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1. Introduction

The paper gives methods for calculating the surgery obstruction of normal maps with
target a finite PD complex with finite fundamental group. The results are applied to
the spherical space form problem and give fairly complete answers to the questions of
dimensional bounds in terms of equivalent specific statements in algebraic number
theory.

First we give a description of the general results for evaluating surgery obstructions.
To save space we outline the odd-dimensional cases only. Let/: M -> X be a degree 1
normal map in (odd) dimension n and let n = n^X). By duality, X is weakly simple
and there is a well-defined invariant X\f) e L'n{Zn). It is mapped into the actual
surgery invariant l\f) e Lh

n(Zn) by the map J in the Rothenberg exact sequence

(1.1) Wh'(ZTi) <g> Z/2 — - ^ L'n(Zn) —=-^ Lh
n(Zn) > 0.

Here L'n(Zn) denotes the so-called intermediate surgery obstruction group, and

Wh'(ZTr) = Wh(Z7i)/Torsion.

The groups L'n(Zn) have been determined for finite groups n by Wall in a series of
papers (cf. [29]).

Inductively, we can assume that A'(/J e L'n(Za) is known for all subgroups a cz n,
where fa is the covering of/ corresponding to a. This amounts to knowing the image
of X'(f) under the restriction map

Res: L'n{Zn) > f [ K(Za).

However, Res is not always injective. In general, there are three sources for elements
in the kernel of Res. This follows from the Mayer-Vietoris exact sequence

(1.2) ... > CLn+l(Qn)—d-^> Ln{Zn)-£-* L'n(l2n)0 L'n(todn) > ....

For the groups considered in connection with spherical space forms, CLn + i(Qn) and
L'n{22n) are mapped injectively by Res, but this is not the case for L'n(todn), so we need
an extra invariant.

Let F be a field of char(F) # 2. To every (simple) PD complex X we have the 'higher
signature' invariant AF(X) e L"s(Fn), [19,21]. Since | e F, we have Ls

n(Fn) ^ Ln
s(Fn).

We show, in favourable cases (e.g. when F is finite), that AF is the image under the
canonical map t: Hn + 1(Kl(Fn)) -> Ls

n(Fn) of the Reidemeister torsion of the universal
cover X with respect to a suitable choice of'bases' for the homology groups Hjjc; F).

Proc. London Math. Soc. (3), 46 (1983). 193 240.

5388.3.46 M

 at U
niversity of E

dinburgh on M
arch 14, 2010 

http://plm
s.oxfordjournals.org

D
ow

nloaded from
 

http://plms.oxfordjournals.org


194 IB MADSEN

Of course, the homology groups need not be free over Fn, but modulo the radical they
split into modules which are Morita-equivalent to vector spaces over skew fields. This
permits us to define the Reidemeister torsion in general, using Milnor's definition of
torsion.

The higher signature &F{X) is an invariant of the bordism type. It gives a
homomorphism of the singular PD bordism groups

A f : Q™(Bn) - L*n(Fn),

natural with respect to both the covariant and contravariant structure. In particular,
the restriction of Af to the PL-bordism groups QlL(Bn) can be completely calculated
from the restriction to Sylow subgroups of n. This follows from Dress's induction
theorem for L-groups and Corollary 3.7 of the present paper. Normal cobordism
classes of normal maps are detected on Sylow subgroups, so Af(M) is calculable when
M is the source of a normal map. In § 3 we prove

THEOREM A. Let f:M->Xbea normal map over an odd-dimensional PD complex.

If
(i) AF(M) = &F{X) for all F = Fp, U, with pi-2, and

(ii) P 2 (W)) = 0 in L'n{t2n),
then X'(f) G Image(3: CLn + 1(Qn) -+ L'n(ln)).

There is a similar result in even dimensions, cf. Theorem 3.12. The point of
Theorem A is that the subgroup of L'n(Zn) coming from CLn+l(Qn) has much better
'induction' properties than the full group L'n(Zn). However, Condition (ii) of Theorem
A is not satisfying. One would like to modify A to an invariant which, on the one
hand, is calculable and, on the other hand, detects p2(^'(/))> at least in favourable
situations. This indeed seems possible. The basic 2-adic case is not a field, however,
but a 2-adic Dedekind domain. I hope to return to this question in a future paper. It is
connected to Conjecture D below.

Next we review the applications to the spherical space form problem. Suppose n is a
group with periodic cohomology groups of period d and suppose each involution in n
is central. Then it acts freely on some sphere by the result in [13], and we ask for the
dimensions in which a free action can take place.

Results from [28] give free actions in all dimensions 2rd— 1. However, for certain
groups of cohomological period 4, the question of whether a free action can exist on
spheres of dimension 8/c + 3 was left open. The question was taken up by R. J.
Milgram who gave the first examples with non-vanishing finiteness obstruction. The
author then calculated the surgery obstruction in a few examples in [11]. Slightly
later, using different methods, Milgram gave an alternative calculation of the surgery
invariant in some other cases.

The results presented in the present paper complete the work in [11]. Our results
overlap with the recent account in [16] of Milgram's calculations.

The basic groups to consider are the semi-direct products

where p and q are distinct odd primes, (2(8) is the quaternion group of order 8, and
where the homomorphism cp: Q{&) -*• (Z/pq)x determined by Q(%p, q) has kernel Z/2.
These groups act freely on spheres in dimensions 8/c + 7 by orthogonal maps; the

 at U
niversity of E

dinburgh on M
arch 14, 2010 

http://plm
s.oxfordjournals.org

D
ow

nloaded from
 

http://plms.oxfordjournals.org


SPHERICAL SPACE FORMS 195

question is whether they can act freely on S8k + 2, where k ^ 1, by homeomorphisms or
diffeomorphisms.

Recall that the homotopy type of an action of n = Q(Sp, q) on 58fc + 3 is determined by
the first /c-invariant of the orbit space

e(S8k + 3,n)eH8k+4(n;Z).

If the action is linear, e is the Euler class and in general e is always a generator of
H8k+\n;Z)^Z/\n\.

The Sylow subgroups Z/p, Z/q, and (2(8) all admit free orthogonal actions on
S8k + 3. Let xp, Xq be any non-trivial characters of Z/p, Z/q, and let F be the standard
representation on C2. Let ek e H8k + \n;Z) be the generator with

)k for I = p , q ,

We ask whether there exists a free action of Q(Sp, q) on 58fc + 3 with /c-invariant ek.
The answer depends on arithmetic questions. We need some notation. Let (p, C,q be
primitive roots of 1, let (M = CPCq> and write nr = C, + Cr~

l- Consider the cyclotomic
fields Q(rjp, nq) and Q(rjpq) with integers

A = Z[r,p,rJgl B = ZO/ P J , \B:A\ = 2.

Let O^: A* -> (A/p\x
2) y-{A/q)*2) and (pA: A* -+ (A/4A){2) denote the reduction

maps onto the 2-primary components of (A/p)x x(A/q)* and (A/4A)*. Our main
result is the following restatement of Theorem 7.5.

THEOREM B. The group Q(Sp, q) acts freely on S8k + 3,for k ^ 1, with k-invariant ek if
and only if the following three conditions are satisfied:

(i) ( 1 , - l ) e I m a g e d ) ;
(ii) (nq-2,rjp-2)e Imaged|Ker(pA);
(iii) (2,2)eImage((DJ.

The first and third conditions imply that the finiteness obstruction a(ek) is zero in
^o(Z[Q(8p, q)']). The second condition gives that the surgery obstruction / ' '(/) belongs
to the image of the composition

CL0(Qn) - ^ L'3(ZTT) - ^ L*3(Zs),

say Jod(V) = X\f). The third condition is equivalent to the assertion that
d(V) <= Imaget in (1.1), whence X\f) = 0.

In Theorem B we have not specified in which category the action should take place.
Actually, the results are the strongest possible in the sense that if (i), (ii), and (iii) are
satisfied, then the action can be taken to be smooth. If the conditions are not satisfied,
the claim is that there is no free topological action.

In special cases we can explicate the conditions of Theorem B somewhat.

COROLLARY C. Suppose p = 3 (mod 4). There exists free action ofQ(Sp,q) with k-
invariant ek if and only if

(i) q = 1 (mod 8) and
(ii) (nq-2,rjp-2) 6 Imaged | Ker <pA).
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196 IB MADSEN

Taking norms, over the subgroup (Z/q)x /( —1> of the Galois group of A/Z, we

note that Condition (ii) of Corollary C implies that the Legendre symbol I - I equals
W

+ 1 , but in general this condition is not sufficient to imply Corollary C (ii). Let Ordp{q)
denote the (multiplicative) order of q in F * . If we strengthen the necessary condition
on the Legendre symbol to the condition that Ordp(q) and Ordq(p) be of maximal odd
order, then Corollary C (ii) follows. For example, Q(8p, q) acts freely for p = 3,
4 = 313.

The finiteness obstruction depends on the fc-invariant (alias the generator of
H8fc+4(Q(8p,q)',I)), as specified in [24]. In favourable cases there is essentially only
one fe-invariant with vanishing finiteness obstruction. Indeed this happens precisely
when the Swan homomorphism

has maximal image, equal to Z/2 © Z/2 © Z/2. In general

Image S = Z/2 © §(p) © §{q) © S(pq)

and from [1] we have §{p) = 0 only in the following two cases:

(*) p = - 1 (8) or p = 1 (8) and Ordp(2) is odd.

If neither p nor q satisfies (*) then ek is (up to group automorphism) the only
generator for Q(8p, q) which has vanishing finiteness obstruction. In this situation
Theorem B gives the complete answer to the question of which groups Q($p, q) can act
freely on (8/c + 3)-dimensional spheres.

If p or q satisfies (*) then there might be /c-invariants different from ek with vanishing
finiteness obstruction. For example, if p = — 1 (8) and q = 3 (8) then ek has non-trivial
finiteness obstruction but there is a second /c-invariant with vanishing obstruction; the
methods of this paper cannot decide if this second fc-invariant determines a space form
or not. However, if Conjecture D below is true then only the ek may be /c-invariants of
space forms.

Consider the generalized quaternion group Q(4p) of order 4p. There are two finite
homotopy types E/Q(4p) with 2 ~ S4fc + 3. One is realized by an orthogonal space
form, the other is not.

CONJECTURE D. If L/<2(4p) is not homotopy equivalent to an orthogonal space form
then it is not homotopy equivalent to a manifold either.

In order to settle completely the question of dimensional bounds (in dimensions
greater than or equal to 5) for free actions on spheres, it suffices to decide which
among the groups Z/axQ{Sb,c,d) can act freely on S8fc + 3, cf. [28, 8]. Our groups
Q(8p, q) above correspond to a = 1, b = p, c = q, and d = 1. In principle the methods
of this paper apply to all groups in the family, but the calculations become more
difficult.

There is a generalization of Theorem B to the groups Q(8a, b) where a and b are not
necessarily prime numbers. We need extra notation before we can state the result.

For a number a we write a for the set of its full prime power divisors, that is,
a = {p1",...,pr

lr} if a = p / 1 ...pr
l r is the prime decomposition. Given two relatively

prime numbers a and § we shall consider subsets S ^ a u p . The cardinality of S is
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SPHERICAL SPACE FORMS 197

denoted by \S\. Define elements

= Cr + Cr 1 where r = f j g,
qeS

Let A = Z[na, rip]. We have

= n (•>, ® A\X2)> (^/fc)5) = n ( ^
1 i l

where plt...,pr are the prime divisors in a, and pr+i,...,pn the prime divisors in b.
Define

>/J<? e aub-{p¥ '"}} e ((FPv(gM)(2)-

Let P(a, b) e (>J/a)(2) x (A/b)^) denote the n-tuple of the elements Vv(a, b).

THEOREM E. The group Q{Sa, b) acts freely on S8k + 3 with k-invariant ek if and only if,
for all divisors a | a and P \ b and A = Z[rja, tig], we have

(i) (1 , -1 ) e I m a g e d ) ,
(ii) ( - l ) " + 1K(a,/?)Glmage((D^|Ker^), where n = | a u p | ,

(iii) (2, 2) 6 I m a g e d ) .

The proof of Theorem E is quite similar to the proof of Theorem B given in § 7, once
one has the necessary information about the Reidemeister torsion and the finiteness
obstruction from [2], generalizing the present paper's § 6.

For all groups in the family Z/a x Q(8b, c, d) the surgery obstruction is detected on
the three subgroups Q(Sb, c), Q(Sb,d), and Q(8c, d), but the finiteness obstruction
seems not to be, cf. Corollary 5.12.

The paper is divided into seven sections:
1. Introduction
2. Higher signature and Reidemeister torsion
3. Induction results for surgery invariants
4. Calculation of some L-groups
5. Evaluating the Rothenberg sequence
6. Finiteness obstruction and Reidemeister torsion
7. The surgery obstruction for spherical space forms

I should like to thank S. Bentzen, I. Hambleton, and B. Williams for helpful
discussions about the material of the paper. In particular, I thank R. J. Milgram who
pointed out a mistake in my original formulation of Theorem B (ii), where I had
falsely assumed that (PAiip — iq) = 0 in A /2A.

Finally, it is a pleasure to thank Princeton University for its hospitality in
connection with a three month stay in the spring of 1980 when much of this work was
carried out.

2. Higher signature and Reidemeister torsion

Let (R, a, u) be an antistructure in the sense of [29, § 1.1]. In this section we give a
calculation of the higher signature invariant of symmetric simple Poincare duality
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198 IB MADSEN

(PD) chain complexes over (R, a, u) when R is semisimple and not of characteristic 2.
Our main applications are to the cases where R is an algebra over the finite field fq

with q odd, or an algebra over the real numbers R.
First, we recall the necessary definitions and results from [19] and [21]. We assume

that the unit u in our antistructure is central (usually u = ± 1) and consider chain
complexes of finite length C^ consisting of based, finitely generated, right /^-modules.
The anti-involution a can be used (as usual) to give C* the structure of a complex of
left K-modules {re = ca(r)). The tensor product complex C+ ®R C+ has an involution
Tu given by 7 ^ ® c2) = ( - l)|Cll|C2|u(c2 ® cx). Write Qn(CJ, respectively Q"(CJ, for
the hyperhomology, respectively hypercohomology, of Z/2 with coefficient in
C* ®R C*. If Wis the standard resolution of Z over Z[Z/2] with Wn = en • Z[Z/2] and
d(en) = en-1(\+(-l)"T), then

®R C J ,

Q-CC) = //"(HomZ[Z/2](W;, C, ®* CJ) .

