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CONSTRUCTION OF UNIVERSAL MATRIX LOCALIZATIONS

Peter Malcolmson
Department of Mathematics
Wayne State University
Detroit, Michigan 48202

Given a collection I of square matrices over a ring R, the universal

I-inverting homomorphism A: R + RE is the universal homomorphism carrying
the elements of I to invertible matrices. This has been considered by
P.M. Cohn and others. It is generally comstructed by generators and
relations, which method gives little insight into (for example) the kernel
of A. In this article I propose another construction of A: R + Rz under a
mild closure condition on £. Some information about A may be derived,
depending on how matrices in I can be factored.

In the first part of the article we present the definitions and results,

together with some explanatory material. The proofs are relegated to the

second part.

The Statements

Let R be an associative ring with unit (which is preserved by ring
homomorphisms). An R-ring will mean a ring homomorphism from R to some other .
suchAring. These objects form a category with morphisms being ring homo-
morphisms which make the obvious triangular diagrams commutative.

For I a collection of square matrices over R, an R-ring ¢: R+ S is
said to be I-inverting if the image under ¢ of every element of I is
invertible over S. A I-inverting R-ring is universal if it factors uniquely
through any I-inverting R-ring. Such an object is unique up to (unique)
isomorphism of R-rings.

These definitions are from Cohn ([1], chap. 7) in which the universal

f-inverting ring 1s constructed using generators and relations. Cohn
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discusses the conditions under which RZ is a local ring, leading to the
definition of a "prime matrix ideal."” The author has used so called
"zigzag" methods to obtain similar results ([2]) and these methods will
again be used in the present effort.

To describe this method, let us assume first that the collection I
of square matrices satisfies the following two conditions: 1) the 1 x1
identity matrix is in Z, and 2) if A and B are in I and if C 1s of the

appropriate size, then (A C) is in I. Under such conditions I is called
0B

multiplicative.

When I is multiplicative, Cohn has shown that every element of Ry 1is
an entry in the inverse of the image in RE of some element of L. Thus
every element of RE is of the form X(f)A(A)"lk(x), where A ¢ I
(say n X n), £ 4s 1 X n and x is n X 1, all over R. The basis of the
zigzag method is to construct RZ as a set of equivalence classes of
such triples (f, A, x). The equivalence class of (f, A, x) 1s thus to be
interpreted as the element £a71x of RZ’ with addition and multiplication
defined according to that interpretation.

To this end, assume I 1is multiplicative set of square matrices over R
and let TZ consist of all triples (f, A, x), where A € I and where
(letting AbenX n) £ 4s 1 X n and x is n x 1, both over R. We
will say that "f is a row the size of A" to describe this sort of shape,
and similarly for the "column" x. Other elements of Ty will be denoted
by (g, B, y), (h, C, z), etc.

Define a relation ~ among elements of TZ by (£, A, x) ~ (g, B, y)
if there exist L, M, P, Q€ I, rows j and u the sizes of L and P,

respectively, and columns w and v the sizes of M and Q, respectively,

such that
% = {(M = coker (@) , QEM ®AM\ S/—v
(&4.Qﬂ 0 L& @ =0

Mo b3 o-LLMbN— O
! SeN‘QAL*-;;g;un@Ar\

i
( \RQR -——‘2 R
Wi
-y ( l ) £ o ©)
° jm —>R®R <R
0 (5A-‘\ GA -0

Ry - equivalence

(\x.. It l,m)@“‘"‘mb 119

A000
0BOO
GOLO
0 00M
£gijo

Thu§ PQ is a block-diagonal matrix; we have written 0 for zero blocks,

rows and columns as necessary.
-1
Following our interpretation of (f, A, x) as fA "x , we can see
why this might be the correct definition (though not why it is so compli-

cated) as follows: If all elements of T are invertible, then

0 = uv

-1
uQ(PQ)
- - -1 -1
ealx - gply + ju7lo + ov7lw

= A7 - gB-ly .

! -1
Thus fA-lx should be the same as gB 'y .

LEMMA 1. The relation ~ 1is an equivalence relation.

Let RZ denote the set of equivalence classes TZ/~ , and denote the
equivalence class containing (£, A, x) by (£/A\x) , reminding us of
fA-lx . Again following our interpretation, we are led to the appropriate

definitions of operations in R2 (as in [2 1). For (f/A\x), (8/B\Y) eRz,

(E18®) + (2/B\Y) = (f g)/ <3 g)\(;) )
(E/8%) - (&/B\Y) = ((f 0)/(3 -);g)\ (3))

(£/A\-x)

define

- (E/A\x) =

Also define amap XA : R RZ by A(xr) = (1/I\r) All these make sense

because % 1is multiplicative.
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we will use, let us show that if

' techniques
THEOREM. The above definitions give R2 a well-defined structure As an example of the

RE is the b or is a null matrix' i.e. does not appear) in a facton.zation
RZ satisfie * then there is a imilar one in which t:hey do appear.
| ( / \ ) s ( )) 8

' P T re such that there
(E/A\x) = A\ () )»(A)'l A . srosasition 1. IE (£ A %) » (& B y T a

n of any of these forms (with L, M, P, Q € D):

(L) (alv)

: is a factorizatio
Corollary. 2an element r € R is in the kernel of )\ 1if and only

if there exist L, M, P, Q€ I, rows j and u the sizes of L and P s

respectively, and columns w and v the sizes of M and Q, respectively, u

such that

o

€
]
-]

oy ls) - (r) (), () () -

The Proofs.

