusion, denoted by ιU ) for every point of U ∈ RP (R2) to R2.
We will also denote by the same ιU the inclusion of V ⊕U into V ⊕R2.

According to the definition the homotopy limit of the functor E(V ⊕ −) over
this category is given by a pair of maps

λ0 : RP (R2) → E0,

λ1 : RP (R2) × ∆1 → E(V ⊕R2),

where E0 is a bundle over the circle RP (R2) with the fiber over U the space E(V⊕U)
and such that λ0 is a section of this bundle, λ1(U, 0) = E(ιU)(λ0(U)) and λ1(U, 1) =
λ1(U ′, 1) for every U , U ′ in RP (R2). In a more condensed form we can say that
the source of the map λ1 is defined just on the cone over the circle RP (R2). The
projection to E(V ⊕R) is given by λ0(R ⊕ {0}), therefore taking the fiber over
y ∈ E(V ⊕R) means to require in addition that λ0(R ⊕ {0}) = y.

Note that we can think of E0 as a subbundle of the trivial bundle over RP (R2)
with the fiber E(V ⊕R2). The compatibility conditions between λ0 and λ1 express
the fact that the two sections of the two bundles commute with the embedding of
the subbundle. The identification of the fiber over y with the space Xy is obtained
via a sequence of reparametrizations of the maps λ0, λ1 which correspond to certain
isotopies of the embedding of E0 into E(V ⊕R2)× RP (R2) as follows. (The reader
might find it useful to draw some pictures of the situation similar to Figure 3.)

First, recall the 1-sphere compactification R ⊕ R of R⊕R with points at infinity
∂ R ⊕ R = {w | w ∈ R2, ‖w‖ = 1} and redefine the fiber over y as the space of
maps

λ0 : ∂ R ⊕ R → E0,

λ1 : R ⊕ R → E(V ⊕R2),

such that for w = (w1, w2) ∈ R ⊕ R with ‖w‖ = 1 we have λ0(w) ∈ E(V ⊕ 〈w〉) if
w2 ≤ 0 and λ0(w) = y ∈ E(V ⊕ R ⊕ {0}) if w2 ≥ 0, and λ1(w) = E(ι〈w〉)(λ0(w)) if
w2 ≤ 0 and λ1(w) = E(ι1)(y) if w2 ≥ 0. Here 〈w〉 denotes the vector subspace of
R2 generated by w.

By ‘rotating’ the fibers of E0 inside E(V⊕R2), we redefine our space again as the
space of maps (λ0, λ1) as above, but now satisfying λ0(w) ∈ E(V ⊕R) if w2 ≤ 0 and
λ0(w) = E(ξw)(y) ∈ E(V ⊕ 〈w〉) if w2 ≥ 0, and λ1(w) = E(ι1)(λ0(w)) if w2 ≤ 0
and λ1(w) = E(ι〈w〉)(λ0(w)) = E(ζw)(y) if w2 ≥ 0, where ξw : V ⊕R → V ⊕ 〈w〉
and ζw : V ⊕R → V ⊕R2 are as in Construction 3.2.

In the next step consider ∂−R ⊕ R and redefine the fiber over y as the space of
maps

λ0 : ∂−R ⊕ R → E(V ⊕R),

λ1 : R ⊕ R → E(V ⊕R2),

such that for w = (w1, w2) ∈ R ⊕ R with ‖w‖ = 1 we have λ0((±1, 0)) = ±y, and
λ1(w) = E(ι1)(λ0(w)) if w2 ≤ 0 and λ1(w) = E(ζw)(y).

Finally choose a homeomorphism R ⊕ R → R⊕R+ such that its restriction to
∂−R ⊕ R is the projection onto R ⊕ {0} and the restriction to ∂+R ⊕ R is the
identity. The resulting space of maps is the desired Xy. �

Remark 3.8. Note that if we want to use Theorem 3.6 to prove that a certain functor
E is polynomial of degree ≤ 1, there are two possibilities for each y ∈ E(V⊕R); the
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spaces E(1)(V, y), Xy might be either empty or not. So the proof splits into two
parts. Namely,

(1) show that E(1)(V, y) is empty if and only if Xy is empty, and
(2) if E(1)(V, y) is not empty, show that σ̃1 : E(1)(V, y) → Xy is a homotopy

equivalence.

This finishes the discussion of polynomial functors. Now we turn to the Taylor
tower. We have already mentioned that for a continuous functor E the functors
TkE are its polynomial approximations. This is the content of Theorem 6.3 of [We]
which in a slightly weaker form reads as:

Theorem 3.9. Let E : J → Spaces∗ be a continuous functor. Then for k ≥ 0 there
exists a functor TkE : J → Spaces∗ and a natural transformation ηk : E → TkE
such that:

(1) TkE is polynomial of degree ≤ k,
(2) if E already is polynomial of degree ≤ k, then the map

ηk : E(V ) → TkE(V )

is a homotopy equivalence for all V .

The formula for TkE is given in the proof of Theorem 6.3 in [We]. For example,
if k = 0 we have for all V ∈ Ob(J )

T0E(V ) = E(V ⊕R∞) = hocolim
m∈N

E(V ⊕Rm).

Now we address the issue of how to determine the layers of the Taylor tower.
They are determined by the k-th derivative spectrum ΘE(k) which is the ‘ordinary’
spectrum associated to the coordinate-free spectrum given by the k-th derivative
functor E(k). Namely (ΘEk)km = E(k)(Rm) and the structure maps are special-
izations:

σk : (Rk)c ∧ (ΘE(k))km → (ΘE(k))k(m+1).

As we have mentioned before the tower is the expansion at infinity, and therefore
the spectrum ΘE(k) should be thought as the k-th derivative of E at infinity.

We have also already indicated that there is an action of the orthogonal group
O(k) on the k-th derivative spectrum associated to E(k). The relevant statement
in [We] is Proposition 3.1 and, simplified, it reads as:

Proposition 3.10. There exists a unique family {αV } of left actions

αV : O(k) × E(k)(V ) → E(k)(V )

which makes the maps

σk : (k · U)c ∧ E(k)(V ) → E(k)(V ⊕U)

into O(k)-maps. Here O(k) acts diagonally on the domain of the map σk; it acts
on (k · U) = Rk ⊗ U because it acts on Rk.

