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ABSTRACT

AIGEBRAIC CLOSURE OPERATORS AND
CONSTRUCTIONS IN RING THEORY

Peter Malcolmson

Suppose R——»S 1s a homomorphism of assoclative rings
(with unit). For X a subset of a finitely generated free
right R-module R®, we define the S=-closure of X, denoted
Cs(X) C BB, to be the set of elements of R® whose images in
SR gre S-linear combinations of images of elements of X.
We study the inverse problem of constructing in a natural
way & ring S and such a homomorphism, from an abstract
algebraic closure operator C on finitely generated free
R-modules. In fact, it turns out that what we want are
such closure operators on both free right and left R-mod-
ules, satisfying a certain coherence condition between

the two. Then we can construct a ring R, which we call

the zigzag localization of R with respect to the coherent
pair of closuré operators, and a homomorphism R—>R,

In fact, closure operators may be defined on ideals
of any additive category (generalizing the category of
finltely generated free R-modules), and the zigzag locali-
zation (a new additive category) can be constructed in the
same way.

-Given a closure operator on right ideals, we construct

a new one (the "reflection®™) on left ideals which satisfiles



the coherence condition; however, the construction is
somewhat unnatural.

When both closure operators are S-closures derived
from a homomorphism R—>S as above, then the ring R is
isomorphic to the dominion of R in S as defined by Isbell.
When the right closure‘operator is an S-closure and the
left one is the reflection, then our zigzag localization
ring R may be bigger than the dominion.

When the right closure operator satisfies a certaln
"exchange" condition, then the constructed ring R is a
division ring. This parallels P. M. Cohn's construction
of a division ring from a "prime matrix ideal". A new
direct form of the latter construction will also be given.

The zigzag localizatlion may also be carried out 1in
the additive category of all right R-modules. When the

right closure operator is given by a torsion theory (as

studied by Lambek and others), then the zigzag localization
yields the ring of quotients with respect to that torsion

theory.

Dlssertation CBmmittee Chairman




FOREWORD

In the presentation of this dissertation, I have
made an effort to be self-contained and to assume no more
background of the reader than a one-year graduate course
in algebra. However, it seems that such efforts are
generally doomed to substantial failure, especially in
the area of providing motivation. The interested reader
may wish to consult Zariski and Samuel ([10]) on commu-
tative localization. Also, Cohn ([2]) and Lambek ([4])
may help to provide some of the motivation for considering
kinds of noncommutative localizations.

During the preparation of the dissertation, my
advisor George Bergman has been exceptionally generous
with his time and judgment; I gratefully acknowledge the
value of his guldance, especially his suggestions for
how to generalize appropriately. I also wish to thank
all of the people who tolerated my groaning and raving

throughout these trying times.
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CHAPTER ONE
INTRODUCTION

Suppose we are given a fixed ring R (all our rings are
associative with a unit element which i1s preserved by ring
homomofphlsms). Then given a ring homomorphlsm R—»S, we
can try to find information on R which is sufficient to
determine the given homomorphism. More specifically, we
may want to find enough such "R-information” to allow us
to construct the ring S and the homomorphism.

For example, one kind of such R-informatlion is a
two-sided ideal I of R. This informatlion is derived from
a ring homomorphism R———>3 by taking the kernel. It 1is
"informative" enough to construct the factor ring R/I and
the natural map R——>R/I.

Another kind of R-information is a particular choice
of a subsemigroup M of the multiplicative semigroup of R.
Given R—>S, we can get such an M by including all ele-
ments of R whose images in S are units. If R 1s commuta-
tive, then the subsemigroup M is enough to construct the
locallzation R——>Ry of R with respect to M.

Now let F be a finitely generated free right R-module,
and regard the elements of F as column vectors over R.
Then given a ring homomorphism R—3 and a subset X € F,

define cs(x) to be the set of elements of F whose lmages



under the homomorphism (regarded as column vectors in the
approprlilate free S-module) are S-linear combinations of
the images of the elements of X. Then this "S-closure
operator" CS gives another form of R-information.

In this paper we consider when this R-information
determines the homomorphism R—>S and when such a homo-
morphism may be constructed from an abstract "closure
operator®., Ideas for this construction and for the
axiomatization of the notion of closure operator come from
some known constructions of division rings.

We find that construction of a ring R and homomorphism
R—>R may be made Lf we are given a closure operator on
free left R-modules as well as one on free right R-modules,
provided a certain coherence condition between the two is
satisfied. In fact, the construction may be accomplished
in the generallity of any additive category, rather than
just using the category of finitely generated free R-modules.
If we have only one closure operétor (say on free right
modules), we show how to construct a closure operator on
free left moduies which satisfies the coherence conditlons;
however, the construction is somewhat unnatural.

If we start with right and left S-closure operators,
defined from a homomorphism R——>S, then the ring R that
we construct is exactly the dominion of R in S, as defined
by Isbell. Thus the closure operator information determines
the homomorphlism "as well as can be expected,"™ in some

sense., In particular, if R—»S 1s an epimorphism of rings,



then R is just lsomorphic to S and the homomorphism 1s
thus completely determined.

We choose to designate this construction the "zigzag
localization" of R, as suggested by the characterization
of an element of Isbell's dominion as a "zigzag". To
justify the "1oca11zation" part of this term, we give
a condition on the closure . operator which implies that
the zigzag localization ring R is a division ring.

Another sort of localization in the literature 1s
that given by the notion of a "torslon theory", as studied
by Lambek, Gabriel and others. We show that closure
operators gilve more general R-information than do torsion
theories. Under certaln conditions, the two kinds of
R-information are equivalent, and in that case we show
that the zigzag localization ring is the same as the ring
obtained by localizing with respect to the given torslon

theory.



CHAPTER TWO
MOTIVATING EXAMPLES

The choice of closure operators as the kind of
R-information to be studied was made as a result of
considering certaln constructions of ring homomorphisms
R—>K, Wwhere K is a division ring. The intentlon was to
generalize to a notlon of localization of R which might
yield rings K more general than just division rings. As
the ideal model of this,. the localization of a commutative
ring with respect to a multiplicatlive subset is the
appropriate generalization of the construction of the
quotient field of an integral domain. In this chapter
we point out some of these constructions of division rings
and describe how they led to the definition of an abstract
algebralic closure operator.

The first step in extending the construction of
quotient fields of commutative integral domailns to non-
commutative rings was made by Ore (see [2]. Chap. 0 for a
discussion). He gave conditions on a ring without
zero-divisors (namely, that any two non-zero right ldeals
should intersect 1in a non-zero ideal) under which the
non-zero elements can all be inverted, to form a division
ring. Various generalizations have been formulated based
Sh Ofé's method, involving the inversion of some of the

non-zero elements of the ring.



Matrix Localizations. For rings which do not satisfy

an Ore-like condition, P. M. Cohn supplied the fundamental
idea of 1nveft1ng matrices over the ring, rather than
(just) elements of it. This method involves more than
just Ore-like localization of a matrix ring,. since square
matrices of all slzes are availlable for inversion. (See
[2]. Chap. 7 for a full account.)
For R any ring, recall the notation Mn(R) for the
ring of all n-by-n matrices with entries in R. Then 1if
R is a subring of a ring S, Cohn defined what he called
the "rational closure" of R in 8 to be
£(R,S) = is € s‘ there 1s & matrix A in (R)}
such that A™ is in (s _?nd
8 occurs as an entry iIn A .
For H:R—>S a ring homomorphism, he also put Z(R,S) =
2(H(R),.S). Then Cohn showed that Z(R,S) was in fact a
subring of S which contains R (or H(R)). (For a discussion
of why thls should be called a "closure", see Appendix I.)
Given any set L of square matrices over any ring R,
one can also construct a "universal r-inverting ring"
B2 by.adding to a system of generators and relations for
R further generators, one for each entry of a matrix in I,
and further relations, which make the matrices of new
generators into inverses of the matrices in L. Then any
homomorphism R—>S which takes each element of £ to an
invertible matrix must factor through the canonical homo-
morphism R-——>HZ. One still would like to know when
R-——>Rz is an embedding, and when B; is (say) a division

ring (or even when Ry £ 0).



Suppose R——>K 1s a homomorphism of a ring B to a
division ring K. Then if P 1s the set of all square
matrices (of all sizes) over R whose images in K are
singular matrices, we can see that P satisfles: '

(1) If A and B are matrices over R, with A of
size n-by-(n-1) and B of size (n-1)-by-n,
and X = AB, then X € P.

(2) If A, B, and C are square matrices over R of
the same size which agree except in one row
(or column), and if that row (or column) in
C is the vector sum of the corresponding
rows (or columns) in A and B, and if AE P
and B&€ P, then C € P.

(3) If A € P and B is any square matrix over R,
then the matrix (g' g) & P,

(4) The 1l-by-l matrix (1) is not in P.

(5) If (% g‘ € P, then either A& P or B € P.

Cohn calls any set P of square matrjces over R (of arbi-

trary sizes) a prime matrix ideal of R 1f it satlsflies the

conditions (1) - (5). Then he showed that each such P
comes (as above) from a homomorphism B——4>KP to a division
ring, by constructing the division ring KP from the
"information" given by P. (See Appendix II for another
proof.) This result also showed, for L the set of all
square matrices over R which are not in P, that RE is a

local -ring with factor ring KP



Dependence Relations. In the light of the fact that

a matrix over a division ring 1s invertible if and only if
1ts columns are linearly independent, George Bergman decided
that a prime matrix ideal of R might be interpreted as
prescribing which sets of vectors in finitely generated

free R-modules become lirnearly dependent over the division
ring which 1s to be constructed. This prescription glives
R-information which may be axiomatized by the following
definitions (from [3}. P.252).

A collection I’ is said to give a dependence relation

on a set S if IT is a collection of subsets of S, called
the "dependent" subsets, such that if X < S then X€ 3 if
and only if some finite subset of X belongs to $. Given

such & [), and X € S, we may form

<X> = \iyes there 1is xocxWithxfﬁ UX
but X, v {yﬂ € O

the "span" of X. Thlis abstract formulation describes both

linear dependence over a fleld and algebralc dependence, as
in van der Waerden ([9], sections 33 and 64) and Zariski
and Samuel ([;Q]. Ch. I, sec. 21 and Ch. II, sec. 12).

