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INTRODUCTION

In this book we discuss classification tesults for piecewise linear and
topological manifolds. These topics have formed one of the main lines of
development for the past 2 decades in the area of algebraic and geometric
topology, and recently many of the major problems here have been essen-
tially solved.

Initially our object was to present results on the structure of the piece-
wise linear and topological bordism rings. However, the need for a fairly
comprehensive introduction to the basic algebraic topological results in
the theory forced us to expand the discussion considerably. Now the first
8 chapters (the main part of the work) present the homotopy theory of the
‘surgery classifying spaces’, and the classifying spaces for the various re-
quired bundle theories.

The modern development started with the wotk of Kervaire and Milnor
on surgery and the observation of J. H. C. Whitehead on the probable im-
portance of the structure of the normal bundle in classifying structures on
manifolds. The Browder-Novikov theorem applied the surgery techniques
to show how to classify all PL manifolds in a given homotopy type, and
showed that if we have a (simply connected) space X which satisfies the
homology conditions for an n dimensional clos'ed manifold (Poincaré
duality) with n>5, then there is a PL manifold M in the homotop&
type of X if and only if a certain fibering Y- X with fiber having the
homotopy type of a sphere can be replaced by a piecewise linear fiber
bundle.

This pivotal result reduced the basic questions to questions involving
classifying homotopy sphere bundles, finding effective ways of telling

when they reduce to PL bundles, and then (for estimating the number of
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manifolds in a homotopy type) counting the number of distinct equivalence
classes of PL bundles which correspond to the original homotopy sphere
bundle.

A theorem of Stasheff identifies the equivalence class of a sphere

bundle Y-X with a homotopy class of maps
¢: X » BG

where BG serves as a classifying space for spherical fiberings, fixed
and independent of X. Moreover, there is a similar classifying space for
PL-sphere bundles BPL, amap p: BPL » BG so that PL structures
on the given sphere bundle correspond to homotopy classes of commutative

diagrams
€ X

¢ &

BPL BG

It is customary to denote the homotopy fiber of the map p as G/PL and
the equivalence classes of diagrams above are in one-one correspondence
with the set of homotopy classes of maps of X into G/PL.

Thus, the basic problems were reduced to problems in homotopy theory,
and attention turned to the study of these spaces, as well as the maps
between them.

By the mid 1960’s it was réalized (by Sullivan and others) that the re-

sults of Kervaire and Milnor showed that in dimension > 5

Z i=009
m(G/PL) =40  i=1(2)
Z/2 i=24"

and results of Cerf and an exact sequence of Hirsch and Mazur then ex-
tended this to all i.
D. Sullivan attacked and solved the problem of determining the

homotopy type of G/PL —introduced ideas of localization into the
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theory—and obtained much information on the homotopy type of BPL when
localized at odd primes.

Milgram at this point began studying the cohomology groups of BG
after work of Milnor and Gitler-Stasheff had given some low dimensional
information, and he obtained H*(BG;Z/2).

Madsen then examined the infinite loop space structure of G/PL and
BG, evaluated their homology operations and described the Pontrjagin
rings H, (BG; Z/ 21y, J. P. May and A. Tsuchiya gave complete informa-
tion for H,(BG;Z/p) and May later studied H,(BG; Z/pi) , when p is
odd.

At this point results of Kirby, Kirby-Siebenmann and Lashof-Rothenberg
showed how to include topological manifolds into the picture, by providing
an analogous theory with the space BTOP classifying topological sphere
fiberings, the map p’: BTOP » BG and the homotopy fiber of p’, G/TOP.

Kirby Siebenmann showed that the natural map G/PL - G/TOP has
fiber the Eilenberg-MacLane space K(Z/2, 3) and then obtained the
homotopy type of G/TOP also. (See [65] Annex B.)

At this point Sullivan’s results, together with those of May and
Tsuchiya gave a fairly good cohomological picture of the story at odd
primes, but not much was known at the prime 2,

In 1970 Brumfiel, Madsen and Milgram began the study of the map
it G»> G/PL at the prime 2. The induced map on Z/2 cohomology was
calculated and these results later enabled Madsen and Milgram to complete
the study of i at the prime 2.

In particular, these results, combined with the results at odd primes
give effective methods for deciding when a homotopy sphere bundle Y -» X
can be replaced by a piecewise linear or topological bundle, as well as
allowing the determination of a large part of the piece-wise linear and
topological bordism rings.

Here we present the theory outlined above and determine the torsion
free parts of the oriented bordism rings QIOP/Torsion (= QI:L/Torsion).

We give an explicit set of generators: the differentiable generators, a set
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of exotic projective spaces, and the ‘‘Milnor manifolds’’ of index 8. We
also obtain integrality theorems for characteristic classes on piecewise
linear and topological manifolds extending the now classical Riemann-
Roch theorems for differential manifolds.

Much of the material covered in this book appears in print with de-
tailed proofs for essentially the first time. In Chapter 3 we give a direct
method for calculating the homology of G and BG at the prime 2. This
somewhat non-standard treatment owes much to discussions with Ben
Mann. In Chapters 4 and 5 we review results mainly due to Sullivan on
G/PL and MSPL and their topological analogues. In particular the re-
sults in Chapter 5 have no complete proofs in the literature. Moreover,
our proofs seem somewhat simpler than the proofs outlined by Sullivan in
[135]. Chapter 6 is a very brief introduction to the theory of infinite loop
spaces and homology operations, and in Chapter 7 we prove the result,
basic to our theory, that B(G/TOP) when localized at 2 is a product of
Eilenberg-MacLane spaces. This implies that the 2-local part of the ob-
struction to reducing a spherical fibering to a PL bundle is purely a
characteristic class obstruction.

In the later chapters we put these results together with some rather
unpleasant calculations to study the integral cohomology of BPL and
BTOP. These results answer the questions of exactly which polynomials
in the Pontrjagin classes are integral topological invariants, and are
applied to give fairly complete information on the torsion free parts of the
piecewise linear and topological oriented bordism rings.

Finally we would like to thank Erkki Laitinen for his helpful comments
and for preparing the index, and above all Greg Brumfiel for vital sugges-

tions and help when we were mired in difficulties.

IB MADSEN
R. JAMES MILGRAM
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CHAPTER 1
CLASSIFYING SPACES AND COBORDISM

A basic technique in topology is to reduce a geometric classification problem
to a homotopy classification of maps into an associated ‘‘classifying space’’ or
universal object. In this chapter we review the classifying spaces for various
bundle theories and the connection between the cobordism classification of mani-
folds and the homotopy groups of the associated Thom spectra.

A. Bundles with fiber F and structure group 11

Suppose we are given a topological group Il and a fixed action of I
on a space F. By an (F,II)-bundle we shall mean a locally trivial bundle
with fiber F and structure group I (cf. Steenrod [129]). A principal
Il-bundle is an (F,II)-bundle with F = Il and with the Il-action given as
the usual product in II.

DEFINITION 1.1. A space B is said to be a classifying space for (F,II)-
bundles if there is an (F,II)-bundle E over B such that for any (F,II)-
bundle E over a finite dimensional CW complex X there is a unique

homotopy class of maps f: X > B with f*(E) = E.

In this definition one may suppress F since associated to any (F,II)-
bundle E there is a principal I[l-bundle Prinp(E) which determines
E, E = Prinfj(E) x[{F. Indeed Prinfj(E) is the space of (F,II)-bundle
maps
F

E
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Hence B classifies (F,II)-bundles if and only if it classifies principal
II-bundles.

In the generality of 1.1 there is no reason to assume B isa CW complex,
but if Bl is the geometric realization of the singular complex of B and

p: B1 -B the natural map then p_: [X, Bl]»[x, B] is a bijection for any finite
dimensional CW complex X. Moreover, two CW complexes Bl and B2

which both classify principal Il-bundles are homotopy equivalent. (To see this
let B(i) be the i-skeleton and consider the unique hm.notopy class of maps

k,: Bli) = B, classifying the restriction of E, to B(ll). The homotopy extension
theorem guarantees an (in general non-unique) map k: Bl ->B2 with k|B(ll) ~x ki
for all i. Similarly, we get a map e: B2->B1 and the compositions kol and

fok restrict to maps homotopic to the inclusions on the i-skeleta. In particular
B1 and B2 are weakly homotopy equivalent hence homotopy equivalent.)

It is standard to denote by BIl any classifying space for principal
Il-bundles and similarly write EIl for the Il-bundle over BII. The
spaces BII, EIl exist for any topological group II. The original con-
struction is due to Milnor [98] and is based on the following ‘‘recognition
principle”” [129].

THEOREM 1.2 (Steenrod). Let E be a principal Il-bundle over B.
Then B is a classifying space for principal H-bundles if and only if E

is connected and ﬂi(E) =0 for i>0.

Alternatively, the existence of BII follows rather easily from Brown’s
representation theorem (see e.g. [30], [45]).

More generally, Dold and Lashof constructed a principal quasi-fibering
see [48
( 481 I - EIl - Bl
when II is a topological monoid which is either path connected or whose

set of path components forms a group, and Stasheff [128] proved (see also
[45])

THEOREM 1.3 (Stasheff). Suppose F is a finite CW complex and let
H(F) be the monoid of homotopy equivalences f: F - F equipped with
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the compact-open topology. Then for a finite dimensional CW complex
X, [X,BH(F)] is the set of equivalence classes of homotopy F-bundles

over X.

Here a homotopy F-bundle over X is amap f: Y+ X so that when we
convert f into a Serre-fibering the fiber has the homotopy type of F, and
two such bundles are equivalent if there is a homotopy equivalence
h: Y-Y" with f’h=f,

X —m——X

We now give an alternative construction of the classifying space BII
which has certain formal advantages over those above (cf. [119], [131]).
We will assume that II is a topological monoid or group with identity e
and we require that e be a neighborhood deformation retract (N.D.R.) in
Il. (Specifically this means there is a function f:II - [0,1] with
£710) = e, £7100,1) = N and a deformation H: Il x [0,1] - II with
H(Nx[0, ))CN,H(n,1) = n, H(n,0)=e and fH(n,t) = tf(n) for neN.)
This condition is satisfied by any Lie group or a CW complex. It is
trivially satisfied if Il is discrete.

Let o" be the standard n-simplex coordinatized as the set of points
(t;, -t eI with 1>t >t,> >t >0. Its i’th face ;0" is
theq specified by
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Now, set

EN = H M x M x II
n>0

where each o® x [I? x I is given the compactly generated topology.
(That is to say U is open if and only if its intersection with each com-
pact set K of o" x I"x Il is open in the induced topology on K.)

We define an equivalence relation in E®l by
(tl’ ., tn’ 1, Bpy g ~ (t2’ e, tn’ 80" By g for ty = 1
L4 (t, oty gy, 8 8 ~ (ty, "",{i’ oty Bt By 1B e B ©
for t, ;=t, or g =e
(ty, ooty 8o B ® ~ (b, oty 1,815 8 1s g,e) for t =0
We give EIl = E®II/~ ™) the quotient topology which is also compact-
ly generated. In particular, there is a compactly continuous function
Ell x 1 » Ell
coming from the action of II on E°Il defined on points by
(tl’ e, tn' 81, By g = (tl' .o, tn' 815" By gg’) .

We set BII equal to the orbit space of this action. Alternately, BIl can
be described in terms of an equivalence relation similar to 1.4 on
BM- M o"x 0",
n>0
The following theorem is proved in [131]. (eell is supposed to be an
N.D.R.)

1“)As a categorical construction the space Ell can be regarded as the
balanced product (tensor product) of the unreduced bar construction of I ([80],
p. 248) and the category O whose objects are the o® and whose morph'isms are
(generated by) the face maps 6‘i and the degeneracy maps §l: 0" » 0™ which
omit the coordinate ll‘
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THEOREM 1.5, (a) If Il is a topological group then EIl » BIl is a
principal Il-bundle.

(b) If TI is a topological monoid then EII » BII is a principal 11
quasi-fibering,

(c) EIl is contractible,

(@ B(I, xI,) = Bl x BIl,,
when the cartesian products are given the compactly generated topology.

(e) The construction is natural in the sense that if f: 1 -T" isa
continuous homomorphism then there are induced maps Ef: EIl - EI" and

Bf: BIl » BI" satisfying the usual functorial properties.”’

The contraction in (¢) comes from Ht: E°II -> EOH defined by
Hy(ty, oty 80, € 8) = (t_l——'H:’ ,-t:-l-_t, gy €y & e)
where t=t if t<1 and t=1 if t>1. Property (d) is proved by checking
directly that
By X Bry: B(nlxﬂ2) - BHI X Bﬂ2
is a homeomorphism, where LA is the projection on Ili, and of course

Bf(tli ...’ nl gl’ .“' gn) = (tl’ ...’ tn’ f(gl)’ .." f(gn)) .

The more difficult part of the proof is establishing (a) and (b). This is where the
N.D.R. assumption on e comes in.

*
)Among the natural properties of BIl is a filtration (BI](") = image of
o® xII" in BII). Filtrations give rise to spectral sequences and thus one
k<n
has a natural spectral sequence associated with BIl. One can check that with
field coefficients k, its El-term is the ‘‘bar construction’’ on H*(n; k). Hence
. 2 .
its E“-term is TorH* (H)(k' k) and
TorH*(I])(k, k) => H,BIL K .
In cohomology we have dually
= * .
ExtH*(n)(k, K => H*BIL k) .

These are the Eilenberg-Moore spectral sequences [115], [lSl] and are extremely
powerful computational tools.
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EXAMPLE 1.6, Let II be a discrete group; then EIl » BIl is a principal
II-bundle. Since EIl is contractible, EIl is the universal covering space
of Bll and = (BI)=1I, ﬂi(Bl'l) =0 for i>1. Moreover, BIl isa CW
complex with cells of the form [g,|---lg;] (g;#e forall i) correspond-
ing to o™ x (g;,,g,). The cellular ‘‘boundary relation’” is

n-1

olgl--lgg) = [gyl-legg] + 2 (—l)i[gll--~Igigi+1I---lg,,]+(—1)“[g1lmlg,,_!].

i=1

ExAMPLE 1.7. Let Il be abelian so that the multiplication p:IIxII->1I

is a homomorphism. Using 1.5(d) we have

Bu: BII x BII » BII

which makes BIl into an associative abelian H-space with unit. More-
over, BIl is a CW complex so it satisfies the N.D.R. property for the
unit and we can iterate the construction. In particular, if Il is a discrete

abelian group, then K(II, 1) = BIl is an abelian topological group,
(tly “ty tn’ gly ttty gn).-l = (tly Tty tn’ g;ly vty g;ll)

and BK(I, 1) = K(II, 2) is again such so we can construct all the

Eilenberg-MacLane spaces by iteration.

EXAMPLE 1.8. The classical Lie groups U, O, and SO, give
classifying spaces: BU classifying principal U, -bundles or equivalent-
ly complex vector bundles, BO, classifying principal O, bundles or
real vector bundles, and BSO, classifying oriented real vector bundles.
These spaces have been extensively studied. We need certain facts about
them which we will recall after the next two examples. For now, note that
U, =S =K(Z,1) so BU, =K(Z,2)= CP* and O, =Z/2 so BO, =
K(Z/2,1) = RP™.

EXAMPLE 1.9, Let TOP, be the topological monoid of homeomorphisms
f: R"  R™, £(0) . 0, with the compact-open topology and let G, denote
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the set of homotopy equivalences of S™1 also with the compact-open
topology. Then B TOP, and BG, classify R™-bundles with a zero-
section and homotopy S™1_bundles (also called spherical fibrations),

respectively.

EXAMPLE 1.10. For the piecewise linear homeomorphisms of R" one
has to proceed a little differently: the compact-open topology is not
suitable. Instead we let PL denote the simplicial group whose
k-simplices consist of all piecewise linear homeomorphisms f: AKx R,
Ak R? commuting with the projection on AK and preserving the zero
section. The geometric realization of PL, again denoted PL is a
topological monoid whose classifying space BPL classifies piecewise
linear R™-bundles ([68], [69]).

B. The classifying spaces for the classical Lie groups
At several later points in the book we will need some more or less
standard results on the spaces BU,, BO, which we collect here for

convenience. Most of these results can be found in one form or another in
e.g. [54], [102].

To begin there are Whitney sum maps

¢n,m: BU, x BU_, -~ BU,
1.11 '
¢'n,m: BOn X BOm -> B0n+m

induced from the homomorphisms

¢n,m: UpxUp->Upim: d’n,m: 0px0pn-0Onim

A O
¢n’m(A: B) = (0 B> .

Iterating this we obtain maps

given by
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B<;bn: BU, x---x BU; » BU,
B¢, : BO; x---x BO, » BO, .

Now, BU, = K(Z,2) ~ CP™ has cohomology ring H'(CP*;Z) = P{d},
the polynomial algebra on a 2-dimensional generator. Similarly, O, = 7/2
and BO; = K(Z/2,1) >~ RP™ has cohomology ring H*(RP™; Z/2) = Pif},
where f is l-dimensional.

Let T:U,;xU, »U,xU; be the interchange map, then ¢,oT =~ b,
since setting H; = R%mt)y ! . b, R(:7wt) where

M 1
Ranp) - [ SOSHTY  sinlir0)
—sin(%nt) cos (Mamt)

gives a l-parameter group of homomorphisms U, xU; » U, starting at
t=0 with ¢, and ending with ¢,° T at t=1. By the naturality
property 1.5(e) this gives a continuous l-parameter family of maps
BU, xBU, » BU, starting with B¢, and ending with (Bg,) o T. Iterat-
ing this, if A: BU; x---xBU; » BU; x--x BU, is any coordinate permu-
tation then (Ban) oA =~ Bo, . (Similarly for 0,

Thus the image (B an)*(H*(BUn; 7)) is invariant under the action of

the symmetric group En , and conversely we have

THEOREM 1.12. (a) B¢* injects H*(BU,;Z) into Pid;,-,d.} as the
subalgebra of invariants under the symmetric group En.
(b) Bo* injects H¥(BO;Z/2) into Pif,,--,f,} as the subalgebra

of invariants under Zn.

For a proof see e.g. [102]. Usually this result is proved by first constructing
the Chern classes and Stiefel-Whitney classes. But a proof based on the general-
ized transfer of Becker and Gottlieb can also be given [34].

DEFINITION 1.13. The i’th Chern class c; € Hzi(BUn; Z) is the class
so that B(}S*(ci) ”i(dl' -++,d,). The i’th Stiefel-Whitney class in
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Hi(Bon; Z./2) is the class so that BqS*(wi) = ai(fl, ""fn)' (Here o; de-

notes the i’th elementary symmetric polynomial in the stated variables.)"
From 1.12 we then have

H*BU;Z) = Picy, -, cp
H*(BO,;; Z/2)

P{wl s* "iwn}
The Whitney sum maps in 1.11 induce homomorphisms

Bép n: H'(BU,, ) » H'(BU) e H'(BU )

Bég n: H'(BO, ) - H¥(BO,) ® H(BO,)
given by
i i
114 Boj ()= cjeci; Bép (W)= wiow ;,
j=0 j=0

where we take ¢ ¢ H*(BUn) and wj € H*(BOn) to be zero if j>n. This
all follows from 1.12 by simple diagram chase. Note in particular that if
Bi: BUn -> BUm_1 is induced from the inclusion then

Bi*(ck) =c; for k<n and Bi*(cm_l) =0

since Bi can be considered as the composition

B
BU, x (¥) » BU x BU,; —-i BU,.,. Similarly for Bi: BO, > BO_ .

REMARK 1.15. It is worth noting that BO n has the homotopy type of the univer-
sal S" bundle over BOn +1° and there is a homotopy equivalence

f: BO, - Universal s"-bundle

so that #f == Bi: BOn»BOnH.

Indeed the sphere bundle is given by

*
)It is a classical theorem that P{xl, .o, xn} . P{Ul, oo, Un} for field or
integer coefficients.
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7:EO_., X s® 5 BO_,.
n+1 0n +1 n+1

This is the universal (S%, 0n +1)obundle and a mapping X > EO,_, xom-1 st is

equivalent to specifying an s™.bundle over X along with a section. Hence the
associated Rn+1 bundle is the Whitney sum of an R™-bundle and a trivial line
bundle. This gives a map

EO X s 5 BO
n+1 0n+1 n

which is a homotopy equivalence. Moreover, if we identify EOn +1 %0 1 s? with
n+.

BOn then 7 is identified with i. Similar remarks apply to BU - BUn+1 and

BSOn - BSOn +1° .

Consider the disjoint unions W(U) = H BU,, W(0) = H BO,. The
n>0 n>0
map IquSn’m make these spaces into associative H-spaces with unit

* = BO, = BU,. This makes H_(W) into an associative ring with unit,
0 0 *

and dualizing 1.12 we have

H,(W(U); Z)
H,(W(0); Z/2)

Piby, - byp, I x Z°

e ’-.-,e PR X
Ple, - e, +ix 2"

where b, ¢ H2n(BU1; Z) is dual to d" and e, € Hn(BOI; 7/2) is the
non-zero element. The ‘‘group completions”*) of W(U) and W(O) are the
classifying spaces BUx Z and BO x Z for complex and real K-theory,
classifying virtual vector bundles (BU = li_’m BfJn and BO = lim BO,).

In particular

H,(BU;Z) = Piby, by, -}

H,(BO;Z/2) = Ple;,e,, -}

1.16

We have inclusions r: U, - 02n and c: 0n > Un associated re-

*)This is a fundamental notion introduced by Barratt [15], Barratt-Priddy [16]
and D. Quillen [112]. There are two approaches. It is easily checked that the
spaces W( ) above are frce associative unitary monoids. Such an object embeds
uniquely into a minimal topological group—its group completion. Alternatively, the
group completions can be defined as the loop space (IBW( ) (see also [120]).
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spectively with realification which regards C" as R2" and complexifi-

cation R® > R® @ C = C"®. The compositions

cor: Un - U2n

roc: On 5N 02n

are conjugate to the inclusions

A O A O
1.17 A , Ao

0O A 0O A
On the classifying space level we obtain maps c: BO, - BU, and
r: BU, » BO,, and the compositions cor and cor are homotopic to
the maps induced from 1.17 (cf. 3.11).

In terms of these maps the Pontrjagin classes p,; are defined by
py; = 1'c*(c,,) ¢ H*(BO;Z) .

Reduced mod 2, p,; = wgi . The complete cohomology structure of

BO = lim BOn can now be summarized in
-

THEOREM 1.18. (a) The torsion in H*(BO;Z) is a vector space over
7/2 and
H*(BO; Z)/Tor = Plpy, s Pyyr el

(b) The diagonal in H*(BO; Z)/Tor induced from the H-space struc-

ture is given by

1
‘l'f(Pﬁ) = 2 P4j ® Pa(i-j) (po=1D.
j=0

*)It is customary to denote the i’th Pontrjagin class by P rather than Py;-
In this book, however, we find it convenient to always have the subscripts indicate
the dimension of the characteristic classes. Indeed only in Chapter 9 are there
any exceptions to this rule.
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Proof. From 1.12(b) it follows that the Bockstein f: H*BO;Z/2) »
H*BO0;7/2) maps Wy, to Wy, ., +W Wy, and Wone1 O WitWou .
Since B is a derivation it is easily checked that the homology of the
chuin complex H*BO;Z/2),B) is the polynomial algebra

leg, wi, .o, wgn, ...}, But Wgn is the reduction of the integral class
P4 by previous remarks. Hence the mod. 2 Bockstein spectral se-
quence ([23]) for BO has EZ = E® so the 2-torsion consists of elements

of order 2, and

H*(BO; Z)/Tor@Z(z) = P{p4, ""p4i""} .

(Z(z) is the subring of fractions a/b ¢ Q with denominator prime to 2.)
On the other hand comparing H*(BO; Z) with H*(BU;Z) via realification
and complexification we see that there is no odd-primary torsion in
H*(BO;Z). This proves (a).

The second part of 1.18 follows from 1.14 upon noting that
20*(c2i+1) =0,

Theorem 1.18 remains true if we replace BO with its two fold cover-

ing BSO = lim BSO,. The mod. 2 cohomology of BSO is also easy.
*
H™(BSO,;Z/2) = Piw,y, -, w,}.

REMARK 1.19. For the spaces H; of 1.9 and 1.10 we also have

“‘Whitney sum’’ maps

By ' BH, x BHy, > BH, .

(If H, = G, then the Whitney sum is the fiberwise join of spherical fibra-
tions.) The B¢n m induce H-structures on the associated stable objects,
BH = lim BH,, .

-

C. The cobordism classification of closed manifolds
A large part of our discussion after Chapter 7 will deal with the

cobordism rings of topological and triangulated manifolds. Also, throughout



CLASSIFYING SPACES AND COBORDISM 15

the next chapters, particularly Chapter 4 and Chapter 5 we will need some
basic facts on the cobordism rings for differentiable manifolds. In this
section and the next two we collect the facts we will need. Good refer-
ences containing more details are [40], [102], [133].

Roughly, two closed manifolds MJ, M} are cobordant if there is a
compact manifold W™ with IW = M, U M, (disjoint union); but this
needs some elaboration. First, by manifold we could mean either smooth
manifold, piecewise linear (PL) manifold or topological manifold—the
three basic manifold categories. Second, manifolds can come with extra
structure, e.g. be oriented, have Spin structure or be weakly complex. Our
ptime concem is the case of oriented manifolds in any of the three cate-
gories. However, to avoid unnecessary repetition we shall simply talk
about (H)-manifolds without further specification of the structure (H).

We call two (H)-manifolds equal if they are ‘‘isomorphic’’ (e.g. for
oriented PL manifolds this means PL-homeomorphic via an orientation
preserving map). For our (H)-manifolds there is a 1-1 correspondence
(via restriction) between (H)-structures on M = Mx0 and (H)-structures
on MxI. The inverse (H)-structure, denoted —-M, is the one induced on
Mx1C MxI when MxI is given the (H)-structure coming from M = Mx0

Our (H)-manifolds have an associated (H)-‘‘bundle theory’’: There is
a sequence of topological monoids H, with BH, classifying H-bundles
(with a zero section), e.g. H, = SPL with BH  classifying oriented
PL R™bundles. The universal (n-plane) bundle over BH, is denoted
y{} . If VKC M™K is an (H)-submanifold and the codimension n is
sufficiently large then there is an (H)-normal bundle »® = Vn(VkZ M k)
([961, [66]) and a classifying diagram

n g n
e e
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DEFINITION 1.20. Two closed (H)-manifolds Nl'l1 and Mg are called
(H)-cobordant if there is an (H)-manifold W™! with oW =M, U (-M,)
such that the (H)-structure of W restricts to those of M, and -M,.

The cobordism relation of 1.20 is an equivalence relation and provi-
sionally we denote the set of equivalence classes by TI: . It becomes
an abelian group when we set {M]}+ {MJ} = {M?L'J Mg .

A singular (H)-manifold in a space X is a pair (M,f) consisting of

a closed (H)-manifold and amap f: M > X.

DEFINITION 1.21. Two singular (H)-manifolds (MJ,f;) and (MJ,f,)
are called cobordant if there is an (H)-manifold W with dW= MIU ('MZ)
and amap F: W~ X so that F|M, = f;.

Once more cobordism of pairs (M,f) is an equivalence relation and
the resulting equivalence classes form an abelian group Tl,',f(X). If
(H)-structures on M, N induce a unique (H)-structure on Mx N (which is
isomorphic to the (H)-structure on NxM) then Tl,: = Til(pt) becomes

an associative, commutative, unitary ring and TI:(X) becomes a

Tf-module: {M}.{N,f} is the class of MxN P2 N X.
The final group we wish to construct is T’:(X, Y) for a pair of
CW-complexes YCX. This is given by taking equivalence classes of

irs (W, f),
pairs (W, f) £: (W,0W) » (X,Y)

where W is an (H)-manifold. The cobordism relation is given by an
(H)-manifold V with dV =W, UyVoUg-W, and amap F:(V,Vy)-(X,Y)

L
r 4
1] ‘
] ,
! ¥,

ow,* = oW,

oW, (?W2
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There is a long exact sequence
iy ix
o — THY) 5 THE) 25 ey 2 () —s

where HW,f}={dW,f|0W} and i, and j, are the obvious inclusions.
Moreover, given g: X-Z, then g induces amap g,: T’}(X) - TE(Z)
by gJM,f}={M,gf} and one easily checks that if g =~ g,, then
B1x= &g SO TI,;I( ) defines an additive homotopy functor.

Next, we examine the excision properties for TH . Write ’f‘E for the
kernel of Tf;l(X) > Tf;‘(pt) and let

é: THX,Y) » TH(XUcY), cY = YxI/¥x1

be the map which sends {W,f} to {W 3_w, fUugl. Here g:W-cYCXUcY

is an extension of f|0W, mapping a collar [0, 1] x IWCW to cY by
Id x f and the rest of W to the cone point. We want to construct an in-

verse to ¢, .
A THXUCY) > THEXY) .

For this we need transversality to hold for (H)-structures.

Let Z be a complex, suppose an (H)-bundle fk with base space X
is embedded in Z, and let M™ k pe an (H)-manifold. Recall that a map
£: MK, Z is called transverse to X if £1(X) = V? is an
(H)-submanifold of M" with (H)-normal bundle vX and if there is an em-
bedding of v¥ into a tubular neighborhood of V? in MM so that
f |uk: K5 €K is an (H)-bundle map.

We say that the (H)-category satisfies transversality (of codimension

k) if every singular (H)-manifold in Z,
f: MMk, Z

can be deformed slightly to a map transverse to X.
We use this for a singular (H)-manifold f: M?» X U cY with

13 k_ YxI, the trivial 1-dimensional bundle. Then f can be deformed to
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amap f; transverseto Yx% and V= fIl(Yx%) splits M, M-V =
WU, W, and after further deforming we get a map f: wW,V)- X)Y). We
set MM, f}={W,f}, and it is not hard to see that A is inverse to ¢.

Summarizing we have,

LEMMA 1.22. If (H)-manifolds satisfy transversality then TI:( ) isa
(generalized) homology theory.

Recall that a spectrum E = {Ek, fy} consists of a sequence of based
spaces E; and (structure) maps £y : st a Ek > Ek+1 . Associated to a

spectrum there are (generalized) homology and cohomology theories ([4])

E;(X) = lim [SK1, X* A E 17,
1.23 k

EiX) - tim [k A X", B, 1,
k

where [-,-] denotes based homotopy classes and X' = X U (%).

Essentially every generalized homology theory (defined on finite CW
complexes) is represented by a spectrum as in 1.23. This follows from
Brown’s reptesentation theorem upon using Spanier-Whitehead duality (see
e.g. [3]) to convert homology into cohomology. Thus under the assumptions
of 1.22 we have a spectrum MH = {MHk,fk} such that

T - klim o, k(MH) = 75(MH)

giving an abstract homotopy interpretation of the cobordism groups Tg

The spectrum MH above is the Thom spectrum for the universal

k

(H)-bundles: Removing the zero section from Yy We have a spherical

fibration and we take MH; to be its Thom space,

*
)lt is customary to denote E,(X) also by the symbol nis(x+A E) where the
# means stable homotopy group.



CLASSIFYING SPACES AND COBORDISM 19

MHy = Mapping cone (y}fl - BHy, » BHy)

THEOREM 1.24 (Thom). Suppose the (H)-category satisfies transversality
(of large codimension), then T;I( ) is represented by MH,

THX) = tim [S™K, X* A MH,] = #3(X* AMH)

k->eo

Proof (Sketch). By assumption every homotopy class [y] of maps
y: Sk"'“ >XtaA MHk (k large) can be represented by a map transverse to XxBHk

We get a diagram

gkin 14 X" A MH,

1.25

«, 5

n
v X x BHk

where V¥ is the (H)-normal bundle of V* in Sk'*'n and V? = _I(XxBHk). The
pair (VP ) then represents the element of TE(X) associated to [}’] Converse-
1y, if vh,f) isa singular n-manifold in X then the associated homotopy class
is represented by the composite

di; fAM®V)
sktn _ © L poky T2 ot aMeRy o, xta MH,

where V% C shtk is an embedding with (H)-normal bundle Vk , ‘¢ the Pontrjagin-
Thom collapse map onto a tubular neighborhood and v: Vk > ))l-‘l the classifying
map for vk.

Examples which satisfy transversality are PL-manifolds by the result
of Williamson [146), and in dimension n £ 4 topological manifolds by a
result of Kirby-Siebenmann [65], as well as smooth manifolds from Thom’s
original results [137].

In the unoriented cases it is customary to denote the corresponding
cobordism theories by T(EL, .‘T(Iop and T(* and in the oriented cases
by Qfl‘ s QIOP and Q. From 1.24 we have
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Q,(X) = 75(X" A MSO)
1.26 QPL(X) = #$(X" A MSPL)
QTOP(X) = #5(X* A MSTOP), x4 4,

and similarly in the unoriented cases with MSO, MSPL and MSTOP re-
placed by MO, MPL and MTOP.

As a final example we have the almost complex manifolds. These are
smooth manifolds M whose stable normal bundle is given a complex
structure, that is, a homotopy class of liftings v: M™ » BU;, of the normal
bundle »v: M7 » B02k for k sufficiently large. The cobordism theory of
almost complex manifolds is denoted QE and again we have
V) = 7S(XT A MU).

Let K(A) denote the Eilenberg-MacLane spectrum for the Abelian
group A with i’th space equal to K(A,i). Then, in the classic smooth

categories we have ([137]).
THEOREM 1.27 (Thom). (a) The spectrum MO has the homotopy type of

a wedge of Eilenberg-MacLane spectra, MO = V0 Zni K(Z/2).
1=

(b) T (pt) = Pix,,x,,%g, -} with one generator in each dimension

£2'-1 and
T = H X TG .

More generally we have the theorem of Browder, Liulevicius and
Peterson [29]. Suppose we are given a notion of H, bundles, weaker
than O, bundles (e.g. H, = TOP,,PL, or G,). Then we have
THEOREM 1.28. i) There is an algebra C(H) and

7, (MH) = Y (pt) ® C(H) .

ii) If H-theory also satisfies transversality then

X0 = H X TG GY) - Hy(X; 7, (MH)) .
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D. Oriented cobordism theories and localization

In the oriented case it is convenient to localize ([136]). We suppose

X is an infinite loop space, i.e. we can write X = QnYn for any n with

Y, n-1 connected, and the Y, form a spectrum Yx).

Let A be an abelian group. We define the Moore space M(A) as the

simply connected CW complex (unique up to homotopy type) having

HZGWUU;Z)= A
HMARZ) =0 i>2.

Then we have

LEMMA 1.29. Tkere is an exact sequence

07 (X)8A » 75 X)) AMA)) > Tor(m, _,(X),A) 0.

Proof. Suppose A,B are free abelian groups and

0o-AfB.ALO®
a resolution of A then M(A) is the cofiber
Vs2 £ Ws2 . ma)
gen A gen B
when f* = f. This gives a cofibering

Yxy a Y52 > Yx) a ¥s? - Yx) A MA)

S

and 1.29 follows by applying the homology theory 7.

*
)As a slightly non-trivial example, for A= Z[l/p] the sequence takes the

form

0-@PZL @ Z-Zlsplo
i=0 i=0

where f(ZO, zq ) = (—zo’ pzo_ZI, pzl_z2' see).
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In particular, if Z(p) denotes the integers localized at p and Z{1/p]
the integors localized away from p, i.e. Z(p) ={a/bl(b,p) = 1}, Z[1/p] =
{a/blb - pi some i>0} then

75 X AMEZ ) = 7, (X)L,
5 2 (U(X) AMZI1/pD) = 7, (X)eZ[1/p]
and more generally
75 (XA ZAMQA)) = 75X A2Z)eA .

DEFINITION 1.30.) (a) For X an infinite loop space we define
Xipl, X localized at p as lim Q"+2(YnAM(Z(p))) and X[1/p], X

n-oo
localized away from p as

X[1/p] = lim Q™2(Y AM(Z[1/p]) .

(b) For a connected spectrum Y set ‘B[p]i = yi—2 AM(Z(p)) and
‘y[l/P]i = yi—Z /\M(Z[I/P]) .

REMARK 1.31. The inclusions Z - A (A as above) give maps
S2 5 M(A) inducing X - X[Al, Y > Y[A]. They have the obvious effect
in homotopy and homology of including 7 (X[A]) C 7 (X)®A, etc.

By induction over a Postnikov system for X, H,(X[pl;Z) =
H (X, Z)@Z(p) and H(X[1/p]; Z) = H,(X;Z[1/p]), the isomorphisms

being induced from the inclusions in 1.31.

COROLLARY 1.32. Let f: X > Y be a map of simply connected infinite

loop spaces satisfying
£, Hy(XA) S5 H(Y;A)

*)Altornnwly one can define ‘y[p]i = ‘yl[p] where 'pr] is the space ‘yi
localized in the sense of [136].
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for some A above (and having the homotopy types of CW complexes)
then f[A]l:X[Al - Y[A] is a homotopy equivalence.

EXAMPLE 1.33. The usual map BSpin » BO is a Z[%] equivalence.
Thus MSpin ~ MSO is a Z[%] equivalence as well. Also BSp - BO is
a Z[%] equivalence where BSp = lim BSp, and Sp, is the symplectic
group. On the other hand BSpxZ = Q*BO by Bott periodicity, hence

Q4(BOM%Ix Z[%)) = BO[%]x Z[%]
and BO[%]xZ[%] is 4 fold periodic.

ExaMPLE 1.34. X[Q] is X localized at Q (X an infinite loop space).
It always has the homotopy type of a product of Eilenberg-MacLane
spaces K(Q;n), one for each primitive in H (X, Q) provided X has the
homotopy type of a locally finite CW complex. Similarly Y(X) A M(Q)
splits as a wedge of K(Q) spectra (see e.g. [91, Appendix]).

Finally, from [95], [137], [142] we quote

THEOREM 1.35. (a) The spectrum MSO[2] has the homotopy type of a
wedge of Eilenberg-MacLane spectra
msoi2l ~ Ysikz/av Y=ike,,)
2)
(b) The torsion subgroup of Q,(pt) is a vector space over Z/2 and
0, (X)®Z,, = H(X;Q,(p1)SZ,,) .

(c) Q. (pt)/Tor = P{x4, Xg, -«-} is a polynomial ring with one generator
in each dimension 4i.
@) 2,0pt)eQ = P{{CP?}, {(CPY, ..., {CP21},...}]}.
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E. Connections between cobordism and characteristic classes

For notational convenience we set

F*(X; A) = H¥(X;Z)/Tor® A
F.(X;A) = H(X;Z)/Tor® A
where A is a subringof Q. We suppress A when A=12Z.
The universal coefficient theorem identifies F*(X) with
Hom (F(X),Z). Both F* and F, are naturaland F ( )®A =
F( A, FX()8A.F* ;A). Also F¥*XxY)=F*X) e F*Y) and

similarly for F,. In particular
F*(BO) = P{P4, psy "':p4i, "'} »

and the total Pontrjagin class

p=1+p,+pg+-

s multiplicative,
¥(p) = pep

where ¢ : F*(BO) » F¥(BO) ® F*(BO) is the coproduct induced from
Whitney sum. Equivalently, for bundles &,7 we have p(€®n) = p(&)-p(n
in F*(base). (The total Pontrjagin class is not multiplicative in
H* ;7) but the deviation is 7./2-torsion.)

More generally a (graded) class

Q- L+ Ay + Ag+ o+ Ayt oo

A4yt F(BO) or F¥BO)@Q is said to be multiplicative or a genus if
() - e @.

Every genus is associated to its characteristic formal power series

1.36 s@ = 1+2aixi a; €Q
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and conversely, any formal power series beginning with a 1 is associated
to a genus ([54, Chapter 1]). Indeed if ( is a genus then S@) is ob-
tained by setting p,; = 0 for i>1 and p,=x in @. Conversely for

the power series f(x) set

F(al’UZ:“’) = H f(xi)
i=1

where the o; are the elementary symmetric polynomials in the x; (the
leading term of f(x) must be 1 for this to make sense). The genus )

associated to f(x) is then
F(p4y Pg: *ty P4n, "') € F*(BO) ® Q .

S(®) is not the only formal power series associated to @. If we write

Ayi = TaiPyi
the primitive series

1.37 P@ = Y Dimyx (my=1)

+D where 7,;¢Q and D is decomposable, then we have

and 1.36, 1.37 are related by the formulae

P@) = 1- X 3 log S@) = 1-xS@)7/s@))

S@) = exp (fl—'l-)é@ dx)

ull of these operations being carried out formally.

The set of multiplicative characteristic classes forms a group under

2-3(2, )

i+j=k

multiplication

nince formal power series with constant term 1 are formally invertible.

Also, given (! we can define a homomorphism again denoted ],
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Q: Q.01 - Q

by (iM}=< (f_l(v(M)), [M]>. Since v(MxN) = v(M)@i/(N) we have
@{Mx N} = @M} . @IN} so @ is actually a ring homomorphism. Conversely,

THEOREM 1.38. Given a ring homomorphism X : Q. (pt) » Q there exists
one and only one genus B inducing it.

Proof. @ extends uniquely to Q. (pt)eQ » Q and it suffices to check on
a set of generators, which from 1.35(d) can be taken to be the CP20, Now
B ((CP2™) = BH(CP2™) = BE(CP2M) 4 ¢) = B(2n+ ) H) = 2™+
where H is the canonical line bundle over CP2®, Now B(H) = ZBidZi
where S@B) = IB; x!, and we must inductively solve for the B; so that
the coefficient of x" in S@B)?™1! is @{CP2"}. Since this is uniquely
possible 1.38 follows.

COROLLARY 1.39 (Hirzebruch index theorem). Let £ be the genus
associated to the characteristic series S(£) = V%/tanh VX.

Then, if M*" is an oriented differentiable manifold the index of M is
equal to £iM}.

Proof (sketch). Recall that index I(M) is the signature of the cup product pairing
on H2"(M, Q) ® H?"(M,Q), <a,b>=<aUb,[M]>. It is first checked that I(M) is
a cobordism invariant and I(MxN) = I(M)+ I(N). Then, since KCP?) =1, the
proof of 1.38 applies.and 1.39 becomes equivalent to the assertion that the coeffi-
cient of x™ in (yX/tanh \/92'”'1 is equal to 1. For a proof of this see [54].

Here is a second, slightly more delicate connection between character-
istic classes and cobordism.

The generalized Hurewicz map
. H
h: T (pt) > H, (BH)

is defined by h{M{ .. v [M] e H (BH;I") where I' is Z for oriented
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theories and Z/2 for unoriented theories, and v: M > BH is the
(H)-normal bundle. If the theory satisfies transversality, then {M,2} is
equivalent to a homotopy class f: sk MH, k>>n, and h(M, v} =
h(f) N Uy = f*[Sn"'k] N Uy where h is the usual Hurewicz map

7,(X) > H (X), and Up e Hk(MHk; I") the ordinary Thom class.

EXAMPLE 1.40. Let e: Q,(pt) > Z be the augmentation edM}) = 0 if
dimM>0 and eM})=#M if dimM=0. Then ¢ is a ring map, corre-
sponding to the Thom class

U: MSO -» K(Z)
and the associated Hurewicz map of homology theories
h: Q. (X) > H(X;Z),
h(M, £]) = £,[M]
induces an isomorphism

Q*(X)sn*(pt)z(z) = H(X; Z(2)).

EXAMPLE 1.41. The cobordism ring of almost complex manifolds Qg(pt)

is torsion free and
QY1)  Q = PHCP, ... {CPY, ...}
(Milnor [95]).

From 1.16, H,(BU;Z) = P{b,,---,b_,---} and 7, JCPM is the coeffi-
cient of x" in (1+ b, XML Also if y: H,(BU,Z) » H (BU; Z) is
the canonical (anti) automorphism induced from the map sending y; to

yy then 41

HCP™ = v, (P = (1+ 3, xtb)

n

Note that these remarks together with the preceding description of

Q. (pt) give
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THEOREM 1.42. In Q,(pt) or QY(pt), M and M’ determine the same
element if and only if v, [M] = v [M’].

REMARK 1.43. In the case of oriented PL manifolds or topological
manifolds F. Peterson [110] has shown that there exist non-cobordant
manifolds M" with equal images v [M"] in H,(BSPL;Z) or
H_(BSTOP; Z) so 1.42 does not extend to these cases. However, it is
still of interest to characterize those classes in H (BSPL;Z),

H, (BSTOP;Z) as well as in H_(BSO;Z), H,(BU;Z) etc., which corre-
spond to v*([M]) for some M. In particular, in the latter two cases this
characterization has taken the form of integrality theorems for certain
complicated polynomials with rational coefficients in the Pontrjagin
classes or Chern classes. This follows since the mapping ¢ : H(BSO;Q)
- Hom (H,(BSO; Z),Q) is an isomorphism, and ignoring torsion classes
Q,(pt)/Tor C H(BSO; Z)/Tor is a sublattice which is completely deter-
mined by its dual lattice,

L* = {¢ ¢ Hom(H,(BSO; Z); Q)|4(0) ¢ Z forall £ eL}.

The elements in L* are evidently rational polynomials in the Pontrjagin
classes, and similariy for BU.

Thom in [138] defined Pontrjagin classes for PL-manifolds and
H*(BSPL; Q) = Pip 4+ Pg» -}, which we review in Chapter 4. From the
work of Kirby-Siebenmann [65], H*(BSPL; Q) = H*(BSTOP; Q) and we
can ask for similar integrality theorems for PL and topological manifolds.

We will return to these questions in Chapter 11.



CHAPTER 2
THE SURGERY CLASSIFICATION OF MANIFOLDS

In this chapter we review the Browder-Novikov theory and Sullivan’s globali-
zation of it which reduces many questions in the classification of manifolds to
questions in homotopy theory.

The idea is to start the attempt at classification with a homotopy type which
potentially could contain a manifold, find an obstruction theory to its actually
being the homotopy type of a manifold and give an effective procedure for evaluat-
ing the obstructions. If one then knows that the homotopy type in question is
represented by a manifold, relative versions of the theory serve to count the
number of distinct manifolds in the given homotopy type. We limit ourselves to
simply connected homotopy types. The reader is referred to [27] for a more de-
tailed account.

A. Poincarée duality spaces and the Spivak normal bundle

DEFINITION 2.1: A simply connected finite CW complex X is said to
be a Poincaré duality space (P.D. space) of (formal) dimension n if
there is a class [X] ¢ Hn(X; 7) so that

N[X1: Hi(X; 2) > H,_(X;Z)

(N[X): a > an([X]) is an isomorphism for all i.

Simply connected closed manifolds satisfy the conditions of 2.1, so a
manifold determines a unique homotopy type of P.D. spaces.

A finite CW complex contains a finite simplicial complex in its
homotopy type, and any such simplicial complex of geometric dimension
m embeds in R‘Z for £ large (£ > 2m+1 suffices). We can then take a
regular (or tubular) neighborhood of X by setting N(X) = Star(X) in the
second barycentric subdivision of the original triangulation of Re . From
116}, X is a deformation retract of N(X) and IN(X) is an (£-1)
dimensional triangulated manifold (that is, the star of every simplex is a

PL-disc).
29



30 THE CLASSIFYING SPACES

If X were a differentiable manifold and the embedding X C RY were
differentiable then N(X) would be identified with the normal disc bundle
to X in R‘Z and IN(X) would be the normal sphere bundle.

This fact admits a basic generalization to the category of P.D. spaces

{127)).

THEOREM 2.2 (Spivak). Let X be a simply connected P.D. space of
(formal) dimension n and suppose X C R™K with regular neighborhood

N(X). Then the homotopy fiber of the composite

INX) — N(X) L X

has the homotopy type of a (k-1)-sphere.

Thus, using Stasheff’s classification theorem 1.3, corresponding to

the fibering in 2.2 there is a classifying map
Keoxos BGy, .

Further analysis shows that the stable class v of vk(keoo) is indepen-
dent of the choices of embedding and regular neighborhood. The resulting
stable homotopy sphere bundle (also called spherical fibration) is the
Spivak normal bundle to X.

As remarked above, in case X is already a smooth or piecewise linear
manifold then N(X) can be identified with the total space of the normal
disc bundle to X and for k sufficiently large IN(X) > N(X) » X is just
the projection of the normal sphere bundle. In particular, in these cases
v is classified by a map into BO or BPL. Thus a necessary condition
that a P.D. space X have the homotopy type of a smooth or PL mani-
fold is that v admits a reduction to BO or BPL.

