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Abstract. For a finite dimensional real vector space V with inner product, let F(V) be the block
structure space, in the sense of surgery theory, of the projective space of V. Continuing a program
launched in [Ma], we investigate F as a functor on vector spaceswith inner product, relying on functor
calculus ideas. It was shown in [Ma] that F agrees with its first Taylor approximation T1F (which is
a polynomial functor of degree 1) on vector spaces V with dim(V) ≥ 6. To convert this theorem into
a functorial homotopy-theoretic description of F(V), one needs to know in addition what T1F(V) is
when V = 0. Here we show that T1F(0) is the standard L-theory space associated with the group Z/2,
except for a deviation in π0. The main corollary is a functorial two-stage decomposition of F(V) for
dim(V) ≥ 6 which has the L-theory of the group Z/2 as one layer, and a form of unreduced homology
of RP(V) with coefficients in the L-theory of the trivial group as the other layer. Except for dimension
shifts, these are also the layers in the traditional Sullivan-Wall-Quinn-Ranicki decomposition of F(V).
But the dimension shifts are serious and the SWQR decomposition of F(V) is not functorial in V.
Because of the functoriality, our analysis of F(V) remains meaningful and valid when V = R∞.

2000 Mathematics Subject Classification: 57N99, 55P99; 57R67.

1 Introduction

This paper is a continuation of [Ma]. In [Ma] a certain continuous functor from the category
J of finite-dimensional real vector spaces with inner product to the category Spaces∗ of
pointed spaces was introduced. In the present paper we denote this functor by Fg . For V an
object of J, the value Fg(V) is the block structure space

˜S(RP(V))

of the projective space of V. For a morphism ξ in J the map Fg(ξ) is a generalization of the
join construction of Wall. See [Ma] or [Qu] for the definition of the block structure space
of a manifold, [Ma] and [Wa] for more on the join construction.

Each space Fg(V), alias block structure space of RP(V), is individually well understood
as the n-fold loop space of the homotopy fiber of a standard assembly map in L-theory, where
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n = dim(V) − 1 and we assume n ≥ 5. See [Qu]. The assembly map has good naturality
properties, but the prefix Ωn tends to corrupt these when n becomes a variable. Hence the
standard methods for calculating the values Fg(V) do not lead to very satisfying homotopy
theoretic descriptions of the induced maps Fg(ξ).

The goal of the project presented in [Ma] and here is to provide a homotopy theoretic
description of the spaces Fg(V) natural in V, i.e. to describe the functor Fg . This will allow
us to let dim(V) tend to infinity. Hence it gives us a homotopy theoretic description of the
(homotopy) colimit of the spaces Fg(Rn), a space which might be considered as the block
structure space of RP∞ and which, as explained in the introduction to [Ma], is closely
related to certain spaces of stable equivariant (honest, i.e. not blockwise) automorphisms of
spheres. For this purpose another tool is employed, the orthogonal calculus of functors of
Weiss [We]. The desired description should be obtained from the orthogonal calculus Taylor
tower of the functor Fg . This tower yields in particular a first Taylor approximation T 1Fg

of Fg “at infinity”, which is another functor from J to Spaces∗ and comes with a canonical
transformation Fg → T 1Fg . The degree 1 property of T 1Fg implies a homotopy fibration
sequence, natural in V:

Ω∞[(S(V)+ ∧ Θ(1)Fg)hO(1)]→ T 1Fg(0)→ T 1Fg(V).(1.1)

Here S(V) is the unit sphere in V with the antipodal involution, the subscript + denotes
an added base point, Θ(1)Fg denotes the first derivative spectrum of Fg and the subscript
hO(1) denotes a homotopy orbit construction for the symmetry group O(1) ∼= Z2. See [We]
or [Ma] for the definitions and more on the Taylor tower of a continuous functor from J to
Spaces∗.

A first step in the project was made in [Ma]. Namely, it was shown that for V such that
dim(V) ≥ 6 the canonical map Fg(V)→ T 1Fg(V) is a homotopy equivalence. Therefore, if
dim(V) ≥ 6, the homotopy fibration sequence (1.1) can be rewritten as a homotopy fibration
sequence

Ω∞[(S(V)+ ∧ Θ (1)Fg)hO(1)]→ T 1Fg(0)→ Fg(V).(1.2)

It was also shown in [Ma] that πkΘ
(1)Fg is the k-th L-group of the trivial group.

In this paper we make a second step towards a complete analysis of Fg by giving a
fairly complete description of T 1Fg(0), the term in the middle of the homotopy fibration
sequence (1.2). This step turns out to be far from easy.

Let A be the additive category of finitely generated free abelian groups and let A[Z2] be
the additive category of finitely generated free modules over the group ring Z[Z2]. Both of
these have duality functors and hence determine L-groups and L-theory spaces. Our main
result is as follows.

Theorem 2. There is a homotopy fibration sequence

T 1Fg(0) −−−−→ L0(A[Z2]+)
σ̃/8−−−−→ Z .
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The space L0(A[Z2]+) is the standard L-theory space for the group Z2 with the trivial
orientation character. Its homotopy groups are πkL0(A[Z2]+) = Lk(Z+2 ). The map σ̃/8 is
the composition of the transfer L0(A[Z2]+)→ L0(A) and the isomorphism L0(A) ∼= Z

defined by signature over 8. It is onto. See [Wa, Chapter 13A].

In [Ma] mainly the geometric surgery theory of Wall [Wa] was used, but for the proof of
Theorem 2 we switch to the algebraic theory of surgery of Ranicki [Ra]. In the geometric
surgery setup, the block structure space of an n-dimensional closed manifold X fits into the
homotopy fibration sequence, due to Quinn [Qu],

˜S(X )→ N(X )→ Ln(X ),(1.3)

where N(X ) is the space of normal invariants of X and Ln(X ) is the surgery obstruction space
associated with X . The homotopy groups of Ln (X ) are the L-groups of π = π1(X ) with
associated orientation character and with an appropriate dimension shift. Quinn’s homotopy
fibration sequence is the space version of a long exact sequence of (homotopy) groups
usually attributed to Sullivan in the simply connected case, and to Wall in the nonsimply
connected case.

In the algebraic surgery setup the input consists typically of a connected simplicial com-
plex X , an integer n, a universal covering space for X with deck transformation group π
and a homomorphism w :π → Z2. The output is the homotopy fibration sequence, due to
Ranicki [Ra],

S(X , n, w)→ Ln(A∗(X , w))→ Ln (A[π]w).(1.4)

Here all three spaces are L-theoretic spaces constructed from certain additive categories
with chain duality. The homotopy groups πkLn(A[π]w) are again the groups Lk+n of the
group ring Z[π] with the w-twisted involution.The homotopy groups πkLn(A∗(X , w)) are
better known as the generalized homology groups Hk+n of X with w-twisted coefficients
in the L-theory spectrum of the trivial group. We should perhaps add that our conventions
here are such that we have strict 4-periodicity, S(X , n, w) � Ω4S(X , n, w) for all n ∈ Z, in
addition to the spectrum property S(X , n + 1, w) � ΩS(X , n, w) which Ranicki also insists
on in most circumstances.

If X is a triangulated closed n-manifold and w is its orientation character, then modulo a
small modification the sequence (1.4) can be identified with the sequence (1.3) by a result
of [Ra]. (In this situation we usually write S(X ) instead of S(X , n, w).) To be more precise
the first terms in the sequences (the two versions of the block structure space) are related
via a homotopy fibration sequence

˜S(X )→ S(X )→ Z.(1.5)

The advantage of the algebraic setup is that S(X ) is much more tractable from the point of
view of algebraic topology: it is an infinite loop space and it is 4-periodic as such, almost by
definition. More specifically, this setup enables us to state and prove in sufficient naturality
two crucial results, called 4-periodicity and Thom isomorphism in Section 2, which we are
unable to state or prove in the geometric setting.
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But for us the algebraic setup has some disadvantages, too. No triangulation is invariant
under the action of the orthogonal group O(V) on V. Therefore it is not possible to define
a continuous functor from J to Spaces∗ by a formula such as V 
→ S(RP(V)). Instead
we construct a continuous functor Fa from J to Spaces∗ along the following lines. For V
in J, the value Fa(V) is a colimit of spaces S(X ), where X runs through a directed system
of generalized simplicial complexes obtained from certain generalized triangulations of
RP(V). Of course, the space Fa(V) will have the homotopy type of S(RP(V)).

We emphasize that, although Fa is better behaved than Fg from the orthogonal calculus
point of view, its behavior on objects V in J of dimension < 3 is still not good. This is due
to the fact that the map RP(V)→ RP(W) induced by a morphism V → W in J need not
be 1-connected if dim(V) < 3. However, that difficulty can be overcome and we have the
following result which easily implies Theorem 2:

Theorem 1. We have T 1Fa(0) � L0(A[Z2]+).

The algebraic surgery approach also gives us the following:

Remark. The sequence (1.2) is a homotopy fibration sequence of infinite loop spaces.

Returning to the questions raised at the beginning of this introduction, recall that in order
to use (1.2) for a natural description of Fg(V) we would still need to understand (1) the
spectrumΘ(1)Fg with the action of O(1), and (2) the first map in the sequence (1.2). We are
optimistic in regard to (1), because we already know the homotopy groups of Θ(1)Fg and
because the task has a neat formulation within algebraic surgery theory. Some new ideas
are needed for (2).

The paper is organized as follows. In Section 2 we give the proof of Theorem 1, modulo
certain Theorems A, B, C and D. Theorem C was proved in [Ma]. In the rest of the present
paper we prove Theorems A, B and D. Specifically, in Section 3 we give a review of the
tools from algebraic surgery we need. Section 4 contains a somewhat abstract preview of
the functor Fa while Sections 5 and 6 deliver the technical details. Section 7 contains the
proofs of Theorems A and B and Section 8 the proof of Theorem D. This completes the proof
of Theorem 1 and it also reduces Theorem 2 to Theorem 1. At the very end of Section 8 we
also explain the remark above on infinite loop space structures.

2 Proof of Theorem 1

This section contains the statements of Theorems A, B, C and D and the proof of Theorem
1 assuming these theorems. The functor Fa sketched in the introduction appears in the
statements. Although it has a complicated definition, for the purposes of this section we
may pretend that it is given by Fa :V 
→ S(RP(V)). The precise definition of Fa and the
proofs of the theorems, except for Theorem C which was proved in [Ma], are themes of the
subsequent sections.

Theorem A. For an oriented W ∈ J such that 4 divides dim(W), there is a homotopy
equivalence Fa(V)→ ΩWFa(V), natural in V.

This is just the usual 4-periodicity in L-theory. — Our next statement is about a Thom
isomorphism in algebraic L-theory. Let V and W be objects in J. As one would expect,
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there is a join map S(RP(W)) → S(RP(V ⊕ W)) and we do not generally have a way of
extending that to a map between the two homotopy fiber sequences (1.4) for X = RP(W)
and X = RP(V ⊕ W), respectively. But it is relatively easy to supply the lower horizontal
arrow in a homotopy commutative diagram

S(RP(W)) S(RP(V ⊕ W))

Lm (A∗(RP(W))) Ln(A∗(RP(V ⊕ W)))

where m = dim(W)− 1 and n = dim(V ⊕ W) − 1. It is also easy to promote the resulting
composite map

ζ :S(RP(V ⊕ W))→ Lm(A∗(RP(W)))(2.1)

to a natural transformation between functors in the variable V (note that the target functor
is constant). Our Thom isomorphism result reads as follows.

Theorem B. Let W in J be oriented, of even dimension. Then there exists a functorΦW on
J, which is polynomial of degree ≤ 0, a natural transformation ζ :Fa(− ⊕ W)→ ΦW(−),
and a natural map

ΩWFa(V)→ hofiber[Fa(V ⊕ W)
ζ→ ΦW (V)]

which is a homotopy equivalence for dim(V) ≥ 3.

When V = 0 the map ζ :Fa(V ⊕W))→ ΦW(V) in Theorem B specializes to Ranicki’s map
ζ :S(RP(W))→ Lm (A∗(RP(W))) in (2.1).

As the referee has pointed out, there is a considerable overlap between Theorems A and
B. Theorem B implies that the first derivative spectrum

Θ(1)ΩWFa � ΩWΘ(1)Fa

is homotopy equivalent to the first derivative spectrum

Θ(1)Fa(— ⊕ W) � ΣWΘ(1)Fa.

When W = R2, this implies 4-periodicity of Θ(1)Fa in the form of a weak equivalence of
spectra with O(1)-action

Θ(1)Fa � S4 ∧Θ(1)Fa .

But here, in the Theorem B setting, the S4 is the one-point-compactification of a direct sum
of two regular representations of O(1), whereas in theorem A it would be an S4 with the
trivial action of O(1).

The following is a simple reformulation of the main result of [Ma].
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Theorem C. Let W ∈ J be such that dim(W) ≥ 6. Then the functor

V 
→ Fg(V ⊕ W)

on J is polynomial of degree ≤ 1.

The following theorem relates the two functors Fg and Fa .

Theorem D. Let V ∈ J be such that dim(V) ≥ 6. Then there is a natural homotopy fibration
sequence

Fg(V)→ Fa(V)→ Z.

On the level of spaces this homotopy fibration sequence is just the well-known relationship
(1.5). The issue that needs to be addressed is the naturality in V.

Proof of Theorem 1. Theorems C and D imply that for W in J with dim(W) ≥ 6, the functor
V 
→ Fa(V ⊕ W) is polynomial of degree ≤ 1 without any low-dimensional deviations.
Now suppose in addition that W is even-dimensional and oriented. Let Fa

W be the functor
taking V in J to the homotopy fiber of ϕ : Fa(V ⊕ W) → ΦW(V) in Theorem B. Then
Fa

W is polynomial of degree ≤ 1 without any low-dimensional deviations, because it is the
homotopy fiber of a natural transformation between a functor which is polynomial of degree
≤ 1 and another functor which is polynomial of degree ≤ 0. Therefore we have

Fa
W(V) � T 1Fa

W (V)

for all V in J. From Theorem B we obtain

T 1Fa
W(V) � T 1Ω

WFa(V)

for all V ∈ J, since Fa
W and ΩWFa “agree” on objects V of sufficiently large dimension.

Now suppose in addition that 4 divides dim(W). Then we get from Theorem A that

T 1Ω
WFa(V) � T 1Fa(V)

for all V in J. Composing these three natural homotopy equivalences, we get Fa
W(V) �

T 1Fa(V) for all V in J. Specializing to V = 0 and unraveling the definition of Fa
W (0) we

obtain the statement of Theorem 1.