.o

The proofs that follow will primarily be complicated factorizations

)

. % .
then there is a factorization of the form (¥*)

of block matrices, as suggested by the definition of the equivalence

relation. To make these easier to read, zeros will be replaced by dots

and the matrices corresponding to L and M in the definition of ~ will Proof:
be outlined. Thus the factorization in the definition would be written: (a) R P.. Q. |V
. B[;w- -y = 1. 1. . H
. o1} . } N I
Ce 1 ..
A o« o . x e oj1l1 ul.
-« B . -y fgl.

) : .[?,‘}.4 : =€_) (alv).

o . PR B
f g 3. . ®) A P. Q.1 vV
«B ..o}y D1 .1 1 ’
m.| - r
We will also denote by I the identity matrix and by E >
3

1 the row (or

column) block matrix which is zero in each block except for an identity

feg
matrix in the i-th block. The size and shape of these matrices will be in-

dicated by context. For example, if P =<A 0) is a block matrix, then

0B
EP=(0B) and E E P =f03B .
2 152 (00)
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(c) Ao oo x
sB. .|yl . [FTEs (QQEa v
. I+, . . I . M w
u .
e o M| w
fg.. .

where the last equation follows because

PQE3 = E3M = g
M
uQE3 =(fg O)E3 =0, etc.

We remark that many of the proofs to follow

. was assumed to be closed under multiplication by matrices invertible over

R . We proceed for the more general ¥ to improve the applicability of

the results,

could be simplified if

Proof of Lemma 1: For (f, A, x) € TZ ,» the factorization below

(with null L, M) proves ~ 1is reflexive:

A -I I1I
= I A

£

0

-X

Now assume (f, A, x) ~ (g, B, y) via tha factorization (*).

for ~ 1is given by the following factorization:

Symmetry

For transitivity, assume (£, A, x) ~ (g, B, ¥) via (¥) and also assume

that (g, B, y) ~ (b, C, z)

(with L', M', P', Q' € %):

B... y
Pl
(=
« «|LY. | -
oM w
ghj'. .
Then (h, C, 2) ~ (£,
C v o o v s oo etz
Y U R
A - PP
e ofe L oo s ¢ o o o .
e ol Mol o e e e ] .
e ofs « ¢« LY e ¢ o o o i
AR - SR B
A PR
N A
RN R VU P
A e R
hfgld.d'v o]

into the product

123

via the following factorization
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|
| - dition on the right !
¢ EZP' ' ‘ .- -EZ * . This shows addition on the }eft is well-defined, For addition on 8 ;
SR EzElP' E4 S -QE2E1 -QE‘b v the factorization is similar; or we may refer to commutativity, below. i :
. .« L' E,P' . « + 1 =E . . ; ‘ | |
tt g' Q'3 V' Under the same equivalence (¥), we get - (£/A\x) = - (g/B\y) by simply |
P . I P M w . changing the sign of Vv and w in (*). -
h u j' uf . P
j / To show multiplication is well-defined, again assume (£/A\X) = (g/B\y)

. (h/A\2) = (g/B\y) + (h/C\z) we use the factori-
Proof of Theorem. First we prove that the operations are well-defined. via (¥). To show (£/Ax) - ( I\=) = (&

Suppose that (f, A, x) ~ (g, B, y) via (*); we wish to show first that zation of . o
(£/A\x) + (h/C\z) = (g/B\y) + (h/C\z) . According to the definition of A oxh . e e e e e e .
addition above, this equation is justified by the factorization of . [of P S T z
. . Beyh . . o ¢ . .
Ae v oo v e |x P LI L M
B o I L m SIS S )
R T Y K
P I Y R B ’
R T ] EEEREER R
e e v e oe By PPN PP z}
£ . g + J « o e e . .
e s+ o o sle o« L. .
s o o o sts o o M w/ )
fhghi.... o] into the product

.+« « =E . .
into the product rA -xh . . . ElP . 1




‘To show - (h/C\z)
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o (£/A\x) = (h/C\z) + (g/B\y) we use the factorization of

C ~2f + « + v ¢« ¢ 0 . .
S N I :
. . C=28 + « « « « + .