The Thom complex M({) of a spherical fibration &: 1 Lg% x s
is the mapping cone of the projection #n. There is a Thom class
Ue He(M(f ); Z) and the cup product map
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®: HiX; Z) > AMiME), Z) ,

®(@) = aUU is an isomorphism (the Thom isomorphism). In the case of the

Spivak normal bundle
M@) = N(X)/ON(X) == N(X) U cIN(X)

and M@eel) = 2IM@), so the stable Spivak normal bundle is associated
to the spectrum {M(), SM(), Z2M(), ---}.
If we collapse the complement of N(X) in R™K we get a degree 1

map (the Pontrjagin-Thom map)
c: sk Mo

Indeed, c*[Sm'k] NU =[X] for a suitable choice of Thom class U. The
cap product is that dual to the cup ptoduct inducing ® above, and

Xt Hy, (M@ Z) » Hy(NX); Z) = Hy(X, Z)

defined by A(@) =aNU is an isomorphism. One can now conveniently
characterize the Spivak normal bundle: The isomorphism class of a

k over X contains a Spivak normal bundle if

stable spherical fibration y
and only if there exists a degree 1 map S k, M(yk) . Moreover, if
(yi‘, ci) , i=1,2 are pairs of stable spherical fibrations and degree 1
maps c;: sk, M(y%‘) then there exists a fiber homotopy equivalence
t: yll‘ - y12{ such that M(t) o €y = ¢y sk M(ylz‘) , and t is unique up
to homotopy.

Recall that two finite CW complexes X and Y are called {-dual if
there are (large) suspensions X'X and 2SY and an embedding
srx c sbestl i complement sbrresel_sry homotopy equivalent to

¥8Y. We have ([8)]),

LEMMA 2.4, The Thom space M(Vk) is (n+k)-dual to X+.
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Proof. Let X C int DX with regular neighborhood N(X). Then
pi+k/pi+k _ jn¢ N(X) is the Thom space M(X). Moreover, as DMK g
contractible D™K/DMK _ jne N(X) ~ E(D‘“’k— int N(X)). Now consider

the embedding
XcC Dn+k c sn+k pn+k Uec sn+k—1 .

Taking (+) to be the cone point S“*k—X+ deforms onto DMK int N(X).
But I(S™KX ) ~ s*Kr1_X  and the result follows.

We can use 2.4 to show the existence of a S-dimensional simply con-
nected P.D. space which does not have the homotopy type of a smooth
manifold (see [78] for generalizations). Let X5 be the 4-cell complex

2.5 X5 -8s2ys? Uy e, =[]+ 1}21.2 .

Here, n 4(S2 vSH=-Zen 4(S2) ® ﬂ4(53) where the generator of the free
summand is the Whitehead product [¢,,¢;] (the attaching map of the top
cell in the Cartesian product S2 x §3), 174(82) = Z/2 with generator

172 (1,2 =noon) and 174(83) = Z/2 with generator on. The presence of

5 in cohomolo-

lt3,¢4] in the attaching map of e5 shows that U ed=e
gy, so X5 is a P.D. space.
~ On the other hand since the suspension of any Whitehead product is
zero we have

INX5) = (sm2 U a2 e™3) v s™3 y st

%)

and o"(n?) e Toy 4(S“*'Z) = 7Z/2 is the non-trivial class. Thus the Thom
* space of the Spivak normal bundle is the dual of En(Xf) and can be
written

2.6 v = (st U, b3y stz s

Here ge¢ mp, 2(SK) = Z/2 is again the non-trivial element, g= 02"2 (n2) .

We show that Y is not the homotopy type of the Thom space for any vector
bundle. First, note that since Sq1 =0 in H*(XS) for all i1 > 0 the total Wu
class V (see footnote on p. 80) of XS is 1 and since Sq(V) =W —the total
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Stiefel-Whitney class of x5 _we see that W=1 and wlzi which is the total
Stiefel-Whitney class of the Spivak normal bundle v(Xs). Consequently
w2(v(X5)) =0 and if f is a vector bundle over Xs with M(f) =Y then f is
classified by a map

h: x5 5 BSping

C onsider the induced map
.Y = [/
M(h): Y = M) - L
?

where ySpin is the universal bundle over BSpint. The secondary operation ()]

based on the relation

Sq?sq? + Sq3sql = 0

(cf. [1]) is defined on the Thom class U in He(Myspm; Z/2) and it has value

zero since He"'s(Myspm; Z/2) > B3(BSpin; Z/2) =0. Butsince D detects

02"2(172), ® is non-zeroin Y and this gives a contradiction.
REMARK 2.7. The fiber PL/O in the fibration
PL/O » BSO » BSPL

is 6-connected by the result of Cerf [39]. Hence [X®,BSPL] = [X5, BSO]
and the above arguments show that X5 is not homotopy equivalent to a
PL-manifold either. Also, using deeper results of Kirby-Siebenmann it
follows that X° does not even have the homotopy type of a topological
manifold.

REMARK 2.8. We can classify the remaining Poincaré duality spaces of

dimension 5 with 4-skeleton S% v S3 as follows:

a) (2 vs®) ULty .e,] e® = s2xs3,
2 3 5 2
b) (8¢vS )U[‘z"sl"'(a")‘se = S(Hee*)
b’) S2vs®Hu e’ >~ SHee?).

[c2,c3]+172t2+(0 Mg
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Here H is the Hopf bundle over §2 , ¢2 the 2-dimensional trivial bundle,
and S(Ho 52) is the total space of the associated sphere bundle. The

homotopy equivalence in b’) comes from the homotopy equivalence
ty v (1]!.2+t3): s2ysd,s2ys?

which takes the attaching map [12, c3] +(onrg to [az,c3]+172¢2 +omey.

We have seen above that a 1’st obstruction to a P.D. space containing
a smooth or PL manifold in its homotopy type is the existence of a re-
duction of its Spivak normal bundle to BPL or BO,

BO BPL
3 ” 3 a’
X —X—"BG X —%—BG

Such a reduction is often called a normal invariant and two such are
equivalent if the liftings are homotopic (by a homotopy constant when pro-
jected to BG).

REMARK 2.9. A basic tesult of Boardman-Vogt [19] shows that =, 7’

above are the homotopy types of principal fiberings and there are fibrations

BO ——, BG - B(G/0), BPL - BG -2~ B(G/PL).

Thus the obstruction to the existence of a smooth or PL normal invariant
for a P.D. space X is an element in [X, B(G/0)] or in [X, B(G/PL)].

B. The Browder-Novikov theorems and degree 1 normal maps

To what extent does the existence of a normal invariant guarantee a
manifold in a given homotopy type? This leads to a 2nd (and actually
secondaty) obstruction theory—the surgery obstructions.

Let £ k be a reduction of the stable Spivak normal bundle to BO or
BPL i.e. £k is a vector bundle or PL RK-bundle with a proper fiber
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homotopy equivalence ¢ kK. Then we have an identification

M k) =, M(vk) and the Pontrjagin-Thom map gives a degree 1 map
Cc: Sn+k - M(fk) .

We can deform ¢ to amap c; transverseto XC M I‘) and then

MP = cIl(X) becomes a codimension k smooth or PL submanifold of
s™k Ghose normal bundle is mapped to ¢€X by a bundle map (cf. Chapter
1). Thus we have the diagram

vay— ¢

2.10
f

M ———— X
(f= cllM,?= c, | tubular neighborhood) and f has degree 1, f (IM])=[X].

DEFINITION 2.11. The diagram 2.10 is called a normal map or surgery
problem over X,£. If f (IM]) = [X] then we say it is a degree 1 normal

map.

Later in this section we shall also consider normal maps for manifolds
or P.D. spaces with boundary. The definition is as in 2.11 with the extra
assumption that f|OM: dM » dX is a homotopy equivalence (or sometimes
a diffeomorphism or PL-homeomorphism).

The uniqueness of the Spivak normal bundle has the following

consequence.

COROLLARY 2.12. Let X be a P.D. space and & a vector bundle or
PL bundle over X. Then there is a degree 1 normal map with range
X,& if and only if € is fiber homotopy equivalent to the Spivak normal
bundle.
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A reduction of the Spivak normal bundle to BO or BPL thus leads
to a smooth or PL degree 1 normal map; but this correspondence is not
well defined. For one thing, two reductions ‘fi v, i=1,2 are counted
equal if there exists an isomorphism §2 - {"1 (linear or PL) taking one
into the other. More seriously, in the process we deformed the degree 1
map c: S™ k, M(£) to a transverse map and the resulting normal map is
not independent of which transverse deformation of ¢ we pick. However,
a relative version of transversality shows that two homotopic transverse

maps cg,c; lead to cobordant normal maps. Precisely

DEFINITION 2.13. Two normal maps f;: M; » X, f:0(M)-¢;, i=1,2,
are called normally cobordant if there exists a W, oW = M U M, and a
diagram (where F is a bundle map)

~

PW) e e £

F

W ——— XxI

so that (FIM;, Flu(M,)) = (£, ;) and (FIM,, FlvM,)) = (£, bot,)
where b: ¢, »&; is a bundle isomorphism.

Normal cobordism is an equivalence relation and the set of equivalence
classes with range X is denoted NMO(X) or NMg,; (X) in the smooth
or PL case, respectively. Now, it is not hard to see that the normal in-

variants of X are in 1-1 correspondence with the elements of NM(X).

EXAMPLE 2,14, Let f: M> X be a homotopy equivalence where M is
a smooth or PL manifold. If g: X > M is a homotopy inverse to f set
&= g* @) so f(€) = v(M). Thus f becomes part of a degree 1

normal map whose normal cobordism class is well defined.

Given a normal cobordism class of normal maps over a simply connect-

ed P.D. space X we can ask if it has a representative (f, f) with f a
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homotopy equivalence. The process of surgery ([27]) insures that we can
make f highly connected. In fact for n=dim X > 5 f can be assumed
to be a homotopy equivalence for n odd and (n/2)~1 connected if n is
even. The obstruction to completing surgery is an Aff invariant with
values in Z/2 for n=2(4) and IM)-1(X) ¢ 8Z if n=0(4) where IM)
denotes the index (= signature) of the cup product pairing

HY2 (M; R) @ HY2(M;R) -~ R and similarly for I(X). This is summarized
in

THEOREM 2.15 (Browder-Novikov). Let X be an n-dimensional simply
connected Poincaré duality space, n>5 and suppose that its Spivak
snormal bundle v admits a reduction to BO. Thenfor n odd X is
homotopic to a smooth manifold and if n is even the obstruction is an
element in Z/2 for n=2(4) andin Z for n=0(4). If n=0(4) the
obstruction vanishes if and only if for some reduction & of v,

<€71@), [X1> = 1X).

Note that <£71(£),[X]> = <€ 1(€), £,IMI> = <€ 'y, M]> =
<8@M), M1> = (M) by the Hirzebruch index theorem, (cf. 1.39).

REMARK 2.16, In Chapter 8.B. we review the construction of smooth manifolds
o
M?n with boundary a homotopy sphere 24"_1 (n>1) and index 8i (i £0) and

of smooth manifolds l?ll""”'2 with boundary a homotopy (4n+l)-sphere and having
‘‘Kervaire invariant one’’. We call these manifolds the open Milnor manifolds and
open Kervaire manifolds. Their normal bundles are trivial and hence induced from
a degree 1 map onto a disc obtained as the map pinching the complement of a
collar

£: (ﬁ?n-!-ZG, 2;1n+2&-l) - (DAnH2E gdn+2e-1y g 4

from the trivia} bundle. Hence f is part of a smooth degree 1 normal map (with
boundary) (f,f). When n=1 the desingularized Kummer surface K4([105], [126])
is simply connected, has index 16 and even cup pgiring c’1-12(1()@!-12(K) > 7. Thus
wz(K) =0 and K is again a Spin manifold, so K = K—D4 is parallelizable. Con-
nected sum along the boundary (see the remarks after 2.18) then give degree 1
normal maps over (D4,83) with index 16i for all i. There is no closed differ-
entiable (or PL) Spin manifold of dimension 4 and index 8 so this is the best
we can do.
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The underlying PL-manifold of 2?‘”'2&—1 is PL-homeomorphic to S“"H‘Z‘c'_l

by the h-cobordism theorem ([116]). Thus we can cone it off to obtain a closed
o
PL-munifold M#P+2€ - Mint2€ y o 340426-1 of jndex 8i or “Kervaire invariant

1"", The PL-normal bundle to M‘m"'zE is again induced by the pinching map

£ Mzitn+2§ 5 s4n+2€

this time from an (in general) non-trivial PL-bundle {" over S4n+25, so again
{ is part of a PL degree 1 normal map.

It is known that M?n is differentiable if and only if i is divisible by
a 220722221 _1) Num (B, /4n) where B, is the Bernoulli number (cf. Chapter
11) and a, = 1 for n even and a = 2 for n odd ([62]). Also, the results of
[26] show that M4n_2 is not differentiable if n is not a power of 2.

The Browder-Novikov theorem 2.15 remains valid in the PL-category.

Here, however, one can do better.

COROLLARY 2.17. Let X be a simply connected P.D. space whose
Spivak normal bundle admits a reduction to BPL. Then X is homotopic
toa PL manifold if dim X > 5.

Proof. As before we have a degree 1 normal map f: M® > X, £ v(M)-£.
Suppose n = 0(4) and that I(M)- I(X) = 8i. Then we take the connected
sum of (f,f) with the Milnor surgery problem M_’_‘i > S" of index -8i
(2.16) to get a surgery problem over X#S" = X with vanishing surgery
obstruction. If n= 2(4) we use the connected sum with the Kervaire

surgery problem.

C. The number of manifolds in a homotopy type

Novikov gave a method for counting the number of possible manifolds
in the homotopy type in terms of the number of distinct liftings of the
normal bundle. Several people have, since, sharpened this result. We now

consider this question of classifying the manifolds within a fixed homotopy

type.
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To begin we recall from 2.14 that associated to a homotopy equiva-
lence f: M® 5> X there is a unique normal cobordism class of degree 1

normal maps (f, f ). The next result is a relative version of 2.15.

THEOREM 2.18 (Novikov). Suppose two homotopy equivalences

f;: M > X, i=1,2 give normally cobordant normal maps. If M} and
M2 are smooth (and m,(X)=0) then M{ is diffeomorphic to the connect-
ed sum M7 # 2" of M} with a homotopy sphere bounding an open Milnor
or Kervaire manifold. In the PL-case M is PL-homeomorphic to MJ.

In both cases we have assumed n> 5.

First, recall the operation of connected sum along the boundary: Let
Ho+l {(x, ---,xn+l)lzxi2 <1,% >0} andlet D"C H™! be the n-disc
of points with x; = 0. For manifolds wiHl W;‘*l with boundary we
choose embeddings (H™!,D™) C (W;,0W,), orientation preserving for

i=1 and orientation reversing for i = 2, and set
wi}+l #a w12‘l+l - (wl_Hn+1) U (wz_Hml) .

The diffeomorphism (or PL-homeomorphism) type of Wi""l #y W;‘"’l is
well defined, D™! acts as the identity and

WL 5 WHHL) < oW, # oW, .

Proof of 2.18. Let F: W™, XxI be the normal cobordism between the
normal maps f;: M{' -» X. We attempt to do surgery on the interior of W
to obtain a homotopy equivalence F’: W » XxI. This is always possible
if n+1 is odd but if n+1 is even we may have an obstruction in Z or
Z/2 according to the parity of (n+1)/2. But if this happens we can add a
suitable open Milnor manifold or Kervaire manifold ™! to W along the
boundary component M, of W to replace the original normal map (F, 1))
with a normal map (F’, ﬁ") , F: W 5 Xx1 on which interior surgery may

be completed. Hence there is a homotopy equivalence F”: W” » Xx1I
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where dW” = M, U ™M, # 31, Since F”: W’ > XxI is a homotopy equiva-
lence W” is an h-cobordism and from the h-cobordism theorem ([116],
[97]) we have M; = M, #Z" as required. The PL-case is similar.

Let X be a simply connected smooth or PL manifold, fixing a

homotopy type. Following Sullivan we now make the definition

DEFINITION 2.19. A homotopy equivalence f: M® > X where M is
smooth or PL is called a homotopy smoothing or homotopy triangulation

of X. Two such
f,: M -X, £,:M-X

are equivalent if there is an h-cobordism W, dW = M, U M, and a map
F:W- X so that F|Mi = fi . The set of equivalence classes is denoted

SO(X) and 5PL(X), respectively.

From 2.14 there are maps

So(X) - NMg(X),  Spp(X) == NMp, (X)

and an element a ¢ NM(X) is in the image of j if and only if the surgery
invariant associated to a is zero. This may be restated as an exact
sequence of sets .
J s
So(x) — NMo(x) — Pn ;
2.20
j s .
SpL(X) — NMp, (X) — P, n=dimX>5

where P, denotes the simply connected surgery groups, P, = Z for
n=04), P, =7/2 for n=2(4) and P, =0 for n odd. (See Chapter 4
for the definition of the maps s.)

The obstruction groups P are the same in the smooth and PL case,
but the obstruction maps are different. From 2.16 s: NMp, (X)- P, is

onto but this is not true in the smooth case.

REMARK 2.21, The sequences 2.20 can be continued to the left. First, pn+1

acts on $(X) and | is an injection on orbita. Indeced given a«¢ Pml and a
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homotopy equivalence f one can find a degree 1 normal map (F,F), F: Wn+1 -

XxI such that oW = MUM, F|M=¢f and F|M =f" is a homotopy equivalence,
and such that the obstruction to doing surgery on the interior of W to geta
homotopy equivalence is precoisely a. (In fact, one can take the open Kervaire
manifold or Milnor manifold M'i""1 representing a and set

W = (MxD #y M0t

where the connected sum takes place along Mx(1).) One then. defines a- fei={r}.
In the smooth case this takes f: M? >X to £ =f#p: MP#3" sX #S" =X
where p is the pinching map p: 37 ,S™ and in the PL-case the operation is
trivial.

To further continue 2.20 to the left one needs relative groups, so define
NMO(V, av), NMPL(V, OV) to be the equivalence classes of degree 1 normal

maps, V » V which are diffeomorphisms, PL-homeomorphisms on the boundary.
The normal cobordism relation has AW = \) U’V2 U (aVI xI) with aVI x 1 identi-

fied with 3\-72 . Similarly we define 8PL(V' oV) and So(v, dV). It is now easy

to check the exactness of
9 — S 5.P
ree — NMO(XXI, —_— Pn+1 —_— O(X) —_— NMO(X) —F,
9 S s
. —> NMp; (XxL,3) — B, | — Spp (X) — NMp (X) — P,
where X is an n-dimensional spooth or PL manifold, n>5 (cf. [1 41]).

REMARK 2.22. Let Aut(X) denote the group of homotopy classes of
homotopy equivalences of X. This group acts on &(X) and the orbit set
S(X)/Aut(X) corresponds to the set of diffeomorphism or PL-homeomorphist
types contained in the homotopy type determined by X. The groups

Aut(X) are hard to compute in general and very little is known about them

except for the general result of Sullivan’s: Aut(X) is an arithmetic group.

Let G/O and G/PL be the fibers in the fibrations
G/0 —» BO -7, BG

G/PL — BPL %, BG
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Then we have the following fundamental result (Sullivan [134], Lashof- .
Rothenberg [70]) which ultimately makes NMp, (X) and to some extent
NMO(X) computable.

THEOREM 2.23, (a) If X is a smooth manifold then

NMQ(X) = [X, G/O] .

(®) If X isa PL manifold then NMp; (X) = [X, G/PL].

Proof. A map X - G/PL is equivalent to specifying a PL-bundle A

over X together with a proper fiber homotopy equivalence

t

A XxRe

7 Py

X id X

Now deform t to a map transverse to X x 0. The inverse image of X
is M and #|M: M > X has degree 1 by Poincaré duality. The normai
bundle to M in A is framed and the normal bundle to A is #*@)-n*(A)
Hence the normal bundle to M is identified with #*@(X)-)) so we have
a degree 1 normal map.

Conversely, given a degree 1 normal map as in 2.10 set A = v(X)-¢,
then making the dimension of A sufficiently big there is an embedding
f: MC_, A giving a commutative diagram

A

e
4

f X

The normal bundle to A is & and since v(M) = £¥(¢) it follows that the

normal bundle to f'(M) in A is trivialized. (We assume the fiber dimen-
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sion sufficiently large to insure a normal PL-bundle and so large that
this bundle is stable.) Hence we obtain an extension of f/, Mx Dz C LA,
The Pontrjagin-Thom construction gives a map

u: M) - sfon)
Poincare duality and the fact that f has degree 1 implies

<i*%*wd,sh> = 1

where i: S'Z - M(A) is the inclusion of a fiber. Let p: EQ(M,Jr) > Se be
the projection which collapses M to a point, then as M(A) = S(A®1)/X,

mxpu: S(Ae1) » X x st

becomes a homotopy equivalence and thus specifies a map into G/PL.
Checking well definedness up to homotopy and that the two construc-
tions are mutually inverse is direct. The argument is similar in the smooth

case.
COROLLARY 2.24. 7,(G/PL) = P, where P, is as above.

Proof. For n>5 we have the exact sequence of sets
SpL(S" — 7 (G/PL) = P, .

But SPL(S“) = * by the generalized Poincaré conjecture, s is onto
(2.16) and it is not hard to see that s is additive.
For n<5 we use that PL/O is 6-connected ([39]) so that
G/0 » G/PL is a homotopy equivalence in the range under study. Now a
direct check gives n4(G/0) =17, 7,(G/0) = Z/2 and 7,(G/0)=n,(G/0)=0.

REMARK 2.25. So far we have only considered smooth and PL manifolds.
However, the work of Kirby-Siebenmann [65] insures that the results are

also valid for topological manifolds, In particular there is an exact sequence
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* 5 810p(X) - [X,G/TOP] 5 P - 0

for each topological manifold X of dimension at least 5.

In the fibration
TOP/PL - G/PL - G/TOP

the fiber TOP/PL is an Eilenberg-MacLane space K(Z/2,3) and the

homotopy sequence

E
0 — 7,(G/PL) — ,(G/TOP) —» n,(TOP/PL) —> 0

is non-split. Thus wn(G/PL) > w,(G/TOP) and the natural map induces

the isomorphism except in degree 4 where it induces multiplication by 2.



CHAPTER 3
THE SPACES SG AND BSG

From the previous chapters we have seen the importance of the spaces of
homotopy equivalences and oriented (degree 1) homotopy equivalences of the
n-sphere, Gr‘1 +1 and SGn+1 respectively, in classifying manifolds. In this
chapter we study the homotopy types and the mod. 2 cohomology of these spaces
and their classifying spaces.

A. The spaces of stable homotopy equivalences
The equatorial inclusion S C S™! induces inclusions
i: Gy > Gy, 128G, > SG

n+2 n42’

i) (tg, sty g) = (tg, A7 fOMy, o, At 1)), to 421
= (toyoy"‘:o): to‘-‘i'l

where A = 1/4/ l—t% . Clearly, i(f)oi(g) = i(feg) so i is a homomorphism

of monoids and induces maps of classifying spaces

Bi: BG,,, » BG,,,, Bi:BSG,,, - BSG,,, .

-2’

The universal S™!-bundle y“"’2 over BG , pulls back to the Whitney
sum (i.e. fiberwise join) of y*! and the 1-dimensional trivial bundle.

Hence if we set
BG = lim BG,, BSG = lim BSG,,
- ->

we see from Stasheff’s classification theorem (cf. 1.3) that for X a finite
complex the homotopy set [X, BG] (respectively [X, BSG]) is in one to
one correspondence with the stable equivalence classes of homotopy

(respectively oriented homotopy) sphere bundles over X.

45
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We now study the homotopy types of G and BG. Let *¢S" bea
base point (usually we take *=(1,0,:.-,0)) and consider the evaluation
map

E: Gy »S", E@)=f(x.

We claim that E is a fibration.

Amap f: X~ Y satisfies the path lifting property (PLP) if for each
space K and homotopy h;: KxI-Y whose initial term is lifted to
H,: K-> X (foHy = hy) there exists a homotopy H;: KxI -+ X covering
ht(fo H,=h). (Also recall that each map f: X - Y can be converted into
a fibration and thus has a homotopy (theoretical) fiber. If f satisfies
PLP then f~!(¥) is equal to the homotopy fiber.)

LEMMA 3.1. The map E: G, »S" satisties PLP and E~'(¥) = F,,
consisting of all those f ¢ Gn+1 with f(*) = *.

(See e.g. [125] for a proof.)

The inclusion i: G, 1 sz takes Gn+1 into F, Of more im-

n+l-°
portance, however, is the inclusion Fn > GﬂJr1 > Fo w;ich we analyze
now.

Recall that if X is a space with base point * then the loop space of
X, QX, is the space of all base point preserving maps 9 (X, 9
equipped with the compact-open topology. The set of base point preserving
continuous maps f: S1AY > X is in one to one correspondence with base

point preserving continuous maps g: Y -» QX,
3.2 Maps(S! A Y,X) ~ Maps(Y,QX),

where the loop in X with constant value * serves as base point for 0X.
To f one associates the adjoint g(y)(t) = f(t,y) and vice versa. The

identification induces an identification of based homotopy sets

3.3 [stay,Xx] =~ [Y,QX].

Iterating 3.2 we have, Maps(S"A Y, X) ~ Maps(Y,Q"(X)) where
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QnX = Q@™1X). In particular Q"X is the set of base point preserving
maps (S%, %) > (X, %) and 7 @Q"X,#) =m; (X,*) forall i>0. Asa
special case of this last relation, note that nO(QnX, x) is the set of path
components of 2"X. We index these components by the element in

ﬂn(X, %) to which a point corresponds under taking adjoint. Recall

LEMMA 3.4. Any two path components Qg(X) and Qg(X) of Q"X are

homotopy equivalent.

COROLLARY 3.5. The fiber F, in 3.1 is equal to Q:_'IS" u Q_‘:'IS", the
fiber SF, of E: 8G 4 - S" is equal to Qi'ls“ and through dimension

n-2, F, = G,, SF, ~ SG,,.

Proof. m (S") =7 andamap f: S"~>S" is a homotopy equivalence if
and only if it has degree *1. The homotopy equivalences follow on look-
ing at the homotopy exact sequences of the fibrations E and using that

F and G are CW complexes.

Now consider the inclusion of the orthogonal group O, ; in G ;
induced from the usual action of Om-l on S". The restriction of E to

0,1 is a fibration with fiber O, and we have the diagram of fibrations

E ¢n
0y Ony1 S
3.6 J J
E
n Gpi1 Sa

If we identify ,(F,) with =, +n(Sn) as above, J, becomes a map
Ju: 7;00,) » 7} Jrn(S“) which can be identified with the J-homomorphism of
G. W. Whitehead [145]. Again from 3.6 we see on passing to the homotopy

exact sequence of the fibrations that the boundary maps d factor as
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my(H — e 7 O

%

7y 1 (Fp) —— 73 18D

We now consider the suspension map i: G, ;, » G defined in the

n+2
beginning of this chapter. Let r be the composition,

i
r: Fn - GtH-l > Fn+l .

We record the following obvious result.

LEMMA 3.7. Let k_: S® > QS™! be adjoint to the identity S!AS"->S™1,
Then r: F, > F, , is homotopic to Q" Q7S Q™ 1gn+1l restricted

to the *1 components.

COROLLARY 3.8. The induced homomorphism 1, : m(F, ) > m, ( 1) is
an isomorphism for i< n-1. In particular

1lim Q lSn ~ G and lim Qn St ~ SG,

n->o00 n-—>o0

so 7,(G) = m;(SG) - klirl 7 +k(Sk)-

Proof. This is just a restatement of the well-known fact that k: ST-Qsn+1
is a homotopy equivalenée in dimensions less than 2n-1. (Indeed Qs+l
has the homotopy type of S®U 27U e3% U ... via the reduced join con-
struction [60] and k embeds S® as the bottom cell.)

B. The space Q(So) and its structure
If X is a space with base point the natural inclusions Q7S™(X) -
Qnt1gM Xy on passing to the limit define the space Q(X) = lim Q7S%(X).
n-oo
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group of X. Dyer and Lashof in [S0] were the first authors to study the
structure of Q(X). In the initial version of [50] but left out in the printed
version they gave a geometric construction C(X), an inclusion
i: C(X)» Q(X) and showed that i is a weak homotopy equivalence for
connected X,
c(X) = EZ xy XV=~.
gl n*Z

Here X is the symmetric group on n letters, EX  the universal cover-
ing space for BZn and En acts on X" by permutation of coordinates.
The equivalence relation = identifies points of EZn X3, FI(X“) with
points of EX xs X™1 where FI(XMC X is the ssbset with at
least one coordinate equal to *. Specifically, there are n maps

5i: En > zn-l associated with the n monotone increasing embeddings of
d;:{1,-,n-1} > {1,-,n}. Let d;: EX >ES_,

and let it X021, X0 pe the embedding whose i’th coordinate is *.

be the induced maps*)

Then =~ is the equivalence relation generated by (5iw, x) ~ (w,s;%).
We refer the reader to May [84] for more details.

The construction was rediscovered by Barratt and Priddy in 1969 and
at about the same time by D. Quillen. Their description led to a similar
result in the case that X is not necessarily connected. In particular, we

give the following fundamental description of Q(So) . First note that

¥ -
)The adjoint map corresponding to ai, ai: En - En—l is defined to make
the following diagram commutative

ai
{1, ., -1} —————e {1, .-+, n}
'éi(a) ‘a
o
{1, 0,01} @D {3 .0 0}

Thus aa(i)(B)~ ai(a) = ai(Ba) and the induced mapping 3i: Ezn - Ezn_l is
determined by

dfe,l - le,le = RN 104018 19(® -
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c=c@6Y%-= II an R (BZ0 = % is the base point)
n>0

has a natural associative H-space structure with unit *, induced from
the usual inclusion 2 x% -3 upon applying B and using
B(E,xZ2)=BX xBY, . Barratt-Priddy and Quillen show ([16], [112]),

THEOREM 3.9. (i) There are natural inclusions 1ig: an - Q(So) induc-
ing an H-map I: C(So)—» Q(So) with BI: BC(S?) » Q(Sl) a homotopy
equivalence. In particular, 0BC(S?) =~ Q9.

(i) H@BCS) & Zx lim H(B3,) where the limit is induced

from the natural inclusions of En in En 41 8 those permutions leaving

n+1 fixed.

We refer the reader to Segal [120], [121] for a very elegant proof of 3.9.

The product in Q(S®) which is related to that in QBC is the ‘‘loop
sum’’ which is given as the limit of the Q™ 1(x): (@72 » Q"S" where
*: QST QS™ > QS" is the loop sum. However, the product which is appro-
priate to G and SG is composition of maps. Of course, Q"S" as a
space also admits composition product as well as loop product. It is then
natural to ask how this composition product is reflected in the space
C(So) and the maps i
Let

a+ This requires a different family of homomorphisms

'/'n,m: 2nxzm > Zom

be the product of permutations ('J’n,m("’ r) acts on the nm points (i, j)
coordinatewise ¥(o,7)(i,j) = (6(i),7(j))). This only determines ‘ﬁn,m up
to inner conjugation: we require a linear ordering of the (i,j) and usually
we take the lexiographic ordering.

Our cohomological calculations in the remainder of this section are

based on 3.9 and the following somewhat more precise



THE SPACES SG AND BSG 51

THEOREM 3.10. The following diagram homotopy commutes for each pair

(n, m)

B(

BX, x BX Vo) BZ,,
inx im inm

Q(s?) x Q(s%) 2 Qs%

where o is the map induced on passing to the limit from the composition
products.

Thus, we can also use the spaces BEn to study the composition
product in Q(So) and by restriction, in SG. This program begins with
the specification of the H*(an) and ends with a fairly clear description
of H (BSG). The original results at the prime 2 were discovered in [90]
where H*(BSG;Z/2) was computed. The Pontrjagin ring H,(BSG; Z/2)
was treated in [73] whereas at odd primes the results are primarily due to
May [86] and Tsuchiya [139].

In the sequel we only discuss mod. 2 cohomology results. The re-
sults at odd primes are similar and left to the reader (cf. [106]).

C. Wreath products, transfer, and the Sylow 2-subgroups of %
Let II be a finite group and Aut(ll) its group of automorphisms,
Then Aut(Il) acts as a group of homeomorphisms of BII,

Ba(tly'”’t :gl:"" gl'l) = (tl:"'yt ’a(gl)"":a(gn))
n n

and we have the well known

LEMMA 3.11. If a is an inner automorphism of Il (aell) then
Ba: BII » BIl is homotopic to the identity.
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Proof. Define a homotopy H%: 1xBll - BII by

H?«tl’ oo, tn’ g1 gn)) =

(tl' ) ti’ t, ti+1’ *tty tn;a(gl)y “':a(gi)r a, gi+1; “tty gn)

where t, +1 <t< £ In view of the equivalence relations defining BIl (compare

1.4) H‘: is well defined when we recall a(g) = agz—l , and since
(lrtlr”'rtn:g: gl»"'rgn) ~ (tl’""tn’ glr vty gn)
(tl: vl tn: O,G(Zl), "'»a(gn): g) ~ (tl' cty tn: a(gl): crey a(gn))

we see that H‘: is indeed a homotopy of Ba to the identity.

The subgroup Int(II) of Aut(Il) consisting of inner automorphisms
is normal in Aut(II), and Aut{II)/Int(Il) acts on H¥BII) in a (perhaps
non-trivial way. For example, B(Z/2)" = RP® x..-x RP* and
H*BZ/2M = P{el, ey eni . Also, Aut((Z/2)"™ = Gﬂn(Z/Z) and this
acts on H¥(B(Z/2)") by (BO) *(e;) = EGij e where 0 = t(aij)'

COROLLARY 3.12. Let I" be a subgroup of Il and Bi: BI" - BIl the
associated inclusion of classifying spaces. Suppose NI' is the normal-
izerof T' in II. Then NI'/T" acts on H*(BI") and the image of (Bi)*
is contained in H*(BF)NF/ r , the subgroup of invariants.

Finally, we need the classical notion of the transfer associated with

a finite covering space E » X. It is the chain map
Tr: C(X) » C(E)

given by Tr(o) = 3§, where the sum is extended over all simplices (or
singular simplices) of E covering o. We see that poTi(x) = kx if

p: E- X is a k-sheeted covering. Note that if I"CII is a subgroup
then BI' is homotopy equivalent to the orbit space EII/I". In particular
we have a covering EII/T" » BIl with [[I:T"] sheets. Summarizing
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LEMMA 3.13. Let i: ' CIl, then there is a transfer mapping
Tr: H B > H, BII) so that Tro B;* is multiplication by the index
{:11.

(In particular, if I" is a Sylow p-subgroup of II then
(Bi)*: H¥(BII; Z/p) > H¥(BT"; Z/p) is a monomorphism as [II:I'] is then
prime to p.)

DEFINITION 3.14. Let 'C X and let H be any group. The wreath
product I"\H is defined to be the product I' x H® with multiplication
specified by

(6B, o W 8y o ) = (@8 gy, by -

Note that H? is nommal in F\H with quotient group I'. As a particular
example zn\zm may be regarded as the set of permutations of pairs

Gi,j),i=1,--,n and j=1,--,m on defining
(gr hl P hll) (i: j) = (g(i)r hi(j)) .

Using the lexiographic ordering as before, this gives an embedding

3.15 Jam® En\zm > Zm-
Also, there is an injection
IxA:3 <3, - En\zm
where (1xA)(o,7) = (0,7,-+-,7) and we have (compare 3.10)
Jam® (I1xA) = Ynm-
LEmMMA 3.16. If I'CZ  and H is an arbitrary group then

BA™\H) ~ ET xp (BH)", and the projection ET xp (BH)" - BT is a
fibering with fiber (BH)® and group T .
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Proof. We have a free action of I"\H on the acyclic space
El' x EH x---x EH,

(W, v]_: '"!vn)° (gy €, e, e) = (Wg, Vg(l), neey Vg(n))

(w’vl;"'rvn)'(eyhly'":hn) = (wtvlhly"" vnhn) .

The orbit space, which is a model for B \H) is clearly EI’ X[ (BH)"
as stated. The assertion about fibering is direct.

As a special case of 3.15 consider J: Z/2\Z/2 - %,. Checking
orders we see that ] embeds the wreath product as a Sylow 2-subgroup

of 3 4- This may be iterated and we get an embedding
3.17 J: Z/2\:+\Z/2 > Z/2\22n_1 » 2,
N—— —
n times ¢
The 2-order of n! is v2(n!) = n-a(n) where a(n) is the number of terms
in the dyadic expansion of n. Hence the 2-order of 2211 is 21 and
J embeds the iterated wreath product as a Sylow 2-subgroup. More gen-

enerally, write m in its 2-adic expansion m = 211 +oee 21j, ig <ip<ee<
Then zzil x X Zpi, C X is a subgroup of odd index and a Sylow
2-subgroup of Em is then the product of the Sylow 2-subgroups of the
factors (given in 3.17).

D. A detecting family for the Sylow 2-subgroups of X
DEFINITION 3.18. A (mod 2) detecting family of subgroups of I' is a
set of proper subgroups I';, -+, T} so that

{0} = [} Ker(Bi: H'(BI; Z/2) » H¥ (B[ 2/2)) .
j=1 _

We begin by analyzing the cohomology with Z/2 coefficients of the
‘‘quadratic’’ construction EX, xzz X x X for any space X. Let A be

the group ring A = Z/2(Z,]. The Eilenberg-Zilber map (see e.g.
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MacLane [80]) implies a natural chain homotopy equivalence
C,(EZ,) ) Cy(X) ® Co(X) — C,(EZ, xz, XxX) .

Since EX, is a contractible Z,-free space its chain complex is a free
A-resolution of Z/2 and hence homotopy equivalent to the standard

resolution W,

3.19 - W, = Aen, d(ey) = (1+Te, ,

where T e 2, is the generator. Hence

Wep Cu(X) ®Cy(X) = CyET, x5 XxX).

LEMMA 3.20. Considering H(X) as a chain complex with trivial differ-

ential there is a chain homotopy equivalence
Wey, C,(X)eC(X) ~ Wep H(X)®H (X).

In particular H_(EX, xs Xx X) is generated by elements e.®@a®a and
# =S X3, i

e,®a®b for a,b e H(X).

Proof. Associated to the free A chain complex WeC (X)@C(X) there

is a spectral sequence (see e.g. [80])
E, = H,G,;H,(WeC (X)eC(X))) = H,(Wey C (X)eC (X))

and similarly for C(X) replaced with H(X). Let f: C (X) - H,(X) be

any map inducing isomorphisms on homology and consider
lefef: W C (X)®C (X) » WeH (X)®H (X) .
This induces an isomorphism of the E2-terms by the Kiinneth theorem and

hence an isomorphism of the E™-terms. Finally, it is direct to calculate
the homology of Wep H, (X)®H,(X).
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Let H be any group. There are two important subgroups of the
wreath product 22\1-! , the normal subgroup Hx H and the diagonal

subgroup 1xA

To obtain B(1xA)* we recall the definition of the Steenrod squares

given in [130]. A class x ¢ H'(X) induces a cocycle

x@x = 18x®x ¢ Hom(Wep H (X)®H,(X); Z/2)

hence from 3.20 a cohomology class again called x®x in
H2“(E22 xs X2;Z/2). Then the Steenrod squares are given by the
2

formula
n

3.21 B(1xA)*(x®x) = 2 el ® Sq™ix) .
i=0

LEMMA 3.22. The subgroups %, x H and Hx H form a detecting family
for ZZ\H.

Proof. Let ec¢ HI(B(EZ\H)) be the pull back of the generator under the
projection B(22\H) > BZZ . Combining 3.16 with 3.20 (dualized to

cohomology) we see that the kernel of

H*(B(Z,\ H)) » H*(BHx BH)

is generated by elements of the form eu (xex) with j>0 and
x ¢ H¥(BH). But 3.21 implies

B(1xA)*(eJ U (x®x)) = ef*M@x + other terms.
This completes the proof.

There is a very important detecting subgroup V, C 2211 which we
shall now describe. V, =Z/2x--x Z/2 (n factors) with embedding
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1: Z/2x--x 2/2 A, Z/20\-\Z/2 L.

2n

i
where A = 1x Ayx Ayxneex An—l , M) = &, x) e (@Z/2° and J is
the embedding of 3.17.

THEOREM 3.23. The subgroups Ez'n—l x 22n-l and V, are detecting
for T .
2

Proof. For n=2 this is the statement of 3.22 and the fact that
Z/2\Z/2 is a Sylow 2-subgroup of 24 . Assume the result for n-1.

The index of Z/ 2\22n_1 in 22n is odd so Z/ 2\22n_1 detects 22n
by 3.13; hence Z/2x 2211-1 and zzn—l X 2211—1 detect 22“' It
follows from the inductive hypothesis that V,, Z/2 x 2’211—2 X 22&_2 and
22n—1 X 22 detect 2211.*) It remains to note that Z/2 x Ezn—2 x
2211—-2 C 22“ is -conjugate to a subgroup of 220-1 X 22n~l . This com-

pletes the proof.

E. The image of H*(an) in the cohomology of the detecting groups
We next compute the image of H*(BEZn) in H*(BVn) = Ple;, -, el

An upper bound is found using 3.12 and a result of L. E. Dickson from
1911 [44]. The Stiefel-Whitney classes of the permutation representation
22n C Ozn(R) give a lower bound.

Consider 22n as the automorphism group of the underlying set of the
7./2-vector space Z/2®---® Z/2 (n summands). Then V, C 2211 is the

set of translations and its normalizer the group of affine transformations,
Aff (Z/2). Consequently, N(V)/V, = Gl (Z/2) the general linear group

*
)We are using here that Vn is conjugate to V; cx n inductively defined by
V;: =4/2 % V;‘_l CZr2x 2211—1 C Z/2\22n_1 C 22n' Indeed, if one consistently

uses the lexiographic ordering to embed the wreath products then V;‘ = Vn‘
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and the image of H*(BEZn) is contained in the ring of invariants

Z/2 Gl (Z/2
@y 1P _ pe,, ., e 15047

Let ﬁi be the matrix

€ € €n
2 2 2

ﬁi =| €7 e; e,
21+l 2i+1 2i+1
1 € * ©h
n n n
e% e% efl
~ Gl (Z/z)
and let D, = det(Di) € P{el, ey pe The following theorem is

proved in [44].

THEOREM 3.24 (Diékson). For i<n D, divides D; and

Gl (Zr2) . .
Pley, -, ey} is the polynomial subalgebra with generators

Dy 1/Dgs Dyp_5/Dy, =+ D,/D,, Dy
(degree (D;/D,) = 2"-2, degree D_ = 2"-1).
Py
Next we have the real representation y,: V, » 2 n—O n(R)

where P, is the permutation representation (embeddmg 2 as the per-

mutation group of the 2" coordinates in R2 ). v, isthe regular repre-

sentation of V, and from the theory of representations of finite groups the
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character of y,, is the sum of all the irreducible characters of V,. Now,
the irreducible representations of (Z/2)" are all real, one dimensional

and can be identified with the elements in Hom(V,, Z/2) since Z/2=0;.
Identifying Hom(V,, Z/2) with HI(BVn; 7/2) we see that the total Stiefel-
Whitney class®) of the representation f is 1+f. Hence the total Stiefel-

Whitney class of Yp is

wo = [ a+n.

1
teH'(BY,)

LEMMA 3.25 (E. H. Moore [104]). D, = [ £, teH'BY)).
££0

Proof. From the definition we see that e, divides D, and as Dn is
invariant under Glln(Z/ 2) each non-zero f ¢ H! (BV,) must divide D,,.

Moreover, by inspection D £ 0. Comparing degrees the result follows.

LEMMA 3.26. The total Stiefel-Whitney class of y, is

W(yn) =14+D, 1/Dy+Dy o/Dy++--+Dy/Dy+ Dy

Proof. From 3.25 we have that wz“—l(y“) =D,. Indegree <2"-1 the

Gl (Z/2)
only elements in Ple , -, e } are D and the D;/D, . Then

we calculate from the definition

i
3.27 Sq* (D;,,/Dy) = D;/D, (Dy/Dy =Dy .

Finally, we recall the Wu formula for the action of the Sqi on the Stiefel-

Whitney class Wi,

)The i th Stiefel-Whitney class of a representation y: 7 - O, is defined as
w,(y) = By* w}), cf. 113,
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i -1
Sq (wj) = (7w 4t decomposable terms .

These formulae, together with the fact w2n 1(yn) =D, inductively give
the result.

COROLLARY 3.28. The image of (BI)*: H¥(BZ )~ H*(BV,) is precise-
Gl (Z/2)

ly the ring of invariants H*(BV)) "

We now consider the images of w;(P,) in H*(BE2 a1 X B22n__1)
under the inclusion j: Bzzn—l x B22n_1 N BEzn. First, the restriction
of P, to X 1% 2 n1 is the (exterior) sum P, ; x Py, . Second,

P, =e® P} where ¢ is the trivial 1-dimensional representatxon Indeed,
if e; is any non-zero vector of the representation space R2 of P,

then e = 3{g- el|g622n} is non-zero and invariant under the action of
2211' Hence Pnlzzn_1 x 22n-1 =2t ® P” and in particular the induced
bundle

j
BS n1xBE,, — B, — BO,

has two sections, so

ok
3.29 g B = 0.

Now using 3.29 and the inclusions
i
Vo1 x Yy € Ezn—l x zzn-l — 3

we see that j* injects the subpolynomial algebra

then have
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COROLLARY 3.30. The kernel of j* is exactly the ideal
P{wzn—l(Pn)’ I wzn_2(pn)} ’ wzn_l(Pn) .

ExXAMPLE 3.31. We use the above results to determine H *(B24). In

fact we claim

H¥(BZ,) = Piw;(P), w,(P), w3(P)}/ <w,;(P)- w3(P) = 0>.

Indeed the detecting groups are 22 x 22 and V,. The normalizer of
22 x 22 in 24 is 22\22 , hence the image of H*(B24) in

3
H*(BEZx BX,) is contained in Ple,, e,} 2 where the generator T of

3 .
3, switches e, and e,. But Ple;,e,} 2 =Ple +e,,e5e,l, and
e +e, = j"‘(w1 P), ee, = j*(wz(P)). We have already shown that the
image of H*(BZ 4) in H(BV,) is

PfDl/Dz,DZ} = P{e%+e1e2+e§, e%e2+ele§}
P{W2(P), w3 (P)}

and the claim follows.

The situation above is atypical in the sense that it is not true that

H*(BEzn) for n> 2 is generated by the wi(P). However, it does re-

flect a viable though complex procedure for inductively determining the
cohomology of the symmetric groups.

In order to describe the answer most efficiently we switch to homology
Dual to 3.28 we have an embedding

(BI)*: H*(an)Gen(Z/2) — H*(B22n)

where H*(an)GlZn(Z /2) denotes the coinvariants. Let E(il”"’in) be

the basis dual to the monomial basis for H*(BVn) with E(i1 i) dual
’ ’ n
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i i
1 n

to w e o W .
PL a1

under (BI), in H*(Bzzn).
Recall the space C(SO) = ]]BEn defined in 3.9. We now can state

We will also write E(il o) for its image

THEOREM 3.32. H_(C(S")=Z, x PEG ... iln>1 i >0},

The proof outlined here uses concepts which may be unfamiliar to the
reader. For this reason a second detailed proof using more familiar con-

cepts but harder combinatorial calculations is included as Chapter 3.G.

Let SP™(X) be the n’th symmetric product consisting of all unordered
n-tuples of points L TR from X. It is the quotient of x? by the permutation
action of E and is topologized by giving it the quotient topology. We need
four results on symmetric products. From [49] we have

LEMMA 3.33 (Dold-Thom). For a finite CW complex X, SP(X) = lim SP™(X)
o I]K(Hi(x; Z), 1), the product of Eilenberg-MacLane spaces. n->o00

(The idea of the proof was to show that the functor sp® converts cofibrations
into quasi-fiberings, and hence that (SPN(X)) becomes a homology theory on X.
Now, SP“(C) =C" by assigning to an unordered n-tuple ay,*, a, the coeffi-
cients in the polynomial IKt-a, ), and similarly SPn(C>< Cx C"_I(C>< C-
foh, so sP (S ) =~ S1 =K(Z, 1) Then 3.33 follows by an inductive argument
over the cells of X.)

LEMMA 3.34 (Steenrod [132]). A,(SP™X) = @ H.(SP®X), sP™1(x)). In
m<n

particular SP“(X) - SP'H"I(X) induces an injection in homology onto a direct

summand.

(This is proved by semi-simplicial methods by constructing a chain retraction
Co(SP™(X), SP™ (X)) » C+(SP™(X)) over the projection.)

