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RECENT advances in calculation of projective class groups and of surgery obstruction groups lead 
us to hope that it will shortly be possible to give a fairly complete account of the classification of 

free actions of finite groups on spheres. In the present paper, we determine which groups can so 
act, thus solving a problem of several years’ standing. Further, we show that these actions can be 

taken to be smooth actions on smooth homotopy spheres. 
Previously known results can be summarised as follows, where we say the finite group 7~ 

satisfies the “pq-condition” (p, q primes not necessarily distinct) if all subgroups if v of order pq 

are cyclic. 
0.1. (Cartan and Eilenberg[3]). If rr acts freely on S”-‘, it has periodic cohomology with 

minimum period dividing n. Moreover, P has periodic cohomology if and only if it satisfies all 
p2-conditions. And the p* condition is equivalent to the Sylow p-subgroup zrr, of r being cyclic 
or perhaps (if p = 2) generalised quaternionic. 

0.2. (Wolf [19]). If 7~ acts freely and orthogonally on a sphere, it satisfies all pq-conditions. 
Conversely, if r is soluble and satisfies all pq-conditions, free orthogonal actions exist. 
However, for rr non-soluble, the only non-cyclic composition factor allowed is the simple group 
of order 60. 

0.3. (Milnor [9], see also Lee [8]). If 7~ acts freely on any sphere, it satisfies all 2p-conditions. 
0.4. (Petrie [I 11). Any extension of a cyclic group of odd order m by a cyclic group of odd 

prime order q prime to m can act freely on S*“-‘. 
Petrie’s result shows that pq-conditions are not all necessary for free topological actions. it is 

therefore not so surprising that 

THEOREM 0.5. A finite group 7 can act freely on a sphere if and only if it satisfies all 2p- and 

p ‘-conditions. 

We shall elaborate the group theory in the next section: the most interesting groups 7r 
included are perhaps the groups S&(p) (p prime). 

As to smooth actions, it will follow from a general result below that 

THEOREM 0.6. For each free action of T on S”-’ constructed in the proof of (0.5). S”-’ has a 

differential structure (z such that rr acts freely and smoothly on S,“-‘. 

Clearly, in many cases one can deduce existence of free smooth actions on S”-‘, but in this paper 
we will confine ourselves to general arguments. 

In principle, the proof of these theorems follows the pattern laid down in [ 151 and elaborated 
for this problem in a previous paper[l4]. We construct first, a finite simplicial complex X; 
second, a normal invariant, and hence a normal cobordism class of normal maps M+X; and 
thirdly we show that the corresponding surgery obstruction vanishes. This yields a manifold 
homotopy equivalent to X whose universal cover is homotopy equivalent, hence homeomorphic 
(but not necessarily diffeomorphic, when smooth) to a sphere. 

In practice, the key idea of the proof is a careful choice of X, and of the normal invariant, so 
as to allow a simple proof of vanishing of the suergery obstruction. 

The paper is set out in four sections. In the first, we summarise the group theory, and 
introduce notations for the groups involved. In the second, we choose the homotopy type of X: 
this involves circumventing the finiteness obstruction of Swan[ 131, and prepares the way for the 
surgery. In the third, we discuss normal invariants. General existence of normal invariants 
follows from the powerful techniques of modern homotopy theory. Topological normal 
invariants can then be studied using Sullivan’s[lO] analysis of the homotopy type of G/Top. 
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In the final section, we first state two general theorems about surgery, and show how to 
deduce Theorems 0.5 and 0.6 from these, using the preceding material to verify their hypotheses. 
The key underlying idea for these general theorems is reduction to subgroups. Induction 
theorems due to Andreas Dress[S] allow us to reduce to hyperelementary subgroups: then we 
evoke the main techniques of [ 171. [18] for calculation of surgery obstructions. 

51. GROUP THEORY 

Although our arguments will not mainly proceed by lists of cases, it will be necessary to use 
general information about the structure of groups n with periodic cohomology. 