For R any ring, we define an algebraic dependence

relation on finitely generated free right R-modules to be
a dependence relation on each finitely generated free
right R-module F, such that (for X € F):

(0) <<X>> = <X> ("transitivity").

(1) <X> is an R-submodule of F.



(2) If fstP—>F' is a homomorphism of finlitely
generated free R-modules, then
£ (<X>) € <f(X)>.

Recall that an R-module is projectlive if 1t is a

direct summand of a free R-module. Then given a finitely
generated projective module P, say a direct summand of Rn,
and an algebralc dependence relation as above, we may
extend the dependence relation to P by defining a subset
to be dependent if its canonical image in R? is dependent.
Then using (2) it 1s not hard to show that this definition
is independent of the cholce of representation of P as a
direct summand of a free module, and that this definition
glves the unique exténsion of the original dependence
relation to a new one on the class of finitely generated
projective modules, with (0) - (2) still holding.

An algebralc dependence relation glves enough
R-information to construct a division ring (as in Chapter
Four). In considering how we might generalize, note the
following immediate result of the definition of any
dependence relation ﬁ H

("Exchange Condition") If y € <X v {x}> but
y # <X>, then x € X v {y}>.

(Proof: Suppose X < X v {x} and Xo%p )
but [y} VU X, € &', Then x € X, or else y @ <x>.
Thus {x.y} v (X, - {x}) € §§. But we also have
{y} U (X, - {x}) f SS (or again y € <X>).

Hence x € <X V {y}>.)
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Consildering ir to indicate linear dependence, this condition
comes from the invertibility of the coefficlent of X in the
linear combination which gives y. Thus, 1f we ever want to
construct rings other than division rings, we can't have
this condition holding. Since it follows from the defini-
tion, we willl have to change them 1ln some fundamental way;
in fact we decide to reformulate the notlon of the "span®.

Closure Operators. ©So we define a closure operator

on a set S to be an operator C, associating with each
subset X of S another subset C(X) (or just CX), such that
(for any subsets X, Y of S)s

(1) X € c(X).

(2) If X € ¥, then C(X) € C(Y).

(3) c(c(X)) = c(X).
The operator C is sald to be finitary if it satisfles the

strengthened condition (for any X € 8)

(2+) C(X) = \__-J C(X,) -

X, finite € X
Thus for a dependence relation on S as above, the "span®
is a finitary closure operator.
Now for any ring R we define a (right) algebraic

closure ojerator on finitely generated free right R-modules

to be a closure operator C on each such R-module, also
satisfying (for X & F):
(%) Cc(X) is an R-submodule of F.
(5) If f:F—>F'is a homomorphism of finitely
generated free R-modules, then

£(cx) € c(£(X)).
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Such a closure operator easlly extends uniquely to a
corresponding one on finitely generated projective right
R-modules,. exactly as before.

As specific examples of algebralc closure operators
we note the discrete operator, for which the closure of
a subset X of F is just the R-submodule of F generated by

X, and the indiscrete operator, for which the closure of

any subset X of F is just F itself. Another example 1s
the CS defined in Chapter One, for any ring homomorphism
R——=>S. ' In fact, the first two operators above are just
CS for R—>35 being the identity map and the zero map,
respectively. These closure operators are all finitary.

Closure Operators on Maps. Given a particular finitely

generated projective right R-module P, consider the collec-
tion of all R-homomerphisms from any othe: such R-module

to P. Then for any subset X of P, we can form the subcol-
lection ¥ of all such maps whose images lie in the
R-submodule of P generated by X. This subcollection has
properties like those of a right ideal; namely, if f:Q—>P
and f£':Q—>P are both in X, and if g:Q'—>Q is any
homomorphism, then both f+f':Q—>P and fg:Q'—>P are

in .

Then 1f an algebraic closure operator C 1s also glven,
we can form CX and the subcollection §E of maps to P with
images contained in CX. Then clearly X 5'52 and we have
& sort of closure operator on these "right ideals". This

operator will satisfy properties similar to those of our
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original definition, and we can even recover the original
C from it (by taking the union of the images).

With this kind of formulation we can speak about
suﬁmodules and elements purely in terms of maps among the
modules. Thus we can generallize the notion of an algebralc
closure operator to the framework of a category; this
generalization will be carried out in Chapter Three. The
categorical formulation allows a little more generallity
in our construction of zigzag localizations and perhaps
provides a more natural setting for some of the notions

involved.
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CHAPTER. THREE
ZIGZAG LOCALIZATIONS OF ADDITIVE CATEGORIES

Recall that a category C consists of a collection of
objects, together with a collection C(A,B) of morphisms
for eacn (ordered) pair of objects A and B. The category
also is given with an assoclatlive composition law and
identity elements for the composition. We think of £ in
C(A,B) as a map from A (the domain of f) to B (the codomain
of f), and we write f:A—>»B. We also have the notion of
a functor F from (: to another category J\; it asslgns to
each object A in C an object F(A) in J-\, and assigns
morphisms f € C(a,B) to corresponding morphisms
F(f) € A(F(A),F(B)) in such a way as to preserve the
composition and identities.

As examples, there are the traditional categories of
groups and group-homomorphisms, rings and ring-homomorphlisms,
etc. The "group ring" construction is a functor from the
first example to the second.

Let us also recall the notions of fullness and falth-

fulness. A subcategory of a glven category C: 1s a choice

of a subcollection of objects and a subcollection of C(a,B)
for each palr of objects A and B in the chosen subcollec-
tlon,.nonetheless still containing the identity morphisms
and closed under the composition law. Such a subcategory

is said to be full if the chosen subcollection of C (4,B)
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is in fact all of C(A,B) in each case. (Note that the
subcollection of objects may stlll be proper.)

A functor P from C to A is saild to be full if 1its
"jpmage subcategory" is full; that ls, if (for objects A,B
of C) every morphism in A(F(A),F(B)) is F(f) for some
morphism £ € C(4,B). We say F is faithful if any two ‘
morphisms f # g in C (A,B) also satisfy F(f) # F(g) in
A(F(A),F(B)). The "group ring" functor above 1s faithful
but not full.

A Bemark on Foundations. At tlmes we may wish to

~speak of the nget" of objects of a category, or of a "set"
of morphisms. In the case of the category of all sets and
functions mapping beﬁween them (for example), this practice
is inaccurate, since the collection of objects does not in
fact form a set according to the axloms of set theory. We
expect to involve no contradictions of these axlioms through
our abuse of these terms, but as a precaution (and to fore-
stall objections), we will indicate an axiomatic foundation
for our usage. The following 1ls taken from Mac Lane ([5].
pp. 21-24), where a more complete account exists.
We assume that there exists a set U, the unlverse,
which satisfles:
(1) If u€ U and x € u, then x € U.
(11) Ifu€ U and v€ U, then uxv € U.
(111) If x € U, then Px = {y\ygx €v,
and Ux ={y\y€_ z for some z € Xt &€ U.

(1v) The set W of all finite ordinals 1s an
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element of U.
(v) If f:a—>U 1s a functlion and a € U, then
the image f(a) € U.
Then U is large enough so that most of “ordinary" mathematics
may be done completely "inside" U.

Fixing such a universe U, we define a "J=-set” to be a
set which 1s an element of U. Then a function from one
U-set to another is also an element of U (by the assump=-
tions on U), and we get the category of U-sets, which has
a set of objects and a set of morphisms. Likewlse we
define a "U-ring" to be an element of U with a prescribed
ring structure, and we form the category of U-rings and
(U-)ring homomorphisms. Doing this for every category we
shall be interested in, we can make the conventlon that
every occurrence of the term "category of sets" (or rings,
etc.) will be an abbreviation for the "category of U-sets"
(or U-rings, etc.). With this convention we are justified
in the usage as described above.

Additive Categories. Define an Ab-category to be a

category C given with a structure of abelian group on each
C(A,B) (for A,B objects of C), under an operation + (called
"addition"), with identity element 0. Further, the compo-
sition law of the category must distribute over addition
(on both sides), just as multiplication distributes over
addition in a ring. In fact, an Ab-category with only one
object is exactly a ring. (See Mitchell ([6]) for the ring

theory of Ab-categories.) We also define an additive
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functor from one Ab-category to another to be a functor
which preserves the abelian group structure on the mor-
phisms,.

Examples of Ab-categories include the category of
(right, say) R-modules and R-homomorphisms, for R any
ring. Furthermore, any full subcategory of an Ab-category
inherits a structure of Ab-category, so that the category
of finitely generated projective right R-modules and
R-homomorphisms forms another example.

Let C be an Ab-category and P an object of C. Then
following the motivating discussion in Chapter Two, we

define a right ideal of C at P to be a set of morphisms

of C, all having codomaln P, such that 1f two morphisms
f and f' in the ideal have the same domain as well, then
f+f?' 1s also in the ideal, as 1s fg whenever g is any
morphism for which the compositlion is defined. Likewlise

and symmetrically we define a left ideal at P as an appro-

priate set of morphisms with domain P.

But an Ab-category is a little too general as a frame-
work for defining our closure operators. We also want some
kind of "direct sum" operation on objects. So we define an

additive category to be an Ab-category such that, for any

two (not necessarily distinct) objects A and B there 1is
another object, denoted A®B, and morphisms

1,:A— AO®B M :A0B—> A

1B:B-—-> A@B ng:AéB—> B

such that “AiA = lA’ "BiB = lp, and 1A“A + iB"B = lAGB
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(here we use the standard notation of 1, for the 1dent1ty\
morphism of A)e. Further, we assume the exlstence of a
"null" object 0 satisfying 15 = Op as morphisms of O.
Then my :AG0—>A 15 an isomorphism (i.e., has an inverse
1A). and we see that the set of isomorphism classes of
objects becomes an abeiian semigroup with identity, under
the operation .