LEMMA 3.35. For i <2m-2, H(BX,)=H""ispi(s2m)),
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(Zn acts freely on cells in (S2m)n 91’ dimension > 2m(n—1) (and <2mn) and
trivially on the top cell. Further, Hx((SZm)n ;Z) = 0 in this range except
Hzmn((szm)n; Z) =71 with trivial En action. The cochains form a zn-free reso-
lution of Z, in the same range.)

The H-structure in C(So) is induced from the usual inclusions

Bi: an X BEE = B(anZB) - Bzm_z and in homology we have

LEMMA 3.36. The composition

H2mn—i(spn(s2m» ® HZmﬂ—j (SPQ(S2m» s@S

H2mn—i(spn+e(s2m» ® HZmZ—j (SPM'E(Szm)) cup-prod.
H21-n(Z+n) - (it+j )(Spnd(SZm))

in our range can be identified with the inclusion (Bi),: H*(an)GH,(Bze) -
H*(an +e) , where S is the Steenrod retraction of 3.34.

(The argument is similar to 3.35 and uses the fact that in (S2m)l+n one has

(e2m)®ng 18l |y 1®ng 2m@l _ ( 2m®Ein)

the top dimensional generating class.)

Proof of 3.32. The elements E(il i )m*(BE‘zn) CH,(C(S?) and
’ ’ n

[s] € HO(BES) generate H*(C(SO)). This follows from 3.23, 3.28 and 3.30 once

we note that E( * [s] is the image of E(il’ -, in) in H*(Bzznﬁ)

il' ves, 1n)
under the inclusion H*(Bzzn) C H,(822n+s). But E¢ T E(iz‘ i)

E(i wei ) SO H*(C(So)) is a quotient of the stated algebra and we must check
2’ n

for relations. It is well known that the cohomology of an Eilenberg-MacLane
space K(Z,2m) is a polynomial algebra in given generators (certain admissible
monomials in the Steenrod squares). Now SP”(Szm) o K(Z,2m) and the result
follows from 3.30 (which shows that E(il’""in) is indecomposable for il >0
and 3.36.

To recover the homology of a single % from 3.32 we proceed as

follows. We assign to E,; e H (BT ) the weight 2" and to
iy, * of

ooy i)
n
[s]e HO(BZS) the weight s. Then, the weight of a product of terms above
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will be the sum of the weights of the individual terms. By 3.32 this is
well defined in H,(C(S?)) on monomials. Then H,(BE ) is the Z/2
vector space generated by the monomials of weight exactly n (cf. [90],
[107)).

EXAMPLE 3.37. (a) H(BZ,)= H,(BZ,) * {1].
(b) H (BZ) = H*(BE4) ® H*(BEZ)/ R, where R is the set of relations:
B, *E;)oE;, = (B *Eis)eEiz = (B *Ei )OF;
(Ei *[2])®Ei = (E; *E; )el2].
1 2 1 2

F. The homology of Q(S°) and SG

We are now ready to describe the homology ring of Q(So) under loop
sum and of SG under composition product.

From 3.9 (cf. footnote on page 12) Q(S®) is the group completion of
C(s%). Since

H,(Group compl. X) = Gp(rro(X)) x lim H (X)

where lim is taken over the component inclusions and Gp(7,(X)) is the
-

group associated to the monoid of path components (see e.g. [120]) 3.32

gives us
THEOREM 3.38.
H(Q(®) = PIEG ,...,i,n21,1;>0} 8 Z/2[Z]
where k ¢ Z represents the generator of Ho(Qk(So)) and where we have

suppressed the injection (BI),. The degree of E(il i) is
’ ’ n

Q™1)i; +--4+ 214

REMARK 3.39. From the description of the E(il wei) (given in the paragraph
’ ’ n
preceding 3.32) it is direct to see that their coproduct is given by
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¢(E(11' Tty in)) = 2 E(jlr A jn) ® E(klr A kn)

(jv"'ku = 1..,) . In particular, the cohomology ring H*(Q(So)) is again a polynomial

algebra with generators in one to one correspondence with the generators for

H*(Q(So)). More precisely, we can define Fj ¢ H*(Q(So)) to be dual to E; if, in
= (il, '"'in) some entry ij is odd. Otherwise, if 1=2'J, r>0 (and r maxi-

r
mal) we define Fl to be dual to Eg . (Dual here means dual with respect to the
monomial basis EI , hence FI is primitive if I contains an odd entry). We have

H*QGE% = Pl Fy, 10 Z/2[7].

The formula 3.27 allows one to calculate the action of the Steenrod algebra
when we also adjoin the result

2

n—1
Sq @) =Dy ; =@, /D) D,

which is obvious from the defining relation. For example, throuéh dimension 7 we
have

Dimension 1 2 3 4 5 6 7

Generators F(l) F(2) F(3) F(4) F(S) F(6) F(7)
Fa,0 Fa,» | Fe,o | Fa,2)
Fi1,0,0)

The action of the Steenrod algebra is described by the formulae:

Sa'(Fpy = F(3)+Fay+F1,0)

8a (g = K1y Sa' By 0 = 0

54 (F(gy) = Fisy Sy 0 = Ft 1)

Sa' (Flqy) = Fs)+Fiay Fay+Fiay Faiy Fiay Fy *Foy Pt 00+ Faa 1)

59 (Fay) = Fs)+Fiay +Fy Fiay* FeayFesy  Fiby P, 00 FeayFea, 00+ Fz, 0 Flby
Sa'(Fsy) = FG)

Sa%(Fgy) = 0

1 4
Sq"(Fg)) = Fyy* F3y+Fq o)
SqI(F(2'0)) =0.
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With this as preparation we proceed to consider the composition
product. The essential result is 3.10 and using it and 3.32 the calcula-
tion is in principle direct, but the formulae one obtains soon become un-
manageable. The process is considerably simplified by the next lemma.
Let a,be H*(Q(So)), then the composition product will be denoted acb
or just ab and the loop sum will be denoted a*b.

LEMMA 3.40. Let a,b,ce¢ H*(Q(SO)) and write A (c) = Zciec”i where
A: QES®) - Q8% x Q(S?) is the diagonal map, then

@) aob = boa

(i) (a*b)oc = Z(aoc;)*(boc’i) .

Proof. (i) If a is represented in H,(Q"S") and b in H(Q™S™), then
in H Q™™MS™™) a may be represented by a chain A carried by singu-
lar simplexes whose points give maps f: (I**™®,9) > (I"™*™,d) which
satisfy

f(tlp ttty t‘ﬂ’ tn+1’ '"’tﬂ‘i—m) = (fl(tly Tty tn)y '":fn(tly"'ttn)y tl‘H-l' ""tm—m) .

Similarly, b may be represented by a chain B which is the identity on

the first n coordinates,
g(tI: '”'tl'H-m) = (tI’ "ty tn: gl(tn+1: ttty tn+m)' ttty gm(tmly M) tn+m» .

Clearly, AoB=BoA and represents aob = boa. (Note that 3.8 shows
that for each a¢ H*(Q(So)) there is an n so a e Image (H, (Q"S™) -
H,(Q(S%).

To prove (ii) we use a similar argument assuming to begin that a*b
affects only the first n coordinates and ¢ only the last m so if f*g
belongs to a simplex of A*B and h to a simplex of C we have
(fxgoh=foh * goh. Hence the diagram below homotopy commutes on

finite subcomplexes
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Q(s%) x Q%) x Q%) ——X1xXA | o(s0)?  Q(s0)?

1xTx1
*x 1 Q(s%)2 x Q(s°)?
() x (@
Q%) x Q%) e (s®) Y )

From this (ii) follows on passing to homology.

Lemma 3.40 allows us to reduce consideration to just the loop sum
indecomposables, which are taken care of in 3.10 except for [-1], the
non-zero class in HO(Q_I(SO)) . In a loop space QY there is an involu-
tion x¥: QY - QY where y(f)(t) = f(1-t), which serves as a homotopy

inverse for the loop sum in the sense that the composite

3.41 ay ~ 2. avxoy XX aveov —* . ay

is homotopic to the constant map QY - *. The set of components of QY
forms a group isomorphic to 7,(Y) under loop sum. Let [f] ¢ Hy(Q,Y)
denote the non-zero element in the component of € 7,(Y). Then

X)) = [x@] and since x(f*g = x(g) *x(f) we get on passing to
homology,

LEMMA 3.42. (i). x,(a*b)= (—1)‘ al Ib‘x*(b)*x*(a)-
(ii) If aeH (QpY), where QY is the {-component of QY and

A (a) = aelf] + [flea + Za{ea]
with deg(a)) >0, deg(a]) >0, then

x5@*l] = -x, (D *a- Ty, (a) *a] .
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The connection between X, and the composition product in s®

is given by
LEMMA 3.43. Forall ac H*(Q(So)) we have ao[-1] = y (a).

Proof. We suppose a represented in H,(Q"S") for some n so that the
points in the simplices of some chain representing a can be assumed to
move only the first (n~1) coordinates, as maps (I",d) - (S", *). More-

over, we can assume loop sum given on the n’th coordinate. Then [-1]

is represented by
¢ : (tly *ty tn) d (tl’ ty tl‘!—-l’ l—tn)
and clearly ao¢ = x(a).

With this preparation we can effectively calculate H,(SG) as a ring

with respect to the composition product.

THEOREM 3.44, The Pontrjagin ring of SG under the composition

product is
H,(SG) = E{§,ln>1} o P{g, *5, *[-1lin>1} e
P{E(ili e, in)‘il >0, n> 1}
—— n —
where E(il’ i) = E(il’ ""in)*[1_2 1 and & = E(n) x[-1].

Proof. We introduce a filtration on H*(QSO)
F{H,(QS) = {x|0(x)>i}

where Z(E(il, - in)) =2, (s =0, lx*y)=0x)+0y) and l(x+y)=
min (£(x), {(y)) . Note from the remarks following the proof of 3.32 that

each element in the image of
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H,(BV,)) — H*(Bzzn) H,(Qs%
has ‘‘length’’ equal to 2". The diagram
Ix1
Vo x Vo ——-*22n x 2
¥
I
Vam 22n+m

‘shows that

n+m .
E(E(il""’in) °E jm)) =2

Gy oo
From 3.40(ii), 3.42(ii) and 3.43 we then have that

f1_om
Egi,,ve,i) *E , * [1-20.2m]

Eay, i “BGy, i = Gyo oot iy

modulo elements of higher filtration provided n+m>2. Thus, to complete
the proof we must show that €,°€,=0 or, in view of 3.40, 3.42 and 3.43

that

E

(n)*E

E

) ° E

(n) = (n)

But this is clear (by 3.11) once we remark that the two embeddings
22 X 12522 Lo 3,

22 A 22022 2 s,

map onto conjugate subgroups of X 4- This completes the proof.

Applying the Eilenberg-Moore spectral sequence (cf. the footnote to

15
R Exty sa)(2/2, 2/2) = H¥BSG)
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(or the Serre spectral sequence along with results of Browder [25], [28]

on its structure for fiberings of H-spaces), we then obtain

THEOREM 3.45.

H*BSG) = Piw,, w;, 1@ E{o(E, *&, *[-1])*In> 1}
OE{G(E(il, e, in))*‘il >0,n>1}

where o denotes the homology suspension, and U(E(il e i ))* denotes
’ ’ n

a cohomology class dual to tr(f(i1 i )) etc.
? ’ n

(One can use the calculational results

() Extyggn(Z/2,2/2) = Ext,(Z/2,7/2)®Extg(Z/2,2/2)
(ii) Extp, ;(Z/Z, 7/2) = P{(f1},
(i) Extpe(2/2,2/2) = E{[f],

where deglf]= 1+ deg(f) to evaluate the E,-term. Then we use
naturality to check that differentials vanish. A key observation is that
the piece Pilegl,le;], -, [ey], -} must be identified with

Plw,,wy, -, LR ...}, the polynomial algebra on the universal Stiefel-
Whitney classes.)

G. The proof of Theorem 3.32

The definition 3.21, of the Steenrod squares may be generalized using higher
symmetric groups, A brief description follows, for further details we refer to [130
A class Fm(a) ¢ HYE mez X™) is defined for any class a ¢ H*(X). On

the chain level Fm(a) is 1®a®-:-®a, so Pz(a) is the class we denoted a®a
in 3.21. It has the following properties

3.46 (i) f‘m(an) = Fm(a) U Fm(b) .

From the map zkx Em x Xm we obtain
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. k m—k m
Py mic: (EZxs XX (EZ, S Ezmxzmx
and

3.46 (ii) % midm@) = N@ell .

Let Jk,r: X.k\zr - Zkt be the usual inclusion (cf. 3.15) and consider the
composite

jk,r: Ezkxzk(E Erxz Xr)k = E(zk\zr)xzk\z xkr EEerthk' .
We have

3.46 (iii) i, e L@ = [ @)

Finally the construction is natural: Given f: X - Y this induces

. m m
E(f).EmeEmX -»Ezmxzmv and

3.46 (iv) E0)* T @) = *@) .
Consider the commutative diagram (where m = 2"—1).
i2,m
E €3 xy X™?2 e EX, x5 X2®
)5, szm w5,
1xA B(idxA)
m:
3.47 B, x (EX xs X B(, xA) B, xX
Ix B, x ) BI, x id
RP™ x (BV,_;xX) : BV, x X

Here In: Vn 3 n is the embedding from 3.23 and i arises from the identifica-
2

tion RP™xBV_ | = BV, . Define
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3.48 St (@ = B(InxA)*(an(a)) .

We have an expansion

I
St (@) =2 Glea
1

for some elements 01 ¢ Image (H*(BY n) > H*(BVn)) and elements aI e HY(X)
corresponding to them. 2

m

LEMMA 3.49. St,@) = >, e'@Sq UM DU N5t (@) where e is the generator
r=0

in H*(RP™) and m =2" l.

Proof. From 3.47 and 3.46 (iii), Stn(a) = StI(St _l(a)) and the result follows from
3.21.

LEMMA 3.50. Let e ¢ HI(RP™), then -

2 2n—i
St (e) = 2 D,_,/D, ®e
i=0

(in the notation of 3.24, DO/Dn =D)).

n

Proof, First note from the previous lemma that the expansion has the fonp

St_(e) = 2 A @ o2

r
(since Sql(e) =e? or 0) with A, ¢ Image (H*(BE 2~ H*BY)). But in our
2

range of dimensions the only image elements are the Dn—i/Dn’ so we have

i

2 1
Stn(e)=281Dn_i/Dn®e e el/2,

Let incl: BVn_l x X » RP” x (an-l xX), X =RP®™. From the previous lemma
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(ncD*St (e)) = St,_; N,

and inductively we may assume the formula so

n—i
GineD*Sty(e) = > @, /D, pPeed .

Thus €, = 1 except perhaps for €, it remains to check the coefficient of e.
But (again from 3.49) this is

1
Zer@qun- (D,_) =e®D2 440

and the result follows.

COROLLARY 3.51. Let 0: H*(X) -> l-l"""l(s1 A X) be the suspension isomorphism.
Then if Stn(a) = 291 ® aI we have

st,e@) = 3 @, Ubpeoah.

Proof. We have o(a) =e Ua where e is the non-zero class in Hl(Sl). Let
i: S1 »RP®™ be the non-trivial map then by naturality 3.46 (iv) Stn( €)=
1®i*@St (e)) =D ®&. Now use 3.46 (i).

(il’" ':in)

Sharpening this result, let St be the element in the Steenrod algebra

ig i i
dual to fllf22-“ fnn in the Milnor monomial basis for A(2)* ([156]). Then we
have

PROPOSITION 3.52. Let t’. be the fundamental class in Hj(K(Z/Z, j)) then

(11’"3' )
Sty = Z‘"zn_ 2n L “’Zn-l ® st

@)
where iy + '+ +i +e=j and W2n_2k = Dk/Dn'

Proof. Note that H*(K(Z/2, j)) is a polynomial algebra in certain StI(Lj) where
Stl runs over all operations of excess <j (i.e. i1+~-~ +in__1 <j). From 3.49 we
must have
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St (l.j) -EGIGSt(l)

W

_1 since the st form a

for some polynomial 01 in the classes w s

21
basis of the Steenrod algebra. Now, use the formula

F2n(e1®°-°®ej) = l"zn(el) u---u Fzﬁ(ej).

This gives, in (RP™)

) i (iq,00,1)
cee = € 1. 1 1" @ ®
Stn(ele Oej) = 2 w2ﬂ_1 w2“—2 2n—1 ® St (eq ej)

Indeed, the formula is true for j =1 by 3.50 and it follows in general using
Stn(ele ...@ej) = S‘n(°1°"'®ej~1) 8] Stn(ej) and the Cartan formula for StI:
stlxUy) = 2 st usd ).
'+1"=1

In dimensions less than 2t the map

e ®®e : (RP™ » K(Z/2,0)

induces an injection in cohomology, so by naturality and the suspension result
3.51 the formula follows.

We can now use the slant product H,(X)® H*(XxY) » H*(Y) to define a map
C,: H(BZ) > HR(Z/2, i) .

Let A: BE x K(Z/2,j) > EZ, xz K(Z/2,j)" be the obvious diagonal mapping. We §
define :

*
Cr(x) = x/E (Ir(‘j)) .
The calculations above show

(il""'in)
C a1y, i) = St @,
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(il’“.' in)

where €+ig+e e+t g +¢ =j, andif e > 0 then Excess (St )=

(il: cr, in) *
g+t i <j so St (¢j) is a polynomial generator of H*(K(Z/2, ).

From 4.46 (ii) we get the commutative diagram

H/(B3) @ Hy(B,) d - H, o(BZ,_ )

|

w2, i) ensH&@s2, ) —2Le ne+OED /2, 5

where * is induced from the usual inclusion er Zs C Eﬁs . 'The ificlusion
X Ezrxz X' maps l:(a) to a* (by definition) (cf. 3.49) so the diagram above
T

specializes to show commutativity in

s[s]

H,(BZ) H. (132r s

Cl‘ CH—S
. ug .
HIMY(K(Z/2, j)) =——— w8k (Z/2, )

where [s] € HO(st) is the non-zero element, and *[s] the map induced from the
inclusion 2 C 2

Using these calculauons we can now ﬁmsh the proof of Theorem 3.32 directly.
From 3.23, 3.28, 3.30 we have that H,(C(S )) is generated by the elements

0.
Ee,iy, i, p* 1 €BBE ) CHUCED), e>0.

(i 2"y )
Now C =~ maps E 1 n(l.j)Ul.js in

2%s
H*(K(Z/2, j)) and if we pick j larger than the dimensions under consideration

Do +[s] to st
(E,ll’ lln_l)

(g, eeri)
then in ;é 0, so the corresponding elements St 1" n (tj) are distinct poly-

nomial generators of H*(K(Z/2, j)).

This completes the proof.



CHAPTER 4
THE HOMOTOPY STRUCTURE OF G/PL AND G/TOP

In this chapter we review the work due to Sullivan, which describes the homo-
topy types of G/PL and G/TOP. In Chapter 2 we saw that these spaces
classify ‘‘surgery problems’’ (degree 1 normal maps) in the PL and topological
categories, respectively. In particular, if M? is a closed smooth manifold, then
the simply connected surgery obstructions define maps

4.1 s: [M", c/PL] > B,

“where Py = Z, Pyt = Z/2 and Pyyp,1 = 0. Indeed, let

f:ﬁn-»Mn, ?:V(ﬁ)—»f

denote the surgery problem associated to ¥: MP>G/PL. If n=4k, and M is
oriented then

s(M, ) = ;— (Index M — Index M) ,

and if n = 4k+2, then s(M,y) is the Kervaire invariant of (f, ; ).

The obstruction for n = 4k, is a difference of cobordism invariants, and thus
factors through a similar map

4.2 sp: (4 (G/PL) > Z.

It is less evident that the Kervaire invariant is a cobordism invariant, but this is
also true. For a relatively elementary geometric proof see [117]. A more general
proof is obtained from the homotopy theoretical definition of the Kervaire invariant
[27]. Thus the Kervaire invariant factors through a map

4.3 g’ Ny, 2(G/PL) > Z/2.

76
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Sullivan’s basic idea in studying G/PL and G/TOP was to use the connec-
tion between bordism and ordinary homology or K-homology to reinterpret 4.2 and
4,3 in terms of characteristic classes in cohomology or K-theory, thus getting
maps of G/PL into Eilenberg-Maclane spaces or BO which give homotopy
équivalences on localizing, (Low dimensional calculations at odd primes were
initially done by F., Peterson.)

A. The 2-local homotopy type of G/PL

The unoriented Thom spectrum MO and the 2-local oriented Thom
spectrum MSO[2] are both wedges of Eilenberg-Maclane spectra by 1.27
and 1.35. Hence there exist sections T,: K(Z/2) >MO or T: K(Z(z)) >
MSO[2] of the Thom classes U,: MO » K(Z,,) or U: MSO[2] > K(Z,))"

giving natural homomorphisms

4.4 ty H(X 2/2) » N (X),  t: H (X Z5)) » Q,(X)8Z,, .
The compositions

t T
sk X, k@2, —2 Mo,

) —X— Ms0,[2]

are homotopic to the inclusions of a fiber. It follows that the compositions
of t,,t with the ordinary Hurewicz map
h t
7 (X) —— H (X;Z2/2) —— N (X)
4.5
h t

are the cobordism Hurewicz maps, which to a homotopy class of maps
f: S5 X associate the cobordism classes {SP,f € )'(n(X) ,
IS™, £} ¢ Q (X), respectively

*)Canonical sections were constructed by Mahowald, see [155].
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For X = G/PL we can compose the maps from 4.4 with the maps
Sg, §; to get homomorphisms

Ky o € Hom(H,, (G/PL;Z/2),1/2)
K, ¢ Hom(H, (G/PL; Z(2))’ Z(Z))

4.6

or equivalently cohomology classes K, , ¢ H*-2(G/PL; Z/2),
K, ¢ F*G/PL)®Z ,, (see p. 24 for the definition of F*(X)).

The natural map

* *
H¥(G/PL; Z) -+ FXG/PL)®Z,

is surjective and we can choose liftings of the classes K, to classes
— 4 .
Ky €H NG/PL; Z(2)) .

LEMMA 4.7. The classes R4n and K4n_2(n> 1) define a map

¢: 6/PLI2) » [T K@y, 4n) x K(Z/2,40-2)
n>1
whose homotopy fiber F(¢) is a two stage Postnikov system with non-

zero homotopy groups only w,(F(¢)) =Z/2 and =n,(F(¢)) = Z(z) .

Proof. 1t suffices to show that ¢ induces isomorphisms on homotopy

groups in dimensions larger than 4, since from 2.24

Z(2) for n=0 (mod 4)
7 (G/PL[2]) = {Z/2 for n=2 (mod 4)
0 for n=1 (mod 2) .

The generators ¢, € m, (G/PL[2]) are specified by

51(54""4:1) =1 for n>1

sg(S*™ 2,040 0) = 1 for n> 1
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so K, ., K4n2 evaluate to 1 on the homotopy generators in dimension
# 4 (cf. 4.5), and 4.7 follows.

THEOREM 4.8, The 2-local homotopy type of G/PL is given by

G/PLI2] = Ex [] K@, 40 x K(Z/2,40-2),
n>1

where E is the fiber in the fibration

E— K(Z/2,2) Bst K(Z 5y, 5)

and B denotes the Bockstein operator.

Proof. It suffices to check that the fiber F(¢) in 4.7 has K-invariant
B Sq? since it is evident that

G/PL[2] ~ F@)x [] KZ), 4n) x K(Z/2,4n-2) .
n>1

Since PL/O is 6-connected [39], G/PL = G/O through at least
dimension 5. Thus it suffices to analyze the fiber G/O of BO - BG
in low dimensions which in view of Chapter 3 and Bott’s results is direct:*
One checks that n4(G/O) L H4(G/0; Z(2)) is not an isomorphism, so
F(¢) must have a non-zero K-invariant. Since G/PL is deloopable the

K-invariant must be stable and S Sq2 is then the only possibility.

There is a great deal of ambiguity in the classes K4n 20 K4n in 4.6, and in
the choice of K4n lifting K4n in 4.7, and consequently the map ¢ is not
unique. V_le now indicate how to get unique classes K4n——2 , K4n in 4.6. (Unique
liftings K4n are more delicate and are obtained only after a great deal of effort

in [91] and [103], cf. the footnote to 4.32.)

*
)In the next chapter we show that G/0[2] =~ Bso[2] through dimension 5.
This gives an alternative argument.
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Let ¢: Q*( )-H *( ;Z) be the augmentation map (induced from the Thom
class U: MSO > K(Z), see 1.40). It induces

€*: Hom(H,(G/PL; Z); Z ) > Hom(@4(G/PLY; Z 5y)

but s; is not in its image. Indeed Im(s*) vanishes on decomposables (1.40) but

P
the surgery problem over a composite MxN —2.,N —Z——» G/PL is

Idxf: Mxﬁ - MxN, Idx?: V(M)xu(ﬁ) > v(M)xf ,
so

sj(MxXN,yp,) = s;(N,y) * Index (M) .
Similarly, Sullivan proved a product formula for the Kervaire invariant
sg(MxN,ypy) = sp(N; ¥) X(M)

if dim N =4k+2, where X(M) is the mod. 2 Euler characteristic:
x(M) = [Zdim H'M; Z/2)](mod. 2). (For a proof of this product formula see [27]
or [117),)

THEOREM 4.9. There exist unique classes KypeF 4n(G/PL; Z(Z)) and
Ky, o ¢ H¥2(G/PL; Z/2) such that

sM,y) = <€ean) - Y, y*K,), M]>
n>1
sg0,y) = <V2ea) Y, y*K ) [MI>

n>1

where £ is the Hirzebruch genus from 1.39 and V2(€) is the square of
the total Wu class.”) Moreover

Y Ken)=Kyn®1+18K, 1 +8 K 0K, o, v(Ky, =K, ,01+18K,

=")’1"}\e total Wu class V({:) is related to the total Stiefel-Whitney class by the
formula SQVE) =W(&), ie w ()= 2sq'(vy, ;). For £=7(M), the tan-
gont bundle of a 2n-dimensional manifold, vi(T(M)) =0 for i>n and vn(T(M))2=
wa (M), Hence y(M) .- V,‘(?'(M)2.[M]\'o
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Proof. In the index case define K4i inductively by first defining a new
homomorphism

1'<4i: Q4,(G/PL) -+ Z(2)

by setting

410 Ry %, y) = 5100,9) - < Y@Ly 0, 1>
i<i

The only thing to observe is that L 4i(r(ll)) e H*(M; Z(2)) . But this follows from
1.35(a) and 1.39 which together show
1
£- € H*(Bo; Z(z)) ’
1
and the fact that £ = )((gn ).

Note the following calculation

K 4;0N XM, yp,)= Index () s,M, ) — <L), [N]> < 2 Y&, Eeony, (M]> = 0
i1
by the inductive assumption. Then K 4i factors through

o
Q,(G/PL) 20, (o) Z(z) — H,(G/PL; Z(z))

(cf. 1.40) and it defines an element K4i € F4i(G/PL; Z(2)). Then using 4.10 this
gives the first part of 4.9.

To obtain the second part we work in a similar way using T(.*(G/ PL) and the
identification

T(G/PL) @Y (1) /2 —> HW(G/PLZ/2) .

The key observation is that <V2(1'(M)), M]> = XM).

B. Ring spectra, orientations and K-theory at odd primes

The analysis in Chapter 4A was possible because of 1.27, 1.35. The
analysis at odd primes is similar in spirit but differs in details since
away from 2,Q.( ) is more directly connected with K-theory than
homology. Now we review briefly these connections.

A ring spectrum E ={E, f}} is a spectrum with the following
additional structure,



82 THE CLASSIFYING SPACES

tpp: Ep AEp - Ere (multiplication)
4.11 ’
D Sk > Ek (unit)

such that “k,l°(1" ‘2) and uk’ZO(tkA 1) ate related to the structure maps
for E in the obvious fashion ([3]).

The Thom spectra MSO, MSPL and MSTOP are ring spectra. The
multiplication in each case is induced from Whitney sum of the universal
bundles over BSOk, BSPLk and BSTOP,, .

If A is a ring, then the Eilenberg-MacLane spectrum K(A)={K(A, k)}

becomes a ring spectrum when we set

b i) = 7 -

(‘_k is the fundamental class of Hk(K(A,k); A))

The spectrum for periodic KO-theory is a ring spectrum. Its 8k’th
space is a copy of BO x Z and the multiplication (BOxZ) A (BOxZ) »
BO x Z is the map induced from tensor product of stable vector bundles.

A basic example for our purpose is the KO-spectrum above localized
away from 2, whose 8k’th space is BO[%] x Z[%]. From 1.33 we have
Q4(BO[!4] x Z[%]) = BO%] x Z[%].

A map of spectra ¢: F - E consists of a sequence of maps
¢k :Fy » Ey satisfying the obvious compatibility conditions. Let E be

any ring spectrum. An E-orientation of F is a map
A:F > E

such that Aoi = ( where (; and (g are the units.
Specifying the Thom class U generating HO(MSO; Z) is equivalent

to a map of spectra
4.12 u: MSO - K(Z)

so u¥()=U , which is directly seen to be an orientation. Similarly,
MSPL and MSTOP are K(Z)-oriented.
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The E-orientation is said to be multiplicative if A preserves the
ring structure, that is the A, are compatible with the p; £ (The

orientation in 4.12 is multiplicative.)

THEOREM 4.13 (Dold [45]). Let A: MSO > E be an orientation, and
suppose & is an oriented k-dimensional vector bundle over X. Set

AE) e f'lk(M(f )) to be the composite.

A
M) k

MSO,

Eg .
Then

A@)U: EiX) - Eikue))

is an isomorphism.

(The proof is analogous to that of the usual Thom isomorphism. Indeed it is
clear if f is a trivial bundle and it follows in general from a spectral sequence
argument or equivalently, a piecing together argument using the Meyer-Vietoris
sequence.)

We now turn to K-theory. Let KO*( ; Z[%]) and KO, ( ; Z[%))
denote the Z/4-graded orthogonal K-cohomology and K-homology
theories (based on the 4-fold periodic spectrum BO[%] x Z[%]).

The coefficient groups kOo(Sn; Z[%)) are zero for n#0 (mod 4) and
a single copy of Z[%] for n=0 (mod 4). We fix a generator
ac f(Oo(S“; Z114:)) to be the element which under complexification

c: KO%(s4; Z[%]) > KO(s*; Z[%])

maps to 4%b%, where be ﬁo(Sz) is represented by the reduced canonical
complex line bundle, b= H-1. The powers of a generate the other non-

zero coefficient groups,

KOO(S*; Z[D) = Z[](a™) .
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The spectrum for KO*( ; Z[']) has a copy of BO[%]x Z[%] in each

degree 4k and the structure maps

s* A (BOll x Z[%4]) » BO[%] x Z[¥%]

are induced by multiplication with a.

The Chern character
ch: KO(X) » H¥(X; Q)

is the unique ring homomorphism whose value on a line bundle H is

c,(H
given by ch(H)=e 1¢D where c, is the first Chern class (cf. [54]).
Clearly ch maps K%(S2) isomorphically onto H*(S%;Z) and hence in
general maps K%(S2") isomorphically onto H*(S?%; Z). Composing with

complexification we get the Pontrjagin character

ph: KO°(X) » H*X; Q) ,

ph=choc. We note that ph(a®) is the generator of H*Y(S*"; Z) where
a e KOO(S%; Z['4)) is the generator defined above.

From the identification in 1.33, MSpin[%] =~ MSO[%], the BO
orientation of MSpin induces a BO[%] orientation of MSO[%]. For our

purpose, however, it is more convenient to use the BO[%] orientation
from ([133], Chapter IX)

A: MSO > BO[%]
whose Pontrjagin character is given as
4.14 phA - £1uvu
in H*(MSO; Q). Then the induced natural transformation

8: Q,(X) » KO (X; Z[%])

in degrees 4k and for X = pt reduces to the index homomorphism,
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SAM*KY - Index M*K). a"

Thus, if we consider Z[%] as an Q,(pt)-module via the index homomor-

phism & factors to define a homomorphism.

4.15 5: 0y, (X8 (o, LI —— KOy(X; Z04)

(ieZ/4) and by results of Conner and Floyd [42] § is an isomorphism.
Our use of 4.15 in this and the next chapter will be to factor certain

homomorphisms of . (X) through homomorphisms of KO (X). We will

then need a universal coefficient theorem to reinterpret such homomor-

phisms as elements of KO*(X). First, we recall the Kronecker pairing
<,>: KOO(X; Z[!4)) @ KO(X; ZUA) - ZI%] .

Suppose given elements & ¢ KOO(X; Z[%]) and x e KO, (X; ZU'A]) repre-
sented by based maps

f: X+ - BO[VZ] X Z[%]
x: S L, X+ A (BO[Y]x Z[4]) .

Then <&,x> ¢ Z[%] is the number such that <&, x>-a" is represented

by the composite
40X, x+ » BOLAIxZIK]) -£41
(BOD)x Z[%4]) A (BO[%)x Z[%]) —2— BO[%] x Z[%] .
THEOREM 4.16 (D. Anderson). The homomorphism
eval: KO(X; Z[%]) » Hom(KO(X; Z[%]), Z[%])

adjoint to the Kronecker pairing is an epimorphism with kernel
Ext (KO, (SX); ZU4l) when X is a finite CW complex.



86 THE CLASSIFYING SPACES

(For a proof see [147].) It is worth noting that if H*(X; Z[%]) is concen-
trated in even degrees then eval is an isomorphism, since in this case the
Atiyah-Hirzebruch spectral sequence

H,(X; KO, (pt; Z[1])) => KO.(X; z[1l])
implies that

KOy(sX; z[n) = 0.

C. Piece-wise linear Pontrjagin classes

In Chapter 1 we defined the Pontrjagin classes for vector bundles and
then showed that certain complicated polynomials (the £-genus) in them
were related to the index of 4k-dimensional smooth manifolds. The
coefficient of p,; in L,; is non-zero, so rationally we can solve to ex-
press the Pontrjagin classes as polynomials in the classes L,;. But
PL manifolds M*X also have an index and we can directly construct the
classes L,; in the PL-case in analogy with the construction of the uni-
versal surgery classes in Chapter 4A. (Cf. Thom [138].)

We consider the homomorphism
4.17 1: Q) (MSPL) >Z  (k>> i)

which associates to a singular manifold (Vk+i, f) in MSPL; the index
of the PL manifold Mi= f“l(BSPLk) , where we have assumed f to be
transverse to BSPL; C MSPL . (This is well defined by an éasy trans- |
versality argument [146].) If i£ 0 (mod 4) we set I{V,f}=0.

THEOREM 4.18. There is a unique multiplicative class
-1 = = -
SEPL =1+L +Lg+ -+ L, +-

in F*(BSPL; Z ,,) such that
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©) 14V, £h = <f®51 -Up, ) - £IVL, [V]>

where 1 is the homomorphism in 4.17, £{V} is defined in 1.39 and
Upy € HO(MSPL; Z) is the Thom class.

Proof. The proof is similar to 4.9. Suppose inductively that

L,, -, Ly 4 are defined, that l/!(f4t)= 2 E4j®E4r—4j for r<i and
that (*) is satisfied when dim V< k+4i.

Consider
i-1
fjvkeai kedi *T
Tvkedd g} o vl 6] S <@, Upp) Ly (W, VD>
j=0

where L4(i—j)(v) is the 4(i-j) dimensional component of the Hirzebruch
genus of 7(V). If {V,f} is ‘“‘decomposable,’”’

{V,£} = {WHW gl (N0},  (4n>0).
and we choose f carefully (f = g o proj), then
f~1(BSPLy) = g 1(BSPL)x N .
On the other hand,
i-1
>, <f*T45Upp) Lyg_p(WxN), [Wx N> =

j=0

S, <g*@4- Upy )L, (MeL, ), [Wle[N]>
S <" @4 Upp) - Lycg iy, [W]> - <L, (W), IN]> = 1{W, g} - Index{N}
j=0

where the last equation follows from the inductive hypothesis and 1.39.
Thus I(W, g}-{N}) =0 and I induces a homomorphism



88 THE CLASSIFYING SPACES

I: Hy, 4;(MSPLy; Z ) > Zy) S

hence a class i4i € Fk""ﬁ(MSPLk; Z(z)) which we can write as
I4i = t4i U Up,, for a unique class f4i € F41(BSPLk; Z(z))' This com-

pletes the inductive step.

Let £PL be the ‘““inverse’’ of the class S‘Zl';i from 4.18, that is,
for =x®pL), where x: F¥BSPL;Z,,) » F*(BSPL; Z,)) is induced
from the map ¥ : BSPL - BSPL which classifies —¢. Then g;i(v(M))
= gpL(r(M)) and we have as a special case of 4.18 the PL version of

the index theorem,

COROLLARY 4,19, For a 4k-dimensional PL-manifold M,

Index(M) = <8, (W), (M]> .

DEFINITION 4.20. Let £(o4,08, «-) be the genus in 1.39 and define
Pa4j € H4(BSPL; Q) to be the unique classes such that

£PL = £(94; Pg: Yy p4i’ “')
in H¥BSPL; Q).

It is direct that p 4i € H4i(BSPL; Q) restricts to the rational reduction
of the usual (integral) Pontrjagin class under the inclusion BSO -» BSPL.
The PL Pontrjagin classes, however, are not in general integral, not
even Z(Z)-integral (pyj € H4i(BSPL; Q) comes from a Z(Z)-integral
class for small values of i, i< 30, bute.g. p;,g€ H120(BSPL; Q) is
not the rational reduction of a Z(z)-integral class. This is examined in

more details in Chapters 10 and 11).

REMARK 4.21. The fiber PL/O of the natural map BSO -» BSPL has
finite homotopy groups: 7 (PL/O) can be identified with the group of
smoothings of the n-sphere for n > 5 and this group is finite (Kervaire-
Milnor |61]). For n< 4 the finiteness follows from Cerf [39]; in fact
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7,(PL/0} =0 for n<6. Thus the natural map induces an isomorphism
H*(BSPL; Q) ~——- H*(BSO; Q), giving an alternative (and less elementary)
approach to the rational PL Pontrjagin classes.

The natural map ; G/PL - BSPL is a rational equivalence since its
fiber SG has finite homotopy groups by 3.8 and Serre’s result from [122].
Our next result gives the connection between the total class
K=K,+Kg+ ¢ F¥(G/PL; Q) and the class £, ¢ F¥(BSPL; Q).

COROLLARY 4.22. T*C®p) = 1+8K.

Proof. The degree 1 normal map associated with y: M -+ G/PL has the

form N A
f: M—)M,fi V(M)-»¢

with { = v(M)—¢ and where & is the PL bundle associated to
jey: M -» BSPL. Now, using 4.19

<®p (D), (M}>

<&p D E), MI>

<8o.. G0N - L5, €), IMI> .

Index (ﬁ)

Hence

Index M — Index M = <85 (M) Epy (€)- 1), [M]>

and we compare with 4.9 to get £PL(§ )-1= y*(SK) as claimed.

D. The homotopy type of G/PL[¥%]

The homomorphism s;: Q, (G/PL) » Z[%] from 4.2 factors over
@,,(G/PL) 99*(pt)Z[Vz] where Q,(pt) acts on Z[#] via the index
homomorphism. This follows from the product formula

s{MxN,yp,) = si(N,y) - Index(M) .
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Hence we get a homomorphism (cf. 4.15)

0o : KOy(G/PL; ZIAD) » ZI%] .

In the proof of the next lemma and at various points later in the book
we shall use the inverse limit functor (li_m) and its derived functor
(li_m(l)) , so we recall its definition (for especially simple indexing sets).
Let

be a system of abelian groups A; and homomorphisms f;. Define

00 [+ <)
F:[Ta-11A
i=1 i=1

to be the homomorphism
F(al ) 82, a3' "') = (al—fl(az): 82— 2(33)) "')
and set

lim A; = Ker F, lim(l)Ai = coker F .
« «

Suppose we are given a short exact sequence of directed abelian groups as
above
{a;}

i i

0 {Ai, £}

“{Bi» gi} {Ciyhi‘—‘——"—"’o ’

that is, aiofi = gi°ai+1 and similarly for Bi , and for each i the sequence

is exact. Then we get a diagram with exact rows

F |r

|
0 '—'H“i "*HBx—'HCi — 0.
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The snake lemma now gives an exact sequence
423 0> lim A, - lim B, » lim C; - timDA, - 1imUB, 5 1imDc; > 0.
« “« « « “« «

In topology inverse limits often appear via the skele.ton filtration of an
infinite CW-complex. Suppose F is a spectrum and F!X)= [X, Fi] the associ-
ated generalized cohomology theory. Then we have from [94]

LEMMA 4.24 (Milnor). There is a short exact sequence

0 - timWFilx®y , Flix) » 1im Fix®) 5 0.
“a “a

The elements of lim(l)Fi_l(X(n)) are called phantom maps from X to Fi;
they are the homotopy classes of maps not detected on any finite subcomplex of X

Don Anderson has given a convenient criteria for the nonexistence of phantom
maps. Recall the spectral sequence ([45]) of the skeleton filtration

ER'4X) = HP(X; FUpt))

"

E(X) = EyF*(X)).

LEMMA 4.25 ([148], [149]). Suppose in the spectral sequence above that for each
(p, @) with p+q=n
d_: EP9(X) » EP T (x)

is zero for almost all r. Then there are no phantom maps from X to Fn'

In particular, if the coefficients ﬂi(F) are finite groups, then there can be no
phantom maps.

LEMMA 4.26. There is a map o: G/PL > BO[%] which on each skeleton
X of G/PL satisfies

eval (0]X) = o, | KOy(X; Z[}4]) .
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Proof. There are exact sequences
tim KO%(X; Z[#]) » lim Hom (KOy(X,); ZI4)) » 1im™) Ext (KOy(SX,); Z[}4)
« « « e

0 > 1im KOO(SX;; Z[4)) » [G/PL, BOI4]] » lim KO°(X;; Z[4]) » 0

where X; C X, C -+ are the skeletons of G/PL. Indeed, the first
sequence is a consequence of 4.16 and 4.23 and the second is Milnor’s
lemma 4.24. Since the Ext-term is finite the right hand side of the first

sequence vanishes. This completes the proof.

LEMMA 4.27. Let K=K, + Kg + --- be the graded class from 4.9. Then
ph(o) = K.

Proof. Suppose inductively that
ph4i(a) =Ky for i<n

and consider the diagram

g: stoedk £ L /pLt A Mso,, —Z28- BO®(%) A BO®) —2— BO®|

f
mén ¥ 6 Bso,,

where BO®[%] = BO[!4] x (0) C BO[%] x Z[{%] and where £ and {M,f}
represent the same element in Q, (G/PL) (cf. 1.25). The composite

g4n+4k (G/PL)* A MSO,, RITN (G/PL)* A BO®[%]

represents O({M,f}). Since

ph: KOO(s*m+4k, Z[u]) ., ganrak(sanvak, zpyy)
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n+k

maps the chosen generator a onto the cohomology generator, we have

oM, f} = <g*(ph,,, 1), [S*0+4K]>

where g is the composition above,
g =®c(0AA)o &,

A computation using the induction hypothesis and the multiplicativity of

the Pontrjagin character then leads to

ooiM, f} = <£*(K)-LM), [M]> + <f*(ph, (0)- 8K, ), [MI> .

Hence by 4.9 ph4n(a) =Ky,

THEOREM 4.28 (Sullivan). The map o defines a homotopy equivalence

o: G/PL[%] - BO[%] .

Proof. The spaces in question have the homotopy types of CW com-
plexes, so it suffices to check on homotopy groups. The generator
4n €7 4n(G/PL[%]) is characterized by

sfS*, ) =1 (or 2 if n=1),
But
sitS*, apd = 3Ky, (5470

= <¢j (ph, (o)), [S*7]> .

Hence o,(l¢, D= a" where a% ¢ 7,,(BOLA]) is the generator.

E. The H-space structure of G/PL
A priori the construction of o: G/PL - BO[%] in 4.26 only gave a
well-defined homotopy class on the finite skeletons. However, any such

o defines a homotopy equivalence, and it is well known that there are no
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phantom maps from BO[%] to itself, so we do in fact have a well-defined
homotopy class o ¢ [G/PL,BO[%]]. But there is a much stronger result,
which together with 4.27 also determines the H-space structure of
G/PL{%].

THEOREM 4.29. The Pontrjagin character defines an injection

[BSO, BO] » H*(BSO; Q) .

The proof of 4.29 is based on the connection between representation theory
and K-theory (see [13], [149]), which we briefly recall.

Let G be a compact (connected) Lie group and P a principal G-bundle
over the finite CW-complex X. To each virtual orthogonal representation V-W
of G we assign the virtual vector bundle P xGV -P xGW ; this defines a ring
homomorphism

Ax: RO(G) -» KO(X) .

Let IO(G) denote the augmentation ideal in RO(G) (of virtual representations
of degree 0). Elements in the image of IO(G) vanish on the zero skeleton of X
so AX(IO(G)n) =0 if n>dim X. Hence, if RO(G)A denotes the completion of
RO(G),

RO@" = lim ROG)/10(G),
k

we have a homomorphism

A: RO(G) > lim [n-skeleton of BG,BO].
hm
n

From [13] we have

THEOREM 4.30. (i) There are no phantom maps from BG to BO.
(i) A: 10(G)* 5 [BG, BO] is an isomorphism.

We get 4.29 from 4.30 by specializing to G = SO(2n+1). Indeed, recall that

RO(SO(2n+1)) = Zy, v, 0,7,
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where Y= yi(V—-dim V)*) and V is the standard representation of SO(2n+1)

on R2n+l (see e.g. [5]). The augmentation ideal IO(SO(2n+1)) is the usual
augmentation ideal in the stated polynomial algebra, so

ROSOEn+ M = Zly,, v, v 11,
the corresponding power series ring. From 4.30 we then have
[Bso@n+1), BO] = Zly;, v, -, 7,11
Finally, each finite skeleton of BSO is contained in some BSO(2n+1), so

[Bso, BO] = Zly,, ,, 1.

Now, the proof of 4.29 is direct: [BSO, BO] maps injectively into
[Bso, Bol®Q = [BsO; BO[Q]] where BO[Q] denotes the rational type of BO.
But

ph: BO[Q] - H K(Q, 4n)
n>1

is a homotopy equivalence.

Let BO® - BOx(1)C BOxZ, organized into an H-space by tensor
product of virtual bundles of dimension 1.

COROLLARY 4.31. 5= 14+80: G/PL[%] > BO®[%] is an H-equivalence.

(Indeed, ph(3)=1+8K = 7*®,,) where j: G/PL » BSPL. But
?"(ﬁPL) is multiplicative so & must be an H-map.)

The H-structure of G/PL[2] is harder. In 4.9 we constructed primi-
tive fundamental classes Kyn o€ H4- 2(G/PL; 7/2) and classes
Ky € FA%G/PL; Z,)) such that

Y(Kyp) = 18K, + K, 01+ 8 2 K4i®Ky(n-i)

¥ N
)Here y‘ denotes the i’th y-power, see Chapter 9.B or [12] for a definition.
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in F¥G/PLx G/PL; Z(2)) . But there is no easy way of lifting the K,
to ‘good’ classes in H*(G/PL; Z(2)) . We content ourselves to quote from
[91] and [103].

THEOREM 4.32.%) There are classes K an € H*%(G/PL; Z(z)) reducing
to the classes K, from 4.9 and with diagonal

Y(Ryp) = 10K, + Ky 0148 3 K, 0K, o
For many calculations the generators K 4n are unsuitable. However,
due to the factor 8 in Z(f(‘m) it is possible to choose new primitive**)
generators.

4.33 kyp = Kgn+ 4Dyp, n> 1

4n’

where D, is apolynomial in the f(4,o--,f(4n_4 with Z(z) coefficients

(see [78]). In conclusion, we have

*
)The classes K4n are specified by formulae for surgery obstructions of

surgery problems over ¢Z./2"-manifolds’, analogous to the formulas in 4.9 but
quite a bit more complicated.
The classes defined in [91] and [103] are not identical. Indeed, the difference
between the two ‘total’ classes was calculated in [34] It is the graded class

/3(2 sq2i)sq1(2 K4n—2) -

i>1 n>1

where 3 denotes the Bockstein operator, ﬁ H*( ;Z/2) > H¥( ’Z(Z))
The mod. 2 reduction of K, e HYG/PL;Z,) is K2. In HYG/PL; Z/2)
a new class K, 4 appears and

¢(K4) = 18K, +K;81+K,®K, .

We refer the reader to [35] for further details.