Every class ¥ e 6n(C+) is represented by a cycle of the form £e,-®^,-» and
(1 + Tu)\l/0 is a cycle in C^ ®R C^ whose homology class depends only on *F.

Let C* be the complex consisting of the dual R-modules C = HomR(C,, R). Taking
the slant product with (1 + Tu)i/̂ 0 defines a chain map of /^-modules

(2.1) <p: C - > C,-,,, ? ( / l = (l + T M

The pair (C,,,, T) is called a quadratic PD chain complex over (K, a, u) if the map <p in
(2.1) is a chain homotopy equivalence. Similarly, if O e (^(C,,,) then (C^, O) is called a
symmetric PD chain complex if the Oth component O(e0) is represented by a chain
homotopy equivalence. If ¥ e (^(CJ (respectively O e ^"(CJ) we say that (C^T)
(respectively (C,,,, <D)) has formal dimension n and in this case we usually assume C,- = 0
if i < 0 or i > n. In [21] the terms u-quadratic and w-symmetric Poincare chain
complexes are used, but we prefer to specify the full antistructure.

We have assumed that C^ consists of based /^-modules. The dual complex C* is
given the dual basis, and we have the Whitehead torsion i(<p) e K^R) of the
homotopy equivalence in (2.1). If i(<p) = 0 then we say that (C#, *F) or (Ct, 0) is a
simple (quadratic or symmetric) PD chain complex. There are similar definitions for
pairs.

Associated to an n-dimensional quadratic PD chain complex over (R, cc, u) there is
an algebraic surgery invariant k(C^). It lies in Ls

n(R, a, u) if C+ is simple and in
L*(R,OL,U) in general. We recall a definition of 1{C^) suitable for our applications.
There are three steps to the definition.

First, by algebraic surgery every simple, quadratic PD chain complex is cobordant
to a (simple) complex whose homology is concentrated in the 'middle dimensions'.
Thus we may assume

//.(C J = 0 for i ^ \n (n even),

= 0 for i # &n± 1) (n odd).

Second, such a (C^T) can be 'contracted' in the sense that C^ is simple chain
homotopy equivalent to a simple, quadratic PD chain complex (C+,*¥") which is
concentrated in the middle dimensions. Indeed, let
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Then dt is surjective and Ct ^ C\ © Co as s-based modules, so C* £ Q © £'* where

C'*: 0 -* Cn -> ... -* C2 -+ C\ -+ 0.

Since £'„, is contractible, £„(<:„) = Qn(C;). The last differential dn: Cn -• Cn.1 is split
injective so Cn_i ^ C ^ . ^ Q as s-based modules. This follows from duality: the
mapping cone of q>: (C)* -> €'„-# is contractible, and if s is a contracting homotopy
then

0
c.-! —> c2©c.^ - ^ (C)1 ®cn^lcn

is a section of dn. Let

c; : o - c;_, -* cn_2 -,... - c2 -. c; - o.
Then (^(C'J = QnCC'̂ ) and Q becomes a simple, quadratic PD chain complex. It is
also simple chain homotopy equivalent to C^.

Third, suppose that C* is concentrated in the middle dimensions. Then
A(C#) E L%(R,(x,u) is easily defined. We give the details for n = 2/c+l, leaving the
easier case, n = 2k, to the reader. The mapping cone of <p: C* —> C# gives an exact
sequence ((p = ifz + vij/*, v = (—l)fcu):

The sequence is based exact and gives a simple formation (Hv(Ck + l); Ck + 1, C
k) over

(R,oc,v). Let

/ : Hv(Ck + l) -*• Hv(Ck+l)

be the isomorphism which takes the based module Ck + 1 isomorphically onto the
based module Ck. The class of / is the desired element,

(2.2) l(CJ = cls(/) e Li(R, a, v) = Ls
2k+l(R, a, «).

The cobordism classes of simple symmetric PD chain complexes are denoted
L's(R,a,u). The invariant A gives an identification of the cobordism classes of
simple quadratic PD complexes with Lf,(R, a, u), cf. [21]. If ^ e R, there is no
distinction between the quadratic and the symmetric cases,

HJLQJLCJ) s Hn(Q
n(CJ) s / / ^C , ®R C / ' 2 ,

and L^(/?,a,u)^LS(/?,a,«).
Given a pair U £ K of subgroups of (/?, a, M), closed under the involution induced

on Ki(R) from the transpose, a-conjugate operation on Gl{R), there is the Rothenberg
exact sequence

^ L»(R,u,u)-^-+LZ(R,<x,u)-^ H"(V/U) • ...,

where H'(V/U) denotes the Tate cohomology group of Z/2 with coefficients in V/U,
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200 IB MADSEN

cf. [27]. On representatives the maps are given by

'0 A 0

do(R
2m,Q) = deta-Mj-^fi + ufi*)), dt(A) = det/1.

Here (R2m, Q) denotes the quadratic form on R2m with matrix Q; the associated
hermitian product has matrix Q + uQ*.

We are mostly interested in the extreme case of (2.3) with U = {0} and V = K^R),
where is it customary to write L£, L* instead of L{,0), L*'(R). We have

THEOREM 2.4. Let (C,,, *F) be a simp/e quadratic PD chain complex with J(MC+)) = 0.
Then C^ is algebraically cobordant to an acyclic complex C^,, and

where A(CJ is the class of the torsion x(CJ.

Proof. Suppose the formal dimension is 2fc+ 1. Since J{A.(CJ) = 0, C+ is cobordant
to an acyclic complex C+ concentrated in the middle dimensions. We show for a
suitable choice of bases that the bordism (D+, C+ © (—C'J) is a simple (quadratic) PD
pair.

Let i: C+ -* D+, i'\ C+ -* D+ be the inclusions. Consider the mapping cones DJi),
DJi') and the kernel complexes D*(i), D*(i') of the dual maps i*: D* -> C*,
(i1)*: D* -> (C)*. There are commutative diagrams

>D*(i © 0

<D

D*(i')

3>

0

(p

D<

D*(i@i')

&

• * D *

< I > * <P

•* ^>*(0

of chain homotopy equivalences with <p simple and O, O* essentially dual chain maps.
It follows from these diagrams that there exist bases for D+ and C'+ such that
the horizontal sequences are based and the vertical maps are simple. Then
(D+, C © ( - C J ) is simple and A(CJ = A(C;).

We have C\ = 0 for i # /c, /c + 1, and 3: Q + 1 -> Q is an isomorphism. The
formation (HU(Q + 1) ; C'k+l, C'k) associated to (C'#, *P') is isomorphic to the standard
hyperbolic formation by an isomorphism

It follows that >l(C;) = tn(det(d: Ck + 1 -> Q ) , and hence that A(C'J = tn(A(CJ). This
completes the proof for quadratic PD complexes of odd formal dimension. The even-
dimensional case is similar but easier.
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REMARK 2.5. In the above we have used simple PD chain complexes and have
considered the simple L-groups Ls

n. Technically, it is often convenient instead to use
PD chain complexes whose torsion vanishes in some natural quotient group
Ki(R)llJ{R). The related surgery groups are then L". All results above apply to this
situation when we make the obvious substitutions. For group rings R = Z.n, we shall
use (/ = 7t/[7r,7c]e<±l>, U = SK1{Zn), and U = SK^In) © 7t/[>,7i] 0 <± 1>.
The quotient groups are Wh(Z7i), K\{Zn), and Wh'(Z7r), respectively.

We now recall from [27, §6; 29, §1.1] some calculational results about the
structure of (2.3) in the cases where R is a semi-simple algebra over a field whose
characteristic is not equal to 2. There is a decomposition

(2.6) (R, a, 11) = FI(Mn,.(£,.), a, u.) x {] (Mnj(Ej) x Mnj(Ej), a,, Uj),

where in the second product a acts by permuting the factors (Type GL anti-
structures). In the first product, a,(/l) = (A0")' and u,- = w,/, where af is some anti-
involution on the division algebra £,-. The sequence in (2.3) decomposes into a direct
sum of sequences corresponding to the factors in (2.6).

For the Type GL factors, (2.3) completely vanishes. For each of the other factors, by
Morita equivalence, the sequence for (Mn.(£,), a,, u,) is isomorphic to the sequence for
(£,, a,-, u,).

Suppose (R, a, u) = (£, a, u) with E a division algebra with centre F (charF # 2).
Then (R, a, u) is divided into types: Type O, Type Sp, and Type U. Since Types O and
Sp are interchanged when u is replaced by — u and Ln(R, a, u) = Ln + 2(R, a, — u), it
suffices to consider Type O and Type U. We restrict attention to the case of (2.3) with
U = {0} and V= K^E).

From [27, Theorem 5],
Jn:L

s
n(E,a,u)^LZ(E,<x,u)

is zero when n = 1 (mod 2), so
(2.7) Z4_!(£,<*,«) s H2n(K1(E))/lmaged2n.

For n even, the behaviour of Jn depends on the structure of the centre field F. We
consider three cases:
(2.8) Ffinite(charF#2), Fglobal, Fcontinuous ( = R,C).

(By global we mean here an abelian extension of Q.)
If F is finite then J2n = 0 (and E = F), so

(2.9) L2
s
n(F,a,M) = H2" + 1(Fx)/Imagerf2n + 1, Ffinite.

In the rest of the cases with one exception, either J2n = 0 or d2n + l is surjective. The
exceptional case is
(2.10) (£, a, u) Type O, Fglobal, £ split at infinite primes.

TABLE 2.11. (i) If (E,a,u) has Type O, then Hn+1(K^E))/Imagedn+1 is given by

F
n finite infinite infinite

E^F E=F

1 FX/{FX)2 F*/(F*)2 FX/(FX)2

2 <±1> 2F* < ± O
3 0 0 0
4 0 ,F* 0
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202 IB MADSEN

Here F* = Fx unless £ is non-split at infinite primes when F* denotes the subset of
elements which become positive at all real embeddings of F.

(ii) If (£, a, w) has Type U, then f/*(X1(£))/Image d+ = 0.

The discussion above shows that

0 > H- + 1(/C1(£))/Imaged1I + 1 - ^ L*(E,a,u) > Image Jn > 0

is trivially split, except in the exceptional case (2.10) with n = 0 (2). Hence, given a
(symmetric) PD chain complex C^ over (£, a, u) one expects an a priori defined
invariant

(2.12) A(CJ 6 H" +1 (Ki(£))/Imagedn + i,

except in case (2.10) with n even. The invariant we need is the Reidemeister torsion
from [17, §3]. We recall some notation. Let bx and b2 be bases for a finitely
generated £-module M. Then 6X = b2-B for some non-singular £-matrix B. The
element of KX(E) associated to B is denoted by [b^Jb^.

Let M* = Hom£(M, £) be the dual £-module with (f-e)(m) = a(e)/(m), and let bf
be the base which is dual to 6,. Then

[MM-] =-[bjb2l

Here the bar indicates the involution on K^E) induced from a; on representing
matrices it is given by the a-conjugate, transpose operation.

Consider the situation on homology. Let Hp = HP(C*) and Hp = Hp{C^). The chain
homotopy equivalence <p from (2.1) induces isomorphisms

We also have the canonical isomorphisms KP: HP = H* and a simple calculation with
the slant product gives
(2.13) (p*oKp = {-\)«n-p)UK*n_poq)n_p.

It would be troublesome (if not impossible) to keep track of the elements in K^E)
determined by such sign homomorphisms. However, det((— \)p(n~p)u: Hp -> Hp) = 0
in KX(E) if dim£//p is even. Therefore we make the following assumption.

ASSUMPTION 2.14. All chain complexes are even-dimensional in the sense that
dim£ Cp = 0 (mod 2) and dim£ Hp = 0 (mod 2) for all p.

Let C+ be a based PD chain complex of dimension n; the given base for Cp is
denoted cp. There is a standard decomposition of chain groups Cp = Bp © Hp © flp_ x

which becomes a chain isomorphism when we use the differential

on the right-hand side. Since we assume C{ and Hi have even dimension over £, so
does Bt for all i.

Let hp be a basis for Hp = HP{C^). Milnor defines the torsion

(2.15) « C * , h J = Z(-i

Actually, in [17] T is considered as an element of K^E)/det(— 1), but it is relevant
for our use oft that it is lifted to an invariant of K^E). This would cause problems in
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general, but with Assumption 2.14, all properties proved in [17] can be proved for the
invariant in (2.15). In particular, we need the formula below for the torsion in an exact
sequence of chain complexes.

Consider an exact sequence of based chain complexes

o -» c ; -> c* -* c ; -> o
and assume the bases are compatible in the sense that [ci-£/7£i] = 0 f°r a ^ 'Let /i), hh

and hi be bases for the homology groups, giving a based, exact homology sequence

JfV ... -+H'n-+Hn-> H"n - ... - H'o - Ho - " o - 0.

We have, from [17, §3],

(2.16) T(C«,, / g = T(C;, fc'j+T(C;, ii;)+T(JT j .

Suppose C* has even formal dimension, n = 2m. Then (pm: Hm -* Hm defines a
(— l)mu-hermitian form (Hm, cpm) on Um. Such a form is called hyperbolic if it admits a
symplectic base. In this case dimEHm = 2p, and expressed in the symplectic base,
<Pm = JP where

o) w i t h £ = ( -

DEFINITION 2.17. Let C^ be a symmetric PD chain complex of formal dimension n
over (E, a, M). A family h^ = {ft,} of bases h{ for H&C+) is called a PD base if
q>{. H"~l -* Ht is simple for i ^ \n with respect to the bases h"~l ( = /^f-,) and /i,-. If
n = 2m we suppose further that /im is a symplectic base for (Hm, q>m).

LEMMA 2.18. Let C^ be a simple (symmetric) PD chain complex over (E, a, u). IfC^ has
odd formal dimension then it has a PD base. IfC# has even formal dimension 2m and
Jim- 2̂m(£> a>u) -* ^L(£» a>u) is trivial, then C^ has a PD base.

Proof For odd formal dimension Lemma 2.18 follows from (2.13). If the dimension
is even, (2.16) gives

0 = t(

Hence the hermitian form cpm has vanishing discriminant in ^(K^E)). It follows from
(2.3) that the class of (Hm, cpm) in Lfm(£, a, u) belongs to Image J2m = {0}, so {Hm, <pm) is
stably hyperbolic. This implies that it is hyperbolic in our cases.