This operation & serves to "connect up" the category.
For example; the category of all right or left R-modules,
With only zero morphisms between a right and a left module,
forms an Ab-category, but not an addlitive category.

Given an additive category M and a set X of morphlisms,
all having the same codomain P, we denote by XM the right
ideal of M at P generated by X. For a single morphism f
we can denote {f}M by Jjust fM. Then we note the following
obvious properties of right ideals of M. The ideal 1lpM
is the "unit® ideal of all morph}sms with codomain P. A
gset I of morphisms is a right ideal of M at P if and only
if I € 1pM and IM = I. For any subset X & 1lpM and f:P—>Q,
define £X ={rx|x € x}. Then if I 1s a right ideal at P,
we have that fI i1s a right ideal at Q. Two right 1ldeals I
and J at the same P can be intersected to give an ideal
IO J or "added" to give the ideal I + J = {1+J ‘1 €1,

J € J, having the same domaiq}. Then I + J will contain
both I and J, since each contains all zero maps into P,
-Suppose fl. f2, ceey fm are morphisms of M with

fizP-——>Q1. Then we will denote the sum of the compositions
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P . 1®Q2®...®Qm
Q
f1
by the "m-by-1 matrix" {3} :P-——>Q1®Q2®-—-®Qm. Likewise,
f
m

for Xq, Xos *°%y Xp morphisms with XJ:P —>Q, We denote

J

the sum of the compositions

by the matrix (x *** X,):P,@P,@+++0Pp—>Q, Finally, for
aij’Pj“—">Q1 (say for 1,3 = 1,2), we will denote the sum

of the compositions

@,a,,) i
Pl@Pz/ ,\‘QIQQ2
m Q, /

w)

by (311 212), tnsvesd or ({211 512]) or ((321) @Iztg)). It
can easilly be seen that these "matrix-like" morphisms add
like matrices and compose like matrix multiplication. 1In
fact, when in the category of finitely generated free
R-modules, the morpnisms are exactly matrices over R.

Now with this notation, the ideal generated by the

morphlsms X1» X3y **°y X previously denoted

n’

XM + XM + eee x,M, may be simplified to (x1 Xy oo xn)M.
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Thus in an additive category, "finitely generated" 1is
equivalent to "principal" (or l-generated).

Closure Operators on Right Ideals. Let M be an

additive category. Then define an algebralc closure

operator C on right ideals of M (abbreviated "right a.c.o.")
to be a closure operaﬁor on J.PM for each object P of M,
satisfying (for any X € lPM):

(4) Cc(X) is a right ideal of M at P.

() For a:P—»Q in M, aC(X) € C(aX) & lQM.
(Refer to conditions (1 - 3) in the definition of closure
operator.) Note then that such a C satisfles
C(a) = c({a]) = c(aM).

A right a.c.c. C is said to be finitary if it 1is

finitary (condition (2+4)) for each object P. The finltari-

ness may also be written

(2+) c(X) = U C(a),

a € XM
where we are now using strongly the existence of @.

For Cy, C2 two right a.c.0.'s on M, we will write
Cy £ Cp 1f Ci(X) € Cy(X) for every X. Also we define the
discrete right a.c.o. Cg by cg(x) = XM for any P and any
X & 1pM. Then clearly CB is the minimal right a.c.o., in
the sense that Cﬁ < C for any right a.c.o. C on M.

Let us now note that, as for any right ideal, the
closure C(X) of any X € 1pHM satlsfles (a b) € C(X) if any
only if a € C(X) and b € C(X). This ‘}t;ollows from the
péqua-t‘ions a = (a b)(%). b = (a b)(/g ?and

(a b) = a(l 0) + b(0 1). Thus a right ideal is generated
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by just the columns of 1ts generators. Hence we willl
think of C(X) as giving the columns which can be obtalned
from the columns of X by "generalized column operations"., _
In a similar fashion we define an algebralc closure
operator on left ideals of M. The discrete left a.c.o.
is dencted Cg and defined by C%(X) = MX for any X E'MlQ.
It is minimal among all left a.c.o.'s under a simllar
partial ordering. We will think of left a.c.0.'s as
giving "generalized row operations".

Coherent Palrs of Operators. To glve some ldea how

the construction of the zigzag locallzation proceeds,
consider the case of an inclusion of rings R € S, and the
closure operator Cs (as in Chapter One) defined by the
inclusion map. We expect the zigzag localization of R to
contain some elements of 5. Now 1if a:Fl———>F2 is a map

of free right R-modules with {él.ez.---,eﬂ} a basis for Fq,
and if X € Cs(a(Fl)). then x = za(el)si, for some coeffi-
cients Sy € S. To get an element of S from X, we can think
of re;s; as wg=~l(x)" and then apply some functional
f:Fj—>R to get "f a~l x" = uf(ey)s;. If we think of X & Fp
as a map X:R—>F, (via x(r) = xr), then we can express
this as a zigzag dlagram

-}
F—“'">Rt

1 ¢
But if there 1s another expression X = Za(el)ti. then we
wWill want to get a well-defined element of S; that 1is,

£f(e,)s, = of(ey)t;. Thus we will have to allow only



20

functionals f which "cancel" the uncertainty in the cholce
of a=lx.

In constructing the zlgzag localization, we will
express the relationship between a and the allowable
functionals f by the condition f € CL(a), where CL is a
left a.c.o. on M. The following definition gives the
condition on CL and CR which guarantees that "f € CLa
will indeed cancel the uncertalnty in a~lx.»

Definition: Let M be an additlve category, CL a

left a.c.0. on M and CB a right a.c.o. on M. The palr

(CL.CR) 1s said to be right ccherent when, for any diagram

L N
' ™q

b
P p!
0‘4
of morphisms of M which satisfles b € CR(a) = 1QM and
(a' b') € c¥(a b) & Mlpgp, the diagram also satisfles
b' € cR(a') € 1M,

To support the contention that this 1s the condition
we want, suppose we again have the zigzag R-5->F2<—§-F1—L>R
with i € cBa and f € cXa, and assume that x = ay = ay', so
that there is uncertalnty in a~lx. Then using condition
’ (5) for a.c.o.'s, we get £(0 y-y') € CLa(O y=-y') = CL(O 0).

RO. right coherence implies fy - fy' & CRO.

Since 0 € C
Thus f cancels the uncertainty 1in a"‘lx. up to the small
1deal cBo.

" Regarding right coherence of palrs of a.c.0.'s, wWe

get the following basic result.
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Proposition 3.1:

(1) (cL, cB) 1s right coherent for any right
‘a.c.o. CR.
(11) If (c%, c®) 1s right coherent and CT < %,
then (C%. CR) is right coherent.
Proof: (1) If (a' b') € CX(a b) = M(a b), then
(a* b') = ¢c(a b) = (ca cb) for some c. ience if b & CB(a),

then b!

cb e:CR(ca) = CR(a') by condition (5) for a.c.o.'s.
Part (ii) is clear.

Note that no analogous form of 3.1(ii) holds for the
right a.c.o.'s; that is, if (CL,Cg) is right coherent,
netther c& < cB nor c§ < ¢ implies that (c%,cf) 1s rignt
coherent.

We can also define the intersection of two (left or)
right a.c.o.'s, by

e N cBx) = cBx) N cBix)
for any X. It 1s easily seen that this gives a (left or)
right a.c.o. (which is finitary if C%, Cg are). Then we
also get the following result, whose proof 1s stralght-

forward,

Proposition 3.2: If (cL.cﬁ) and (c%.cg) are right coherent,
then so is (c% n cL.clf n cg).

The Construction of the Zigzag Localizatlion. OSuppose

Z = (CL.CR) is a right coherent pair of a.c.o0.'s on the

additive cgtegory M. We wlsh to construct an additive

‘category MZ’ the right zigzag locallzation of M with respect
to Z, and an additive functor E from M to Mz. The new
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category Mz will have the same objects as M, but new
morphisms.
For S, T objects of M, let AZ(S,T) be the set of

diagrams in M of the form
S —&> Q

- 27)

where f € CL(a) end x € CB(a). Define a relation ~ on

each AZ(S.T) by

if and only if
X € R ao
- c L 2
7)€ Lo ®) € Togqran

Theorem 3 .3: The relation ~ ls an equivalence relation.

Proof: For symmetry of ~, let t:Q0Q'—>Q'®Q be the

reversing isomorphism. Then if p ~ p', We get

- 0 b
(i\)e CR(a o) = cB@
0 f g

by applying the morphism (t 1), using condition (5) for

=»Po

a.c.0.'s (and "generalized column operations"). Of course

-y y

then -( x) = l—x) 1s in this closure, since closures gilve
0 0

right ideals. Thus p' ~ P.

1
For reflexivity of ~, apply [—1}:P——->P®P@T to
0

X € CB(a). to obtain

)= )
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where we use condition (5) again. But

a a 0 a 0
(—aMSk(f)M+ -ajM = |0 al|M, so
0 -f f £
X a0 a0
x| € c®lo alm = cBlo a
0 £r £ f/,

now using condition (2). Thus p ~ Pp.
For transitivity of ~, suppose p ~ p' and p' ~ p",

where p" is the diagram S-Z2->Q"<S-p"-llsT, Then

x r[2 0 Ng R b 0
-y| €& ¢c*{0 b} and |-z} € C*|0 ¢]. By injecting both
0 f g 0 g h

of these into 1Q®Q'@Q"@TM’ we get

X 0 ao0o
¥ vyl € cBlovo
0 —~Z 00c
0/, \O fgh

and we can add these together to obtain

x ao0o0
olecRlovo
-Z 00c
0 f g hf.

Now g € CL(b), so (0 g 0 0) €.CL(O b 0 0), and we can use

row operations to obtain

a0 x L a 00 x

0O0c-z|€ Cc”’lObO O

foOh O 00 oc -z
fgh 0/.

Now using right coherence we obtain

X a0o0 a 0
-2508(000=CROO
0 £0h £ nf,

or just p =~ P".
Now that ~ has been shown to be an equivalence rela-

tion, we can denote the set of equivalence c¢lasses of
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AZ(S.T) by MZ(S,T). We want to make thls the set of
morphisms:S—>T in the new category MZ.