A class k € H*(G/PL; Zyy) is called primitive if K0 = 10k + ko1

where ® denotes the exterior product ®: H*(G/PL; Z(z))@ H*(G/PL; Z(2))"
H"(G/PLxG/PL; Z5,).
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THEOREM 4.34 (Sullivan). There are H-equivalences

(a) G/PLI2] = QE; x [ K(Zy) 4n) x K(Z/2, 4n-2)
n>1

(b) G/PL{%] ~ BO®[%]
where E3 is the fiber in
Bsq?
E, —— K(Z/2,3) — K(Z(z),6) .

We can assemble the local data in terms of a Cartesian square in the

category of H-spaces to obtain the actual integral type of G/PL

G/PL G/PL[2]

4.35 1+ 80 8K

BO® (] ——Bl— TIK(Q, 4n) .

Alternatively, we can describe G/PL as the fiber in the sequence

—~1
G/PL G/PLI2] x G/PLI] SXxPh1+89)7) nixo. 4n).

REMARK 4.36. The results for G/TOP are quite similar. It follows from
2.25 that

4.37 6/ToP(2] ~ [T Kz, 4n) x K(Z/2, 4n-2) .
n>0

Indeed, the classes K, ¢ H*NG/PL;Z,)) and K, , ¢ H*"%(G/PL;Z/2)
come from cohomology classes on G/TOP also denoted f<4n' Kinoa-

Their diagonals are again given by
YK,y = 1®R4n + I~(4110 1+8 2 I24i®f(4(n—-i)

YKy o) = 18Ky, 5 + Ky 01
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and the equivalence in 4.37 is given by 21.'(411 X 2K4n—2 (or

S kynx S Kep o cf. 4.33).
The classes f(4n' K4no on G/TOP are related to the surgery

obstructions for topological degree 1 normal maps by the formulae in 4.9.
Precisely, if n# 4 and f: M? 5 M",F: v(M) > £ is the surgery problem
associated to y: M® > G/TOP then its index and Kervaire obstructions
are given in 4.9 by substituting K an for Kgp >

For n=4 topological transversality is not known. However, there
still is a mapping s;: (M4, G/TOP] » Z: if y: M% 5 G/TOP, consider
yop,y: CP2xM* > M* 5 G/TOP and define s;(M%,) = s,(CP?xM*, yop,).
Then sI(M4, y) =< y*(f( o) M4]>.

Finally, the diagram 4.35 remains a Cartesian square when we replace
G/PL by G/TOP.

K .
)If M™ is not differentiable but merely a PL or topological manifold then
the formulae of 4.9 remain valid if we substitute for g(r(M)) the class £pL(r(M))

or £1oprM). Lo was defined in 4.18 and Lyop € F*(BTOP; Z(y)) can be
defined quite analogously (cf. [103]).



CHAPTER 5
THE HOMOTOPY STRUCTURE OF MSPL{%] AND MSTOP[%]

In the previous chapter we saw how the KO( ; Z[%]) orientability of oriented
vector bundles allowed us to reinterpret geometric invariants of the smooth bord-
ism groups of certain spaces in terms of characteristic classes. In this section
we go on to review Sullivan’s analysis of the classifying spaces BS'l‘OP[‘A] and
BSPL[%] and their associated Thom spectra. The starting point is the construc-
tion of a KO( ; Z[V;]) orientation of stable PL and TOP bundles. This leads
to a determination of the odd-local homotopy types of BSPL and BSTOP modulo
a largely unknown space, Bcok]J, whose homotopy is the cokemel of the
T-homomorphism in the stable homotopy groups of spheres. The cohomology groups
H*(Bcok]) are known ([74], [86]) but very complicated (and not needed for our
purpose) whereas the K-theory of Bcok] is trivial ([56]): f{O*(Bcokj; Z[%]:O.
Finally, combining these results with the (now verified) Adams’ conjecture one
obtains a similar analysis of the Thom spectra MSPL[%] and MSTOP[%].

A. The KO-orientation of PL-bundles away from 2
Let (},(MSPL) be the smooth bordism of the spectrum MSPL away

from 2,

i SO
Q,(MSPL) = lim Q39 (MSPL)) ® Z[!]
r

and let
5.1 I Q (MSPL) » Z[¥%]
be the homomorphism which to a singular manifold

f: Q*™f , MSPL_,

with f transverse to the zero section, associates the index of the codi-
mension r submanifold, MM - f‘l(BSPLr). As in Chapter 4.D., I fac-

tors over the surjection

99



100 THE CLASSIFYING SPACES

8:Q,, MSPL) > KOy(MSPL; Z[!4)) .

The universal coefficient theorem 4.16 can be extended to spectra ([147])

and gives an exact sequence

0 > Ext(KO_, (MSPL),Z[%]) » KOOMSPL;Z[]) - Hom(KO,(MSPL), Z[4]) - 0.

In particular there is a class

5.2 Apy, € KOMSPL; Z[#])

which defines the homomorphism I in 5.1. (We will see in 5.D below
that the term Ext(KO_, (MSPL); Z[%4]) vanishes, and Ap; in 5.2 is in

)

fact unambigously defined.)

LEMMA 5.3. Under the natural map

Mi: MSO - MSPL

the class APL is mapped onto the orientation class A = Ago of 4.14.

Proof. Since ’K‘(S_I(MSO; Z[%:)) = 0 it suffices to check that (Mi)*(APL)
and Aso define the same element in Hom(’KVOo(MSO), Z[%2]). Since § is
onto, it is enough to see that (Mi)*(APL) and Aso determine the same
homomorphism from Q,(MSO) to Z[%].

An element {Q*M4T £l ¢ Q 4n+4:MSO, ) is represented by a map

. g4nt+4r+4s
a: SHHHArHds | NSO, A MSOY,

(r>>n,s >>n) and by transversality we get a diagram
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4n+4r+4s a +
S — MSO4S A MSO“r

U U

Qén+ar (VQ’f)

BSO, ¢ x MSO,,

U U

v Mer(M: Q)
4 Q
mén BSO,_ x BSO,,

Now,
<Mi*(Ap), [Q*™41,£]1> = Index(M*M)
and from 4.19,

Index (M)

<@, 1>

< M:Q*E Y. (VQ|M)*(£‘1), [M]>

<€ v E@ ™, Q>

<a*(£‘1U®£_1U), [sdn+ar+ds]y

On the other hand, the definition of the Kronecker pairing between
K-homology and K-cohomology (see Chapter 4.B) implies that Asod Q,fh)

is the homotopy class of the composite

g: SIS s, A Msof, 222, Bso 4 Bso —® . Bsol .

Since the Pontrjagin character evaluates to 1 on the chosen generator of
—~1
7,;(BSO[%]) and because phAg = €77 .U we have

<ASO' {Q4n+4ryf I> = < ph(g), [s4i‘l+4t+4s] N

and the lemma follows.
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COROLLARY 5.4. phAPL = (‘5'31:,1_1)_l -Upy, where Up; is the cohomolo-
gy Thom class. In particular Ap, is an orientation class for MSPL.

Proof. We saw in Chapter 4 that £PL restricts to £ under the natural
map i: BSO » BSPL. The fiber is the space PL/O whose homotopy
groups are finite. Hence i is a rational equivalence and the result
follows from 4.14,

B. The splitting of p-local PL-bundles, p odd

Let £ be a 4r-dimensional PL-bundle over X (4r >> dim X) and
let Ap; €)e ?6(M({" ); Z[%4]) be the orientation class constructed above.
We mimic a standard procedure for vector bundles and define a character-

istic class for each integer k
PEE) e 1 + KOK; ZI%, 1/kD) .
Indeed, let plli(f ) be the unique c}ass so that

) PLE) - Ap ) = 5 ¥ KBp )

where l,bk denotes the Adams operation [9]. Universally we get a mapping
k. e
5.5 py + BSPL » BO [, 1/k] .

The Pontrjagin character of pll“ can be calculated from (*). From 5.12 and

5.22 below we have that [BSPL, BO[}:]] » [BSPL, BO]®Q is injective.

k
L
In the rest of this chapter p will be an odd prime unless otherwise

Hence the homotopy class of p in 5.5 is uniquely determined.

indicated, and k will be a positive number which reduces to a generator
of the group of units in Z/p2?: kP! £ 1 (mod. p2).

DEFINITION 5.6. The homotopy theoretical fiber of p}i: BSPLI[pl- BSO®[p]
is denoted Bcokjp .

e e e
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LEMMA 5.7. Let 6= 1+80 where o was characterized in 4.26. Then
G/PL —2—— BS0®[1/2, 1/k]

j /4K
pk
BSPL ——— BS0®[1/2, 1/k]

is homotopy commutative.

Proof. As o is a homotopy equivalence away from 2 and k, and since
homotopy classes of endomorphisms of BSO are distinguished by their

Pontrjagin character by 4.29 it suffices to check that

ph(5/%5) = ph(ek o9) .

We evaluate the Pontrjagin character of pII‘J from the defining equation on

4: dimensional bundles

pll.(.'APL = I:%?¢k(APL) .
But ph(X(x)) = Y1 (ph(x)) where

vl B Q) - HY( Q)

is multiplication by k2. Since ph APL = g_l +Up;, where Up, has

dimension 4r we have
phok - yR@ e - ek®
and the result follows from 4.22 and 4.27. |
In [2] Adams considered a map

ok : BSO®[p] - BSO®[p]
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and proved that it induces isomorphisms on homotopy groups in dimensions

2(p-1)n. The Pontrjagin character of pl_: is

where (@ is the genus with characteristic power seties

okx/2 _ ~kx/2

S(a) = k(eX/Z_e—X/Z) ’

A check of Pontrjagin characters shows
k) = pKWH2)-y4x)

and since the mapping Zﬁz—tﬂ“: BSO - BSO induces multiplication by
2(P-1ng_2(P-DNy op homotopy in dimension 2(p-1)n we get

LEMMA 5.8. The maps
pt: BSO[p] - BSO[p]

¥ 1: Bso[p] -» BSO[p]

induce isomorphisms on the homotopy groups in dimension 2(p-1)n and
20 for [ £0(p-1), respectively.

D. Anderson constructed a splitting of the p-local space BSO®[p]
(see e.g. [3])

® p-1
5.9 BSO®[p] = BSO(;y x++x BSO(), m = =
The homotopy groups of BSO(i) are concentrated in dimensions congruent
to 4i—4 (mod (2p-2)). Each of the factors is an H-space and the split-
ting is in the category of H-spaces. Also BSO®[p] and BSO®[p] are
equivalent as H-spaces. Indeed Atiyah and Segal in [14] exhibited an

H-equivalence
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5.10 &: BSO®[p] — BSO®{p] .

(We review the construction of & in Chapter 9.B.) Let 7, nil': BSO[p] -»
BSO[p] be the composites

incl

7, : BSO[p] —2®I_, Bso BSO[p]

o8
ni: BSO[p] 21, Bsok, —°L, Bsolp]
where BSO(, = BSO(g) x ++-x BSO(y, . Let y, be the H-map

1

. Ty XT
_diag | pso®plx BSO®[pl —— - BSO[p]x BSOLp]

5.11 y,: BSO®pl

1 5)(

1 N
1xG778 5e0®(plx G/PLIp] — %I, BSPLIp]x BSPL[p] — > BSPLIp]

THEOREM 5.12 (Sullivan). There is a splitting

BSPL[p] =~ BSO®[p]x Beok],

at each odd prime p.
Proof. It suffices to see that Yp splits p}: , that is,

pX o ¥p: BSOlp] » BSC®[p]

is a homotopy equivalence; since we can then define an equivalence from
BSOe[p]XBCOkJ into BSPL[p] as the sum of Vp and the inclusion of
Bcok] We check on homotopy groups: In degrees 2(p-1)n, (pL oyp)*
is an 1somorphxsm by 5.8 and in dimensions 2m with m £ 0(p-1),pL °Yp
induces essentially the same map as (l/l —1), that is, multiplication by

k™-1. But (p,k™-1) = 1 in our situation. This completes the proof.
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C. The homotopy types of G/Olpl and SGlp]

In order to further clarify the homotopy structure of BSPL and MSPL
we digress to give a discussion of G/O. The Adams conjecture proved
in [18], [111], [136] implies a diagram

BSOlp] ———E— G/0lp]

5.13 ¢k_1

BSO{p] -» BSGlp]

for each prime p. Here we take k = 3 (mod 8) (and usually k=3) if
p = 2 and otherwise (as usual) k is a generator of the group of units in
Z/p2 .

The map a, turns out to be a split injection. We first construct for

each prime p an H-map

By G/0lpl » BSO®[p] .

Then in 5.18 below we prove that Bp oa_ is a homotopy equivalence of

H-spaces. The construction of Bp is s:mewhat different when p is an
odd prime and when p= 2. We begin with the case p odd.

Previously we have used the H-space splitting of BSOe[p] into a
product, BSO®[p] =~ BSO;, x BSO(‘Ii). We use the Atiyah-Segal )
H-equivalence 8p: BSO®[p] > BSO®[p] to get an analogous multiplicative
splitting

BSO®[pl =~ BSOf, x (BSOF )L .

Let T,§ be the compositions

5 .
T: G/0lp] —— BSO®[p] —2—, BSO®[p] 2%, (BsOP, )t

5 G6/0[p] —— G/PL[p] —7— BSO®[p] 2L, BSO?, |
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where r and s are the natural inclusions, and define Bp as the

composition

514 B,: 6/0lp] 22, G/0fp] x G/0lp] —=<T. BSO®lp] .

The construction of B, is analogous, but in order to make it precise
we first give a new definition of o: G/PL[p] » BSOQIP]. (Cf. 4.31.)
Since G/PL is the fiber of the natural map

7: BSPL - BSG

it is the classifying space for pairs (E, t) consisting of a stable
PL-bundle E (over X) and a proper fiber homotopy equivalence

tZE-»Ex

where ey is a stably trivial bundle with a given trivialization

(ex = Xx RY). The bundles E and ex have specific KO-orientations
at odd primes by 5.2, and we can define a characteristic class

e (E,)el+ KO(X)@Z(p) by

App(E) - e (E,t) = t"App (ex)) .

Since G/PL is the universal object for pairs (E,t) as above.the charac-

teristic class e (E, t) determines a map

e : G/PL - BSO[p] .

LEMMA 5.15. At every odd prime p, e, = 0.

Proof. It suffices to check that ph(e; ) = ph(@) (cf. 4.29), and from the

defining equation we have
P*ph(Apy) - phiey) = TUpp) ,

where I G/PL - BSPL is the natural map.
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Thus 4.22 and 5.4 give

ph(eL) =1 + 8K .

But ph(o) = K by 4.27 and G = 1+80 so the lemma follows.

We now construct f8,: G/0[2] » BSO®[2]. The space G/O classifies
pairs (E,t) as above but with the difference that E is now a stable
vector bundle. Oriented vector bundles are not in general KO-oriented
(at the prime 2). However, the natural map r: G/O » BSO lifts to
BSpin (since the Stiefel-Whitney classes in H*BSO0;Z/2) come from
H*(BSG; Z/2), and BSpin is the homotopy fiber of BSO &» K(Z/2, 2)).
Moreover, as G/O is simply connected the homotopy class of a lifting
-?: G/O - BSpin is unique. Hence for a pair (E,t), E admits a unique

Spin structure and therefore a well-defined Thom class [10],

A,(E) ¢ KOME) .

We proceed as above and define a characteristic class e, (E,t) “in

1+ KO(X),
* AA(E) . eA(E, t) = t*(AA(EX)) .

The natural Thom class A, is exponential, A,(E®F)=A,(E)-A,(F),

so we get an H-map
e, : G/O - BSO®

and we let 3, be the localization at 2 of e, .
From (2], J(X)II) we have that ph Ay = Q- U, , where Q@ is the

genus with characteristic power series

S(@) _ eX/2 _ g=X/2

X ?

so ph(e,) = @).

DEFINITION 5.16. For each prime p, let cok Jp be the homotopy fiber of
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Bp: G/Olp] - BSO®[p] .

The next result justifies the notation in 5.6 and 5.16.
THEOREM 5.17. For an odd prime p, QBcoka o~ cok]p.

Proof. The diagram in 5.7 induces a map (7,0, plﬁ) of homotopy fiberings

SG[p} = G/PL[p] —— BSPLIp]

~ ~ k
a, o PL

k
J8 —— BSO%] L pso®lpl

where Jg is the homotopy fiber of 1/¢k. Since o is a homotopy
equivalence the fiber of 31 is homotopy equivalent to QBcoka. On the
other hand, we have the map (52, Bp,ﬁ ) of homotopy fiberings,

SG[p] ——— G/0O[p] ~—— BSO®(p]

A

k
Jg ——— BSO%[p] e, BSO®[p] .

Here p=®o (p}_"x (l/tllk)OSP) o (my xrril') o diag, where #; and rri" are
the ‘projections’ used in 5.11 and ®: BSO®[p]x BSO®[p] >~ BSO®[p] is the
multiplication in the indicated H-structure.

Since p is a homotopy equivalence the homotopy theoretic fibers of

32 and Bp agree up to homotopy so it suffices to show that 31 ~ 32.
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The diagram SG[p] ———— G/O[p]
7, Bp

.

Bs0®[p]

homotopy commutes by the definition of Bp , and the quotient /4,
then lifts to a homotopy class of maps from SG to SO[pl. We claim that
[sG, solpll = 0.

Indeed, from 3.9 we have that SG is homology equivalent to
B = li:n BZ,, and the usual Atiyah-Hirzebruch spectral sequence

shows that SG and BZ_ have the same KO-groups. (In Chapter 5.F we

shall examine this equivalence in greater detail.) In particular
[5G, SO[pll = KO™!(BE,)eZ, .

Now, KO'(BE,)eZ, = lim KO '(BX)eZ, and since
KO‘I(X)OZ(p) is a direct factor of the p-local complex K-g"ioup
K‘l(X)ﬂz(p) , the assertion follows from Atiyah’s result from [149]:
K 1(Br) = 0 for n a finite group.

THEOREM 5.18 (Sullivan). At each prime p,

G/0[p] =~ BSO[p] x cok],

SGlp] = Jp x coka s

where ], is the homotopy theoretical fiber of ¥ 1: BSO®[p] » BSO®[p].

(Each of the spaces above has a natural H-structure, and one might ask if
the homotopy equivalences above are H-space equivalences. This is in-
deed the case for p odd (see e.g. [85]) but neither G/O[{2] nor SG[2]

splits as H-spaces in the indicated manner ([73]).)
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Proof. We give the proof for p an odd prime and leave the somewhat
easier case p =2 to the reader. Let ay: BSO[p] -» G/0[p] be the map
given by the Adams conjecture as in 5.13.

We first show that the composition

BSO[p] p, G/olpl -5 G/PLIp] —2- BSO®[p]

is l/p}“ , the inverse of the cannibalistic class p}_“ .

By 4.29 it suffices to evaluate Pontrjagin characters, and using 4.22
we see that ph(G os) = *(®) where £ is the Hirzebruch genus in
H*(BSO; Q), and r: G/O > BSO is the usual inclusion. By the definition

k 1_ .0
of ag, Yg-1l=1 a, so we have
ph(&osmp) = (1/fk—1)*(£).

The class £ is exponential so

tog(® = ©-1)- ,} @-12 + %(&1)3 .

is additive, that is, a graded primitive class. On primitive classes
(l/lk—l)* is easily calculated,

@5 1)*tog &) = @¥*(log £)-10g &
1og@*®) - log £
1og(@H*@)/D) .

]

But induced maps clearly commute with log,

@*-1)*(log £) = log(W - 1)*®))
so we have

@GEDX®) = @wH*®)/L
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which is equal to ph(l/plﬁ) (cf. the proof of 5.7). Hence oosoa,= l/p}i
as claimed.

From 5.8 it now follows that

Bpoap: BSO[p] » BSO[p]

induces an isomorphism on homotopy groups, and the composition

agx incl. B
BSO[p] x coka —— G/0[p] x G/O[p] ——— G/0O[p]

is the required homotopy equivalence.
The splitting of SG[p] is derived from the splitting of G/O[p]. Con-

sider the diagram

k
BSO®[p] g1 BSO®[p]

Jp

K
J® ———=Bs0%( " | BsePlp) .

The horizontal sequences are homotopy fiberings, and the maps Bp °ay,
and p are homotopy equivalences. From the homotopy exact sequence it
follows that &, oap induces an isomorphism on each homotopy group.

Thus 0,°a, is a homotopy equivalence and

p

ap x incl: Jo x coka - SG[p] x SG[p] > SGIp]

is the required homotopy equivalence.
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D. The splitting of MSPLIpl, p odd

Suppose we are given a stable, piece-wise linear, bundle F overa
CW complex X or equivalently amap F: X - BSPL. Each skeleton
XD of X is mapped into some finite BSPLn(i) so we get a PL-bundle

F,

n(i) of fiber dimension n(i) over each XD and under restriction

(i-1)
Fn(i)lx 1 =3 Fl‘l(i—l) ® Ei

with e, a trivial bundle. On the Thom space level we thus get maps
smd , MFn(i—l) N MFn(i) , m(i) = n(i) - n(i-1) and these define the Thom
spectrum MF.

In 5.12 we constructed a splitting of BSPL at odd primes,

YpX incl.

BS0®[p] x Beok],, BSPLI{p] x BSPLIp] —— > BSPLIp] .

The Thom space of a product bundle is the smash product of the Thom
spaces of the factors and similarly for Thom spectra. Hence we have an

induced splitting
ME A Mcok], = MSPLI[p]

where E is represented by Yp and where Mcoka is the Thom spectrum
of the inclusion of Bcok], in BSPLIp].

LEMMA 5.19. The Thom spectrum ME is homotopy equivalent to MSO[p].

Proof. The homotopy type of a Thom space depends only on the underlying
spherical fibration. The PL-bundle E splitsasasum E=E;® E,
where E; sits over BSO(I) and E, sits over BSO(Ji) . The restriction
of Yp to BSO(l) is the usual inclusion and the restriction of Yp to

BSO(J'I) is essentially the map G/PLIp] - BSPLI[p]. Hence E, is fiber
homotopy trivial and E, is the restriction of the universal vector bundle
over BSO[p]. On the other hand, since l/lk—lt BSO(ll) > BSO(J'I) is a
homotopy equivalence (by 5.8) the diagram
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/a/ G/ T[p]

k
BSO®(p] I a2 SN BSO®[p]

BSGIp]

implies that the universal vector bundle & over BSO®[p] is fiber
homotopy trivial over the subspace BSO(Ji) . This proves that E is fiber

homotopically equivalent to & and the lemma follows.

COROLLARY 5.20 (Sullivan). For any odd prime p

MSPL[p] =~ MSO[p] A Mcok], .

The space cok], is a direct factor in SGlp] and hence has finite
homotopy and homology groups in each dimension. Thus rationally
MSO[p] ~ MSPL[p].

But in fact more is true:

THEOREM 5.21. For each odd prime

?p: 7, (MSO[pl)/Tor » =, (MSPL{pl)/Tor

is an isomorphism.

Our proof of 5.21 proceeds in a rather roundabout manner using the
Hattori-Stong characterization of the lattice 7,(MSO[pl)/Tor in
H,(MSO; Q) and we defer it to Chapter 11.B where we also prove a piece-
wise linear version of the Hattori-Stong theorem.

In 5.A we constructed a Thom class
Apy € KOMSPL) ®Z[%] '

with Pontrjagin character ph(Ap;) = g;i - Upy, (cf. 5.4). Our procedure
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did not seem to characterize APL uniquely, and did not for example
seem to allow proving the usual exponential property of Thom classes:
APL(EG F)=Ap, (E)- Ap( (F). However, the next result due to Hodgkin
for odd primes and to Hodgkin-Snaith in general implies that Ay, is in

turn characterized by its Ponttjagin character.
THEOREM 5.22 (Hodgkin-Snaith). For every prime p, f((cokjp) =0.

Proof, From the proof of 5.17 we have a fibration

~

% &
cok]J P - SG[p] > Jp
and from 5.18 32 is split:
a o
® P 2 ®
e salpl I

is a homotopy equivalence. Hence it suffices to show that
3 f((Jg) > K(salp))

is a surjection. Now Jg is included in BSOe[p] (as the homotopy fiber of l/lk—l)

and BSO® [p] is included in BUg[p] via complexification, so it is enough to
calculate that '

5.23 f = coincl. 03,: SG[p] » BU®[p]

induces a surjection in K-theory. We outline this calculation in section 5.F below.

*
We have seen in 5.17 that colglp is a loop space for p odd, ) coka=QBcoka
and in particular we have the fibration

coka - Ecokjp - Bcok_]p .

*
)The space cok]J_ is a loop space also for p = 2, in fact coldp is an

infinite loop space at all primes. A proof of these somewhat more intricate facts
can be found in [85].
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There is a spectral sequence (the K-theoretic Eilenberg-Moore spectral sequence,
see [56]) with E2-term

2
E° = TorK*(coka)(K*(pt)OZ(p), K*(Pt) QZ(p))

E® = K, (Beok],) .

Now, K_ (cokJ ) is a direct factor of K_I(SG[P]) but K—I(SG[p] =0 (cf. the
proof of 5.17) so K*(cokJ ) =0, and hence by the umversal coefficient formula
K*(coldp) =0. The spectral sequence then gives K*(Bcokj ) =0 and hence
K*(Bcokjp) = 0. It follows that KO*(BcokJ ) = 0 and using the Thom isomor-
phism we have (at odd primes)

COROLLARY 5.24. (i) KO*(McokJ )=0.
(ii) yp KO(MSPL[p]) KO(MSO[p]) is an isomorphism.

In Chapter 4.E we proved that %(BSO[p]) is detected by the
Pontrjagin character, and by the Thom isomorphism this is also true for
KOMSO[pl). Thus we have
COROLLARY 5.25. The Pontrjagin character

ph: KOMSPL[pl) -~ H*MSPL; Q)
is injective (at odd primes).
We note as a consequence of 5.25 that the class Ap; ¢ ?6(MSPL[p])

is uniquely characterized by 5.4 and that APL(E) is exponential for
stable PL-bundles,

App(E®F) = Ap (E) - Ap, (F) .

E. Brumfiel’s results

For later use we recall Brumfiel’s results on the homotopy groups in
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the diagram G/O s G/PL

5,26 t i

BSO —3— + BSPL .

After making use of the Adams conjecture to give the order of the image of
the J-homomorphism in dimensions 4n-1 his results [31, p. 307] may be
stated as follows: In dimension 4n the maps in homotopy of 5.26 may be

summarized in

Ny
Z @ Torsion Z
Dn (Bn’ En! 0)
(@,,1,0)
= Z0Z/2%Wen, (s°)/im]
for certain a,,B,,¢, with

w(n) = vz(n)+3 for n>2
w(l) =0
w(2) = 2

and

N, = a, 22™2(22%-1_1) Num(B, /4n)

D

n Denom(an/4n) .

[

Here a, = 1 if n is even and a, =2 if n is odd, and B, is the
n’th Bernoulli number (cf. Chapter 11.A). At this point 5.26 is an easy
exercise—which we leave for the reader to carry out—once we remark that
the coefficient of P4q in the Hirzebruch genus L is 8Nn/an(2n—1)! D,.
In low dimensions one uses Cerf’s result that PL/O is 6-connected.
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F. The map f: SGlp] » BUQ[p]

The proof of the Hodgkin-Snaith theorem (5.21) was based on the splitting of
SG[p] from 5.18 and the following calculational result

THEOREM 5.27. The map f from 5.23 induces a surjection f*: K(BUQ[D]) -
k(salpl).

The original proof of 5.27 used Hodgkins’ calculation of KO(SG[p]; Z/pi)
([55], [56], [79])‘ The proof we outline below is based on a well-known reduction
of 5.27 to a problem in representation theory which we then attack using transfer
techniques. It is arithmetically very simple, but conceptually more involved.

Let 2 S2n - BU represent the standard generator of f((Szn) . By Bott

periodicity Q2%(BU) = BUx Z, and the maps anan fit together to define a
map

g: Q) > BUx Z,
so restricting to the l-component SG C Q(So) we obtain a map

g, : SG»BU x (1) = BU®.

LEMMA 5.28. The p-localization of gy is homotopic to f.

Proof. Let X be a finite complex. A (based) map @ from X , to the
1-component Q’l' s" of ('s" can be thought of as a proper homotopy equivalence
of the trivial bundle

a: X x Retl o x « Retl

(over Idx ), and the induced map of Thom specesl

. n+l n+1
M(a).X+AS ->X+AS
is just the composition

diag A 1 id A adj(Ca
ag id A adj( )x+As“+1

n+1 n+1
X+AS X+A(X+AS )

where 2a: X + Qs C Q"“’Sﬂ+1 and adj(za) denotes the adjoint map.
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We assume that n+1 is even. Then the Thom class AU € K(X+ A Sn+1) is

1®gn+1 , and [foal ¢ K(X) is the element satisfying

{toa] - Aso = M@)*Qyg) -

Now it is direct that fca and g©° (Za) represents the same element of K(X),
so passing to the limit over n the result follows.

Both the domain and the range of g ate infinite loop spaces and by con-
struction g is an infinite loop map. (See Chapter 6 for a brief discussion of in-
finite loop spaces and [50], [84] and [85] for further details.) Each infinite loop
space E admits a sequence of structure maps

. n
d : EzannE > E

and these are natural w.r.t. infinite loop maps. In particular we have a homotopy
commutative diagram

d
ES xy Q)" —— os®
n

5.29 Ixg " g
Eﬂ

10)
d
Eznxz (BUx Z)® ~———+BU X Z -
n .

The structure map dg in 5.29 has a simple bundle theoretical description.
Let 4} denote the universal r-dimensional bundle over BUr.

LEMMA 5.30. The restriction of d:“] to Eznxz (BUl_)n represents the bundle
n
Eznxz ér 9‘--94 (of dimension rn). (See e.g. |85] for a proof)
n

Theorem 3.9 asserts the existence of certain natural inclusions
i a’ an > Q(SO). They can be explicitly obtained from the structure maps dn via
the composition

d
ig: B, —— EZ x5 Mxx ) —— EZ x5 Q)" — Qs
. n
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where (1)C Q(So) is the map representing the identity on the stable sphere. From
5.29 and 5.30 we have

COROLLARY 5,31, Let P: En -+ U, be the permutation representation. The
diagram

BP

BX BU,_
in
Q% 2 BUx(n) C BUXZ

is homotopy commutative.

The inclusion P: Zn ~> U, induces a homomorphism of the complex repre-
sentation rings

P*: RU)) - R(Zn) .

Then to prove 5.27 we prove
THEOREM 5.32. P*: R(U_)>R(Z,) is surjective.

It is classical that the representation ring R(Zn) is additively generated by
the trivial 1-dimensional representation and representations induced up from the
subgroups Eilx e X Ei C Zn,. (il+--~ + ir =n). We refer the reader to [1 54] for a

T

very elegant proof of this. Thus to prove 5.32 it suffices to construct induction

homomorphisms
(in,m)!
R(U)®R®U,) = RU, XU ) —— R(U,, )

commuting with the classical induction homomorphisms associated to
5 x5 C3 .
We use a construction due to Becker-Gottlieb, the continuous transfer ([18],

[34]). It is a stable map
r: BGT 5 BHT
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*
where H is a closed subgroup of the compact Lie group G. ) Alternatively, 7
is a map BG - Q(BHY).

If G and H are finite groups then the induced map
™: H%BH; Z) - H*(BG; Z)

agrees with the classical transfer considered in Chapter 3.C. More generally
though, for any cohomology theory E*, 7 induces a map

™. E*(BH) » E*(BG) .

The composition BGL)Q(BH"')——C—)Q(SO) (where ¢ collapses BH toa
point) defines a stable cohomotopy class Y(H:G) ¢ ﬂg(BG). Now, each general-
ized cohomology theory is a module over stable cohomotopy, so we have an action
of ﬂg(BG) on E*(BG). Becker and Gottlieb have given the following important
generalization of Lemma 3.13,

THEOREM 5. 33 (Becker-Gottlieb). (i) Let at: E*(BG) »E*(BH) be induced
from the inclusion HC G. Then

*rx) = YH:G) x

(ii) The degree of X(H:G) is the Euler characteristic of the fiber G/H.

Next, we specialize to G connected and HC G a subgroup of maximal rank.
Let TCH be a maximal torus and let WG, WH be the Weyl groups. Then WG
acts (from the right) on BT; let 0:x denote the induced left action on
x € E*(BT) and note from Lemma 3.11 that o x depends only on the coset of O
in WG/WH when x is the restriction of an element from E*(BH). From [34],

p. 142 we have

THEOREM 5.34. For x ¢ E*(BH)
iger@ = 2 o+ jf{

where the summation extends over WG/WH and igrig denote the inclusions of .
BT in BH and BG.

*
)More generally, the continuous transfer 7: Xt 5 Y' is defined for every
fibering Y » X with compact fiber F.
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We shall use this result only when E* is complex K-theory. Recall from
Chapter 4.E that K(BG) is the completion of the complex representation ring
R(G). Since G is connected R(G) injects into its completion. Moreover, R(G)
injects into R(T) as the subgroup invariant under the Weyl group, so we can use
R(T) to name elements of both R(H) and R(G). It follows that

™* . K(BH) » K(BG)

maps R(H) to R(G), and we have

COROLLARY 5.35. There exist induction homomorphisms

Ind5: R - R(G)
with

Indbi) = 2o+ x, € We/Wyy

We now specialize to the unitary groups H = UnxUm , G=U and

T = yitm bedd i i e
=U; ", embe ed as the set of diagonal matrices.

COROLLARY 5.36, There are induction homomorphisms

Ind: R(U,xU_) > R(U_ )

so that the diagrams

Ind
R(Un xUm) —t R(Un-t-m)

(PxP)* p*

Ind

R(E xZ ) RCE, D

are commutative.

Proof. Let N(n,m) be the normalizer of U’i”‘m in UnxUm and N(n4m) the

normalizer in Un+m’ The Weyl groups of Un X Um and Un+m are Zn X Em and
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Zn +m respectively, and they are naturally embedded in the normalizers. Let V
be a representation of H = UnxUm. The restriction of the induced representation
Ind(V) to the normalizer N(n+m) is given by N(n+m) xN(n m)V ; this follows

e.g. by restricting to the torus and using 5.35. But then it is direct to see that

P*Ind(V)) = 2, x v
n+m Enxzm

where En X Zm acts on V via the inclusion P x P. This proves 5.36.

p*

Finally, from 5.36 we see that R(U a) — R(zn) is onto (compare the para-
graph following 5.32) and then by completion that K(BUn) -» K(B En) is surjective
Now 5.27 follows from 3.11, 5.28 and 5.31.

*
)Let K= Ker{R(Un) - R(En)f. Since fK/K n I(Un)e}g is an inverse system
with vanishing li:n the claimed surjectivity follows from 4.23.



CHAPTER 6
INFINITE LOOP SPACES AND THEIR HOMOLOGY OPERATIONS

The classifying spaces for the stable bundle theories, BO, BTOP, BPL
and BG, and the ‘‘homogeneous’’ spaces G/TOP, G/O etc., are all infinite
loop spaces and the natural maps between them are infinite loop maps by theorems
of Boardman and Vogt [19]. We have already made several general remarks on the
structure of infinite loop spaces in Chapter 3.B and in Chapter 5.F. However, for
later results we need some further properties of such spaces. In particular, we re-
quire more information on the homology structure of the infinite loop space SG
and its classifying space BSG.

The homology of an infinite loop space X admits operations
a,
Q%: HX) » H, (X),

natural with ms;;ect to infinite loop maps, and extending the square in the
Pontrjagin ring. ) The definition of Q2 is quite analogous to the definition of
the Steenrod operation

sq?: HiX) » Hita(x) ,

which exists for any space X. ‘Indeed, the Steenrod operations measure the devia-
tion from strict commutativity of the cochain level cup product, and similarly the
homology operations measure the deviation from commutativity of the H-space
multiplication. More precisely, the multiplication in an infinite loop space is
homotopy commutative by a homotopy which is itself homotopy commutative and so
forth, and one gets an infinite sequence of higher homotopies. The homology
operations provide a measure of the non-trivialy of these homotopies.

Standard formulae for Steenrod operations (e.g. the Cartan formula and the
Adem relations) are consequences of certain (homotopy) commutative diagrams on
the cochain level (see e.g. [46], [130]). The existence of the relevant diagrams

*
)Homology operations were originally discovered by Araki and Kudo [7] The
custom, quite inexplicably, is to call them Dyer-Lashof operations.

124
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follows from the technique of acyclic models. There are similar diagrams (on the
space or chain level) for infinite loop spaces, giving analogous formulae, but here
one has to rely on the geometry of infinite loop spaces instead of acyclic models.

In the three volumes [84], [85] and [86], J. P. May and his collaborators have
given a very thorough account of infinite loop space theory. We shall only need a
small part of this theory, and the present chapter should serve the reader as a
guide through the part of the theory relevant to this book.

Throughout the chapter H,(X) will denote homology with Z/2 coefficients.

A. Homology operations
Suppose X is an n’th loop space, X =Q"Y. Then there is a natural

map
u: Q“Snx > X

with uoi=1Id where i: X » QPS™X is the natural inclusion. Indeed, if
v: S®X 5> Y is the evaluation map, then u = 0Q"(v).
Formally, an infinite loop space X is a space together with a distinct

sequence of ‘‘deloopings”

BX, B%X, -.., BiX, .-

(Q"B"X ~ X), thatis, X is a single space in a (connected) (Q-spectrum.

For such a space the maps u above fit together to give a retraction
u: QX) - X

of the embedding i: X » Q(X), where as usual

Q(X) = lim Q"SN(X) .

Let I (X) = sn-1 ><z2 Xx X be the orbit space of the free X, action
on S™1 . XxX which is antipodal on S™! and interchanges factors on

Xx X. There is a natural map

6.1 D,: [(X) - Q°%S™(X), n<e

satisfying D,(1; x,y) = i(x) *i(y), where * is the loop sum in Qns(x)
(cf. [28], [50]).
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We are mainly interested in the case n = «. Here the existence of
D2 follows from the Dyer-Lashof ‘‘model”’ C(X) for Q(X), reviewed in
Chapter 3.B. Indeed, D, is the composition

D, : [, (%) —— c®) ERI

The first embedding j comes from the identification S = EEZ and the
second map iy is a natural homotopy equivalence when X is connected,
and a ‘‘group completion’’ map in general: (ix), :7y(C(X)) » 75(Q(X)) is
an algebraic group completion and (ix)*: H,(C(X)) » H(Q(X)) localizes
H,(C(X)) at 7y(C(X)).

REMARK 6.2. There is an alternative way of seeing D,, probably first
noticed by Boardman, which has played an important role in the develop-
ment of infinite loop spaces (see in particular [84]). The space Q"S™(X)
consists of all maps x: (D%,dD™) » (S"X, %). If x,y € X we define
D,(w; x,y) according to the picture

mapped to *

napped to *



INFINITE LOOP SPACES 127

The two small discs around w and —-w are mapped according to i(x)

and i(y) and their complement is mapped to the basepoint *,.

Let X be an infinite loop space. We can then compose D, with the

retraction u to obtain structure maps (‘‘higher homotopies’’)

6.3 d, = u°D2:E22xz2XxX—»X.

The maps D2 are natural in X (since iy is) and the retraction maps
uy are natural for maps of infinite loop spaces. Hence the structure
maps d, are natural for infinite loop maps.*)

Using the notation of 3.20 we make the following basic definition ({7],
(28], [50D).

DEFINITION 6.4. Let X be an infinite loop space. The j’th (lower)

Dyer-Lashof operation
Q;: Hy(X) » Hy ,i(X)
is defined by

Q;@) = (dy) (e;9a®a)
where a ¢ Hi(X).

REMARK 6.5. If X is just an n fold loop space, then the same defini-
tion applies to define Qj(a) for j<n. We only need to note that

ejoaéa € Hj+2i(r‘n(X)) if j<n.

Readers familiar with cohomology operations will notice the formal
similarity between 6.4 and the definition of the (mod 2) Steenrod squares
[46], [130]. It is not surprising therefore that the Qj share many formal
properties with the SqJ.

*
)An infinite loop map f: X > Y is a map which is the restriction of a homo-
morphism of the associated ()-spectra.



128 THE CLASSIFYING SPACES

THEOREM 6.6. (i) If f: X > Y is an infinite loop map, then
Q(E,@) = £,(Q@)

for all x e H (X).
(ii) Qg(a) =a*a, where * denotes the Pontrjagin product in H(X).
(iii) Let e € Hy(X) be the unit element in the Pontrjagin ring. Then
Qj(e)= 0 for j> 0.
(iv) Let X be an infinite loop space and v: SQX » X the evaluation
map. Then
vA(EQ@) = Qs (v4(Ea)
where X : H (Q(X)) » H (SQ(X)) denotes the suspension homomorphism.
(v) Let A: X XxX be the diagonal and let A,(a) = Zai(ea‘i(.

Th
o A,Q4@) = 2Q;_(af) ® Qa})

(vi) Qj(a xf) = sz—r(a) *Q(B) forall a,B ¢ H(X).

(The first two properties are direct from the definitions and (iii) follows since
EZ, xS, (*) X (%) is identified with the base point in C(X). The last three

properties are proved by evaluating certain homotopy commutative diagrams in
homology. The relevant diagrams can be found in {84 Lemma 5.6, Lemma 5.7 and
Lemma 1.9 (ii) (with e n(2) replaced by Sn_1 )] and the homological calculations
are given in [86, p. 7-9]. Altematively, the reader might consult the original
source [50].)

The next result is analogous to the Adem relations for Steenrod
squares. It expresses a composition Qin(a) with i> j in terms of com-
positions with i< j. The precise formula is most conveniently described
in the notation of ‘‘upper’’ Dyer-Lashof operations, Q!. The connection

is as follows:

6.7 QK@) = Qjg|@,  lal = deg@) .

Thus Qk raises degree by k. In the rest of the chapter we shall pass

freely between ‘‘upper’’ and ‘‘lower’’ notation.
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We denote by (g) the binomial coefficient a!/b!(a-b)! (mod 2) with

the usual convention that (§) =0 unless a>b>0.

THEOREM 6.8. For k> 2¢,

- T D M@
2v>k
for all a e H(X).

(The proof of 6.8 can be found in [86, p. 9] (see also [50] and [130, p. 117].)
It is completely analogous to the proof of the ‘‘classical’’ Adem relations once
one has the commutative diagram

T @, EG\Z) x5\ 5, X
6.9 IBNCH)
d d
T —2— X ———EE x5, x*

Here d4 is defined in analogy with d2 above as the composition

i
4y EZyxg, X4 — €00 T @0 0 ).

Finally, we have a formula for the interaction of Steenrod operations

and homology operations first described by Nishida in [108]. Let
Sqk : Hy(X) - Hy_ (%)

be the vector space dual of the qu acting on cohomology so that
<Sgi€),a> = <¢, Sql(@)>, where <,> denotes the usual Kronecker

pairing. From 3.21 we have (after dualizing)
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6.10 (1xA),(e;0a) = Ze; 1 |q| © Saki@) @ Sa¥(a)

where |a| = dega and 1xA:RP”xX-T (X).

i6ig) - -1
THEOREM 6.11. SqlQ)@) = 22<, G,
k<i

© Q-ik(sqk@)) .

(The proof of 6.11 is a consequence of 6.10 and the classical Adem relation
for Steenrod squares. It also involves some binomial arithmetic: we refer the
reader to [108].)

B. Homology operations in H*(Q(So)) and H,(SG)

The calculations in Chapter 3 of the Pontrjagin rings (H*(Q(So)), *)
and (H,(SG),°) were based primarily on two facts: the relations of the
two products to cartesian product and disjoint sum of permutations (cf. 3.9
and 3.10), and the distributivity of the composition product (°) over the
loop sum (*) (cf. Chapter 3.F).

Both Q(S®) and SG are infinite loop spaces (with classifying
spaces Q(s!) and BSG, respectively) and we now wish to extend the
considerations of Chapter 3.B and 3.F to also get information on the two
(distinct) sets of homology operations.

To avoid confusion we denote the structure map for Q(So) by d,

and the structure map for SG by &2 ,
dy: EX, x5 Q%) x Q8% » Q%
2
d,: EX, szSGx SG > SG.
Then d,(1;x,y) =x*y and 32(1; x,y) = xoy. The first map d, was

made explicit in 6.2 above and for the second map 52 we have (cf. [73,
p. 239] or [85, p. 9-18]).

REMARK 6.12. Let R™ be the direct limit of the R™, consisting of all

sequences (X, X,, ) with almost all entries equal to zero. This is an
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inner product space with contractible isometry group O(R*,R*) (Board-
man, see [84] for a proof). Now R*@R* == R* and O(R*”®R>™,R*)
isa Ez-space: (- D(x,y) = f(y,x). Let

p:S* - O(R”@R>,R™)

be a Z,-equivariant map, p(-w)=p(w)T (see e.g. [73, p. 239] for a
specific choice of p). The one point compactification of R is S%

and the structure map 32 is explicitly given by
d,(w; %,y) = p(w) (xay)p(w)™?

where A denotes the smash product. The right hand side only affects
finitely many coordinates of (R*)* = S, and hence represents an ele-
ment of SG.

Although Q(S?) is not an infinite loop space in the composition
structure ((no(QSO), o) = (Z,-) is not a group) it follows from 6.12 that

the structure map 32 has a natural extension to a map
dy By x3 QM) x Q8% » QY -
Note that the extension 32 satisfies
az(w; x,0) = az(w; 0,x) =0

where 0 denotes the constant map (the base point of QO(SO)).

LEMMA 6.13. The two maps f,g below from EX, ><22Q(S°)2 x Q(S®)? to
Q(s%) are homotopic:

fw; (%1,51), (%5,9,)) = do(w; %; *yy,%, *y,)

g(w; (x1,y,), (%5,y,)) = dy(w; xl,xz)*az(W; Y1:¥9) ¥do(W; %) AY,, Xy AY;)
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(The proof of 6.13 consists of a careful study of
£w; (x 1 s (R¥)) = POW((xy *¥4) A Cxg % y,)) Pw) .

Indeed, from the distributivity of A over * we get directly a decomposition of
the form listed for g except that the third term is p(w) ((xl Ayz)*(ylez))p(w)‘l
instead of d2(w; X AYs, x2Ay1). However, using the explicit description of d2
from 6.2 one can check that the two expressions define homotopic maps from

E22 )(22Q(So)2 X Q(So)2 to Q(So) . We leave the details to the reader with the

warning that the argument is not quite trivial: it represents a real shortcut to the
““mixed Cartan formula’’ 6.15 below, cf. [73] and [84]).

The structure maps d,, 32 give two sets of Dyer-Lashof operations
Q;, @ Hy(Q(S™) » Hy,»;(Q(s”)) .

Here Qj is the operation associated with the infinite loop space structure
on Q(S?) (BMQ(S®)) = Q(S™) and the restriction of Qj to H,(SG) is
the operation associated to the Boardman-Vogt infinite loop space struc-
ture on SG. For each a ¢ H*(Q(So)) R

Q@) = a*a. Qo(a) = aca
and, in general, if a ¢ H *(Qk(so)) then

Qj(@) € Hy(Q,u (5%, Qo) HyQ ("

where Qk(So) is the component of Q(S®) consisting of maps of degree k.
If [kle Ho(Qk(SO)) is the non-zero element, then for j> 0 we have
6.14 QoD =0, Q(H=0 and Q0D =0

but neither set of operations is trivial on zero-dimensional elements in

general.

THEOREM 6.15. Let a,B ¢ H*(Q(SO)) be arbitrary classes with

coproducts
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Y@ = Y ajeak, ¥@) = 2 BjeBj -
Then
~ ~d Al i
Oiaxp) =30 1ajp 3 2Bp Qw2 BP
where the summation extends over all pairs k,{ and triples (i, ip,13)

with i= ip+ip+is.

(The proof is direct from 6.13. Consider the element
A = ei~—|'1|~iB| [ (a@B)@ (a@B)

in H*(Ezz x22 Q(S':))2 X Q(SO)Z) . We clearly have f,(A)= Qi(a * B) , and gu(A)

is indeed the right hand side of the required formula. The last assertion uses the
standard diagonal approximation

P Cu(8™) » C(s™) ® C(s™

given explicitly by t/l(en) = zei ® en_iTi (where e € Cn(Sn) C Cn(S°°) is repre-
sented by the upper half disc). It also requires the fact that smash product and
composition product induce homotopic H-structures in SG. The reader might
check [73, . 248~250] or [84, p. 84-92] for an alternative proof.)

~

We now wish to relate d,,d, to embeddings
Jom? IN\Zy - I
Jz,m: 22\2m > 2m2 .

The first of these was defined in 3.15 and jz m is a multiplicative

analogue: consider X o as the automorphism group of pairs (i,j); then
m
the embedding J = jz m is specified by
I 0, 0,)GL5) = (hy (D), by ()
Jo: L, DG = G ).
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Let ip: BZ - Q(S®) be the map given in 3.9. We can strengthen 3.9
and 3.10 to (see [85, Chapter 6]).