As we have said before, the polynomial approximations TkE fit together to form
the Taylor tower of E which is the diagram (3.1). The natural transformation
TkE → Tk−1E is essentially given as the (k − 1)-st polynomial approximation of
TkE. The usefulness of the Taylor tower follows from the fact that the differences
between its stages, hofiber∗(TkE(V ) → Tk−1E(V )), which are called the layers of
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the tower, can be described using the derivatives. The formula is given in Theorem
9.1 of [We]. It states:

Theorem 3.11. For a continuous functor E : J → Spaces∗, any k > 0 and any
V ∈ J , there is the following homotopy fibration sequence:

Ω∞[((k · V )c ∧ ΘE(k))hO(k)] → TkE(V ) rk−→ Tk−1E(V ),

where the subscript hO(k) denotes the homotopy orbit spectrum. The group O(k)
acts diagonally on the smash product, it acts on ΘE(k) by Proposition 3.10 and it
acts on k · V = Rk ⊗ V because it acts on Rk.

Once we have established the convergence question and we know the layers of
the Taylor tower, we can use the Taylor tower to obtain some information about
the functor E. One way to do this is suggested in the Introduction for our functor
F . The input for the Taylor tower of F is given in Theorems 5.1. and 5.11. For
examples on how the Taylor tower can be used to give information about other
functors see [We, section 10].

Remark 3.12. The functor F defined in section 2 is a continuous functor J →
Spaces∗ which is obtained from the functor to the category ∆−sets∗ (or ∆−spaces∗)
by the geometric realization. Although we do not generalize the machinery of or-
thogonal calculus to this setting, we often use constructions in the category ∆−sets∗
(or ∆−spaces∗), for example the construction of the homotopy fiber of a map or
other constructions in Construction 5.3 of section 5. After geometric realization
these constructions always commute (at least up to homotopy) with the corre-
sponding constructions in the category Spaces∗ which justifies their use.

4. The first derivative functor F (1)

Now we start to apply the machinery of orthogonal calculus to study the functor
F defined in section 2. The aim of this section is to identify the homotopy type
of the spaces F (1)(V, y). This is done in Proposition 4.4, where we give a criterion
for the space F (1)(V, y) to be empty and we show that when it is not empty it is
homotopy equivalent to a certain space LNn(φV ). The homotopy groups of the
space LNn(φV ) are the groups LNn+∗(φV ), which are special cases of the LS-
groups which are obstruction groups in codimension 1 surgery theory. The groups
LNn+∗(φV ) are well known to be isomorphic to the L-groups of the trivial group
from ‘ordinary’ surgery theory. Thus we also obtain a calculation of the homotopy
groups of the spaces F (1)(V, y).

Relating the comparison between the block structure spaces of real projective
spaces of different dimensions with codimension 1 surgery theory was not our orig-
inal idea. At the level of structure sets it was used by Browder-Livesay, López de
Medrano and Wall in order to calculate the structure sets of the real projective
spaces (see [BL], [LdM], [Wa, chapter 14C]). The statements at the level of block
structure spaces which we review here follow from general theory of [Wa, chapter
17A] and from the treatment of codimension q surgery theory in [Ra1, chapter 7].

In this section we use the definition of the block structure space S̃s(X) from
Construction 1.6 and we work on the level of ∆-sets. This is legal by Remarks 1.1,
3.12. We also adopt the convention that an embedding of manifolds will always
mean locally flat embedding. This condition is fulfilled in all cases that we treat
here.
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4.1. Codimension q surgery theory. We include a brief review of the codimen-
sion q surgery theory in which we fix the terminology, the notation, and we also
introduce some constructions that will be used in section 5. The reference for the
general theory is [Wa, chapter 11]. The treatment there is slightly more general;
see remarks by the editor at the beginning of the chapter. Another useful reference
is [Ra1, chapter 7]. We do assume however a basic knowledge of ‘ordinary’ surgery
theory, in particular, the algebraic definition of the L-groups and the construction
of the surgery obstruction for a degree one normal map (see [Wa, chapters 5, 6]).

First we need the following construction.

Construction 4.1. Let M ↪→ X be an embedding of manifolds. It induces the
following decomposition of the ambient manifold X. The submanifold M has a
normal block bundle ν, with total space E(ν) and with the total space of the
associated sphere bundle denoted by S(ν). The closure of the complement of E(ν)
in X is denoted by C. Thus we have

X = E(ν) ∪S(ν) C.

Definition 4.2. Let M ↪→ X be an embedding of manifolds with the normal block
bundle ν. A simple homotopy equivalence f : Y → X from a manifold Y of the
same dimension as X is said to be split along M w.r.t ν if f is transverse to M
w.r.t. ν, and the following restrictions are simple homotopy equivalences:

• f |M ′ : M ′ = f−1(M) → M ,
• f |C′ : C ′ = f−1(C) → C.

Definition 4.3. Let M ↪→ X be an embedding of manifolds as above. We will
refer to a simple homotopy equivalence f : Y → X as a splitting problem (along M).

Given a splitting problem f along M the task is to change f by a homotopy to a
simple homotopy equivalence which is split along M . If q = (dim(X)−dim(M)) ≥ 3
the obstruction theory reduces to the ordinary surgery theory with the L-groups
as obstruction groups ([Wa, Theorem 11.3]). In cases q = 1, 2 the obstruction
theory is different. First, we can assume that ν is a vector bundle. Then given a
splitting problem f along M there is an obstruction θ(f) in a group LSn(Φ). The
obstruction vanishes if and only if the problem can be solved. Here n = dim(M),
and Φ is the following diagram of fundamental groupoids:

π(S(ν))

��

�� π(C)

��

π(M) �� π(X).

The groups LSn(Φ) depend only on Φ, dimension n, codimension q and the orienta-
tion characters of M and X. See [Wa, chapter 11] for the details of the construction
of the LS-groups.

In the special case when π(M) → π(X) is an isomorphism the other horizontal
morphism in Φ is also an isomorphism, and thus the diagram depends only on the
vertical morphism φ : π(C) → π(X). In this case the group LSn(Φ) is denoted
LNn(φ). This will be the most important case for us.