To define the appropriate composition law and identity
morphisms, let us first denote the equivalence class of
the diagram (T-X->Q<«2P-L5U) € A/(T,U) by the symbol
(f/a\x) € M;(T,U). Then deflne

(£/e\x) - (a/B\y) = ((£ 0)/(3 BN,

from the diagrams

(%)
S =il Q! s —L QaQ'

U

Pl T = Q

g }/’
A~ Y > N
P F U PeopP T 0) U
(That this 18 in MZ(S,U) will be proven below.) We also

define the identity morphism in MZ(S.S) to be (18/15\18)'
To justify this definition of composition, suppose

that a and b are actually invertible morphlsms and we

interpret (f£/a\x) and (g/b\y) as the morphisms ra~lx and

gb‘ly, respectively. Then the interpretation of

(£ 0)/(3 XN 1s

- — -1 ,-1 -1
(£ 0)(3 B = (£ 0)d T 2R (D)

fa'lxgb‘ly,

exactly the composition.
Following the same kind of justificatlion, we define
the addition on MZ(S,T) by
(£/a\x) + (&/B\y) = ((f &)/(§ DI\ (D)),

where -the dlagrams are
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X

s —% Q s —Ls Q! S -L12;> QeQ’

j&f‘;? ,bf”’ (8 8)
?
P——r—PT P-——g—->T
L}
P@PWT-

Then also define -(f/a\x) = (=f/-a\-x) and the zero map
from S to T to be (0/0\0), where the dlagram is

s =25

0
s_{_:'r.
There is also an additlive functor E from M to MZ' defined
by E(S) = S on objects S and E(u:S—>T) = (u/d\u) (which

we may wish to denote by u) on morphisms u.

Theorem 3.4: For Z = (CL,CR) a right coherent pair, the

above definitions give a well-defined structure of addltlve
category on M, and an additive functor E:M-—->MZ.

Proof: (Long and computational; ends on page 33.)
First we check that the diagrams defined actually lie in
A We need:

() () e c’R(@ %§), (r o) € cG ).

(1) 15 € cB1g, 15€ clag.

(+) ()€ c’(F Q). (r &) €l p).

(-) -x € cB(-a), -f € c¥(-a).

(0) 0 € cBo, o € clo.

(E) u € c®u, ue€ clu.
(Here the notations are as in the definitions.) Obviously
(1), (=), (0), and (E) follow from the fact that the
origlnal dlagrans were in AZ and from the properties of
B.C.0.'s., For (+), simply note that because X €.CRa, we

have (6)65 CR(%), which 1is contained in CR(% g). The
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latter also contains (?,), so we get the first part of (+)
by adding; the second part 1ls similar.

To verify (°*), note that (’OC) € CR(% 'X%) just as above.
Thus (*§) € CR(S‘ 'x%), because the closure is a right
tdeal. Adding this to ("*§), we get (J) € ¢B(§ ). But
then (g) e cB(Q) < c?(§ “*£). Again, the second part is
similar.

Now we want to show that composition is well-defined.
So suppose (h/c\z) = (g/b\y) in MZ(S.T); then we need
(f/a\x)+(h/c\z) = (f/a\x)°*(g/b\y) for (f/a\x) € M;(T,U)
and (h/e\z)-(3/d\w) = (g/P\y)*(3/d\w) for (3/d\w) € M,(Q,S),
say. For the first statement, we need that
(£ 0)/(5 FHND) = (£ 0)/(8 2NN, or

0 a -xh 0 0

z 0 ¢ 0 0

0| & CRu, where u is the morphism |0 0O a -Xxg| .« We
-y _ 0 00 b

0 f of 0

have already seen in the reflexive part of the proof of 2.3

X R 0 X
that [-x]€ C 0 al, so here we also get | 0\€ cBu. Thus

0 ffr ~-X
0
xh xh 0
0 R c
xh &€ C"™u, so adding to 0|€ uM we get that € cBy.
0 0
0 0

zZ

Now the assumption (h/c\z) = (g/P\y) means (—y)€ cB
0

0
b
g
0
2\ . j
to get Ol€ C

:'OO \_—/

so apply the morphlsm

-y
0

COOHO
OHOOO
|
OOKH OO
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This last closure 1s contained in CRu by "generalized

column operations", so we are done.

Now to prove the second statement we need that

((n 0)/(S ZHN\(P) = (s 0)/(§ THN@), or

0 c -z 0 0\
W R 0 a0 0 A c
0|l €& C™u, where now u = {0 0O b =-yjle Use -y)QCROb
- 0 00 4 0 h g
0 h 0 g 0
Z z3
0 R 0
to get |-y |€ c™u, so btyil€ cBu. Then
0 0
0 0
0 -z 3 zJ 0
d d 0 0 R R
0 -y -y3|€ ¢c®u. But w € ¢4, so
-4 0 0 d
0 0 0 0]
0 0
W a
ol€ cB| o] € cB(cRu) = cBu.
-W -d
0 0

The next task is to show that + 1s well-defined; so
take (h/c\z) = (g/b\y) in MZ(S.T) agaln and try to show that
(£/a\x) + (h/c\z) = (£/a\x) + (g/P\y), for (£/e\x) € M,(S,T).
This means that we need to show that

(£ &)/(3 DNE = (£ /G DN ()N, or

X a
Yy 0
-x| € cBlo
VA 0
0

R oooo
HOP OO
0 OO0

p a
0 R 0
« This just follows from |-x |€ C[O
0 0
0 f

ol oo

(assumption).

e NeoNoNe]

0
y
(as before) and | 0|€ CB
z
0

®Roooo
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The equation (g/b\y) + (f/a\x) = (h/c\z) + (£/a\g),
necessary since + 1s not yet commutative, is shown by Just
rearranging the direct sums in the preceding proof.

The final verification of "well-definedness" is that
if (g/O\y) = (h/c\z), then -(g/bP\y) = -(h/c\z). For this

y b O y -b 0
we need that if (—4‘.\) < CR@ o). then (z € cBl 0 -c\;

0 h 0 -g =h
this is obvious since the closure is a right 1ldeal.

Thus we have the operatlions defined; we now need to
check the conditlons for MZ to be an additive category.
These conditions include associativity of ¢« and +, identity
for » and +,. commutativity of + and distributivity.

We will start with assoclativity for composition.

So we want to show that [(f/a\x)'(g/b y)3 '(h/c\z) =
(£/A\x) - {(e/0\y) - (n/\z)] . The left-nand side is
((£ 0)/(§ BIN(P)) *(n/c\z)

a -xXg 0 0
= ((£f 0 o)/lg 18 —yh\)\(o)).
C Z

The right-hand side 1is (f/a\x)°((g 0)/(8 ‘Y’g)\(g))

a =Xg 0 10
= ((f 0 0)/[0 b -yh\\(g)).
0 0 c

Notationally we are lucky, for they are the same.

To check the identity property of + on the right,
(£/a\x)+(1/1\L)
(£ 0)/(3 *HN\(D), or

we need that (f/a\x)

1 x\- a0 O 0 0 x a 0
ol € cBloa -x|. But { x| g [-x|M and |-x € cBlo a
-1 00 1 -1 1 0 00
0 rf 0 0 0 0 £ r
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(the familiar argument again),. so adding these gives the
result.

For the identity property on the left, we need that
(£/a\x) = (1/1\1)+(£/e\x) = ((1 0)/(g "TEIN(R))» or

X a0 O a o a0 /1O X
ole cBlo 1 -r|. But {00} = {01 -r\{0 £}, so {O
-X 00 a 0 a 00 af\0 1 -X
0 f 1 ff f 1 0 0

must be 1ln the required closure. At this point we have at
least a category Mz.
Now, for associativity of +, we need that
[erae) + e\ ] + (v/eNe)
= (f/a\x) + [(g/b\y) + (h/c\za.

The left side is ((f g)/(§ DIN(F)) + (n/&z2)

The right side will obviously be the same.
For commutativity of +, we need that
(£/a\x) + (8/b\y) = (&/B\y) + (£/8\x), or
(£ &)/(3 DN = (e )/(3 IN(D)). Thus we need to

X a000o0
show that | y) € cBlo b 0 0\. This is done by the same
-y 009
-X 000a
0 fggf
argument as for proving + 1s well-defined.

To check the identity property for +, we need only

(now that commutativity is done) show that

(£/a\x) = (£/a\x) + (0/0\0) = (£ 0)/(§ IN(E)), or
-i € cR g
0 0
0 £

. But this is obvlous.

“»oPo
OO 00O



Next we check distributivity of + over +, first

verifylng it on the right.
[e7a\x) + (a/o\9)] - (n/e\z

We want

)

= (f/a\x)+(h/c\z) + (g/B\y)*(h/c\z).
DING)) - (n/A\z)

a0 -xh 0
e/ (38 SN[

a -xh)\ () +

The left side is ((f g)/(%

The right side is ((f 0)/(

a -xh

=((f080)/0 Cc
0 0
0

Thus we need to check that

0 a 0 -xh
0 0 b ~-yh
z R 00 c
0|€ ¢%, wnereu= {00 O
-Z 00 0
0 00 0
-7 00 0
0 fg 0

pe a 0

0 00

0 00

Now |-x € Bloa - cBu, and

0 00

0 00

0 00

0 ffr

0 -xh x\

0 -yh 0

c c 0

So 0 = 0 + |-X|h -

-C 0 0

0 0 0

-C 0 O}

-0 0 0

is in CRu + uM = CRu.