THEOREM 6.16, The diagrams below homotopy commute for all m

LG I Giy)
MLES) ——+ [ Q) T,BF) —=2— I Qs

~

Blm dp Bl2m d

. i 2
2 A% BE , —F— Q")

m

B,

Here we have identified T (BE ) with B(E,\Z) (cf. 3.16).

REMARK 6.17. We have two conjugate embeddings of S\ (5, xZ) in S

-~

A
b: N E x5, >.__\__azz\z _J s

(n+m)2 *

PENGE, ) — S ENEAENS NS, T s 2 53 e — %
m
where
7(0; (hl ,gl), (hz: 82)) = ((o; hy ahz). (o, gpgz), (o; '/’n,m(hl’gZ)‘pn,m(hZ'gl))

(cf. 3.10). Then B¢ == BY, and from 6.16 it follows that Bjd and BY are
the restrictions of the maps f and g from 6.13 to the subspac%

0
EZ, x5, (B2, xBE) x B xBE) of EX, x5 QS ¥ x QsH2. In view of
3.9 this strongly suggests 6.13 but it does not quite seem to give an alternative
arguinént.

Our next result is a specialization of a result due to May (see [84,
p. 111 or [73, p. 247]).
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THEOREM 6.18. For each a ¢ H,(Q(S%))

Qilllea = ¥ Qi*ksek) .

Proof. From 3.9 and 3.40 (ii) it suffices to prove the result when a
belongs to the image of (im)*: H*(BEm) > H*(Q(SO)) for some m. But
Jam® (1xA) = ¢, o, where 1xA:Z)xZ, > 2,\3, and Yy m is the
cartesian product (cf. p. 53); the formula follows from 6.10.

We shall see in Chapter 6.C below that the elements Qi[1] ¢ Hi(Q(So))
and [-1] € HO(Q(SO)) generate H*(Q(So)) under application of both the
composition and the loop product. From 6.6(vi), 6.14, 6.15 and 6.18 we
have

0 = QC-1+l1) = Y Y11+ Qi-11+[1]

j=0

0= QU-1+[1) = 3, Qil-11*Q™i1l.

j=0

That is to say,

i

¥(Qi[-1])
x(Qi[1])

Qiq-10) *(11
Qi-1]

]

where y: H*(Q(So)) - H*(Q(So)) is the canonical (anti)automorphism of
the Hopf algebra (H*(Q(SO)), *) (cf. 3.43). Thus we have

6.19 Qid-10) = Qi1lx[-11.

In the proof of the next result we need a simple summation formula for

mod 2 binomial coefficients,

[}

6.20 ¢ a) - @Y for a>b
i g/ -t c
=0

B (b',‘f‘a) for a<b,
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(To prove this let [’i‘] be the coefficient of t' in (1+t)¥ e Z/2{[t]]. Then
® = [b-g—l] whenever a>b>0, so (bEE) = [‘%‘ 1}, The polynomial
identity (1+t)“b"1(1+t)a = (1+t)a'b‘1 now gives the formula.)

j
THEOREM 6.21. QY(Qi[1]) = 2 (i}l_‘ﬁl) QK{1] *Qi*iK11,i> j and
Qi@ = Qif1]xQi[1]. k=0

Proof. Consider the two conjugate embeddings

t:3,n5, 285 5,xs, L s 05, X5,

where p: Z,x 3, » 3, is the multiplication in 3, .

Let e ¢ H*(BZZ) be the unique non-zero element of degree a. From i
6.16 (with m=1) we have (i,), (e,) = Q3[1] ¢ H,(Q(S®), and from 6.10
and 6.16 we get

(4 (Bs), (e;0e) = 3 (P QHkiH1D,

(i) BY, (eoe) = 3 (kKo

since Sql,:(ej) = (jf(k) &k and (Bu), (eiaej—k) = (i+g‘k) Civj-k-

The summation formula above implies the formula

i
(1) (Bs), 2 (jJEe) ei+g®ej_g> = QiQi1] .
=0

Now using (Bs), = (Bt), and once more 6.20 the result follows.

REMARK 6.22. The formulae above giving the homology interplay
between the two structures on Q(SO) were originally developed in [73],
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[139] and in papers by May and Tsuchiya (see [85] and [86] for complete
references). The results were later conceptualized in the notion of E_
ring spaces by May, Quinn and Ray [85], and more recently in the notion
of hyper I'-spaces by R. Woolfson [144].

C. The Pontrjagin ring H,(BSG)

In Chapter 3.F we calculated the Pontrjagin ring of Q(SO) under loop
product. We now reinterpret the result (cf. 3.38) in terms of homology
operations. Let Vj C 22n be the subgroup also used in the proof of 3.23

(and conjugate to the detecting subgroup V). Since

AR 7N ANS 7S Y 72 LI

(with Vi=2,) the composition

i
n
BV, — BE ;- Q")

maps H,_(BV}) into the vector space spanned by all elements
QI[I] = Qil Q4 [1]. By 6.8 the elements Q with iy < ---<i, span
n

the same vector space and by 6.6 (ii) QI[I] is a loop square unless

i; >0. Now BV - Bzzn is homotopic to BV - B22n , and comparing

with 3.38 a count of dimensions gives

COROLLARY 6.23.

H, Q%) = p{Qil Qin[1]|0 <iyp < <igje Z/2A7] .

The precise connection between the classes E(j from 3.38

i)
and the classes Q[1] above is somewhat complicated. However, a simple

calculation shows that
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_ . . ¢ iRl
E(jl"“'jn = Q‘l""'ln[1]+ longer”’ terms

with i, =j; + - +j,.

REMARK 6.24. The homology opetrations Qi(i > 0) modulo the Adem re-
lations 6.8 and the excess relations Qin =0 for i<j generate an
associative algebra R (under composition). R is a Hopf algebra and the
mod 2 homology of an infinite loop space is an algebra over R. We have
seen above that each element in H*(BVn) defines a unique element of R.
Dually, each element of the dual algebra R* defines an element of
H*(BVn). The structure of R* was calculated in [73], adopting a pro-
cedure of Milnor [156]. The generators Ei,n ¢ R* from [73] cotrespond to
the classes D, ./D, in 3.24. Thus we see that the connection between
the classes Ql[l] and EJ is analogous to the connection between the
Steenrod generators and ‘the Milnor generators. For the mod 2 Steenrod
algebra cf. [130], [156].

The homology ring (H,(SG),°) was calculated in Chapter 3.F. Using
the generators QI[ 1] the result takes the following form

H,(SG) = E{Q;[11*[-1]li> 1] & P{Q,Q;[1]+[-3]li>1}e
P{Q 11+ [1-27]]0 < i, < - <ip, n>2}.

For our purposes, this set of generators is unsuitable: we need th!

following result from [73],

THEOREM 6,25.

H,(SG) = E{Q1]x[-1]]i> 1} @ P{Q,Q;[1] x[-3]|i>1} ®

P Qil wQ (Q Q [U[-3D[0<i < <, n2 24

Proof (Sketch). A detailed proof can be found in [73, pp. 258-265] or in [86, pp.
131-]43 |, 80 we just give a rough outline of the argument. The problem is to calcu-
late QI(QI['II*I.I 2"]) where V_?_’ 2 is the length of 1. The mixed Cartan formula
6.15 given

R SN SR L HE N I o)
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Q, Q1]+ (12 - Q1]+ (1211 4 Q,@ 1D+ (1-22] 4 extra terms.

One then shows that the extra terms (which are clearly decomposable in the loop
product) are decomposable also in the composition product, and one is left with
the term Q,(Qq[1] « [1-2%].

In view of 6.18 each Ql[l] can be decomposed as
Qi1 = 3 @ l1le- o [1].
1 In

But Qi satisfies a Cartan formula (cf. 6.6 (vi)) with respect to the composition
product, so 6i(QI[l]) can be calculated from 6.21:

ai(QIh]) * [l—zze] = 2 QK[IJ* [l—22e] + extra terms

where the summation runs over certain sequences K of the same length f as I.
Again the extra terms are decomposable in the * product, and one must prove that
they are also decomposable in the © product. Then 6.25 follows immediately.

We end the chapter with a calculation of the Pontrjagin ring H_(BSG).
A detailed argument can be found in [73, p. 266] or in [86, pp. 119-121].
The result is

THEOREM 6.26.

H,(BSG) = H,(BSO) ®
Elo,(QoQ;[11*[-3D | i> 1} ® Plo(Q;Q[1] x[-3D | 0<i<jl®

~

POy @ you(@ @ [1+[-3D[1<; iy < - < i, n>2)

where o,: H,(SG) > H(BSG) is the suspension map induced from
SQBSG - BSG.

Proof (Sketch). We use the Eilenberg-Moore spectral sequence

Tory, (sq)(£/2, 2/2) => Hy(BSG),
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but the reader unfamiliar with this might instead prefer to use the Serre spectral
sequence. The spectral sequence above is dual to the spectral sequence used in
3.45, in particular it collapses, so H,(BSG) is additively equal to
T°’H*(SG)(Z/2’ Z/2). Thus from 6.25 we get (additively)

H,(BSG) = H,(BSO) ® E{0,(Q,Q;l1]+[-3D 0o <i<ji®

E{O*(ail ain_z(Qin_lQin[I] «[-3lpfo<iy <o <, n>2).

Since H,(BSG) is a commutative and cocommutative Hopf algebra it is a
truncated polynomial algebra by a well-known structure theorem ([101]). We check
for truncations. First, by 6.6 (ii) and (iv)

0x(QeQ;[11x [-3)? = 0,Q,(QqQ,[11* [-3D) ,

and al(QOQi[I]* {-31) = 0; this follows by a routine calculation from 6.8, 6.15,
6.19 and 6.21. Hence 0*(Q0Qi[l] * [—3]) is an exterior generator as claimed.

Second, if i>0 then each 61 61(Q-Qj[1]* [-3]) is a polynomial generator of
H,(SG), so the elements a*(Qin[I] * —3]) generate a polynomial subalgebra
when i>0. Finally, if n>2 then
0x@Q Q, (@ Q [lx[3l=0, {0, _;0u.Q, @ [11«[-3l»
* iy i iq iy 11—1 1n_2—l * in-l in

n—. n—

and this is a square precisely when ij = 1. The elements with iy >1 form poly- |

nomial generators. This completes the argument.
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CHAPTER 7
THE 2-LOCAL STRUCTURE OF B(G/TOP)

In Chapter 4A we have seen that 2-locally G/TOP is a product of Eilenberg-
MacLane spaces

oo
- g/1opl2] ~ 1II1 K(Zpy, 4 x K(Z/2,45-2) .

In this section we prove a similar theorem for its first two deloopings (in the
Boardman-Vogt infinite loop space structure).

TuEoREM 7.1 (i) B(G/TOP)2l=~ [ K(Z,,, 4i+1) x K(Z/2,4i-1) .
i=1

(i) BX(G/TOP)(2] =|i[=11 K(Z(yy, 4i+2) x K(Z/2, 4) .

We also prove that
00
BG/PLI2] = By x [] k@), 4i+1)xk(Z/2, 41-1)
i=2
where E, is the two-stage Postnikov system with non-trivial k-invariant
Bsa?w) in HO®K(@Z/2,3),Z), with a similar result holding for BX(G/PL)[2].

These results were first proved by the authors in [78]. They imply that the
2-local obstruction to the existence of a topological structure on a spherical fiber
space is a set of ordinary cohomology classes. This was also obtained by

141
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Brumfiel and Morgan [36] and Jones [1 52], and was originally proved under the
assumption that the base space is 4-connected by Levitt and Morgan. The methods g
of these papers are quite different; they all use certain refinements of the ‘‘trans-
versality obstruction’’ of Levitt.

In contrast to 7.1, the third delooping B3(G/ TOP)[2] does not split as a
product of Eilenberg-Maclane spaces. This relies on calculations given in [75],
{76] (cf. 7.4 below).

The core of 7.1 is the splitting of B(G/TOP)[Z], and we proceed to outline
the proof, as it is quite involved. We begin by showing that the Z(2) integral :
k-invariants in degrees 4i+2 must be zero if the lower k-invariants are all zero, ﬁ
and similarly for the Z/2 k-invariants in degrees 4i. The first step is obtained
by using the faqt that since the space G/TOP is an infinite loop space all the
k-invariants are stable, and showing that the only possible stable k-invariant in
dimension 4i+2 has mod 2 reduction EI(SqI L)2 . Then we observe that any
time such a k-invariant occurs the Hopf algebra structure in H*(G/TOP; 7/2)
would fail to be primitively generated. This gives a contradiction.

o e

The argument for the Z/2- -generators is more delicate, however. We begin by
studying the Eilenberg-Moore spectral sequence converging to H.(B(G/TOP); 7 2)
and the relation of differentials to the Dyer-Lashof operations and Massey products.?
These results together with the results of [76] giving the action of the Dyer-Lashof '
operations in Hy(G/TOP; Z/2) then show that no differentials are possible in the ;
Eilenberg-Moore spectral sequence so E2 = E®. This in tum implies the triviali- (
ty of the 4i dimensional k-invariant. g

A. Products of Eilenberg-MacLane spaces and operations in H,(G/TOP) "
We start out by recalling the structure of H*(K(Z/2,n); Z/2) and E

H*(K(Z(2),n); Z/2). A sequence

i, i i
Sql = Sq lSq2“.Sqr 'I‘.

in the Steenrod algebra is called admissible if 1 > 2i. for all j and it f

has excess

j+1
E(I) = il—i2—"’—ir

These monomials form an additive basis for the Steenrod algebré and for

the spaces in question we have ([123])
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THEOREM 7.2. (i) H*(K(Z/2,m);Z/2) = P{---,Sq'(cp), -} where I runs
over all admissible sequences with E(I) <m.

(i) HK(Z 5)m); Z/2) = P, Sq'(tp), -}, 1 admissible, E(D<m
and i > 1.

For any abelian group ', K(I',m) has unique deloopings: if
QXX) = KT",m) then X = K(I',m+r) as one sees by checking the homo-
topy groups.

COROLLARY 7.3. In H(K(Z/2,m);Z/2) and H,(K(Z,,m) Z/2) the
Dyer-Lashof operations Q; are identically zero for i>0.

Proof. Let p: K(Z/2,m) x K(Z/2,m) > K(Z/2,m) be the H-structure.

Then we must have

,;*(Lm) = p®l+ 1o
and therefore, by naturality
2*(Sq'(t) = Sq'(t,) © 1+ 1@ Sq'(ey)

showing that H¥(K(Z/2,m); Z/2) is primitively generated. By a general
result on Hopf algebras ([101]) the vector space of primitive elements of
H*(K(Z/2,m); Z/2) is generated by the powers (Sql(cm))zr. In other
words the Sq'(, ) with I admissible and E(I) <m form a basis for
PH*(K(Z/2,m); Z/2). Let

o*: HXK(Z/2,m+1); Z/2) » H(K(Z/2,m); Z/2)

be the suspension, induced from 3QK(Z/2,m+1) > K(Z/2,m+1). We have
seen that ¢* restricts to a surjection on the primitive elements. Dualiz-

ing to homology, primitives are replaced by indecomposables so

0yt QH(K(Z/2,m);Z/2) » QH(K(Z/2,m+1);Z/2)
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is injective. The result now follows from 6.6. Indeed if Q; is not identi-
cally zero, then there must be a primitive indecomposable a with Q;(@)#0

If Q@) is indecomposable, then iterating o, i times we have
o Q@) = Q@) = (P@)?

which contradicts the injectivity of o, above. If Q;(a) is decompos-
able, then as it is primitive it must be a square. But H,(K(Z/2,m); Z/2)

is an exterior algebra, and 7.3 follows.

REMARK. In Chapter 1 we described models for K(I',m) which are

abelian monoids. Since

dy: EZ)x3, K@, ,m)?> » K@T,m)

measures the deviation from strict commutativity it is clear (at least
heuristically) that Qi =0 for i>0. Indeed, it is not hard to give a non-

calculational proof of 7.3 along these lines.

For a product of Eilenberg-MacLane spaces, the situation is more
complicated since deloopings are no longer unique. Consider, for example,
the two stage Postnikov system E,

B Sq?

E——K(Z/2,2) —— K(Z,,,,5) .

@2y

Then QE = K(Z/2,1) x K(Z(z),3) but E % K(Z/2,2) x K(Z 2y4). This
situation occurs for the space G/TOP: even though it is a product of
Eilenberg-MacLane at the prime 2 it does not have the same loop space

structure as we see from

THEOREM 7.4. In H(G/TOP;Z/2), Qy=0 and Q, =0, but

<Qp(4549). Kgjys> = <Xgi49:Kgjpn>
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for any x,; , € H4i+2(G/T0P; Z/2). Here K,; , denotes the ‘‘Kervaire’’
fundamental classes in H41*2(G/TOP;Z/2) (cf. Theorem 4.9).

This theorem is proved in [7 5], [76]. The idea of the pro.of is to use the
surgery interpretation of maps into G/TOP. Suppose f: M4l+2 -+ G/TOP is a
given singular manifold of G/TOP, then the steps leading to 7.4 are

1) i ¢: l~I4i+2 ~> M4i+2 is the degree 1 normal map corresponding to f
then

Ixpxe: Snxz/zﬁxﬁ > §"x 7 ) MXM

is the degree 1 normal map associated to

d,
I, o —T . (G/TOP) — G/TOP

where d2 is the structure map associated with the infinite loop space structure
on G/TOP defined by Boardman-Vogt [19], and I n+l is the quadratic construction

(2) The Kervaire surgery obstruction for qS is the same as the obstruction for
L2 YRy 2
IxPxp: 8%x7 ), MXM > 8“x 7 ) MXM .

(3) Apply the Sullivan formula,

sgM, @) = <F*CK,, UV, [M]>.

Only (2) provides any real difficulties and its proof depends on the homotopy
theoretic methods for evaluating the Kervaire invariant (cf. [27]).

We proceed to examine the subgroup of primitive elements, PH*X; Z(2))
when X is an H-space whose undetlying homotopy type is a product of
K(Z/2,j)s and K(Z(Z),j)’s. Our main tool is the mod 2 Bockstein

spectral sequence (see [23]),

E,(X) = H"X;Z/2)

E,(X) = H'(X; Z,,)/Tor .

il



146 THE CLASSIFYING SPACES

When X is an H-space then (Er(X), d,) is a spectral sequence of Hopf

algebras. Let j,: H*X;Z/2" - E(X) denote the reduction homomorphism. '

It is a surjection with kemel PHAX; 2/ o1y P,B,_IH*(X; Z/2% 1y,
where 2* is induced from the inclusion Z/2%!CZ/2",B , is the

integral Bockstein homomorphism associated with the coefficient sequence '

—1
0- Z(2) 2, Z(z) >7/2%1 50 and p, is the reduction to Z/ 2F coeffi-
cients. If j (x)#0 then x has order 2% in H¥(X;Z/2F). We observe

LEMMA 7.5. Let x e H(X;Z/2), where X is any H-space. Then

2%1y s primitive if and only if i) is primitive.

We review the Bockstein spectral sequence of a single K(A,n) where
A= Z(2) or Z/2 (cf. [23]). Let Elx} denote the “‘model” spectral

sequence with
r
E,,,tx} = Plx? } ® Elyx® 1}, deg(x) = 4n, deg(y) = 4n+1

r r

dr+2(x2 ) = yx2 !

and let E{x,,x,, -} be the tensor product of the individual Elx;}.
Then for r> 2,

(i) Et(K(Z/2,n)) = Er{-..’xi'...}
7.6 () E(K(Z5.20) = Pliyg}® Efoes, x;, o} (
}

(iii) Er(K(Z(Z),Zﬂ—l)) = E{"2n—l§ ® Ef{.”’ Xi,' .

where ¢, and ¢, ; are reductions of integral primitive elements. The
number of factors in each of the cases above as well as the naming of the
elements x; in E;(K(A,n)) = H*(K(A,n); Z/2) is available from 7.2 but
not relevant to our purpose. We do, however, need the fact that each

X; € H4*(K(A,n); Z/2) is the squate of a primitive (indecomposable)

element.

s e D

e e o
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LEMMA 7.7. The subgroup of primitive torsion elements in H*(K(A,n);Z(Z))
forms a vector space over /2. More precisely, Tor PH*(K(A,n);Z(Z))

is spanned by elements of one of two types:

(i) 2'"IBr(zr) where zreH*(K(A,n);Z/Zr) has reduction jr(zr)=xfr
in Et(K(A,n)).
G B3 for y e PH¥K(A,0)Z/2).

Proof. It is a consequence of 7.5 that the elements 2"IBt(zr) are primi-
tive. It suffices to prove that a primitive torsion element p is a linear

combination of the elements listed in (i) and (ii). Suppose inductively that
r—~1
4 =p-, 271 By
i=1

is divisible by 2% in H*(K(A,n);Z,)). From 7.5 we have that
jr((1/2'“l)qt) is primitive and from 7.6 that there is an element z, with
jr((1/2"l)qr) = j(B(z,)). Butthen q - 2’"IBr(zr) reduces to zero in
H¥*(K(A,n); Z/2%) and is therefore divisible by 2'. This process ends

after a finite number of steps since K(A,n) is of finite type. We finally

a a
note that if j;(p) = (31(31))2 for a> 0 then p= /31(37)2 since the ele-
ments Bt(zt) for r> 1 all have dimension congruent to 1 (mod 4). This

completes the proof.

A product of Eilenberg-MacLane spaces can have several H-space

structures. Let E,  be the fiber in the fibration

Sq4
E4,k —— K(Z/2,k+3) —— K(Z/2,k+7) .

Then QE 4k= E 4k1" In particular, E 4,0 has the homotopy type of
K(Z/2,3) x K(Z/2,6). The H-space structure on E 4.0 however, is dis-
tinct from the ordinary structure on the product, since in H"‘(E4 0’ 7/2),
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Pltg) = 581+ 3% 15 + 1844

(Compare [1], [93].)
More generally, if X is an H-space which is homotopy equivalent to
a product of K(Z/2,i)’s and K(Z(2),j)’s and if

K(Z/2, 4n+1) S E s X 7 R(Z/2, 4n42)

is a fibration sequence with e 4n +2) = Sq2n+1(x) for some primitive
element x ¢ H2™1(X;Z/2), then in H¥QE;Z/2) there is a class tn
with %@ 4n) the generator of H¥W(K(Z/2, 4n); Z/2) and such that

7.8 Uleyg) = M EENO* ),

where !; is the reduced diagonal. This follows easily using the methods
of [93] or [153].

Let A be an algebra over Z/2 equipped with two coalgebra struc-
tures ¢, and ¥, and such that the (A, tﬁi) are commutative and co-
commutative Hopf algebras. Further, suppose that (A,¢,) is primitively
generated. (A,y;) is a tensor product of monogenic Hopf algebras by a
theorem of Milnor and Moore [101]. Moreover, the primitive elements of
(A,l/ll) are contained among the indecomposables and elements of the
form le with x primitive. We conclude that the primitive elements of
(A,xﬁl) occur in a subset of the same dimensions as the primitive elements

of (A,(,bz). As a corollary of the proof of 7.7 we now have

LEMMA 7.9. Let X be a homotopy commutative H-space and suppose
the underlying space has the homotopy type of a product of Eilenberg-
MacLane spaces, X ~ IIKA,j), A= Z(2) or 7/2. Then a primitive
torsion element of H*(X; Z(Z)) either occurs in dimension 4t+1 or it has

a non-zero 71./2 reduction.
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B. Massey products in infinite loop spaces

We now introduce Massey products in the homology of infinite loop
spaces and relate them to the kernel of the suspension map
o, HQX) - H,(X).

Suppose we have a chain complex C, together with an associative
product on C, with respect to which 8 is a derivation, d(a-b) = da-b +
(—l)la‘a -db. For example, C, could be the singular chain complex of
an associative H-space or the singular cochain complex of any space Y
(with the usual diagonal approximation).

Under these circumstances H(C,,d) is also an algebra and Massey
products arise when there are more relations in H(C,,d) than the ring
structure of C, would directly account for.

The simplest case is the 3-fold Massey product <a,b,c> which is
defined for any triple (a,b,c) of elements in H,(C,,d) satisfying

ab = bc = 0. Its definition is

DEFINITION 7.10. Let (a,b,c) satisfy ab=bc=0 in H(C,,J), then
<a,b,c> consists of all classes x ¢ H(C,, d) which can be represented

by chains of the form
Alc} - -1laliaiB

where {a}, {b} and {c} arein C, and represent a,b,c respectively
while JA = {a}-{b}, 9B ={b}-{c}.

If a,b,c have dimensions i,j,k respectively and d has degree ¢,

then
<a, b, c> C Hi+j+k—E(C*' 6)

and the following lemma is a formal manipulation in C,.

LEMMA 7.11. Let xe<a,b,c> then

x + [a-H, (Cyy 9 -cl = <a,b,c>.

J+k_E(C*, 3 +H

itj-€

The elements in the brackets are said to represent the indeterminacy of

<a,b,c>.
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REMARK 7.12. In cohomology the 3-fold Massey product has a curious connec-
tion with geometry in that it gives a method to show that 3 disjointly embedded
circles Sl' S2, SS in 83 are linked even if any two are unlinked. For example,
consider the ‘Ballantine symbol’

Sy S3

7.13

S,

By Alexander duality Hl(Ss-(Sl Us,Usy), 7) = Z(3) with generators a, b, c
Poincaré dual to 84,8, S3 respectively.

If Sl, 82 are disjointly embedded in S3 then H (83—-(SIUS ), Z) = Z(z)
with generators a, B dual to Sl,82 respectively. Also H (S -8 US2, =17
with generator e and from geometry if n is the linking number of Sl’SZ' then
aUB = tne.

Using the 3 inclusions

3 3
S —SIUs2Uss > 8 -(Si1u siz)

we see that for 7.13 ab=ac =bc =0 in H*(S3—Sl".é2 USS’ Z). Hence,
<a,b,c> and <a,c,b> are both defined with zero indeterminacy in
H(s3-s,Us,Us,,7) = Z@. Moreover in [87] it is shown that <a,b,c> is
non-zero, This detects the non-triviality of 7.13. In fact <a,b,c> and <a,c,b>
give a basis for H2( Q)

It should be remarked that we could actually form 6 Massey products using
a,b, c, however, there are two identities connecting Massey products, a Jacobi
relation

0¢<a,b,c> *<c,a,b> £ <b,c,a>

and a symmetry relation
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0e<a,b,c> t <c,b,a>
which imply that there are at most 2 independent products obtained this way.

Now we define the higher Massey products and the somewhat more

general matric Massey products.

DEFINITION 7.14. Let (C,,d) be as before. Let M and N be nxm
(respectively mxk) matrices with entries in H(C,,d). We say that M

and N are multipliable if deg(mij)+deg(njk) depends only on i and k.

When M and N are multipliable matrices, then M:N is an nxk

matrix with entries in H(C,,d).

DEFINITION 7.15. Let M;,---,M, be a set of matrices in H(C,,d) with
M; of type 1xs and M, of type tx1, and such that M;,M; , are
multipliable for all i. The n-fold matric Massey product <M,, -, M >

is said to be defined if there exist matrices N, ;,1<i<j<n+l,

i,j’
1< j-i< n-1 with entries in C, which satisfy

MNijg =0, 0N ;= Ny Ny s
k

and clsi N;

the set of all classes in H(C,,d) represented by cycles of the form
2 Nl,ka,rH-I :
k

i +1} =M; in homology. The matric Massey product is then

REMARK 7.16. A naturally arising example of a multipliable system is
obtained by considering Sqi(aU b) = ZSq‘(a) U Sq**(b) in ordinary
cohomology when we rewrite the formula above as

Sq°(b)
7.17 SqiaUb) = (Sq'(a), Sqi~(a), -+, S®°@)f Sq'(b)

Sq (b)
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Again, if we expand out Sqi(aU bUc) by the Cartan formula we obtain

Se°®) 0 - 0 q%(c
7.18 Sql(aUbUc) = (Sql(a), -+, Sq%(a)) Sa!)Sq°) - 0 ‘

Sa¥(b) St 1(b) -+ Sq°(bY \$q!(c

In the homology of an infinite loop space the Dyer-Lashof operations
satisfy 6.6 (v) so formulae analogous to 7.17, 7.18 are valid with Sqi re-
placed by Qi. In this context the following theorem is a special case of
the main theorem, Theorem 0 of [89], upon using the results of [72] to pro-

vide the homotopies required in the proof of Theorem 0.

THEOREM 7.19. Let X be an infinite loop space and suppose

x e H(X;Z/2) is an element of the matric Massey product <My, -, My >,

Then Qz(x) is contained in the n-fold Massey product

QM) 0 0 oMy
<(Q,(M,), Q;(M,), QuM,)), [ QM) QM) 0 |, [ oy |>
Q,(M,) Q,(M,) Qy(M,) Q,(M,)

where [Qs(Mr)]i,j = Qg(My); 7).

REMARK 7.20. It is evident from the definition that a matric Massey

product /
0, 0,0 0, 0,0 0
<(Q,(M,),0,0), 0o, 001},--, 0, 0,0}, 0 >
Q,(M,), 0, 0 Q,M, ),0,0/ \Q,(M,)

is always defined and always contains 0. In particular, from 7.4 it
follows that if x ¢ H (G/TOP;Z/2) belongs to an n-fold matric Massey
product then Q,(x) belongs to an n-fold matric Massey product which

also contains 0. Thus, since the indeterminacy of an n-fold Massey
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product consists of (n-1)-fold Massey products (see e.g. [89], pp. 41 and
42 for examples of these indeterminacy products) it follows that Q2(x) is
contained in a strictly shorter Massey product.
COROLLARY 7.21. Let K,; , be the Kervaire class in
H442(G/TOP,Z/2), then if x is contained in any matric Massey product
it follows that <x, K4i+2> =0. :
Proof. The class K,; , constructed in the proof of 4.9 can be shown to
be primitive as is done, for example in [117]. Thus, it vanishes on
homology decomposables. Now suppose x is an n-fold Massey product
with <x,K 4it
1=<Q, - Q,x,K .

Q2 Q 2H2(i41)-2

be assumed to be a 2-fold Massey product and hence a sum of decompos-

2> = 1. Then after at most n-2 iterations we have
> from 7.4. But by 7.20, Q2 Qz(x) can

ables and this is a contradiction.
Matric Massey products are very closely tied to the suspension map

o, HQX; 7/2) » H (X;2/2)

by theorems of Kraines and May [67], [83]. The result we need is

THEOREM 7.22 (May). The kernel of o, is exactly the set of all matric
Massey products in H, (QX;Z/2).

COROLLARY 7.23. K,; , ¢ Image(c*) for all i under the suspension
map o*: H¥*3(B(G/TOP); Z/2) » H4+2(G/TOP; Z/2).

REMARK 7.24. The reader familiar with the Eilenberg-Moore spectral
sequence might check {72] for an alternative proof of 7.23. It uses the
fact that Dyer-Lashof operations act in the Eilenberg-Moore spectral

sequence
Tory x,7/2%/22/2) => H (X Z/2)
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where X is an infinite loop space and 7.4 to show that for X = B(G/TOP)

the spectral sequence collapses.

C. The proof of Theorem 7.1
Consider a Postnikov decomposition of B(G/TOP)[2],

BE, BE, BE, BE, K(Z/2,3)

N

K(Z/2,12)  KZ4),10)  K(Z/2,8)  KZy).6).

S A e, B D e

It is completely determined by the k-invariants k = 11': (c2 r+4) in |
H*(BEr; 7,(G/TOP)). Since G/TOP is an infinite loop space, the same .
is true of each stage BE,. In particular k, must be in the image of the |

suspension map and hence primitive.

The proof of 7.1 (i). The proof is by induction over the Postnikov decom- |
positions above. Suppose that the r’th stage BE, has the homotopy type .F
of a product of Eilenberg-MacLane spaces. We must show that the .
k-invariant in the next stage is zero. The k-invariant is determined by the
first dimension in which the projection »: B(G/TOP)[2] » BE, isnota ;

homotopy equivalence, and is non-zero only if
n*: HSYY(BE ; n(B(G/TOP)[2])) » HS*1(B(G/TOP); 7 (B(G/TOP)[2]))

is not injective. In our case the kernel m{st be cyclic with a primitive

generator.

If s=4i+1, we require a primitive element k, of H4i+2(BEr;Z(2))
and from 7.9 either k =0 or j (k) A0 in H4i+2(BEr; Z/2). In the

latter case, consider ”*(jl(kr))' It is surely zero since G/TOP is a

PP s SR A

product of Eilenberg-MacLane spaces. Hence i1k = y2 for some primi-

tive element y. This follows from the exact sequence (see [101])

0 — PH*(BE,; Z/2) £, PH*(BE,; 7./2) — QH*(BE,; 7./2)
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where & is the squaring map, indeed the suspension map from

QH*(BEI; 7/2) to PH*(Er; Z/2) is injective by the inductive assumption.
But y is odd dimensional, hence indecomposable, and thus o* A0 in
H*(Er; Z/2). In this case we would have a class ¢ 4i in HXG/TOP; Z/2)

with _
Plgp = 0*(3) @ 0*¥)

(cf. 7.8). This contradicts the fact that H¥(G/TOP;Z/2) is primitively
generated. (Cf. 4.34.)
If s=4i-1, then the possible k-invariant k. belongs to

H“i(BEr; Z/2). That this must be zero follows from 7.23. This completes
the proof.

Before we can give the proof of 7.1(ii) we need a few preliminary re-

marks on the Eilenberg-Moore spectral sequence

Exty (x,2,2)Z/2,2/2) => H'BX;2/2)

-when X is an infinite loop space. First, recall that the spectral

sequence is associated to a natural geometric filtration

B,XCB,XC - CBXC -

of BX ([115], compare also the footnote to Theorem 1.5). In particular,
the spectral sequence admits an action of the mod 2 Steenrod algebra.

Second, a result of A. Clark [150] asserts that the spectral sequence ad-
mits a Hopf algebra structure. Hence, the differential of a primitive ele-~

ment is again primitive.

The proof of Theorem 7.1(ii). From 7.1(i) and 7.2 H¥(B(G/TOP); Z/2) is
a polynomial algebra on primitive generators. Thus H,(B(G/TOP);Z/2)

is an exterior algebra and

Exty (pa/Top)Z/2)\L/2Z/2) = Pllpl| pc PH*(B(G/TOP), Z/2)}.
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The elements [p] of the E,-term are primitive and have total degree
deg(p)+1.

We claim that all differentials vanish. Indeed, using the action of the
Steenrod operations in the spectral sequence it suffices to see that the
elements [i,¢ ;] are infinite cycles where ¢, +1 denotes the fundamen-
tal class of H2S*!(B(G/TOP);Z/2). But d (g, ,]) is a primitive
(since [t,¢ ;] is), it has odd total degree and filtration degree greater
than one, so it must be zero. The collapse of the spectral sequence im-

plies that the suspension homomorphism

o* : QH¥*(B2(G/TOP); Z/2) » PH*(B(G/TOP); Z/2)

is an isomorphism.

For B%(G/TOP)[2] the possible k-invariants occur in dimensions
4s+1 and 4s+3. Let BZEr denote the r’th stage in the Postnikov de-
composition for B2(G/TOP)[2], and assume it is a product of Eilénberg- ':
MacLane spaces. Then the r’th k-invariant is a primitive element in
either H4S+3(32Er; Z(2)) or in H4S+I(B2Er; Z/2). In the first case k,
is non-zero only if its mod 2 reduction j,(k,) is non-zero (cf. 7.9). But
j;(k;) is odd-dimensional and primitive, hence indecomposable, and
O*Gr(kr» = 0 then implies that jl(kr) = 0. In the second case a similar

remark applies. This completes the proof.

As mentioned earlier there are similar results for B(G/PL) and
B%(G/PL). Indeed, let E; and BE, be the fibers in the fibrations

B,Sq®
E3 —K(@Z/2, 3)}———— K(Z(2), 6)

Sq2

Bl q
BE; —— K(Z/2,4) —— K(Z,,,7) .

@y

THEOREM 7.25. There are homotopy equivalences
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BG/PL)[2] = E;x [] K@

n=2

) 4n+1) x K(Z/2, 4n-1)

B(G/PL)[2] ~ BE;x [] K(Z,) 4n+2)x K(Z/2,4n) .
n=2
Proof. Consider the fibration
K(Z/2,4) - B(G/PL) » B(G/TOP) .

It is a fibering in the category of infinite loop spaces and thus classified

by a stable mapping
B(G/TOP) - K(Z/2,5) .

In particular B(G/PL) is the fiber of A. But

PH3(B(G/TOP); Z/2) = Z/207/2

with generators Sq2(: 3) and p;(c5), respectively. Moreover, in view of
the known structure of G/PL (cf. 4.8) the only possibility for A*() is
2 = Sq2(¢ DE pl(l.s) , and the result on B(G/PL) easily follows. The
result for B2(G/PL) is shown in a similar fashion.



CHAPTER 8

THE TORSION FREE STRUCTURE OF THE
ORIENTED COBORDISM RINGS

In this chapter we begin our analysis of the oriented PL and topological
cobordism rings, Q,l: L and Q*TOP. The torsion structure of these groups is ex-
ceedingly involved, and not completely known at odd primes. Torsion questions
are taken up in Chapter 14. But even the torsion free structure
QEL/ Tor (=Q*TO P/Tor) is complicated. For example, Q*PL/Tor is not a poly-
nomial ring. Geometrically, one may for each prime p construct fairly explicit
PL mamfolds whose cobordism classes give a minimal set of generators for
Q* /Tor ® Z ®)’ but the manifolds will vary with p. Tl'us makes it difficult to
list a minimal set of generators for the integral ring, Q* /Tor. In this chapter
we give fairly explicit constructions of a sufficient set of manifolds to generate
Qf I"/ Tor, but leave the questions of minimal generating set, the precise alge-
braic structure and relation to characteristic classes to later chapters.

A. The map 7: Q,(G/PL) > QI:L
Given a singular (smooth) manifold in G/PL, f: M > G/PL, there is

an associated degree 1 normal map

where ¢ is the PL-bundle represented by the composition

M —g—a G/PL 3., BPL (cf. Chapter 2/C). Moreover, if (M,f) is bordant

to (M, g), then there is a normal bordism covering the bordism above
M C W
1|
M w

158

’

C S M
l,,
M

’

C D]
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where dW = MUM’, W =MUM. In general M is a PL-manifold which

is not even bordant to a differentiable one, and we set

8.1 7iM, £} = (M} .

The class {1\711 depends only on the class of {M,f} in Q,.(G/PL) and

hence defines the desired homomorphism
8.2 7: Q,(G/PL) » QFL(pt) )

This is an , module map since the surgery problem over the composite

map MxN — M —£—> G/PL is MxN 111 MxN. More generally, since
G/PL is an H-space there is a product Q,(G/PL)®Q (G/PL) £ Q_(G/PL)
and nu(ae B) = n@)-n(B).

We can give a homotopy theoretic description of the homomorphism 7
as follows. Consider the composition

~ A

9: BSO x G/PL 1%X, Bso x G/PL %I, BSPL x BSPL —®_, BSPL

where y is the automorphism x - x 1 (which exists for any loop space,
cf. Chapter 3.F) and ;,; are the natural maps. If ygp;.ygo are the

universal bundles then
* K
0"(spL) = Y50 X “¥g/pL)+  YaspL =1 OspL) -

But yg pyp, is fiber homotopy trivial so its associated Thom spectrum is
just the suspension spectrum of G/PL, = G/PL U {+}, and we have

M(ygox- Yg/pL) = MSO A (G/PL+) .

Thus we can identify n*(M(ysox— Yo /PL)) with Q. (G/PL).

*)Here Q*(X) denotes the smooth bordism of X, cf. Chapter 1.C.
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LEMMA 8.3. On making the identification above the map n is the

composite

M©), PL
Q,(G/PL) — T (M(yg o x - yG/PL)) —— 7, (MSPL) = Q™ .

Proof. Let f: M~ G/PL represent an element in ,(G/PL), then to
represent its homotopy class we take vxf: M » BSO x G/PL where v
classifies the normal bundle of M. By transversality and the Pontrjagin-

Thom construction this is equivalent to

st Moy MOXD), yso 4 @/PL)

Now, the normal bundle to M (associated to the map f: M - G/PL) is
=*(y) - ﬂ*f*(yG spL)- Thus the composite

6@ xf)m: M > M - BSO x G/PL -» BSPL

classifies the normal bundle to M. On passing to Thom spaces we have

the diagram
~ M@-)

N M(vz) — M MSPL

id M(©)

St —Ze MGy MSO A (G/PL,)

which is easily seen to be commutative. This completes the proof.

LEMMA 8.4. The only torsion in f(*(G/PL) is 2-torsion. Moreover, the
Hurewicz homomorphism ,(G/PL) » H(G/PL;Z) is onto.

REMARK 8.5. In particular 8.4 implies the Atiyah-Hirzebruch spectral
sequence with E, term H,(G/PL,Q,(pt)) and converging to Q,(G/PL)

has E, = E_, and also shows
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Q,(G/PL)/Tor = F,(G/PL)®Q (pt)/Tor .
where as usual F(G/PL) = H,(G/PL; Z)/Tor.

Proof of 8.4. We check first at the prime 2 where the result is clear
from 1.35. At odd primes Q*(G/PL)GZ(p) o Q*(BO)OZ(p) by 4.28 and

so it suffices to check for BO. Consider the map
r: BU » BO

which pulls back the universal bundle to the universal complex bundle.
We know H,(BU) = P{b,,b,,:-,b,;---} and at odd primes H,(BO) =
P{r, (b 4) Tilbg), o, ru(byo), - }. Moreover, the map

H: CP" » BU

classifying the canonical line bundle satisfies H,[CP"] = b, . Thus,
(H),[CP?™] = r (b, ) and

2n 2n
r(Hx - x H),[CP" 1 x ... x CP" 1]
2n 2n
= R HICP T HICP D) = 1y (b )1 (by ) -

This shows the Hurewicz map is onto at odd primes, implies the triviality
of the Atiyah-Hirzebruch spectral sequence, and,since Q,(pt)®Z[}] =

Pix PRRILIS FH .-} has no torsion completes the proof of 8.4.

In 1.35 we reviewed Wall’s result on the homotopy type of the smooth
2-local Thom spectrum MSO[2]. The corresponding result in the PL
category is due to Browder, Liulevicius and Peterson [29]. They prove
that MSPL[2] is again a wedge of suspensions of Eilenberg-MacLane
spectra. The summands which occur this time are ZrK(Z(z)) and
2TK(Z/2%) (for all s> 0). The torsion free summands ErK(Z(Z)) are in
one-to-one correspondence with an additive basis for F*(BSPL)GZQ) ,

and we have



162 THE CLASSIFYING SPACES
LEMMA 8.6. The composition
OPL/ToreZ h (MSPL)®Z o (BSPL)®Z
* 0r®4 gy — ¥ 2) 7 Fx (2)

is an isomorphism. Here h is the Hurewicz homomorphism and ® the

Thom isomorphism.
THEOREM 8.7. The map 7n: Q,(G/PL)/Tor -» QI;L/Tor is onto.

Proof. Using the identification in 8.3 the theorem follows from 5.21 at
odd-primes. At the prime 2 the situatien is more complicated. In view

of 8.6 we must show that

04 Fy(BSO; Z,)) ® Fy(G/PL; Z5y) > Fy(BSPL; Z )

is surjective. In Chapter 13 we will calculate the Bockstein spectral
sequence with initial term H_(BTOP;Z/2) which converges to
F (BTOP)®Z/2. In particular we will show in Theorem 13.20 that

F,(BS0)®Z/2 ® F,(G/TOP)eZ/2 . F(BTOP)eZ/2
is onto (with 6° defined analogously to @ above). This implies that

0, F,(BSO; Z,)) ® F(G/TOP; Z ,)) » F,(BTOP; Z,))

is also onto. Finally, note from 4.8 and 4.36 that the natural map
F,(G/PL; Z(Z)) - F(G/TOP; Z(2)) is an isomorphism. On the other hand
F,(BPL; Z(2)) surely injects into F (BTOP; Z(Z)) and since @7 is onto
F,(BPL; Z(2)) - F,(BTOP; Z(2)) (s an isomorphism. This completes the

proof.

The last part of the proof of 8.7 also shows

LEMMA 8.8. The natural map QI:L/Tor - QEOP/Tor is an isomorphism.
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REMARK 8.9. The structure of the mod 2 Bockstein spectral sequence
of BTOP, used in the proof of 8.7 represents one of the main calcula-
tional efforts of the book. We note for any finite r that it is definitely

false that
6, : Ef(BSO) ® E*(G/TOP) » E(BTOP)

is onto. Thus the (2-primary) torsion structure of Q;I“OP and QfL are

far more complicated to describe (compare Chapter 14).

We call a PL manifold CP2" an exotic projective space if cp2n
is homotopy equivalent to CP2%. There is precisely one otiented homo-
topy equivalence CP2% ., CP2% so CP2M determines an element of
{cp2®, G/PL] usually called its normal invariant (cf. 2.14 and 2.23). On
the other hand, any element y of [CP2",G/PL] gives by transversality
a normal map with range cp2n, and, if the associated surgery obstruc-
tion vanishes, an exotic complex projective space. If the surgery obstruc-
tion of y is not zero then, using 2.24 the surgery obstruction of

y:CP" ______,cp2n,g2n Y_V(i‘_‘“l)» G/PL
is zero for a suitable integer k.. Thus the domain of the surgery problem
of y is of the form CP?™-k-M*" where M*? is the Milnor manifold of
index 8 (the domain of the surgery problem associated to ¢ 4n» cf. 2.16
and subchapter 8.B below).

THEOREM 8.10. A set of generators for QI; L /Tor is contained in the
set consisting of the index 8 Milnor manifolds, the differentiable genera-

tors and the exotic complex projective spaces.

Proof. At the prime 2 it is easy to see that Q*(G/PL)/TorQZ(z) is

generated over {1 (pt) by generating sphere maps ¢ 4n’ s, G/PL and

i+l
maps f: CP?2 ", G/PL which satisfy f*(K4n) = 2", Indeed, the

i+1
images of the orientation classes [627], [CP? "] under these maps

form a basis for F,(G/PL) ® 7,2 . The homomorphism 7 associates to the
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sphere map the Milnor manifold of index 8, M‘m, and to f a manifold of
the form ’C‘152i+1n#~ kMZ'HZn.

At odd primes G/PLIp] is H-equivalent to BO®[p] by 4.34 and
BO®[p] is H-equivalent to BO®[p). We have seen in the proof of 8.4
that a set of generators for {} (BO)® Z(p) over {3 (pt) consists of the
maps rH: CP2" , BO. Again ‘n associates to such a map a manifold of
the form CP2"#- kM*? | and since 7 is a ring homomorphism this com-

pletes the proof.

We now wish to elucidate 8.10 by constructing models for the torsion

free generators.

B. The Kervaire and Milnor manifolds (see also [27])

We can plumb together two or more copies of the tangent disk bundle
to S by the following device. Let D" C S® be a small disk, then
7(SM| D" is trivial so rDisk(Sn)I D" =~ D" x D?iber . Then we plumb

1 . 2 . cp -
rDisk(S“) with rDisk(Sn) on identifying (D" x D:.‘iber)l to

(an Dtl:‘iber)2 by setting (X:Y)l ~ (Y:x)2
7(SM?2
¢
’
]
;/
8.11 I SRS

[l
[
[]
[ ]
I
]
]
i r(SM!
[ |
[ |
[}
]

If 2 or more tangent disk bundles are to be plumbed to > i$k(S“) we take
disjoint disks D'---DJ C S, one for each bundle to be attached.
The resulting manifold with boundary (M, dM) can be concisely de-

scribed. It has the homotopy type of a wedge of spheres S" v-.-v S"
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one for each tangent bundle, and the homology of dM which is n-2
connected is described in terms of the intersection matrix for M.") For

n even, this matrix has 2’s along the diagonal, (for n odd, zeros) and
+1 inthe (i,j) and (j,i) position if the i’th r is plumbed to the j’th.

More precisely, we have the exact sequence
812 0 H_(9M) — H M) 5 H M) H__,(OM) — 0

where A is the intersection matrix and we have used duality to identify
H (M) with H, M, oM). In particular, Hn_l(aM) =0 if and only if
det(A) = *1, and in this case H (0M)=0 as well so dM has the
homology type of S2%1,

In all cases it is easy to see that M is parallelizable, and if n> 3
then 7, (0M) = #;,(M) =0, but this is not necessarily true when n = 2.