If all Sylow subgroups of 7-r are cyc1ic-e.g. if 7~ has odd order-r is metacyclic. For the 
general case, there also exists a classification [19, pp. 179,195-8]: the non-soluble cases are due to 
Suzuki[lZl. Write O(r) for the maximal normal subgroup of 7~ of odd order. Then a/O(x) has 
Sylow 2-subgroups isomorphic to those of r, and Sylow p-subgroups cyclic for p odd. This 
quotient may be of one of six types. 

Before listing them, we introduce our notation for isomorphism classes of groups. For a cyclic 
resp. dihedral resp. generalised quaternion group of order 2”, write C(n) resp. D(n) resp. Q(n). 
For tetrahedral and octahedral groups, write T = T, and 0 = 0,: the corresponding binary 
groups are denoted T* = Tf and O* = OT. T resp. T* is an extension of D(2) resp. Q(3) by a 
cyclic group of order 3; the analogous extension by a cyclic group of order 3” is T, resp. Tt, and 
O., 0: contain these as subgroups of index 2. Explicit generators and relations can be found in 
Wolf [19], see also [14]. We write F, for the field of prime order p, GL2(p) = GL,(F,) for the 
general linear group of 2 x 2 matrices over it, and S&(p), PC&(p), PSL,(p) for the 
corresponding special and projective groups. The map SLJp) --, PSL,(p) has kernel of order 2; 
we need also a ‘double covering’ ‘&(p)+ PGL,(p) defined as follows. Observe that (for p odd) 

]PGL&): PSLQ)] = 2: the nontrivial coset is represented by the matrix y = i 
generates F”,. Define 

( ) 
-i where w 

EL(p) = (SL(p), Y\Y* = - I, Y-‘gY = y-‘gy for g E SI&)). 

Now let r have periodic cohomology and satisfy all 2p-conditions. Then n/O(n) belongs to 
one of the following isomorphism classes: I. C(n); II. Q(n) (n 23); III. T*; IV. O*; V. S&(p); 
VI. TL,(p). Here, p denotes a prime greater than 3: observe that S_Lt(3) = T* and TL2(3) = O*. 
In cases. I, II, V and VI, the extension 7~ of O(n) splits. In cases III, IV, 7~ is a split extension of a 
normal subgroup of order prime to 2 and 3 by some Tb, 0:. We denote by 7 such a splitting 
subgroup (all cases). 

Finally, we consider the subgroup structure in the non-soluble cases V and VI. According to 
Dickson [4], PSL,(p) has subgroups T. The Sylow 2-subgroup is dihedral, so has two conjugacy 
classes of four groups O(2) in it, as has PSLz(p) (except when p = ?3 (mod 8). and O(2) is the 
Sylow 2-subgroup); all these D(2) become conjugate in PGLJp). 

Thus all subgroups O(2) of PSL,(p) are contained in subgroups T. Now PGL,(p) also has 

dihedral Sylow 2-subgroups, and two conjugacy classes of subgroups D(2). Those in one class are 
contained in the commutator subgroup RX,(p), and hence in a subgroup T; those in the other 
class cannot be, for O(2) is the commutator subgroup of T. 

The kernel of TL&) -+ PGL&) is the unique element of order 2. Hence the subgroups Q(3) 
resp. T* of TLz(p) are just the preimages of the subgroups D(2) resp. T of PGLJp). Now as r 
contains a Sylow 2-subgroup of 7~, it follows that 

LEMMA 1.1. For any 7~ of type V, all subgroups Q(3) are contained in subgroups T*. For IT of 
type VI, there are two conjugacy classes of subgroups Q(3); those of one class are contained in 
subgroups T*, and those of the other class are not. 

82.CHOOSING A HOMOTOPY TYPE 

We first recall [14, Theorem 2.21. A CW-complex Y, dominated by a finite complex, is 
(7r, n)-polarised if we are given an isomorphism a,( Y, yO)+ 7r and a homotopy equivalence of the 
universal cover Y + S”-’ (n 3 3). The equivalence classes of Y, provided with such 
polarisations, correspond bijectively (via the first k-invariant) with generators g of H” (a; Z). 
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There is an obstruction f?(g) in the projective class group k,(Zr) to the existence of a finite 

complex homotopy equivalent to Y. However, by the main theorem of Swan[ 131, it is possible to 
choose g so that 19(g) = 0 and hence Y is a finite CW-complex. 