Suppose now we are given an embedding of manifolds Mn ↪→ Xn+q which in-
duces the diagram of fundamental groupoids Φ. Following the general philosophy
of [Wa, chapter 17A] to ‘spacify’ all obstruction groups in surgery theory we can
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define a space LSn(Φ) such that πk(LSn(Φ)) ∼= LSn+k(Φ) (see also [Ha]). In an
outline, a k-simplex of the space LSn(Φ) is a splitting problem Z → Y of manifold
(k +2)-ads along an embedding N ↪→ Y of manifold (k +2)-ads, which is solved on
one part of the boundary and comes with a reference map Y → X which respects
the decompositions of Y and X given by N ↪→ Y and M ↪→ X as described in
Construction 4.1.

We will not give a precise definition of this space in general; instead we look at
the special case of an embedding Mn ↪→ E(ξ) of a manifold as the zero section of
the total space of some disk bundle ξ. Let φ : π(S(ξ)) → π(E(ξ)) be the induced
homomorphism of fundamental groupoids. The embedding corresponds to the LN -
situation, so we will talk about the space LNn+1(φ).

Note that we are provided with a map ξ! : S̃s(M) → S̃s(E(ξ), S(ξ)). On a k-
simplex f : M ′ → M × ∆k it is given by pulling back the disk bundle E(ξ) → M

along f . Let y be a 0-simplex in S̃s(E(ξ), S(ξ)), that means y is a simple homotopy
equivalence fy : (E, S) → (E(ξ), S(ξ)) which can also be seen as a splitting problem
along M . The splitting obstruction θ(fy) lives in the group LNn(φ). Denote

S̃s(ξ, y) = hofibery

(
ξ! : S̃s(M) → S̃s(E(ξ), S(ξ))

)
.

By definition (see [Ra2, chapter 11]) a k-simplex of S̃s(ξ, y) is a simple homotopy
equivalence f : (E, S) × ∆k+1 → (E(ξ), S(ξ)) × ∆k+1 which respects faces, such
that fy = ∂αf : (E, S) × ∂α∆k+1 → (E(ξ), S(ξ))× ∂α∆k+1 for α : 0 → k+1, such
that α(0) = k + 1, and ∂k+1f : (E, S) × ∂k+1∆k+1 → (E(ξ), S(ξ)) × ∂k+1∆k+1 is
split along M , where k + 1: k → k+1 is obtained by omitting k + 1 in the target.

It is not hard to see that
• if θ(fy) �= 0, then S̃s(ξ, y) is empty,
• if θ(fy) = 0, then S̃s(ξ, y) 	 LNn+1(φ).

For the second statement, note that a k-simplex of the space S̃s(ξ, y) is a splitting
problem of manifold (k+3)-ads which is solved on the part ∂α∪∂k+1 of the boundary.
As such it can be considered as a k-simplex of the space LNn+1(φ), which gives an
inclusion map which is the indicated homotopy equivalence; it induces isomorphisms
on homotopy groups. See for example [Ra1, chapter 7.2] for the reference.

4.2. The homotopy type of F (1)(V, y). Now consider the embedding RP (V ) ↪→
RP (V ⊕R). We have the decomposition

RP (V ⊕R) = E(ν) ∪S(ν) C,

where ν is the normal disk bundle of RP (V ) and C ∼= Dn, n = dim(V ).
Now consider the embedding RP (V ) ↪→ E(ν), the induced homomorphism

φV : π1(S(ν))→π1(E(ν)) and a homotopy equivalence y=fy : (E, S)→(E(ν), S(ν))
with the splitting obstruction θ(fy) ∈ LNn−1(φV ). Consider

S̃s(ν, y) = hofibery

(
ν! : S̃s(RP (V )) → S̃s(E(ν), S(ν))

)
.

By the above discussion we have that
• if θ(fy) �= 0, then S̃s(ν, y) is empty,
• if θ(fy) = 0, then S̃s(ν, y) 	 LNn(φV ).

Now let y = fy : M → RP (V ⊕R) be a 0-simplex in S̃s(RP (V ⊕R)). Consider
the space F (1)(V, y) = hofibery(S̃s(RP (V )) → S̃s(RP (V ⊕R))). A k-simplex of
this space can be viewed as a splitting problem over RP (V ⊕R) × ∆k+1 along
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RP (V )×∆k+1 satisfying certain conditions on the boundary. The homotopy type
of F (1)(V, y) is identified in the following proposition.

Proposition 4.4. Let dim(V ) = n ≥ 6 and consider the homotopy equivalence
y = fy : M → RP (V ⊕R) as a splitting problem along RP (V ) with the splitting
obstruction θ(fy) ∈ LNn−1(φV ). Then the following hold:

• if θ(fy) �= 0, then F (1)(V, y) is empty,
• if θ(fy) = 0, then F (1)(V, y) 	 LNn(φV ).

Proof. First note that there is a map S̃s(E(ν), S(ν)) → S̃s(RP (V ⊕R)) given by
‘coning off’. This map is a homotopy equivalence by the following argument.

By transversality there is the following homotopy cartesian square:

S̃s(RP (V ⊕R); E(ν), C; S(ν)) ��

��

S̃s(C, S(ν))

��

S̃s(E(ν), S(ν)) �� S̃s(S(ν)).

By the result of [Wa, Theorem 12.1], if dim(V ) ≥ 6, then the forgetful map
S̃s(RP (V ⊕R); E(ν), C; S(ν)) → S̃s(RP (V ⊕R)) is a homotopy equivalence. It
is also well known that the forgetful map S̃s(C, S(ν)) → S̃s(S(ν)) is a homotopy
equivalence. Therefore the left-hand vertical map is also a homotopy equivalence.
The ‘coning off’ map is its homotopy inverse.

Abusing notation we also denote by y the image of y ∈ S̃s(RP (V ⊕R)) under
some homotopy inverse of the coning off map. We have the following diagram which
commutes up to homotopy:

S̃s(ν, y)

��
�
�
�

�� S̃s(RP (V ))
ν!

�� S̃s(E(ν), S(ν))

��

F (1)(V, y) �� S̃s(RP (V ))
F (ι)

�� S̃s(RP (V ⊕R)).

The left-hand vertical map is induced by the right-hand vertical map which is a
homotopy equivalence, and so the left-hand map is also a homotopy equivalence.

By the criterion preceding the theorem we get the desired statement. �

Proposition 4.5. If dim(V ) = n ≥ 6 we have

πk(LNn(φV )) ∼= LNn+k(φV ) ∼= Lk−n(1).