Summarizing

LEMMA 8.13. If det A=+*1 and n> 3 then OM3" is PL homeomor-

phic to S2%1,

Proof. 2a-1 >5, M is a differentiable manifold having the homotopy
type of §20-1 | and so by the generalized Poincaré conjecture is PL

homeomorphic to g2n-1

In particular we can construct the closed PL-manifold Mi“ by attach-
ing the coneon dM to M.

EXAMPLE 8.14 (The Kervaire manifolds). For n odd (n>3) plumb
together 2 copies of 7 isk(sn) , then A =( (1) (1)) , det(A)=+1, and

the resulting PL manifold Mi“ is called the Kervaire manifold. If

*

)Strictly, this is only true if the graph of the plumbings is simply connected
(see e.g. 8.15). However, we implicitly assume this throughout the remaining
discussion,
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n=1, Mf\ is easily seen to be the torus. However, if n> 3, then

Min is more complex. In particular for n £ 2i_1 , Min is neither differ-
entiable nor even PL-bordant to a differentiable manifold. (In [35] it is
shown that Mil_z is at least PL-bordant to a differentiable manifold.

i
M2=2 s differentiable if and only if there exists an element in ":i 2(So)
with Arf invariant 1 ([26]). At present this is known only for i< 6,

so M2, M§, M3*, M30 and MS? are differentiable ([17]).)

EXAMPLE 8.15 (The index 8 Milnor manifold). Plumb together 8 copies

of 7 k(82“) according to the diagram Eg:

» o [ ©- Py P & o

The resulting intersection matrix

Dis

21000000
12100000
01211000
B _ 00120000
00102100
00001210
0 000O0O0T121
000 O0O0OT12

is seen directly to have determinant +1 and for n > 2 the resulting mani-

erentiable manifold [35].

fold Mgn is the index Milnor manifold. It is never differentiable nor
even PL-bordant to a di

We write
4n _ adn 4an 4 ... 4n
mMB _MB #MB # #MB

to denote the connected sum of m copies of Mg" .

AR

T R T UL
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THEOREM 8.16 (Kervaire-Milnor, Quillen). mMg" is differentiable if and

only if m is a multiple of
2n-2.52n-1
a,2 n-2ep2n-1_7) Num(an/ 4n)

(see e.g. [62]).

REMARK 8.17. A beautiful method for representing the Méﬂ s Min in
terms of algebraic hypersurfaces with isolated singularities has been dis-
covered by E. Brieskom (see e.g. [22], [99]).

The Kervaire and Milnor manifolds are'éAspec':ially important as they
serve to describe normal maps associated to elements in n*(G/ PL).
This was used for example in the proofs of 2.24 and 8.10. Specifically,
the degree 1 map #: Mg' - S* s covered by a bundle map 7#:v ¢
to give a degree 1 normal map. The associated map ¢: s, G/PL
represents a generator of n4n(G/PL) ,.n> 1. Similarly for the Kervaire
manifolds (cf. 2.16).

C. Constructing the exotic complex projective spaces

We now construct the remaining generators for the torsion free parts
of the Top and PL oriented bordism rings.

Given a PL normal map f: M-M and an n-plane bundle ¢ over M

we obtain a new normal map
£: £5¢) » £

extending f. Restricting to disk bundles we obtain a degree 1 normal
map of manifolds with boundary. Certainly, since f can be thought of as
a normal bordism of f |@ to the trivial normal problem, f|d is bordant to
a homotopy equivalence. But it may not be possible to find a manifold

in the normal cobordism class of EI& so f isa PL-homeomorphism,

this depends on more subtle questions.



168 THE CLASSIFYING SPACES

In the special case when 9¢ is a sphere S", n> 5 then any
PL-manifold homotopic to 9¢ is also PL-homeomorphic to it. In particu-

lar we could start with CP*. There is a degree 1 normal map
8.18 f: CP* # mM$ > CP* # mS® = CP*.

Now, if H 4 is the canonical line bundle over CP* then 6H4 = 8% and

on af*(H4) the degree 1 surgery problem is, as observed above, normal-
ly bordant to a PL-homeomorphism. Let g: W10, 1xS% be the bordism,
wlO

then with a little care we can choose so

8.19 h: £*H,) U HW0 5 H,

becomes a homotopy equivalence. (This is not a general argument, it de-
pends on the special form of 8.18. The idea is to attach the minimum
number of handles necessary to kill the surgetry kernel on af*(l-l4) D)

Now cone off the common boundaries in 8.19 to obtain from
f*H 4) u éWlo an exotic CPS together with a homotopy equivalence
extending h
8.20 %: CPS - CPS,

that is, a homotopy triangulation (&?S,E) of CP5. This determines a
degree 1 normal map over CP° and hence an element
MCP3, %) ¢ [CP®,G/PL].

LEMMA 8.21. The normal invariant A = \(CP5,R) is never trivial. In

fact,
M*(Kg) = m-e?

where e is the 2-dimensional generator and Kg is the characteristic
class from 4.6. (

Proof. By construction h is transversal on CP* with transversal image

CP* # mM8 .

g it is also transversal on CP? with transversal image cpP2,
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Thus A|CP? is trivial and A|CP* is the normal invariant of 8.18. But
8.18 has surgery obstruction equal to m and 8.21 follows from 4.9.
Combining 8.21 with 4.22 we can calculate the £-genus of CP5,

8.22 (CP%) = £(CP%) - (1+8me?).

In particular since the rational Pontrjagin classes are topological invari-
ants so are the $-classes and this shows CP’ is not homeomorphic to
CPS.

We now iterate the construction. Thus in the problem above, we

could consider the new normal map
8.23 f: CPS #ML° > cPS #5510 - CPS.

Once more we can consider the normal problem f*(Hs) » Hg, make it
a homotopy equivalence on the boundary by doing surgery so as to get a
normal bordism W!2 between O(f*Hs) and S!! covering I x sl and

satisfying
h: fH U W2 5 Hy

is a homotopy equivalence of pairs. (To be explicit, note that the 5 and 6
dimensional surgery kernels are Z®Z, and the remaining ones are 0.
Thus we can embed 2 disjoint copies of S¥x D° in 8f*(H5) representing
the 2 generators. Attaching handles over these embeddings constructs
w12 .)

As before we can cone off obtaining a normal map

f: fHu w?u ,, D% 5 CP®
s

which is a homotopy equivalence.

A second way of obtaining an exotic CP® from CP® is to take

F*(Hs) , (from 8.20); note that 6(3*(H5)) = S and cone off obtaining
CP6 » cP8.%

1

*), . 1 ~5 . 1 . 1 .
The universal S”-bundle over CP” is $ with a certain free S -action.

The join of this action with the standard action on Sl gives a free action on

813 = Sll » Sl whose orbit space is precisely ’6136 .
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pard] 6 * 12 12 .
LEMMA 8.24. CP°, CP® and f (HS) uw-u S1t D4, are topological-
ly distinct homotopy projective spaces.

Proof. CP® and CP® are distinguished using the £ class as in 8.22.
Unfortunately, CP® and f*(Hy) U W'2 U D!2 both have the same £
class so to distinguish them we must use a further invariant. In[35], it
was shown that there is a primitive class «;, € Hlo(BTOP, 7/2) with
f*(Klo) =Ko € H19(G/PL, Z/2) being the Kervaire class. Clearly, by

the construction there is a degree 1 nommal map
h’: f*Hg) U W2 U D2 » CPS

with h’ transversal on 8‘155 and (h')—l(i:‘ﬁs) =CP5 # Mzo. Thus there
is an associated map p: CP® - G/PL with p*(Klo) = e%. Now, as has
been noted v(f*(Hg) U W!2 U D!2) = h"*»(CP®) - h"*p*(y) and thus
V*(Klo) = h’*Klo(V(E'P6)) — h"*(e%). We see that Kyo of
v(f*H U wl2yupl?) and Km(’c‘l’aﬁ) are necessarily distinct. Since «,,
is a TOP characteristic class the result follows.

Clearly, we may iterate this process in higher and higher dimensions.
Thus, suppose we are given an exotic CP", (call it 613“) and a homo-
topy equivalence f: CP" » CP™.

CP

We begin the construction of a new CP™! by first considering the

surgery problems

£: CP? # mM2" » CP" # 57 = CP" (n odd) ,

8.25
f: CP" # liz:_‘.n - CP" # 820 = CP® (n even)

where in the first cgse m=0 or 1, inthe second me¢ Z and where
0-M2" s to be interpreted as S20.

Next, take f*(Hn) and do surgery to just kill the lowest dimensional
surgery kernel on the boundary. This gives us a bordism W2 between
c?f*(Hn) and S$?™1 which satisfies the additional condition that
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8.26 f*H,) U jW2" > H,

is a homotopy equivalence of pairs. Cone off and continue.

THEOREM 8.27. Any M2" homotopy equivalent to CP® for which a

homotopy equivalence
f:M > CP?

can be found so the transverse inverse image of CP? s obtained via the

constructions above starting with CP3.

Proof. The assumptions imply the map associated to f, h: CP" » G/PL
is trivial on CP2. Thus, the map factors through the 5-connected cover
G/PLI[6, ---,=]. Now, the mapping set [CP®, G/PLI[6,--,]] has a

spectral sequence converging to it with
Eyl = HY(CP", m(G/PLI6, -, ) .

Clearly E, = E_ since only even dimensions occur in both cohomology
and homotopy. Now the proof is a routine counting argument, using induc-

tion on n.

REMARK 8.28. It is clear that 8.22 and 8.24 generalize to this general
situation to show that all these exotic CP™’s are topologically distinct,
except that in 8.24 we only know of the existence of the « 4j-2 for j not
a power of 2. (Indeed, there is no associated « 4j-2 when j is a power
of 2.) So, in these dimensions the arguments above do not tell us whether
modifying by M:j"z and doing the constructions above lead to topologi-
cally distinct manifolds. However, note that the exotic CP® from 8.27
determine distinct homotopy triangulations, i.e. distinct elements of
SPL(CP") , by the obvious generalization of 8.21. An (oriented) homotopy -
equivalence of CP" is homotopic to the identity, so in a homotopy tri-
angulation (CP™,h) the map h is redundant. It follows that distinct
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elements of SPL(CP“) fall into distinct homeomorphism types (cf. Sulli-
van [134]).

REMARK 8.29. The constructions of the exotic CP™s and related con-
structions have been studied by several authors (e.g. [43],[141]). Note
in particular that Wall’s construction of all normal invariants of Lens
spaces (giving exotic Lens spaces) is essentially the same procedure,

but generalized to the non-simply connected case. (Cf. [141], p. 213.)

REMARK 8.30. We may break the procedure above into steps in another way. Let
é‘f’g be & Dzn. Over CPO we induce f*(H ) The boundary of the result-
ing disk bundle now consists of two parts, the sphere bundle over CP0 which is
the homotopy type of D2 X 82'1 ~1 and the disk bundle over 3(CP3) which is
again SZn—1 X D2.
. ~3n ~pn * : cos
We can write CP # M = CPO U aMo, and note that f (Hn) | M0 is trivial.

Moreover, and this is a key point, the handles needed to construct W can be

attached by maps of spheres into the part of the S1 bundle in f*(l-ln) lying over

M.

o =

After these handles have been attached we may regard the resulting manifold

2 * oy
(D x Mg U W) UDszz“‘l (*(H)) | CPp)

Now, the space 2 X MO U W is simply connected, has trivial homology and
dimension > 6,| hence is PL-homeomorphic to a disk. Thus, the manifold above

D2n+2 to

(which is another way of writing 8.26) is obtained by attaching a disk
f*(Hn) | cen, by specifying an embedding of §2n-1, p2 , gp2nt2 _ g2ntl )
and the different homeomorphism types that result are due to the different knot

types of the embeddings.
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Specifically, we can take the Brieskorn varieties

{zﬁm 1+zg+z§+...+z%n+l=s} for €>0

sufficiently small and intersect with a small disk D4n+2 . Then V(V ) is
trivial and intersecting with S4n"'l we get z4n—l X D2 where, from 22] S is
an exotic sphere. Then, identifying this with S4 n-1 X D2 gives the desired

attaching above replacing 8.26. In the Arf invariant dimensions we can use

{zf+ z% +oo 4 z%n= el N gin-1

The CP™s described above are on the one hand redundant to describe
the torsion free generators of QEL(pt) (we do not need to use the Ker-
vaire invariant construction) and insufficient. In order to get sufficient
manifolds at odd primes we must modify CP? as well. This provides no
real difficulty, though. Let N* be an almost parallelizable manifold of

index 16, for example the Kummer surface.

This is given explicitly by blowing up singular points on the quotient of
4= (Sl)4 by the action of Z/2 acting as T(zy, °-',z4) = (Zl, e, 54). In a
neighborhood of each of the 16 singular points T4/Z/2 is a cone on RP3. De-
lete the interior of the cones and replace by copies of Dis c(SZ), whose boundary
is also RP3, glued along the boundaries. It may be checked that the resulting
manifold N4 is simply connected and that H2(N4; 7Z) is 22 copies of Z. Some-
what less evident is the result that the generators may be chosen as embedded
Sz’s with normal bundle T(Sz) . The intersection pairing is rather complicated,
however, in this basis. See [105] for details.

There is a degree 1 normal map h: N* . s* and we may start our
construction using
f: CP? # kN* » CP2.

When we have added these resulting spaces we have

THEOREM 8.31. The constructions above using only N%, M4Bn give us
sufficient exotic CP™s which together with the M‘g‘ and the differentia-
ble generators contain a set of generators for the torsion free parts of

PL TOP
Q. and Q, .



CHAPTER 9

THE TORSION FREE COHOMOLOGY OF
G/TOP AND G/PL

We are going to use 4.28 to study the Hopf algebra F*(G/TOP) = F¥*(G/PL)
and in the next chapters we apply 5.12 to get essentially complete information on
F*(BTOP) = F*(BPL). In both cases we will need to have a solid grip on the
Hopf algebras F*(BSO®) and F*(BsO®).

A. An important Hopf algebra
Consider the graded Hopf algebra Hd(A) over a unitary subring A
of Q.
Hy(A) = Pihy,hy, -}, deg(hy) = 2id

9.1

1
Pt

n
Yy = 3 behy i, b

which occurs in particular as F*(BSOG)GA for d = 2.

Let h(x) be the power series

W) = 3 Dt

i=0

and define homogeneous polynomials s, = s,(h;,--,h) by

9.2 ( X3 log h(x) = 2

The elements s, (in degree 2nd) are the Newton polynomials. Specifi-

cally, we view h, as the n’th elementary symmetric function in the

174
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variables t,;, ty,*--, so formally we can write

h(x) = HQ-t;0),

then s, becomes the polynomial associated with X tl. Altemately, the

s, can be specified by the recursion formula

9.3 Sp~ Sp_1

hl oot (_l)n._lslhn—l -+ (—l)nnhn =0.

LEMMA 9.4. In each degree 2nd the module of primitive elements is a
single copy of A generated by s,.
Proof. In degrees less than 2dN we can consider Hy(A) as the subring
of invariant elements in P{tl, ..y tNl under the action of the permutation

group EN . Let t’l, ---,t’N be another set of indeterminates. Then
n
an(tl’ “"tN’t’l' Ty t’N‘) = 2 ai(tl’ tty tN)' an_i(t,l; ctty tN) »
i=0

where o; denotes the j’th elementary symmetric function, and we have

the commutative diagram

Hy(A) id Hy(A) ® Hy(A)
i2N iNOi'N
p3 p3 pX
p{tl’m’tN't’l’""t’N} 2N c._.P{tl’...'tN} N@p{t’l,...,t’N} N

It follows that (x) = x®1+ 1®x if and only if iy (0 = ig(0) + i)

p
o tyl 2N with this property

But the only elements in P{t,,---, oty

are of the form a(Et;l + Zt’i“), ac A. This proves the lemma.
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Later in this chapter we are going to present various ways of con-
structing a generating genus for Hopf algebras of the type Hy(A). Itis
therefore useful to know the group Aut(H4(A)) of Hopf algebra automor-
phisms of Hd(A). I fe Aut(Hy(A)) then f will map primitive elements
to primitive elements, f(sn) =ups,, where u, is a unit in A. If A=Q
then each sequence {un} can be realized this way since the Newton ele-
ments s, are algebra generators for H4(Q). For an arbitrary unitary
subring A of Q, Hy(A) is torsion free and Aut (H4(A)) must be a sub-

o0
group of Ill AX. In the basic case A =127, A. Liulevicius pointed out to

us the following simple result
LEMMA 9.5. Aut(H4(Z)) = Z/20 Z/2.

Proof. Let f: Hd(Z) - Hd(Z) be a Hopf algebra automorphism with

f(s;) = s; and f(s,)=s,. We show that f(hn) =hy, forall n. Indeed,
assume inductively that f(h;) =h; for i<n. Then f(hy)-h,=As, and
the coefficient of hy in f(h ) is 1- (-D™An. This must be =1 which
for n> 2 is only possible if A = 0. But f(h;)=h, and f(h,)=h, by
assumption and f=Id.

On the other hand the canonical (anti) automorphism y defined by
x@+g+Zx(gy) g;=0 where Y(g)=1eg+gel+ g 0g";

maps s, to —s,. The automorphism (I>,<I)(hn)=(—l)“hn sends s; to
-s; and s, to s,. Hence Aut(Hy(Z)) = 7/2e 7/2 with generators

® and y.

The Hopf algebra Hy(A) is self dual. Indeed let p, ¢ Hy(A)* be the
element given by
_/ <Py h;‘> =1

9.6 i .
i
<Pn,h11 SRR ~hn"‘> = 0 otherwise
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where <, > denotes the evaluation pairing between Hd(A)* and Hd(A).
Then p, is indecomposable since 1'1’1l occurs in s, with coefficient 1,
and it is directly seen that Y(p,) = £p;®p, ;. It follows that

n
Hd(A)* = PiPIIPQ""}, l)[,(pn) = 2 pi@pn_i .
i=0

(In topology this situation occurs with Hy(Z) = F(BSO), h, = the gener-
ator of Image(F4n(B802)) > F4n(BSO)) and p, the n’th Pontrjagin
class, cf. Chapter 1.B.)

We next review results of Husemoller [58] on the structure of Hd(Z(p)) .

First, note that H d(Q) splits as a tensor product of monogenic Hopf algebras,
o0
HyQ = @ Pis .
m=1

Indeed, the recursion formula 9.3 shows that the generators hn can be expressed
as polynomials in the Spm hn = —(—1)n sn/n ++++., Formally, 9.2 may be rewritten

2 3
i i SoX s3x
E (-1) hix = exp(—slx - 3 - 3 I I

In order to get a splitting of H d(Z(p)) we must replace the series on the right by

as

a series with coefficients in Z(p). To this end we consider the Artin-Hasse ex-
ponential series

i .
L(1-x) = exp(—x—xP/p—+-—xP /pl—.s).

Let p(n) denote the M6bius function: p(1) =1, u(n) =0 if n is divisible by a
square and p(py ‘' p) = ' if Pyttt br are distinct primes. Then we have

9.7 log L(1-x) = H (1-xM)/n
(n,p)=l

Indeed, 2 pn) =0 if €>1 so
nlf
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S %— tog L1t - S u@

@,p)=1 nld

2 2 ’f)(:) log L(1—x™%)

(n,p)=1 (m,p)=1

2 pn) 2 ( P P x‘“"*’l)
n m mp mpl

(n,p)=1 (m,p)=1

L(1-x)

- "(“) log(1—x) .

(n: P) =1

Note from 9.7 that L(1-x) has Z () integral coefficients. Hence we can define
elements h i€ Hd(z )) for (n,p) =1 and i> 0 of degree 2p nd by

[- -] 00
. . i 1/n
E: i i_ I I I I pn
9.8 (-1) hix = L(l_hn,ix ) .
i=0

(n,p)=1 i=0

i
. . Lo pn
It is straightforward to see that hpln =~ ((-1)F "/n) hn,i + so {hn,i} is a
new system of algebra generators for H d(Z(p))’ which we call the Witt vector

basis. The main advantage of this basis is that the primitive elements s m of

H d(Z(p)) admit a very simple expression in terms of the hn i

. i-1, p pi' _ i
9.9 sm"p!hn,i"' h 1-1+ +hn,0’ m=pn

(apply —x d log to 9.8).
dx

For each n prime to p we define

WanZgy = Plhy o.by 10y o)

n,i’
This is a subalgebra of Hd(z(p)) and in fact a sub Hopf algebra (this is obvious

ver Q since H d(Q) is primitively generated but then it follows over Z(p) as
E({(Z(p)) is torsion free). We have proved,

THEOREM 9.10 (Husemoller). Hd(z(p)) is Hopf algebra isomorphic to

® Wy (Z,.)).
(n.p) - d,n\"(p)
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REMARK. There are similar splitting results for Hd(Z[l/pl, 1/p,, )
where p,,p,,-- is any set of primes. E.g. for Hy(Z{%]) one uses the

power series

G(1-x) = exp(-x~x3/3~--—x2™1/2011_..)
- -0 ="
and defines new generators k . of degree 2i* 12q+1)d by
23,2q+1
iy i _ 2%
(Dl = H II Gk, ¥ F*+y*
ji=0 q=0
Then
Wd,j(Z[%]) = p{kzj,l’kzj,s,m}

is a sub Hopf algebra of Hy(Zl'4]) and H4(Z[%AD) = é Wq j@lAD.
i=0

The convenience of the Witt vector basis is illustrated in our next
result—the integrality lemma. Let @ = 1+ Aj+Ay+-e be a genus in the
dual Hopf algebra Hd(Q)*. (A, is an indecomposable element in degree
2nd and Y(A)) = p A;®A_ . (cf. Chapter 1.E).) Let p,;,p,,"-- be the
(integral) generators of Hd(Z)* constructed in 9.6 and let

00
P@ = 3, D" 7,2" ¢ QU
n=0
be the primitive series associated to (: 7, is the coefficient of p, in

A, (cf. 1.37).

LEMMA 9.11. A necessary and sufficient condition that @ be
Z pyintegral @ e Hy(Z,)") is that
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(i) the coefficients m, in P(@) belons to Z(p).

(ii) ﬂpin = "pi'ln (mod pY).

Proof. Let {hn i} be the Witt vector basis in Hd(Z(p)) constructed in
9.8. Then @ is Z(p) integral if and only if <&vhn,i> € Z(p) for all
hn,i . For i=0, we obtain (i) since the coefficient of h]' in sn(=hn,0)
is 1. But, for example with n prime to p

<Q, Spn> = <@,phn,l> + <G,hn’o>p
or

<@, Spn> = <Q, sp> (mod p)

since AP = A(mod p) for A Z(p) . In general for A ¢ Z(p) ,
i i-1 :
AP =AP (mod p') so that
<@,s ;. >

p'n

. i
1
P <(i,hn’i> + o+ <@, hn,0>p

il

<@.,s i1 >
pTn

and the result follows.

Finally, we recall a striking result due to Ravenel and Wilson [114]
on bipolynomial Hopf algebras (where H is a bipolynomial Hopf algebra
if both H and its dual are polynomial algebras), which will be useful

later.

THEOREM 9.12. If a bipolynomial Hopf algebra over A is isomorphic to
Hd(A) as an algebra then it is isomorphic to Hd(A) as a Hopf algebra,
where A=17, Z(p) (or Z[¥)).

B. The Hopf algebras F*(BSO®) and F*(G/PL)®Z[%]
At each prime separately Atiyah and Segal in [14] exhibited an

H-equivalence
8,: BSO®[pl » BSO®[p]
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whose properties will be basic to our further discussion; we recall its
definition.

There are natural operations (k> 0)
AK: KO(X) » KO(X)
yK: KO(X) - KO(X)

where, on an actual vector bundle, 2K is the K’th exterior power opera-
tion and yX(x) = ARGek-1) ([91,112]). If k=0 Ak =1, y¥m) =1
and yl(x) =Al(x) = x. The associated ‘“‘total’’ operations

M@ = 3 Ak@E, e = T Aotk
k=0 k=0
give exponential maps

yphe: KOX) » KO(X) (€]

and they are related by the formulae y, = A, s1-t and Ag=yg .o I X
is a 4n-dimensional complex then yk vanishes identically on Ko(x)

when k> 4n. In particular for each te¢ Z we have an exponential
mapping — .y

¥¢: KO(X) - 1+ KO(X)
where X is finite dimensional, and we get a unique induced H-mapping

¥¢: BSO® » BSO®

(compare 4.29).

The Adams operations cotrespond to the Newton polynomials in the A
P @ - - 1@At@ + -+ CDR k@ = 0.,
Now, it is well known that

Y¥: KOst » Kos*h
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is multiplication with k2 so AK  is multiplication by Dk 1g21

Since yk(x) = /\k(x+k—1) we see that
yK: Ko(s*n - KO(s*n

is multiplication by

k
_ i1 ~2r—1(k—1)_*)
9.13 ok, =3 DI iy

i=1

LEMMA 9.14 (Atiyah-Segal). Let p be an odd prime. For each
1<i< P—_Z—l there exists a t = t(i) such that
. ] @
Pyt m,,(BSO )®Z(p) - m, (BSO )®Z(p)

is an isomorphism whenever 1= i (mod p—%l)

Proof. 1t suffices to pick a number t so that
¥,: Kos*eZ/p » 1+Kos*eZ/p

: . . s p-1 o~ 4r
is an isomorphism when r=1i [ mod =) Let x ar be the generator of KO(S ™).

Then

2r
Yxg) = 1+ 2 o, )tk x,
k=1
2r
and we must show that E ck, 1) tk is not identically zero in Z/p. But from
k=1

9.13 we have that c(k,r) = c(k, i) in Z/p. Hence in Z/plt],

%* -~
de(k,r)=0 if k>2r. This follows e.g. by using the realification r: K(S%)~
—~—
KO(S4r). It commutes with yk (since it commutes with gbk). The generator of
l~{(S4r) is represented by the stable class of a 2r-dimensional complex bundle, so

yk vanishes on K(s%¥) for k> 2r.
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2r 2i

2 c(k, r) tk = 2 c(k, i) tk

k=1 k=1

is a polynomial of degree less than p. It is not constantas c(1,i) =1 and con-
sequently there is a t(i) so zc(k, i) t(i)k £0 in Z/p. Any teZ representing
this t(i) will do in 9.14,

For p an odd prime we have the H-splitting (cf. 5.9)
p-1

Bso®[p] = BSO(j) X =+ X BSO,, m=2-

where "4r(BSO(i)) = Z(p) when r = i(mod m) and Ty (BSO(i)) =0 otherwise, Let

e[p] - BSO [p] be the idempotent associated to BSO,. i) i.e. CH is the

compositxon of the projection onto BSO( ) and the inclusion BSO( ) C BSO[p]
Then

m
@ ®
9.15 5, = H Yewy©e;: B50° [o] > BSO®[p]
=1

is the H-equivalence constructed by Atiyah and Segal.

If p=2 we must proceed a little differently. The coefficient c(k,r) is
2r

zero if k> 2 so the polynomial 2 c(k, r) tk becomes t+ t2 , and
k=1

¥,: KOs*®Z/2 » 1+KOs*HeZ/2

is multiplication by t+ t2 which is zero in Z/2 for every te Z. Now, adjoin
to KO(X) aroot a of t2—t+ 1/3=0. Then

Yo KO(X) » 1+KO()a] .

Since yt(x) =y1_t(x) on the subgroup KSO(X) and the conjugate of a is 1-a
one has
~ Ly d —~
Yq: KSOX) » 1+KSOX) C 1+KO(X)[a]
and the argument above shows that Ya induces an isomorphism on KSO(S4r)
when tensored with Z/2. Hence
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9.16 ¥q: BS0®[2] - BS®[2]

is an H-equivalence.

REMARK 9.17. The map Ya is equal to the map pi considered in Chapter 5.B.
Indeed, let L. be a complex line bundle and L its conjugate. Then
Ye@+L-2) = Q+a@-1)1+a@-1) = 1/3L+L+1) so ph(y,) is the genus
with characteristic formal power series

e3/2Vz_ ~3/2Vz

1/3(e\/z+e: Zi = .
aeHVz_ iz

Hence ph(}’a) = ph(pi) (cf. p. 104) and 4.29 implies that Vo = pi as claimed.

The total Pontrjagin character ph = 1+ ph 4 + Phg + -++ is multiplica-

tive and hence represents a genus for F*(BSOQ; Q).

COROLLARY 9.18. (i) F*BS0®) = Plq,,qg, ", Qyp,-+} where
9 - 1+q,+qg+ -+ is a genus

(ii) For any 2 in (i) one has for each n

Spy, -1 Q) = T@n-1!s (phy, -, phy ) .

Proof. For each prime p, F*(BS0®)e Z(p) is a bipolynomial Hopf
algebra according to 9.15 and 9.16. Hence F¥BS0®) is a bipolynomial
Hopf algebra and (i) follows from 9.12. To prove (ii) we evaluate both
sides on a homotopy generator ¢ an € 1T4n(BSO). First,

SPhypstyn> = <chyp,c,(ty0)> = ay

where c is the complexification and a, is 1 for n evenand 2 for

n odd. Hence <(2n-D's,@hy, - Phyy),tgq> = D™ G2l 5 .
Second, again from 9.15 and 9.16 it follows for each prime p - that

ag(sn(q4’ ) q4n» = Ap(“) Sn(P4, Tty P4n)
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where Ap(n) is a p-local unit and p,; is the i’th Pontrjagin class. But

2n)!
sn(P4, Tty p4n) = o ph4n

and we see that
sn(q47 Tty Q4n) = A'(n) (2ﬂ-1) !sn(ph4, trey ph4n)
where A(n) is a p-local unit for each p, hence An=+1,

According to 9.5 the genus 2 above is specified by s, and CI
that is, there is a unique generating genus Qe F*(BSOG) so that
sl(Q) = s,(ph), s2(9) = 3!52(ph) or equivalently

9 =p; and g =—(p8+2p§) .

Sign change on the primitive elements is a complicated operation on the
associated (rational) genus, and does not preserve integrality. For our
applications it is important to know the rational reduction of a generating
genus @ for F¥(BSO®). We have the following strengthening of 9.18.

THEOREM 9.19. The genus 2 ¢ F*(BSO®%, Q) defined by
Sn(q4, “tty q4n) = (211— 1) !Sn(Ph4; tty Ph4n)

is integral and F*BSO®) = Plq,, qq, *, gy, .

Theorem 9.19 is a statement about polynomial rings: solving the equa-
tion one finds q,, as a rational polynomial in the Pontrjagin classes and
we claim that the coefficients in this polynomial are integers. Our proof,
however is based on 9.15, 9.16 and properties of F*(BSOQ) .

Proof. 1t is sufficient to check that y:’ @ is Z(p) integral for te Z
and that y;(f’l) is Z(2) integral. We calculate the primitive series of
y:‘ @) or equivalently the coefficient of p 4r in y:‘ (q4,). Let
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tar € 1r4r(BSO) be the standard generator, then

Pyprtey> = CDF 2D 'a,

and

<Yr@Di > = <Lyl )>

—l 1
= <Sr(Q4: Ay, :}'t*(l4t)>

—1
= @1 G <s (phy, o, Py ), Yen(y)>

= (2t_1)' <ph4ty yt*(‘4r)>

2r
- @Dla, ¥ clk,ntk.

k=1

We can then read off the coefficient 7, of p,, in y: @,

2r
7 o= DFL 2 ok, ntk .
k=1

From 9.13 it is easily seen that

c(k,rp}) = c(k,1pF) (mod pl),

thus 7 .=7 . ., and 9.11 applies.

rp rp
The argument that y:(ﬁ’z) is a Z(z)-integral genus is essentially the

same; we leave the details to the reader.

REMARK 9.20. Consider the H-map pk: BSO® - BSO®[1/k] also used
in Chapter 5.B. From[2,1I, p. 166] we get that pk induces multiplication
by b = (k2™-1) Bzr/4tk2r on 7, (BSO) where B, is the 2r’th Bernoulli
number (with the convention that Byi,1 =0 for i>0, cf. 11.11 below).
If (k,p)=1 then (pk)*(fz) is Z(p) integral and we have from 9.11
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(mod p?) .

Suppose 2n # 0(p-1) and that k generates (Z/pz)x and hence (Z/pi)x
1 )
forall i. Then k2™ £1 (modpl) and

250 1)/G2%®" 1) = 1 (mod pH, K2"P'/i270" = 1 (mod pl) ,
so we get
anpVani = B2npi--1/2npi‘1 (mod pi) .
These are the so-called Kummer congruences (see e.g. [21]).

The genus 2 in 9.19 is complicated when viewed in terms of

Pontrjagin classes,
q4 = Py
ag =~ (pg+2p3)

2 2 4
Q46 =~ Pyg - 40p4Py, - 69p2 + 552p2pg — 839p% .

In general = D™1p, 4 ... where the dots indicate decomposable
4n 4n

terms.

In Chapter 4E we defined an H-equivalence

1+80: G/PL[%] » BSO®[%]

with the property that ph(1+80) = j*(£) where j: G/PL » BPL is the
natural map and £ is the PL Hirzebruch class. The results on
F*(BSO®) then translate to F*(G/PL)®Z[%].

THEOREM 9.21. There is a genus M for F¥(G/PL)®Z[%] such that

F*(G/PL)®Z[%) = Pim,,mg, -}
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and <M,7 4n’> = 8-(2n-1)! where U4n € 1r4n(G/PL) represents the

generator with surgery obstruction 1 (cf. 2.25 and 4.9).

Proof. The homomorphism

(1+80), 1r4r(G/PL) - ﬂ‘“.(BSO® 7))

takes the generator 7, with surgery obstruction 1 into 8/a, times the
standard generator ¢, of 1T4t(BSOQ)®Z[%] . This is clear from 4.9, 4.22
and the fact that ph evaluated on the standard generator is a,.

We set W = (1480)*(Q) where 2 is the genus from 9.19. Then

<M, 7> = <2, (1+80),(7, )>

i

8/a‘ <9, L4

8-(2r-1)!.

COROLLARY 9.22. A sufficient condition that a genus @ ¢ F*(G/PL; Q)
be Z[%] integral is that

1 -
ﬂl’ = m)—' <a, ‘4l’>
be Z['%] integral and satisfy the congruences i=7 ;q (mod pi) for
rp rp

every odd prime p.

Proof. Let hn be the dual basis to M = (m , Mg, -++) as in 9.6. Then
8- (2n-1)! sn(hl' ey hn) is the Hurewicz image of { 4n and 9.22 follows
from 9.11.

C. The 2-local and integral structure of F*(G/PL) and F*(G/TOP)

In Chapter 4A we constructed the classes K4n in FAYG/PL; Z(Z))
and used them to calculate the 2-local homotopy type of G/PL[2]. From
4.8 and 4.9 we obtain the Hopf algebra F*G/PL; Z(2)). Indeed
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F*G/PL;Z,)) = PIK,,Kg, -+, K p, -}
9.23
n—1
$(K, ) - 18K, + K, @1+ 8 21 K i®Kyn i -
i=

From 4.36 we have the natural isomorphism
* . = ¥ .
F*(G/TOP; Z(z)) = F(G/PL; Z(2)) ,

so 9.23 remains valid upon substituting G/TOP for G/PL.
The total class 1+ ZK,; is not a genus but 1+ 28K; is, and the

elements
ko, = 1/8n s (8K, 8K,,)

are primitive generators of F4Y%G/PL; Z(2)), where s denotes the
Newton polynomial (cf. 9.2). Thus, F*(G/TOP; Z(2)) is a primitively
generated polynomial algebra, and dually F_(G/TOP; Z(z)) is a divided

power algebra,

9.24 F,(G/TOP; Z5) = [lx,, xg, -+, Xyp, ]

(see below for the definition of I').

The element k,  (or K, ) of F4Y(G/TOP; Z,y) is ‘spherical’ in
that <k > =1 for the generator ;4n € 1r4n(G/T0P), cf. 4.37. Thus
in 9.24 to be the Hurewicz image of §4n . For G/PL

4n’ ‘4n

we can take X4n

we again have

F(G/PL;Z,)) = Iix,, %g,+, %gq, -}

but x, is no longer spherical; the generator of 174(G/PL) maps onto 2x,

4

The divided power algebra I" is the universal free unitary, graded and com-
mutative algebra over Z(Z) on a set of generators Yy ¥go "t subject to the
existence of an operator

y:I'->T

satisfying 2y(y) = y2 for all y ¢ I'. T" can be constructed as follows
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LEMMA 9.25, (a) F{yZi +1} = E{yzi +1§ the exterior algebra on an odd dimension-
al generator and y=0.

e

(b) Fi}'gii = P{YZi: Y4y’ Tty y2’i

subject to the relations
o P=2 . and Yy .)=y .
23 it iy’ Taitl

(c) F{YI: i yl" yﬂ_l} = r‘{yl,"‘,yr‘@ F{yﬂ_li .

Note that.in case (b) F{y2i}2ij is a single copy of Z and F{y2l k= 0
for other values of k. Moreover, the generator yj(YZi) of y21 can be so
chosen that

)’j(yzi)')’s(ym) = (j—}-s))/j_"_s(YZi)

where Vo“’m’ =1 and Y10g;) = Yoi-
One can give F{y2i¥ the structure of a Hopf algebra by specifying

k

VgD = 3, 1020 % 03 -
i=0

Then F¥y2 } is dual to the Hopf algebra P{yzlz with y21 primitive. If we con-
sider F{x4, Xg, "ty X g, } as the tensor product of the Hopf algebras F{x41
then 9.24 above is an isomorphism of Hopf algebras.

We have described F,(G/TOP)@Z['A] and F,(G/TOP)®Z, and we
next want to obtain a description of the integral structure. To this end
we need some fairly straightforward algebraic notions which we now
develop.

Let A and B be non-trivial unitary subrings of the rationals Q and
set C=ANB. Let M be a free graded A-algebra, N a free graded

B-algebra, and let
¢: Mo N> Me, Q
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be a homomorphism of algebras for which ¢(x®1) = x®1. To begin we
are interested in specifying the kemel K of ¢. For example, M and N
could be the polynomial algebras M = A[x], N = Blx] in a variable x of
degree 2 and ¢$(x®1) = H(1®x)=x. Then K(¢p) is the ideal generated
by x®1-1ex in Me.N.

In our usual application A =7Z[1/p,, 1/p,, -..] for some set
S, = {try, Py, .-} of primes in Z, and B, C have similar representations.
In fact S, NSy = S. Clearly we have D = A8, B is again a unitary
subring of Q and S =S,USg.

Let ny,---,n, generate N as an algebra over B. Then tensoring

with  we see that
K@®Q) = I(---(1en,-$(len)el):)
and we have

K@) = K(¢®Q) N Me_N .

DEFINITION 9.26. The equalizer of ¢ is the intersection
K($) N (M 8 1+ 1®C N) which we write E(¢).

Thus, in out example above

E@@) = @ Cxiel- 1oxl).
i

The following lemma is again clear.

LEMMA 9.27. E(p) is a free C module and (under projection) a sub-
algebra of 1 e-N.

We find it helpful to think of E(¢p) heuristically as the intersection
of M and N.
In Chapter 4 we saw that G/PL is the fiber in
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8Kx (-

G/PL — . G/PL[2] x G/PLI%] Ph) 11k(Q, 4i)

and similarly for G/TOP. Using the notation above we have

COROLLARY 9.28. F,(G/PL) = E[(8K x (—ph))*] with a similar result
holding for G/TOP.

Here recall that F(X[2]) = F*(X)®Z(2) and F (X['2]) = F,(X)®Z[}]
and that F, (XxY) = F (X)®F,(Y) so that 9.28 makes sense.



CHAPTER 10

THE TORSION FREE COHOMOLOGY OF
BTOP AND BPL

In this and the next chapter we examine the torsion free universal character-

istic classes for topological and PL bundles. Each of the two natural maps
}: BO -» BTOP and ; G/TOP -» BTOP defines a rational equivalence, since
their fibers TOP/O and G have finite homotopy groups by results due essen-
tially to Kervaire-Milnor [61], Hirsch-Mazur [53] and Serre [122]. Thus we have
two independent calculations of F,(BTOP; Q) , and we will want to refine the
considerations to p-local coefficients. Tt w:ll turn out that F,(BTOP; Z(p ) is

multiplicatively generated by the images of ]* and ]* , and much of our work in
this chapter will be to specify which generators come from BO and which come
from G/TOP. For p=2 the two types of generators are different in nature: the
generators from BO are polynomial generators but the generators from G/TOP
are divided polynomial generators (cf. Chapter 9.C). We shall see that the torsion
free cohomology ring F*(BTOP) is a polynomial ring with one generator in each
degree 4n, but the coalgebra structures at 2 and away from 2 are quite differ-
ent (as one would expect from the above remarks). In the description of F*(BTOP)
as a subring of H*(BTOP; Q) it is thus convenient to separate the two cases: we
treat the embedding F*(BTOP; Z( »C H*(BTOP; {}) in 10.B below but defer the
embedding F*(BTOP; Z[14]) C H*(BTOP; Q) to Chapter 11.

A. The map j,: (BO) ® F,(G/TOP) » F «(BTOP)
The usual maps ] BO - BTOP and ] G/TOP - BTOP are infinite

loop maps by results of Boardman and Vogt, and so too are the maps

#: BTOP - BG
p: BG - B(G/0).

THEOREM 10.1. The fiber of the composite

p: BTOP » BG - B(G/0)

103



194 THE CLASSIFYING SPACES

is BOx G/ T0i3 and the inclusion of the fiber is the composite

~

j: BO x G/TOP —XJ, BTOP x BTOP —"_, BTOP

where u is the Whitney sum map.

Proof. Consider the diagram

G/O = G/O

P
G/TOP E - BO

10.2 ! | .--7 )
G/TOP BTOP < BG

J er |
B(G/0) ——= B(G/O) .

The vertical and horizontal lines are fiberings and E - BTOP is induced
from BO - BG or from BTOP > BG. Now BO is the fiber of p and the
fact that BO » BG factors through BTOP implies the existence of a one
sided homotopy inverse to 7, 6: BO > E. On the other hand the fibering
G/TOP - E » BO is a fibering of loop spaces so the lifting 6 induces
G/TOPxBO » ExE -5 E and it is direct to see that this induces isomor-
phisms in homotopy. Since all the spaces in question are the homotopy

types of CW complexes 10.1 now follows.

COROLLARY 10.3. The composite
G/0 -2, Box G/TOP —» BTOP
is a fibering where ¢ is the composite

A rxXs
—_—

G/O0 —— G/0xG/0 BOx G/TOP

and r,s are the usual inclusions while y is the anti-automorphism

x->x 1.
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An exactly similar argument works for BPL and we have

COROLLARY 10.4. There is an infinitely deloopable diagram of fiberings

& .
G/O —L+ BOx G/PL —+ BPL ——+ B(G/0) —

P

G/0 —2+BOx G/TOP—e BTOP ——s B(G/0) e

where the vertical arrows are the usual inclusions.

In particular the maps from BPL and BTOP to B(G/O) are classi-
fied by maps
Bé, : B(G/O) » B20xB(G/PL)
10.5
B¢, : B(G/O) » B20x B(G/TOP)

where for example B¢, is the composite

Brx X Bs

10.6 B(G/O) B(G/0)x B(G/0) B20x B(G/TOP) .

Our next object in this section is to calculate the image of j,. The
main result of Chapter 13 shows that this image is exactly F,(BTOP)
(cf. Chapter 8.A). With G/TOP replaced by G/PL the same result will
also be verified for F (BPL). '

We have F,(BOxG/TOP) = F,(BO)®F,(G/TOP) and we note that in
each dimension 4n in F,(BO) or F,(G/TOP) the set of primitives is a
single copy of Z. Let s, (G/TOP) be a generator in F,(G/TOP) and
S4n(BO) a generator in F (BO).

THEOREM 10.7. Let K be the kernel of j,, then K has rational

generators
Yo = 24012201 1) Num(B,,/4n) 1®s,,(G/TOP)
-23-Mg(n)s, (BO)e 1
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where o(n) = max(3,a(n)-1) *) and 6(n) denotes the odd part of
Denom (an/4n) .

Proof. 1t suffices to show y, belongs to K since rationally the primi-
tives must generate F,(BTOP)®(Q. The Hurewicz image of a generator
in 1T4n(B0) is a,(2n-1!s 4n(BO), cf. the proof of 9.18. Since G/TOP
is 2-locally a product of Eilenberg-MacLane spaces, the Hurewicz image
of the generator of 7 4n(G/T0P) is an odd multiple of s 4“((z‘:/TOP) , in
fact odd [(2n- 1)!]s4n(G/TOP) by 9.21. On the other hand from Chapter
5.E we see that

10.8 N, odd [(2n-1)']- 15 an(G/ TOP) = a D (2n- D's 4“(BO) 1
where

2n-2/n20-1
n = a, 2 B-2020-1_1) Num(B2n/4n)

n = Denom (an/ 4n) .

Now v,(n!) = n—a(n) and from (21,11, p. 139) v,(Dy) = v,()+3, so

10.7 follows from 10.8 when we cancel out the common factor

a (2n-1)! 21/2(tl)+a(n)
o ! .

Having in this way specified K in principle we can calculate the
image of j,. It seems best, however, to do the calculation separately at
the various primes.

We begin with the prime 2.

Let x,,¢€ F4n(G/T0P) be the spherical generator and let
Yan € F4n(B0) be the generator of F,(BO) given by

<p2,y4n> = 1

i i
1. .50 =
<Py " PansVan> = 0

*
)Here a(n) is the number of non-zero terms in the dyadic expansion of n.
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where p 4 Pg, o+ are the Pontrjagin classes, cf. Chapter 9.A. Then y 4n
generates the image of F4n(BSO2) > F,,(BSO).

THEOREM 10.9. Im(j,)®Z ,, = Ply,qla(n) - 4<v,(n)je
Mix,,la() - 4> v, (n)}

where X4ns Yan are the images in F*(BTOP)OZQ) of the generators de-
fined above.

Proof. In the proof we use the Witt vector basis {hy ;/m=1(mod 2),i> 0}
for F*(BO)GZ(Z) described in Chapter 9.A. The degree of hm,i is
4(2im) and it is inductively determined by the formulae

_ i 112 el
10.10 s2i+2m =2 hm,i+ 2 hm,i—l ot hm,o

where s is the Newton polynomial in the classes y,,yg, . We

i+2
divide the proof into three cases according to the sign of a(n) - 4.

Case 1. (a(n) < 4). Then the element Yp in 10.7 is
Y = 224221 1)Num (B, /4n)(18x,,) - 0,(s,,®1) .
Thus in F*(BTOP)QZ(Z) » X4 is a multiple of s, ,

x4 ~ 290 es, ¥

’

and we may suppress x,, from Im(,). Note also that

2 . 6—2a(n) _2
Xg, ~ 4 2 s

n°’

or using the divided power

)’(X4n) ~ 2. 26—2(1(11) Sin ,

*)We use the notation x ~ y here to mean x = u'y for some unit u € 22 .
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and we can suppress ¥(x,,) as well. This can be iterated so that we

can suppress all of

F{x4nla(n)< 4} in Im(j*)@Z(z).

Case 2. (a(n) = 4). Here San = hn,o for n odd and hn,o ~ x4n.*

However, on applying y, hf."o ~ 2y(x4n), hﬁ,o ~ 8y2(x4n) etc., so we
may suppress P{h, o} replacing it by I'lx, }.

Case 3. (a(n) > 4). Then 2a(n)-4 X4n ~ S4n and inductively applying
10.10 gives
(@ If j<a(n)-4 thenthereisa yeIix,,, ""x2j+1n} so that

(m-4-j[y . ~ h .
22 [x21+2n+y] hn,j’ n odd.

(b) If j>a(n)-4 then

% e, ~ POy )

where z e Iix, , -, xa(n)-2,} ® P{hn,a(n)-s' oee, hn,j—l ).

It follows that the subalgebra

Mxyglam-4>v,mie P{hn,j la(n)-4< j}

maps onto Im(j,). There are no further relations since any such would

t

imply relations on tensoring with , but after tensoring with Q this be-

comes a polynomial algebra and 10.9 follows.

On localizing at an odd prime p we have

THEOREM 10.11 (Sullivan). The image of F*(BO;Z(p))GF*(G/TOP;Z(p))
in F(BTOPZ,) is
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l:’{3’2(p—1)m|m >0}e P{x4n |n prime to p—1}

where y,; is the polynomial generator from F*(BO)®Z(p) while x,,

comes from F,(G/TOP)e®Z ®"

Proof. The result follows from the splitting

BTOP[p] =~ BO[p] x Beok],

discussed in Chapter 5.A. Alternately, using the Witt vector basis and
facts which follow from the von Staudt theorem
vp(Denom(BZn/ 4n)) = 1+vp(n) , 2n=0 (mod p-1)

10.12
vp(Denom(Bm/ 4n) =0, 2n £ 0 (mod p-1)

(see [2],1I), the result follows from 10.7.
THEOREM 10.13. The map j, is onto F (BTOP).