3 Overview of algebraic surgery

The aim of this section is to recall the homotopy fibration sequence of algebraic surgery due
to Ranicki [Ra]. It has the form

S(X , w)→ Ln(A∗(X , w))→ Ln(A[π]w),(3.1)
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where X is a connected simplicial complex (equipped with a universal covering, with deck
transformation group π) and w : π → Z2 is a homomorphism. More generally, X can be
a Δ-complex (see [Hat] and Definition 3.3 below). If X is an n-dimensional manifold and
w : π → Z2 is the orientation character, then up to a small modification the homotopy
fibration sequence (3.1) can be identified with the geometric homotopy fibration sequence
of surgery

˜S(X )→ N(X )→ Ln(X ).(3.2)

This section contains essentially no new results. It is a review of definitions and tools we
need from [Ra] (see also [RaWe] and [We2]). We focus mostly on the case where w is
trivial, but towards the end of the section we indicate the modifications needed if w is not
trivial (the non-orientable case). All spaces in (3.1) are certain L-theory spaces associated
with various additive categories with chain duality and all the maps in (3.1) are induced by
functors between these categories.

Let A be an additive category and let B(A) denote the category of chain complexes of
A-objects, graded by Z and bounded below and above. A contravariant additive functor
T :A → B(A) can be extended to a contravariant additive functor T :B(A)→ B(A) as
follows. Let C be a chain complex in B(A). Then we can define a double complex

T (C)p ,q = T (C−p )q .

The chain complex T (C) ∈ B(A) is the total complex of this double complex.
We use the notion of a chain duality T : A → B(A) on A, which is recalled below, to

define symmetric and quadratic structures on objects of B(A).

Definition 3.1. A chain duality on an additive category A is a contravariant additive functor
T : A→ B(A) together with a natural transformation e from T 2 : A→ B(A) to id : A→
B(A) such that for each M in A

(1) eT (M ) · T (eM ) = id : T (M )→ T 3(M )→ T (M ),
(2) eM : T 2(M )→ M is a chain homotopy equivalence.

For a chain complex C ∈ B(A) its chain dual T (C) is defined by the extension of T
described before the definition. — A chain duality T : A→ B(A) can be used to define a
tensor product of two objects M , N in A over A as

M ⊗A N = HomA(T (M ), N ).(3.3)

This is a chain complex of abelian groups.
The main examples of additive categories with chain duality we will consider are the

following.

Example 3.2. Let R be a ring with involution r 
→ r̄ and let A(R) be the category of finitely
generated projective left R-modules. On the category A(R) we can define a chain duality
A → A by T (M ) = HomR(M , R). The involution can be used to make T (M ) into a f.g.
projective left R-module. The dual T (C) of a finite chain complex C in A(R) is HomR(C, R).
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The most important example for us is R = Z[π], the group ring of a group π, with
involution given by ḡ = g−1 for g ∈ π.

The category A(Z) with chain duality will sometimes be denoted just by A, and the
category A(Z[π]) will sometimes be denoted A[π].

In this paper we write Δ for the category with objects n = {0, 1, . . . , n}, for n = 0, 1, 2, . . . ,
and order-preserving injective maps as morphisms. A Δ-set is a functor from Δop to sets.
A Δ-set Y has a geometric realization |Y|. It is the quotient of

∐

n Yn ×Δn by the relations
(u∗y, x) ∼ (y, u∗x) for y ∈ Yn , x ∈ Δm and u :m→ n a morphism in Δ.

Out of a Δ-set Y, we can make a category cat(Y) with object set
∐

n Yn , where a morphism
from σ ∈ Ym to τ ∈ Yn is a morphism u :m → n in Δ with u∗τ = σ. We write u : σ→ τ
for short.

Definition 3.3. A Δ-complex is a space X together with a Δ-set sX and a homeomorphism
|sX | → X . It is considered finite if sX is finite (meaning that the disjoint union of the sets
sXn , n ∈N is finite). When we write simplex in X, for a Δ-complex X , we mean a simplex
in sX .

Example 3.4. Let A be an additive category and let X be a finite Δ-complex. Then there
are defined two additive categories A∗(X ) and A∗(X ) of X -based objects in A. An object
M of A is X -based if it comes as

M =
∑

n≥0

∑

σ∈sXn

M (σ).

A morphism f :M → N in A∗(X ), resp. A∗(X ), is a matrix f = (fu) of morphisms
fu :M (σ) → N (τ ) in A, resp. fu :M (τ ) → N (σ) in A, with entries corresponding to
morphisms u : σ → τ between simplices of X . Composition of morphisms is given by
matrix multiplication.

Such a morphism f can be thought of as an upper triangular, resp. lower triangularmatrix.
For example, f is an isomorphism if and only if all diagonal entries, the fu in which u is an
identity, are invertible in A.

Given N in A and σ in X , let Nσ in A∗(X ), resp. A∗(X ), be defined by Nσ(σ) = N
and Nσ(τ ) = 0 for τ �= σ. Clearly N → Nσ is a functor from A to A∗(X ), resp. A∗(X ).
This functor has a right adjoint M → M [σ] from A∗(X ), resp. A∗(X ), to A. We have
M [σ] =

∑

σ→τ M (τ ), resp. M [σ] =
∑

τ→σ M (τ ) where the direct sum is taken over all
morphisms σ → τ , resp. τ → σ, with fixed σ and arbitrary τ . For a morphism f :M0 →
M1 in A∗(X ), resp. A∗(X ), the induced morphism M0[σ] → M1[σ] is a sum of terms
fu : M0(τ )→ M1(ρ), one such for every diagram

σ→ τ
u−→ ρ, resp. ρ

u−→ τ → σ

of simplices in X .
Now let A be an additive category with chain duality T :A → B(A). Then T can

be extended to chain dualities on A∗(X ) and A∗(X ). However, rather than defining the
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extension directly, we focus on the tensor products,⊗A∗(X ) and ⊗A∗(X ), which are easier to
motivate. Suppose therefore that M and N are X -based objects of A. Then

(M ⊗A∗(X ) N )r =
∑

σ∈sX

∑

λ←σ→μ
(M (λ) ⊗A N (μ))r−|σ|

(M ⊗A∗(X ) N )r =
∏

σ∈sX

∑

λ→σ←μ
(M (λ)⊗A N (μ))r+|σ| .

In the case where the Δ-complex X is a simplicial complex (with ordered vertex set, say),
these graded abelian groups can be regarded as chain subcomplexes of C∗X ⊗Z (M ⊗A N )
and HomZ(C∗X , M ⊗A N ) respectively, where C∗X is the cellular chain complex of X . In
the general case, we can still say that

σ 
→ ∑

λ←σ→μ
M (λ) ⊗A N (μ)

σ 
→ ∑

λ→σ←μ
M (λ) ⊗A N (μ)

is a contravariant (resp. covariant) functor, with chain complex values, on the category of
simplices of X . This determines in the usual way a double chain complex of abelian groups.
The corresponding total chain complex is M ⊗A∗(X ) N , resp. M ⊗A∗(X ) N . The adjunction
(3.3) then determines the chain duality functors A∗(X ) → B(A∗(X )) and A∗(X ) →
B(A∗(X )) as follows. Let M be an object in A∗(X ), resp. A∗(X ). Then

T (M )r (σ) =

{

T (M [σ])r+|σ|,
T (M [σ])r−|σ|,

with differential

dT (M )(u : σ→ τ ) :

{

T (M [τ ])→ T (M [σ])

T (M [σ])→ T (M [τ ])

equal to dT (M [σ]) if σ = τ , equal to

{

(−1)iT
(

u∗ : M [τ ]→ M [σ]
)

(−1)iT
(

u∗ : M [σ]→ M [τ ]
)

if |τ | = |σ| + 1 and u omits the i-th vertex, and equal to 0 for all other σ→ τ .

Remark 3.5. An object M in A∗(X ) determines a contravariant functor M � from the cate-
gory of simplices of X to A by M �(σ) = M [σ]. We call such a contravariant functor from
the category of simplices of X to A, or any isomorphic one, cofibrant. Similarly an object
M in A∗(X ) determines a covariant functor M � from the category of simplices of X to A by
M �(σ) = M [σ]. Again we call such a covariant functor, or any isomorphic one, cofibrant.
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A morphism f : M → N in A∗(X ) induces a natural transformation f� :M � → N �, and vice
versa. A morphism f :M → N in A∗(X ) induces a natural transformation f � :M � → N �,
and vice versa. In this way A∗(X ) and A∗(X ) are equivalent to, and could be re-defined as,
certain categories of functors on the category of simplices of X . There are situations when
we have to resort to these alternative definitions.

Example 3.6. For more motivation of the duality on the categories of X -based objects here
is an example. To start with let X be a finite simplicial complex with ordered vertex set
and let X ′ be its barycentric subdivision. The simplices σ of X correspond to the vertices
σ̂ of X ′. For a simplex σ of X its dual cell D(σ, X ) is the subcomplex of X ′ spanned by the
simplices with vertex set of the form

{τ̂0, τ̂1, . . . , τ̂p }

where τ0 contains σ and τ0 ⊂ τ1 ⊂ · · · ⊂ τp . Its “boundary” is spanned by all simplices
in D(σ, X ) which do not have σ̂ as a vertex. The dual cell D(σ, X ) is contractible. Apart
from that it does not always have the properties that we would expect from a cell (such
as being homeomorphic to a euclidean space), but it has the dual properties. In particular,
D(σ, X ) � ∂D(σ, X ) has a trivial normal bundle in X with fibers homeomorphic to R|σ|.

Let M be a closed n-dimensional topological manifold, and let f : M → X be a map
transverse to the dual cells of X . Then

(M [σ], ∂M [σ]) = f −1(D(σ, X ), ∂D(σ, X ))

is an (n−|σ|)-dimensional manifold ([Ra, Proof of Theorem 16.16]). The collection {M [σ]|
σ in X }, or more precisely, the contravariant functor σ 
→ M [σ], is called an X -dissection
of M . In this situation there exists a structure of a CW-space on M such that each M [σ] is a
CW-subspace. The cellular chain complex C∗M can then be understood as a chain complex
in B(A∗(X )) via the decomposition

C∗M =
∑

σ
C∗(M [σ], ∂M [σ]).

We may expect this to be self-dual, with a shift of n, since M is a closed manifold. The dual
of C∗M in A∗(X ) is by definition

T (C∗M ) =
∑

σ
C−|σ|−∗(M [σ]).

The ordinary Poincaré duality homotopy equivalences

C∗(M [σ], ∂M [σ]) � Cn−|σ|−∗(M [σ])

suggest that ΣnT (C∗M ) is indeed homotopy equivalent in A∗(X ) to C∗M . This will be
confirmed later.
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Now we need to generalize these observations from the setting of simplicial complexes
to that of Δ-complexes. For a Δ-complex X and a simplex σ in X , we have the category of
simplices of X under σ. Its objects are morphisms u : σ → τ where σ is fixed and τ in X
is variable. Its nerve is a Δ-set and the corresponding Δ-complex is, by definition, the dual
cell D(σ, X ). The boundary ∂D(σ, X ) corresponds to the nerve of the full subcategory with
objects u : σ→ τ where u is not an identity.

The dual cell D(σ, X ) is contractible, because the category of simplices of X under σ has
an initial object. There is a canonical map

cσ : D(σ, X ) −→ X

defined as follows. A k-simplex of D(σ, X ) corresponds to a diagram

σ→ τ0 → τ1 → · · · → τk

of simplices in X . The vertices of that k-simplex are the resulting σ→ τi for i = 0, 1, . . . , k.
The restriction of cσ to the k-simplex is the “linear” map taking the vertex σ → τi to the
barycenter of τi in X .

The map cσ need not be injective. However, it is locally injective, it embeds D(σ, X ) �
∂D(σ, X ), and the image of that restricted embedding has a trivialized normal bundle in X ,
with fibers homeomorphic to R|σ|. This results in a stratification of X where the strata have
the form

X (σ) = cσ(D(σ, X ) � ∂D(σ, X ))

and each stratum has a trivialized normal bundle with fiber homeomorphic to a euclidean
space.1 The closure X [σ] of X (σ) in X is the union of all X (τ ) for which there exists a
morphism σ → τ . (Zeeman’s dunce hat, the two-dimensional Δ-complex with a single
0-simplex, a single 1-simplex and a single 2-simplex, is an instructive example.)

Let M be an n-dimensional topological manifold. Any map f : M → X is homotopic
to a map transverse to the stratification of X by subsets X (σ). See [Ra, Proof of Theorem
16.16]. If f is transverse to the stratification, then the pullback of f and cσ is a manifold
M [σ] with boundary ∂M [σ]. Any morphism σ→ τ in X determines a map M [τ ]→ M [σ]
which, if |τ | > |σ|, factors through ∂M [σ]. That map is locally an embedding and it embeds
M [τ ]� ∂M [τ ]. The functor σ 
→ M [σ] together with the identification colimσM [σ] ∼= M
is called an X -dissection of M . If M is a smooth or PL manifold it is possible to equip the
functor σ 
→ M [σ] with a CW-structure. (A CW-structure on a contravariant functor F from
a small category to spaces is a filtration of F by subfunctors Fi for i = −1, 0, 1, 2, 3, . . . ,
where F−1 = ∅ and Fi is obtained from Fi−1 by “attaching” functors of the form a 
→
Di ×∐λ hom(a, bλ) using natural attaching maps Si ×∐λ hom(a, bλ) → Fi−1(a). If F
comes with a CW-structure, we also say that F is a CW-functor. See [Dro] for more details.)

1 A stratification of a topological space X is a partition into locally closed subspaces X (i), i ∈ I ,
some index set, such that for each i ∈ I the closure of X (i) is the union of X (j ) for j ∈ J for some
J ⊂ I .
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The cellular chain complex C∗M can then be understood as a chain complex in B(A∗(X ))
via the decomposition

C∗M =
∑

σ
C∗(M [σ], ∂M [σ])

where C∗(M [σ], ∂M [σ]) is the cellular chain complex of M [σ]/∂M [σ]. The dual of C∗M
in A∗(X ) is

T (C∗M ) =
∑

σ
C−|σ|−∗(M [σ]).

If M is (only) a topological manifold, and f :M → X is transverse to the stratification
of X by subsets X (σ), then we can still construct a contravariant functor σ 
→ F[σ] with
CW-structure from the category of simplices of X to the category of spaces, and a natural
homotopy equivalence F[σ]→ M [σ], for σ in X . Then ∂F[σ] is well defined: it is the CW-
subspace of F[σ] containing all the cells which come from some F[τ ] via some u : σ→ τ .
The object

C∗F =
∑

σ
C∗(F[σ], ∂F[σ])

in B(A∗(X )) is a good substitute for a possibly nonexistent C∗M .