Note, in particular, that if E = F is a finite field then PD bases always exist.
Let C+ be simple, and let h^ be a PD base. Then

where n is the formal dimension. Moreover, if k^ is a second PD base, then

with e = £(— 1)'[/C.//1,], for i = l , . . . , [ |n] . Hence ^ C ^ , / i j defines a class in
H"+ '(/(](£)) which is independent of the choice of PD base for H^. The resulting
invariant is denoted T(C^).
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Next we examine the (algebraic) bordism properties of this invariant. Since it is
additive it suffices to consider T ( C J when (£>„,, C J is a PD chain pair. There is a
diagram of chain maps

0

(2.19)

D*(i) D*

CM)

C*

where C+(i) is the mapping cone of the inclusion i: C+ -*• £>„, and D*(i) = Ker i*. The
pair (D^, C J is called simple if, in (2.19), the three vertical chain homotopy
equivalences are simple.

LEMMA 2.20. Suppose (D+, C+) is a simple PD pair of formal dimension n + 1, and ifn is
even, that H*(C J admits a PD base. Then

T ( C J 6 I m a g e K + 1: L*+1(E,a,u) - H"+1(

Proof. Suppose n + 1 = 2m, and consider the homology of (2.19),

(*) <Pn

Hm(l)

<Dn

Kn

Hm(D,

* .

HJfi

<Pm- 1

Let Km = Ker{Hm(DJ -> Hm{CJ} and dually Km = cok{Hm{CJ -* Hm(DJ}. We
assume we are given a PD base for H^(C^), and construct bases for Hp(DJ and Hp(i)
such that

(i) Op and <frp are simple for p # m,
(ii) det(<DJ = det($m) = det(0),

and such that the bottom sequence of homology groups in (*) has vanishing torsion.
With this choice of bases we have, from (2.16),

But !(<:„($)) =^0 and T(D*) = - T ( D J , SO T ( C J = det(6>) e Image dn + 1. The proof in
the case where n +1 = 2m +1 is similar: the diagram of homology groups above
implies that (//m(C+), (pm) is hyperbolic, and the rest of the argument is completely
analogous to the case where n+1 = 2m.
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DEFINITION 2.21. Let C+ be a simple PD chain complex over (£, a, u). If the formal
dimension n is even, suppose H^ admits a PD base. The Reidemeister torsion A(C#) is
the class of T(C#) in Hn + l{K^E))/Imagedn + 1 £ Lj(£,a,u).

REMARK 2.22. We have assumed above that C^ is even-dimensional in the sense of
Assumption 2.14. In fact this is an innocent assumption. If it is not satisfied for C*,
then there exists a suitable elementary PD chain complex X^ such that Ct © X^ is
even-dimensional, and one can define A(CJ)<) = A(C!> © XJ. We give a list of the
elementary complexes needed for constructing X^.

(I) p ^ q; Cp = Cq ^ £; d = 0; ¥ = ep ® eq where et is the base for C,.
(II) p < q-2; Cp = Cp+1 = Cq.1 = Cq^E® E. The base for C, is {e,-,/J. The

only non-zero differentials are d(eq) = e^-i and d(fp+1) =fp, and
^ = e/7(x)/</+/p(x)e<? + e p + 1 ® / 9 _ 1 + ( - l ) p + 1 / p + 1 ( g ) e < ? _ 1 .

(III) p = q-2; the same as (II), except that Cp+l = C ^ ^ E®4.
(IV) Cp = C p + ! s £ 0 £; bases {gb / J ; 5(ep+ J = ep and

In all four cases the PD chain complexes have vanishing torsion in K^E)/^ — 1>
where <—1> = det(—1: E -> £). Moreover, their Reidemeister torsions vanish in
/f*(/C1(£)/< —1». It follows that any direct sum X,,, of the complexes above which
satisfies the dimensional hypothesis Assumption 2.14 is a simple PD chain complex
with ApfJ = 0. Using similar constructions of elementary pairs, one can check that
the invariant A(C)|<) is a cobordism invariant in general.

3. Induction results for surgery invariants

Let X be an oriented finite PD space of formal dimension n. It consists of a finite
cell complex X together with an orientation class [A"] e Hn(X; Z) such that cap-
product with a cycle representing [X] induces a chain homotopy equivalence
(p: C*(X) -*• Cn-jJC) of Z7i-complexes, n = nx(X). We call X simple if cp has
vanishing torsion (in Wh(Z7i)).

Let F be a field with char(F) # 2 and let a: Fn -> Fn be the usual anti-involution.
Associated to X one defines a quadratic PD chain complex over (Fn, a, 1) as follows.

The diagonal induces a natural chain map of chain groups with coefficients in F,

and To yu is chain homotopic to ^, where T(£ ® n) = (— l)15"1'1^ ® £. The image of
e Hn(X; F) defines an element in Hn(C*(X) ®Fn C*(X)f/2. Since char(F) # 2,

so we get a quadratic PD chain complex (C^(X), ¥ x ) over (Fn, a, 1) of formal
dimension n. Here ¥ * + ¥ $ = ^*(OT)- '

Let C/(TT) = n/[n, n\ © < - 1> £ ^(Arc). The quotient group Kx(Kn)IU(n) will be
denoted by ^ ( A n ) . Note that if A = Z, then Kx(ln) = Wh(Z7r).

For each simple PD chain complex X and map h: X -> Bn classifying the universal
cover X, we have from § 2 an invariant

1 s L^FTr.a, 1).

 at U
niversity of E

dinburgh on M
arch 14, 2010 

http://plm
s.oxfordjournals.org

D
ow

nloaded from
 

http://plms.oxfordjournals.org


206 IB MADSEN

(If n is even and F is global we assume that (Fn, a, (— l)m) contains no simple summand
of the exceptional type (2.10).) If char(F) divides the order of n we use that
H*(Ki{Fn)) £ H*(Ki{Fn/J)) where J is the radical. We define in all cases

AF(X,h) = AF(C*(X)®FnFn/J),

where J = 0 if F is already semi-simple.
For PL manifolds we can consider AF as a homomorphism

AF: Qp
n
L(Bn) -> H" + 1(X1(

and we can use induction techniques for calculating it.
Given a pair of subgroups xt <= x2 of n, let i = I'(T1,T2) denote the inclusion. There

are homomorphisms

where the first one is the usual covariant map and the second one is the transfer
homomorphism. Precisely,

'*([M2, / 2 ] )=[M1J1] ,

where ( M L / J is the singular manifold determined from the pull-back diagram

(3.1)

Mj —^—> Bxx

Bi

Bx2

The bi-functor Q£L(BT) SO defined is actually a Mackey functor over the Green
functor n$(Bx) (stable cohomotopy). In fact, the same is the case for any homology (or
cohomology) theory applied to Bx, cf. [10, § 1]. We point out two consequences.

Choose a Sylow p-subgroup np for each prime divisor of | n |. The contravariant part
defines an injection

(3.2) Q^(Bn) -> ^PnL(Bnp).

Let y, x be subgroups of n, and let gt £ n be double coset representatives,
rc = LI-=iy0(T. Then

r

(3.3) i(y, n)* o i{x, n)* = £ i(gixgi~
i n y, y)# o cg. o i(T n Î-~

1yfiT|, T)*,
I = i

where c9. is induced from conjugation, xngi~
lygi -+ g(tgC^ <^7-

Choose integers Xp € Z for each prime divisor in | n \ such that the following two
conditions are satisfied:

( 3 4 ) ( i ) £ A p 17r:7rp| = l,

(ii) kp\n:np\ = \ (modp*),

where, in (ii), R is a large positive number (for example, R > n\np: 11).
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THEOREM 3.5. Suppose n is a group whose Sylow p-subgroups are normal in nfor p
odd. For each [ M , / ] e Clv

H
L(Bn),

where lMpJp\ = i(np,n

Proof. Suppose first that M is a boundary. Then /(1,7r)*[M, / ] = 0 and (3.3) gives

i{nq, n)* o i(np, n)*([Mp, /p]) = 0

for p 7̂  q. Let p be odd, so that np o n. Then (3.3) reduces to

i(np, 7i)* o i(np, n)JViMp1 / , ]) = £ cg{\_Mp, /„]),

where # e n/np. Moreover, [Mp,/P] = i(7rp,7r)*([M,/]) and cgoi(7ip,7r)* = i(np, n)*
since conjugation with g induces the identity on Bn (up to homotopy). Hence

(*) i(np, n)* o i(np, n)*([Mp, /p]) = | n: np \ • [Mp, / p ] , for p odd.

For p = 2 we do not assume np <i 7i, but use instead that bordism 2-locally reduces to
ordinary homology,

* W ® 2(2) = H ^ ; O > 0 (g) Z(2)).

Tn particular, if y c T we have that i(y, x)^ o i(y, T)* is equal to multiplication with | x: y \
on Q*{Bx) ® Z(2).

We have [M 2 , / 2 ] e &n{Bn2) = &n(Bn2) ® Z(2) and hence

r

/(7C2 , n)* O /(7T2 , 71)^(^2 , / 2 ] ) = J ] j(n|' n 7t2, 712)^ O /(Tlf' O 7l2 , 7T2)*([M2 ,

1 = 1

where n = \Jr
i= x n2gin2. Since ^ - = l\n2:n

9
2
i r\n2\ = \n:n2\ the formula (*) is also

satisfied for p = 2.
We can now apply i(nq, n)* to the right-hand side of the formula in Theorem 3.5.

This gives

i(nq, 7T)*£ Xpi(np, nUlMp, / J ) ) = kq \ n: nJ • [Af,, / J

Suppose R is chosen so that qR annihilates Cin(Bnq). Then i(nq, n)* maps both sides
of the formula to \_Mq,fq~\, and (3.2) implies the result.

We have assumed that [ M , / ] e &,,(Bn) and must finally consider \_M,c], with
c: M -* Bn the constant map. But then i(np,n)*([M,cJ) = \n: np\- [M,c] for all p
and the formula follows directly.

Let y c x, and let / : M -> By be a singular n-manifo!d. The element /(y, ^^( [M, / ] )
is represented by the composition B(i)of: M -> 6T; and if M is the cover induced
from /, then M x y r is the cover induced from B(i)of Thus we have a commutative
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diagram

nPnL(By)

(3.6)

COROLLARY 3.7. With the assumptions of Theorem 3.5,

Let X be an oriented weakly simple PD space, that is, a PD space where the torsion
of (p: C*{X) -> C*(X) vanishes in Wh'(ZTi) = W^ZTO/SK^ZTT) . If dim X is odd every
(finite) PD space is weakly simple by [31, Proposition 7.1]. Let

be a degree 1 normal map. The obstruction for converting (/, / ) into a weakly simple
homotopy equivalence by surgeries is the element A'(/,/) e L'n{Zn). For n = 0 (2),

LtfZB) = LJ(Z«), and for n = 1 (2), L;(ZTI) = Ln
y(Z7i)/<T>, where T = ( ^ ^ , cf.

[29, § 5.4]. Here we have written

LY
n(Zn) = LY

n(J.n,a,l) and Y = S/C^Zreje n/fan'] ® < - !> •

According to [21, § 6], A'(/, / ) can be defined as an algebraic surgery obstruction as in
(2.2). Indeed, f-.M^X induces an exact sequence of PD chain complexes over
(In, a, 1), n = nl{X),

(3.8) 0 - C«,(*) - C,( /) - ( V ^ M ) - . 0,

where M is the cover induced by / from the universal cover X. The S-dual of
/ : v^ -> C+ induces a quadratic structure on C J / ) , and Ranicki shows that
W , / ) = ^ ( C J / ) ) E Lr(Z«) maps onto A'(/,/).

Let p be an odd prime. There are isomorphisms

where y(Fp7i) = 7i/[7i, 7i] © < —1>, and where we have suppressed the antistructure
(2pn,<x,l)etc.

Let 7i be a 2-hyperelementary group, that is, n = Z/m x a where m is odd and a is a
2-group. The projection F: n -*• a -*• n induces a splitting of any (covariant) abelian-
valued functor

(3.9) A(n) = FtA(n) © (1 - FJA{n) = A(a) © A(n)0(i.

From (2.3) and (2.7) we get

LIP,*)* = Ls
n(¥pn)od s H"+1(X1(Fp7i

Let pp: Lv
n{1n) -* Ll(tpn) be the natural map.
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PROPOSITION 3.10. Let h: X -> Bn classify the universal covering. If n is 2-
hy per elementary and p is odd then

P P ( W , A c ) = AF p[M,/ io/]o d-AF p[X,/ i ] o d

under the identification L^(Zp7i)od = L^(Fp7t)od.

Proof. The map LY
n{¥pn)od > L*(¥pn)od is trivial, so C#(/)od ® Fp is a quadratic

PD chain complex over (¥pn, a, 1) which is trivial (up to cobordism) as an unbased
complex. It follows from Theorem 2.4 that

and (2.16) applied to the sequence (3.8) gives the result.

Similarly, one proves

PROPOSITION 3.11. The mapping p^: LY
n(ln)od -> L^(R7r)od maps Ar(/,/)od to

^R[^»/°^]od~^R[^^]od» for odd dimensions n.

Recall from [29] the exact sequence of L-groups

... - CLs
n + i(Qn) - Lj(Z7t) - L;(Ru)xnL?(2p«) - CLs

n(Qn) - ...,

where X(/?) = SK^R). The following theorem is the main result of the paragraph.

THEOREM 3.12. Suppose the degree 1 normal map (f,f) satisfies

0) P2(mj)) = 0inLY
n(l2n),

(ii) AF([M,fco/]) = A/r*, /!]) /or F = Fp, 01 (p # 2),
(iii) signn(M) = signn(X) in R(n) (if n is even).

Then XY{fj)e Image(CL^+1(Q7r) -> Ln
y(Z7i)).

/ We can use Dress's induction theorem and may assume n is 2-hyperelemen-
tary. From (3.9) we have

Ly
n(Zn)od = L*(Z7r)od.

The kernel of the multisignature

sign,,: Ls
2k(Un) -+ R(n)

is a direct sum of LS
2(U, 1,1) and Lf(C, 1,1) and is detected by the AR-invariant. It

follows from Propositions 3.10 and 3.11 that

maps trivially to LY
n(tpn)oA and to L'(R7c)od, so

lY{ff)oA € Image(CL^+1(Q7r)od - Lx
n(ln)od).

We still have to prove the theorem for a 2-group a. The exact sequence for calculating
L^(ZCT) takes the form

... -> CLs
n+1(Q<r) -* Lx

n{Za) - . Z 0 L J ( 2 2 < T ) ^ ...,
5388.3.46 N
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where £ = 0 for n odd and £ is mapped injectively by the multisignature for n even.
Using (2.3) to compare L*(Z<r), L*(Z2o) with LY

n{Zo), Ly
n(Z2o), we get the exact

sequence

CLs
n+i(Qe) - LY

n(Za) -> L © Ln
y(t2<x).

The theorem follows.