Proof. The space Bcokj has finite homotopy groups in each dimension.
Hence F, (Bcok] )=0 and the splitting of BTOP[p] implies that j, is
onto at odd primes. At the prime 2 we show in Chapter 13 that in the
Bockstem spectral sequence converging to F,(BTOP) & Z/ 2 the

E®-term consists of a polynomial algebra in the stated dunenswn coming
from BO together with divided power algebras in the remaining dimensions
coming from G/TOP. This together with 10.9 implies the result at 2

and an easy fitting together argument gives the result over the integers.

The natural map F,(BPL) > F,(BTOP) is an isomorphism (cf. the
proof of 8.7), so we also have that

10.14 jx: F,(BO) @ F,(G/PL) » F,(BPL)

is surjective.
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COROLLARY 10.15. F¥(BPL) = F*(BTOP) is a polynomial algebra

with one generator in each dimension 4n.

B. The embedding of F*(BTOP;Z ;) in H*(BTOP; Q)

From 10.15 we know that F*(BTOP; Z ) is a polynomial algebra
with one generator in each dimension 4n. The Pontrjagin classes
Pyn € H*%BTOP; Q) are not in general Z(Z)-integi'al. Instead we exhibit
polynomials T,  in the p,; which give polynomial generators for the
subring F*(BTOP; Z(z)), but the procedure is involved and the answer
relatively unilluminating so we shall be brief. The basic reason for this
is that since the dual algebra F,(BTOP; Z(z)) is not polynomial it is not
possible to choose the Tyn so that the total class J = 1+ Ty+Tg+ -
is multiplicative.

We begin by calculating the Pontrjagin classes of the index 8 Milnor
manifold (cf. 2.16 and Chapter 8.B). Its tangent bundle r(M'm) is fiber

homotopy trivial so its tangent bundle map

r: M4, BPL

factors through a map 7: M*" 5> G/PL. Indeed there is a commutative

diagram

l
stn 30 q/pL

4
f ,T/ j
P d
r'd
’ r
M4n BPL

where f has degree 1 and I4n represents the generator of 1r4n(G/PL).
Thus 7[M*1] = X4ps 0> 1.

LEMMA 10.16. The total Pontrjagin class of M4 s

1+ (242(My)e

el el A BT B A R T SR S e S
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where u is a Z(z) unit and <e,[M*"> = 1. (Actually,
u = odd[(2n-1)! Denom(B, ./ 4n)/(220-1_1) Num(B,,/4n)] .)

Proof. The coefficient of p, . in the Hirzebruch class L, is
(220+1(920-1_1y/(20-1)1) B,,/4n and this is a 2-local integer with
2-adic valuation equal to 2(m-1  Thys we have (cf. Chapter 4.C)

8 = Index(M*™) = <7 ¥(®),M*"]>
= <T®), x>
= <(22M1(220-1_1y/(2n1)1) - (B, /40)p, ., 4(Kap)>
=<8M-1yp, ., (M*7]>

and 10.16 follows.

COROLLARY 10.17. <pj B Yy ,)>

=0 if there isany s so n does not divide jg

i . .
= 22°(3-a(n) +a(ip) +-++alp jy = 4ign, i = 4in .

i i .
Proof. F*[(M‘m)zl] =22-1 yl(x4n) so it suffices to calculate
e . 4n 2 i
<pj -9y LOFH]>
i
The total Pontrjagin class p((M‘“‘)2 ) is calculated as

p(M*P2") = (14242 ™ye ) (14 244 Wye,) .- (1+ 24"“(n)ue2 D)

-—-1+al+---+a2i

~

: i
where oj € HAM(M*™2 Q). Note that up to multiplication by a unit in Z

ALY
O'rUj -( j )UH-J.

2



202 THE CLASSIFYING SPACES

for r+j< 21, Hence

i i 2l
= 927 (4-a(m) 2 ( ) i
p4i1n p4irn‘2 u® \ij, i Je;®--@e,i.

The multinomial coefficient satisfies

i i) +aliy)+ - +ai)-1
(i1,2.,it)= i ralae @l i

so that 10.17 follows.

ExAMPLE 10.18. For n< 1§ all the Pontrjagin numbers on elements in

I} L PRI x56} evaluate as 2-adic integers. However, for n = 15 we have

<P120,)’(x60)> = %02 s <P(250,y(x60)> = u2 .
Likewise for y2(x60) we have 5 numbers, 4 of which are not Z(2)
integral.

<Pgo V2 (ge)> = 3ut, <D3opy50,V (Rg0)> = '23‘ ut,

<P130P50: Y2(X50)> = %04 » <P§20, }’2(360)> = 3/4 I.l4

<Py40r V2 (¥50)> = é“ ut.

REMARK 10.19. In view of 10.9 and 10.13 if we wish to find out which
Z(2) linear combinations of the Pontrjagin classes are Z(2) integral we
need only evaluate them on I' =I'{x, § la() - 4> v,(j)}; they belong to
F*(BTOP)@ZQ) if and only if they evaluate as 2-adic integers on each

element in I".
The next lemma gives us further information on the structure of the
primitives in F,(BTOP; Z(z)) .

LEMMA 10.20, Let s be the primitive generator in dimension

2i+2,
224 in F,(BO; Z,,), then

i
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(a) 5*(52 i "'Zn) =2%. f*(x2j +2n) where r=a(n)-4 and

@ is a unit in Z(2») .

® For a(n)> 4, %i,(x4y) € F(BTOP; Z,)) if
v,(n) > a(n)- 4.

(© jx(x,y) is a generator if vy(n)<a(n)-4.

Moreover, the result in (b) is best possible in that %g*(x 4n) ¢ F,(BTOP;Z ( 2):

Proof. (a) and (c) are immediate from 10.16 and 10.9. We prove (b).
Neglecting units and suppressing 3*,’1'\* we have in F, (BTOP; Z(z))

3 i 2i
2 xn’i = 2 hn,i+ et + hl'l,o
where ‘hn,i} is the Witt vector basis for F(BO; Z(z)) and Xn,i= xzi 42
In particular 2x 4n = Ny o and by induction for i <r we have

2t ;= 2 x, ; (mod. 227421

(this implies hy i = or-i Xn i (mod. 22r+2—2i) and

h2 = 22Dy ) (mod. 227+272Y) hence 27 ; = 0(mod. 228+2(HD)),
From this the induction follows directly).

. 2
In partlculat h, . =x, ,(mod.4). Now 2hn,r+1 +hn,r = Xp e (mod. 4)

and since x Zy(xn r) 1t follows that x, , is divisible by 2. In

n,r+
general, we have

2#lp 2R 2R ex

n,r+i+ n,ri t n,r+ 1 (mod. 4)

n,r+i+

and (b) follows. Since hn,r+1
F*(BTOP)®Z(2) by 10.9, Y%x
completes the proof.

is a polynomial generator of

0, erit1 will not be Z(2) integral. This

We are now ready to construct the polynomial generators T4n . We begin with
a given odd n. Then associated to n, if S ir2 represents a primitive
2" %n
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generator in F*(BO), we can construct new elements

ta,ij € F¥*(BO) ® Z(z)

according to the formula

1,2 2t

= ol i~ iS>i
10.21 S =2 tn’i,’. +2 tn,i—l,j + et tn,j'j i>j).

2 i+2 n

In particular tn,j,j = Szj+2ﬂ. By induction we see that the tn,i,j
fixed j generate a sub-Hopf algebra of F*(BO; Z(2)). We identify H*(BTOP; Q)
with H*(BO; Q) as usual and consider t as an element in H*(BTOP; Q).

Then we have

,i2j fora

n,i,j

LEMMA 10.22. 1

_ ai~a(n)+4
(a) <tn,i,j’x2i+2n> = 2 €

t,. .
t _ 22 (Gan)+3)+1 _- ]
® DEERRANEIER g € s

if i—t>j and is zero otherwise. Here ¢, ¢’ are 2-local units.

Proof. From the Newton formula 9.3 and 10.20(a)

_ oi-a(n)+4
<52i+2n' "2i+2n> =2 €

and (a) follows. Now,

t
- 2
0= <szi+2n' (xzi—t+2n) >

ij 2, % o 2t At
=2t )< L ox >+22 @Dt ep<ty ;g x? >
=1

2t

t ;
and since x2 =221 yt(x), (b) follows directly. ;

2

2i#2, .
=T, ;€H (BTOP;Q)
n r

THEOREM 10.23. Let n be an odd number and let T it
be given by 2
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@ T i=taio if a@-4<0

(i) T, ;= 2"‘(“)“‘"is2i b i ilat)-4
n

(iid) T, =t i a3 if i>am)-4

then these Tn ; area set of generators for F*(BTOP; Z(2))'

Proof. From 10.22a in case (ii)

<Tn.i,y'(x2i_ﬁ_2n)>=0 if r>0
=¢ if r=0

Thus 'l‘n i is integral. Similarly, from 10.22(b) Tﬂ i is integral in case (iii)

and sat:sftes

t _ ’, . _
<Tn,i’ y (XZi't+2n)> =2 for i-t>a(n)-3

and is zero otherwise.

These calculations imply that the T n,i generate a polynomial sub-Hopf
algebra of F (BTOP, Z(2)) On the other hand, 10.20 implies the reverse con-
tainment and completes the proof.

C. The structure of QEL/TorQDZ(z)
The tangent bundle map ry : M > BPL induces a homomorphism

7: QL /Tor » F,(BPL) .

After tensoring with Z(z) , T becomes an isomorphism. Indeed,
r= X*OQOh where h is the cobordism Hurewicz map from 8.6, and ®

is the Thom isomorphism (8.6).

THEOREM 10.24. Let M*" denote the index 8 Milnor manifold of

dimension 4n and CP?" the complex projective space. Then

QFL/ToreZ ,, = PUCP? My, (n) > a(n)- 4} @ THM*M|v,(n) < aln)-4} .

(2)
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Proof. From the paragraph preceding 10.16, r*{M‘m} = }’*(x 4n) Where
X4, is the spherical generator of H,(G/PL; Z(z)) and j: G/PL » BPL
the natural map.

Next, the stable tangent bundle of CP2% s (2n+1)H where H is
the canonical complex line bundle. The first Chern class of H is a
generator of H2(CP2M) so the first Pontrjagin class of its realification
r(H) is a generator of H*(CP2"). Since the coefficient of pg in the
Newton polynomial s € H4Y(BSO; Z(2)) is 1,<r*(sn), [cP2M]> -1 and
dually 7, {CP2"} is indecomposable in H 4n(BSO; Z(,y) . With these re-
marks 10.24 is direct from 10.9.

The generators in 10.24 are not really explicit, since the divided
power operation y is not a cobordism construction. We now construct a
minimal set of generators for QI:L/TorQZa) . First, we recall a result
from [11], see also [54], p. 13.

LEMMA 10.25. The k’th class Ly in the £-genus can be written as an
integral polynomial with coprime coefficients in the Pontrjagin classes
divided by u(k) = Hq[Zk/ &1} Lhere the product is taken over all primes
q with 3<q<2k+1.

Let g(z) = vz/tanh \/z = Zbizi be the characteristic series for £.

It may also be interpreted as £(H) where z = &2

cal line bundle on CP®.

and H is the canoni-

DEFINITION 10.26. Let 0< k< m and define for a given n the numbers
Nm(n,k) by the formula

Np(n, k) = p(m) (kP coefficient of g(z)2Ho+1)
LEMMA 10.27. Nm(n,k) is an integer.

Proof. By our remark above the kM coefficient of g(2)2(MHO+L o pe

interpreted as 1/u(k) Pk(p4, “**,P4)) evaluated on the bundle

P s et
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(2(n+k)+ 1)H, where the P4; are the Pontrjagin classes, hence integral
and P, has integer coefficients. But u(m)/u(k) is an integer since
k <m and 10.27 follows.

We now construct exotic projective spaces cp2m2k 55 follows. We

start with the degree one normal map
f: CP20 # u(m)M3® > CP20 g s4n

and do the construction of Chapter 8.C to get CP2™1 and induce directly
CP2™2  Then we vary CP2™M2 by CP2M2 # Nm(n, 1)- M;“"’" >

CP2M2 y g4Mt4 5 oot CP2™3 | Proceed as above and vary the result-
ing Ccp2n+4 by the obvious normal map with domain

Cp2n+4 ¢ N, (n,2) Mg“"s etc., until we arrive at Cp2(n+m). Finally, we
set

op2 4n+4
10.28 Eqm = CPZ™M™ g N (n, m)Mg™4™ .

By construction there is a degree one normal map (ﬂm, Sm)
LA R cp2(n+m)y - and for each i, 7y is transverse to cp2(n+d)

with inverse image n;nl(CPZ(“"’D) =E_ ;. Let

f: cp2(n+m) |, G/pL

be the map classifying (17<m, 'r}m). Its restriction to CP2(™D classifies
("i’;i), which has surgery obstruction N (n,i). An inductive application
of 4.9 now gives

f*(K4j) =0 for jfn
10.29 (K4 p) = n(m)e2®

&
F(Kypp) = 0 -

COROLLARY 10.30. A (multiplicative) basis for Q) "/Tor®Z,, is
given by the CP2" for v,(n) > a(n)-4, and the differences

i+l
i . #-CP2 ! for v)(n)<a(n)-4, where i>0 and n is odd.
n,(2°-1)n ) -
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Proof. The tangent bundle to E_  is classified by the composition

E "m Cp2(n+m) 7 f

am BOx G/PL —— BPL

so r(E, _}-{CP?(™™}) ( F (BPL) has the form j,f,[CP2(™™],D,
where D is a decomposable element from F, (BO)®F,(G/PL). But 10.

allows us to calculate f, on the examples in question. We have
* 2] 2+l i 1y.y2!
<fKZ ). [CP? T M> = w(@-Dn)* ,

but p(m) is odd for all m; hence in Z(2) is a unit and so can be

ignored. Thus

i+l :
E . -{cP? ") - yix D
muLnJ { D = iy +

whete D is decomposable, and 10.30 follows from 10.29 and 10.24.



CHAPTER 11
INTEGRALITY THEOREMS

The first integrality question we consider is to characterize the image of
F¥*(BTOP) in H*(BTOP; (), where as usual we identify the rings H*BTOP; )
and H*(BO; Q). In Chapter 10.B we treated the 2-local question so it remains to
evaluate F*(BTOP; Z[%]) C H*(BTOP; Q).

Given any topological manifold M4n, let 7: M4n ->'BTOP be the classifying

map of its stable tangent bundle. For any a € F%(BTOP) @ Q we can evaluate
a on T*[M“n] to obtain a non-singular pairing

QTP @ F*@BTOP; Q) - Q.

The second integrality question is to find conditions on @ so that a actually
takes integral values on every manifold.

In part A of this chapter we consider the first question. In part B we consider
the second.

A. The inclusion F,(BTOP;Z[%]) C H*(BTOP; Q)

We identify H*(BTOP; Q) with H*(BO;Q) using j: BO - BTOP,
and then can give a genus in H¥(BTOP; Q) by specifying its primitive
power series as in Chapter 1.E.

From Chapter 10 we have that both F,(BTOP; Z[%]) and
F*(BTOP; Z[}4]) are polynomial rings, and by 9.12 there is a generating
genus for F*(BTOP; Z[%]).

We will show, in fact, in 11.14 that an explicit generating genus is

given by R = (R4, Rg, ) with primitive series
11.1 P@) = 3, D@ -1) Num(B, ,/4n) 2"
where B, is the Bernoulli number (which, we recall, is defined via the

209
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power series expansion

t
te E: L ,
11.2 Tt B,t /nl; ;
n>0 ;

in 1.2, By=1, B, =1/2, B,=1/6 andfor i>1 By, , =0). i
Let j: BOxG/TOP » BTOP be the map in 10.1. The induced !

homomorphism

jx: Fu(BO;Z ) @ Fy(G/TOP; Z, ) - Fy(BTOP; Z )

®

is surjective for every prime p. Moreover, its image was characterized
in 10.9, 10.11. Thus a ¢ F*(BTOP;Q) is integral if and only if ;*(a)
and f*(a) are both integral.

First we show that ?k(R4n) is Z(p) integral for all odd primes p.

LEMMA 11.3. A necessary and sufficient condition that j*(R) be Z(
integral is that

Denom(B i/4npi) = Denom(B i—l/ 4npi'1)
2np 2np
modulo pi forall n and i.

Proof. We first calculate <}*(5{), . an> where ¢ 4n € ﬂ4n(G/ TOP) is the

generator with surgery invariant +1. Set

D,

]

Denom (82 ﬂ/ 4n)
11.4

N, = 2272(22%1_1) Num(B, /4n)a,

and consider the diagram

G/0 G/TOP
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which was evaluated in homotopy in Chapter S.E. Let ¢ 4n(G/ O) bea
generator of 7 4n(G/0)/ Tor and suppose it is so chosen that
r,(c 4n(G/0)) =D, ty, where ¢, is the standard generator of 1r4n(BO) .

Using 4.22 a short calculation gives

< 8K4nr S*(t4n(G/0))> = Dtl ‘ <£, L4n> .

Moteover, since the primitive series for the £-genus is

8N
P(g) = 2 (—l)n anT—-n_l;l'-Fn Zn

and since the Pontrjagin class evaluates as (—l)n"lan(Zn—l)! on ¢y,

we have N
$,(t4n(G/0) = CD™IN, -7, .

Hence, from 11.1 and the commutative square above

<R, 14> = CDID /N, <TFR), 1>

= (_l)n—an/22n—2 8, <Pansl4n>

D,(20-1)!/22%2

Now, 11.3 follows from 9.22 since the D, satisfy the required con-

gruences if and only if the Dn/22n+1 do.
LEMMA 11.5. The congruence of 11.3 is valid for all n,i.

Proof. The denominator D, of an/4n was given in 10.12, If
2n = 0 (mod(p-1)) the congruence holds trivially. If. 2n £ 0 (mod(p-1)),
suppose v (D i);éO while v (D ; 1) =0, then g-1 divides 2npi

I “np . 4 np” .
but not 2p*~!n. Hence p' divides g-1 and q= 1 (mod p'), which com-
pletes the proof.
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LEMMA 11.6. A sufficient condition that *QR) be Z, integral is that

Num(B ./4n i = Num(B : /41'1 -1
( ]/ p ) ( -1 P )
modulo pi forall n and i.

i i-1 :
Proof. Note first that 2°P = 2P  (mod p'), so if the congruences
above are satisfied, then the numbers (22"‘1—1) Num(B, /4n) satisfy
the congruences of 9.11, and i*®) is Z(P) integral.

The Kummer congruences of 9.20 together with 11.5 imply the con-
gruences of 11.6 in the case 2n £ 0 (mod(p-1)). Before we give the
number-theoretic proof that the congruences are also satisfied when

2n =0 (mod(p-1)) we digress and prove

LEMMA 11.7. Suppose A, ¢ F¥*(BTOP; Z[14]) is an element with
Ay =Hg Papt - Then A,, is a polynomial generator if and only if
Bq is divisible by precisely (22“"1—1) Num(an/4n) in Z[%].

Proof. Let k be a positive number which generates (Z/p2)>< . The

composition
”~ k
j PL S
G/TOP[}4] —— BTOP[%] — BSO°[%, 1/k]

induces multiplication by (k28-1) on the homotopy group in dimension
4n (cf. 5.7). Now,

ky¥. p* @, * .
(py.)": F7(BSO ,Z(p)) > F7(BTOP; Z(p))

is an isomorphism, and neglecting Z(p) units we have

11.8 <Ay Iligy)> = (31 (20-1)!

if A,, is a generator. On the other hand (as in Chapter 5.E)
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[+]
I

= <&, 7,@>

2n+192n-1 ~ .
= E By i <A T

But k20_ 1/Denom(B,,/4n) is integral and not divisible by p (see [2]1I,
p. 139), so substituting in 11.8 we see that u, is precisely divisible by
(22“‘1—1) Num(BZn/ 4n) in Z(p) . This is true for all odd primes, and so
gives the result in Z[%]. The reverse implication is proved in a similar

fashion.

Our original proof of the validity of the congruence in 11.6 was based
on topological considerations. We thank Larry Washington for showing us

the elementary proof we give below.

LEMMA 11.9. The congruence of 11.6 is valid for all n,i with p-1
dividing 2n.
Proof. The Bernoulli polynomials are defined via the power series

te(1+X) t

11.10 =3 Bt

t
e-1 a>0

In particular, on expanding out we have

n

s

1111 By = Y, (p Bx™
=0

where Bj is the jth Bernoulli number.

LEMMA 11.12. P
PBy = (P D, By-a/p), n>1.

a=1
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Proof. Consider the series

2 t%/n! { n-1 2 B (—a/p)}

n>0

I
-
M-

S ()/n! B (-a/p)
>0

e(1-a/p)pt

- —te _l)nB tn/ 1
sy 2 VB

et1 n>0
and 11.12 follows.
Expanding 11.12 by using 11.11 we have
p n
11.13 -0ty 2 (P pBj-a)™ i
a=1 j=

Note from the proof of 11.5 that PB € Z(p) . Now, from 11.13 we have,

since p> 3
P

P . )
anpi = D agl (~a)npl+ nv 2( E pin(—a)pln‘l> . p (mod pitl)

=1
i
. n . .
since vp( ?)2 1—vp(|) and B,=1, Bl=%. Hence

P .
B = DS o™ (mod pit).

mp a=1
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i .
On the other hand, since p-1 divides n, a"™" =1 (mod p**!) and we

have .
pB ; = p-1(mod ph.
np

In particular, pB_; =pB {mod pi+1) and 11.9 follows since
n np

pl
pDenom(B ,/ 2npi)
n

P — = 1(mod pitly.
Denom(Bnpi_‘_1 /2np™™%)

THEOREM 11.14. F*(BTOP; Z[%]) = PIR,, Ry, -+, Ry, -} where R is
the genus from 11.1.

Proof. We have seen above that R is Z(p) integral for every odd prime
hence Z[!%] integral and 11.14 follows from 11.7.

N

The genus R is not Z integral except on low dimensional classes.
If one wants a genuinely integral genus which generates F*(BTOP)®Z[!]

one may for example take

1+2R, + 4Rg + -+ + 2nR4n+'~

Also, note that 11.14 remain true with BTOP replaced by BPL.

We end this section by pointing out the conditions under which a

genus @ is Z(2) integral on all PL manifolds.

LEMmA 11.15. @ is Z(2) integral on all PL manifolds if and only if
for the primitive series P(®) = 2 (1) 7 z! the conditions i) and ii) in
9.11 are satisfied and for i such that a(i)-4> vz(i) then 20¢1)-3

divides w5

Proof. Since
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is onto, 11.15 follows from 9.11, 10.9 and 10.20 (a) when we note that if
<@®, %,;> is not divisible by 2 then <@,y(x4i)> = 1%<Q, xii> does not
belong to Z(2) . On the other hand, if <@,x4i> € 2Z(2) then <@&, ¥(xy;)>

€ 2Z(2) as well so we can iterate.

B. Piecewise linear Hattori-Stong theorems
We now turn to the second integrality question. To begin we recall
the smooth Hattori-Stong theorem. The stable tangent bundle r,: M->BSO

induces a monomorphism
7 Qio/Tor - H,(BSO; Q)

defining a sublattice B = Imr C H (BSO; Q) completely described by its
dual lattice B*. In describing B or B* it is convenient to separate
the two cases: at 2 and away from 2. That is, we will give a descrip-
tion of B* as

11.16 B* = B[%]* n B[2]*

where B[%]*, B[2]* are the sets of homomorphisms f: H(BSO) - Q
with f|Be Z[%4] or f|Be¢ Z(z) , and B* is the set of homomorphisms
which take integral values on B.

Recall the KO orientation of MSO[%] from 4.14,

A : MSO[%] » BSO[%]

with phA = £ 1.U. Toeach xe KO(BSO)®Z[%] and each class
{M40} ¢ Qio/ Tor there is associated a characteristic number x{M} e Z[%]
as follows: Let

fyy : S4H K —e M@,) —=MSO,,

4n
M BSO 4k

be a classifying diagram for the cobordism class of M*" (cf. Chapter 1.C).
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Then
11.17 £ (x-A) = xiM} - a™k

where ae¢ I?é(S“)@Z[‘/z] is the generator with ph4(a) € H4(S4; Z) the
standard generator. We can take the Pontrjagin character on 11.17 and
use the fact that phA = g_l -U to obtain the equivalent cohomological

expression
1118 x{M} = <€) - v*Ehx), IM*M]> = <€ ph(x*()), r JM41] >

where x: BSO®- BSO® is the H-space inverse. The K-theoretic defini-
tion of x{M} shows that x{M} ¢ Z['4] and thus that ph(KO(BSO)®Z[}])-£
is contained in B[!4]*. The opposite containment is due to Hattori and
Stong (see e.g. [133], p. 207).

THEOREM 11.19 (Hattori-Stong). Bl[%]* = ph(KO(BSO; Z[%4]))- £.

To get further information on the subring B[%4]* of H*(BSO;Q) we
must compute ph KO(BSO; Z[%]). To this end consider

7¢: KO(X) - KO(X)[[t]
and define

g : KO(X) » KO(X)([s]]

by 7 (€)= yi(€-dim &) where s = t-t2. The coefficients in ns(f ) are
the KO-theoretic Pontrjagin classes of £, 7 (£) =3 ﬂk(f ) sk, and

KO(BSO; Z[%]) = Z[%[[#!, 2, 1]

i_ gl (universal class) [5],[13]. Hence, to compute the subring

where #
ph KO(BSO; Z[}]) C H¥*(BSO; Q) it suffices to calculate ph ni(é' ) in
terms of the Pontrjagin classes of £.

If é= L, +---+ L, is a sum of complex line bundles then
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comgor(Ly + -+ L) = y(3(L; + T~ 2) = I+ (L - D)1+ H(L;- 1) =
= 1+ s(L;+L;-2)

where c,r denote complexification and realification respectively. So

X: —X:
pha Ly +--+ L) = O(l+s(e e '-2).

Thus if we formally write p(£) = II(1+ x2) then the Pontrjagin character

X, —X;
of #X(€) is the K’th elementary symmetric function in the e +e -2,

X, -X X, —X
ph(r’E€)) = op(e l+e 1-2,-,e Kre K.2).
and ph KO(BSO; Z[}2]) is the power series ring over Z[!%] generated by

these elements.

The Z(2) dual lattice of B is much simpler to describe: MSO[2] is
a wedge of suspensions of the Eilenberg-MacLane spectra K(Z(2)) and
K(Z/2) with a single copy of K(Z(2)) for each additive generator of
F*(BS0). From 1.18(a) we get

*
THEOREM 11.20. B[2]* = Z,,[p,,pg, ).

We make 11.16 explicit with
COROLLARY 11.21 (Hattori-Stong). The sublattice B = Qio/ Tor in

H,(BSO; Q) consists of the classes a such that

(i) <g,a> e Z[%] for ge BlKI*
and
(ii) <g,a>¢ Z(2) for ge B[2]*

where B[%]* and B[2]* are described in 11.19 and 11.20.
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There are results analogous to 11.19 and 11.20 for the topological and
PL cobordism rings.*) Again the stable tangent bundle induces a
monomorphism

r: QFL/Tor » H,(BPL; Q)
whose image C is a sublattice of H,(BPL;Q). At each odd prime p
we have the splitting from 5.20

MSPL[p] =~ MSO[p] A M cok Ip-

Let 2% BSO[p] » BSPL[p] be the exotic map defined in 5.11. The
associated map of Thom spectra ;p: MSO[p] - MSPLI[p] is the inclusion
in the splitting of MSPL[p]. We now restate and prove Theorem 5.21,

THEOREM 11.22. J,_: a3(MSO[p])/Tor > n(MSPLIp])/Tor is an

isomorphism.

Proof. We identify 75MSO[p)), 75(MSPL[p]) with Qi()@ Z(p) and
Qf: L ®Z(p) and consider the diagram

Op)
050/ ToreZ, ;) —LE=— QFL/ToreZ

()

()’p)*
H,(BSO; Q) ————— H,(BSPL; Q)

where both vertical maps are monomorphisms with images BGZ(p) and
C@Z(p) , respectively. Let A, ¢ %(MSPL[p]) be the Thom class
from 5.2. Then f/;(APL) is a KO-theoretic Thom class for MSO[p] and
hence ?;(APL) = y“1 'Aso , where Aso was characterized in 4.14, and
y is a unit of KO(BSO[p]). Taking Pontrjagin characters we get

*)The two cases are identical as the natural map QfL/Tor - Q;rop/Tor is
an isomorphism.
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11.23 yp® = ph)- £

where £ is the Hirzebruch class in either H*(BSO; Q) or H*(BSPL; Q.
Consider an element {M} ¢ QfL/ Tor@Z(P). The argument used in
11.18 above gives

<8 -ph(£),AM}> ¢ z(P)

for all £ ¢ KO(BSPL[p]). Now, Yp' BSO[p] - BSPL[p] induces isomor-

phisms in both ordinary rational cohomology and in KO-cohomology by 5.12, .k

5.18, 5.24. Let b e H,(BSO; Q) be the unique element with (yp)*(b) =
#M}. We have y;(S:‘-ph(f)) = £.ph(y-(yp)*(f)) and hence

<& ph(n),b> ¢ Z,

for all 5 ¢ KOMSO[p]). But then 11.19 shows that be BeZ(p) so
b =N}, and {M}= @p)*{Ni . This proves that (?p)* is surjective, and

since the injectivity is obvious, proves the theorem.

As a direct consequence of 11.19 we have

COROLLARY 11.24. The lattice Cl%]= Im{QF™/ToreZ[%] - H,(BSPL:Q)} ';3

is characterized by

C[%1* = ph(KO(BSPL; Z[%4]))- £ .

At the prime ‘2 we have in analogy with 11.20 (see also the paragraph
preceding Lemma 8.6).

THEOREM 11.25. C:‘z) = Z(z)[T4, Tg, --.] where the T,; are the gener-
ators of F¥(BSPL)®Z,, given in 10.23.

COROLLARY 11.26 (PL Hattori-Stong Theorem). The lattice
C = r(Q7"/Tor) C H(BSPL; Q) has dual lattice C* = C[%]* N CF,,,
where C[%]* and C{,, are described in 11.24, 11.25.

i

b
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REMARK 11.27. 1In analogy with the smooth case (see the paragraphs following

11.9) one would like to have a more explicit calculation of 0[%]* . In particular
one would like to know ph KO(BSPL; Z[%] CH*(BSPL; Q) in terms of the genus
9{ introduced in 11,1, The most satisfactory answer would perhaps be that

ph KO(BSPL; Z[1]) arises from ph KO(BSO; Z[%]) by substituting R 41 for Py
Thns would happen if there is an element f € KO(BSPL,; Z[%]) such that

E: 2

= —_ R , o, R .
ph(é’) @)1 sn( 4 40)
Using the inclusion BSO - BSPL one wonders if

2 @2L_1) Num(B,,_ /4n) -
n>1

a5 )' 25 (B, ) Pyy) € Ph KO(BSO; Z[%])

or equivalently if one can show

2n

11.28 2 @%* 1) Num(B,_/4n) —2— x*" € ph R(CP™; Z[4)) .

n>1

(2 3"

This is a purely number theoretic question as

K(CP*, Z[w)) = ZHIEN and

ph £f(€) = f(eX+e7*-2).

In a similar fashion one can use the inclusion G/PL - BSPL and the equivalence
(away from 2) between G/PL and BO to get a second condition, analogous to
11,28, but involving the denominator of an/4n rather than the numerator. We
leave the details to the reader.

C. Milnor’s criteria for PL manifolds

Recall that a smooth manifold M%" defines an indecomposable
cobordism class {M*%} in the ring Qio/ Tor @Z(p) if and only if the
following criteria (due to Milnor) are satisfied:

[M4“]> e Z¥ if  2n+l 4 p®

P)
11.29

[M n> ¢ pZ(p) if 2n+1=p@
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where s, is the Newton polynomial in the Pontrjagin classes and <, >

denotes the usual pairing
* .
F*(BSO; Z(p)) ®Q,/Tor » Z(p)

(see e.g. [133]).
There is an analogous statement for PL (or topological) manifolds.
Let sn(ﬁ) ¢ FAYBSPL; Z[%]) denote the Newton polynomial in the

classes R, Rg, .

THEOREM 11.30. Let p be an odd prime. A necessary and sufficient
condition that a PL manifold M*® be indecomposable in QPL/ Tor @Z
is that <sn(fR), [M41]> ¢ Z>(<p) if 2n+1#£ p® and <sn(5{) M4 > ¢ pZ(p)
if 2n+1-=p2.

Proof. If ; BO » BPL and ; G/PL - BPL are the natural maps then

@ (s, RN = (22" 1_1) Num(B,/4n) - s,

(b) ?(Sn(ﬁ)) = 1/22™! Denom(B,,/4n)- s ()

where W is the genus for F*(G/PL) from 9.21 (cf. p. 211). The coeffi-

cientof s, in (a) is a unit in Z(p) when 2n = 0(p-1) and the coefficient

in (b) of snOII) is a unit when 2n £ O(p-1), (cf. 10.12). The proof is

now direct from 11.22.

REMARK 11.31. Note as a consequence of 11.30 that in dimensions con-
gruent to zero modulo (p-1) a smooth manifold W20 which is indecom-
posable in () @Z(p) is also indecomposable in Q Z(p) The
remaining generators are less explicit: Let cpin _f, G/PL[}%] bea
map so that gof: CP2P  BSOP[%] classifies the canonical (complex)
line bundle. For a sufficiently large power of 2, 2%-f becomes integral
(i.e. maps into G/PL) and 7{CP21, 28.f} — {CP2%} is indecomposable

in erfoz(p) when 2n £ O(p-1).

S TAS




CHAPTER 12"
THE SMOOTH SURGERY CLASSES AND H,(BTOP; Z/2)

In this chapter we use the fibrations

BO x G/TOP —— BTOP —— B(G/O)
12.1
BTOP - B(G/O) - B20 x B(G/TOP)

of Chapter 10.A and their Leray-Serre spectral sequences to obtain a description
of H.(BTOP; Z/2). Effective calculations in the spectral sequences of 12.1 re-
quire information on the mapping Bs: B(G/O) » B(G/TOP). Specifically, the
calculation of H.(BTOP; Z/2) requires knowledge of the induced map (Bs), in
mod 2 homology. However, for the calculation of the mod 2 Bockstein spectral
sequence of BTOP in the next chapter we will need 7, 2) integral information
as well. In part A below we review the results from [35 and [78] which complete-
ly characterize the map Bs: B(G/O) -» B(G/TOP)[2].

In part B we obtain H,(BTOP; Z/2). This gives a (non-geometric) description
of the unoriented topological cobordism ring in dimensions # 4 since

12.2 NTOP NPl o 1 (B(TOP/O); Z/2), +#4

and H,(B(TOP/0); Z/2) = H,(BTOP; Z/2)/H,(BO; Z/2). (If there exists an
almost parallelizable topological 4-manifold of index 8, then 12.2 also holds in
dimension 4.)

A. The map B(rxs): B(G/0O) » B20x B(G/TOP)
To begin we recall the structure of H,(G/0;Z/2) and
H,(B(G/0); Z/2).

*

)This chapter and the next are highly technical in nature, and the reader is
advised to first glance through them to see if there is a pressing need to learn
the techniques outlined here.

223
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THEOREM 12.3. H,(G/0;Z/2) = Ple,,e,, -, &,;, -1 @
P{x(il’m'ir)lo <iy Sig <<y, 12 2}, where deg(e,;) = 2i and

. . 1.
deg x(il""'ir) =i; + 212 4ot 2 1.

Indeed, in 12.3 % is the image in H,(G/0;Z/2) of the element
ail Qir-z(Qir—lQiru] *[-3]) from 6.25 under the natural map SG - G/O
and e,; is the image of QyQ;[11*[-3]. Theorem 12.3 follows easily
from 6.25 using the Leray-Serre spectral sequence of the fibering
SO -» SG -» G/O.

The Leray-Setre spectral sequence passing from G/O to B(G/0) is
totally transgressive and after taking account of the Dyer-Lashof opera-

tion Q, in H,(G/0;Z/2),
Ay, ip) = Xa,ip, i
Ql(eﬁ) =0

we have

THEOREM 12.4. H,(B(G/0);Z/2) = Elf,, fg, -, f5; 4, 1@

P{yi’jl 1<i< j}@P{y(il’m’it)l 1>2,1<4§; <iy << i}, where

- 1’

deg(yl) =14+ + 2y 4+ 251  and each y; is the suspension of the

r
corresponding x; in 12.3 as are the f2i+l of e,;.

(Alternately, the structure of H,(B(G/0);Z/2) follows from 6.26
upon using the Leray-Serre spectral sequence of BO - BG - B(G/0).)

The suspension
0yt Hy(G/0; Z/2) > H,(B(G/0); Z/2)

maps onto the generators of H,(B(G/0);Z/2). The image of o, consists
of primitive elements, so, as a Hopf algebra H_(B(G/0);Z/2) is primi-

tively generated.
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The subpolynomial algebra Ply, |{(I) > 2}, where {(I) is the number
of entries in I, will play only a minor and isolated role in our calcula-

tions. It is annihilated by the map
B(rxs): B(G/O) » B20x B(G/TOP)

and survives as a polynomial algebra in H (BTOP; Z/2). The non-trivial
phenomena take place in the subalgebra P{---,f,; ;,-~-1®Pl-,y; 5, 1.
This is closed under the action of the Steenrod algebra by 6.11 and
because the suspension o, commutes with the Sqi. In particular we
note that

2a+1
9, % (fy541) = O

12.5 .
Sqia(fziﬂ) = (l:aa)f2i—2a+1 .

Let ¢,;,q € H2H1(B(G/0); Z/2) be dual to f,i;1 in the monomial

basis given in 12.4. From 12.5 we have

LEMMA 12.6. The ¢,; , are contained in the submodule over the Steen-

rod algebra with generators ¢ . Moreover,
2

1

212 _
Sq (¢2j—l) = ¢2j+1_3

and the ¢,; +1 are contained in the submodule over the Steenrod algebra

with generators ¢ . .
233

REMARK 12.7. Recall from Chapter 3.D the detecting subgroup V, I, 24

and consider the composition

0
By, 2L, B3, *.s6-".G/0

« is injective on the image of

(6,98BD), and that its image is the subgroup spanned by the elements e,;

where 04 = i4 *[-3]. We note that =
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and x; i So, the most interesting part of H*(G/O;Z/2) is detected on
BY,.

We now review the necessary Z(Z) integral information.

Rationally, the space B(G/TOP) is a product of Eilenberg-MacLane
spaces and its rational cohomology is an exterior algebra on generators of
dimension 4i+1. Since TOP/O has finite homotopy groups
B(G/0) » B(G/TOP) is a rational equivalence, so

12.8 H*(B(G/O); Q) = E{:b-s, ags "'y$4i+1: "'}

where each 55 4i+1 1S a primitive generator. The suspension o* passing
from the rational cohomology of B(G/O) to the rational cohomology of
G/O maps the primitive generators monomorpﬁically.

Let a: BSO - G/O[2] be a solution of the Adams conjecture as in
5.13 (with k=3, say) and let y 4n € F,(BSO; Z(2)) be the generator in
the image of the canonical line bundle H: CP* » BSO, that is, the
generator dual to pg . We now fix the primitive generators a 4ir1 of 12.8
by requiring
12.9 <0¥(B41,10,240,)> = +1.

In [74, p. 62 and p. 72] it was shown that primitive elements of
H4*1(B(G/0); Z(2)) are detected by their rational and Z/2 reductions.

Moreover, from (74, p. 74] we have

LEMMA 12.10. (a) Reduction gives a monomorphism

p: PH*L(B(G/0); Z,5)) » PH*!(B(G/0); Q) @ PH*!(B(G/0); Z/2) .
(b) The pair (B4, 1. baiyq) from 12.6 and 12.9 is in the image of p.

. 7 4i+1 .
We define ¢,; , ¢ PH *1(B(G/0), Z(Z)) by

12.11 P(¢4i+1) = 4i41°Paigr -
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In Chapter 7 we proved that B2(G/TOP)2] splits as a product of
Eilenberg-MacLane spaces. In particular there are primitive fundamental

classes
1212 ky_; « PH*=1(B(G/TOP); Z/2), k,;, ; ¢ PH**1(B(G/TOP); Z ,))

but there are many possible choices for such classes. We must specify
the k4i—-l and k4i+ ) C
surgery classes of H*~%(G/TOP;Z/2) and H*(G/TOP; Z,y, cf. 4.9
and 4.32.

This is easy for the k,; ,. Since G/TOP[2] is a product of

Eilenberg-MacLane spaces it follows from 7.2 that

4 so that they are properly connected to the universal

o*. PH4-1(B(G/TOP); Z/2) -~ PH*2(G/TOP; Z/2)

is an isomorphism. We choose k,; ; to be the unique class with
o*(k4i__l) = K, o, where K,. , is the class defined in 4.9.

For k,;, ; things are harder, since the suspension homomorphism
o*: PH**1(B(G/TOP); Z ) » PH*(G/TOP; Z,))

is not surjective. Let K,; ¢ H4i(G/TOP; Z(Z)) be the universal surgery
class from [91], and let

1
12.13 k4i = 8—i-Si(8K4,8K8,“',8K4i)

be its primitive form (see Chapter 9.C). It is an open question if kj,;
itself desuspends. However, in {78, p. 299] we proved that the image

of the composition

*
Totsion PH*(G/TOP; Z ) — PH¥(G/TOP; Z/2) = PH*(G/0; 2/2)

is contained in Sq1 Image(s™®).
The double suspensions
o*oo*: QH+2(B2(G/TOP); Q) » PH*(G/TOP; Q)
o*oa*: QH42(B2(G/TOP); 7/2) » PH*}G/TOP; Z/2)
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are isomorphisms, and it follows that there exists a fundamental class
kyiyp € HH2(B2G/TOP), Z ) with o%o0™(k,;, ) ®Q = k,;©Q and
such that the Z/2 reduction of o*oa*(k4i +2) — Ky
H*(G/0;Z/2). We then set L a*(k4i+2). Note from 12.4 and 12.10
that (Bs)*(k4i +1) is a well-defined element ofA PH4i+1(B(G/ 0); Z(Z)) .
With these choices of k k

maps to zero in

4i1 K431 and &, we have the follow-

ing main result

THEOREM 12.14. The map Bs: B(G/O) » B(G/TOP)[2] is characterized
by the properties:

@ (BS)*(kyj, ) = 2207 “iq;4i+1
(ii) (Bs)*(ky; 1) = 0 if a()>1
(iii) (BS)*(kyy 1) = b4iy i a@®=1

where a(i) is the number of non-zero terms in the dyadic expansion of i

and u; a unit of Z(2)'

(The actual multiple of <;.'; 4i41 N (i) above is
(Z—Ii)" 221-1(2i-1_y (32i—1) Bzi/ 4i which has 2-adic valuation equal to
a(i)1.)

Proof. By 12.10 it suffices to check with rational coefficients and with

Z/2 coefficients. The rational calculation follows from 4.22 and 5.13

since the primitive series for the £-genus is

P® - 3 € [2.2%—_1)] B, /4n 2"

and since the suspension passing from PH4i+1(B(G/0); Q to
PHY(G/0; Q) is injective.
With Z/2 coefficient the result essentially follows from [35, p. 134].

(The only difficulty is to see that [35, (9.1) (iii)] implies that s*(k2 i+ 2)
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is dual to e . But this follows since in H*(QSO; Z/2) we have for

2H1_,

all s,t>1 with s+t= 2i*+1_2 thé equation

. - e
QTN *QI+[-3) - 2 1Q2 1 11+[-31+ 3 a, @11 +[-2 V1))

(modulo decomposable elements in the composition product). The equation
(*) is a (non-trivial) exercise in mod.2 binomial arithmetic, using 6.8,
6.11 and 6.18, but we leave the details to the reader.

Finally, we must calculate the induced map
(Bn*: HY(B20; Z,,,) » H¥(B(G/0); Z,)) -
First, recall that
H*(B%0;Z/2) = Elv,, vy, -}

with Bockstein relations Sql (v2 i) =Voirl- Therefore, in the Bockstein

spectral sequence we have
E; = E, = Elvyvg, -, vivaip -

The 2-torsion is all of order 2 and the free part F*®B%0; Z(2)) is an ex-

terior algebra in primitive classes h The next result completely

4i+1 "
specifies (Br)*.

THEOREM 12.15. (Br)* is zero with Z./2 coefficients and
(BD*(hy;, 1) = G*L-Dy;, ;-

Proof. Consider the fibration sequence

BO — BG —_, B(G/0) B, B20..

Since p, is surjective with Z/2 coefficients (Br), is the zero map,
and we are left with the rational calculation. But here one uses (as in the

proof of 12,14) that the composition
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Bo 2. G/0[2] -, BO
is ¥3-1. This completes the proof.

REMARK 12.16, In 5.18 we gave the splitting of G/O[2],
axi: BSO[2] x cok J, =, /o2l

where cok J, is the fiber of e: G/O[2] » BsO®[2] and BSO[2] is mapped into
G/O [2] by a solution of the Adams conjecture, cf. 5.13. It is of interest to com-
pare the natural map s: G/O [2] » a/TOP[2] with this splitting,

As above, let K, ¢ H¥" G/ TOP; Z(2)) be the class from [91] and let
K 4n € H4n(G/T0P; Z(2)) be the class from [103]. Their difference was calculated
in [34],

> 2
PRAIED ¥ L. L L P
n=1

i=0
where K, , is the class in 4.9. It is surprising that i*s*(K4n) £0 in

H4n(cok J2; Z(Z)) when a(n) = 2. In contrast i*s*(f(‘m) =0 forall n>1 and
in fact from [77, p. 191], we have

12.17 $*®yy) = e* ° 05 by )

where Ya! BSOe[Z] -> BSO®[2] is the H-equivalence also considered in Chapter
9.B, and ph1 a1€ H4n(BSO; Z(Z)) is the class whose rational reduction is

22“’_2ph4ll and whose Z/2 reduction is X(Sq4n"4)(p4). Note also from 12.17 that !

a*s*"(Ry) = phy g -
For a particular solution of the Adams conjecture it was proved in [34] that
2" .
k% _ i 2%
as (Kzf'_.z) - 2 2 t“ Y
u,v i=0

where we consider H*(BO; Z/2) as the symmetric functions in the variables
ty, ty,**, cf. Chapter 1.B. Finally we remark that i“s"‘(K2t 2) £0 in

e s s T ey Bhin o i
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H*(cok J 9 7./2), and is spherical if and only if there is a stable homotopy class

in 75 % with Arf invariant one.
22

B. The Leray-Serre spectral sequence for BTOP

We consider 3 elementary model spectral sequences

E} .= ElfjeElz}, degf)=2m1, deg(z)=2n
12.18

d2n+1(f) =z.

Then E2™2 _ E* _ E{fz} and the picture of 12.18 is

e

The next model is

Ei « = Plyl®Elzl, deg(y) = i+2j+1, deg(z) = i+2j
12.19 ’
bjris1 () = 2

with picture
ZI\ozy ozy?  ozy°  zy*
y y2 v oyt y°

Here E21*+2 _ g™ _ E{yz}eP{y?}. Finally we have
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E2 , = TiyleElz}, deg(y)=r, deg(z)=r1
12.20 '
4=z, 40,00 =7,z .

Here E7, =0 and the picture is

0zy,(¥)

\\\

yz(y) y3(y)

THEOREM 12.21. The Leray-Serre spectral sequence for the fibering ]
BOx G/TOP » BTOP - B(G/O) is a tensor product of the two models :
12.18, 12.19 above and models with no differentials. Hence its E®-term

has the form

E” = H,(BO;Z/2) @ Ply} ;|0 < i< jl®Ply |length I> 3}
® Ef-.- 21+1d(f2i+l)"°" yi,jd(yi’j)’...}QL
where L is the quotient of H (G/TOP;Z/2),

L = H(G/TOP; Z/2) // El-+, s,(e5;), -+, 4(x; 5), -+

Proof. (E} ,,d") is a spectral sequence of Hopf algebras and the trans-
gressive differentials are determined by d'(yl) = qS*(xI) where ¢ is the
composition

é: G/O — BOxG/TOP %%, BOxG/TOP .