A chain duality T : A → B(A) can be used to define symmetric and quadratic chain
complexes in B(A) as follows. Firstly, notice that given two objects M and N of A, their
tensor product M ⊗A N possesses a symmetry isomorphism

TM ,N : M ⊗A N → N ⊗A M

given by taking

f ∈ (M ⊗A N )n = HomA(T (M )−n , N )

to

TM ,N (f ) ∈ (N ⊗A M )n = HomA(T (N )−n , M )

where

TM ,N (f ) = eM · T (f ) : T (N )n → T (T (M )−n)−n ⊆ T 2(M )0 → M .

This tensor products extends to a tensor product C⊗A D of chain complexes C, D in B(A)
and there is also a symmetry isomorphism

TC,D : C ⊗A D→ D ⊗A C.
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If C = D this makes C⊗A C into a finite chain complex of Z[Z2]-modules. Now let W be
the standard Z[Z2]-resolution of Z, i.e. it is a chain complex of Z[Z2]-modules

W = · · ·Z[Z2]
1+T−−→ Z[Z2]

1−T−−→ Z[Z2]→ 0

concentrated in non-negative degrees. Then there are the following two chain complexes of
abelian groups

HomZ[Z2](W, C ⊗A C),

W ⊗Z[Z2] (C ⊗A C).

Definition 3.7. An n-dimensional symmetric algebraic complex in B(A) is a pair (C,ϕ) with
C a chain complex in B(A) and ϕ an n-cycle in HomZ[Z2](W, C⊗A C). An n-dimensional
quadratic algebraic complex in B(A) is a pair (C,ψ) with C a chain complex in B(A) and
ψ an n-cycle in W ⊗Z[Z2] (C ⊗A C).

We note that in the above definition it is not required that the chain complex C is concentrated
in dimensions from 0 to n, it is only required that it is bounded below and above. The
dimension n is associated with the symmetric structureϕ or with the quadratic structure ψ.

An n-dimensional symmetric structure ϕ on a chain complex C can be described as a
collection of chains in HomA(T (C), C),

ϕ = {ϕs : T (C)−∗ → Cn−∗+s | s ≥ 0}
satisfying certain relations.

An n-dimensional quadratic structure ψ on a chain complex C can be described as a
collection of chains in HomA(T (C), C),

ψ = {ψs : T (C)−∗ → Cn−∗−s | s ≥ 0}
satisfying certain relations.

An n-dimensional quadratic structure ψ on C determines an n-dimensional symmetric
structureϕ on C by ϕ0 = (1+T )ψ0 and ϕs = 0 for s > 0. We describe this relationship by
writing ϕ = (1+ T )ψ.

Definition 3.8. For C in B(A), an n-cycle in C ⊗A C ∼= HomA(TC, C) is nondegenerate
if the corresponding chain map TC → C of degree n is a chain homotopy equivalence.
An n-dimensional symmetric algebraic Poincaré complex (SAPC) in B(A) is a symmetric
algebraic complex (C,ϕ) such that ϕ0 is nondegenerate. An n-dimensional quadratic alge-
braic Poincaré complex (QAPC) in B(A) is a quadratic algebraic complex (C,ψ) such that
(1+ T )ψ0 is nondegenerate.

Example 3.9. Let X be a connected finite CW-complex and ˜X → X a universal covering
with deck transformation group π. The diagonal map

∇ :X → ˜X ×π ˜X
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is a Z2-map for the trivial action of Z2 on the source and the permutation action on the
target. It is not cellular in general. However it is easy to construct a cellular Z2-map

∇� :EZ2 × X → ˜X ×π ˜X
which is Z2-homotopic to the composition of ∇ just above with the projection EZ2×X →
X . Here EZ2 can be taken as the universal (=double) cover of BZ2 = RP∞, with the
standard CW-structure on RP∞. Hence the map of cellular chain complexes induced by∇�

takes the form

W ⊗ C∗X −→ C∗˜X ⊗Z[π] C∗˜X

with adjoint

C∗X −→ HomZ[Z2](W, C∗˜X ⊗Z[π] C∗˜X ).

Regard now C∗˜X as an object in B(A[π]), with A[π] as in Example 3.2. Then by all the
above, any n-cycle μ in C∗X determines an n-dimensional symmetric structure ϕ(X ) on
C∗˜X . If X is an orientable Poincaré duality space and μ represents a fundamental class [X ],
then ϕ0 is nondegenerate and so

(C∗˜X ,ϕ(X ))

is an n-dimensional SAPC.

Example 3.10. Let (f , b) : M → X be a degree one normal map of n-dimensional closed
manifolds or Poincaré duality spaces, where X is connected and equipped with a universal
covering. Denote by K(f ) the algebraic mapping cone of the Umkehr map of chain complexes

f ! : C∗˜X � Cn−∗
˜X

f n−∗
−−−−−−→ Cn−∗

˜M � C∗ ˜M .

As explained just above, C∗˜X comes with a structure of n-dimensional SAPC over Z[π].
This projects to a structure of n-dimensional SAPC on K(f ). Ranicki in [RaLMS2], [Ra]
refines the latter to an n-dimensional QAPC on (K(f ),ψ(f )).

In the next definition, the standard simplex Δn is regarded as a simplicial complex in the
usual way. Each face inclusion Δn−1 → Δn induced by the monotone injection {0, 1, . . . ,
n − 1} → {0, 1, . . . , n} induces an additive functor di :A

∗(Δn) → A∗(Δn−1) which
commutes with the chain dualities. We identify A∗(Δ0) with A.

Definition 3.11. Two n-dimensional SAPC (QAPC) in B(A), say (C,ϕ) and (C′,ϕ′), are
called cobordant if there exists an n-dimensional SAPC (QAPC), say (D,ψ) in B(A∗(Δ1)),
such that d0(D,ψ) ∼= (C,ϕ) and d1(D,ψ) ∼= (C′,ϕ′).

With the alternative definition of A∗(Δ1) outlined in Remark 3.5, the cobordism relation
is an equivalence relation on n-dimensional SAPC (QAPC). The direct sum makes the
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cobordism classes of SAPC (QAPC) into an abelian group, where the inverse of [(C,ϕ)] is
given by [(C,−ϕ)].

Definition 3.12. The group of cobordism classes of n-dimensional SAPC in B(A) is denoted
by Ln(A). The group of cobordism classes of n-dimensional QAPC in B(A) is denoted by
Ln(A).

Example 3.13. For the category A[π] with chain duality as in Example 3.2, the L-
groups Ln(A[π]) are the usual symmetric L-groups Ln(π) of Mishchenko and the L-groups
Ln(A[π]) are the quadratic L-groups Ln(π) of Wall (see [Ra]).

The L-groups are in fact the homotopy groups of certain spaces. These are defined as Δ-sets
in the following way.

Definition 3.14. Let Ln(A), resp. Ln(A), denote the Δ-set whose k-simplices are n-dimen-
sional SAPC, resp. QAPC in the category A∗(Δk). The face maps are induced by the
functors di : A∗(Δk)→A∗(Δk−1). We use the alternative definitions of A∗(Δk) given in
Remark 3.5.

Example 3.15. With A[π] as in Example 3.2, the L-theory space Ln(A[π]) is the L-theory
space Ln(π) of Quinn, with homotopy groups πkLn(π) = Lk+n(π).

Remark 3.16. The assignment ψ 
→ (1 + T ) · ψ for (C,ψ) an n-dimensional QAPC in
B(A) defines a symmetrization map (1+ T ) : Ln(A)→ Ln(A).

Let X be a finite Δ-complex. We now have the definitions of the spaces Ln(A∗(X )) and
Ln(A[π]) from the homotopy fibration sequence (3.1), ignoring orientation matters which
will be discussed later. Assuming A = A(Z) for simplicity, we proceed to describe the
map α from Ln(A∗(X )) to Ln(A[π]) which is called assembly.

Suppose that X comes with a principal π-bundle p :X � → X . (In most applications this
will be a universal covering for X , and X will be connected, but we do not have to assume
that now.) The map α is induced by an additive functor, also denoted α. Define

α : A∗(X )→A[π]

on objects by

α(M ) =
∑

σ∈sX �

M (p (σ))

withπ acting on the right-hand side by permuting summands in the obvious way.A morphism
f :M → N in A∗(X ) induces α(f ) : α(M )→ α(N ), which we define in matrix notation by

α(f )(σ,τ ) =
∑

u : σ→τ
fp (u)

where u : σ→ τ in X � and p (u) : p (σ)→ p (τ ) is the induced morphism in X .
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In order to see that the assembly functor α induces a map of the L-spaces one has
to see that it “commutes” with the chain dualities as in Examples 3.2, 3.4, or with the
corresponding tensor products. We choose the tensor product option. The coefficient system
σ 
→∑λ←σ→μM (λ) ⊗A N (μ) on X comes with an evident natural transformation to the
constant coefficient system σ 
→ α(M )⊗A[π] α(N ), due to the fact that a diagram such as
λ ← σ → μ in X determines a preferred path class in X connecting the barycenters of
λ and μ. Passing to the cellular chain complexes associated with these coefficient systems
gives

M ⊗A∗(X ) N −→ C∗X ⊗
(

α(M )⊗A[π] α(N )
)

.

We compose with the augmentation C∗(X )→ Z to get

M ⊗A∗(X ) N −→ α(M )⊗A[π] α(N )

and more generally

C ⊗A∗(X ) D −→ α(C)⊗A[π] α(D)

for objects C and D in B(A∗(X )). We use this to transport symmetric and quadratic struc-
tures. Nondegeneracy is preserved, so that QAPC are mapped to QAPC. It follows that we
have a well defined map of L-spaces

α : Ln(A∗(X ))→ Ln(A[π]),(3.4)

which is also called assembly. It is an algebraic version, due to Ranicki, of the assembly map
of Quinn [Qu]. Apart from being algebraic, it also incorporates Poincaré duality to switch
from a cohomological setup to a homological one.

Remark 3.17. In the above construction we indicated how an n-dimensional QAPC in
B(A∗(X )), say (C,ψ), determines an assembled n-dimensional QAPC in B(A[π]), denoted
α(C,ψ). For the sake of readability we will sometimes omit the prefix α in the sequel,
provided it is clear enough in which category we are working.

Remark 3.18. The spaces Ln(A) can be arranged into anΩ-spectrum L•(A), with homotopy
groups πkL•(A) ∼= Lk(A) for k ∈ Z. Beware that Ln(A) is the (−n)-th space in the Ω-
spectrum L•(A). With our conventions, Lk(A) is isomorphic to Lk+4(A) for all k ∈ Z,
and indeed L•(A) � Ω4L•(A). We also have Ranicki’s law

πk(Ln(A∗(X ))) ∼= Hn+k (X ; L•(A))

for k, n ∈ Z, and to be more precise L•(A∗(X )) � X+∧L•(A). See [Ra] for details. When
A is the category of f.g. free Z-modules with the standard chain duality, then we write L•
for L•(A).

Example 3.19. Let (f , b) : M → N be a degree one normal map of closed n-dimensional
manifolds and g : N → X be a map to a simplicial complex X such that both gf and g are
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transverse to the dual cells of X . By Example 3.6 we have X -dissections M ∼= colimM [σ]
and N ∼= colimN [σ], so that C∗M and C∗N can be regarded as objects in B(A∗(X )), for
suitable CW-structures on M and N . (As it stands this holds only if M and N are smooth
or PL manifolds. For topological manifolds use the CW approximations as described in
3.6). By analogy with Example 3.9, there are preferred structures of n-dimensional SAPC
on C∗M and C∗N , as objects of B(A∗(X )). By analogy with Example 3.10, there is an
algebraic Umkehr map

f ! :C∗N −→ C∗M

in B(A∗(X )) with mapping cone K(f ), say. The resulting structure of n-dimensional SAPC
on K(f ), as an object of B(A∗(X )), has a preferred refinement to a QAPC structure ψ. We
remark that K(f )(σ) for a simplex σ in X can be identified with the mapping cone of an
algebraic Umkehr map

C∗(N [σ], ∂N [σ]) −→ C∗(M [σ], ∂M [σ])

which is the diagonal entry f !(σ,σ) of f !. See again [Ra] for details. Under assembly, these
constructions match and recover those in Examples 3.9 and 3.10.

Suppose that X is a connected Δ-complex equipped with a universal covering, with deck
transformation group π. One way to define the space S(X , n) is to say that it is the homotopy
fiber of the assembly map

α :Ln(A∗(X ))→ Ln(A[π]).

However, the theory of algebraic bordism categories of [Ra] can be used to provide a more
direct description of the space S(X , n) as the L-theory space associated to certain additive
category with chain duality (with certain restrictions on the objects). The description is as
follows.

Definition 3.20. A k-simplex of the space S(X , n) is an n-dimensional QAPC in the category
B((A∗(X ))∗(Δk)) which assembles to a contractible QAPC in B((A[π])∗(Δk )).

Then there is an obvious inclusion map S(X , n) → Ln(A∗(X )). By the result of [Ra,
Proposition 3.9] the sequence (3.1) consisting of this map and the assembly map α is a
homotopy fibration sequence.

Theorem 4.5 of [We2] provides the following alternative to Definition 3.20:

Definition 3.21. A k-simplex of S(X , n) is an n-dimensional SAPC in the category
B((A∗(X ))∗(Δk)) which assembles to a contractible SAPC in B((A[π])∗(Δk )).
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3.1 Twisted versions

Now we recall modifications in the above machinery needed to treat the general case of
nonorientable or just nonoriented manifolds. It will be necessary to modify the definition
of the tensor product of X -based objects and the tensor product of Z[π]-modules and thus
also the assembly map.

Definition 3.22. A twist on a group π is a π-module Γ whose underlying abelian group
is infinite cyclic. A homomorphism of twisted groups, say from (π,Γ) to (π′,Γ′), is a
homomorphism f : π→ π′ together with an isomorphism Γ→ f ∗Γ′ of π-modules.

Example 3.23. For a connected n-manifold X and a universal covering of X with deck
transformation group π, there is a canonical way to define a twist on π. Let Γ be the n-th
integer homology with locally finite coefficients of the universal covering. The action of π
on Γ is obvious.

We now fix a finite Δ-complex X with a principal π-bundle p : X � → X and a twist Γ on π.
The twist determines a homomorphism w : π→ {±1} such that gz = w(g) · z for all g ∈ π
and z ∈ Γ. On the group ring Z[π] we have the w-twisted involution given by

g 
→ w(g) · g−1.