Proof. We have the homomorphism φV : 1 → Z2, where the subscript V stands for
the orientation character. This equals (−1)n. By [Wa, Corollary 12.9.1] we have
that LN∗(1 → Z2) ∼= L∗+ε(1), where ε = 0 if the orientation character is −1 and
ε = 2 if the orientation character is +1. This together with the 4-periodicity of the
L-groups yields the desired statement. �

4.3. An isomorphism from πk(LNn(φV )) to Lk−n(1). Following [Wa, chapter
12C] we now give a concrete and explicit description of the isomorphism

θ : πk(LNn(φV )) → Lk−n(1).
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By definition a k-simplex in LNn(φV ) is a splitting problem f : (E, S) × ∆k+1 →
(E(ν), S(ν))×∆k+1 along RP (V )×∆k+1 satisfying certain conditions on the bound-
ary. The isomorphism θ sends the homotopy class of f to the splitting obstruction
rel ∂∆k+1 of f which lives in the group Lk−n(1). Simultaneously we give a descrip-
tion of the map

θ : π0(S̃s(E(ν), S(ν))) → L−1−n(1).

A 0-simplex of S̃s(E(ν), S(ν)) is a splitting problem f : (E, S) → (E(ν), S(ν)) along
RP (V ), and the map θ sends f to its splitting obstruction.

So we consider a splitting problem f : (E, S) × ∆k+1 → (E(ν), S(ν)) × ∆k+1,
where k ≥ −1, and we find a splitting obstruction θ(f) in Lk−n(1). If (k − n) is
odd, then Lk−n(1) is trivial, so it is enough to consider the case when (k − n) is
even and hence also (n + k) is even.

The even-dimensional L-groups are defined algebraically in [Wa, chapter 5]. For
a group π with a homomorphism w : π → Z2 and for 2m = (k − n) an element
of the group Lk−n(π) is represented by a simple (−1)m-hermitian form (G, λ, µ),
where G is a stably free Z[π]-module and the maps

λ : G × G → Z[π], µ : G → Z[π]/{x − (−1)lx},
where x �→ x is an involution on Z[π] induced by the homomorphism w, satisfy cer-
tain conditions; see [Wa, Theorem 5.2]. A submodule H of G is called a lagrangian of
the form (G, λ, µ) if the map λ induces an isomorphism G/H → HomZ[π](H, Z[π]),
λ(H × H) = 0 and µ(H) = 0. The form (G, λ, µ) admits a lagrangian if and only
if it represents a zero element in the L-group in which case it is called a hyperbolic
form.

In [Wa, chapter 5] the surgery obstruction for converting an even-dimensional
degree one normal map into a simple homotopy equivalence is described as an
element of such an L-group. Following [Wa, chapter 12C] we now describe how to
associate a simple (−1)m-hermitian form which represents an element in Lk−n(1)
to the splitting problem f as above.

Construction 4.6. So we start with f : (E, S) × ∆k+1 → (E(ν), S(ν))× ∆k+1, a
homotopy equivalence satisfying appropriate conditions on the boundary. Denote
by N = f−1(RP (V ) × ∆k+1) and by i the embedding N ↪→ (E, S) × ∆k+1, and
note that i is a degree one normal map. The obstruction θ(f) coincides with the
obstruction to make the embedding i into a homotopy equivalence by an ambient
surgery on N inside (E, S)×∆k+1 (see [Wa, chapter 12C] or [Ra1, chapter 7.6] for
the definition of the ambient surgery on a submanifold).

This is defined as follows. Let 2l = (n+k). First make i into an l-connected map
by an ambient surgery. The ordinary surgery obstruction associated to i is a simple
(−1)l-hermitian form (H, λ, µ) over Z[Z2], where H = πl+1(i) = πl+1(E×∆k+1, N).
As usual the elements of H can be represented by l-dimensional spheres immersed
in N , the form λ is given by the Z[Z2]-intersection numbers of these spheres and µ is
given by the Z[Z2]-self-intersection numbers. Let us now instead look at the double
covers and try to change ĩ : Ñ ↪→ Ẽ×∆k+1 by an equivariant ambient surgery. Here
Ẽ denotes the non-trivial double cover of E. The ordinary non-equivariant surgery
obstruction associated to ĩ is a simple (−1)l-hermitian form (H, λ′, µ′) over Z, with
the same H, only considered now as a Z-module. The maps λ′, µ′ are now given
by Z-intersection, resp. Z-self-intersection numbers of the representing immersed
spheres. The form (H, λ′, µ′) is hyperbolic. More to the point, Ñ is a separating



374 TIBOR MACKO

submanifold, and we have a decomposition Ẽ×∆k+1 = A+ ∪
Ñ

A−. The Z-module
H = πl+1(̃i) = πl+1(Ẽ × ∆k+1, Ñ) splits as

H+ ⊕ H− = πl+1(A+, Ñ) ⊕ πl+1(A−, Ñ).

The involution T switches H+ and H−, which are both lagrangians of (H, λ′, µ′).
The equivariant ambient surgery obstruction for ĩ is now defined as follows.

Denote by λ0(x, y) = λ′(x, ty), µ0(x) = tµ(x), where t is the non-trivial element of
Z2. Then (H+, λ0, µ0) is a simple (−1)m-hermitian form over Z where 2m = (k−n).
It represents the desired obstruction θ(f) in Lk−n(1).

Furthermore we may assume that H+ ∼= πl+1(A+, Ñ) is a free Z-module on
generators {ei}i∈r whose boundaries are represented by the spheres Sl

i disjointly
embedded in Ñ (because H+ is a lagrangian over Z). Let Ñ × I be the normal disk
bundle of Ñ in Ẽ × ∆k+1. Then the generators ei can be represented by the disks
Dl+1

i disjointly embedded in Ẽ × ∆k+1 so that the disk Dl+1
i is attached to the

normal bundle Ñ × I at the sphere Sl
i × {1} (see [BL]). Similarly H− is generated

by the elements {tei}i∈r whose boundaries are represented by the spheres TSl
i , and

the elements tei are themselves represented by the disks TDl+1
i attached to Ñ × I

at TSl
i × {−1}.