This follows upon comparison with the spectral sequence passing from
H,(G/0;Z/2) to H,(B(G/0);Z/2). Now the lowest differential d,
certainly has a primitive image and so must be transgressive. Moreover,
since Im(¢,) C H (G/TOP) the the image of the differential is an exterior
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generator. Thus we obtain one or the other of our two models and can
write E = M®P where P has trivial differential and M is a tensor
product of these models. But now note for filtration reasons that zy or

zf must be an infinite cycle and no differentials can hit it, again for
filtration reasons so it survives to E* and we can write

E 1= Elzf, .--}®#Q where Q is a tensor product Ef:.-,f, ~--¥°P{"~,y1, oo
from the base with H_(BO; Z/2)0Gl,+1 from the fiber. We can now repeat
the argument above and 12.21 follows.

The above result gives the additive structure of H (BTOP;Z/2) and
most of the ring structure. However, to obtain the full ring structure we
must argue that the elements f,, +19¢5; +1) and yi,jd(yi,j) which are
exterior in E* can be represented by exterior elements in H,(BTOP;Z/2).
To this end it is more convenient to look at the Leray-Serre spectral

sequence of the second fibering in 12.1,
BTOP - B(G/O) » B(G/TOP) x B20 .
In fact, we can disregard the factor B20 and instead look at the fibering
12.22 B(TOP/0) » B(G/0O) » B(G/TOP)
since it is easily seen that
H(BTOP;Z/2) >~ H,(BO;Z/2) e H,(B(TOP/0);Z/2) .

But B(G/TOP){2] is a product of Eilenberg-MacLane spaces so
H*(B(G/TOP); Z/2) is a polynomial algebra on primitive generators.
Dually, H,(B(G/TOP);Z/2) is a divided power algebra,

12.23 H,(B(G/TOP); Z/2) = T{---,(Sa'k,p, V¥, -1 .

Among the generators in 12.23 we have the elements y((.Bs,.:(f2 i +1)) and
y(Bs*(yi’j)) and these transgress in the Leray-Serre spectral sequence of
12.22 to elements “f2i+1 df,;,,”’ and “yi,jdyi,j” in H (B(TOP/0);Z/2)

which represent f2 ir19f54,1 and Yi,jdyi, i But then, using the coalgebra
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structure, or equivalently, by dualizing to the cohomology spectral
sequence of 12.22,
g2 0P (BS) (i) = “Bpip1dhysyy”” - (B, (Epip )

12.24
disa i (B, D) = vy 5 dyy ;- (B, ) -

In particular we have
daipa(Epzpy - dhyiyy - ¥(Bs, (655,00 = O

iraj (V1,157 VB, ) = O

and hence
(“f2i+1df2i+l”)2 -0 (“yi,jdyi,j”)z =0.

We have proved (see also [35]).

THEOREM 12.25. H(BTOP;Z/2) is isomorphic as an algebra to the E™
described in 12.21.

REMARK 12.26. It is not hard to carry the discussion further so as to
show that the Leray-Setre spectral sequence of 12.22 is a tensor product

of the models 12.20 and models with no differentials.

REMARK 12.27. The description of H(BPL;Z/2) is analogous but
slightly more complicated. The difference arises since H,(G/PL;Z/2)
is no longer an exterior algebra. Indeed, we have s*(e2)2 # 0 as one can
see from the footnote to Theorem 4.32. The action of the Steenrod algebra
generates further exotic products of the form" s(,,‘(ezi)2 #0 and

s*(xi’j)2 # 0 but all 4’th powers vanish. For such exotic products the
associated terms fdf and ydy in 12.21 would not appear for BPL.
Further, of course, the L-factor would be smaller. We leave the details

to the reader, who might also consult [35].

e N TR e ot 2 e



CHAPTER 13
THE BOCKSTEIN SPECTRAL SEQUENCE FOR BTOP

In this chapter we complete the 2-local analysis of BTOP by calculating its
mod.2 Bockstein spectral sequence. The results imply a calculation of
Fy(BTOP)®Z,, and QTOP /14; as described in Chapter 8 and Chapter 10.C. In
principle, they also give the 2-torsion structure of the topological (and PL)
cobordism groups in dimensions ;é 4. This is exploited in Chapter 14,

The calculation is based on various ‘universal Bockstein relations,’ the proof
of which are given in the Appendix.

We refer the reader to [23], [74] for the definition and standard properties of
the Bockstein spectral sequence. Here it will be denoted (E:,ar) to avoid con-
fusions with the Leray-Serre sequence. The El-term is H(X; Z/2) and the
E”-term is F,(X)®Z/2.

A. The Bockstein spectral sequences for BO, G/TOP and B(G/O)

LEMMA 13.1. In EL(BO), 0, (x,;) = x5; ; and EZ=ET = Pfxg,m,xgn,"

To give the Bockstein sequence for G/TOP we need two models. The
first we write
13.2 (EfxleIty}, r)

where deg x is odd, degy isevenand J,(y) = x. Here I'ly} is the
divided power algebra on y tensored with Z/2, that is, the Hopf algebra
dual to P{y*}. Consequently, as an algebra

Ty} = Ely}eEly(y)ie - e Elyiyie - .

The differentials are given by

235



236 THE CLASSIFYING SPACES

9.6 = xy -y v .

So EF1_-EY-17/2.

The second model we write
13.3 (ixleElyl,

where deg x is even, degy isodd and J (y)==x. Then E:"l =
Tiy(x)} @ Efxyl, r+1) and the model keeps replicating itself,

ESY - @y GoleElyry( -y @) e ).

We have the following well-known lemma (see e.g. [23])

LEMMA 13.4. a) The B.S.S. for K(Z,2n) is

ey e @ (Elxle Ny, Do @Tix;ieEly;l, 1)
I J

for suitable indexing sets 1, J.
b) The B.S.S. for K(Z/2,2n) is

® (EfxjeTiyl, e @Tix ieEly 1) .
I J
In the first case E =T, } and in the second case EY =17/2.

To give the Bockstein sequence for B(G/0O) we need 3 types of

models. The first is

M; = Elfy;,38 ® Plyy 9,4}
13.5

9101,2i41) = fai43 -
Then Ei = E{fy}eP{y?} and 32@2) = fy. In general E] -

-1 -1 r-1
Eify? ~HePly?™ !} with 9% )=fy? .
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The second model is

13.6 Nl = P{yl, yll , y(Z,II)’ Tty Y(g,...’z’xl)y e}

. 2 2
w;th ai(yll) = yl,al(y(z’ll)) = yll’al(y(2,2,ll)) = y(2’11) etc. Then
E{=Ey =7/2.
Here we take the sequences I = (il , o, ir) with

13.7 i = 1(mod 2) and ip = 0 (mod 2),

and we have I, =1+ (1,0,---,0).
The third model is

13.8 QI = P{YI' yIl,Y(z,l); Y(2'2'I): tty y(2,"‘,2,1)’ e}

. 2 2
with al(yll) = yl,al(y(z’l)) = yl,al(y(z’z’l)) =Y, etc Then

2 2 2
Ey = Elyyy +0,pl®Plyg 10,07 =y +va,n =2,

r r -1
and in general Ef,‘fl = E{zyzr_I}GP{yz } with 3r+1(3'2 )=zy?

whete z=2z; ; y=y; . Here the conditions on I are
1 1

13.9 ij =0 (mod 2) and ip=1 (mod 2)

The final model we need is simply Elf,; ,} with trivial differentials.

From [74, p. 72] we have

i+1
THEOREM 13.10.

EI(B(G/O)) = E*f '”"f4n+l"“§® ® Mio NIQ QJ

i>1 :

where i> 1, I, and ] run over sequences satisfying 13.7 and 13.9, and

the differentials are as described above.
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B. The spectral sequence for BTOP

The starting term of the spectral sequence is given in Theorems 12.21
and 12.25. For convenience we let hj ; ¢ Hy; +3(BTOP; Z/2) and
hi, i€ Hy; +4j +3(BTOP; Z/2) be exterior generators which reduce to

13.11 ho i = faiy1 iy s By 5=9;;405 7

in the E*® term given in 12.21. (This, of course, does not completely
specify the elements; the indeterminacy consists of exterior terms of
lower filtration in the Leray-Serre spectral sequence used in 12.21.)

We first determine the 6‘1 differential. On most of H,(BTOP;Z/2)
it is determined by what happens in BOxG/TOP or B(G/0). The

places where things change involve the h. . and the y-2 -
1’] llJ

LEMMA 13.12. a) Let i be odd and j even. Then
2
00 P=hyy and Oy =Ty

where Jj ;€ ImG,: H,(G/TOP; Z/2) » H, (BTOP; Z/2)), say
Ji,j = j*(j i,j)’ and al(i i,j) is a non-primitive decomposable in the ideal
generated by the elements s,(e,;) and s*(xi'j).

b) Let i be evenand j odd. Then

al(hi’j) = Li,j if i>0
2 . .
0101, = hyy,j 120,
where Li,j = 3*(Li,j) and tﬁ(ii,j) = S*(xi,j)es*(xi,j) with i‘i,j surviving

2
to EL.

LEMMA 13.13. 9,(hg )= 0 if j#2' and 0,0 i) =K ispr where

K is the image of the spherical generator of H 42 (G/TOP; 7/2).
2

2 i+2

We defer the proofs of 13.12 and 13.13 to the Appendix.



THE BOCKSTEIN SPECTRAL SEQUENCE FOR BTOP 239

COROLLARY 13.14.%

EX(BTOP)= @ Plyf leEln, ;v}
i odd
®P{y? |i, i, odd, length 1> 3}®Elz i, ,i, odd, length 1> 3}

@F{y(Ll ])l i>0, even, j odd}®E{L; |i>0 even, j odd}

i,j 1]
elly(J; j)| iodd, j even}@E{]i’- i1 j‘ iodd, j even}

@F{y(K2r+2)| r> 0}@E{K2r+2 h0'2r| r> 0}

® @IV e EiWL}
R

®Pixj, -, x5;, - 1OTIK,; 11 £ 2@ Elhy ;1] £ 27 .

In 13.14 the Vg come from H,(G/TOP;Z/2) and have dimensions
= 0(4). Also the WR come from H,(G/TOP;Z/2) and az(wR) =V
The elements xgi and K 4i come from Ei(BOx G/TOP) where they
represent infinite cycles surviving to E:’: . Hence, the same must be true
of the images, which, though there may be differentials hitting them, can-
not themselves have any non-zero differentials. Also, the z; above are
merely shorthand ways of writing the Y1-(1,0,--)' Y1+ ¥(2,1-(1,0,-++)) &S
in 13.8.

As far as the Hopf algebra structure of E? is concered the yI2 ,

y‘i‘,j' Y(Li,j)' V(Ji,j)' Vr y(K2t+2)' and K,; can be assumed primi-

tive. We may also assume all the exterior generators are primitive for
dimensional reasons. But the y'(VR) , I“"I(Ll l) y™1(. i ]) Y'“(K
and y (K4J) are not primitive when r> 1.

We now turn to the higher differentials in the B.S.S. First, note that
most of the higher differentials for BTOP are determined for simple uni-
versal reasons (compare with the models 13.3, and 13.8). Indeed the
only problem left is to determine the higher differentials on the ho’ j with
j£ 2.

The proof of the next lemma is given in the Appendix.

")’l‘hc clussos Vi x‘ hore are not to be confused with the classes on page
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LEMMA 13.15. There is a space Y4j for j not a power of 2 and a

mapping
Aj: BTOP - Y4j

with Aj*(ho,j), Aj*(K4j) and Aj* N4j) all non-zero and

as()\j*(ho’j)) =0 if s< min(4,a(§))

0, (\uthy ) = Aay) il a()-4< v,

z\j*(N o H a®-4>v,0)
MKy e Ng) it al)-4=1,0),

[t}

where = min(a(j), v,(j)+4) and N4J € P{xg . ,le,'--}. Moreover,
Y 4j is the total space of a fibering, the map A. ; extends to a map of the
first fibering in 12.1 and in the map of Serre spectral sequences the image

of ho’ j is non-trivial.
So far the classes h i have not been specified completely. We have,

COROLLARY 13.16. The elements h, 0,q can be so chosen that 9 (h )
belongs to the quotient of T'{---,K,,--}®P}{.. 21, -~} in Er(BTOP)

Proof. Since hg q is primitive,
’

ar(ho,q) = 2 ER }’r_z(vk) + 2 Sij )’t_l(Ji,j) + 2 tij )’r—l(Li’j)

s

+0K4j+0N4j+ 2 Ei,jyi,j .

i odd

s
(The remaining yI2 all map nontrivially to Ef(B(G/0)) where either a
differential is non-trivial on them or they survive to E;*'I(B(G/ 0)).) But
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3, (Wg Vg -+ ¥ 3(VR)) = ¥y 2(Vp)
Byl Ly oy ALy ) = YLy )

9plh 5J; 5 ¥ 2y ) = Yy
so changing ho’q by

13.17 S egWg ¥ (V) + 3 sijhy gy )

-2
+ 3 tighy 5oy AU
reduces us to

— s
13.18 dylhy o) = 0Ky + Ny > iyl
i odd

(Note that the term 13.17 has strictly smaller filtration in the Leray-Serre
sequence for 12.1 and so lies in the indeterminancy of ho,q' Thus it
does not affect 13.15.

Now, assume 13.16 is not true. Then there is a smallest j so it fails
and we consider this differential. If in 13.18 6 or & is non-zero, then
r=a(qg) or v,(@ + 4 whichever is smaller. If r=v,(q)+ 4 then all

powers of the Yi2 j will have been used in lower differentials except

2V2 (Q+4 ] ”2(q)+5
Vi which have degree divisible by 2 contradicting that

deg(d,(hy q)) = 4q.
Hence we can assume r=a(q) <v,(q)+4. In this case 6 £0, =0

and

r+14A(,j)
13.19 0 = [9,(hy, cl)]’~’ = Eéij yg’j

in Ef:'l since Kﬁqz 0. As AG,j)> 1 forall ¢; j;é 0 we may write

13.19 as
1A, )-85\2° s
(Sl ) -V
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where at least one A(i,j)=s and V is an indecomposable in Eff 1. Now

we follow the spectral sequence s steps to Ef*S*!. Here we have the

primitive element 8r+1(V) .V.V2.. st_l , Which for dimensional
reasons must be an infinite cycle and only K,; or N,; can hit it. But
these are known to be infinite cycles also, so it survives to E:f' non-
trivially. But this is a contradiction since H_(BTOP; Z)/Tor has no odd

dimensional components.
It remains to consider the case where 6 = § = 0. But here we obtain

as in 13.19 PG 5S s
2 ! 2
9o, o) = [E ijYi,] s] =V

where A(i,j)> 1 forall i,j and s =A(i,j) for at least one pair, and here

again the a}gument proceeds as above. This completes the proof.

We now state the main result of this section

THEOREM 13.20. In the Bockstein spectral sequence for BTOP (at the

prime 2) the map
E*(BOx G/TOP) » E®(BTOP)

is a surjection.
Proof. From 13.16, 13.14 and the remarks following 13.14 we see that
4
Ply{ j}oEih; ;37 JoPly?loE(Z e
ClyLy, 2. yUy, P, VRIOELh 5Ly 5 by 55 50 Wl
form a sub-spectral sequence converging to Z/2 and
2
13.21 ®TIK,;}oPlxj;}® Elhy ;)

forms a second sub-spectral sequence converging to H,(BTOP)/Tor®Z/2.
Moreover, 13.15 implies that each ho' j ultimately has a differenfial on it
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which is non-trivial, (This statement will be verified in detail in part C
below.) Hence E®C l"{m,K4i, ~~-loP{-~-,x§i, .-} which is the theorem.

C. The differentials in the subsequence 13.21

It is useful for studying the torsion in QIOP(pt) to exactly determine
the differentials in 13.21. The calculation is (not surprisingly) very close
to that in the proof of 10.9.

DEFINITION 13.22. Let A, for n odd be the DG-algebra over Z(2)

An = ® P{qn,iwnKn,in{En,i}
i>o0

with derivation inductively determined by

. i
Ben,) = MKy ;- 2Py g+ ) -

(Here q,,; and K, ; both have dimension 224 )

We calculate the Bockstein spectral sequence for A, as follows

PROPOSITION 13.23. If a(n)< 4 then

s : s
Ey = l:’{qn,O’ qn,l""}QE(l)
where

EL. = E#™ _ K

= B 18 Ele

n,0’ Kn, 1/ n,o’en,lr“'f

aa(n)(en,i) = Kn,i :
Proof. We can write
. i
ey ; = ?(“){Kn‘i» 2- 23“"(“)(2‘qn'i+ et qi’o)i

but the elements in the brackets can be taken as new divided power

generators replacing the K, i
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PROPOSITION 13.24, If a(n)> 4 then
a) if s+4<a(n):

ES*4 - I'{K_ ., -, K }o K K

0,00 " Ko g(n)-4 n,a(m-3’ Knamy-2+ 1@

P{an’slqn’s_‘_l) “'}®E{ En,s’gn,s+1’ "'} .
b) if s+4>a(n):

s+
ES** = TUKp o, K g(ny-a}®Plan g(n)-3> In,a(ny-27 19

oI} ys+4—a (n)(K s+4—a(n)(K

n,a(n)—3)’ 14 n,a(n)—2)’ L

(s) (s)
E{En,a(n)—3"n,a(n)—2’ b
Moreover, in case (a) 384_4(?“’5) = an,s and aa(n)(é_n,a(n)—4+j) =

In case (b) 9 st4-a(n)g

(s) -
Kn,a(n)—4+j . s+4(5n,a(n)«-i) =Y n,a(n)+i)'

Proof. Note first

n 4
deq,0 = 2 )Kn,o"2 9,0

n
_ oa(m) 5
a(sn,l_qn,oen,o) =2 (Krl,l'qn,oKn,o)'2 9y,
3
a(En, 279%,1En,179%,0 tsn,o)'qn,o En,o) =

(n) 3 6
z XK, 279%,1Kn,1+ (9,190,090 Kn,0)- 279y 2
and by induction for i < a(n)-4 we can find a polynomial

i-1

Pi= tni* 3 Afllno " %, i1)en,j
j=0

with

i-1

n 4+i
ey = 2VK, 1+ Y Aflan oo 9n i) K - 24 ey 5 -
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For i>a(n)-4 we can find polynomials

a(n)—4

9 = &pit Bj(qn,o’ T qn,a(n)—4)en,j
i=0

with
e = 20 [Ky i+ 3 B0 0 a0 Kn, i P amy-s 9,9 -
Now an easy change of basis gives the proposition.

Finally, we point out that similar calculations can be given for the

subspectral sequence 13.21 using 13.15 and we have

THEOREM 13.25. The subspectral sequence 13.21 is isomorphic to

® E:(An) when the structure of Ei(An) is as given in 13.23 and 13.24,
n odd



CHAPTER 14
THE TYPES OF TORSION GENERATORS

In this chapter we summarize briefly the constructions of various types of
torsion generators for Q*PL. Those discussed in Section B coming from relations
involving the Milnor manifolds seem intriguing, Next, we apply these construc-
tions to obtain information about the unoriented bordism rings T(,I:D and J'(fL.
Finally, in Section D we summarize some work of Ligaard, Mann, May and Milgram
on the structure of odd torsion in QPL*(pt) .

A. Torsion generators, suspension, and the map n
In 8.1, 8.2 we defined the map

7: Q,(G/PL) » QFL
which restricts to define

n:Q,(G/0) > Q, .

We note the naturality property of g which follows from 8.3

LEMMA 14.1. The diagram below commutes

Q,(G/0) —t—s

o

i* ' j
Q,(G/PL) ——= QFL

where i, is induced by the natural map of spaces and ; is the usual

inclusion.
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We have already pointed out in Chapter 8 that the only torsion in
Q,(G/PL) is 2-torsion, and that 7 is a module map (where QEL be-
comes an {}, module under 17) and so also is p. The next lemma com-
putes x4 on Tor (,(G/0).

LEMMA 14.2. Let {M,f} ¢ Tor Q,(G/O) then {M}- uiM,f}=0.

Proof. Since p is a homomorphism u{M,f} is torsion in Q. If {M,f}
is odd torsion, then, since there is no odd torsion in ), we have {M}{=0
and {M}=0 in Q, so the theorem is true. If {M,f} represents
2-torsion, we show the Stiefel-Whitney numbers of M, M are equal. Indeed,
vM) = 7*CMD) - 7%/ o). But g, = i*() where j: G/O - BO

is the usual map. However, in mod.2 cohomology j* =0 in positive
degrees, hence W(*(-y)) = j*(W()) = 1. Thus

WMD) = 7*W( M)

and since # has degree 1, the Stiefel-Whitney numbers of M,l;‘l are

equal. But the map
TorQ, » Q, - T(*,

where 71* is the unoriented cobordism ring, is an injection [142] and it is
well known that elements in T(* are distinguished by their Stiefel-Whitney
numbers (cf. Chapter 1.C).

COROLLARY 14.3. If {M,f} ¢ TorQ,(G/O) and {M} <=0 in Q, then

any representative M for wiM, f} is also a differentiable boundary.

Now suppose a ¢ Tor 3,(G/0) and in 14.1 i (a) = u@@) =0, then if
(M, f) represents a and 7: M- M is the associated degree 1 normal
map, on the one hand M is differentiably the boundary of some differentia-
ble manifold W and on the other hand (M,f) is PL normally bordant to
0. That is, there is a differentiable manifold W with dW =M and a map
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F: W G/PL extending f, so W is covered by a normal bordism w
of M to 0. (Here W is a PL manifold and probably not differentiable.)

DEFINITION 14.4. Let a € Tor Q,(G/0) satisfy i,(@)=p,a)=0, then
the ‘suspension’ o(@) of a contained in QI:L(pt) is the bordism class
of Ehe PL manifold W’Uﬁ(—W). It is well defined as a coset of

im(j) + im(n).

LEMMA 14.5. Let a ={M, f| satisfy the conditions above, suppose also
that f*([M]) is an indecomposable in H,(G/O,Z/p) and in the Serre

spectral sequence of the fibering
14.6 G/0 —» BOx G/PL = BPL
there is an element b e H(BPL,Z/p)) with d(b) = f,((M]) then
v lo@) =b+y
where y is in im(m,).
Proof. The PL-normal bundle of W’Ui(—W) is ”*(Vw" F*¢))u vy

where 7: W W is the normal map associated with the extension

F: W G/PL of f. Thus we have a commutative diagram

W’Uﬁ(-W) —Y = BPL

|

W /M —— B(PL/0) .

The rest is now formal from the definitions.

REMARK 14.7. So far we have considered torsion arising from
n(Tor(Q,(G/PL))), which is only 2-torsion since Tor Q. (G/PL) is only
2-torsion and torsion coming from o. Modulo its indeterminacy o(a) is

also torsion (since the indeterminacy contains the torsion free parts), but
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here we obtain odd primary torsion as well and 14.5 shows that a large

number of odd torsion generators can be constructed in this way.

The third type of element arises in case a ¢ Q,(G/O) is odd dimen-
sional but i (@)= B#0 in Q(G/PL). If BZ2=0 in Q,(G/PL) we

obtain the diagram of degree 1 normal maps
. j
14.8 ‘ l
w

where MxM = dW, MxM = 0W. Of course, for G/TOP the same diagram
14.8 holds in dimensions > 5 as well. As in 14.3 we can assume M is
differentiably a boundary, M = ON so we can construct the oriented
manifold

149 MxN Uﬁxﬁ(_w)

and the bordism class of this manifold is well defined up to an element

in im(n).

REMARK 14.10. The manifold construction 14.9 corresponds to the
homology construction hi,j(i odd) in 13.11, and it is not hard to see that

the Hurewicz images correspond as well.

There are two other types of generators in the 2 primary part of QEL(pt)
obtained by considering the torsion part of the diagram in 14.1. They correspond
to the classes Jij’ Lij in 13.12. Since the chain descriptions of these classes
are quite involved, we don’t attempt the construction here.

B. Torsion coming from relations involving the Milnor manifolds

The remaining torsion generators which we are about to discuss occur
only at the prime 2 and occur because in dimensions of the form 4n for
which a(n) - 4<v,(n) the Milnor manifold M3 and its divided powers

can rationally be expressed as polynomials in the differentiable torsion
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free generators, and decomposable expressions involving lower dimension-
al M*"s and their divided powers (cf. Chapter 8.B, and Chapter 10.C).
What this means is that for a(n)-4< vz(n) there is a polynomial P
in torsion free generators so that M4" _ P represents torsion in the PL
bordism ring. We use the results in Chapter 13 in particular 13.24 to
determine the order of M- P by looking at its Hurewicz image in
H,(BTOP,Z/2) which is clearly the image of K 4n and the torsion

order of this element is 2% so we have

THEOREM 14.11. There is a polynomial of the form (M*"-P,) with

¢ odd and P, involving only the torsion free generators so that modulo
decomposable torsion the order of (eM4n-Pn) is 220 p Q;I“OP (pt) for
a(n)-4< "2(“)'

Moreover, in Qf L(pt) the same expression has order

2M  for  gn)>1
4 for a(n)=1.

(The first statement follows from 13.24. The second from the fibering
BPL - BTOP - K(Z/2,4) when we calculate the resulting Serre spectral sequence
and compare it to the Bockstein spectral sequence.)

Here are two specific examples to illustrate 14.11. Rationally, ™8
has the same Pontrjagin numbers as 200(CP2 x CP2)_ 144 cP% -
8(25(CP% x CP2)- 18 CP%). (Notice that the Hurewitz image of
(25 CP2x CP2- 18 CP?) is the smallest multiple of the integral primitive
sg in HS(BO, Z)/Tor which is represented by the normal map of a differ-
entiable manifold, then check indexes).

Also, since the group of homotopy 7-spheres I. 7 = Z/28, 28M8 is

differentiable, so
14.12 4(7M8 - 200(CP? x CP?) + 144 CP%)

is cobordant to 0 in QfL. In fact, from [143] we know this is best

i BRI
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possible. However, in QSTOP we have

14.13 2(7M8 — 200(CP2x CP2) + 144 CP%) ~ 0 .

In dimension 12 the torsion class is found by the same method and
has order 4 in both QI:L and QIOP. Its explicit expression is
31M2- 1620 CPS + 5292(CP*x CP?) + 3920(CP?)3.

C. Application to the structure of the unoriented bordism ring ﬂf D,T(I:L
The ‘‘suspension’’ of singular manifolds used above also gives infor-
mation on the geometric structure of the unoriented cobordism theories
T(I:D and T(l: L of Poincaré duality spaces and PL-manifolds.
First, recall that geometrically 7, (MG) is the cobordism theory of
normal spaces (Quinn [113]) and from [29] that

14.14 7, MG) = NDiff e H (B(G/0); Z/2) .

Let f: M® 5> SG be a smooth singular manifold in SG and let #: M7 M
denote its associated surgery problem. Suppose also that M" and hence
M" are smooth boundaries, M = dW, M=0W. Then W U,W is anormal

space and its normal fibration

v:WU_W > BG

represents the suspension of f*([Mn]) at least in the quotient
H_(B(G/0); Z/2) = H (BG; Z/2) //H,(BO; Z/2). But this ring is generated
by the image under the homology suspension of H,(G/O;Z/2). Thus
7, (MG) is generated by the normal spaces W u,wi.

When #: M™ > M" above is cobordant to a homotopy equivalence then
the class of {\;I U”Wi of course represents an element of )'(}:D C n*(MG).

Let ]
sg : N2HI(SG) » Z/2

be the Kervaire invariant. Every element of H, (SG;Z/2) of degree # 2
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is represented by an element in the keinel of sy and in dimensions at ;
least 5 the associated suspension {W U "W} belongs to T(ED . The !
elements {WU ”W¥ with 7: dW > dW a homotopy equivalence thus gener-

ate a large part of NED but not all as e.g. the product of such an element
with the 3-dimensional normal space D?x st U,TD3 , where 7:S'xS!-s?

is the non-trivial surgery problem, is not necessarily of this form.

We next turn to the PL-case. We have
14.15 NPL - NPiffey (B(PL/O); Z/2)
but this time the suspension
o: H,(PL/0O;Z/2) > QH(B(PL/0);Z/2)

is not surjective. However, the remaining generators are in the image of

the natural map
jy: Hy(G/PL; Z/2) » H(B(PL/0); Z/2) .

Using smoothing theory instead of surgery theory one sees that ele-

ments of Im(o) are represent'éd by compogites
WU, W - BPL —> B(PL/0)

where W and W are smooth manifolds, =: oW > oW a PL-homeomorphism
and v denotes the PL-normal bundle of W u,w.

Every element of H_(G/PL;Z/2) (of degree at least 5) can be
represented by a smooth singular manifold f: M® > G/PL whose associ-
ated surgery problem #: MR MP s a homotopy equivalence. In fact, the
non-spherical classes can be represented by products of real projective

spaces. But ;
M" 2, BPL — B(PL/0)

is exactly j,(f,[M"]) and we therefore have
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THEOREM 14.16. NPT is multiplicatively generated by manifolds of the
following two types

a) Homotopy triangulations of products of real Projective spaces.

b) W U”W, with W and W smooth and m: oW » OW a

PL-homeomorphism.

D. p-torsion in QEL for p odd

In recent work [l 58], [l 59], [160], much progress has been made in studying
the structure of the odd torsion in the PL-bordism rings. Work in this area was
initiated primarily by F. Peterson [110].

The basic step is to obtain the structure of H*MSPL, Z/p) as a module
over the Steenrod algebra @p‘ In order to do this, note the formula,

Piauuy = 2 + Pi@yuPiw) .

This implies, by Sullivan’s splitting results 5.12, and 5.20; (since we can assume
the structure of H*(B cok], Z/p) over &p by [86], [139]) that it suffices to know
the action of @p on U in H*Mcok], Z/p).

Preliminary work on this problem was carried out in [140] where Tsuchiya
proved a conjecture of F. Peterson.

THEOREM 14.17 (Tsuchiya). Let Q= 8P, -8, and Q3= in Cfp then the
map

a: @p > H¥MSPL, Z/p)

defined by a(? I) =9 IU has kemel precisely the left ideal generated by QO’ Ql .

Unfortunately, this is not quite sharp enough since we need to actually know
precisely which elements occur as ?I(U), not merely that they are non-zero.

To sharpen this result the first step is to consider the map
MSPL. » MSG

and to evaluate the action of &p in H*(MSG, Z/p) as far as possible.

Next we consider the map
M(G) » MSG
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where the bundle on 2G is induced from the universal bundle on BG by the
usual inclusion 0: 2G » BG. The map A: (@ ) ->H’_ (G, Z/p) defined by

(? I) = *[(? IU) n U] is now analyzed, and 1ts image is shown to lie in the set
of elements primitive under both loop sum and composition. This set is very small
and effective calculations can be carried out. Finally, the desired information on
a is obtained by using the Hopf algebra structure of H*(BG, Z/p), and the rela-
tion of algebra generators to H*(G, Z/p) by o*.

The main technical result of [1 58], [1 59] is
THEOREM 14.18. There exists a sub-Hopf algebra

B = E{V2, Wz, W3, b i ® PP{Qo(Vz)v Ql(vz); !3, "'}

in H¥*(Bcok J, Z/p) so that
(M) QpQy V=W,
) QW) = QW 1) = QAW ) == Q;_; 0¥ ZQp(V, ) = W, § > 3
(i) Q' (QqV,) = (1 Qp(VP -+ (1@ (VP - Qv )P 1+ (Q)Q0(V,)
: 1 1 1 1 R
(V) Qo0 W) = ¢ "W)™ o+ (Y@ NP W)W, > 2 and Wy =QyV,
™ QY WH=0 r>]
(vi) Qo' Qp(V)N =0 >0

and in H*Mcok J, Z/p), QW) =W;UU j>2.

. i— i—1

Note that inductively Qi = Qi—l‘[})p j?p Qi—l , and Fp{xl, Xo, o} is the
divided power algebra over Z/p (that is, its dual is a primitively generated poly-
nomial algebra).

This theorem is sufficient to obtain the E2 term of the Adams spectral
sequence converging to 7,(MSPL) ® Z_. Unfortunately, there are many differen-
tials, and vastly complex systems of generators. There also appears to be
p-torsion of all orders. However, in low dimensions calculations can be made.

As an example, the 3-torsion in QEL is given through dimension 50 by the

table
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Dimension 3-Torsion in Q*PL
11 Z/3
23 /3y
27 Z/3+7/9
34 Z/3
35 @32 +7/9
38 1/3
39 Zr33+2/21
43 @/3? + 1/81
46 (Z/3?*
47 (Z/3)°

50 7/3.



APPENDIX
THE PROOFS OF 13.12, 13.13 AND 13.15

We begin by constructing some universal models.

DEFINITION A.1. Let B be the fiber of the map

. 28
B,y — s K(Z/2,26:1) 220 "4, K(Z/4,4541) .

2s+1

Note that (2Sq2st)*(/32 R Sq?St1, since Sql(Sq?S¢) = Sq?St! (=2
so 8(Sq%S¢) = 2(:2) on the cochain level and 8 2(Sq®S¢) = 4(%), but
B, 4,y £0€S to %— 8(28q2%%0).

Now consider the fibration

~

A.2 K(Z/4,4s) 2 B, . 3, K(Z/2, 2s+1) .

2s+1

Let y be the fundamental class on the fiber. Then y is an infinite
cycle modulo 2 and we have

LEMMA A.3. There is a cohomology class y"¢ H*S(B 7Z/2) so
0=y and Sq'(y) = *(Sq%S1,g, ).

2s+1’

Proof. There is a cocycle representative for y” with 8(y")= i*(2(Sq280))+ 4V
where ?‘(V) represents 32}'- But Z(qust)+ 4V = 2((qusc)+ 2V).

COROLLARY A.4. In H2S+1(B28+1;Z/2) the fundamental class j*(!)

satisfies (i*.)% = 0. In particular (j*@))? =0 for all
a e HYK(Z/2,2s+1); 2/2).

256
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This follows since (SqIL)2 = qul(t2) in K(2/2,2s+1), and with

2 isa homomorphism. Also, since

mod. 2 coefficients x - x
Sq1 Sq?S. = 2 and qusj*(z) = Sql(y') we obtain the first statement.
Next, we construct a space which is considerably better known (see

e.g. [1], [93D).

DEFINITION A.5. E,  is the fiber in the map
i 2
E,  — K(Z/2,2s) —> K(Z/2, 4s) .

It has the property that in the fibering

~

A6 K(Z/2, 4s-1) -1 B, - K(Z/2, 25)
there is a class ge H4S(E28; 7/2) with J?*(g) = Sql(t4s_1) and

A7 Sql(®) =% Sql e+ Sq?Ssqle), (@ = ¥V ¥ .

Now consider the fibering

A8 H 2L K(Z/2,25+1) x K(Z/2, 4s)

—» B

2s+1 2s8+1

with K-invariants ¢,y". In homotopy a, is an isomorphism in dimension

2s+1, and in dimension 4s,a,: Z/4 > 7/2 is onto, hence Hyg,q is the

Eilenberg-MacLane space K(Z/2,4s). On the other hand, the cohomology

Leray-Serre spectral sequence for the fibering

A9 K(Z/2,2s) x K(Z/2,4s-1) - H - B

2s+1 2s+1

is highly non-trivial. Let 025, 6 4s-1 be the fundamental classes on the
fiber. Then from A.3

Sql6 1+Sq25023 and ®0,

45— t2s+1

are the two lowest dimensional surviving cycles. (Note that trsr1® 025
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occurs in the middle of the grid and Sql 6 as—1 qusel,s occurs on the
vertical edge corresponding to the fiber.) Since st 1= K(Z/2,4s) it

follows that
Sql{5‘11‘94s—1 +847%0, ¢} = feyq,100,8}

LEMMA A.10. Let F>E-B be any fibering. Suppose X ¢ H2StY4(B; Z/2)

is in the transgressive image, (x = d, 1) in the Leary-Serre spectral

S+
sequence for E. Suppose also that

qusx - Squ
with y = d,((z), then Sqlz + SqSy, x®y are infinite cycles and repre-
sent classes A, B in H¥E;Z/2) with sq! (A) = B.
Proof. The situation above in A.9 is universal for these properties.

We now apply a similar procedure using E, . Consider the fibering
A1l F,g » E)g » K(Z/2, 2s)

with K-invariant ¢, . Clearly, F,g is K(Z/2, 4s-1). On the other hand,

continuing A.11 to the left we have the fibration

A.12 K(Z/2,25-1) » Fyg » E,g

with Leray-Serte spectral sequence having as its lowest degree survivors
‘250025—1 and g (where g is discussed after A.6). Also 0,, ; is

the fundamental class on the fiber. Thus Sql{tszG }= g and we

2s~1
have

LEMMA A.13. Let F>E-B be any fibering. Suppose x ¢ H2S(B;Z/2)

is d2s(y) in the Leray-Serre spectral sequence. Also, suppose x2=0 so

x Sq'x + Sq%SSq’x = Sql(g)

in HB). Then x®y and g are infinite cycles and Sqlixeyl- g.
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The proof of 13.12

The classes y; f and f,; ; in 12.4 are dual to primitive cohomology

i+
classes Yi,j and ¢‘2i+1(=Y0,j)' and Yiz,j =0 forall 0<i<j since
H,(B(G/0);Z/2) is primitively generated. In particular when i is odd
deg(Yi’j) is even and we may apply A.13 to the fibering

G/TOPxBO - BTOP - B(G/0)

and the class Y; j and we obtain the first statement of 13.12(a) and the

second statement of 13.12(b) on using the formula

x Sq'x + Sq®S Sq'x = Sq'g

in A.13 to show that y% j is dual to g and reversing arrows on going
’,
from cohomology to homology.

Similarly, if i is even, then
it+2j ly
Sq J(Yi,j) = Yyi,25 = SU Y3 _1,9;

and the conditions for applying A.10 are satisfied. This gives the second
part of 13.12(a) and the first part of 13.12(b).

We need further models before proving 13.13 and 13.15.

DEFINITION A.14. Let M2s+1 be the fiber in the fibration

7

2s
K(Z/2, 25+1) BSI"W, gz 4502y .

Mosi1

Then M,  , is universal for the property that Sq28(¢) be the reduction
of an integral class. We let {Sq2s(t)¥ denote the universal integral class
in H¥t1(M

fiber in

28415 Z). It restricts to twice the fundamental class on the

K(Z,4s+1) - M > K(Z/2, 2s+1)

2s+1

as one sees directly from the diagram
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K(Z, 4s+1) M

2841 K(Z/2,2s+1) ——=K(Z, 4s+2)

A.15 Id {Sq?Si} Sq%S Id

K(Z, 4s+1) —2e K(Z, 45+ 1) —= K(Z/2, d5+1) —Bw K(Z, 45+2)

Dually, the Hurewicz image z of the generator of 7745_‘_1(M2 s +1) is
divisible by 2 and %z is dual to {qusd. Consider the fibration

s
2s+1

A6 F K(Z/2,2s+1) x K(Z&Z, 4s+1)

2s+1 M

where the first projection of ¢ is the map 7 from A. 14 and

pay) = 21 {525}
A17 Vo ()43
X)) = 22 1sq?S}.

Here I,,1, are the fundamental classes of K(Z&Z,4s+1) =
K(Z,4s+1) x K(Z, 4s+1).

LEMMA A.18. Fygi1 = K(Ze Z/Z)‘,(s), 4s) where A(s) = min(a(s), 4+v2(s))

Proof. We check in homotopy using A.15: (¢g), is an isomorphism in
dimension 2s+1 while in dimension 4s+1
(¢S)*: 7> 707

V,(s)+4
is given by ($g),(e) = 225g, 02 2 ) c)=0,i#4s

while 7, (Fye, ;) = coker(gg)y = ZoZ/2XS) and A.18 follows.

g and so 7ri(F2

Now, consider the Serre spectral sequence for the fibering

A.19 K(Z/2,25) x K(Z.®Z,4s) » F, | -~ M

s+1 2s+1 °

Let J;.], be the 4s dimensional fundamental classes of the fiber (with
7./2 coefficients).
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LEMMA A.20. If a(s)> 1, then in the Serre spectral sequence for A.19

I,,1, are infinite cycles on the fiber as is tyq 1®ty¢ in the middle of

the grid. Moreover (,¢ ,®,  represents the image of Bs(Jl) if

a(s) < 4+v,(s), or ﬁs(J2) if 4+v,(s)< a(s), where Bg in each case
is the 2MS) Bockstein.

Proof. Certainly ¢,g 1®t,¢ is an infinite cycle and we easily check
that E_ has the form

APERPX |

——————¢

in total dimensions < 4s+1 with all other positions zero. Hence
thss1®tag Must be the mod.2 reduction of the 24 Bockstein and
A.20 follows.

LEMMA A.21. For each s there are maps

Wg: B20x B(G/TOP) - K(Z/2, 2s+1) x K(Z®Z, 4s+1)
Lg: B(G/O) > M,,,

so that the diagram

B(G/0) B20x B(G/TOP)

Ls Ws

o)
M, .  —K(Z/2,2s+1) x K(Z®Z, 4s+1)

28+1



262 THE CLASSIFYING SPACES

* *
commutes. Moreover, we may assume L (i, )= bysr1 and W)=

k Wi(,)=h,o, ;, in the notation of Chapter 12.6.

4s+1° 45+

Proof. From 12.5 it follows thatA Sq2sq.‘>25_‘_1 =¢ygp and by, isthe ﬂ
reduction of the integral class ¢, ; uniquely characterized in 12.10. ;
The classes ¢o2 i are in the image of (Bs)* and 12.6 then shows that

the same is true for all the bosr1- Now, A.21 follows from A.17, 12.14(i)
and 12.15 once we note that v2(325— D) =v,(s)+3. }

The proofs of 13.13 and 13.15

The proof of 13.15 is direct from A.20 and A.21 as we can take the
space Y,  in 13.15 to be the fiber F2s+l of qSS: Mygq » K(Z/2,2s+1)x i
K(Z®Z,4s+1) and consider the map )‘s: BTOP - Fq 1 induced from

s e

the diagram in A.21.

It remains to prove al(ho’j) =0 for j# 25. First, note that ho,j is
primitive, hence 9, (ho’ j) is primitive and for dimensional reasons must
project non-trivially'to H,(B(G/0); Z/2) or be in the image of
H,(BOxG/TOP;Z/2). If al(ho’j) projects to H,(B(G/0); Z/2) then so
does ho’ j which contradicts the fact that it is represented by an interior
grid point. Now, if 81(110’ j) # 0 and belongs to ImH_(BOx G/TOP;Z/2)
then either al(ho’ j) = 81(a) with a ¢ ImH, (BOx G/TOP) and we change
ho,j to ho,j+ a or al(ho,j) = al(x) for some A at the same grid point as ;
ho' i Using the models A.9 and A.12 above and the maps constructed in |
A.10, A.13 ho’ j goes to zero under all of them so 61h0,j =0 or

LB i i Pl B

alho,j = EK4j + Th4j . But the map

é: BTOP - F25+1

constructed in A.21 has ¢*h0,j , ¢>*(K4j) and ¢>*(a4j) all non-zero and
al¢*(h0,j) = 0. Thus alho,j =0 and 13.13 follows.
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classifying space, 3
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‘Conner-Floyd theorem, 85
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A, orientation of a Thom spectrum,
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d,, structure map for infinite loop
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Dold-Thom theorem, 62
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E, spectrum, 18
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loopings at 2, 156-157
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— splitting theorem, 178
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h-cobordism theorem, 38

INDEX
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Hurewicz map, 26, 77
Husemoller splitting theorem, 178
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I0(G), augmentation ideal of
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Kervaire manifold, 37, 165-166
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Kummer surface, 38, 173
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— Bockstein spectral sequence,
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A-operations, 181
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li_m(l) , derived functor of li‘_m, 90

localization, 21
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loop space, 46
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UES
166

Massey product, 149

matric Massey product, 151

May formula, 135

May-Kraines suspension theorem,
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Mcok]J_, Thom spectrum for
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M-genus, 187-188

MH, Thom spectrum for
H-bundles, 18-19

Kervaire manifold, 165
index 8 Milnor manifold,

Milnor criteria for indecom-
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Milnor li_m(l)-sequence, 91
Milnor manifold, 37, 166
— Pontrjagin numbers, 200-201
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mixed Cartan formula, 132
MO, Thom spectrum for real
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Moore space, 21
MSO, Thom spectrum for oriented
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MSPL, Thom spectrum for
oriented PL-bundles, 20
— Sullivan splitting, 114
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class, 24
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Vo 2-adic valuation, 54
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Nishida relations, 129
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NM,(X), smooth normal invariants
of X, 36-37, 42

NMp; (X), PL normal invariants
of X, 36-37, 42

normal cobordism, 36

normal invariant, 34

normal map, 35

Novikov classification theorem, 39

T(I:L , unoriented piecewise linear
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T(IOP , unoriented topological
cobordism, 19-20, 223, 252-253

QX, loop space of X, 46
Q,, oriented smooth cobordism,
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Q“:X , path component of Q"X, 47

Qf L | oriented piecewise linear
cobordism, 19-20
- Qf L/Tor, set of generators,
163, 173

- QI:L/Tor , 2-local structure,

206, 207
- QI:L/ Tor, p-local structure,
219
— criteria for indecomposability,
222
— 2-torsion, 246-253
QTOP | oriented topological
cobordism, see Q":L

‘l'n,m’ homomorphism
Enxzm > Enm , 50

p,;j» Pontrjagin class in degree
4i, 88-89

P, , simply connected surgery
obstruction group, 40

ph, Pontrjagin character, 84

phantom map, 91

piecewise linear Pontrjagin
classes, 88-89

PL_, simplicial group of
piecewise linear homomor-
phisms of R, 9

PL/O classifying space for
smoothings, 33, 88-89

plumbing, 164

Poincare duality space, 29

polyhedral path lifting property, 46

Pontrjagin character, 84-85

Pontrjagin classes, 13, 88, 217

Pontrjagin-Thom map, 19, 30-31

primitive generators for
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primitive series, 25-26

principal Tl-bundle, 3-4

INDEX

Q, free infinite loop space
functor, 48-49
Q!, Dyer-Lashof operation, 128
Qj, Dyer-Lashof operation, 127
Qj , multiplicative Dyer-Lashof
operation, 132
Q(s%), stable self maps of
spheres, 48
— homology mod 2, 64, 137
— cohomology mod 2, 65
quadratic construction, 54

pX , mapping BSO®[p]-BSO®(p],
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pX , mapping BSPL-BO°[L, L],
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R, Dyer-Lashof algebra, 138-139

Ravenel-Wilson theorem, 180

R-genus, 209

ring spectrum, 82

RO(G), real representation ring
of G, 94

En , symmetric group of degree n,
49 .
— homology mod 2, 63

sy, index surgery obstruction, 76

sk » Kervaire surgery obstruction,

76

n ’

SO(X) , homotopy smoothings of
X, 40

SPL(X), homotopy triangulations
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S-duality, 31-32

Serre fibration, 46

SFn, oriented based homotopy
equivalences of S", 47

SG, stable homotopy equivalences
of sphetes, 45

s Newton polynomial, 174
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singular manifold, 16
Spanier-Whitehead duality, 32
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Spivak normal bundle, 30
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Sq", n’th Steenrod square, 56
Steenrod recognition principle, 4
Steenrod squares, 56
Stiefel-Whitney classes, 10, 59
structure maps for infinite loop
spaces, 119, 126
Sullivan orientation of PL-bundles
away from 2, 99
Sullivan splitting of BSPL, 105
Sullivan splitting of G/O and
SG, 110
Sullivan splitting of MSPL., 114
Sullivan’s analysis of G/PL, 79,
93, 97
Sullivan’s surgery formula, 80
surgery exact sequence, 40
surgery problem, 35
surgery obstruction groups, 40

6, mapping BSOx G/PL-BSPL,
159

T, generators of F*(BTOP;Z(z)),
205

Thom class, 27, 30-31

Thom isomorphism, 31, 83

279

Thom space, spectrum, 18, 30, 113

TOP,, based homeomorphisms of
R", 8

TOP/PL, 44

transfer, 53, 20

transversality, 17

u, retraction Q(X)-» X of
infinite loop spaces, 125

U, Thom class, 27, 31

UPL , Thom class, 102

unit of a spectrum, 82

V, total Wu class, 80
V,,» elementary abelian subgroup
of X n 56
2

w;, Stiefel-Whitney class, 10-11
Witt vector basis, 178
Wd’n(Z(p)), 178

Wreath product, 53

Wu-class, 80

Wu-formula, 59-60

Xlpl, localization of X at p,22

X[1/p], localization of X away
from p, 22

X[Ql, rational localization of X,
23

Z(p) , integers localized at p, 22

Z[1/p], integers localized away
from p, 22
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