The group ring with this involution will be denoted by Z[π]w and the category of f.g. free
left Z[π]w-modules will be denoted by A[π]w. We already have a chain duality T on A[π]w

from Example 3.2; unfortunately this is no longer considered quite right and to correct it
we compose with the functor Γ⊗Z. Note that this causes a small change in ⊗A[π]w as
well. Namely, for objects M and N in A[π]w there is the following isomorphism of abelian
groups:

M ⊗A[π]w N = Γ⊗Z[π] (M ⊗Z N ).(3.5)

Similar remarks apply to A∗(X ), which we now rename A∗(X , w) to indicate a modified
chain duality. We already have a chain duality T on A∗(X ) from Example 3.4; this is no
longer considered quite right for A∗(X , w). To correct it we define a “local coefficient
system” Γ! of infinite cyclic groups on X by Γ!(σ) = Γ×π p−1(σ̂), for simplices σ ∈ sX
with barycenter σ̂. Then we compose the old chain duality T with the endofunctor given by

∑

σ∈sX
M (σ) 
→ ∑

σ∈sX
M (σ) ⊗ Γ!(σ)

to obtain the new duality. Hence, for objects M and N of A∗(X ), there is an embedding

M ⊗A∗(X ) N −→ C∗(X ; Γ!)⊗ (M ⊗Z N ).
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The assembly functor α : A∗(X , w)→A[π]w is defined exactly as in the untwisted setting
by

M 
→ α(M ) =
∑

σ�∈sX �

M (σ�)

with M (σ�) := M (p (σ�)), but the old definition of the comparison maps

C ⊗A∗(X ) D −→ α(C)⊗A[π] α(D)

for C, D in B(A∗(X )) has to be modified since its source and target are not what they
were then. This is straightforward. As before, the assembly functor induces a map between
L-theory spaces

α : Ln(A∗(X , w))→ Ln(A[π]w)

also called assembly. Assuming that X is connected and p :X � → X is a universal covering,
one can define the space S(X , n, w) as the homotopy fiber of the assembly map. There is
also a description of this space as an L-theory space of the category of chain complexes in
B(A∗(X , w)) with contractible assembly in B(A[π]w).

3.2 Truncated version

Let X be a finiteΔ-complex with subcomplexes X1 and X2 such that X1∪X2 = X . Ranicki’s
law mentioned earlier in Remark 3.18 can also be formulated by saying that the square of
Ω-spectra

L•(A∗(X1 ∩ X2)) L•(A∗(X1))

L•(A∗(X2)) L•(A∗(X1 ∪ X2))

is a homotopy pushout square. This implies that X 
→ π∗L•(A∗(X )) is a generalized (unre-
duced) homology theory. We now recall some of Postnikov’s method for making truncated
variants of generalized homology theories.

Let X 
→ Q∗(X ) be a generalized homology theory (from finite Δ-complexes to graded
abelian groups, say). Fix r ∈ Z. We define the Postnikov fiber truncation ℘r by

℘r Qn(X ) = im[Qn(Xn−r )→ Qn(Xn−r+1)].

Then ℘r Q∗ is again a generalized homology theory and there are long exact sequences

· · · → Hn−r+1(X ; Qr)→ ℘r+1Qn(X )→ ℘r Qn(X )→ Hn−r(X ; Qr )→ · · ·
where Qr = Qr(∗). For fixed r ≤ n − dim(X ), we clearly have ℘rQn(X ) = Qn(X ).

In our situation there is a space version of this construction which we outline very briefly.
Let (C,ψ) be a k-simplex in Ln(A∗(X )), alias n-dimensional QAPC in (A∗(X ))∗(Δk). We
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say that (C,ψ) is of type ℘r if, for simplices σ ∈ sX , τ ∈ Δk , the chain complex C(σ, τ )
is zero if |σ| − |τ | > n − r + 1, and nullbordant as a QAPC of dimension n − |σ|+ |τ | in
B(A) if |σ| − |τ | = n − r + 1 (with the QAPC structure determined by ψ). The simplices
of type ℘r form a Δ-subset Ln (A∗(X ); ℘r ) of Ln(A∗(X )). Letting n vary, these Δ-subsets
can be arranged into a subspectrum

L•(A∗(X ); ℘r ) ⊂ L•(A∗(X ))

and we have L•(A∗(X ); ℘r ) � X+∧℘r L•(A).The verification, along the lines of Ranicki’s
reasoning for r = −∞, is left to the reader.

For us, only the case of Ln(A∗(X ); ℘1) with dim(X ) = n is of interest. In that case
Ln(A∗(X ); ℘1) is a Δ-subset of Ln(A∗(X )) determined by a condition on the 0-simplices
only. A 0-simplex (C,ψ) of Ln(A∗(X )), alias n-dimensional QAPC in A∗(X ), belongs to
Ln(A∗(X ); ℘1) if and only if (C(σ),ψ|σ) is a nullbordant 0-dimensional QAPC in B(A)
for every n-simplex σ in X . (The higher-dimensional simplices in Ln(A∗(X )) belong to
Ln(A∗(X ); ℘1) precisely if all their vertices do.) Note that if X is connected, then the phrase
for every n-simplex σ can be replaced by for some n-simplex σ.

3.3 Geometric versus algebraic surgery sequence.

For a Δ-complex X which is an n-dimensional connected oriented manifold and a specified
universal covering of X with deck transformation group π, there is the following diagram
of homotopy fibration sequences

˜S(X ) N(X ) Ln(X )

S(X ; ℘1) Ln (A∗(X ); ℘1) Ln(A[π])

(3.6)

where the vertical arrows are homotopy equivalences, and S(X ; ℘1) is defined as the ho-
motopy fiber of Ln(A∗(X ); ℘1)→ Ln(A[π]).

Note that in Example 3.19 we essentially described a map N(X ) → Ln(A∗(X )). This
factors through Ln(A∗(X ); ℘1). Indeed for an n-dimensional simplex σ in X the dual cell
D(σ, X ) is a point σ̂ and for any degree one map f :M → X transverse to σ̂, the inverse
image f −1(σ̂) is a closed 0-manifold of signature 1. (Hence the signature of f −1(σ̂) minus
the signature of σ̂ is 0.) Again there are versions of the identification for the cases when X
is a non-orientable or just non-oriented manifold. The details are again left to the reader.

Remark 3.24. Strictly speaking, in order to define a map N(X )→ Ln(A∗(X )) we should
have added CW-structures as in Example 3.6 and “geometric symmetric structures” (maps
∇� as in Example 3.9) on the manifolds or CW-spaces involved to the geometric data, since
choices of these must be made before the algebraic data can be extracted. However, these
choices are “contractible” choices. Adding them or neglecting them does not change the
homotopy type of N(X ).
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By a result of Ranicki [Ra, Theorem 18.5] the vertical maps in the diagram (3.6) are homo-
topy equivalences. Further note that in our case Q0(∗) = Z and hence we have a homotopy
fibration sequence Ln(A∗(X ); ℘1) → Ln (A∗(X )) → Z and, as a consequence also a ho-
motopy fibration sequence

˜S(X )→ S(X )→ Z.(3.7)

3.4 Products

For (C,ϕ) an m-dimensional SAPC in B(A[π]), and (C′,ϕ′) an n-dimensional SAPC in
B(A[π′]), we have (C ⊗ C′,ϕ ⊗ ϕ′), an (m + n)-dimensional SAPC in B(A[π × π′]).
For (C,ϕ) an m-dimensional SAPC in B(A[π]), and (D,ψ) an n-dimensional QAPC in
B(A[π′]), we have (C ⊗ D,ϕ⊗ ψ), an (m + n)-dimensional QAPC in B(A[π× π′]). See
[RaLMS1, Section 8].

Let X be an m-dimensional, and Y an n-dimensional Poincaré duality CW-complexes
with chosen orientation classes. Then we have a natural isomorphism

(C∗(˜X × ˜Y),ϕ(X × Y)) ∼= (C∗˜X ⊗ C∗˜Y,ϕ(X ) ⊗ ϕ(Y))(3.8)

of (m + n)-dimensional SAPCs in B(A[π1(X × Y)]). See [RaLMS2, Section 8]. We are
assuming that g+eometric symmetric structures on X and Y as in Example 3.9 have been
selected, and use the product geometric symmetric structure on X×Y. A similar but slightly
more complicated statement for normal maps and quadratic structures is available. We do not
formulate this because we will not need it, thanks to the stated equivalence of Definitions 3.21
and 3.20.

4 Orthogonal calculus and products

The orthogonal calculus [We] is about continuous functors from a certain category J of real
vector spaces to the category of spaces. For details and definitions, see also [Ma]. Here we
take another look at orthogonal calculus from a “multiplicative” viewpoint.

Let Jiso be the subcategory of the isomorphisms in J. The objects of Jiso are the finite
dimensional real vector spaces V, W, . . . with inner product, and the space of morphisms
from V to W in Jiso is the space of invertible linear isometries from V to W.

Definition 4.1. Let E and F be continuous functors from Jiso to based spaces. A multipli-
cation on E is a binatural based map m :E(V) ∧ E(W)→ E(V ⊕ W), defined for V and W
in Jiso, which satisfies the appropriate associativity law. A unit for the multiplication is a
distinguished element 1 ∈ E(0) which is a neutral element for the multiplication m. For E
equipped with a multiplication m and a unit, an action of E on F is a binatural based map

a :E(V) ∧ F(W)→ F(V ⊕ W),
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again defined for V and W in Jiso, which satisfies the appropriate associativity law involving
m and a, and has 1 ∈ E(0) acting by identity maps.

Example 4.2. Let E(V) = S0 for all V, with m :E(V) ∧ E(W) ∼= E(V ⊕ W) for all V, W.
For a continuous F from Jiso to based spaces, an action of E on F amounts to an extension
of F from Jiso to J.

Example 4.3. Let E be given as in Definition 4.1, with multiplication m. Fix U in Jiso.
We are going to define an F from Jiso to spaces, with an action of E, in such a way that
F is free on one generator ι ∈ F(U). We set F(W) = ∗ if dim(W) < dim(U). For W with
dim(W)− dim(U) = k ≥ 0 we define

F(W) = mor(U ⊕ Rk , W)+ ∧O(k) E(Rk).

Here “mor” refers to a space of morphisms in Jiso, and the ∧O(k) notation means that
we are dividing by the equivalence relation which identifies (gh, x) with (g, hx) whenever
h ∈ O(k) ⊂ O(U ⊕ Rk). It is clear that F is a functor on Jiso. The multiplication m on E
determines an action of E on F as follows. For x ∈ E(V) we have the left multiplication
mx :E(Rk)→ E(V ⊕ Rk) and we define the action ax :F(W)→ F(V ⊕ W) by

mor(U ⊕ Rk , W)+ ∧O(k) E(Rk)
⏐

⏐



incl.∧mx

mor(U ⊕ V ⊕ Rk , V ⊕ W)+ ∧O(V⊕Rk ) E(V ⊕ Rk)
∼=−−−−→ F(V ⊕ W).

The generator of F is ι = (id, 1) ∈ F(U).
Let F1 be another continuous functor from Jiso to spaces with an action of E. Then a

map v :F → F1 which respects the actions of E is completely determined by v(ι) ∈ F1(U),
which can be prescribed arbitrarily.

Definition 4.4. Given E and F as in Definition 4.1, with multiplication m and action a, we
say that F is free if it has a wedge decomposition F ∼= ∨Fλ where each Fλ is free on one
generator, as in Example 4.3.

Definition 4.5. Let E, F be as in Definition 4.1, with multiplicationm on E and action a of E
on F . An E-CW-structure on F is a collection of subfunctors Fi ⊂ F for i = −1, 0, 1, 2, . . . ,
subject to a few conditions:
• F−1 = ∗ and Fi ⊂ Fi+1 for i ≥ −1;
• F(V) =

⋃

i Fi(V) with the colimit topology, for all V;
• the action of E on F respects each Fi;
• for every i ≥ −1, there exists a pushout square
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Z i ∧ Si
+

⊂−−−−→ Z i ∧Di+1
+

⏐

⏐




⏐

⏐




Fi ⊂−−−−→ Fi+1

where Z i is another functor from Jiso to spaces, with a free action of E, and the (vertical)
arrows respect the actions of E.

The subfunctor Fi is sometimes called the i-skeleton of F .

Lemma 4.6. Let E, F be as in Definition 4.1, with multiplication m on E and action a of E
on F . There exists an E-CW-approximation for F . That is, there exists a weak equivalence
F̂ → F of continuous functors on Jiso with E-action, where F̂ has an E-CW-structure as
in 4.5.

Definition 4.7. Let E1, E2 be functors as in Definition 4.1, with multiplications m1 on
E1 and m2 on E2. Let h :E1 → E2 be a natural transformation respecting the units and
multiplications.We consider continuous functors F from Jiso to pointed spaces, either with
an action of E1 or with an action of E2. Composition with h gives a functor from the category
of functors F as above with an action of E2 to the category of functors F as above with an
action of E1. This functor has a left adjoint, which we call induction along h and denote
by indh . Thus, for F from Jiso to based spaces with an action of E1, we have indhF from
Jiso to based spaces with an action of E2. There is a canonical transformation F → indhF
which “intertwines” the actions and has a universal property.

The induction functor indh as defined above tends to produce pathological results. However,
there are situations where it is well behaved:

Lemma 4.8. Keep the notation of Definition 4.7. Suppose that F from Jiso to based spaces
comes with an action of E1. If F has an E1-CW-structure with skeletons Fi, then indhF has
an E2-CW-structure with skeletons indhFi.

We therefore have something like a “derived induction” procedure which is as follows. Fix
h :E1→ E2 as above and some F from Jiso to based spaces, with an action of E1. Replace F
by an E1-CW-approximation as in Lemma 4.6. Then apply indh to the CW-approximation,
assuming that a multiplicative h :E1→ E2 is given.

Our interest here is mainly in the case where E2(V) = S0 for all V as in Example 4.2.
Then indh of an E1-CW-approximation to F is a continuous functor on J, and that is (still)
the sort of object we are after.

Lemma 4.9. Keep the assumptions of Lemma 4.8. Suppose in addition that the map
h : E1(V) → E2(V) is a based homotopy equivalence for every V. Then the canonical
map F(W)→ indhF(W) is a based homotopy equivalence for every W.

Definition 4.10. Let P be the following monoidal category. Objects of P are pairs (X , u)
where X is a finite Δ-complex homotopy equivalent to a sphere and u : X → X is a free
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involution respecting the Δ-complex structure. Morphisms are Δ-maps, respecting the in-
volutions, which are weak homotopy equivalences. The monoidal operation ∗ is the join:
(X , u) ∗ (Y, v) = (X ∗ Y, u ∗ v). Here X ∗ Y is given as follows. For a k-simplices x ∈ X
and an l-simplex y ∈ Y there is a k-simplex x in X ∗ Y, an l-simplex y ∈ X ∗ Y and a
(k + l+ 1)-simplex x ∗ y ∈ X ∗ Y. The definition of the face maps and of u ∗ v is left to the
reader.