The following sharpening of this assertion will be crucial for our argument. 

LEMMA 2. I. There exists a finite (x, n)-polarised complex Y = Y(n) such that for each p C 7~ 

which has a fixed-point-free orthogonal representation, the covering space Y(p) of Y 

corresponding to p is homotopy equivalent to a manifold. 

Proof. By the result of Swan quoted above, there exists a finite (P, n,)-polarised complex Y,, 
say, corresponding to g, E H”I(~ . Z). There is a natural free action of r on the universal 
covering Y,, and a homotopy equivalence Y, -+ S”I-‘. If we form the joint of a certain number t 

of copies of Y,, this is homotopy equivalent to a sphere S’“I-‘, and we inherit a free action of r 
on it. Observe also that the orbit space of this action has first k-invariant g,‘. 

Now let r denote the exponent of the multiplicative group of units of Z/N (N = order of n). 
and take t = r above; we write g = g,‘, n = m, and Y for the corresponding orbit space. Since r 

acts cellularly on the join, Y is a finite CW-complex. Any other generator of H”l(n; Z) is of the 
form ug, (u a unit of Z/N), and (ug,)’ = u’g,’ = g,’ = g. Thus g is the only generator of N” (a ; Z) 
which is an rth power. Also, if p C TT has order MIN. then Z/N maps onto Z/M, SO any unit of Z/M 
has order diving r. The same argument then shows that the restriction of g top is the only generator 

of H”(p; Z) which is an rth power. 
Now consider subgroups p of r which have fixed-point-free orthogonal actions on spheres. 

Since there are only a finite number of such subgroups p we may suppose (replacing g, by a 
power if necessary) that each one has a fixed-point-free orthogonal action on S”I-‘, arising from a 
representation x,,, and generator g,, say, in H”$p; Z). The direct sum rxp of r copies of this 
representation corresponds to the join construction above. The corresponding action of p on 
S”-’ is smooth, so has orbit space a smooth manifold Z(p). By the remarks in the preceding 

paragraph, the corresponding generator of H”(p; Z) is g,‘, the restrictions of g to p. Hence Z(p) is 
homotopy equivalent to Y(p). 

Remark. The above is vague as to the possible dimensions n. A better estimate can be 
obtained as follows. Let go be a generator having the minimal possible period n,,, and 
corresponding to Y,,, Each p as above then has a generator of dimension n,; checking the cases in 
Wolf’s list, one can show (see our next paper) that it has a fixed-point-free representation of 
degree 2n0. Now take g, = g,* in the above. All details are as stated, except that Y,, need not be 
homotopy equivalent to a finite complex . However, (again see our next paper) 0 is multiplicative 
on generators. Thus B(g,‘) = r0(g,). But according to Swan[l3], t9(g,) has order dividing r. Thus 
e(g) = 0 and we can take Y finite. This gives n = 2mo. It is not difficult to improve this in special 
cases: the best value in general is probably 2no (or n,). Note for later reference that n is even: in fact 
this holds whenever r, or order greater than 2, has period n. 

53. NORMAL INVARIANTS 

We will now establish the general existence of smooth normal invariants for our complexes, 
thus improving on the results of [14]. We then discuss in further detail the relation between 
topological normal invariants of Y(a) and of Y(7rz). 

A (r, n)-polarised complex Y is a Poincare complex in the sense of [IS], hence has a ‘Spivak 
normal bundle’, classified by a map Y --, BG. A topological (resp. smooth) normal invariant is a 
homotopy class of liftings of this map to B [Top (resp. BO). If Y is a manifold, its tangent bundle 
provides such a lifting. 

THEOREM 3.1. Any finite (TT, n)-polarised complex Y has a smooth normal invariant. 

Proof. Since the map BO + BG is a map of infinite loop spaces[2], the obstruction to 
existence of a smooth normal invariant is an element of k*(Y), where k is the cohomology theory 
represented by B(G/O). Since this group is finitely generated, it will suffice to show that the 
obstruction vanishes when localised at any given prime, p. 

We now compare the obstruction for Y = Y(a) with that for the covering space Y(7~p) 
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corresponding to a Sylow p-subgroup 7rp of r; using the generalised transfer due to Kahn and 
Priddy [7] (see also Becker and Gottlieb [ 11). 