Remark 4.7. We did not prove that θ is an isomorphism if k ≥ 0; we have only given
a description of the map θ. However, from the fact that θ is an isomorphism if k ≥ 0
follows an important realization theorem which says that if k ≥ 0, then any element
of Lk−n(1) can be represented by a splitting problem over (E(ν), S(ν))×∆k+1 along
RP (V ) × ∆k+1. We refer to [Wa, chapter 12C] for the details.

Remark 4.8. In this section we have used a model of F (1)(V, y) such that a k-simplex
was a splitting problem over RP (V ⊕R) × ∆k+1 along RP (V ) × ∆k+1 satisfying
certain conditions on the boundary. In the next section it will be more convenient
to use another model where a k-simplex is an equivariant splitting problem over
S(V⊕R)×∆k+1 along S(V )×∆k+1 (it is clear what involutions are meant) satisfying
corresponding conditions on the boundary.

5. The functor F is polynomial of degree ≤ 1

In this section we prove the two main theorems of this paper, Theorem 5.1 and
Theorem 5.11. We start with:

Theorem 5.1. Let F : J → Spaces∗ be the functor defined by V �→ S̃s(RP (V )).
If dim(V ) ≥ 6, then the canonical maps

(5.1) F (V ) → holim
0�=U⊂R

2
F (V ⊕U)

are homotopy equivalences.

An immediate corollary of Theorem 5.1 is the following.

Corollary 5.2. If dim(V ) ≥ 6, then the canonical maps

F (V ) → T1F (V )

are homotopy equivalences.
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Proof of Corollary 5.2. The definition of the functor T1E for a general continuous
functor E : J → Spaces∗ is given in [We, Theorem 6.3]. It says that T1E is the
homotopy colimit of the direct system

E
ρ−→ τ1E

τ1(ρ)−−−→ (τ1)2E
(τ1)

2(ρ)−−−−−→ · · · ,

where
τ1E(V ) = holim

0�=U⊂R
2

E(V ⊕U),

and the natural transformation ρ : E → τ1E is given by the canonical maps. The-
orem 5.1 says that in the case of the functor F the maps ρ : F (V ) → τ1F (V ) are
homotopy equivalences if dim(V ) ≥ 6. The claim of Corollary 5.2 follows. �
Overview of the proof of Theorem 5.1. The details of the proof of Theorem
5.1 are rather complicated. Therefore we first give an overview of the proof.

The pattern of the proof is to verify the condition of Theorem 3.6 for the map
(5.1) to be a homotopy equivalence, if dim(V ) ≥ 6. This condition says that we
have to verify that a certain map σ̃1 : F (1)(V, y) → Xy is a homotopy equivalence
for all choices of y ∈ F (V ⊕R).

The space Xy and the map σ̃1 were described for a general continuous functor
E : J → Spaces∗ in Construction 3.5. We work with the ∆-set models, so in
Construction 5.3 we provide a ∆-set model of the space Xy and we also provide a
∆-set description of the map σ̃1 which up to homotopy commutes with the geometric
realization.

The homotopy type of the space F (1)(V, y) has been described in Proposition
4.4. It says that F (1)(V, y) is empty if and only if the splitting obstruction θ(fy) of
a certain equivariant splitting problem fy over S(V⊕R) along S(V ) is non-zero (see
also Remark 4.8). If θ(fy) = 0, then the space F (1)(V, y) is homotopy equivalent
to a certain space LNn(φV ) whose homotopy groups are calculated in Proposition
4.5.

We give a corresponding description of the homotopy type of the space Xy in
Proposition 5.4. It says that Xy is empty if and only if the splitting obstruction
θ(f ′

y) of a certain equivariant splitting problem f ′
y over S(V ⊕R2) × I and along

S(V ⊕R) × I is non-zero. If θ(f ′
y) = 0, then the space Xy is homotopy equiva-

lent to the space ΩLNn+1(φV⊕R) whose homotopy groups are also calculated by
Proposition 4.5.

As we have indicated in Remark 3.8 the proof then splits into two parts. To
prove condition (1) we have to show that the space F (1)(V, y) is empty if and only
if the space Xy is empty. This is the content of Proposition 5.5. It is proved using
the criteria mentioned above. Note that the equivariant splitting obstructions θ(fy)
and θ(f ′

y) live in the same group L−1−n(1). Therefore it is enough to check that
θ(fy) = θ(f ′

y) in L−1−n(1). The proof of this statement is the crucial part of
the whole proof. Unfortunately it is rather technical. It is given in a sequence of
lemmas: Lemma 5.7, 5.8, 5.9.

To prove condition (2) we have to show that if F (1)(V, y) is not empty, then
the map σ̃1 : F (1)(V, y) → Xy is a homotopy equivalence. This is done by showing
that it induces isomorphisms on homotopy groups. Using Propositions 4.4, 5.4 and
4.5 we see that the spaces F (1)(V, y) and Xy have isomorphic homotopy groups.
Thus we have to show that the map σ̃1 induces isomorphisms between abstractly
isomorphic groups. The idea here is the following. An element of πk(F (1)(V, y)) ∼=
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Lk−n(1) can be represented by a splitting obstruction θ(f) of some equivariant
splitting problem f over S(V ⊕R) × ∆k+1 along S(V ) × ∆k+1. The image σ̃1(f)
is a splitting problem over S(V ⊕R2) × ∆k+1 × I along S(V ⊕R) × ∆k+1 × I with
the splitting obstruction θ(σ̃1(f)) which represents the homotopy class of σ̃1(f) in
πk(Xy) ∼= Lk−n(1). Condition (2) is proved by showing that θ(f) = θ(σ̃1(f)) in
Lk−n(1). This statement is the content of Proposition 5.10. Its proof turns out to
be just a parameterized version of the proof of the statement of condition (1).

Construction 5.3. We need a ∆-set model of the space Xy and a description of
the map σ̃1 on the level of ∆-sets. The descriptions given here and the descriptions
from Construction 3.5 commute with the geometric realization up to homotopy.

Recall the ∆-set model for F (1)(V, y). Here y = fy : S(V ⊕R) → S(V ⊕R)
is an equivariant splitting problem along S(V ). A k-simplex of F (1)(V, y) is an
equivariant homotopy equivalence f : S(V ⊕R) × ∆k+1 → S(V ⊕R) × ∆k+1 w.r.t.
the antipodal involution on the target and w.r.t. some free involution on the source,
it respects faces, it is transverse to S(V )×∆k+1, for α : 0 → k+1, α(0) = k+1, we
have fy = ∂αf : S(V⊕R)×∂α∆k+1 → S(V⊕R)×∂α∆k+1 and ∂k+1f is equivariantly
split along S(V ) × ∆k.