But then

oo oo

HOOODP» OOCO

QOO0 OO0

N~ ———— e —

-y

!
P

OO OO0« O QOO0 000

—_—T

0
0
h
c

0
\Z )o
0

ROOTOOQOO

+

g
OO0 TOO0OO0O0OO

m
Q
=

OO OO0 O

=

RoOoOOCOOOCUDO

QUOOOOO

1
<
o0 JDOO0OO0OOO

((g 0)/(§ BN

Cc
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s

0
0
c
0
c
0

"o o)
To verify distributivity on the left, we need that
(£/a\x)+ (g/b\y) + (h/c\z)
= (£/e\x)*(g/B\y) + (£/2\x)+(h/\z).
The left side is (f/a\x).((g h)/(B g)\\(g)) |

-Xg =Xh 0
e o0/ 78 TN
\ c z

The right side 1s ((f 0)/(3 -x%)\\(g)) +
(£ 0)/(3 "EHN\(2

a -xg 0 0

= ((f 0 f 0) 0 b 0 yl).
0 0 a -x 0
00 zZ

0

[t~ eXe

So we need that

0 ’a -xg =xh 0 00 O
y 0 b 00 00 O
z 0 0 c O 00 O
0| & CBu, where we put u= |0 0 Oa-xg 0 0
-y 0 0 00 b0 O
0 0 0 00 0 a =xh
-Z 0 0 00 00 O
0 f 0 0f Of O
We use |- E.CRu to get

COOOHKOON

m

Q

[s+]
OCOOCOOOM
HOOOP OOO
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0 -Xg x\ 0

b b 0 0

0 0 0 0

ol = ol + |-xlg - |}=xg | € cBu + ur = cBu, so that
-b 0 0 b

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

y b 0

0 0 z

ol € cB| o| ScBcBu = cPu. Likewise, | 0| € P,
-y -b 0

0 0 0

0 0 -Z

0 0

so the sum is in CRu, as needed.

S0 now MZ is an Ab-category. Let us check that E 1is
an additive functor. By definition it preserves 1, O,
and -.

To check functoriality, take two composable morphlsns

X, ¥ in M. Then we want E(xy) = E(x)E(y), or

(xy/xA\xy) = (x/20)*(3/A\y) = ((x 0)/(F NN+

Xy xy O 0

Thus we need | 0\€ cBl 0 x -xy|. But the morphism is
-y 00 y
0 Xy X 0

even in the ideal itself, not just the clcsure, since

Xy xy O 0 1
0y = 0 X =xyll-=Y]o
-y 00 yl\-1
0 Xy X 0

For additivity of E, take addable morrhisms X, Z in
M, and show E(x+z) = E(x) + E(z), or

(x+z/x+2\x+z) = (x/x\x) + (z/2\z) = ((x 2)/(5 DN,

- - X+Z Xx+z 0 O 1
Like the above, this follows from -x\ = 0 x 0}l-1}.
-2 0 0 zJ\-1
0 X+Z X 2
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Finally, we can see that MZ has &'s and a zero object,
since our additive functor E will preserve these. That 1s,
thelr existence in M will guarantee thelr existence in Mg,
so that My 1s additive. Thls completes the procf of 3.b4,

Computational Tools on MZ' We state and prove some

direct results of the construction which serve both as
tools for future computaticns and as support for the
intultion of fa~lx for (f£/a\x).

Proposition 3.5: (f/a\x) = 0 if and only if (g)'a CR(a).

Proof: (f/a\x) = 0 is equivalent to (f/a\x) = (0/0\0),

x R a 0
or €& Cc?{0 0}, whence the result is clear.
0 f O

Proposition 3.6: Supbose (f/a\}i) and (gl/ﬁ\y) (for 1=1,2)

all belong to MZ’ forming the diagram

T i N
T ST T

If x,8, = X,8,, then (f/d\xl)-(gl/ﬁ\y) = (£/a\x,) *(g,/b\y)
Proof: Trivial from the definition of composition.

Proposition 3.7: If (fu/au\x) and (f/va\vx) are both in

M,, then so 1is (f/a\x) and they are all equal.

Rau by assumption, but aull & aM,

La, so that (£/a\x) 1is

Proof: We have x € C
so x € CBa. Likewise g € Cl‘vaf:‘-_C
in MZ. Using x € CRau, we get
[\-i c;cﬁtgag CRagg(lo)CCRa‘gg,sothat
A0 - u fu fu u f
(fu/au\x) = (f/a\}). The other equality comes from
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X 100 X 1 0 0\/au O au O
-vx| = {0 v O} |-x € CR 0 voO 0 aj = CB 0 val, or
0 001 0 001/\fufg fu

(fu/au\x) = (f/va\vx).
Corollary 3.8: (1) E(u) = (uw/u\u) = (u/1\1l) = (1/1N\a) .
(11) E(v)*(f/a\x) = (vf/a\x) and
(£/a\x) *E(u) = (£/a\xu).
(111) (va/d\g) = E(vx) and (f/a\gu) = E(fu).

Proof: Part (i) is immediate from 3.7. Part (11)
follows from 3.6 and (i), using E(v) = (1/1\v) and
E(u) = (u/I\1l). Part (iii) follows from 3.7, (1) and (ii).
(For example, (va/aA\x) = E(v)(a/a\x) = E(v)(1/0N\x) = E(vx).)
Proposition 3.9: If all three of the factors in the

following equation are morphisms of MZ’ with diagram

.

then the equation (f/a\u)-(l/eu\x) = (f/ea\x) 1s satisfied.

Proof: We need that (f/ea\x) = ((f O)/(% ;3)\(2)).

b4 ea 0 O -0 R ao
or |0\€ cB] 0 a -ul. Clearly | u € ¢%o al, so
X 0 0 eu 0 00
0 £f £ O 0 ff
-eu R ea O -cu ea 0 O
ul € ¢*| 0 al. But then 0l € cBl 0 a -ul, so we
0 00 eu 0 0 eu
0 S 0 £ff£ O
p:4 g [ev
use 0\g C 0} to get the needed fact.
-X eu
0 0

We can also give a description of the "kernel" of the

functor E, an ideal of M at each object of M.
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Proposition 3.10: For a;P—>Q a morphism of M, E(a) = 0

in My if and only if a € cBo & 1yM.
Proof: By 3.5, E(a) = 0 if and only ir () € cB(2).
If a € cBo, then (§) e A < cB(8). conversely, if
(3) € cB(2), then a = (1 -1)(5) € c(1 -1)(]) = cBo.
Functoriality on Pairs. For two pairs Z; = (C%,Cg)

Y < ¢l ana

L
and Z, = (C3.C3) on M, define 2y < 2, if C
C? < Cg. Then we can get the following "functorial"
relationship among the localizations Mz.

Proposition 3.1l1l: If Z1 < 22 are right coherent pailrs on

M, then there 1is an additive functor from le to MZ2 which
makes the following functorial diagram commute:
S~ N
le-————-—> Mzz.

Proof: The functor just fixes the objects and takes
morphisms (f/a\x) in le to (£f/a\x) in Mzz. The order
assumption on the palrs makes all the appropriate properties
(including well-definedness) obvious.

In some particular cases we can make statements about

the fullness or falthfulness of the functor E.

Proposition 3.12: If Z = (CL.CR) is right coherent and ¢l

is discrete (i.e., CL = Cg). then every morphism (f/a\x)
in M, 1s glven by E(a) for some morphism a in M (i.e., E
is full).

Proof: For such a (f/a\x), f e CLh = Ma, since cl is
discrete. Thus £ = va and so (f/a\x) = E(vx) by 3.8(111).
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Proposition 3.13: If Z = (CL,CR) is right coherent and cB

is discrete, then E glves an additive isomorphism of the
additive categories M and M.

Proof: As in 3.12 we can use 3.8(111) to see that E
is full. But now if E(a) = 0, we have by 3.10 that

a € CRO = 0K, soc a 0 already. Thus E is failthful; since

the objects of M and MZ are the same, E is an lsomorphism.

Right and Left Coherent Pairs. Of course, the dual

of the entire construction can be completed, using a left
coherent palr of a.c.o.'s on M, defining equivalence on
AZ in the dual fashion (namely that the two diagrams
5——E5@e—P—L 57 and S—EL>Q'<«2—P'—E->T are left
equivalent if (f -g 0) € CL(% g ?) ) and going through the
dual proof to obtain the left zligzag localization. But
what happens to the two constructions if the same pair 1is
both right and left coherent? Then we can show them. to be
the same.

Provosition 3.14: If Z = (CL,CR) is right coherent, and if

the diagrams in the paragraphs above are left equivalent in
AZ' then they are right equivalent also, l.e. we have
(£/a\x) = (g/°\y).
La 0x
Procf: We have assumed that (f -g 0) € C™(g p y)' 80

also (f g 0) € CL(% _g };) = CL(% g _x), by "generalized row

a0 x L
operations™. Thus {0 b -y]| & C (% g X)e Now x € cBa and
fg O

y € cBy, so (..];) € CR(% %). Hence by right coherence we
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X a0
have (—y) € CR(O bl, or (f/a\x) = (g/b\y).
0 f g

Corollary 3.15: If 2 = (CL,CR) is right and left coherent,

then the right and left equivalence relations on AZ are
the same, so the right and left zlgzag locallzatlons Mz
are the same.

Proof: First note that the formation of A, does not
depend on any coherence condition being assumed, and then
apply 3.14 and its right-left dual.

The Reflected Left Closure Operator. Gilven a right

a.c.0. C on M, we can try to form a left a.c.o. c*? (the
"reflection” of C) which will give a right coherent palir.
This 1s possible though the construction i1s perhaps not
well motivated.

If Q, Q' are objects of M, note that (g )M is a
Q'

subideal of lQQQ.M. We will say that an 1ideal 1 E'IQ@Q.M

is C-disjoint from Q' if for every ldeal J & lo+M we have

c(x + (N (S)_Q')M - ¢(2), where (2) = (‘{Q,)J. Clearly

we have the inclusion <, so the point 1s that the Q'-part

of I is "inessential". Thus of course (é

from Q'. Noting that aC(I') = C(al') for any ideal I' and

Q) M 1s C-disjoint

invertible morphism a, we can see that the image Kid)m of

(éé)M under the automorphisnm (;Q g ‘) is also C-disjoint
Q'

from Q'. Clearly any sublideal of an ldeal C-disjoint from

Q' is also C-disjoint, so that (l

VQ) aM = (5,)M 1s C-disjoint

from Q'.
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So now define f:P—>Q" to be C-dominated by a:P——>Q

1f (%)M 1s C-disjolnt from Q' for all Q' and all v:Q—>Q'.
Then for such an a, denote by C¥*(a) € Mlp the set of
morphisms C-dominated by a.
Lemma 3.16: (1) a € C¥(a).