4. Calculation of some L-groups

The semi-direct products Z/nxQ($) of an odd-order cyclic group and the
quaternion group were tabulated as Z/d x Q(8a, b, c) in [18]. The integers a, b, and c
can be permuted without changing the isomorphism type of the group, so we can
write Q(Sa, b) for any of the isomorphic groups

In this paragraph we calculate L-theory of the groups above. More precisely, we
calculate

where Y = SKx{Zn) © < —1> © n/[n, it] and a is the usual (oriented) anti-involution.
We follow the procedure from [29] closely. First recall from [29, §4] that

Lj(Z[Z/n x Q(8)])

(4-1) ' "

d\n

Thus the task is to calculate the top component corresponding to d = n. Consider the
twisted group rings

(4.2) R(n) = ZKJ'[fi(8)], S{n) = <Q(Q'[Q(8)], T(n) = U®Q S(n),

where („ is a primitive nth root of 1, and where the twisting is induced from the
homomorphism cp: Q(8) -• (Z/n)x = Gal(Z[CJ/Z) which specifies n = Z/nxQ(8).
Each ring has the anti-involution induced from a. For n > 1,

Ll(Zn)(n) = Ll(Zn)(n),

and we have the exact sequence from [29, §4.1]:

( 4 3 ? . > CL?+l(S(n)) - ^ Lf(Zn)(n) > Lf(T(n)) © f l L?(fip(n)) > ....

Here X{S(n)) = {0} and X(T(n)) = {0} in general, and for the rings in (4.2) we even
have X(Rp{n)) = {0} by results from [20]. We follow the notation in [29] and write Lj
instead of L{^}. In (4.3) the suppressed antistructure is induced from (Zn, a, 1) in each
case, so L?(Rp(n)) = Lf(Rp(n),a, 1), etc.

We begin the explicit calculations with the groups n = Q(Sa, b). They can be
presented as

(4.4) Q(Sa, b) = </4, B, X, Y\ A" = 1, Bb = 1, X2 = Y2, YXY~l =X~\

XAX~l = A~\ XBX~l = B, YAY~l = A, YBY~i = B " 1 ) .
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The ring S = S(ab) = Q(Cflfc)'[<2(8)] contains the central idempotent ^ 1 + X 2 ) and
splits into a product of simple algebras S = S+ x S_ each having centre

(4.5) F = Fatb = Q(Ca + Ca-\Cb + U-1)-
More precisely,

S+=Q(U[XJ\X2=Y2 =
s- = Q(UT*> r I * 2 = Y2 = - 1 ,

The antistructure (S+, a, 1) has Type O, the other one (S_, a, 1) has type Sp. At infinite
(real) primes S+ is split, S_ is not:

S+ ®F U ^ M4(R), S_ ®F 03 ^ M2(H),

where F c U is any embedding and H is the usual quaternion algebra. This is easily
checked directly, and is all we need for the L-group calculations. Actually,
S+ = MJ^F) and S_ ^ M2(D) where D is a division algebra non-split at infinite primes
and at p and q.

For a simple antistructure (S, a, 1) of Type O with centre K we have

(4.6) CLx
n(S) = 1/2; C(K)2; 2C(K); 0 for n s 0,1,2,3 (mod4),

cf. [29, §1.2]. Here C{K) is the idele class group and C(K)2 = C(K)®I/2,
2C(K) = {c e C(K)\ 2c = 0}. If (S,a, 1) has Type Sp we get the same groups but with
grading shifted by 2:

CLf(Type Sp) = CLx
n + 2(Type O).

All together we have calculated the terms CL^Siab)) in (4.3).
Next we consider the terms L^RJ^ab)), where

R = R(ab) = Z[{fl6]'[<2(8)].

The centre consists of two copies of the integers O(Fab) in Fah. We have

where y runs over the set of primes Pp{Fab) in Fab which divide p and Ry is the y-adic
completion. To save space we introduce the notation

We begin calculations of L ^ p ) = J~{ Ll(Ry) with the easy case where p is odd (that is,
p]2ab). Then

Indeed, this isomorphism holds on the residue level and since Q(£ab)/Fab is
unramified at y, the ^-integral isomorphism follows by standard methods.

In the decomposition of Ry the first factor has Type O, and the second has Type Sp.
Thus (by Morita equivalence)

Lx(fiy) = Lx(Ry, a, 1) = Lx(Ay, 1, 1) 0 Lx(Ay, 1, - 1 ) = Lx(Ay) 0 Lx
+2{Ay).

Explicitly, we have

(4.7) Lx(Ay) = 0; Ho(Ay*y, H\A;); 0

for n = 0, 1, 2, and 3 (mod 4), cf. [29, § 1.2].
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We have used H'( ) to denote the Tate cohomology groups with respect to the
involution associated with the underlying anti-structure (always clear from the
context). In the case above, where the involution is trivial,

For p = 2, R2 = t2 ® ZlCabJLQW has centre i2[Z/2] = A2 0 A2-X
2 where

A2 = Yl {Ay I y e P2(Fa b)}. Moreover, R2 is an Azumaya algebra, so by [31, Theorem
8.3] or [9, §3],

There is an induced Morita-equivalence of anti-structures,

for some unit u e X2[Z/2]X. We have u = T, the generator of Z/2, since upon
tensoring with Q this is the element which gives the correct <Q>2-types according to the
remarks following (4.4). In conclusion,

(4.8) L*(£2) = L*042[Z/2],l,7).

It is well known that X1(i2[Z/2]) = i 2 [ Z / 2 ] \ The involution is trivial, and we
have

LEMMA 4.9. (i) tf%42[Z/2]x) = H°(A^)®H°(A2).
(ii) //1(i2[Z/2]x) = 0 2 - « - l > 0 <T))where g2 = g2{Fa<b) is the number of primes

in Fab dividing 1.

Proof. Consider the exact sequence

1 • (l+2/42)x - ^ A2[Z/2Y -£-+ A} > 1,

where p(a + bT) = a-b and;(l +2a) = 1 +(1 + T)a. The long-exact sequence of Tate
cohomology groups (with respect to the trivial involution) splits into short exact
sequences

0 -• tf1(l+2i42
x) -• //1(i2[Z/2]x) -^ H\A$) - 0,

0 -> H°(\+2A2) - H°(A2[1/2Y) -+ H°(AZ) -+ 0.

The group A2
x/\+2A2

x has odd order. Hence H°(A$) s H°(l +2/42
x), and (i) follows.

To prove (ii) we use the cohomology sequence of

(4.10) 1 > (l+4y42)
x > (l+2A2)

x -2-». A/2A > 0,

where (p(l+2a) = a is the reduction of a modulo 2. The logarithm shows that the
multiplicative group (1 +4A2)

X is isomorphic to the additive (torsion free) group A2.
Hence #1(l+4/l2

x) = 0. It follows that H1(1 + 2A2
X) ^ Hl(A/2A) s g2-Z/2, gen-

erated by the g2 elements — l e i +2A* for y\2. This completes the proof.

LEMMA 4.11. (i) L ^ 2 [ Z / 2 ] , 1, T) s <?2-(«-l> 0 <T»/<(- 1)' + 1 T» .
(ii) L£+ 1(i2[Z/2], 1, T) s H°{Al) ©
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Proof. The proof is based on two facts. The first is the Rothenberg exact sequence

Hi + 1(A2[Z/2y) -±> Lf(A2[Z/2l 1, T) >

Lf(A2[Z/2l 1, T) -4-> //((i2[Z/2]x).

The second is the Hensel type reduction theorem for L*-groups:

whenever J cz R is an ideal preserved by a, such that R is J-adic complete
(R = UmR/J"), cf. [29, §1.2].

In our case R = 42[Z/2] and we use the ideals J" = <1 - 7> and J+ = <1 + T>.
The problem is to evaluate

d,: L?(A2[Z/2l 1, T) - ^

There are two commutative diagrams

Lf(i2[Z/2],l,T)

Lf(A2,1,1)

(4.12-)

L?{A2,\,-\)

P-

associated to reductions modulo J+ and J . We have Lf{A2,1, — 1) = Lf+2(/42), and
for each i, Lf{A2) s L?(A/2A) s g2-Z/2. Indeed, A/2/4 £ fl{Fy\ y e P2(F)} where
Fy denotes the residue field of F = Fab at the dyadic prime y, and Lf(Fy) = Z/2 for all

From [30, Theorem 11] the image of df is given by

<l+40>; < - l> ; 0; 0 for j = 0, 1, 2, and 3 (mod4),

where 1 +4/? e 1 +4^y
x c Ay is an element with fi e Fy not of the form x + x2 (y|2).

We use (4.12+) for i = 1 and (4.12") for i = 3 to conclude that dt is injective for i
odd. For i even, first note that the homology sequence of (4.10) takes the form

S* wwn
A/2A H°(l+2A2*) A/2A 0.

When we use the 2-adic log-function to identify H°(\+4A2) with A/2A, S* becomes
the map of A/2A = Y[^y which takes x to x + x2. Combining with the above
description of Image(d*), we note that d2i is injective and that

cokd2i = A/2A 0 H°(A2).

For i = 0, A/2A corresponds to the Type O factor and H°(A2) to the Type Sp factor,
and vice versa if i = 1.
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Finally, the terms L?{T), where T= T(ab), in (4.3) are easy to list:

L*o(T) £ fir*, • (LS
O(U, 1,1) 0 Lg(H, c, 1)) s ^ • (4Z 0 2Z),

L?(T) = 0, Lf(T) = ^

Here #«, = ^ ( F ) is the number of infinite (real) primes of Fa b.
We are ready to evaluate the exact sequence (4.3) for the groups n = Q(Sa, b) in (4.1)

with a ^ 1, b ^ 1. The available information is contained in the exact sequence

0 > cok\J/i+l > L?(Zn)(ab) —£-> Ker«A,. > 0,

where

(4.13)

: [ I #W) x W ) - ĤCOT) x 2/2.

Here F = Fab, and FM = 1R © Q F s ôo • R is the product of the infinite (real)
completions. The idele class group is C(F) = F^/F* where

F* = l i ( ) , ( )
IT yeSi

with Q running over a finite set of primes in F such that fi 2 Pa>(F).
The mappings in (4.13) can be described as follows. The summand A/2A belongs to

the kernel of i/^i+i- Each factor H°{A*) is mapped via the inclusion 4y* c Fy
x £ FjJ,

and H°{F^) is mapped via F£ ^ F%. For t/̂ 0, each factor 4Z is mapped onto the Z/2
with no components in Hl(C{F)) and the g^ factor 2Z surjects onto
H\Fl)^H\C{F)). Finally, the factors H\A;) and Hl{F^) are mapped into
HX(C(F)) via the natural map. These results all follow from the proof of the
identifications (4.6), compare [29, §§4.4, 4.5].

In describing the kernels and cokernels in (4.13) it is convenient to compare the
maps ^1,^3 with the natural homomorphism

It has kernel F(2)/(FX)2 where F(2) <= F* consists of the elements with even valuation
at all finite primes. Its cokernel is equal to H0(F(F)), where F(F) = I(F)/FX is the ideal
class group of F, and /(F) = F^/F^-Ax is the ideal group.

It follows that

(4.14) Keri/^. + 1 = >4/2 0 K e r f Jl+1,

and that Keri/^. + i and coki^2l + 1 can be determined from the exact sequences

0 -> KerJ^ -> F(2)/F2 - H°{{A/ab)*) -> cokiK -* H0(T(F)) -> 0,
(4.15)

0 -> KerJ^ -• F(2)IF2 -* H°{{A/ab)*)x H°(F^) -> coki/^ -»• //°(F(F)) - 0.

In deriving (4.14) we have used the global square theorem for F and the fact that the
reduction homomorphism n^iof t^ ~* (^ / a ^) x induces an isomorphism on H°.
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Let F* c F* be the subgroup of elements with positive valuation at aii infinite (real)
primes. Write F(F)* for the strict (or narrow) class group (F(F)* = I(F)/F*) and let

_ f* n f(2) j ^ g s e c o n £ j sequence in (4.14) can be rewritten in the form

0 -> Kerf J -> F* ( 2 ) /F x 2 - H0((A/ab)x) -> c o k ^ -> //°(r(F)*) -> 0.

We collect the calculations in

THEOREM 4.16. Let n = Q(8a, b). There is an exact sequence

0 -> cok^f+1 -• Lf(ln){ab) -* Ker^f -> 0.

TTie terms coki//2i + i an<^ Kert/zfj + i a r e given in (4.14) an<i (4.15) with

/4 = 0(F). The rest of the terms are as follows: cok^ 0 = (gah—1)*2/2,
cok^2 = Z/2©cokt/f0, Keri/^0 = Z, anrf Ker^ 2 = 0. Here Z is a / r ee abelian
signature group and gab is the number of primes in F dividing ab.

At one point in the next paragraph we shall also need Lf, + 1(A[7i]) where A = Z[i]
and n = Q($a, b). This calculation is quite analogous to the one above: LfI + 1(A[7r]) is

an extension of coki//2, + 2 by Keri/^ + i where

(4.17)

Here F[t] and A[i] are the quadratic extensions by i = ^/ — 1. Note that
02(^10) = 2^2(^) so that 2 2 ® 4[i] = 2(22 ® A); thus the 2-adic calculations follow
from Lemma 4.11.

The (top component) of L-theory for Q(Sa, b) will be compared with L-theory of the
generalized quaternion group Q(4n) = Z/n x Z/4 specified by the map
cp: Z/4 - ~ Z/2 £ (Z/n)x. Indeed, G( 4 ^) is included in QC8a,b, 1) as the subgroup
generated by Z/ab and XK

The rational group ring of Q(4ab) is similar in structure to the rational group ring of
Q(Sa, b). Specifically, its top component decomposes as

Q(Cab)'[Z/4] s M2(Fab)xD, Fab =

where both factors have centre Fab, and the types are O, Sp. Arguing as above, we get

THEOREM 4.18. For n = Q{4ab) there is an exact sequence

0 -> cokiAf+1 -> L?(Zn)(ab) -• Ker^f -> 0.

The terms cokt/^f, Keri/^f follow from the description given in (4.15)
F = 1 1

We shall compare L^(Z[Q(4a6)])(a6) and L^(Z[Q(8a, 6)])(afe) via the contravariant
structure

The sequence (4.3) is functorial, so information about i* can be obtained from
information about the restriction of i* to cokij/n + l and Keri/^n+1; thus we shall
compare Theorems 4.16 and 4.18.
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This requires the fact (easily checked) that

becomes the inclusion of centres when the Kt-groups are identified as subgroups of
the centres by the reduced norm homomorphism. There is a similar result for p-adic
group rings: i* becomes the inclusion of centres combined with the diagonal
inclusions (when there are more p-adic primes in the centres on the right-hand side
than in the centres on the left-hand side).