Now we give a ∆-set model for Xy. A k-simplex of Xy is an equivariant homotopy
equivalence f ′ : S(V ⊕R2)×∆k+1 × I → S(V ⊕R2)×∆k+1 × I w.r.t. the antipodal
involution on the target and w.r.t. to some free involution on the source which
respects faces and satisfies the following conditions on the boundary.

First define

∂0(∆k+1 × I) = (∂k+1∆k+1 × I) ∪ (∆k+1 × ∂I),

∂1(∆k+1 × I) = ∂α∆k+1 × I,

where α : 0 → k + 1 is again given by α(0) = k + 1.
The conditions on f ′ are the following. First f ′ restricted to S(V ⊕R2) ×

∂0(∆k+1 × I) is split along S(V ⊕R) × ∂0(∆k+1 × I). The restriction of f ′ to
S(V ⊕R2) × ∂1(∆k+1 × I) is fixed, and it is given as the composition

(5.2) f ′
y = (S(ζ))−1 ◦ (Σ(fy) × id) ◦ S(ζ).

Here Σ means the unreduced suspension map, and the map S(ζ) : S(V ⊕R2)× I →
S(V ⊕R2) × I is a homeomorphism given by (x, t) �→ (ζt(x), t), where ζt is the
unique rotation of V ⊕R2 which fixes V and sends (0, 1, 0) to (0, t,

√
1 − t2).

The map σ̃1 : F (1)(V, y) → Xy is given by the rule

(5.3) σ̃1 : f �→ (S(ζ))−1 ◦ (Σ(f) × id) ◦ S(ζ).

I

∆1

−1 t 1

−y y′ +y

Figure 4. Schematic picture of a 0-simplex in Xy and of the map σ̃1.
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A 0-simplex of Xy is depicted in Figure 4. The top edge corresponds to the part
∂1(∆1 × I) of the boundary. The closure of the complement of ∂1(∆1 × I) in the
boundary is ∂0(∆1 × I). On each vertical line over t ∈ I the restriction of the map
σ̃1(f) is given by (ζt)−1 ◦Σ(f) ◦ ζt. Compare this with Figure 3. The vertical lines
here correspond after reparametrization to the rays from the origin in Figure 3.

Note that the map f ′
y can be seen as an equivariant splitting problem along

S(V ⊕R)× I with the splitting obstruction θ(f ′
y) ∈ LNn+1(φV⊕R) ∼= L−1−n(1). We

need the following criterion.

Proposition 5.4. We have that
• if θ(f ′

y) �= 0, then the space Xy is empty,
• if θ(f ′

y) = 0, then Xy 	 ΩLNn+1(φV⊕R).

Proof. If Xy is not empty, then there exists a 0-simplex, say f , of Xy. Since f
restricted to (S(V ⊕R2) × ∂0(∆k+1 × I)) is by definition split along S(V ⊕R) ×
∂0(∆k+1 × I), any such a 0-simplex f can be seen as a solution of the splitting
problem f ′

y and hence θ(f ′
y) = 0. As we have remarked in Construction 3.5 if the

space Xy is not empty it is homotopy equivalent to a certain space of paths in the
space F (1)(V ⊕R, y′) 	 LNn+1(φV⊕R). It is not difficult to see that this path space
is homotopy equivalent to ΩLNn+1(φV⊕R). �

Now we are ready to proceed with a verification of the condition of Theorem 3.6
for the functor F to be polynomial of degree ≤ 1. We start with condition (1).

Proposition 5.5. F (1)(V, y) is empty if and only if Xy is empty.

Propositions 4.4, 5.4 tell us when the spaces F (1)(V, y) and Xy are empty. We
see that both obstructions θ(fy) and θ(f ′

y) live in the group L−1−n(1). In order to
prove condition (1) it is enough to show that θ(fy) = θ(f ′

y) in L−1−n(1). This is
done in the sequence of the following three lemmas.

Remark 5.6. Note that a precomposition with a homeomorphism does not change
the splitting obstruction of a splitting problem. Therefore when investigating θ(f ′

y)
it is enough to look at the splitting obstruction of the map (S(ζ))−1 ◦ (Σ(fy)× id),
and so from now on we denote

(5.4) f ′
y = (S(ζ))−1 ◦ (Σ(fy) × id).

Lemma 5.7. The map f ′
y : S(V ⊕R2) × I → S(V ⊕R2) × I is transverse to the

submanifold S(V ⊕R) × I.

Proof. One would expect that in order to find the splitting obstruction θ(f ′
y) it

is necessary to first adjust the map f ′
y to make it transverse to S(V ⊕R) × I.

Amazingly, the map f ′
y as constructed by the formula (5.4) is already transverse

to S(V ⊕R) × I! This is what we prove in this lemma; more precisely we show an
equivalent statement that the map (Σ(fy) × id) is transverse to S(ζ) ◦ j where j
denotes the embedding S(V ⊕R) × I ↪→ S(V ⊕R2) × I.

We use an easier notion of transversality which is good enough for our purposes.
It goes as follows. Let M ↪→ X be a codimension 1 embedding. Suppose that there
exist an open neighborhood E of M in X and a submersion g : E → R such that
g−1(0) = M . (This implies that M has a trivial normal bundle.) We say that a
map f : Y → X is transverse to M if g ◦ f : f−1(E) → R is a submersion in a
neighborhood of f−1(M). Note that this condition can be verified locally.



378 TIBOR MACKO

In our case, X = S(V ⊕R2) × I and M is the image of S(V ⊕R) × I under the
embedding S(ζ)◦ j. Let g = h◦ (S(ζ))−1 where h : S(V⊕R2)× I → R is the ‘height
function’ defined by the projection on the second coordinate of R2. (This should
be suitably restricted to a neighborhood of M in X.)