(2) If v € Mly, then C¥(va) € C™(a).

(3) If £ € C*(a) and g € ¢*(f), then g € c¥(a).
(1) vC*(a) € c*(a).
(") Given atP=——>Q, b:P—>Q' and € C*(a),
g € C*(b) with common codomain, then
rrg € C*((8)).
(5) c*(a)u € Cc¥(au).
(The numbers of the statements refer to the analogous

parts of the definition of a.c.o0.)
Proof: Part (1) is just the remark immediately

preceding the definition of C-dominance.
Let us do (3) before (2). Take v with codomain Q'

and try to show (vg‘)M 18 C-disjoint from Q'. That 1s,

pick J € 1lo¢M and assume (8) € C((vg)M + (g)). Then

0 a 0 a 0 0

0} € C((O)M-b 0 )SC(Q-I‘ M + (f>l¢+(0 )+ Now put
W \Z:A J 0 Vg J

v' = (_%Q'), w' = (8) and J!' = (vg)M + (3) to get
(8.)6 C((v?f)M + (9-)). Now a C-dominates f by assumption,
so we get w' € C(J'), or (8) c C((vg)M + (g)). Simllarly,

using g € c*(r), we may "cancel" the (vg) part to get

.(3) €.~C(9). Thus g € ¢*(a).
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Now to prove (2), using (3) we need only show that
va € C¥(a), or a C-dominates va. But thls ls obvious from
the definition, as is (4').

Part (4"): Take v with codomain Q" and J Ele"M, and

0 a 0 a 0 0
assume that (0)6 c(( b )M+(o))g_:c((vgym+(bm+(%).
W v(f+g) J LS J

Then a8 before we may successively "cancel" the

a 0 0 0 a
ol and | b| parts to obtain {0} € C|O]. Thus b \M
vf vg W J v(f+g)

is C-disjoint from Q", so f+g €_C*((%)).
For part (5), take £ € C*(a). We want, for v with

" codomain Q', that (v?g)m is C-disjoint from Q'. But this

is a subideal of (v?)M, which 1s C-disjoint, so we are done.
Using this Lemma, we can define a left a.c.o. on M.

For any subset X of MlP, define

CHMX) = e c*(f).

f€M

Theorem 3.17: C¥ is a finitary algebraic closure operator

on left ideals of M.

Proof: Using v = (0 1) and v = (1 0) 1in 3.16(2), we
see that C*(%) = c*(a) VU c*(v). For a = b, we can use
v = (i) in 3.16(4') to get C*(§) = c*(a), and then by
3.16(41,4"), c¥(a) 1s a left ideal for all a. Thus
C*(%) 3 c*(a) + c¢*(b), or "directedness" for the sum
which gives C¥(X). Further more, C¥(a) = C¥*(Ma), again
using 3.16(2).
h ‘ Now condition (1) for a.c.o.'s comes immediately from

3.16(1), and (2) for a.c.0.'s 1s now obvious. The
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"i1dempotency"” condition (3) comes directly from 3.16(3).
The algebralc condition (4) follows from C*(a) being an.
ideal, plus "directedness". The condition (5) follows
directly from 3.16(5).

The a.c.0. C¥ is finitary (condition (2+)) because
anything in C¥(X) is (by directedness) in C*¥(a) for some
a in MX, and any element of MX 1s generated by a finite
number of elements of X.

Coherence of the Reflected Operator. We would like

to know if the pair (¢¥,C) satisfies any coherence condi-
tions (right or left). In some sense it seems to be the
best possible.

Proposition 3.18: The pair (C*.C) 1s right coherent.

Proof: Suppose b € C(a) and (a' b') € c*(a v), as
for defining right coherence. Now (8) € c(§) < c(g, g.)
by column operations. Hence (g.) = (g') - (8)€ C(5e g. g.)
as well. Since (a b) C-dominates (a' b'), we get

(g.)e C(gv), or b'€ C(a'), as needed.

Proposition 3.19: The pair (C*.C) is left coherent.
Proof: Translating the coherence condition to the
left, we need to show that if b € Cc¥(a) and (%:) € C(%),
then b' € C*(a'). So we need a' to C-dominate b'. Take
v with codomain Q' and J & 1gsM, and assume that
(M E (B + (). Now B E c(B) sives (B1) € clvb).
Thus (3)6_ C((v%)I'I + (g)) also. But a C-dominates b, so
W E C(J). We did this for any Q', v and J, so we have

shown b' € Cc¥*(a').
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Proposition 3.20: Suppose cl and CR are a left and right

a.c.o. on M, respectively. If cL < CR*, then the pair
(cL,cR) 1s right coherent; and if both CL and ¢B are fini-
tary, then the converse also holds.

Proof: It ¢ < ¢, then right coherence follows from
3.18 and 3.1(ii). For the converse, we need only show
(assuming coherence) that cla EECR*a. since ¢l is finitary.
So take any £ € CMa; we want (v2)M to be CB-disjoint from
Q' for all v with codomain Q'. Thus take J € lpM and

R is also finitary,

assume (8) €.CR((V?)M + (g)). Because C
We can assune that actually (S) < CR((V?)M + (g)M)

= CR(V? 2). for some x€ J. Since f € cLa, we get

(vf 0 0) € ¢cl(a 0 0) and so (0 x w) € CI"(V%L 2 3). using

row operations. Now right coherence gives w & cB(0 x)

= ¢ < cBs, Just as needed.

We are perhaps fértunate that the reflected a.c.o0.
satisfles such nice properties.  However, this construction
1s not functorial, in the sense that 1f C; < C,, then we
have no information about whether CI < C;. This fallure

of functoriality will be demonstrated in Chapter Four.

Inducing Closure Operators. Suppose we have an

additive functor H from an additlve category M to another,
say N. Suppose also that there 1s a right a.c.o. C on N.
Then we easlily get an lnduced a.c.o. Cy on M, by putfing
CylX) = {ye 1pM l H(y) € C(H(X))} for X € 1pM. We can
say that Cy is obtained by "pulling back C along H." The

induced a.c.0. is finitary 1f the original one 1is.
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In particular, we may pull back the discrete operator

cB

o on N. Our motivating case (Chapter One) of defining

CS from R——»>S 1s just an example of this, using the
categories of finltely generated free (or projective)
modules.

We may also induce a.c.o.'s from left a.c.o.'s on N.
We will distinguish these by our usual "L and "R"
superscripts.

Proposition 3.21: Suppose (CL,CR) is right coherent on N.

Then (cﬁ,cg) 1s right coherent on M.

Proof: Assume Db é;Cga and (a' b') € Cﬁ(a b). Tnis
means H(Db) € cB(H(2)) and (H(a') H(b')) = H(a' b') belongs
to CL(H(a b)). By rignht coherence of (CL,CR) we get
H(b') € cB(H(a")), or b € ch(a’).

Proposition 3.22: Suppose Z = (CL.CR) is right conerent on

N, aﬁd put Zy = (Cﬁ.C%). Then there is a failthful additive
functor fron MZH to Nz, making the following functorial
diagram commute: M I - SN

EM& ‘EN

MZH———-> NZ .

Proof: MZH exists by 3.21. Suppose (f/a\x) is a
morphism of MZH and P an object. Then the functor asso-
clates to these the morphism (H(f)/H(a)\ﬁ(x)) and the
object H(P) (recall that the objects of MZH are the same
as those of M). Clearly this is well-defined and the
~diagram commutes. For faitnhfulness, suppose (H(f)/H(af\H(x))
is zero; then (H(()X)) € CR@IE?;) by 3.5. But then

(}5) € CE(?) by definition, so (f/a\x) = 0 alreadye.
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Regarding the reflected a.c.0., We get:
Proposition 3.23: If C is a right a.c.o0. on N, then
3 #

Proof: This just follows from the obvious fact that

if H(I) is C-disjoint from H(Q'), then I is Cy-disjolint
from Q'. |

Now glven a right coherent palr Z = (CL,CR) on M, we
can form the locallization MZ and then pull back the
discrete a.c.0.'s on MZ along the functor E to get a

. _ L R
new right coherent palr Zg = (CoE’CoE) on M.

Proposition 3.24: Zp < Z.

Proof: Let f € Ch.(X) and try to show f e cB(x). The
discrete a.c.o0. 1is finitary, so CEE is finitary; hence
we may assume that f'e,CgE(a) for a single a € XM. But
then E(f) € CP(E(a)) = E(a)M by definition, so
(£/6\f) = (a/a\a)+(g/B\y) = ((a 0)/(F PEN(I)), for
some (g/P\y). Thus we get

f £fo 0

0 €.CR 0 a -agl. Now apply (1 1 0 -1) on the left to
-y 00 b

0 f a 0

get £ € CR(0 0 -ag) = CB(ag) € cB(a) & cB(x).

The inclusion CgE < cl 1s similar.

One might expect that there should be equallty of the
coherent pairs here, or at least that MZE should be
isomorphic to MZ. That this may not be true willl be shown

in Chapter Four, where we develop some specific examples.
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CHAPTER FOUR
ZIGZAG LOCALIZATIONS OF PROJECTIVE MODULE CATEGORIES

In this chapter we will consider the case when the
additive category M is in fact the category of finitely
generated (say right) projective modules over a ring R,
as in Chapter Two. This category (with just R-module
homomorphisms as morphisms) will be denoted P-Mod, or
PR-Mod if necessary to specify the ring or the "sidedness".

In this case we get a nice correspondence between
ideals of P-Mod and submodules of objects of P-Mod. This
is because projectives have the "1lifting" property; that
is, if a map f:P—»Q from a projective P has 1lts image
In(f) & Im(g) for some g:P'——>Q, then f "1lifts" to a
map F:P—>P' such that gF = f. Thus (letting M = P-Mod)
if £ and g are any morphisms in M with the same codomaln,
then In(f) € Im(g) <> I C gl <= f € gl.