Comment. We will often pretend that P is a small monoidal category. The reader is invited
to add appropriate conditions to Definition 4.10 which ensure that.

Comment. If X is a finite Δ-complex homotopy equivalent to Sm and u is a free involution
on X , then by the Lefschetz trace formula u acts on the reduced m-th homology of X by
(−1)m+1. Using that observation and obstruction theory, one can easily show that the orbit
space X/u is homotopy equivalent to RPm . The case m = −1 is not an exception: in that
case X = ∅ and the reduced (−1)-th homology is ∼= Z. Obviously ∅ is a very important
object of P because it is a unit for the join operation.

We think of P as a combinatorial variant of the monoidal category Jiso (the subcategory
of J in which only isomorphisms are allowed as morphisms, with the monoidal operation
product alias direct sum). The following definitions introduce a construction, essentially a
homotopy Kan extension, which “transforms” a space-valued functor on P into a space-
valued continuous functor on Jiso.

Definition 4.11. For V in Jiso, let PV be the following topological category. An object is a
triple (X , u,λ) where (X , u) is an object of P and λ : X → V � 0 is a map which is
• a homotopy equivalence,
• linear on each simplex of X , and
• satisfies λu(x) = −λ(x).
A morphism from (X , u,λ) to (Y, v, ζ) is a morphism f : (X , u) → (Y, v) in P satisfying
ζf = λ.The topologyon the object class of PV comes from the fact that the last “coordinate”
λ in objects (X , u,λ) can vary continuously (within a finite dimensional space, since λ is
determined by its values on vertices of X ). The topology on the morphism class of PV is
defined in such a way that the square

mor(PV )
target−−−−→ ob(PV)

forgetful

⏐

⏐




⏐

⏐



forgetful

mor(P)
target−−−−→ ob(P)

is a pullback square. Thus the projection functor PV → P is continuous.

Lemma 4.12. The classifying space BPV is contractible.

Proof. We replace the topological category PV by a simplicial category k 
→ PV,k . An
object of PV,k is an object (X , u) of P together with a map

λ :X ×Δk −→ V
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such that, for every z ∈ Δk , the map λz :X → V defined by λz (x) = λ(x , z) defines an
object in PV . A morphism from (X , u,λ) to (Y, v, ζ) is a morphism (X , u) → (Y, v) in P
making a certain triangle commute. It is easy to show that, for fixed j ≥ 0, the canonical
map

∣

∣k 
→ Nj PV,k
∣

∣ −→ Nj PV

is a homotopy equivalence, where N• denotes the nerve construction. Integrating over j , we
conclude that the canonical map from

∣

∣k 
→ BPV,k
∣

∣ to BPV is a homotopy equivalence.
It remains to show that BPV,k is contractible for fixed k ≥ 0. This is a consequence of

the fact that PV,k is a directed category, in the strong sense that every finitely generated
diagram in PV,k admits a co-cone. Namely, suppose that D is a finitely generated category
and f :D → PV,k is any functor. Then there exists a constant functor c :D → PV,k and a
natural transformation f ⇒ c. To construct c, form the “direct limit” of f , not necessarily
an object of PV,k but a well defined finite Δ-complex Z with a free involution, and with a
certain map from Z × Δk to V � 0 respecting involutions. By attaching simplices to Z as
appropriate (details follow), embed Z in an object Z ′ of PV,k .

We explain the last step in detail. The map Z ×Δk → V can be written in adjoint form
as g :Z −→ U where U = map(Δk , V�0) is an open subset of the topological vector space
map(Δk , V) with the compact-open topology. The map g is involution-preserving and linear
on each simplex of Z . It is easy to find a CW-space Z ′ relative to Z , with a free involution
extending the one on Z and permuting the cells of Z ′�Z freely, and an involution-preserving
map

g′ :Z ′ −→ U

extending g. Now it remains to “improve” Z ′ to a Δ-complex with free involutioncontaining
Z as a Δ-subcomplex with free involution, and g′ to a map which is linear on each simplex.
This can be done by induction on the number of cell orbits in Z ′ � Z . Therefore we are left
only with the case where Z ′�Z has exactly two cells, freely interchanged by the involution.
Choosing a characteristic map for one the two cells, we get a commutative diagram

Si−1 ⊂−−−−→ Di

⏐

⏐


∂a

⏐

⏐



a

Z
g−−−−→ U.

The next step is to construct a pair of Δ-complexes (K , L) and a commutative diagram

L
⊂−−−−→ K

⏐

⏐


∂b

⏐

⏐


b

Z
g−−−−→ U

such that ∂b :K → Z is a Δ-map, and the homotopy class of (b, ∂b) is conjugate to the
homotopy class of (a, ∂a) under some homeomorphism (K , L) ∼= (Di, Si−1). This is easy.
Now it only remains to improve b to a map which is linear on each simplex of K . We do
not want to corrupt the homotopy class of b relative to L and ∂b, but we may consider a
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change of the Δ-complex structure of K relative to L. Indeed, by choosing a sufficiently fine
subdivision of K relative to L, and replacing b by the simplexwise linear map which has the
same values as b on the vertices of the subdivided K , we obtain a solution.

Definition 4.13. For a functor Ḡ from P to (well-)based spaces, let G be the continuous
functor on Jiso defined by

G(V) = hocolim
λ : X→V

Ḡ(X , u)

where λ : X → V runs through PV (and the homotopy colimit is “reduced” so that it is
again a based space).

Remark. The topology on PV does influence the topology on G(V). Here we can avoid a
more detailed discussion by saying that there is a pullback square

G(V) −−−−→ BPV
⏐

⏐




⏐

⏐




hocolim Ḡ −−−−→ BP.

Lemma 4.14. Suppose that Ḡ takes all morphisms in P to homotopy equivalences. Then
for any λ : X → V in PV the inclusion Ḡ(X , u) → G(V) determined by λ is a homotopy
equivalence.

Proof. Our hypothesis implies that hocolim Ḡ → BP is a quasi-fibration. Because of
the pullback square just mentioned, it follows that the projection G(V) → BPV is also
a quasi-fibration. But BPV is contractible. Therefore the inclusion of any of the fibers of
G(V)→ BPV into G(V) is a homotopy equivalence.

Lemma 4.15. Let Ḡ0, Ḡ1 and Ḡ2 be functors from P to (well-)based spaces. Any natural
multiplication

Ḡ0(X , u) ∧ Ḡ1(Y, v) −→ Ḡ2(X ∗ Y, u ∗ v)

induces a natural multiplication G0(V) ∧ G1) −→ G2(V ×W).

5 Joins in dissected L-theory

Let A be the additive category of finitely generated free abelian groups, with the standard
chain duality. Let (C, D) and (C′, D′) be chain complex pairs in B(A). We assume the
boundary inclusions D→ C and D′ → C′ are cofibrations, i.e., degreewise split, and to be
quite precise we assume that such degreewise splittings have been specified. Then there is
the product pair (C, D)⊗ (C′ , D′) consisting of C⊗C′ and the subcomplex (C⊗D′)⊕(D⊗D′ )
(D ⊗ C′) as the “boundary”.

Let X and Y be finite Δ-complexes. By a dissection of D over X we mean a splitting
D =

∑

σ∈sX D(σ) of D as a graded abelian group which promotes D to an object of
B(A∗(X )). (Of course, the dissection of D assembles back to D as an object of B(A).)
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Lemma 5.1. A dissection of D over X and a dissection of D′ over Y together determine a
dissection of the boundary of (C, D)⊗ (C′, D′) over X ∗ Y.

Proof. Suppose that the dissections of D and D′ are given by graded group splittings D =
⊕

σ D(σ) and D′ =⊕τ D(τ ). The specified splittings of D→ C and D′ → C′ also give us
identifications C ∼= D⊕ C/D and C′ ∼= D′ ⊕ C′/D′ of graded groups. Hence the boundary
complex of (C, D) ⊗ (C′, D′) splits (as a graded group) into summands

D(σ) ⊗ D′(τ ), D(σ)⊗ C′/D′, C/D ⊗ D′(τ ) .

We now label these summands by simplices of X ∗Y. A summand of the form D(σ)⊗D′(τ )
gets the label σ ∗ τ . A summand of type D(σ) ⊗ C′/D′ gets the label σ, and we note that
X ⊂ X ∗ Y. A summand of type C/D ⊗ D′(τ ) gets the label τ . It is easy to verify that this
labeling defines a dissection.

We next discuss a few variations on the theme of Lemma 5.1 where the pairs (C, D) and
(C′, D′) come with symmetric structures. Notation: We write for example

(D ⊗ D)hZ/2, (D ⊗ D)hZ/2

for HomZ[Z/2](W, D ⊗ D) and W ⊗Z[Z/2] (D ⊗ D), respectively, where W is the standard
Z[Z/2]-resolution of Z. A symmetric structure on a pair (C, D) of chain complexes will be
described as a chainϕ ∈ (C⊗C)hZ/2 whose boundary ∂ϕ is in the subcomplex (D⊗D)hZ/2.
Similarly a quadratic structure on (C, D) will be described as a chainψ ∈ (C⊗C)hZ/2 whose
boundary ∂ϕ is in the subcomplex (D ⊗ D)hZ/2.

Lemma 5.2. Keep the assumptions of Lemma 5.1. Suppose also that the pairs (C, D) and
(C′, D′) are equipped with symmetric structures ϕ and ψ. If the boundary symmetric struc-
tures ∂ϕ on D and ∂ψ on D′ are dissected over X and Y, respectively, then the symmetric
structure ∂(ϕ ⊗ ψ) on the boundary chain complex of (C, D) ⊗ (C′, D′) is dissected over
X ∗Y. If in addition ∂ϕ and ∂ψ are dissected Poincaré, then ∂(ϕ⊗ψ) is dissected Poincaré.

Lemma 5.3. Keep the assumptions of Lemma 5.2. Suppose also that the Δ-complexes X
and Y come with free actions of a finite group π, and the chain complex pairs (C, D), (C′, D′)
come with actions of π so that the dissections of D and D′ are π-invariant (in the sense that
gD(σ) = D(gσ) and gD′(τ ) = D′(gτ ) for g ∈ π and simplices σ in X , τ in Y). Suppose
further that ϕ and ψ are π-invariant. Then ϕ ⊗ ψ is π-invariant, and the dissection of
∂(ϕ ⊗ ψ) over X ∗ Y is π-invariant for the diagonal action of π on X ∗ Y.

We will need slight generalizations of Lemmas 5.1, 5.2 and 5.3. Let A1, A2 and A3 be
additive categories with chain duality. We assume given a functor

B(A1)×B(A2) −→ B(A3)
(C, C′) 
→ C � C′

which is bi-additive and respects cofibration sequences in any of the two input variables.
(This means that if C appears in a degreewise split short exact sequence K → C→ Q, then
K�C′ → C�C′ → Q�C′ is also degreewise split short exact, and similarly if C′ appears
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in a degreewise split short exact sequence.) We also need some compatibility between �
and the tensor products ⊗Ai for i = 1, 2, 3. We assume therefore that a natural chain map

u : (B ⊗A1 C)⊗ (B′ ⊗A2 C′) −→ (B� B′)⊗A3 (C � C′)

is given, depending on variables B, C in B(A1) and B′, C′ in B(A2). This is supposed to
respect nondegenerate cycles. That is, if x and y are nondegenerate cycles in B ⊗A1 C and
B′ ⊗A2 C′, respectively, then u(x , y) is a nondegenerate cycle in (B� B′)⊗A3 (C � C′).

Given C in B(A1) and C′ in B(A2) and symmetric structuresϕ, ψ on C and C′, respec-
tively (of degrees m and n, respectively) we have a symmetric structure ϕ ⊗ ψ on C � C′,
of degree m + n, by composing

W
diagonal−−−−−−−→ W ⊗ W

⏐

⏐



ϕ×ψ

(C ⊗A1 C)⊗ (C′ ⊗A2 C′) u−−−−→ (C � C′)⊗A3 C � C′).

There is a similar construction for pairs (C, D) and (C′, D′) with symmetric structuresϕ and
ψ, respectively.

Lemma 5.4. Lemmas 5.1, 5.2 and 5.3 remain valid for pairs (C, D) and (C′, D′) in B(A1)
and B(A2), respectively, in which case the product pair is to be taken as (C, D)� (C′, D′)
in B(A3).

Example 5.5. We use the above ideas on dissection and joins to produce examples of functors
F̄ and Ē on P satisfying the condition of Lemma 4.14 and related by multiplications as in
lemma 4.15. Fix X in P. Determine m so that X � Sm−1. Let A be the category of finitely
generated free abelian groups, as before. In outline, Ēa(X ) will be defined as the algebraic
cobordism space of formally m-dimensional symmetric Poincaré pairs (C, D,ϕ) in B(A)
where the boundary (D, ∂ϕ) is equipped with an involution and a (symmetric Poincaré)
dissection over X which respects the involutions. The definition of F̄a(X ) is the same,
except for an additional condition on the symmetric Poincaré pairs (C, D,ϕ), which is that
both C and D have to be contractible as objects of B(A). A tensor product construction,
where we use the above lemmas on dissection and joins, gives us maps

Ēa(X ) ∧ Ēa(Y) −→ Ēa(X ∗ Y), Ēa(X ) ∧ F̄a(Y) −→ F̄a(X ∗ Y).

These maps have the usual associativity properties. There is also a unit in Ēa(∅). For all
details, see the next section.

Remark 5.6. Lemma 4.14 gives us some information about the associated functors Fa and
Ea on Jiso. We will use that in the next section to understand Fa in homotopy theoretic terms.
But we will not attempt to describe the homotopy type of Ea(V) for all or some V. Instead we
will use geometric ideas in Section 8 (proof of Theorem D) to construct a “smaller” functor
Ea,η on Jiso, with multiplication as in Definition 4.1, and a multiplicative transformation
Ea,η → Ea. The point of the smallness is that Ea,η admits a weak equivalence h to the
constant functor V 
→ S

0 with the standard product. We regard Fa as a functor with an
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action of Ea,η and do a derived induction along h to obtain a functor defined on all of J.
See Example 4.2 and Lemma 4.9.

6 Structure spaces in the algebraic setting

We begin with a remark on the additive categories A∗(X ) and A∗(X ) with chain duality.
They have been defined for any Δ-complex X . However, it should be clear that the definitions
extend to more general cases where the faces of X are “convex polytopes”. We will only
need this extension in the case of A∗(X ), and then only when X is a “multisimplex”, that
is, a product of finitely many standard simplices.