).
o
.

into the product

C -zf . . . . -1 . 1
B . . . I . .
. A . . . . . EIP\ . 1 . . £
. . c -zg -1 R 1 -zu . . I L ; 1 .
S ) N
EZP . . . I . . . -E
. . . . 1 -2 . . 2 ¢
3 C e e e e e
. . .+ .« L . E.P 3]
3 . . . . . I . -E3 .
. . . . . . 1 .
. . . . . .
. . . . . . . P . . ZfEl °
A Q v/.

The various identities for an associative ring with unit will be verified
. e
below
o Yith null L and M . We remark that the zero and unit are A(0) and
A(1l) , respectively. For commutativity of addition, (£/A\x) + (g/B\y)

(/B\y) + (£/A\x) by the following factorization:

127

A . o -1 I ... T1t.
. B-I . .. I 1 . .
= A S . « B |-y
. o o1 e o e« A -x .
f g .

Associativity for both addition and multiplication follow from the

reflexivity of ~ , since the two sides of the equation desired turn

out to be identical.

To check that A(0) 1is an identity for addition requires

(E/Ax) + (1/1NO) = (£/A\x) , which is verified by the following factori-

zation:
A . -1 I . I .
= . 1 . 1 . B
. .« o A]l-x .
£ 0

For =-(f/A\x) to give an additive inverse requires (E/8\X) + (£/A\-x) =

(1/1\0) , as verified by the following factorization:

A -1 . 1 1 . .
- .01 . | -x
. .1 R § . .

verification of distributivity requires larger matrices; to pheck

/A + /B © B/A = [E/AD + @/BN] - 0/

(1A -

requires the following factorization:
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A -xh . ., ., ., . .

. C ¢« e s . . 2z

. . B'yh--. .

. . . C .« . . z =

e« « « A . -xt} .

. . « + o« B-yh] .

. . e o« . Cl-z

- 8 . £ g 1.

A -xh ., -1 ., I & . .01
. C V. . .-T R
+ + B-yh , -1 ., N G |
O . N S
. . . . I . . Y U
A -« « -« . B-yn| .
- = — L2 I ¢ & & 4 o -

. g . . . C 2 *

For the reverse,

(h/c\z) . (g/B\y)

C -~zf

(/Q\z) - [(£/A\x) + (g/B\y)] = (h/C\z) - (£/8\x) +

requires the factorization:

-2g . .

C -zf =~2g -1 . =1 . I . . I . I . .
. A . « = . . « I i I . .
. . B . . . =1 P SR § .
N B . I . « . o e . C-zf . . .
. . . « I . . e« e o« o« A . . -X
. . o « « I .. e s+ ¢ o« o« C =-zg .
. . . . . « I e« + +« +« + + B -y .

The proofs that )\ 1is a homomorphism and that ) (1) acts as a

unit element are subsumed in the following:

Lemma 2. The following equations hold in Ry :
(D) (/AR + (/A0 = (£ + £/00 5
(') (E/A\x)) + (£/A\xy)) = (£/A\x; + %)) ;
1) A (x) « (F/Ax) = (rf/A\x) ;

(11') (£/A\x) « A (x) = (f/A\xr) .

Proof: The statements are successively justified by the following

factorizations:
(1) S 3 I
} 4 I I .
. Al-x H
I I I .

>
»®

i




i) A -x ], A ~x -1 . o1f,
« 1 r - . 1 B 1, T
} . ? -Xr f . I * o Afexr .

To show. that the homcmorphism A:R o RZ is Z-invetting, let 4

be an arbitrary matrix in ¥y , We claim that the (i,j)-entry of )\(A)-1

is (EI/A\Ej) > where here Ei and Ej denote a row and colump respectively.-

To verify the claim on ope side, we wily show that}g‘x(EkAEi)(Ei/A\Ej) =6kj’

the Kronecker delta, what we need to show ig

Using Lemma 2 Successively,

(EkA/A\EJ) = X(ekj) + This is proved by the factorizatiog

I . A, E

= 1 J
= . -ekj .
Ek 1

A similar factorization Proves that

Aa) .

(EJ/A\Ej) works as a left loverse for

Lo .

: RZ + S by

=A@y

Now given a Z-inverting R-ring P > ‘We may defiqe ¢+

R a5

9 (E/ ) = gty oay-L ox) .

is & homo-

! R R2 is the universal Z-inverting R-ring,

Proof of Cofollar POIf A(@x)y =0
———22 Lorollary

follows:

» then there jig a factorization as

(¥) @) -

where L', M' P', Q' € £, etc. Then the following factorization
t] E]
T . . .1. - - )
1 .. 0. P El Q 1 ] v
! . = . 1 . 1 r
« .« L%. 2 T
e« . M. -w'
s+ ¥, 1 r
I
allows us to put  J = (11 3"y, etec. Conversely

if there is a factorization as in the Corollary then A(r) = 0 follows

the factorization:

from

I .. e -]
1 . ]-r = - 1. SRR B

. . P c e Qv :
NN .
1
11 3 .0,
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