Also in this case we may correspond an algebralc
closure operator on right ideals of M to an algebrailc
closure operator on the submodules of objects of M, as
defined in Chapter Two. To describe this correspondence,
define the image Im(I) of a set I € 1lpM of morphisms with
codomain P to be the union of the images of elements of I.
Then Im(IM) 1s the image of the right ideal IM and forms a
gﬁbmédule of P (here again we use that M 1is additive).

Given a right a.c.o. on M, P an object of M, and X ¢ P,
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let I be the ideal of morphisms with codomain P and image
contaired in the submodule of P generated by X. Then we
define the corresponding closure C(X,P) of X in P to be
Im(C(I)). This 1s easily seen to satisfy the conditlons
in Chapter Two for an aigebraic closure operator. If, for

vy € P we define n

:R——>P by my(r) yr, then note that

J
an equivalent definition is C(X,P) = {? \my € C(I)}.
Another cconvenient fact is that the category of
finitely generated left projective modules RP-Mod is
anti-isomorphlc to PR-Mod. via the "dual" functor which
associates to the module P its dual P¥ = Hom(P,R). For
f:P—>Q, we get £¥:Q*—>P¥, and P** is naturally iso-
morphic to P. Thus for f and g morphisms 1in Pr-mod with
the same domain, we get
In(f*) C Im(g*) <== £*(gP-Mod) & g"(gP-Mod)
<= ¥ g g*(gP-Mod)
<==> (Pg-Mod)f S (PR-Mod)g
<= { € (Pp-MNod)g.
(Here (PR-Mod)g is the left ideal gensrated by g.) Thus
a ;gﬁg a.c.0, on PR-Mod may also be cohsldered as a right
a.c.o. on gP-lod.

Zigzag Localizations of Rings. Suppose Z = (CL,CR) is

a right coherent pair of a.c.o0.'s on M = PR-Mod, and we

construct the zigzag localization My. Let Ry be the endo-
morphism ring MZ(R.R) of the object R in the new category
MZ °
with diagram R-5+Q<-8-P-L 5R, so x "is" an element of Q

- Note that the elements of Ry are of the form (f/a\x)
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and f a functional on P, as in Chapter Two. Then since
E is an additive functor from M to M;, and R £ M(R,R),
Wwe get a ring homomorphlsm E:B-——bRZ. so we can call RZ
the zigzag localization of R with respect to Z.

In general, given any additive functor H:PR-Mod——->N
we can form the ring S.= N(H(R),H(R)). Any object P of
PR-Mod i1s a direct summand of a direct sum of coples of R,
and H will preserve this fact. Hence N(H(R) ,H(P)) 1s a
projective S-module, and in fact N(H(R),H(P)) = P 8y S.

In the specific case described above, the functor E
is bijective on objects, so we can see that MZ is equiva-~
lent to the full subcategory of PRZ-Mod whose objects are
of the form P &g Bz, for P in PR-Mod.

Isbell's Dominion. In our discussion of specific

examples of zigzag localizations of P-Mod categories, we
wlll need the construction of a subring somewhat like the
rational closure (R,S) of Chapter Twoe. For these purposes
let us assume R is a subring of a ring S. Then there 1is
the following known theorem, whose proof we include for
conpleteness.

Theorem 4.1: For w € S, the following conditions are

equivalent:
(1) For any ring T and any pailr of ring homo-
morphisms from S to T, if the homomorphisms agree
on every element of R, then they agree on w.
(11) In the tensor product S 8z S, we have
lew=w2egl,.



b7

(111) There are positive integers n and m, an
m-by-n matrix A over R, & l-by-m matrix u over S, and
an n-by-1 matrix v over S, such that both uA and Av
are matrices over R, and such that w = uAv.

(1v) There are finitely generated right projec-

tive R-modules P and Q and maps as in the dlagrams

R—Fsq s—X8L _506s

A

Po—> res ’
T R ) Tol S

where x, a, f are R-homomorphisms and u,v are S~-homo-

mor pnisms, satisfying u(a®l) = fél, (a@l)v = x81, and

u(a®l)v(l) = w.

(The so-called "zigzags" in (ii1l) and (iv) are a further
justification for the term "zlgzag localization".)

Proof: (1) = (11): (Taken from Bergman ((1}, p. 2)
or Silver ([8], p. 46).) Make S @ (S 8p S) into a ring
by defining the product of two elements (s, Eaiﬂbi) and
(t, Scy&d;) to be (st, L(scy)ed; + La,@(byt)). Then note
that (1,181) is a unit, with inverse (1,-1®1). There is
an obvious homomorphism Hl from S into thls ring, glven by
Hl(s) = (s,0). Another homomorphism H, may be obtalned by
conjugating Hy with (1,181); that 1is,

Hz(s) = (1,181)+(s,0)+(1,-181) = (s,l@s - s8l). The two
homomorghisms agree on R (18r = r8l for r in R), so they
agree on w; that 1s, 18w - wél = 0.

(11) ==> (1il): (Taken partially from Mazet ([7],

»bp.‘z—l, 2, 3).) Let us take generators s, 8y, °°°

for S as a left R-module, with Sg = 1l and Sy = W. Then
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we have an exact sequence of left R-modules
00— K-t »PP >3m0, where F 18 a free R-module on

generators {?O' €1 -'-}, p(ej) = Sj for each J}, and K
1s the kernel. Tensoring with S, the sequence

s&RK—w—l»seRFJ&R»saRS————»O 1s still exact, and
lep(wdey -~ 18e;) = 0 by the assumption (11). Thus

m
wle, - 1l8e; € 191 (S@K), say weey - 1l&e; = l&l(Jéltjadj)
= J‘otjei(d ), with each tJ in S and dJ in K. Now write

i(dJ) =

gt

. oadkek in F, with each ajk in BR. Then

ge, - 18e, = 2 (t.8 3 a, e )
"0 T 2 = 32;1 120" IK°K

g e

Jlk ®k
ngtJ jk)eek‘

m

m
Since F is free, we get w = 321?3830' -1 = J 1 J j1° and

0 = JgltjaJk for k=2,3,***,n. But also 0 = p(i(dj))

n ‘
= kEOaJksk for each }=1,2,***,m. Now let A be the m-by-n
matrix (ajy), for l<j<m and 1ck<n, which has entries in R
(note that we Leave out the k=0 terms). Take u to be the
1-by-m matrix (tj) for 1<j<m and v to be the n-by-1

m
matrix ('Sk)’ 1<k<n. Then uA = (jéltjajk)' which 18 the

R-matrix with -1 as the first entry and zeroes elsewhere.

]

Also Av = (- L ajksk) (ajoso) = (aJO)’ which is a matrix

over R. Finally, uAv (wA)v = 81 = We
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(111) ==> (1v): Gilven u, A, v of (1ii), the diagrams

are
R Av Rm S Ay Sm
A/7 vl y’lu

n n

the modules Rm and Rn being free modules on m and n
generators, respectively.

(1v) === (1): Suppose we have the dliagrams of (iv)
and we are gilven two homomorphlsms Hl,HZ:S——4>T which agree
on R. Then we get tensor product functors from Pg-Mod to
PT—Mod, which we also call Hl and H2’ and which agree on

modules and morpnisms (like P@3, a®l) which come from

i}

PR~Mod. Then Hl(w) Hl(u(an)v) = Hl(u)Hl(xﬁl)

Hy (W)Hy(x€l) = Hl(u)HZ(aBl)HZ(v)

Hl(u)Hl(a@l)HZ(v) = Hy (£f81)H, (V)

It

Hz(fsl)Hz(v) = HZ(W).

This completes the proof of 4.1.

The set of such elements w of S is called the dominion
of R in S, denoted D(R,S). By 4.1(1), it clearly forus a
subring of S containing R. Since inverses (even of
matrices) are unique, each palr of homomorphisms from S to
T which agree on R will also agree on each entry of the
inverse of a matrix over R (if the inverse has all entriles
in S). This says that the rational closure of R in S is
contained in the dominion.

The dominion D(R,3) tells how much of S can be
"determined" by R. How much of S can D(R,S) itself

determine? If w € S is not in D(R,S), then there are
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two homomorphisms from S to some T which agree on R but

not on w. But these two homomorphisms also must agree on
D(R,3) by definition, so w is not determined by D(R,S).
Thus D(D(R,S),S) = D(R,S). Then how much of D(R,S) is
determined by R (or what is D(R,D(R,S)) )? Surprisingly,
the "second dominion" DZ(R.S) = D(R,D(R,S)) may be strictly

contained in D(R,S).

As an example, take kX a field and R kﬁé.ax],

S = k[é,i} (commutative polynomial rings). Then R €8
and using 4.1(1i1) we can see that x(a)x = axZG D(R,S).
But x 1s not in D(R,3), as we can see by the two

k-homomorphisms H, H':S——>k given by

H(a) = 0, H(x) =1

H'(a) 0, H'(x) = 0.
In fact, D(R,S) = k[a,ax,axz,axj,“'-]. Now well-defined

k-homomorphisms from D(R,S) to k]b]/(ez) may be glven by

Hl(axi) = O for i = O'l"z’ooo
Hz(axi) =40 for 1 # 2
e for L = 2.

2 1s not in D°(R,3). But using 4.1(111),

 This shows that ax
clearly a3x4 = axz(a)ax2 is in DZ(R,S) but not in R. 1In
this case D'(R,s) = D(R,D!~1(R,S)) forms a strictly
decreasing sequence of rings containing R.

In general, there is a “stabilized" dominion D”(R,S),
satlsfying D(R,D°(R,S)) = D (R,3). To do this the iterated

dominion DY(R,S) must be defined for all ordinal numbers

u (for u a limit ordinal, DY is given by an intersection).
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Then D®(R,S) = D(R,S) for any ordinal u of the same cardl-
nality as the set of subsets of S. In the specific example
above’ Dco(k[a.aX],k[a,X]) = k[a.a)a.