Recall that for any finite covering f: X+X and cohomology theory h*, there is a transfer 
f*: h*(X)*h*(X) induced by an S-map X+-+X+. If f is a k-fold cover and k E h* (point) is 
invertible, then f* of*: h*(X)-, h*(X) is an isomorphism. For there is an induced 
endomorphism of the Atiyah-Hirzebruch spectral sequence H*(X; h *(point)) + h*(X), given 
on the E*-term by multiplication by k. In particular, f* is then injective. 

Now the inclusion i: rp C rr induces a covering Y(T~) --) Y(r) which is compatible with 
Spivak tangent bundles. Thus i*: k*( Y(n))+k*(Y(7~p)) maps the obstruction to existence of a 

smooth normal invariant for Y(P) to that for Y(T~). Since the degree 1~: ~~1 of the covering is 
prime to p, it follows from the above that i* becomes injective when localised at p. Thus the 
proof will be concluded if we show that each Y(n,) has a smooth normal invariant. 

If n, is cyclic, it is well known that Y(T~) is homotopy equivalent to a (smooth) lens space: 
indeed, there is a unique one of the form L(p’; 4, 1, . . . , 1). Otherwise, p = 2 and ‘TT* is 
generalised quaternionic, of order 2’, say, (r z= 3). For Y(7rz) of fixed formal dimension, the 
polarised homotopy types correspond to odd integers 1 mod 2’. For I = 21 (mod 8). we can again 
find corresponding smooth actions, coming from fixed-point-free orthogonal representations. For 
I= 23 (mod 8), on the other hand, Y(.rr2) (and hence Y(a)) is not homotopy equivalent to a finite 
complex: see, for example, [6]. 

It is probably the case that smooth normal invariants exist also in the case last-mentioned 
(certainly topological ones do), but the point is not material to our subsequent deductions. 

In order to make calculations in the final section, we need to choose a normal invariant for 
Y(P) so as to have some control over its restriction to Y(~F~). We first recall the results of the 
previous paper[l4]. We showed there that if r is soluble (i.e. in Cases I-IV) it contains a 
subgroup T (the same as that mentioned above) such that 

(A i). T contains a Sylow 2-subgroup of r. 
(A ii). The only prime divisors of 171 are 2 and 3. 
(A iii). The restriction homomorphism H*(rr ; Z/2)+ H2(7; Z/2) is an isomorphism. 
(A iv). There exist fixed point free orthogonal actions of r on spheres. 
This formulation differs slightly from [l4, 3.71, however it corresponds more closely to what 

was proved. We can also find such a T for some non-soluble groups: if r contains SL2(p), we 
need p = +3 (mod 8) and then choose a subgroup T* (type V) or 0* (type VI). 

Now if T satisfies (Ai)-(Aiii), the map f: Y(T)+ Y(r) satisfies 
(B i). For all k, f*: Hk( Y(r); at-,(G/Top))+ H”( Y(T); rk-,(G/Top)) is injective. 

(B ii). For all k, f*: Hk( Y(P); ?r,(G/Top))+H’( Y(T); ~~(c/Top)) is surjective. 
Hence, by an obstruction theory argument (given in [14]), follows 

LEMMA 3.2. Any (topological) normal invariant for Y(T) extends to one for Y(r). 

For the remaining (non-soluble) groups, we cannot manage with a single subgroup T, but will 
need instead a small diagram of subgroups. 

LEMMA 3.3. A (topological) normal invariant c for Y(?T~) extends to one of Y(n) if and only if 

foreach subgroup Q(3) of n2 contained in a subgroup T* of r, the restriction cl Y(Q(3)) extends to 

Y( T*). 

Proof. Taking a fixed normal invariant for Y(n), and its restrictions to Y(p) for p C r, as 
basepoint, we can identify normal invariants of Y(p) with homotopy classes of maps 
Y(p)-+ G/Top. The problem is thus to characterise the maps Y(PJ-*G/To~ which factor 
through Y(rr). The conditions stated are clearly necessary. 