We have gab(Fab) ̂  gab(Fa<b), with equality if a and b are primes. It follows that i*
maps the cok \j/0 term injectively. The extra Z/2 in cok t/>2 comes from the reciprocity
law. It can be identified with the right-hand term in the exact sequence

0 -> Br2(F) -> Br2(FA) -> Z/2 -+ 0,

where Br2 denotes the elements of order 2 in the Brauer group (the part generated by
quaternion algebras). Since both Fab and Fab are real fields, Br2(Foft)00 ^ Br2(Fab)o0.
Hence the extra Z/2 c cok i/̂ 2 is mapped injectively under

i*: Lf(Z[(2(8a,6)]) - Lf(Z[Q(4fl6)]).

The kernel and cokernel of iA2l + 1 are more intricate to chase under i*, as they
depend on the ideal class groups. In special cases, e.g. if a = 3 and b is a prime such
that the relative class number of Q K Q / Q ^ + Cfc"1) is odd, it follows from [7, satz 45]
that Keri/ffi+1 injects into Keri^2l + 1. In this situation

i*: Lx
2i+l(Z[Q(Za,b)-])(ab) - L* + 1(

is injective. In general, however, it seems difficult to determine the kernels of
i*|Ker^2i+i a n d '*|cok^2, + i.

Instead we can combine the above with Theorem 3.12 and use that the image of

Pod: ^ ( Z M ) - Ln
y(Zod|>])

can be detected by Reidemeister torsion invariants.

THEOREM 4.19. Let n = Q(8a, b). Write i(r, n)for the inclusion of a subgroup x in n.
Then

is injective, where Zod = Z/Z2.

Proof. Consider the decomposition

(*) Lf(ZM)S \\Ll{l.[n\){d).
d\ab

If d < ab then d = a'b', and there is an inclusion;: Q(Sa',b') cz Q(Sa,b). We claim
that

Ln
y(Z[Q(8a', b')W) - ^ L!(Z[Q(Sa, 6)])(d)

is injective. Since the decomposition (*) uses the covariant structure of the bi-functor
LY

n, the claim is not obvious. We know that j ^ is an isomorphism and must calculate
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j * °j* fr°m t n e double coset formula, cf. [5] or [10]:

Here the maps kt are inclusions of subgroups n" in n' = <2(8a', b') such that | n': n" | is a
power of 2. One more application of the double coset formula shows that
N o N = 2 AT. Since the torsion subgroup of LY

n consists of 2-torsion, it follows that y,,,
is injective. Thus all we have left to consider is the top component LY

n{Z\n])(ab).
The kernel of pod: LY

n(Z[n]){ab) -> LY
n(toA[n]){ab) is equal to an extension of

cok^n + 1 by

A/2 for n = 1 (2), I for n = 0 (4), 0 for n = 2 (4),

where £ is torsion free (and detected by signatures). This follows from Theorem 4.16
and the global square theorem.

The field Fah = Q(Cab + (ab~l) is a quadratic extension of

and A/2 = &(Fab)/2 injects into O(Fab)/2. We argued above that

*'•: Lx
2i+l(Z[Q(Sa,b)-])(ab) -> Lfl+1(Z[fi(4fl6)])(fl6)

maps the subgroup coki^2, + i injectively. Hence i* maps Ker(pod) injectively.

For later reference we note, from the proof above, the following corollary.

COROLLARY 4.20. The image of p2: L£i + 1(Z[()(8a,fc)])(ab) -> LY
2i+l(R2(ab)) is

mapped injectively into Lli+ 1(t2[Q(4ab)'])(ab) under i*.

The L-theory of the groups Q($a, b, c) x Z/d can be read off from Theorem 4.16,
except for the torsion-free part E of LY

2i. Indeed,

Torsion Lj(Z[Q(8a, b, c) x Z/d]) £ Torsion Lj(Z[0(8a, b, c)]),

by [29, §2.4], and from [9, §3] it follows that in the decomposition (4.1),

Torsion Lj(Z[Q(8a, b, c)])(d) = 0,

unless d is prime to at least 1 on the integers a, b, and c. (The point is that the centre
fields of S{d) are complex in the other cases.) We get

THEOREM 4.21. The natural inclusions induce a monomorphism between the torsion

subgroup o/L£(Z[(2(8a, b, c) x Z/d]) and the torsion subgroup of

Lj(Z[<2(8a, b)]) 0 Ll(Z[Q(Sa, c)]) 0 L^(Z[Q(8fe, c)]).

5. Evaluating the Rothenberg sequence

In the application of surgery theory to solve geometric existence problems, e.g.
the existence of spherical space forms, one needs the groups Lf{Zn). They are
connected via the exact sequence (2.3) to the groups Lj(Zn) treated in the previous
paragraph. The extra terms in (2.3) are the Tate cohomology groups of
Wh'(Z;r) = K^Zrf/YiZn). The group Wh'(Z?r) is torsion free and has trivial Z/2-
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action by [31, §7], so we get the exact sequence

(5.1) Wh'(ZTi) ® Z/2 — U U2i_ x(Zn) - ^ Lj,_ ^ZTT) • 0.

This paragraph gives a calculation of (5.1) for the groups n = Q(8a, b) and for their
subgroups Q[4ab). The results enable us to calculate surgery obstructions in Lf,-- i(Z7c)
of normal maps which satisfy the conditions in Theorem 3.12.

Although, as we shall see at the end of the paragraph, our main conclusions are true
for all groups Q(8a, b), we now make the simplifying assumption that ab is square free.
Then Q(%a, b) has sufficiently many automorphisms to imply that each abelian-valued
functor decomposes over the divisors of ab, cf. [29, §4]. In particular, for n = Q(8a, b),
(5.1) is a direct sum of exact sequences

V/W(Zn)(d) ® Z/2 -> L L - ^ Z J O M ) -> l&.^ZBHd) -+ 0,

where d divides ab. The Meyer-Vietoris sequence of the arithmetic square gives the
exact sequence
(5.2) 0 - K\(Zn) - K\{tn) 0 K^Qn) -> ^ ( Q T I ) -> K0(ZTT) -> 0.

If 7i = Q(8a, 6) then SK^&r) = 0 and SK^Zn) = 0 by results from [20], so K^ = K\
for ^7t and Zzc. For components with d > 1, Wh'(Z7i)(d) = JC^Z^d). We are interes-
ted in only the top component, d = ab. To simplify notation we leave out the
indication of the (top) component in the rest of the paragraph when there is no danger
of confusion and write K^Zn) = K^Zn^ab), etc. We use the same notation as in §4:

PROPOSITION 5.3. For n = Q(Sa, b),

KiZn) = Ki(Zn)+ ® K£Zn)., with i = 0,1,

where the summands are calculated from the exact sequences

0 > Kl(Zn)+ > A* -£-+ A/2abx > K0(Zn)+ > T(F) • 0,

0 • K^Zn). > A* —*U A/abx > K0(Zn). > T{F)* > 0.

Proof. The result follows from (5.2) when we calculate the individual terms via the
reduced norm homomorphism. We begin with the rational terms where we have
isomorphisms

Nrd: Kt{Qn) —^-> Fx xF*, Nrd: K^Qn) —^-> Fx xFx.

The first factor corresponds to the Type O component of QiCabf [6(8)] and the second
to the Type Sp component, cf. (4.5).

The term Kx{Zn) = Y\ ^i(^-P
n) ' s more delicate. If p is a prime not dividing ab, then

K,{tpn) = K.iR,,) where Rp = tp® Z[Cafc]'[Q(8)], and we have, from §4,

= (1 +2A
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Suppose p | a and write ab = pc with (c, p) = 1. Consider the twisted group ring
* = Z[Cc][Z/p]'[6(8)] a n d l e t £ p = 2 , ® /?• Write T for the generator of 1/p c K
and consider the ideal Jp cz Rp generated by 1 - T. Since Rp is complete in the Jp-adic
topology there is an exact sequence

0.

For the top component we have K^Zpii^ab) = Nrd( l+J p ) . Further,

Nrd(l + Jp) = Nrd(l +(1 -Q(tp ® R)),

with R = Z[Cpe]'[Q(8)]. It is direct to check that

Nrd(l+Jp)c:Up(F)xUp(F)

where

On the other hand, the restriction of the reduced norm to 1 +(1 — Cp)%[(pc]y is equal
to the usual norm

It follows from [23, V, §3] that N maps 1+(l-Cp)t[Cp c]y onto Ul(Fy), so in
conclusion we have

(5.4) K1(lpn)=Up(F)xUl
p(F).

Using (5.2) we have K^Zn) = Kl(Zn)+ 0 KiiZn).., and exact sequences

0 -> X 1 ( Z K ) + - i x M L x [ / U F > F x -> ^ x '

0 - KJCZTC). - i x M f l ; x ( / f l \ ( F ) x F * - F\

Finally, the exact sequences

0 -• A* -> Ax xF* -+ F* - . r(F) -• 0,

0 - » / l * - » i x x F * - + F x - > T(F)* -> 0,

together with a 'snake' lemma argument, complete the proof.

Later in the paragraph we shall need the groups K'^An) where A = Z[i] is the
Gaussian integers. The calculations are fairly similar to those used for Theorem 5.3,
but the result is a little different because S ® Q Q [ i ] is split at infinite primes for
5 = Q(Cnb)TQ(8)]. There are exact sequences

0 -> K\(Zli]n)+ - A[i\ * -> Alt]/ 2ab\

0 - K\{Z[i]n). -> A[QX -> /

and ^(ZCQTC) = X;(Z[i]7r)+ 0 X;(
We have determined the source and target of

t: K\(Zn) ® Z/2 -^ Lf,_ ^Zn), where ?r = Q(8a, fc),

and it remains to determine the map itself.
To this end we need the following naturality result for the Rothenberg sequence.
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Let A be a Dedekind domain and L its field of fractions. The Mayer-Vietoris sequence
of the arithmetic square breaks up into exact sequences

(5.6) . \ \ J
0 -^ K^LTI) -» /C^LTI) -> KO(ATT) -^ 0.

The terms have involutions, trivial in our cases, and there is a natural commutative
ladder of exact sequences

(5.7)

HW^An

... -» Lf(Ln) • Lf-AAn) E • L?{An)@ L?{Ln) -* ...

where the top sequence is the exact sequence of Tate cohomology groups of the first
sequence in (5.6), and the vertical maps are from the Rothenberg sequence. The
commutativity of (5.7) was originally observed in [11]; a proof is included in [22,§6].

Recall from (4.15) the extension

0 -> cokiK.- -> Ljj-ifZn) -» Keri/^2,-! -> 0

where

1 = A/2A 0 Ker{F(2)/(Fx)2

Ker ^ 3 = A/2A 0 Ker{F*(2)/(Fx)2 -> //°(ia
x

fe)}.

We note that HY{M) = 2M and H°(M) = M/2M in each case since the (suppressed)
involution is trivial.

Define

to be the square root of the reduction homomorphism, that is

where pab: A -* A/ab is the ordinary reduction.

PROPOSITION 5.8. (i) The composition I: K\(Zn)® Z/2 -• Keri^2l_1 maps
K\(Zn)+ c Ax to A/2A =(A/4A){2) by reduction modulo 4, and maps K\(ln) _
trivially. It maps the summand K\{Z.n\-y+i into Ker{F(2)/(Fx)2 -> H°(/l/a6x)} 6y t/ie
natural inclusion, and Ker(T(_)1+i) = Ker{(/lx)2 -> (X/a6)x}.

(ii) The induced homomorphism t: Kerl -> cok î 2,- JS trivia/ on Ker7(_), and is equal
to y/pab on Kerl(_)1+i.

Proof. The first part, Proposition 5.8(i), follows directly from the description of
Keri/^f-i given in §4 and from the commutativity of the second square in (5.7). We
prove Proposition 5.8(ii) when i is even.
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To prove that t | Ker 7+ is trivial we consider the projection of In onto the algebra

R = Z[Z/abyiX, Y\ X2 = - 1 , Y2 = - 1 , XY = - YX\

There is an induced homomorphism of L- groups, in fact of the whole diagram (5.7)
into an analogous diagram for R. In particular,

maps the subgroup coki^2l- injectively. But the subgroup K\(Zn)+ of K\(Zn) is
mapped trivially, so t\KerT+ = 0.

The restriction of t to Ker?_ is also determined by naturality, but this time we
extend scalars and consider the natural map

where A = Z[i] and Arc has the usual anti-involution given by a(£ A,-0,-) = Â,-*?,- (no
conjugation on A!). It follows from Theorems 4.16 and 4.18 that cok^2l- is mapped
monomorphically into L^-iiAn).

Let Im/4X (respectively Imy4[t]x) denote the image of the reduction homo-
morphism pah: A* -* A/ab* (respectively A[i]x -> A[f]/ab*). The subgroup
Hl(A[i]/ab*) of elements of order 2 is included naturally in H1(F[QX). This yields a
homomorphism cp and a commutative triangle.

Here <5 is the coboundary in the long exact sequence of Tate cohomology groups
induced from the first sequence in (5.6) (with A = Z[i]) and d[i] is the corresponding
boundary associated to the exact cohomology sequence for

0 -• K\{Z[i\n)- -> A[i]* -> Im/ l [ i ] x -• 0.

We have Im Ax £ im 4 [ i ] x and therefore

Ker{(/lx)2 -• X/a6 x } c Im(5[i]).

The triangle above, together with the first commutative square in (5.7), yields the
commutative diagram

HX(AX) • Hl{A/ab*)

<5jYj

Kerf_

It follows that t = y/pab.
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REMARK 5.9. The results in Propositions 5.3 and 5.8 remain true for the group
Q{4ab) when one substitutes Fab = QiU + W1) for F, and B = ZKab + C*"1] for A.

We can now combine the results of § 5 with the main conclusions of § 3 and § 4 to
obtain a (theoretical) calculation of the surgery obstruction in the situation of space
forms. Let / : M -> X, / : vM -> ( be a surgery problem whose target is an odd-
dimensional PD space with fundamental group equal ton = Q{$a, b). Let h: X -*• Bn
classify the universal cover of X. For each a c= n, let Xa be the cover induced from
Bo -> Bn and let (fa, fa) be the induced surgery problem over Xa.