Definition 6.1. Here we give the full definition of Ēa(X ) and F̄a(X ) in Example 5.5. Both
are geometric realizations of m-fold Δ-sets. Let k = (k1, . . . , km ) be a multi-index. Write
Δk for Δk1 × · · · ×Δkm and

Ēa(X , k)

for the set of k-multisimplices of Ēa(X ). By definition, an element of that set is a pair (C, D)
in the category B(A∗(Δk)). There are more data:
• We ask for an SAPC pair structureψ of formal dimension m+

∑

i ki on the chain complex
pair (C, D).

• A dissection of (D, ∂ψ) over X is also part of the data, and we want this to be Poincaré;
hence the dissected (D, ∂ψ) is an SAPC in

B((A∗(Δk))∗(X )) ∼= B((A∗(X ))∗(Δk )) .

• An involution on (C, D) is required, respecting the dissection of D (and compatible with
the given free involution on X , as far as D is concerned) and respecting ψ up to a sign
(−1)m .

Note that Ēa(X , k) is a pointed set: the zero object (C = D = 0) serves as the base point.
When we form the geometric realization

∣

∣ k 
→ Ēa(X , k)
∣

∣

we collapse all base point simplices to a single point; hence the geometric realization is a
pointed space. The product maps

Ēa(X ) ∧ Ēa(Y) −→ Ēa(X ∗ Y)

are induced by set maps

Ēa(X , k) ∧ Ēa(Y, �) −−−−→ Ēa(X , k#�)

with k#� = (k1, k2, . . . , km , �1, �2, . . . , �n ), which in turn are given by a generalized (but
obvious) tensor product construction� as in lemma 5.4.

The definition of F̄a(X ) is almost identical with that of Ēa(X ) just given.Again it is the ge-
ometric realization of an m-fold Δ-set and we write F̄a(X , k) for the set of k-multisimplices.
The elements of that set are pairs (C, D) almost exactly as above, but with one added con-
dition, that C and D be contractible as objects of B(A∗(Δk)).
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There are “first axis” subspaces of Ēa(X ) and F̄a(X ), obtained by allowing only k-multi-
simplices where k has the form (k1, 0, 0, . . . , 0).

Lemma 6.2. The inclusions of the first axes in Ēa(X ) and F̄a(X ), respectively, are homotopy
equivalences.

Lemma 6.3. Let Fa be the functor on Jiso associated to F̄a as in Example 4.13. For V in
Jiso with dim(V) = j + 1 there is a homotopy equivalence

Fa(V) � S(RP(V), j ).

Proof. The functor F̄a satisfies the condition of Lemma 4.14. Hence Fa(V) � F̄a(X ),
assuming that X and V are related as in that lemma. Now use Lemma 6.2 to complete the
proof.

7 Periodicity and Thom isomorphism

This section provides the proofs of Theorems A and B.

Theorem A. For an oriented W ∈ J such that 4 divides dim(W), there is a homotopy
equivalence Fa(V)→ ΩWFa(V), natural in V.

Proof. In view of Remark 5.6 it is enough to prove that we have Fa(V) ∼= Ω4Fa(V) by a
natural homeomorphism as functors on Jiso which respects the action of Ea .

The proof is by inspection, using the well-known periodicity of algebraic L-theory given
by the double (skew-)suspension. But it is appropriate to say what exactly Ω4Fa(V) means.
First of all, given an m-fold based Δ-set Y, what do we mean by ΩY ? We can define ΩY as
the based m-fold Δ-set given by

(k1, k2, . . . , km ) 
→ {y ∈ Y(k1 + 1, k2, . . . , km ) | u∗k1
(y) = ∗, v∗k1

(y) = ∗}
where uk1 : {0} → {0, 1, . . . , k1, k1 + 1} is the inclusion and

vk1 : {0, 1, . . . , k1} → {0, 1, . . . , k1, k1 + 1}
is given by i 
→ i+ 1. (These monotone maps act as face operators in the “first” coordinate
direction.) This definition is justifiable if Y has the Kan extension property.

We defined Fa(V) for m-dimensional V as a reduced homotopy colimit of spaces F̄a(X )
for X → V in PV . Since F̄a satisfies the condition of Lemma 4.14, we may define Ω4Fa(V)
as a reduced homotopy colimit

hocolim
X→V

Ω4F̄a(X )

for X → V in PV . Moreover in that last expression we may interpret Ω4 as the fourth
power of an operator Ω on based Δ-sets, as defined above, to be applied before geometric
realization. Then we have indeed Fa(V) ∼= Ω4Fa(V).

Next we discuss the proof of the following theorem to which we refer as aThom isomorphism.
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Theorem B. Let W in J be oriented, of even dimension. Then there exists a functorΦW on
J, which is polynomial of degree ≤ 0, a natural transformation ζ :Fa(− ⊕ W)→ ΦW(−),
and a natural map

ΩWFa(V)→ hofiber[Fa(V ⊕ W)
ζ→ ΦW (V)]

which is a homotopy equivalence for dim(V) ≥ 3.

For X in P we have a definition of Ωd F̄a(X ) which looks almost exactly like the definition
of F̄a(X ), except for one change which consists in increasing the formal dimensions of all
SAPC’s in the definition of F̄a(X ) by d . (If X � Sm−1, then the (0, 0, . . . , 0)-simplices of
Ωd F̄a(X ) are certain SAPC pairs (C, D,ϕ) of formal dimension m + d with a dissection of
the boundary (D, ∂ϕ) over X .) Using that description of Ωd F̄a(X ), we have the following
maps:

Ωd
(

hocolim
f :X→V

F̄a(X )
)

hocolim
f :X→V
g :Y→W

Ωd F̄a(X )

�
ι

hocolim
e :Z→V⊕W

F̄a(Z ).

The vertical map is obtained by forgetting the data g :Y → W, which run through PW , and
using the inclusion hocolimΩd F̄a → Ωd (hocolim F̄a), where the homotopy colimits are
taken over PV only. It is a homotopy equivalence because its target can be identified up to
homotopy equivalence with Ωd F̄a(X ) for any f : X → V in PV by Lemma 4.14, and its
source can also be identified up to homotopy equivalence with Ωd F̄a(X ) by the same kind
of argument. The horizontal map uses an embedding

Ωd F̄a(X ) −→ F̄a(X ∗ Y)

for f : X → V in PV and g : Y → W in PW . This is simply induced by the inclusions
X → X ∗ Y and A∗(X )→A∗(X ∗ Y), which respect the chain dualities. Using the vertical
arrow as an “identification”, we write

ι : Ωd Fa(V) −→ Fa(V ⊕ W) .

We now wish to extend ι to a homotopy fiber sequence

Ωd Fa(V)
ι−−−−→ Fa(V ⊕ W)

ζ−−−−→ Φ(V ⊕ W, V)

whereΦ is a certain functor of pairs. The definition ofΦ follows the standard pattern. Hence
we start by introducing functors on pairs of certain Δ-complexes.

Definition 7.1. Fix a pair (Z , X ) of finite Δ-complexes, with a free involution, homotopy
equivalent to the pair (S(V ⊕ W), S(V)) with the antipodal involution. We define

Φ̄(Z , X )
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essentially by repeating the definition of F̄a(Z ) in terms of Poincaré pairs (C, D,ψ) con-
tractible in B(A) with dissected boundary, but relaxing it in one respect: for the dissection
of ∂ψ as a symmetric structure on the dissected D, we require that to be Poincaré modulo X
only. (This means that the mapping cone of the appropriate duality map is chain equivalent,
as an object dissected over Z , to something dissected over X .) That being done, we put

Φ(V ⊕ W, V) := hocolim
(Z ,X )→(V⊕W,V)

Φ̄(Z , X ).

The homotopy colimit is taken over all pairs (Z , X ) as above and simplexwise affine Z/2-
maps (Z , X )→ (V⊕W, V) taking X to V�0 and Z to V⊕W�0, and inducing a homotopy
equivalence (Z , X )→ (V ⊕ W � 0, V � 0). We have maps

hocolim
(Z ,X )→(V⊕W,V)

F̄a(Z )
ζ

�

hocolim
(Z ,X )→(V⊕W,V)

Φ̄(Z , X )

hocolim
Z→V⊕W

F̄a(Z )

where the horizontal arrow is determined by the inclusions F̄a(Z ) → Φ̄(Z , X ). Using the
vertical arrow as an identification, we may write

ζ :Fa(V ⊕ W) −→ Φ(V ⊕ W, W).

Proposition 7.2. For V of dimension≥ 3 and oriented W of even dimension d , both in Jiso,
the following is a homotopy fiber sequence:

Ωd Fa(V)
ι−−−−→ Fa(V ⊕ W)

ζ−−−−→ Φ(V ⊕ W, V).

Remark. We need dim(V) ≥ 3 to ensure that the inclusion V → V ⊕ W induces an
isomorphism of fundamental groups of the associated projective spaces.

Proof. For fixed V and W, after routine reformulations as in Lemma 4.14, this boils down
to a homotopy fiber sequence

Ωd F̄a(X ) −−−−→ F̄a(X ∗ Y) −−−−→ Φ̄(X ∗ Y, X )

where X → V in PV and Y → W in PW . Both arrows are inclusion maps. This homotopy
fiber sequence is very standard, e.g. from [Ra].
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Remark. In the applications of this proposition we need a fair amount of naturality in
the variable V. This calls for a more precise formulation and a better proof. We have the
following commutative square:

hocolim
X→V
Y→W

Ωd F̄a(X ) hocolim
(Z ,X )→(V⊕W,V)

F̄a(Z )

hocolim
X→V
Y→W

Ωd Φ̄(X , X ) hocolim
(Z ,X )→(V⊕W,V)

Φ̄(Z , X ).

Here the upper left-hand term can be identified with Ωd Fa(V) by a forgetful homotopy
equivalence which is natural in V as an object of Jiso. The upper right-hand term can be
identified with Fa(V ⊕ W), again by a forgetful homotopy equivalence which is natural in
V as an object of Jiso. The lower right-hand term isΦ(V ⊕W, V). The lower left-hand term
is contractible and is functorial in V as an object of Jiso. The square as a whole is homotopy
cartesian (by the argument already given).

Let Ea be the functor on Jiso associated with Ēa of Definition 6.1, as in Definition 4.13.
Then Ea acts on each of the four functors (of the variable V) represented by the four terms
of the square just above. For example, there is an action map

Ea(U) ∧Φ(V ⊕ W, V) −→ Φ(U ⊕ V ⊕ W, U ⊕ V).

It is given by a straightforward tensor product construction and we omit the details.

Recall from Remark 5.6 that the functor Fa on J was promised to be constructed in Section 8
from the pair Ea , Fa by a derived induction process, during which Ea is replaced by a smaller
functor Ea,η weakly equivalent to the constant functor V 
→ S

0. Let ΦW of be the functor
on J constructed from Ea and Φ(W ⊕ −,−) via the same procedure. Proposition 7.3 below
proves that ΦW is of degree ≤ 0.

A connected component of Ea(U), with dim(U) = m, determines (forgetfully)an element
in the relative Lm group of the assembly functor A∗(X ) → A∗, for any X → U in PU.
This relative Lm group is canonically isomorphic to L0(A) ∼= Z. In this way, connected
components of Ea(U) have a “degree” which is an integer.

Proposition 7.3. Keep the assumptions of Proposition 7.2 and let U be in Jiso. Let z ∈ Ea(U)
be in a component of degree 1. Then multiplication by z is a homotopy equivalence

Φ(V ⊕ W, V) −→ Φ(U ⊕ V ⊕ W, U ⊕ V).

Proof. Choose (Z , X )→ (V⊕W, W) as in the definition ofΦ(V⊕W, V) and choose Y → U
in PU. For typographic reasons we use the abbreviations ZY = Z ∗ Y and XY = X ∗ Y, and
denote passage to Z/2-orbits by a tilde subscript, as in X∼. We can assume that z ∈ E(Y),
and we have to show that multiplication by z is a homotopy equivalence

Φ̄(Z , X ) −→ Φ̄(ZY , XY ).
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Let k = dim(V)+ d − 1 = dim(V)+ dim(W) − 1 and write m = dim(U) as before. Most
of the proof is in the following commutative diagram:

Φ̄(Z , X ) Φ̄(ZY , XY )

S(Z∼, X∼, k)

�

�

S(ZY∼, XY∼, k +m)

�

�

Lk (A∗(X∼)→A∗(Z∼)) Lk+m

⎛

⎜

⎜

⎝

A∗(Y∼) −−−−→
=

A∗(Y∼)
⏐

⏐




⏐

⏐




A∗(XY∼) −−−−→ A∗(ZY∼)

⎞

⎟

⎟

⎠

In this diagram, all horizontal arrows are defined as multiplication by z ∈ E(Y). The vertical
arrows in the upper half of the diagram are forgetful: they forget boundaries in dissected
Poincaré pairs. By Definition 3.21 and [Ra, 3.9], they are homotopy equivalences.That is, the
forgotten dissected boundaries can always be recovered as “obstructions to nondegeneracy”
in A∗(Z∼). To produce the vertical arrow in the lower half of the diagram, we switch
to Definition 3.20 of the algebraic structure spaces, i.e., to quadratic structures. (Strictly
speaking, we should insert another row into the diagram to do that.) These vertical arrows
in the lower half of the diagram can then be defined as inclusion maps. They are homotopy
equivalences by the alternative definition of the algebraic structure spaces as homotopy
fibers of assembly maps. Here we are also exploiting the fact that the inclusions X∼ → Z∼
and XY∼ → ZY∼ induce isomorphisms of fundamental groups, i.e., we are using dim(V) ≥ 3.

It remains to show that the lower horizontal arrow in the diagram is a homotopy equiva-
lence. By a five lemma argument, this reduces to showing that multiplication by z induces
isomorphisms

π∗Lj (A∗(X∼)) −→ π∗Lj+m

(

A∗(Y∼)→A∗(XY∼)
)

for all j ∈ Z, and similarly with X replaced by Z . But this is a case of an ordinary Thom iso-
morphism. The standard proof uses a spectral sequence comparison argument. The spectral
sequences are determined by the skeleton filtration of X .

We conclude this section with a note which will be useful in the next section. Recall that in
Section 3 we defined for a simplicial complex X with certain additional data the space S(X )
which we used to construct the functor Fa. Furthermore we showed that there is also a space
S(X ; ℘1), a “truncated version” of S(X ), which is better related to geometry. Let Fa,1 be the
functor on J defined by the same process as Fa, but using S(X , ℘1) instead of S(X ). Using
(3.7) we easily obtain a homotopy fibration sequence Fa,1(V) → Fa(V) → Z for each
V ∈ Jiso. Lemma 7.4 below says this sequence behaves well with respect to multiplication
by Ea and hence the sequence is natural when the functors are considered on J.