Write G/Top = CJ x V, where U has nonvanishing homotopy groups only in dimensions 4k ; V 

only in dimensions 4k + 2. This is possible by [lo]. Since r4k (U) = Z, and Hdk (P; Z) maps onto 
H4’(r2; Z) (to see this, it is enough to localise at 2: but then it follows since both r and 7r2 have 
2-period 4), any map Y(7r2)+ U factors through Y(n). It thus suffices to discuss 
V = I-I, K(Z/2,4k + 2). 

The problem is thus reduced to characterising the image of Hdt+*(r; Z/2)+ H4tC2(7r2; Z,). 
This is done in general in [3, 10.11; here we look for something simpler. On account of periodicity, 
it suffices to consider the case k = 0. Since, for p C n, H3(p; Z)= 0, mod 2 reduction 
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H*(p; Z)+H*(p; Z/2) is surjective. For quaternion 2-groups (e.g. P*) it is bijective. Thus it 
suffices to consider H*(p ; Z). 

Now for any finite p we have isomorphisms H*(p; Z) = H’(p; Q/Z) = Horn (p. Q/Z), natural 
for restriction to subgroups. 

In particular, H*(T*; Z) = Z/3, with zero localisation at 2. Thus an element of H*(Q(3); Z) 
extends to T* only if it vanishes. 

Our subgroup 7~* is quaternionic: let 

Tr* = (x, yIx*‘+’ = I, y* = X2’, y-‘xy = x-‘) = Q(t + 2) 

be a presentation. If t 3 2, there are two conjugacy classes of subgroups Q(3), respresented by 

(x *‘-I, y) and (x2’-’ , xy). The group H*(p*; Z) = Z/2 x Z/2, with generators corresponding to the 
homomorphisms h,, h*, where 

h,(x)=+, h,(Y) = 0, 

h*(x 1 = 0, h*(Y) = ;. 

For r 3 2, under the first inclusion of Q(3), h , -0 and /I,-, n # 0; under the second, both h, and 
h2 restrict to n. Thus a class in H*(n*; Z) vanishes if and only if it restricts to zero on both 

subgroups Q(3). 
If now r has type V, its commutator subgroup 7~’ has odd index, so P(7r; Z) has odd order, 

and zero image in H*(p*; Z). But we have just seen that an element of H*(a*; Z) is 0 precisely 
when all its restrictions to subgroups Q(3) are 0, i.e. extend to T*. 

If 7r has type VI, 7~’ n 7r2 has index 2 in 7-r*; we can choose x and y so that it is generated by 
x2 and y. Then our first subgroup Q(3) lies in a group T* C n; the second does not. The image of 
H*(n; Z) in H*(r*; Z) is the subgroup (0, h,}, kernel of the first restriction to Q(3). Hence the 
result follows in this case also. 

94. SURGERY 

The arguments to be used for proving our theorems have more general validity. We will begin 
by stating two general results, deduce Theorems 0.5 and 0.6 from these, and finally give the 
proofs of the general theorems. 

THEOREM 4.1. Let 4 : M + Y be a normal map of degree 1; M a closed manifold, Y a finite 

Poincare complex of formal dimension at least 5 with finite fundamental group n. Then surgery on 

4 to obtain a homotopy equivalence is possible if and only if 

(a) For each 2-hyperelementary subgroup p C n, the covering space Y(p) is homotopy 

equivalent to a manifold, 

(b) Surgery is possible for the covering normal map 6: X(n*)-+ Y(nJ, 7~~ the Sylow 

2-subgroup of n, 

and, if dim M is even. 

(c) The equivariant signature of M is a multiple of the regular representation of 7~. 

For the smooth case, we have 

THEOREM 4.2. Let X be a closed topological manifold of odd dimension with finite fundamental 

group r. Suppose 

(i) X has a smooth normal invariant, and 

(ii) the covering space X(n,) is smoothable. 
Then X is homotopy equivalent to a smooth manifold. 

Proof of Theorem 0.5. First, suppose r soluble. Choose Y as in Lemma 2.1. The subgroup 7 
of Lemma 3.2 has (by A iv)( a fixed-point-free orthogonal representation, and by (2.1) one such 
yields Z(T) = Y(T). By Lemma 3.2, the normal invariant defined by Z(r) extends to a normal 
invariant for Y = Y(a). We will now apply Theorem 4.1. 