Given a homotopy equivalence at: Nx -> XT where i = Q(4ab), the top component
of its Whitehead torsion is denoted wh(gx)(ab); it has two components
wh(gT)+(ab) e K\(Zx)+(ab) and whfoUflfc) e K ^ Z i ) . ^ ) -

THEOREM 5.10. Let ( / , /) fee as aboue. Let
B = ZCCob + Cab"1]- Suppose that (fa,fa) is normally cobordant to a homotopy equiva-
lence for each proper subgroup a ofQ[%a, b). Then (/,/) is itself normally cobordant to a
homotopy equivalence if the three conditions below are satisfied:

(i) AF([M,/io/])(ab) = &f{[X,K\){ab)for all primes l\2ab;
(ii) wh(flfj+(fl6) e Ker{(p: fix -+ (5/4)5,};

(iii) wh(0t)_(ab) e (BX)2 and >/pafc(wn(aJ_(a6)) belongs to the image of the
composition

Ker{(A

Proof We write rc = g(8a, 6) and T = Q(4ab). Since X is odd dimensional, it is
weakly simple by [31, 7.1]. Hence (/,/) has a surgery obstruction XY(ff) in Lli-i(Zn)
and we are interested in its image XK(f,f) e L2,-_i(Z7r). Since XK{fo,fa) = 0 for all
proper subgroups a Q n, we have that XK{f,f){d) = 0 in L*-_ ^ZTTX^) for all divisors d
of ab with d < a/>. Indeed, the proof of Theorem 4.19 for //-groups works equally well
for Lx-groups. Thus AK(ff) belongs entirely to the top component,

From Proposition 3.10 and Theorem 5.10(i) it follows that Xr(ff){ab) maps trivially
to Lf,_ xiRpiab)) for p f lab, and Theorem 5.10(ii) shows that p2X

Y{fx, ft) = 0. Hence by
Corollary 4.20,

and Theorem 3.12 shows that

XY(ff)(ab) 6 coki/,2l. c L i . ^ Z w ) ^ ) .

The term cok^2i is listed in Theorem 4.16. We suppose first that i is even. Then
coki/̂ 2.- ^ L2i-i{Zn)-(ab) and we consider the diagram

Ker{B*

i*x

A/abx} *=—•Lfi_1(Z7r)_(afc) —> L2
c,_1(Z7i)_(a6)
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where we have i*(XY(f,f)(a, b)) = tt(wh(gx)_(ab)). Since XY(f,f)(ab), and hence
XY(ft,fT)(ab), belongs to cok^2l-, XY(fx, fx)(ab) maps to zero in Keri/^i-i- Thus by
Proposition 5.8(i),

wh(gx)_(ab)€Ker{(B*)2 ^ B/ab*},

and from Proposition 5.8(ii) we get

Write cLii-iiln) and c L j - I ( / T ) for the subgroups cok^2l- of Lj,_1(Z7t)_(fl5) and
Lfi-i(ZT)_(a6). Define the subgroup cLf,--i(Z7i) 9 Lfi-iCZn)-(<*&) by the exact
sequence

Ker{(A*)2 -> /4/afcx} - ^ cLl-^Zn) > cL^.^Zn) > 0,

and similarly for the group ring ZT.

We have the exact diagram

0

0 > Im(g • cLx
2i^(Zn) *—+ cL^.^Zn) > 0

derived from (*) above. It induces a six-term exact sequence

(**) 0 > Ker /• > Ker ijf — ^ Ker /* —^-»

cok i* > cok ijf > cok ij >• 0.

We have argued that XY{f,j) 6 CL&.^ZTT). Since /lx(/,/) 6 KeriJ, we get

In particular, if 7pfl6(wh(^r)_(fl6)) # 0 in cok /*, then XK{f, / ) # 0.
On the other hand, \t y]pab{vth(g^_{ab)) e Imi* then it follows from (**) that

Since L2,--i(^p7r)(flfc) = 0 when p divides ab, Theorem 4.19 shows that

p]2ab

maps Ker / J injectively. But pOd(^r(/» / ) ) = 0 a n ^ Pod ° ^ annihilates
Ker{(/4x)2 -+ /4/a6x}, so it follows that XY(f,J) e Im(tJ. Hence /l*(/,/) = 0.

The case where / is odd and the obstruction lies in Lx is similar. We leave the details
to the reader.

In the above we have considered only the groups n = Q(Sa, b) for ab square free.
Without this assumption the automorphisms of n give only a partial decomposition,
namely
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where P runs over the prime divisors (not all divisors) of ab. However, each factor
K\(Zn)(P) can be analysed using the methods above. We sketch the procedure.

Write ab = plc with {p,c) = 1. We have algebras Rj = Z[Cc][Z//y]f[(2(8)] and in
place of (5.4) we consider the string of epimorphisms

K\{tp®Rd -> K i t f p ® * , - ! ) -+ ... - K\(lp®R0).

This leads to a decomposition

= ( ' f l Vp
p
s(F) x U»P

J(F)) x K\(lp ® R0)w.
\J = 0 /(2)

We note that the index | C/1: C/r | is a power of p when r > 1. It follows that each
functor K\(Zn)(P)® 12 does indeed split further into a product of functors indexed
by those divisors of ab which belong to P. This decomposition fits together with the
decomposition of L\{Zn) from (4.2) and gives a decomposition of the Rothenberg
sequence (5.1) in general. The results above are in fact true for all groups Q(%a,b).

ADDENDUM 5.11. The conclusions of Theorem 5.10 remain valid for all groups
Q(&a,b).

For the groups n = Q(8a, b, c) x Z/d, we can use Theorem 4.21 to get

COROLLARY 5.12. Let n = Q{$a,b,c)xZ/d. Let ( / , / ) be a surgery problem as in
Theorem 5.10, such that XK(fa, fa) = 0fora = Q(8fl, b),a = Q(8b, c), and a = Q(8fl, c).
ThenXK(f,f) = 0.

6. Finiteness obstruction and Reidemeister torsion

Let n be a group with periodic cohomology groups of period N. It has a periodic
resolution Pn of finitely generated projective.Z7t-modules of length JV,

(6.1)

The homotopy type of P^ is uniquely determined by the 'fc-invariant' e{P^) e HN(n; Z).
It is a generator of HN(n; Z) ^ 2 / | n |, and each generator can be realized by some P+,
cf. [24].

We shall use the result from [25] that projective modules are locally free to
construct a torsion invariant !(?„,) of (6.1). For each i and each prime / we pick a %{n-
base for P, ® ^, and use the Z-bases for H0(Pit.) and Hp^.^P^.) induced by e and n. Let v
be the usual idempotent for Qn, that is v = 1/| n \ £ {g \ g e n). From (6.1) we ge two
based sequences

0 -> (l-v)(PN_1(g)Q;) -» ... -* ( l - v K P o ® ^ , ) -> 0,

0 -> Q, -» v(PiV_1 ® Q,) -> ... -• v(P0 ® 0,) -» 0 , -» 0,

and hence a pair of Reidemeister torsion invariants in K^vQiiz), K^l — v)0j7r). Since
KiCftjTt) = ZC^vQ,^) © AT1((1 —v)0|7r), we obtain an element TN(P+ ® 0,) e /Ci^jTr),
depending on the choices of bases, cf. [28]. This is equivalent to the Reidemeister
torsion invariant from § 2.

A different set of choices gives the same coset modulo K\{Z{n), so there is a well-
defined invariant in K^ia)IK\iXi^)- If I is not a divisor of |7i| then
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x{P+ ® Q,) e K\(Ztn), so the torsion invariants x{P^ (g) 0,) combine to define

(6.2) TN(/g 6 Kx{Qn)IK\(ln).

The element xN{P^) depends only on the homotopy type of P#, or, what is the same,
on e(PJ. Indeed, if P^ ~ P* and / : P* -* P* is a homotopy equivalence, inducing the
identity on H0(PJ and HN(PJ, then

Hence T ( / (X) <Q>,) is the image of the l rintegral Whitehead torsion

that is, T ( / ® Q,) € K'^Zp). We have defined an invariant (the idele Reidemeister
torsion)

(6.3) z ^ ^

where # / / N denotes the generators of HN. From (5.2) we get the exact sequence

(6.4) 0 > KAQnyK'^Zn) - ^ K^Q^IK^ln) —^-> K0(Z7r) • 0.

If P^ in (6.1) is homotopy equivalent to a free resolution Q , we have a well-defined
Reidemeister torsion

T'N(CJ 6 KAQnyKUZn)

and y(xJv) = T^. Thus d(rN(e)) = 0 if and only if e can be realized by a free periodic
resolution of length N. Let

aN: &HN(n;Z) -> K0(Zn)

be the finiteness obstruction from [24], cr^P,,,)) = X ( ~ l ) ' [ ^ ] - ^ slight reformula-
tion of [28, Lemma 9.2] gives the following interpretation of exactness in (6.4):

LEMMA 6.5. For each generator e e HN(n;Z), we have <JN(e) = d(iN(e)). lfaN(e) = 0
then there exists a based free resolution C# whose Reidemeister torsion T(C#) maps onto
xN(e).

We shall make calculations with (6.4) and recall some (standard) notation. Let S be
a simple Q-algebra with centre K which we assume is Galois over Q. Let A be its
algebraic integers. Then

c/;(S) = ul
y(K) = { « ^ ; I « E I (mod/)} (u°y = uy = A;\

u\{S) = u\(K) = n t/K*).
y\l

(6.6) E(K) = A *, E(K)* = A* = {a e A * | a} > 0 for all real primes y},

If 5 is semi-simple then E{S), Ul
y(S) etc. denote the products over the simple factors.

5388.3.46 O
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Further, define

Din) = cok^fo*) - WQn)}, D(n) =

where Z denotes the centre.
Note that I(n) is the direct sum of the ideal groups of the centre fields in Qn, and

that F(n) is the product of ideal class groups corresponding to the split factors of Qn
with the strict ideal class groups corresponding to the non-split factors. Here 'split'
refers to split at the infinite primes.

LEMMA 6.7. There are exact sequences

0 > D{n) • Ki(€in)/K\{ln) > I{n) > 0,

0 > K\(ln) > E(Qn) -^-> D{n) — ^ K0(ln) > I » • 0.

Proof. The reduced norm gives isomorphisms

Kx{Qn)^Z{Qn)*, K^Qn) £ Z(Qn)*,

where Z{Qn)* = [ ] {Z{S)* | S simple} and Z(S)* £ Z(S)X is the totally positive
element in Z(S) if S is non-split at infinite primes and otherwise Z(S)* = Z(5)x.

If / is not a divisor of | n \ then t{n is a maximal order and ^1(̂ ,71) = Ut(Qn). The
first exact sequence follows. The second sequence follows from the 'snake lemma'
applied to the diagram

0 > Z(Qn)* x K\{tn) • Z(Qn)* x U(Qn) > D(n) > 0

0 >Z{Qn)* >Z(<§n)* >0 >0

and the exact sequence in (5.2).

The rest of the section is concerned with explicit calculations for the groups
n = g(8p, q) where p and q are (odd) primes. The sequences in Lemma 6.7 decompose
into four exact sequences corresponding to the four divisors of pq. We are primarily
interested in the top component. We have

E(Qn)(pq) = E(S+) x E(S.) = E{F) x E(F)*,

where S± are the simple summands listed in (4.5) and F = Q(rjp,rjq), rjr = (>r + (3r~
l.

The /-blocks (alias the irreducible components of 1,[TI:]) 'containing' S± are given by

Bp(S±) = 2p[Z/p]KJ'[*, YI X2 = Y2 = ± 1, YXY-' = X~ll
Bq(S±) = 2,[Z/dKp]T*, Y\ X2 = Y2 = ±1, YXY-1 = X-'l
B2(S+) = B2(S_) = t2[CpJ'[<2(8)],

with self-explanatory notation. We have

D,(7r)(pg) = D,(S+) x Dt(S-), for l = p,q,
D2(n){pq) = D2(S+) = D2(S.).
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The actual values of D,(n)(pq) can easily be extracted from the proof of Proposition
5.3. We are interested in only the 2-primary components.

LEMMA 6.8. For the blocks B,(S±) the corresponding components ofb(n\2) are given
by

Dp(S+\2) = Dp(S.\2) = (Zfopf i/J/p)(
x

2),

Dq(S+){2) = Dq(S.\2)=

Let xP> Xq be faithful (one-dimensional) characters of Z/p, Z/q, and let F be the
standard representation of Q(S) on C2. We have generators

c2(Xi + xrl) e H\Z/l;Z), c2{T) e H*(Q(S);Z),

where c2 denotes the second Chern class.

COROLLARY 6.9. Let n = Q(Sp, q). Suppose e e H\n; Z) is a generator which restricts
to £2(XP + Xp~l)> C2(Xq + Xq~

l), and C2(H on the Sylow subgroups of n. Then the
finiteness obstruction lies in the top component and is 2-primary.

Proof. First we show that aA(e) is 2-primary. Since <J8(e
2) = 2o4(e), it suffices to

show that e2 is realized by a free representation. Indeed, we can use the free
representation induced up from a suitable faithful character on C = Z/lpq:

e2 = c4(Inda*)).

The subgroup X0(Z7r)(2)(l) 0 K0(Zn\2)(p) © K0(Zn\2)(q) maps injectively into
^o(Z[6(8p)])(2) © ^o(Z[<2(8g)])(2) by an argument formally the same as the argument
used in the proof of Theorem 4.19, so it remains to be shown that the restrictions

e | Q(Sp) e H*(Q(Sp); Z), e \ Q(Sq) e H\Q{%q); Z)

are ^-invariants of free orthogonal actions on S3.
Let x be a (one-dimensional) character of the normal subgroup Z/4/ cz Q(Sl), and

let V8l be the induced representation of (2(8/) on C2. Its restriction to Z/4/ is x + X1

and its restriction to Q{$) is F. Hence for suitable ^^2(^8/) = elQ(8/)- Since c2(V8,)
is the /c-invariant of the free action on S3 = S(K8/), the claim follows.

The top component of <74(e) can be conveniently examined by comparing the group
n = Q(Sp, q) with its normal subgroup C = Z/2pq. First we need

LEMMA 6.10. For C = Z/2pq we have

E(C)(pq) = E(Q(Cpq)+) x £(Q(CM)-).

The l-blocks containing Q(CJ± are Zp[Z/p] [£,], lq[Z/q] [Cp], and 22[CM][Z/2]. The
corresponding components of D{C)(2) are

Dp(Q(CPq)+){2) = Dp(Q(Cpq)-\2) =

Dq(Q(CPq) + ){2) = Dq(Q(Cpq)-){2) =

andD2(Q(tpq)±){2) = {\}.
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Proof. The only part which is not completely obvious is the calculation of
Di(Q((pq)±). The exact sequence

i+(i-T)2PKj[Z/p] - K^KJCZ/p]) - KAIJLCJ) - o

shows that

where j / = 1 -CP- Since p is odd, C/J has odd index in C/J"1, so

(l/ , / l / ;) ( 2 ) = (2pK

Finally,

where #p is the number of p-adic primes in Q(£M). This gives the stated value of

J>,(Q(W±).
The 2-block containing Q(Cpq)+ (and Q(£M)_) is 22[{p,][Z/2]. The exact sequence

1 - 1+222[CM]X - ^ i ( 2 2 [ C J [ Z / 2 ] ) - K&ACpJ) - 0

shows that D2(Q((pq)±) has odd order.