An element of Fa(V), with dim(V) = n, determines forgetfully an element in the relative
Ln group of the assembly functor A∗(S(V)) → A∗. This relative Ln group is canonically
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isomorphic to L0(A) which we identify with Z using the isomorphism σ/8, signature
divided by 8. In this way there is a degree function from Fa(V) to Z which we denote by
σ̃/8 and which is one of the maps in the homotopy fibration sequence above.

Lemma 7.4. Let U be in Jiso. Let z ∈ Ea(U) be in a component of degree 1. Then for every
V in Jiso, the following is commutative:

Fa(V)
z·−−−−→ Fa(U ⊕ V)

⏐

⏐



σ̃/8

⏐

⏐



σ̃/8

Z
=−−−−→ Z .

Proof. The square can be enlarged to a six-term diagram

Fa(V)
z·−−−−→ Fa(U⊕ V)

⏐

⏐



ζ

⏐

⏐



ζ

Φ(V, 0)
z·−−−−→ Φ(U ⊕ V, U)

⏐

⏐



σ̃/8

⏐

⏐



σ̃/8

Z
=−−−−→ Z .

Here the top square commutes by construction. The middle row is an isomorphism by
Theorem 7.3, and the reasoning used in the proof of that theorem also shows that the lower
square commutes.

8 Structure spaces in the mixed algebraic-geometric setting

This section contains the proof of Theorem D. In Sections 3, 4, 5 and 6, we constructed
an algebraic analogue Fa of the geometric functor Fg from [Ma]. In Section 7 we proved
Theorems A and B, which are about Fa. But we also need Theorem C which is about Fg and
so a translation between algebra and geometry is needed.This is provided by Theorem D.The
translation is a tedious business and the method that we have chosen might not be the best.
In any case we have in a few places sacrificed completeness for the sake of intelligibility.

Theorem D. Let V ∈ J be such that dim(V) ≥ 6. Then there is a natural homotopy fibration
sequence

Fg(V)→ Fa(V)→ Z.

On the level of spaces this homotopy fibration sequence is just Ranicki’s fibration sequence
(3.7). The issue addressed here is the naturality in V. Further, in view of Lemma 7.4 it is
enough to prove that there is a natural homotopy equivalence Fg(V) → Fa,1(V) for all
V ∈ J with dim(V) ≥ 6.

Scheme of the proof. Recall that the functor Fa was constructed in Section 6 by the following
method.We started with two functors Ēa, F̄a from the category P to pointed spaces, equipped
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with suitable product and multiplication maps. For V ∈ Jiso these restrict to functors from
PV to pointed spaces, which we used to construct functors Ea, Fa from Jiso to pointed
spaces. The derived induction of Section 4 then promotes Fa to a continuous functor from
J to pointed spaces. Exactly the same procedure applied to F̄a,1 instead of F̄a delivers Fa,1

instead of Fa . (See the end of Section 7 for the definition of Fa,1.)
Note that the functor Fg can also be constructed by the technology of Section 4, i.e.,

by starting with two functors Eg and Fg on Jiso with multiplication and action maps. The
details are given in Definition 8.20.

To relate the two functors we construct an “intermediate” functor Fga from J to pointed
spaces, again using the same technology. A major part of the present section is devoted to
this aim, which is finally achieved in Definition 8.18. Furthermore there are forgetful natural
transformations

Eg Ega
w0 v0

Ea

Fg Fga
w1 v1

Fa,1

(details in Definitions 8.21 and 8.22) respecting the multiplications and the actions. The two
in the lower row, v1, w1 are natural homotopy equivalences, giving us a two-step identification
of Fg with Fa,1 as functors on Jiso. Of the two in the upper row, w0 is again a natural
homotopy equivalence, whereas v0 is not. But since v0 is multiplicative, we can use it to
let Ega act on Fa,1. We then do a derived induction along w0 to obtain what is essentially
an extension of Fa,1 to J ⊃ Jiso (Example 4.2 and Lemma 4.9). Note that Eg(V) = S0

(Definition 8.20), as was promised in Remark 5.6, and so this procedure promotes the
identification of Fg and Fa,1 as functors on Jiso to an identification as functors on J.

Notation 8.1. The definition of Ega and Fga comes at the end of a lengthy staircase of
definitions. Climbing the staircase, we use a uniform symbol G with mostly numerical
decorations, instead of letters E and F with decorations. At the top of the staircase we
switch back to the familiar E, F notation (Definition 8.18).

8.1 Transversality

We will rely mainly on the notion of “transversality to a foliation”. Let N be a topological
space. There is a presheaf on N which to an open subset W ⊂ N associates the set of equiva-
lence relations on W. A global section ρ of the associated sheaf is called a local equivalence
relation on N . If N can be covered by open subsets Wα which admit homeomorphisms
(pα, qα) :Wα → Vα×Uα with Uα open in Rk (but no conditions on Vα other than “being
a space”) such that ρ|Wα is represented by the equivalence relation

y ∼ z ⇔ qα(y) = qα(z)

on Wα, then ρ is a codimension k foliation of N . See [KM] for more details. A map f from
a topological manifold M to N is transverse to a codimension k foliation ρ on N if for
every x ∈ M there exists an open neighborhood W of f (x) ∈ N and a product structure
(p , q) :W→ V ×U with U ⊂ Rk representing ρ|W, as above, such that qf is a topological
submersion f −1(W)→ U. (To preclude misunderstandings, we point out that submersions
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don’t have to be surjective. A map between topological manifolds is a submersion if it
satisfies a certain regularity condition at or near every point of the source manifold.)

Closely related is the following concept of transversality: Suppose that N is a space,
X ⊂ N is a locally closed subspace, U is an open neighborhood of X in N which comes with
a codimension k foliation, and X is a leaf of that foliation. We say informally that a map f
from a manifold M to N is transverse to X if f restricted to a sufficiently small neighborhood
of f −1(X ) is transverse to the foliation of U. In the examples that we will be looking at, the
foliation of U is determined by a single map q :U→ Rk , so that the leaves of the foliation
are the fibers of q.

8.2 Main examples

Definition 8.2. For a Δ-complex X , the open cone O(X ) is X+ ∧ [0,∞). We describe a
point in O(X ) as x = ty where y ∈ X and t ∈ [0,∞), or by its barycentric coordinates,

x = (xi)i∈σ = (tyi)i∈σ

where xi ≥ 0 and i runs through the vertices of a simplex σ containing y. The open cone
O(X ) comes with the norm function x 
→ maxi{xi}. The levels of the norm define a foliation
on O(X )� 0 with the leaves O(X , c) = {x ∈ O(X ) | ‖x‖ = c} for c > 0. For (X , u) in P, the
open cone O(X ) also comes with an involution ty 
→ t · u(y), where y ∈ X .

Definition 8.3. We often regard O(X ) as a stratified space, stratified by the interiors of the
coned dual cells and the cone point.This is similar to the stratification of X in Example 3.6.
But we need a few more details here. We need to declare what it means for a map f :M →
O(X ) � 0 to be transverse to the stratification.

For a k-simplex σ of X the stratum O(X ,σ) (the interior of the coned dual cell) consists
of points x ∈ O(X ) whose barycentric coordinates satisfy xi = ‖x‖ if i ∈ σ and xi < ‖x‖
if i /∈ σ. The map qσ defined on a (sufficiently small) neighborhood of O(X ,σ) in O(X ) by

x 
→
(

xi

‖x‖
)

i∈σ
∈ R|σ|+1

has image contained in the hypersurface

Zk =
{

(yi)i∈σ ∈ R|σ|+1 | max
i
{yi} = 1}.

The sets q−1
σ (y) for y ∈ Zk are the leaves of a foliation of the neighborhood. One of these

leaves is O(X ,σ) itself. We say that a map f from a manifold to O(X ) is transverse to
O(X ,σ) if qσf , as a map with target Zk , is a topological submersion in a neighborhood of
f −1(O(X ,σ)).

Comment.The codimension k foliation defined by qσ (of an open neighborhood of O(X ,σ)
in O(X )) also restricts to a codimension k foliation of an open neighborhood of O(X ,σ) ∩
O(X , c) in O(X , c), for every c > 0.
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Definition 8.4. For (X , u) in P with X � Sm−1 we define Ḡ0(X , u) as an m-fold simplicial
set. A nontrivial (0, 0, . . . , 0)-simplex consists of a based space W homeomorphic to Rm ,
with an involution fixing the base point, and an equivariant based proper map p : W → O(X )
of degree ±1 which is transverse to the foliation of O(X ) � 0 by norm levels, and has
preimage of base point equal to base point.There is also a unique trivial (0, 0, . . . , 0)-simplex
which, along with all its degeneracies, constitutes a connected component of Ḡ0(X , u) after
realization.

Definition 8.5. For (X , u) in P with X � Sm−1 we define Ḡ1(X , u) as an m-fold simplicial
set. A (0, 0, . . . , 0)-simplex consists of two based spaces W, W′ both homeomorphic to Rm ,
both with an involution fixing the base point, and equivariant proper maps W→ W′ → O(X )
of degree±1 such that both W′ → O(X ) and the composite map W → O(X ) are transverse
to the foliation of O(X ) � 0 by norm levels, and have preimage of base point equal to base
point. We regard such a (0, 0, . . . , 0)-simplex as trivial if W → W′ is a homeomorphism.
All trivial (0, 0, . . . , 0)-simplices are to be identified with each other.

With the above definitions of Ḡ0 and Ḡ1, there are products

Ḡ0(X , u) ∧ Ḡ0(Y, v) −→ Ḡ0(X ∗ Y, u ∗ v),
Ḡ0(X , u) ∧ Ḡ1(Y, v) −→ Ḡ1(X ∗ Y, u ∗ v).

In more detail, on nontrivial simplices the multiplicationmap is given simply by the product.
The action map takes

( V
p−→ O(X ), W

q−→ W′ p ′−→ O(Y) )

to

V ×W
id×q

V ×W′
p×p ′ O(X ∗ Y).

These products induce similar products involving G0 and G1.

Next we introduce certain refinements of Ḡ0 containing more combinatorial information.
These refinements make up a diagram of functors on P and natural transformations

Ḡ0−3→ Ḡ0−2→ Ḡ0−1 ↪→ Ḡ0.

Moving from right to left, we first add a transversality condition, then certain CW-approxi-
mations, then cellular diagonal approximations and cellular fundamental cycles/chains for
the approximating CW-spaces involved. Fix (X , u) in P, where X � Sm−1, and a nontrivial
(0, 0, . . . , 0)-simplex p : W → O(X ) of Ḡ0(X , u).

Definition 8.6. To promote p : W → O(X ) to a (0, 0, . . . , 0)-simplex in the m-fold Δ-set
Ḡ0−1(X , u), we impose the condition that p be simultaneously transverse to the strata O(X ,σ)
and to the levels of the norm fibration (see the comment just below). This implies that for
every c > 0, the restriction of p to the sphere p−1(c) is a map to O(X , c) ∼= X which is
transverse to the strata X (σ).



“Forum Mathematicum, Verlag Walter de Gruyter GmbH & Co. KG” — 2009/8/27 — 16:32 — page 39 — #39

The block structure spaces and orthogonal calculus II 39

Comment. Let σ be a k-simplex of X . We test p for transversality to the stratum O(X ,σ)
by asking whether qσp is a submersion (see Definition 8.3). We test for transversality to
the norm levels by asking whether ‖p‖ :W � p−1(0)→ R is a submersion. Here we need
a condition which is slightly stronger than these two transversality conditions put together.
We require that the map

neighborhood of p−1(O(X ,σ)) −→ Zk ×R

defined by w 
→ (qσp (w), ‖p (w)‖) be a submersion. Since Zk × R can be identified with
R|σ|+1, the formula w 
→ (qσp (w), ‖p (w)‖) can also be replaced by the much simpler
formula

w 
→ (pi(w)
)

i∈σ ∈ R|σ|+1

where the pi(w) are the barycentric coordinates of p (w) corresponding to the vertices i of
σ.

We mention the following in passing. Suppose that p satisfies the above strong transversality
condition for a particular σ. Let τ be a face of σ. Then, in a sufficiently small neighborhood
of p−1(O(X ,σ)), the strong transversality condition for p in relation to τ and the stratum
O(X , τ ) is automatically satisfied. The reason is, of course, that the barycentric coordinates
pi(w) for w in W and i a vertex of τ are subsumed in the barycentric coordinates pi(w) for
i a vertex of σ.

Lemma 8.7. The product on Ḡ0 can be refined to a product on Ḡ0−1.

Proof. Given (X , u) and (Y, v) in P and p : W → O(X ) and q : W′ → Y satisfying the
appropriate transversality conditions, we verify that the resulting map from W × W′ to
O(X ) × O(Y) ∼= O(X ∗ Y) satisfies the appropriate transversality condition. The strata of
O(X ∗ Y) ∼= O(X ) × O(Y), apart from the cone point, can be described as follows:
(i) for each σ in X , there is a stratum consisting of all (x , y) in O(X ,σ) × O(Y) where
‖x‖ > ‖y‖;

(ii) for each τ in Y, there is a stratum consisting of all (x , y) in O(X ) × O(Y, τ ) where
‖x‖ < ‖y‖;

(iii) for each simplex of the form σ ∗ τ with σ in X and τ in Y, there is a stratum consisting
of all (x , y) in O(X ,σ) × O(Y, τ ) where ‖x‖ = ‖y‖.

Hence the transversality properties that we need follow from the transversality properties of
p in case (i), from the transversality properties of q in case (ii), and from the transversality
properties of both p and q in case (iii). We omit the details, except for pointing out that in
the case (iii), the vertex set of σ ∗ τ is identified with the disjoint union of the vertex sets of
σ and τ respectively. It follows that an expression such as

((

p × q)i(w, w′)
)

i∈σ∗τ ∈ R|σ∗τ |+1

for (w, w′) ∈ W ×W′ can be re-arranged to look like
((

pi(w)
)

i∈σ,
(

qi(w
′)
)

i∈τ
) ∈ R|σ|+1 ×R|τ |+1.



“Forum Mathematicum, Verlag Walter de Gruyter GmbH & Co. KG” — 2009/8/27 — 16:32 — page 40 — #40

40 T. Macko and M. Weiss

We enlarge cat(X ), the category of simplices of X , to a category {0} ∗ cat(X ) by adding
the object 0, its identity morphism, and one morphism 0 → σ for each σ ∈ sX . The
transversality condition in the previous definition yields, for every (0, 0, . . . , 0)-simplex
p : W → O(X ) in Ḡ0−1(X , u) as above, a contravariant functor W� from {0} ∗ cat(X ) to
compact spaces by

{

W�(σ) = W[σ][1]

W�(0) = W[0, 1]

where W[σ][1] is p∗ of O(X ,σ) ∩ O(X , 1), the norm level 1 of the coned dual cell corre-
sponding to σ, and W[0, 1] denotes p−1O(X , [0, 1]), the inverse image of the portion of O(X )
with the norm ≤ 1. (Here p∗ denotes a pullback. We do not write p−1 since the dual cell
corresponding to σ need not be a subspace of X .)