To verify (a) observe that any p C r which is 2-hyperelementary is soluble. Every subgroup 
of p of odd order is cyclic, and (by our main hypothesis on 7~) every subgroup of order 2p is 
cyclic. By (0.2), p is homotopy equivalent to a manifold. 

As to (b), by construction surgery on the covering map corresponding to T yields a homotopy 
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equivalence Z(r)+ Y(T). Since-by (A i)--T contains a Sylow 2-subgroup 8:. the same is true 
for the covering corresponding to nTTz. 

NOW suppose ?r insoluble. Again choose Y as in (2.1). Then Y(r2) = X(~FJ. coming from a 
fixed point free orthogonal representation x of x2. We claim that the corresponding normal 
invariant of Y(lrJ extends to Y(x). For by Lemma 3.3, it suffices to check extensibility when a 
subgroup Q(3) of n2 lies in a subgroup T* of n. The restriction of x to Q(3) must be a multiple of 
the unique irreducible fixed-point-free representation. But this extends to a fixed-point-free 
representation x* of T* and by the choice of Y in (2.1), the covering Y(T*) is homotopy 
equivalent to the quotient space of x*, which thus defines an extension of the normal invariant. 
Thus our claim is justified. 

The proof is now concluded exactly as in the soluble case, but using 7~~ in place of r. 

Proof of Theorem 0.6. We have constructed a free action of 7r on S”-’ with quotient space 
X, say; it will suffice to prove X homotopy equivalent to a smooth manifold. We seek to apply 
Theorem 4.2. But the existence of a smooth normal invariant is guaranteed by Theorem 3. I. Since 

the normal invariant of X was obtained by extending the normal invariant of Z(T) (using (3.2)) or 
of Z(r,) (using (3.3)) which came from a fixed-point-free representation, its restriction to X(r,) 
is a smooth normal invariant, so X(nJ is smoothable. 

We now come to the proofs of (4.1) and (4.2). Although motivated by the rest of the paper, 
these depend on techniques drawn from elsewhere: in particular, we quote three results from 
earlier papers. For ease of reference, we use the intermediate L-groups of those papers: other 
possibilities are discussed in a concluding remark. 

LEMMA 4.3. [l7,2.4]. Letp bep-hyperelementary withp odd. Then p = p, x cr, wherep, has odd 
order and o is a cyclic 2-group. We have Li(p, x a) = Li(a) @ r%(R(p, x u)), where the first 
summand is mapped in by the inclusion. The second summand vanishes for i odd: for i even it is 
free abelian, and detected by signature. 

LEMMA 4.4. [ l&7.3 and 7.41. For rfinite, Li(n) is finitely generated. The torsion subgroup has 
exponent dividing 8. The free part is detected by signatures (and vanishes for i odd). 

Proposition 4.5. [l8, Theorem 121. Let 4: M * V be a normal map between closed manifolds 
with finite fundamental group P. Surgery is possible on 4 if and only if it is possible for the 

covering space with fundamental group the Sylow 2-subgroup TV. 

Proof of Theorem 4.1. The stated conditions are clearly necessary for surgery to be possible: 
for (c) this follows from the extension [15, l4B2] of the Atiyah-Singer theorem to topological 
manifolds. For the converse, we first note that by [15, 3.21 there is a single obstruction Z(n) in 
L,(T) to performing the surgery. According to Dress [5, Theorem l] the natural restriction map 

L,(r)-+C{Li(p): p c r hyperelementary} is injective. Now the restriction C(a) to p is 
precisely the obstruction to surgery for the covering space with fundamental group p. So it 
suffices to show that each C(p) vanishes. 

First suppose p p -hyperelementary with p odd. Then we apply Lemma 4.3. By hypothesis (c), 
the free part of C(T) vanishes if and only if the ordinary signature does, which is the case (if 

applicable) by (b). So we can ignore the second summand. The first component of S(p) is, 
however, C(V). For, since c has odd index in p and the torsion subgroup of Li(a) has exponent 2 
(or l), this follows by a simple calculation, or by using the transfer as in the proof of the next 
theorem. 