We are now ready to evaluate iA(e) and o-4(e) for the generators e e <&H\Q(%p, q)\Z)
considered in Corollary 6.9. The result below can be extracted from Milgram's work
on the finiteness obstruction, in particular from the proof of Theorem C in [15]—once
one understands that proof. For those who do not, I include an alternative argument.

THEOREM 6.11. Let n = Q(Sp, q) with p and q odd primes. Write A = 1\r\p> »/J with
rjp = (P + Cp~\ and let O: A* -*• (A/p)*2)X(A/q)*2) be the reduction homomorphism.
Consider a generator e e ^H\n; Z) which satisfies the requirements of Corollary 6.9.
Then

(i) <74(e) = 0 if and only if there exist u+ e A* and u_ 6 A* (the totally positive
units), such that

O(u+) = (1,-1), O(u_) = ( i i ) ,

(ii) given M + , U _ satisfying (i), the element

(2-^)(2-^),4u_) e K^Qn^pq)® Z(2)

represents x'4(e)(2)(pq) e {Ki(Qn)(pq)/K'l(Zn)(pq))®l(2).

Before giving the proof we need to be more precise about the decomposition of
KA(l.n) into components Kx(Zn)(r) than has been necessary so far.

Choose generators Tp and Tq in Q(Sp,q) of order p and q, respectively. Let

(6.12) Ep. Q(Sp, q) - , Q(Sp, q), Eq: Q(8p, q) - Q(Sp, q)

be the automorphisms which leave (2(8) fixed, and map

= 1, Eg(TQ)=\, Ep(Tq) = Tq, Eq(Tp) = Tp.
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With this notation,

Kx{Kn){pq) = Image(l -Ep\ o(l - £ , ) „

where 7r = Q(8p, g). There is a similar formula for K1(AC)(r) where C c Q(8p, g) is the
subgroup C = Z/2pq.

It is convenient for calculations to describe elements of K^Qn) and K^QC) as
character homomorphisms via the isomorphism

(6.13) Kl(Qn)

Here R{n) is the complex character ring and Q = Gal(Q/Q), 0 = limQ(CJ. The
isomorphism in (6.13) is natural with respect to both the covariant and the
contravariant structures on the two sides.

We recall the homomorphism from K^Qn) to Homn(f?(7t), <Q>*) which defines the
isomorphism in (6.13). Let x e.K^Qn); we construct the corresponding character
homomorphism fx. Let x be an irreducible character and Tx: n -+ G/r(Q) the
representation realizing it. Extend Tx to an algebra homomorphism Tx: Qn -> Mr(Q)
and look at the induced homomorphism on the units of the centre Tx: Z(Qn) * -> 0 *.
Then

L(X) = Tx(Nrd(x)),

where Nrd: K^Qn) -• Z(Q7i)x is the reduced norm.
Let {x^ be a set of irreducible characters representing the n-conjugacy classes. We

shall use the composition

(6.14) KAQn) S Homn(K(K),Qx) S ]lQ(Zi)x

to list elements of KAQn), where the ith component of the last isomorphism takes a
character homomorphism / into /(#,) e Q(xdx <= Q x.

We illustrate the use of (6.13) by calculating the top component KAC){pq) in terms
of character homomorphisms. Write C = <T2> x <Tp> x <7^>. It has eight fi-con-
jugacy classes of irreducible characters denoted #*, Xp » X* > and x$q>

 t n e y c a n

specified by

with a similar definition of x}, and xp
+
fl = XP

+ • Zq
+» Xp~q = Xi ' Xp9-

In (6.13) the covariant structure on the right-hand side is induced from the
contravariant structure on R( — ) . Thus if / is a character homomorphism, we get the
following determination of its top component:

(615) ( p)*( «
(1 - £ ^ ( 1 - £,),(/)(zP) = 1 for r = 1, p, and g.

As a final preparation for the proof of Theroem 6.11 we recall from [17, 28] the
formula for the Reidemeister torsion of a free representation (or lens space). We fix the
generator t = T2TpTq for C and let x be the faithful character with x(t) = e2nil2pq. The
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Reidemeister torsion of Six + x'1) is given by

(6.16)

with v =

Proof of Theorem 6.11. We may assume that the generator e e H*(n;Z) restricts to
the /c-invariant of the free C-sphere Sfa + x"1), that is>

From (6.15) and (6.16) we get via (6.14) the top component of T4(e| C), considered as
an element of Q{xpq) x Q(Xp~q) = ®(tpq)+ x ®(t „<,)-• The result is

U(e | Q(pq) = [ ( 2 - ripq)/4p2q2(2 - r,p)(2-%), 4(2 + r,pq)/(2 + r,p)(2 + rjq)l

Consider the top component of the (2-local) diagram

0 > KX{QC)/K\{ZC\2)—^—> KX{QC)I K\{ZC\2)

• ^ - ^ K,{Qn)IK\{tn\2)

d

u-^ K0(Zn){2) > 0

The rows are exact by (6.4), and i* is injective. Indeed, the contravariant map

D(n){2)(pq) -> b(C){2)(pq)

is induced from the inclusion of Z[?/p, r\^\ x in Z[j7pq]x, cf. Lemma 6.10. It follows
from Lemma 6.7 that t* in the above diagram is injective, whence 0-4(e)(2)(p<?) maps
injectively to cok /*.

In the top component of KyiQ^/K'^Zn^ we consider the element

R = ( 4 p 2 q 2 ( 2 - ^ ) ( 2 - ^

Then (using multiplicative notation for Ky( )), we have

U(e | C)(pq)i*jn(R) = (2 - r,pq, 2 + npq) e b(n\2)(pq).

It follows that o-4(e)(2)(p<?) is the image of (2 — rjpq, 2 + rjpq) under the mapping

d: D{n)(2){pq) - •

cf. Lemmas 6.5 and 6.7. The group D(n){2)(pq) = D(S+\2) x D(S-\2) was calculated in
Lemma 6.8. Under the decomposition

(Zlr,pq]/pq)*2) s

±r]pq corresponds to ( 2 ± ^ , 2 ± ^ p ) , and for On: E(S±) -* D(S±){2) we have

^(r}P-1q) = (I -l)-(2-tiq,2-rjp),
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It follows that

U(e\2)(pq)+ = ^((rip-r,q)/4p2p2(2-r,p)(2-r,q))-(\,-\),

T 4 ( « ) ( 2 , ( P 9 ) - = ^ 4 ) - ( 4 , 4 ) .

Since a^e) = (T4(e\2)(pq) by Corollary 6.9, both (i) and (ii) of Theorem 6.11 follow
from (•).

Next, we examine how aN(e) varies with the choice of generator. The simplest
change to make is to vary e by an automorphism of n. This corresponds to changing
the projective resolution P# by an automorphism. Inner automorphisms preserve e,
and hence the homotopy type of P+, so we are interested in the outer automorphism
group. For n = Q(%p, q),

It acts on

^H4(7r;Z) = Fp
x XF,X X ( Z / 8 ) X

by {rp, rq) • {gp, gq, g2) = (rp
2gp, rq

2gq, g2) with quotient

$H\n • z)/out(7t) = F ; / F ; 2 x F ; / F ; 2 x (z/8)*.

One can make one more trivial change of P+, namely replace rj: Z -*• P3 with — r\.
Then eCF,,,) is multiplied by — 1. The resulting quotient group is

(6.18) <#H\n\ Z)/Out(;r) x < - 1> s Z/2 0 Z/2 0 Z/2.

Let S: (Z/|7r|)x -• K0(Zn) be the Swan homomorphism which maps r into the
projective ideal (r, I ) . Then oN{re) = oN{e) + S(r) for e e <&HN(n; Z), cf. [24]. There is a
commutative diagram

-1*1

(6.19) pr

D(n)

d

K0{Zn)

where Z^| = Y\i\\n\ %• ̂ n (6-19), imaps Z,x into t/,(Q7r) via the simple summand in Qn
corresponding to the augmentation.

The discussion above shows that the Swan homomorphism factors over
(Z/Spq)x /(Squares, - 1 > ^ Z/2 © Z/2 © Z/2. The resulting map

S: Z/2 © Z/2 © Z/2 -+ K0(Z[Q(Sp, q)])

is evaluated in [1]; we recall the result briefly.
Let Sir) denote Image S n K0{Z[Q(Sp, q)])(r). We have S(l) = Z/2 by a well-known

result for K0(Z[Q(8)]). Write Ordp(2) for'the order of 2 in Fp
x. In [1] we prove

THEOREM 6.20. (i) S(p) = 0ifp = -l (mod8).
(ii) S(p) = 0ifp=\ (mod 8) and Ordp(2) is odd.
(iii) S(p) = Z/2 otherwise.
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If both p and q belong to Case (iii) then ek is the only /c-invariant which can have
vanishing finiteness obstruction.

In [1] we also evaluate S{pq), except when both p and q belong to Case (ii) of
Theorem 6.20. For example, if p = 3 (mod 8) and q = - 1 (mod 8) then S{pq) = Z/2,
and there exists a generator e'k e H8k+*(Q(8p,q);Z) with <j(e'k) - 0. But e'k does not
restrict to the /c-invariant of a free representation on Q(Sq).

7. The surgery obstruction for spherical space forms

Suppose n = Q(Sp,q) satisfies Theorem 6.11 (i). Let C+ -> Z be the resulting free
periodic resolution of length 4. We splice it together with itself 2/c + 1 times to obtain
free periodic resolutions C{k) -> Z of length 8/c + 4. For all k, C{k) can be
topologically realized: there exists a finite cell complex I , 21 ~S 8 f c + 3, with a free
cellular action of n so that the induced complex of cellular chains C+(L) is chain
homotopy equivalent to C(k). ((I, n) is called an (8/c + 4,7i)-polarized space in [26,13].)

The 7r-homotopy type of Z is specified by the ^-invariant

e(Z,n) = e(CJ2k + 1 6 H8k+*(n;Z).

The homotopy type of 'L/n, on the other hand, is determined by the image of e in

Let T(L, n) e K^Qn) denote the Reidemeister torsion of £ with respect to some
equivariant cell decomposition. Its image in K^Qiij/K'^Zn) is the invariant
T'8fc + 4(e2fc+1) introduced in the last paragraph. We shall use this invariant to evaluate
surgery obstructions, but need to know only the 2-local part of its top component
which is given by

where x'4 is listed in Theorem 6.11 (ii).
There are three maximal subgroups of Q(Sp,q):

(7.1) *i=<2(8p), n2 = Q(Zq), n

Each of them admits free (complex) representations of real degree 4 (and thus also of
degree 8/c + 4).

The subgroup n3 is of particular interest for the results below. We recall from § 5
that the top component K\(Zn3)(pq) is a direct product of the groups

K\(Zn2)+(pq) = Ker(iT
12) K\{Zn,).{pq) = Ker(S* - (B/pq)*),

where B =

LEMMA 7.3. There exist free representations V{ ofn, and nrhomotopy equivalences

* S.

For a suitable cell structure ofL/n the 2-local part of the (weak) Whitehead torsion ofg3

has top component given by

Nrd(wh'(03)(2)(M)) = (w+,">-)•
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Here w+ e Q(npq) + , w_ e ®{rjpq)_ are the elements

w_ = [

where u+ and u_ are the units from Theorem 6. l l ( i ) .

Proof. The free representations of n,- are induced from free representations of index 2
cyclic subgroups. Their restrictions to Z/p, Z/q are of the form U ®U, where the bar
indicates the complex conjugate. Their restriction to Q(8) is a multiple of F, the unique
complex representation of real degree 4. Since the /c-in variant of S(V) is the Euler class
of the representation, the first part of the lemma follows when we use the fact that
group cohomology is detected on the Sylow subgroups.

The second part uses the relation

where T( , TT3) denotes the Reidemei&Tjer torsion in Wh((Q>7r3), and the group structure
is written multiplicatively. For the top component we have

Wh(Qn3)(pq) = KAQndtpq) £ Q(npq)l x Q(npq)l-

It follows from Theorem 6.11 that there exists a 7t-equivariant cell decomposition of L
with x(Z, n\2){pq) = (T+, T_) and

T + = lu+(r,p-r,q)/4P
2q2(2-r,p)(2-r,q)-]

2k + l,

T_ =[4u_]2 f c + 1.

On the other hand, T(S(F3), 7r3)(2)(pg) can be calculated using the method explained in
§6 (and used in the proof of Theorem 6.11). It has top components

+ = \_2-r\pql4p2q2{2-np){2-nq)]
2k+\

and Lemma 7.3 follows.
Consider the surgery-exact sequence

L '0(Z7i) > &"(L/n) - ^ [S/TT, G/Top] —^ L'^Zn)

in the weakly simple category. Here L'0(Zn) = LY
Q(Zn) and L'3(Zn) = L3(Z7i)/<T>,

cf. [29, §5.4]. In our cases, n = Q(Sp,q), <T> = Z/2 s L¥
3(Zn)(l), and

L'3(Zn){d) = LY
3(Zn)(d) for d > 1.

LEMMA 7.4. There exists a degree 1 normal map f: M8k + 3 -> L/7r, / : vM -> C
w/iose induced covers over 'L/ni are normally cobordant to the homotopy equivalences g{

from Lemma 7.3.

Proof. The existence of (/ , /) with the prescribed properties is equivalent to the
existence of an element q> e I'L/n, G/Top] with i(nh n)* (cp) = jVigi) for i = 1, 2, and 3.
Since G/Top is an infinite loop space, we have an isomorphism

lim/(7il-,7r)*: [Z/rc, G/Top] —^-> lim [Z/TT,, G/Top],
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where lim denotes the 'stable' element in the sense of [3, Chapter XII] (see also [10]).

Given two (8/c + 4, p)-polarized spaces (El5 p) and (L2, P) with the same /c-invariant,
e(Lup) = e(L2,p), there exists a unique homotopy class of homotopy equivalences
h: 2 , / p -» £ 2 /p making the triangle

homotopy commute; a, is the map classifying the cover I , -»• L,/p. Using this,
together with the well-known fact that group cohomology is detected on the Sylow
subgroups, we see that the normal invariants Jf{g{) are stable,

This completes the proof.