Definition 8.8. To promote p : W → O(X ) further to a (0, . . . , 0)-simplex in Ḡ0−2(X , u) we
add the following: a contravariant CW-functor W�� from {0} ∗ cat(X ) to compact spaces,
with a natural transformation γ : W�� → W� which evaluates to a homotopy equivalence
for every object of {0} ∗ cat(X ).

The definition gives us in particular a CW-pair (W��(0), W��[1]) with dissected boundary,
where

W��[1] = colim
σ �=0

W��(σ).

Passage to cellular chain complexes transforms a pair of chain complexes (C, D) with C =
C∗(W��(0)) in B(A) and with dissected boundary D = C∗(W��[1]) in B(A∗(X )).

Definition 8.9. To promote p : W → O(X ) further to a (0, 0, . . . , 0)-simplex in Ḡ0−3(X , u),
we add the following data: cellular diagonal approximations and fundamental cycles/chains
in the cellular chain complex(es) of W��.

The additional data in Definition 8.9 imply a preferred structure of an n-dimensional SAPP
(where n = dim(W)) on the pair of chain complexes

(C∗(W��(0)), C∗(W��[1]))

in B(A), refined to a dissected (n − 1)-dimensional SAPC structure on the boundary in
B(A∗(X )).

All the above refinements of Ḡ0 have multiplications refining the one on Ḡ0. The case of
Ḡ0−1 has already been discussed. For the case of Ḡ0−2, suppose given (X , u) and (Y, v) in
P, as well as p : W → O(X ) and q : W′ → O(Y) and

W�� → W�, W′�� → W′�
satisfying the conditions of Definition 8.8. We need to say what (W × W′)�� should be.
We have {0} ∗ cat(X ∗ Y) ∼= {0} ∗ cat(X ) × {0} ∗ cat(Y). Using this identification we let
(W ×W′)��(i, j ) = W��(i)×W′��(j ) for i in {0} ∗ cat(X ) and j in {0} ∗ cat(Y).
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Lemma 8.10. The forgetful maps

Ḡ0−3→ Ḡ0−2→ Ḡ0−1 ↪→ Ḡ0

are (weak) homotopy equivalences.

Next, there are refinements of Ḡ1 analogous to the above refinements of Ḡ0. These make up
a diagram of functors and natural transformations

Ḡ1−3→ Ḡ1−2→ Ḡ1−1 ↪→ Ḡ1.

Let’s define them very briefly. We fix (X , u) in P as before and a (0, . . . , 0)-simplex W →
W′ → O(X ) in Ḡ1(X , u).

Definition 8.11. To promote W → W′ → O(X ) to a (0, 0, . . . , 0)-simplex in Ḡ1−1(X , u),
we impose the condition that both W → O(X ) and W′ → O(X ) be simultaneously trans-
verse to the stratification of O(X ) � 0 by strata O(X ,σ), and to the norm levels. (Compare
Definition 8.6.)

Definition 8.12. To promote W→ W′ → O(X ) further to a (0, . . . , 0)-simplex in Ḡ1−2(X , u)
we add the following data: contravariant CW-functors W�� and W′�� from {0} ∗ cat(X ) to
compact spaces, a CW-embedding W�� → W′�� and natural transformations γ : W�� →
W�, γ′ : W′�� → W′� which evaluate to homotopy equivalences for every object of {0} ∗
cat(X ). We require commutativity of

W�� W′��

W� W′� .

Definition 8.13. To promote W → W′ → O(X ) further to a (0, 0, . . . , 0)-simplex in
Ḡ1−3(X , u), we add compatible cellular diagonal approximations for W�� and W′��, and
fundamental cycles/chains in the cellular chain complex(es) of W��.

As in the case of the functor Ḡ0−3, the additional features allow us to extract certain algebraic
data. These are two preferred structures of n-dimensional SAPPs (where n = dim(W) =
dim(W′)) and a map

q�� : (C∗(W��(0)), C∗(W��[1]))→ (C∗(W′��(0)), C∗(W′��[1]))

of SAPPs in B(A), refined to a map of dissected (n−1)-dimensional SAPCs on the boundary
in B(A∗(X )). To obtain a single SAPP with a contractibility property, which is our goal, we
need the construction of symmetric kernels in the setting of Section 3, Definitions 3.1 and 3.7.
This is a purely algebraic and functorial construction and is given after Definition 8.21 below.

Remark. A (0, 0, . . . , 0)-simplex in Ḡ1−i(X , u) is still considered trivial if the corresponding
map W → W′ is a homeomorphism. All trivial (0, 0, . . . , 0)-simplices are to be identified
with each other.
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Lemma 8.14. The forgetful maps

Ḡ1−3→ Ḡ1−2→ Ḡ1−1 ↪→ Ḡ1

are weak homotopy equivalences.

All the above refinements of Ḡ1 admit actions by the corresponding refinements of Ḡ0 (which
refine the action of Ḡ0 on Ḡ1). At the top of the range we get multiplication and action maps

Ḡ0−3(X , u) ∧ Ḡ0−3(Y, v) −→ Ḡ0−3(X ∗ Y, u ∗ v)

Ḡ0−3(X , u) ∧ Ḡ1−3(Y, v) −→ Ḡ1−3(X ∗ Y, u ∗ v).

for any (X , u) and (Y, v) in P.

That completes our efforts to extract chain complex algebra from the functors Ḡ0 and Ḡ1.
Now we need to do some more work on the geometric side.

Definition 8.15. Let s ∈ [0, 1]. For V in Jiso and f : X → V in PV , we define a “norm”
function on O(X ) by tx 
→ ‖tx‖s = (1− s)‖tx‖+ s‖f (tx)‖, using the Euclidean norm on V.

Keeping the notation of Definition 8.15, we introduce a refinement r f Ḡ0(X , u) of Ḡ0(X , u),
and a refinement r f Ḡ1(X , u) of Ḡ1(X , u), both depending on f :X → V.

Definition 8.16. Let V be in Jiso and f :X → V in PV .To promote a nontrivial (0, 0, . . . , 0)-
simplex p :W → O(X ) in Ḡ0(X , u) to the status of a nontrivial (0, 0, . . . , 0)-simplex in
r f Ḡ0(X , u) we add the assumption W = V and the following data:

• a homotopy (ps)0≤s≤1 through Z/2-maps ps :W→ O(X ), each having preimage of base
point equal to base point, such that p0 = p and ps is transverse to the nonzero levels of
the norm function ‖ . . . ‖s on O(X ), for s ∈ [0, 1];

• a homotopy (ht)1≤t≤2 from the composition

W
p1 O(X )

f
V

to the identity, where each ht :W → V is equivariant, with preimage of base point equal
to base point, and transverse to the nonzero levels of the euclidean norm on V.

Definition 8.17. Let V be in Jiso and f :X → V in PV . To promote a (0, 0, . . . , 0)-simplex

W
q

W′
p O(X )

in Ḡ1(X , u) to the status of a (0, 0, . . . , 0)-simplex in r f Ḡ1(X , u) we add the assumption
W′ = V and the following data:

• a homotopy (ps)0≤s≤1 through Z/2-maps ps :W
′ → O(X ), each having preimage of base

point equal to base point, such that p0 = p and ps is transverse to the nonzero levels of
the norm function ‖ . . . ‖s on O(X ), for each s;

• a homotopy (ht)1≤t≤2 from the composition

W′
p1 O(X )

f
V



“Forum Mathematicum, Verlag Walter de Gruyter GmbH & Co. KG” — 2009/8/27 — 16:32 — page 43 — #43

The block structure spaces and orthogonal calculus II 43

to the identity, where each ht :W
′ → V is equivariant, with preimage of base point equal

to base point, and transverse to the nonzero levels of the euclidean norm on V ;
• a homotopy (qs)0≤s≤2 through Z/2-maps W → W′, each having preimage of base point

equal to base point, with q0 = q, such that psqs is transverse to the nonzero levels of the
norm function ‖ . . . ‖s on O(X ) for s ≤ 1, and hsqs is transverse to the nonzero levels of
the euclidean norm on V for s ≥ 1.

Such a simplex is trivial if qs is a homeomorphism for all s ∈ [0, 2]. All trivial simplices
are to be identified with each other.

Next, r f Ḡi−3(X , u) is defined (for i = 0, 1) by means of a pullback square

r f Ḡi−3(X , u) Ḡi−3(X , u)

forget

r f Ḡi(X , u)
forget

Ḡi(X , u).

To be more precise we form the pullback at the level of multisimplicial sets, i.e., before
realization. The square is also a homotopy pullback square (by a direct check on homotopy
groups).

Definition 8.18. For V in Jiso let

Ega(V) = hocolim
f :X→V in PV

r f Ḡ0−3(X , u),

Fga(V) = hocolim
f :X→V in PV

r f Ḡ1−3(X , u).

Lemma 8.19. We still have multiplication and action maps

Ega(V) ∧ Ega(W) −→ Ega(V ⊕ W)
Ega(V) ∧ Fga(W) −→ Fga(V ⊕ W)

for V, W in Jiso.

We define Fg on Jiso essentially as the restriction of the functor Fg on J constructed in
[Ma], except for the small change that Fg(W) is defined as the geometric realization of an
m-fold simplicial set, where m = dim(W). To make up for the information lost in restricting
from J to Jiso, we introduce a multiplicative functor Eg on Jiso as in Example 4.2.

Definition 8.20. For V in Jiso, let Eg(V) = S0. In each multidegree (k1, . . . , kn ) we have a
base-point and another point which we think of as represented by the space V×∏Δki . The
action map Eg ∧ Fg → Fg is given by multiplying a map q :W ×∏Δli → W′ ×∏Δli

with the identity on V ×∏Δki .
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Now we can relate the functor pair (Ea , Fa,1) to the pair (Eg , Fg), using (Ega, Fga) as a
stepping stone. Namely, in Definitions 8.21 and 8.22 below we define the forgetful natural
transformations of functors on Jiso

Eg Ega
w0 v0

Ea

Fg Fga
w1 v1

Fa,1

respecting the multiplications and the actions. It is described in the preview of the proof of
Theorem D how these natural transformations make up the identification of Fg and Fa,1 as
functors on J.

Definition 8.21. The transformation w0 is defined by taking trivial simplices to the basepoint
of S0, and nontrivial simplices to the non-basepoint. The transformation w1 is induced by
forgetful maps

r f Ḡ1−3(X , u)→ r f Ḡ1(X , u)→ Fg(V).

In the notation of Definition 8.17, we proceed by taking a (0, 0, . . . , 0)-simplex (for example)
in r f Ḡ1(X , u), consisting of

W
q−−−−→ W′ p−−−−→ O(X )

and homotopies (ps), (hs), (qs) to q2 :W → W′ = V which is a (0, 0, . . . , 0)-simplex in
Fg(V).

Before describing v0 and v1, we review the construction of symmetric kernels in the setting
of Section 3, Definitions 3.1 and 3.7. Let A be an additive category with chain duality. Let
f : C → D be a morphism in B(A) and let ψ be an n-dimensional symmetric Poincaré
structure on C∗ such that f∗ψ is also symmetric Poincaré. It is well known that in such a
case (C,ψ) must break up, up to suitable homotopy equivalence, into a sum

(K∗,ϕ)⊕ (D, f∗ψ)

of SAPC’s. What we need is a functorial construction of (K ,ϕ). Let K be the mapping cone
of the composite chain map of degree n defined as

TD
T f

TC
ψ0

C.

(Think of this as an ordinary chain map of degree zero from a shifted copy of TD to C,
where the differentials d :TDi→ TDi−1 have been multiplied by (−1)ni.) Then there is an
inclusion e :C → K . We let ϕ := e∗ψ, which is a symmetric Poincaré structure on K . The
construction works also for pairs.

Hence, in the notation of the comments after Definition 8.13, using the symmetric kernel
construction, we obtain from a map of SAPPs

q�� : (C∗(W��(0)), C∗(W��[1]))→ (C∗(W′��(0)), C∗(W′��[1]))

an n-dimensional SAPP

(K(q��(0)), K(q��[1]))
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in B(A), refined to a dissected SAPC structure on the boundary in B(A∗(X )). The con-
tractibility condition is satisfied because the map q has degree ±1.

Definition 8.22. The transformation v0 is induced by forgetful maps

r f Ḡ0−3(X , u)→ Ḡ0−3(X , u)→ Ea(X , u)

where the second one extracts the chain complex data (including symmetric structures). The
transformation v1 is induced by maps

r f Ḡ1−3(X , u)→ Ḡ1−3(X , u)→ Fa,1(X , u)

where the first is forgetful and the second extracts the symmetric kernels from the available
chain complex data (including symmetric structures).

The definitions of v0, v1 are set up to respect the multiplication and action maps.

Remark. There is a slight complication in the definition of v1, due to the fact that the
symmetric kernels determined by multisimplices in Ḡ1−3(X , u) which we have defined as
trivial are not completely trivial. (They are contractible but they are not equal to zero.) It
seems best to agree that, wherever a multisimplex in Ḡ1−3(X , u) has trivial (multi)faces,
the corresponding subcomplexes of the symmetric kernel determined by that multisimplex
must be collapsed to zero.

This finishes the proof of Theorem D.

We conclude with an explanation of the remark on infinite loop space structures at the end
of the introduction. Each space F̄a(X , u), in the notation of Section 7, comes equipped with
a structure of (underlying space of a) Γ-space in the sense of Segal [Seg], determined by
the direct sum operation in the categories B(A) and B(A∗(X )). This structure is clearly
preserved by the multiplication maps

Ēa(X , u) ∧ F̄a(Y, v) −→ F̄a(X ∗ Y, u ∗ v).

(We do not need and we do not use a structure of Γ-space on Ēa(X , u) here. Informally, one
could say that the adjoint map from Ēa(X , u) to the space of maps from F̄a(Y, v) to F̄a(X ∗
Y, u∗ v) factors canonically through the space of Γ-maps from F̄a(Y, v) to F̄a(X ∗Y, u∗ v).)
It follows that Fa can be refined to a functor (first on Jiso, then on J) with values in the
category of group-likeΓ-spaces. By [Seg], the “underlying space” functor from group-like
Γ-spaces to spaces factors through the category of infinite loop spaces.
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