We use the decompositions (5.5), (5.6) into (overlapping) codimension 0 (non-
compact) submanifolds

(5.5) S(V ⊕R) = E(ν̃) ∪ C±,

where E(ν̃) is the total space of the open normal vector bundle ν̃ of S(V ) in
S(V ⊕R), and C± = D±(V ⊕R) � S(V ), where D±(V ⊕R) = S(V ⊕R) ∩ (V ⊕R±)
with R± = {u ∈ R | ± u ≥ 0}, and

(5.6) S(V ⊕R2) = E(µ̃) ∪ D±,

where E(µ̃) is the total space of the open normal vector bundle µ̃ of S(V ) in
S(V⊕R2), and D± = D±(V⊕R2)�S(V ), where D±(V⊕R2) = S(V⊕R2)∩(V⊕R⊕R±).

Note that the embedding S(ζ) ◦ j restricts to the embeddings

E(ν̃) × I ↪→ E(µ̃) × I, C± × I ↪→ D± × I.

We give two different arguments for the transversality on these two kinds of
codimension 0 submanifolds of S(V ⊕R2) × I

We start with the embedding E(ν̃) × I ↪→ E(µ̃) × I. This is an embedding of
a codimension 1 subbundle where both bundles are over S(V ) × I. The map g
restricted to E(µ̃)× I can be described as g : (x, t) �→ (x− prl(x)), where prl is the
orthogonal projection in the fiber of E(µ̃) × {t} onto the image of E(ν̃) × {t}.

Now the map fy was transverse to S(V ), therefore the map Σ(fy) is also trans-
verse to S(V ). Let Ñ := (fy)−1(S(V )) and let ν̃

Ñ
be the open normal bundle of

Ñ in S(V ⊕R) and denote by µ̃
Ñ

the open normal bundle of Ñ in S(V ⊕R2). The
restriction Σ(fy)| : E(µ̃

Ñ
) → E(µ̃) is a bundle map. Now it is not difficult to see

that the restriction Σ(fy)| × id : E(µ̃
Ñ

) × I → E(µ̃) × I is transverse to E(ν̃) × I
in the above sense.

Next we look at the embedding C±×I ↪→ D±×I. Observe that the composition
C± × I ↪→ D± × I → D± is a homeomorphism. Therefore we can consider the
embedding C± × I ∼= D± ↪→ D± × I as an embedding of a graph of some function
ω : D± → I into D±× I. The restriction of g can be expressed as (x, t) �→ t−ω(x).
Again it is not difficult to see that the restriction Σ(fy)|×id : (D±(V⊕R2)�Ñ)×I →
D± × I is transverse to C± × I in the above sense.

The details are left to the reader. �

In the next lemma we identify the homotopy type of Ñ ′ := (f ′
y)−1(S(V⊕R)×I).

Lemma 5.8. Let τ : Ñ ′ → R be the composition Ñ ′ ↪→ S(V ⊕R2) × I → I ↪→ R.
Then τ is transverse to s ∈ R for all s �= 0. Hence Ñ ′ 	 τ−1(0) ∼= ΣÑ , where ΣÑ

means the unreduced suspension of Ñ .

Proof. A key observation here is that the manifold (with boundary) Ñ ′ has a de-
composition

(5.7) Ñ ′ = E(ν̃
Ñ

) × I ∪ (D±(V ⊕R2) � Ñ)

into codimension 0 submanifolds which corresponds to the previous decomposition
S(V ⊕R) × I = (E(ν̃) × I) ∪ D±. This can be seen as follows.
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We can think of Ñ ′ as a pullback of S(ζ) ◦ j along Σ(fy) × id:

Ñ ′

��

�� S(V ⊕R) × I

S(ζ)◦j

��

S(V ⊕R2) × I
Σ(fy)×id

�� S(V ⊕R2) × I.

Look first at the following restriction of this diagram:

?

��

�� E(ν̃) × I

S(ζ)◦j

��

E(µ̃
Ñ

) × I
Σ(fy)|×id

�� E(µ̃) × I.

In this diagram the lower horizontal arrow is a bundle map over the restriction
fy| × id : Ñ × I → S(V )× I. Here E(µ̃

Ñ
)× I is a 2-dimensional vector bundle over

Ñ × I, E(µ̃)× I is a 2-dimensional vector bundle over S(V )× I and E(ν̃)× I is its
codimension 1 subbundle. It follows that the top row ? → E(ν̃)×I is a bundle map,
and it also follows from the construction that ? can be identified with E(ν̃

Ñ
) × I.

Second, look at the restriction of the diagram to C± × I ∼= D±. Here, because
the map S(ζ) ◦ j is a map over I, we can look at the following pullback diagram:

??

��

�� C± × I

pr1◦S(ζ)◦j

��

S(V ⊕R2)
Σ(fy)

�� S(V ⊕R2),

where pr1 is the projection onto the first factor. As noted before the composition
(pr1 ◦ S(ζ) ◦ j) : C± × I → D± is a homeomorphism, and thus we obtain that
?? ∼= Σ(fy)−1(D±) = (D±(V ⊕R2) � Ñ). This yields the decomposition (5.7).

We describe the map τ on each submanifold in the decomposition. The restric-
tion of τ to the submanifold E(ν̃

Ñ
) × I is just the projection

τ | : E(ν̃
Ñ

) × I → I ↪→ R

which is clearly a submersion.
On the two submanifolds D±(V ⊕R2) � Ñ the restriction of the map τ can be

described as follows. Observe first that D±(V ⊕R2) � Ñ ⊂ D±(V ⊕R2), D± ⊂
D±(V⊕R2) and that D±(V⊕R2) can be seen as a cone on S(V⊕R). The restriction
of τ is the following composition:

τ | : D±(V ⊕R2) � Ñ
C(fy)−−−−→ D± ∼= C± × I → I ↪→ R,

where C(fy) denotes the canonical extension of fy to the cones suitably restricted.
The homeomorphism D± ∼= C±×I can be described as follows. The fiber C±×{s}
is embedded in D± as an open ‘meridian’ through the point (0, s,±

√
1 − s2). It

is not difficult to see that the cone map C(fy) is transverse to all such meridians
except the one corresponding to s = 0 (details are left to the reader).

The identification τ−1(0) ∼= ΣÑ follows from the construction of the map f ′
y by

formula (5.4). �
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Lemma 5.9. Let 2m = −1−n and let θ(fy) ∈ L−1−n(1) be represented by a simple
(−1)m-hermitian form (H+, λ0, µ0). Then θ(f ′

y) ∈ L−1−n(1) is represented by the
same simple (−1)m-hermitian form.