We still have to calculate the surgery invariant kK{ff) e £3(71). Since the covers
(fa, fa) are normally cobordant to homotopy equivalences for all proper subgroups a,

It vanishes if and only if there exists a free topological action on S8k + 3 in the n-
homotopy class of the action on Z. In fact, if a topological action exists then there
even exists a differentiate action in the given homotopy class (cf. [10]).

We use the same notation as in §6: A — Z\r\p, nj, B = Z[ripq], and

<1>A: A * -> (A/pA)*2) x (A/qA)*2), cpA: A* -+ (A/4A\*2) = A/2A,

with similar notation for <frB and (pB.
Let e e //4(Q(8p,q)\Z) be a generator which restricts to c2(xP + xP~l), Ci{xq + Xq~

l\
and c2(F) on the Sylow subgroups, where %p, xq are faithful characters ofZ/p and Z/q,
and F is the standard representation of Q(S) on C2. Such an e is specified up to an
automorphism of Q(Sp, q). Let ek be the /c-fold cup-product power of e.

THEOREM 7.5. There exists a free topological action ofQ(%p,q) on S8k+3 with k-
invariant ek if and only if the following conditions are satisfied:

(i) (1, - 1) € ImageO,, and (4,4) e Image(Oi4|/l
><2);

(ii) (rjq-2,np-2) e Imaged |KerpJ;
(i») ®B((nPq/"pq) U) e Image((D/1)/<-1 >, where U e A* is such that d>A(U2) = (4,4).

Proof The first condition is stronger than the conditions in Theorem 6. ll(i). Thus
we have the (8/c+ 4,7r)-polarized finite 7r-complex (£, n) and the homotopy equiva-
lences Qx from Lemma 7.3. Let (/,/) be the degree 1 normal constructed in Lemma 7.4,
and let /*(/ , / ) be its surgery obstruction on L^(Zn)(pq). We want to apply Theorem
5.10 and must check conditions ( iHm) of that theorem.

Let F be the finite field with / elements, where / is a prime not dividing 2pq. Let

Z/7r • Bn be the map classifying the cover Z -> L/71. We use Table 2.11 and
Corollary 3.7 to evaluate AF(M, hof).
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Since the antistructure (F[Z/p],a, 1) contains no Type Sp summands,
A^(Mp,hpofp) = 0, and similarly Af{Mq,hqofq) = 0. The antistructure (F[Q(8)],a, 1)
contains one Type Sp summand, isomorphie toM2(F), so AF[M2, h2 o/2] e FX/(FX)2.
But Af[M2,/ i 2o/2] is the /-primary reduction of A Q [M 2 , / J 2 O/ 2 ] . Since the Type Sp
factor of the rational group ring of Q(8) is non-split, AQ[M2, h2 o/2] takes values in
Z* = {1} by Table 2.11. Thus AF[M2,fc2o/2] = 0. It follows from Corollary 3.7 that
Ai(M,hof) = 0.

We cannot use induction to calculate Af(L/n,h) (because PD-bordism is not a
homology theory), but we can use the information contained in Theorem 6. ll(ii) to
calculate Af(E/7r, h)(pq). Indeed, for a suitably chosen simple homotopy type T./n, the
Reidemeister torsion T(I/7T)(2) has top components (T + , T_) e O(^p, rjq)l x Q(rip, rjq)l,
where

T_ = [ 4 u ]

The reduction A -> (F ® A)x /(F (g) A)x 2 maps T_ into Af(L/n,h)(pq), so

Hence Theorem 5.10(i) is satisfied if and only if u_ is a square at all primes / not
dividing 2pq; this happens if and only if u_ e (A*)2 by the global square theorem.

The second condition in Theorem 5.10 can be checked using the formula for w+ in
Lemma 7.3. We must check if (pB(w+) = 0 for a suitable choice of u+ e A* with
<&A(u+) = (1, - 1 ) . Since r]pq-2 is a square in B\ namely npq-2 = (Cpq

r-Cpq~
r)2 with

r = i 0 -pq), we have (pB(w+) = <pB(u+(^-^p)).
Moreover, <bB{u+{pq-r]p)) = (rjq-2,rip-2) e iB/pB)*2)x(B/qB)*2) so by Theorem

7.5(ii) there exists v+eKercpA with 0^(1;+) = OB(M+(^q — »7p)). Hence
v + /u+(riq — rjp) G KerO^ and u+ can be replaced with u'+ = v+/r)q — rjp. Then
iPsW+iyiq — ^p)) = 0 a n d Theorem 5.10(ii) is satisfied.

Finally, the top component of the Whitehead torsion of g3 is the element w_ from
Lemma 7.3, with u_ = U2.. It has square root

where r]'s = C/ + C.S r, with r = \{\ — s), is a Galois conjugate of rjs. Hence

and Condition (iii) of Theorem 5.10 is equivalent to Condition (iii) of Theorem 7.5.
We have seen that the three conditions in Theorem 7.5 together imply the three

conditions of Theorem 5.10; whence the required free action exists.
It remains to be seen that the conditions in Theorem 7.5 are also necessary. Given

the free action (S8fc + 3, n) with /c-invariant ek, the finiteness obstruction a(ek) must
vanish. Since the finiteness obstruction is 2-primary, it follows that o(ex) = 0 and by
Theorem 6.11 there exist u+, u_ 6 A* with <&A(u+) = (1, - 1 ) , <PA(u_) = (£,£). We
must check that M_ is a square. This follows because AF(S

8fc + 3/7i) = [M_] by Theorem
6.11 (ii) and because A^(S8k + 3/n) = 0 by Corollary 3.7 and Table 2.11, as in the first
part of the proof.

The covering S8k + 3/n3 is homotopy equivalent to S(V3)/n3 by g3 and
AY(g3)(pq) = 0. This follows, for example, because the surgery invariant is detected on
the Sylow 2-subgroup (2(8). Using Proposition 5.8, we see that Conditions 7.5(ii) and
7.5 (iii) must be satisfied. This completes the proof.
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We give Theorem 7.5 a corollary when p = 3 (4). The smallest order group with
a{ek) = 0 is Q(24,13). The surgery obstruction for Q(24,13) was settled in [11]. The
general case is similar, but the arithmetic is now arranged better (inspired by [15]).

COROLLARY 7.6. Suppose p = 3 (4). There is a free action ofQ{%p, q) on S8fc + 3 with k-

invariant ek, for k ^ 1, if and only if q = 1 (8) and Condition 7.5 (ii) is satisfied.

Proof. The Galois group of A = I\r\p, »yj over Z is (Z/p)x /< - 1 > x (Z/q)x / < - 1>
and since p = 3 (4), (Z /p) x /<-1> has odd order. Let Go = Gal(A/Z) ® Z[£|, and let
Ao be the subring of A fixed by Go; it is a subring of Z[^J in fact. Let

O0: Ao
x -» Mo/p)(2)x(^o/9)(2)»

be the reduction homomorphisms. The elements (1, —1) and (4,4) considered in
Theorem 7.5 lie in (A0/p)x

2) x {A0/q)*2) and Condition 7.5(i) is equivalent to the
conditions

(a) ( 1 , - 1 ) 6 Image(O01 Ker cpQ),
(b)(4,4)GImage(0>o|(>lo

x)2),
because Go has odd order. The homomorphism

is an isomorphism, cf. Lemma 7.7 below. Hence Ker<p0 = {AQ)2, and it follows that a
necessary condition for (a) to be satisfied is that q = 1 (4).

Suppose q = 5 (8). Then Ao is a quadratic extension of Z and

In the first case, Fp
x
2 x Fq

x 2 Z/8 x Z/4 and (4,4) = (1, - 1 ) in (Fp
x
2 x F,x)(2), since 2 is a

non-square modulo q. The fundamental unit s s AQ has norm image —1 e Z x , so
O0(e) is equal to a pair of generators in (Fp2)(2)x(F9

x)(2). It follows that (b) above
cannot be satisfied.

In the second case of (*), p has odd order in (Z/q)x so (>l/p)x = Fpr x ... x Fpr and
(A/qY = F^ x... x F£ where r and s are odd. It follows that

®A{1P\2) = (4» 4) i n 04/P)(!) >< (^/9)(2)»

so (b) is satisfied. But in this case, Condition 7.5 (iii) is equivalent to

<bB{npq) e I m a g e d ) .

Let N: A* ->• A£ be the norm homomorphism. It induces a norm

N: (A/p\*2)x(A/q)(
x
2) - (Fp

x x Fp
x x F ; ) ( 2 )

and
N(®B(ripq)) = (N(riq); MiyJ) = (a, - a " J ; ± 1)

for some a e F,x . (This follows because 2 is a non-square mod q, so that nq has norm
image — 1 in Zx.) On the other hand,

(a, - a " 1 ;±l)*Image(a>0)

because the fundamental unit s e ^ reduces to (a, — a- 1 ;ca) with coe(Fg
x)(2) a

generator. Thus Condition 7.5 (iii) is not satisfied in the second case of (*).
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Finally, suppose q = 1 (8). Let r be an integer which generates Fq
x and consider the

unit vr = Cqr-Cq~
r/Cq-Cq~

1 in A*. Its norm N(vr) 6 AQ reduces to a generator of
(2) = (ff\,x)(2)- Since both - 1 and 2 are squares in Ffl*, suitable 2-powers U+ and

[/_ of N(vr) have reductions

It follows that Condition 7.5 (i) is satisfied and Condition 7.5 (iii) becomes equivalent
to (i, 1) G Image(Oo), which is indeed the case since i = - 1 in C40/P)<2)-

In the proof above we used the following well-known lemma. For the readers
convenience we include a proof of it.

LEMMA 7.7. Let Go be the subgroup of elements of odd order in (Z/q)x /< — 1> where q
is a prime. Let Ao = Z[_nq~\Go. Then <p0: AQ{AQ)2 -» (A0/4A0)^2) = A0/2A0 is an
isomorphism.

Proof. Consider the commutative diagram

(Pi z/2z

where N0,Ni indicate norm homomorphisms and To, 7̂  trace homomorphisms.
Choose an integer r which generates F9*. Then Cq

r — (q~r/Cq — has norm
image — 1 in Z x , by the left-hand commutative square. It follows that
(po(N(tqr-(q~r/(q-(q~1)) has non-zero trace in Z/2. Since (A0/2A0: Z/2Z) is a power
of 2, (po(N(Cq

r — (q~
r/tq — Cq~

1)) is a normal base for A0/2A0, whence q>0 is surjective.
Since AQ /(AQ)1 and A0/2A0 have the same rank, the result follows.

The condition of Theorem 7.5(ii) is somewhat unpleasant, and requires further
discussion. The following necessary condition appears in [15].

LEMMA 7.8 (Milgram). A necessary condition that Q(Sp, q) acts freely on S8fc + 3 with

k-invariant ek is that the Legendre symbol ( - I = + 1.

W

Proof Suppose ( - ) = — 1; we prove that Condition 7.5(ii) cannot be satisfied.
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Consider the diagram

A/2A

Z/2Z z:

We have Np{rjp-2) = p and N,(p) = pi{q 1] = - 1 . It follows from the diagram that if
p(a) = >1p-2 then Tqo Tp((pA(a)) # 0, and, in particular, (pA(a) ^ 0.

We point out that the Legendre symbol condition in Lemma 7.8 is not equivalent to
Condition 7.5(ii). Consider, for example, the case where p = 5, q = 19. We have

or

In F19, (4(^5-5) , i( —^5 —5)) = (2-7) is a pair of non-squares, and it follows that
n5 — 2e (F1 9® Z[^5])x is not the reduction of an element from

and hence is not a reduction of an element from Ker <pA either.
Recall that Ordp(g) denotes the order of q in ¥*. On the positive side we have the

following.

COROLLARY 7.9. Suppose p = 3 (4), q = 1 (8), and that the orders Ordp(q) and
Ordq(p) are odd and maximal. Then Q(Sp,q) acts freely on S8k + 3 with k-invariant ek.

Proof. Since Ordp(q) is an odd number, the quadratic extension Q{np) c Q((p) is
split at each g-adic prime in whence = F,[CP]. Since
rip — 2 = (q~

l{£p—\)2, it follows that np — 2 is a square in each field component of
F9 ® Z[rjp], whence it is a square in (F, ® Z[^p])x . We also assumed Ovdq(p) was odd,
so rjq — 2 is a square in (FP®Z[;/J)X.

We now use the maximality which can be restated as follows: Ordp(g) = %(p— 1) and
Ord^p) is the index of the Sylow 2-subgroup in Fq

x. It follows that Q(r}p)
<q> = Q and

{Q{nq)
<p>: Q) is a power of 2. Let Ax = Z[^]< p > and consider the diagram

A/2A <P

AJ2Al
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We note that JVj is an isomorphism and that <px induces an isomorphism from
A* I A*2 onto AJ2A{. We must prove that

(^07,-2), A ^ - 2 ) ) = (Atoq-2),p)

belongs to I m a g e d | A*2). But Fp (g) Ax — Fp x ... x Fp5 so the 2-primary component
of (Fp®/41)x is an elementary abelian 2-group. Since rjq — 2 was a square,
N ^ —2) = 1. Since A? -> (Fq

x)(2) is surjective, and p G Fq* is a square, there exists an
«! G /4* with O^aj2) = (l,p). This completes the proof.

The assumptions in Corollary 7.9 are satisfied in the following examples:

(p,g) = (3,313), (7, 809), (11,1321),

and in each case the second component q is minimal for the given p. However, I doubt
that the conditions on Ordp(q) and Ord^p) in Corollary 7.9 are necessary.

For certain values (p,q) there exist generators e'k e //8fc+4(<2(8p, q);Z), different
from the generators ek considered above with o{e'k) = 0 in K0(Z[Q(8p,q)']). Such
'exotic' generators do not restrict to Euler classes of free linear representations on the
subgroups £>(8p), (2(8g), and Q(4pq). Therefore the methods used above do not apply
directly: one may construct the surgery problem over 11'/Q(Sp,q) realizing e'k but
cannot get sufficient control of the Reidemeister torsion of the source to carry through
the arguments.

In fact, the basic problem occurs for the quaternion group (?(4p). It admits free
linear representations in all degrees 8/c + 4, but only half the generators in
//8fc+4(Q(4p); Z) are realized by representations. The Swan homomorphism turns out
to be trivial, so all generators have vanishing finiteness obstruction.

The methods used in §4 show that

p: L3
r(Z[(2(4p)])(p) -> L>'(Z2[<2(4p)])(p)

is injective, but we need an evaluation of p2(A
Y{f,f)). I shall return to this question in

a forthcoming paper.
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