Now suppose p 2_hyperelementary, with Sylow 2-subgroup (T. By hypothesis (a), the surgery 
obstruction C(p) is that for a map between two closed manifolds. Then by Proposition (4.5), C(p) 
vanishes if and only if C(a) does. 

By hypothesis (b), the surgery obstruction E(C) vanishes if u is a Sylow 2-subgroup of 7~, and 
hence for any 2-subgroup (contained in one of these). The result now follows by combining the 
last four paragraphs. 

Proof of Theorem 4.2. This argument will be based on the transfer techniques already used in 
the proof of Theorem 3.1. The stated conditions are clearly necessary; suppose them satisfied. If 
dim X = 1 or 3, X is smoothable, so we may assume dim X 3 5 and use surgical techniques. 

Using the given smooth normal invariant of X as base-point, we can identify the set [X: G/O] 
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of homotopy classes of maps X -+ G/O with the set of all smooth normal invariants, and have 
compatible identifications of [X: G/Top] with all normal invariants; likewise for the covering 
space X(.TT:). The inclusion i: x2 C rr induces a covering X(r?)-+ X(r) and hence a map i* and 

transfer i, of cohomology theories. The map f: G/O + G/Top which forgets the smooth 

structure is a map of infinite loop spaces[2], so the induced map of cohomology theories 
commutes with the transfer: 

[X(r& G/O] A [X: G/O] 2 [X(rrJ: G/O] 

I i. I 1. I 1. 

[X(r,): G/Top+ [X: G/Top] L [X(V& G/Top]. 

Now the given manifold X has normal invariant a E [X: G/Top]. Since its covering space 
X(n,) is smoothable, this has a normal invariant say p E [X(~T?): G/O] with f*P = i*a. For any 
integer m, mi./3 determines a smooth normal invariant for X. We seek to choose m so that the 
corresponding surgery obstruction vanishes. By Proposition 4.5, this is the case if and only if the 
surgery obstruction for i*(mi,P) vanishes. 

Since smoothness is irrelevant to surgery obstructions, this is the same as the surgery 
obstruction for /,i*(mi*P) = mi*iJ*/3 = mi*i,i*a. Now by [IO, 581, G/Top, localised at 2, is a 
product of Eulenberg-MacLane spaces. Thus i,i*, as for cohomology, coincides with 
multiplication by the degree 1~: rr2) of the covering. We now re-choose our base point for normal 
invariants of X(nJ so as to start from f*P, representing the given smooth manifold. Thus we 
have (m 1~: rr21- l)f*/3u (perhaps modulo odd torsion). 

Now by Lemma 4.4, Lzk+,(rTz) has exponent 8. Thus we can ignore odd torsion, and indeed 
work modulo 8. But [18, Theorem 31 gives a formula for the surgery obstruction mod 8 whose 
dependence on [X(r,): G/Top] is linear in the characteristic classes induced from k E 
H4*+‘(G/Top; Z/2) and 1 E H**(G/Top;Z/8). Both these classes are primitive for I by [lo, 

Theorem 8.81; the result for k is well-known, e.g. [IS, 13B5]. Thus the obstruction depends 
additively on the normal invariant. It thus suffices to choose m so that m 1~: n2( - I is divisible by 
8. A suitable choice is m = 1~; x2/. 

Remarks. In the even-dimensional case, we know again that the torsion-free part of the 

obstruction boils down to the usual signature, so if M is nonorientable, or if the dimension is ~2 
(mod 4), the argument remains valid. In the remaining case, the conclusion seems unlikely to hold 
in general. 

The crucial point of this argument-linearity of the surgery obstructiondepends essentially 
on the torsion of L*(r*) having exponent 8. This holds, in fact, for all the intermediate L-groups 
(including L’ and L “) since in this case torsion in the intermediate group of [ 171 has exponent 4. 
This follows from [17,5.2.2] and the following argument. LiK(&~J has order 2, SO that nonzero 
element here is the only one which can produce an element of LiY(Zzr2) or order 4. But for i odd, 
this lifts to the ‘surgery’ element in Li’(2r,) which maps to 0 in L :(rTT?); and for i = 2 (mod 4), it 
corresponds to the Kervaire-Arf invariant: a direct summand. 
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