Proof. Recall that fy : S(V ⊕R) → S(V ⊕R) is a homotopy equivalence about
which we can assume that it is transverse to S(V ) and also that it is obtained
from a homotopy equivalence E(ν̃) → E(ν̃) by ‘coning off’ (by Proposition 4.4).
Here E(ν̃) denotes the total space of the normal disk bundle of S(V ) in S(V ⊕R).
The splitting obstruction θ(fy) is represented by a simple (−1)m-hermitian form
(H+, λ0, µ0) obtained as an equivariant ambient surgery obstruction associated to
the embedding ĩ : Ñ = (fy)−1(S(V )) ↪→ E(ν̃) (see Construction 4.6).

The homotopy equivalence f ′
y : S(V ⊕R2)× I → S(V ⊕R2)× I is constructed by

formula (5.4). Let E(ν̃′) be the total space of the normal disk bundle of S(V ⊕R)
in S(V ⊕R2) and note that f ′

y is already in the form of a homotopy equivalence
obtained from another homotopy equivalence E(ν̃′) × I → E(ν̃′) × I by ‘coning
off’, so there is no need to adjust it. The splitting obstruction θ(f ′

y) should now
be read off as the equivariant ambient surgery obstruction from the embedding
ĩ′ : Ñ ′ ↪→ E(ν̃′) × I by the recipe given in Construction 4.6.

In Lemma 5.8 we made a first step by identifying the homotopy type of Ñ ′.
Moreover it follows from the construction of the map f ′

y by formula (5.4) that the
embedding ĩ′ when restricted to τ−1(0) is just the unreduced suspension map Σ̃i.
So we have a commutative diagram

ΣÑ

�
��

Σĩ �� E(ν̃′) × {0}

�
��

Ñ ′ ĩ′ �� E(ν̃′) × I

where all maps are embeddings.
Let 2l = n − 1. From the diagram above it follows that ĩ′ is (l + 1)-connected,

and also that πl+2(̃i′) ∼= πl+1(̃i) ∼= H and that the corresponding splitting of H
is the same H+ ⊕ H− as before. It only remains to find the embedded spheres
representing the generators of H and to show that their intersection numbers are
preserved.

Let {ei, tei} be the set of generators of H as a Z-module, where generators are
represented by embedded spheres Si, TSi ↪→ Ñ as in Construction 4.6. Denote the
images under the suspension map by S′

i, TS′
i ↪→ ΣÑ ↪→ Ñ ′. We need to put them

in a general position.
First we further describe the topology of Ñ ′. The manifold Ñ ′ is a special

manifold 3-ad with two distinguished parts of the boundary ∂±Ñ ′ = S(V ⊕R) ×
{±1}. From the decomposition (5.7) we also see that the product Ñ × I is a
separating submanifold of Ñ ′. By taking its normal disk bundle (using collars)
we obtain the codimension 0 embedding Ñ × I2 ↪→ Ñ ′, which when restricted to
Ñ ×{±1}×I ↪→ ∂±Ñ ′ coincides with the embedding of the closed normal bundle of
Ñ ×{±1} ↪→ ∂±Ñ ′. In particular there are disks D±

i , TD±
i attached to the normal

bundle Ñ × I as described in Construction 4.6. See Figure 5.
Now denote by d± : I → I2 the maps d±(s) = (±s, s). Using the isotopy in-

duced by the embedding of ΣD±
i , ΣTD±

i into Ñ ′ (we omit the details), we can
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change the embedded spheres S′
i, TS′

i to embedded spheres in a general position
given by the two formulas S′′

i = (D+
i × 1) ∪ (Si × d+I) ∪ (D−

i × −1) and TS′′
i =

(TD−
i ×−1)∪ (TSi × d−I)∪ (TD+

i × 1). It follows that the associated intersection
forms are λ′, µ′, since the only intersections are the intersections in Ñ .

The situation is depicted in Figure 5. The thicker parts correspond to the spheres
S′′

i , TS′′
i in a general position. The only intersections are those in Ñ × I. �
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∂−Ñ ′ ∂+Ñ ′

Ñ × {+1} × IÑ × {−1} × I

Ñ × I × {−1}

Ñ × I × {+1}

Figure 5. Intersections of the generators of (H, λ, µ) in Ñ ′.

Proposition 5.10. If F (1)(V, y) is not empty, then the map σ̃1 : F (1)(V, y) → Xy

is a homotopy equivalence.

Proof. This is proved by showing that the map σ̃1 induces isomorphisms on homo-
topy groups. Note that we have

πk(F (1)(V, y)) ∼= πk(Xy) ∼= Lk−n(1).

Because the surgery obstruction map θ is an isomorphism, we can realize any ele-
ment of the group Lk−n(1) by a k-simplex in F (1)(V, y), that means by an equivari-
ant splitting problem f : S(V ⊕R) × ∆k+1 → S(V ⊕R) × ∆k+1 along S(V )× ∆k+1

satisfying certain conditions on the boundary.
By Construction 5.3 the image f ′ = σ̃1(f) is a k-simplex in Xy, that means an

equivariant splitting problem f : S(V ⊕R2) × ∆k+1 × I → S(V ⊕R2) × ∆k+1 × I
along S(V ⊕R) × ∆k+1 × I again with certain conditions on the boundary.

In order to show that the map σ̃1 induces an isomorphism on homotopy groups,
it is enough to show that if the splitting obstruction θ(f) is represented by a simple
(−1)m-hermitian form (H+, λ0, µ0), where 2m = k − n, then the splitting obstruc-
tion θ(f ′) is represented by the same simple (−1)m-hermitian form. But this is
just a version of the statement that was proved in a sequence of Lemmas 5.7, 5.8,
5.9 parametrized over ∆k+1. The proofs carry over to the parametrized case as
well. �
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Theorem 5.11. We have

πk(ΘF (1)) ∼= Lk(1) for k ∈ Z,

where the groups Lk(1) are the 4-periodic L-groups from surgery theory associated
to the trivial group.

Proof. Note that the proof of Proposition 5.5 tells us in the special case y = ∗ that
modulo some low-dimensional deviations the spectrum ΘF (1) is an Ω-spectrum and
we know its homotopy groups. Namely

πk(ΘF (1)) ∼= πk+|k|+8

(
F (1)(R|k|+8)

) ∼= Lk(1)

for all k ∈ Z. �
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