The Dominion as a Zigzag Localization. Given any

homomorpnism of rings H:R—>3, We get an additive functor
H:PR-Mod-——>P3~Mod by extending scalars to S in the fami-
liar fesaion. Let Zy = (cl,cBy) be the (rignt and left
coherent) pair on PR-Mod obtained by pulling back the
discrete palr Z, = (C%,Cg) on Pg-Mod. Then the closure
operator on submodules of objects of PR-Mod corresponding
to CEH is exactly the CS of Chapter One.

Now we get a dliagram of additive functors and zigzag

localizations from Proposition 3.22 as follows:

Pp-Mod -——I-{---> Pg-Mod

ERl lEs

(PR-Mod)ZH-—-——>(Ps-Mod)zo ’
where the bottom functor is fatthful. But Eg 1s an
isomorphism by Proposition 3.13, since Zo consists of
discrete a.c.0.'s. Thus we may as well rewrite the dlagram

above as
-Mod

BTN

with H faithful. We also get a corresponding commutative

E ' n
R ‘///,ﬁ.\\\ﬁis ,

diagram of rings
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where R 1s the zligzag localization ring RZH and H is
one~to-one.,

Theorem 4.2: The image H(R) in S is just the dominion of

H(R) in S. (This D(H(R),S) is also called the dominion
D(R,3) of R in S.)
Proof: An arbitrary element of the ring R 1s a zigzag

(f/a\x) with £ € CLL(a) and z € c&.(a). Hence
oH oH

H(r) € cl(H(a)) and H(x) € Ch(H(a)). The a.c.o.'s Cg
and cB are discrete, so H(f) = uH(a) and H(x) = H(a)v

o]

with u and v norphisms of PS-Mod. But H is Jjust the
functor extending scalars to S, so we get exactly the
diagrams of 4.1(iv). also the functor H takes the zlgzag
(f/a\x) to the interpretation of (H(f)/H(a)\H(x)) as an
element of S —— namely, to ueH(a)ev(l). Thus we see that
elements of H(R) are exactly elements of the dominion
D(H(R),S) as characterized by 4.1(1v).

A homomorphism of rings H:R——>S8 1s called an

epimorpnism if D(R,S) = S (1.e., if every element of 3

1s "determined" by H(R)). Note that as a result of 4.2
every such epiﬁorphlsm can be constructed as a zigzag
localization with respect to an appropriate palr of
a.c.0.'s on PR-Mod. In particular, when S is a division
ring which 1s generated by the image of R usling the
operations of +, -, *, and taking the inverse of non-zero
elements (what P. M. Cohn ealls an "R-rield" ([2], p. 253)),
then. R—>S is an epimorphism and hence can be constructed

as a zigzag localization.
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We can also give at this point the example referred
to in Chapter Three.

Example 4.3: A right coherent palr 2 = (CL,CR) on a cate-

_ R
gory M such that, if we let Zp = (CgE’CoE) be the a.c.o.'s
obtained by pulling back the discrete a.c.o.'s Cg, Cg on
MZ along E:iM-—>l;,, then tne natural faithful additive
functor MZE"""DMZ is not an isomorphisn.,.

Description and Proof: The faithful additive functor

comes from Proposition 3.22 and the fact (3.13) that the
zigzag localization of MZ with respect to a palr of dis-
crete a.c.0.'s 1s ilsomorpnlc to MZ. As an example in
which it is not an isomorphism, take the case where

M= PR-Mod and Z is induced from the discrete a.c.o0.'s
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on PS-Mod with R € 5 any inclusion of rings for which
DZ(R.S) # D(R,5). Clearly the endomorphism ring of R in
My is D{(R,S) by 4.2, while in MZE the endomorphism ring
is taken to D(R,D(R,S)) = D?(R,8) in My, a smaller set.

Rilght and Left Superdominions. We have been pulling

back discrete a.c.o0.'s on Ps—Mod along the ring homomorphism
H:R—>S5 to get C%H and CEH' Now coasider the left a.c.o.
c?* on py-tiod which is the reflectlon of the right discrete
a.c.0. Cg, as in Chapter Three. Then we can pull this back
along H also, to get a left a.c.o. (CE*)H on Pp-Mod.
Clearly we have (Cg*)H > C%H. since CE* > Cg in Pg-kod
already.

Now (cg*,cg) is right and left coherent by Proposi-
tions 3.18 and 3.19. Hence so 1is ((Cg*)H'CgH)’ and we can
use Proposition 3.23 to get (C?H)* > (Cg*)H. Thus we have
the inclusions

(ChpCh) < (BN e < ((ey)™icly),
and so by Proposition 3.11 we get functors between the

respective zigzag localizatlons, forming a dlagram

M —Ees 1y > Mp > My
Also, the functors of 3.11 just take the equlivalence class
of (f/d\g) to the blgger equivalence class of this zigzag
which is determined by the bigger right a.c.o. Here the
right a.c.o.'s determining the equivalence relatlons are
all the same, so the functors among the Mi's above are all
faithful. Also, since ((Cg*)H,CgH) 1s irduced from Pg-Hod,

we get by Proposition 3.22 a failthful functor from My to
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the zlgzag localization of Pg-Mod With respect to (cB*,chy,
which by Proposition 3.13 1is Jjust Pg-Mod itself.
Now pass to the corresponding ring homomorphisms.

Then we get rings Rl, Rz, RB’ and a diagram

E o n e
R > Bl RZ'===== R3

\\\\\\t:\‘\\\NjEEESS’

where we may write inclusions because of the faitnfulness.
We know from 4.2 that By = D(R,3). Let us call R, the

(single) right (irterior) superdominiocn of R in S, denoted

DR(R.S). and R3 the (slnglé) right exterior superdominion

DZX(B,S). of course, all thls exists on the left, too.

As a quick example for which DR(R,S) is bigzer than
D(R,S), take our previous case R = k[a,axl < k[é..x] = S.
Then x D(R,S) as before, but x is given by the zlgzag
(1/e\ax) in DR(R.S). This zigzag is in DE(R,S) because
1l € (Cg*)H(a) (while 1 c#cgﬂ(a)); to prove this, we want
le Cg*(H(a)), or that a Cg-dominates 1. (Here we will
drop the notation for the functor H since it 1s just an
inclusion map.) Equivalently, we need (%)PS-Mod to be
Cg-disjoint from the codomaln V of v. So assume

()€ cg((%)PS-Mod + (3 n ((])_V)PS-Mod
for some ideal J & 1ly(Pg-Mod). Then (3) = (?’,)S + (g)
(with s in P_-lod and § € J) since the a.c.o. i1s discrete.
Hence a«s = 0; since a has no annihilator in S, s must be
the zero morphism. Thus w = Jj, and (8) c Cfg(g). as needed.
ﬁence in this case D(R,S) = k@,ax,axz.“ﬂ and DR(R,S) = Se
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For other superdominions, reflect Cg* again, to get
363
a new right a.c.o. Cg on Pg-Mod. Then pull back the palr
* % #* #%
(cB*,cB*™) along H:R—>S to get ((Ch )y.(C3  )y), which
is > ((Cg*)H,Cgﬂ). Also, Proposition 3.23 (in duvualized
* #* * 3* ¥
rorm) says that ((¢B), ((c2M)™) 2 ((FN) (5 g).
These two palrs will yield second superdominions, which
it appears mlght be bigger than the previous superdominlons.
Ri## R#*
Co

*
'C )’ etC.

We may also use the palrs like ( o

Non-Functorielity of the Reflecticn. Not much 1is

known about these large superdominions, because the
reflected a.c.o. C¥ is hard to calculate. In fact, the
construction is unnatural enough that C1 £ C need not

imply CI < Cg (or the other inclusion either). In this
section we will give quick exaﬁples for which the incluslons
fail.

First take R = k[g] for k a field, and consider the
embedding RS S = k[@,X]/(a%x - a). We have the discrete
right a.c.o. Cg on PR-Mod and also the a.c.o. (call it
Cg. say) induced on PR—Mod from the discrete a.c.0. On
Pg-Mod. Clearly cB < cB. But here we nave cB” £ cB*;
in particular 1 €.C§*(a) but 1 #ch*(a). To prove the
latter statement, just note that (8) = (% g)(l;ax). or
(9) € Cg(? g); but (8)¢ Cg(g) (there 1s no inverse to a
in S). Thus a does not Cg-dominate 1. But a does
Cg-dominate 1, by the same argument as in paragraph showing
DB(R;S) # D(E,S). This proves the former statement and

completes this example.



56

To disprove the other possible incluslon, take

R' = k[a,x]/(ax) and H:R'—>R = k[a] by sending x to zero.

Again we have the discrete a.c.o. Cg

R

Co £ CEH’ the induced a.c.o. on Pge-Mod. Agaln lé€ (CgH)*(a).

on PR.-Mod and agaln

_ R¥%
by the same o0ld argument. But now 1 Co (a), since
' * *
(%) = ($)=, vut <g>;{ (0). Thus c2¥ # (cB)7 either.

Exchangse Properties. Suppose temporarily that we

have rings R € S, with S a divislion ring. Keep the notation
Cg for the right a.c.o. on M = PR-Mod induced from the
discrete a.c.o. on Pg-lMod. Suppose also that vy & Cg(J + xM),
for x and y morphisms from R to Q in M, and for J an ideal
of M at Q. Then y = js' + x8 (with J & J) in Pg-iiod.
Here s is a morphism from S to S, so if it isn't zero
(L.e., Af ¥ gcg(J)), then we can invert it and write
X = ys‘l - j(s's“l), or x € Cg(J + yM).

Thus the object R of Py-ilod and the right a.c.o. Cg
satisfy the following condition, which we state in general.

Definition: Let C be a right a.c.o. on an additive category

M, P an object of M, and suppose that, for every object Q
of M; every ideal J © lQM, and every X:P—>Q and y:P—=Q
in M, we have that whenever y € C(J + xM) but y ¢ c(J),
then x € C(J + yM). Then C is said to have the exchange

property with respect to P.

If we think of M = PR-Mod, P = R, and regard x, y, and
J as giving elements and subsets of Q, then this 1s Just
the exchange condltion on the corresponding closure

operator on submodules of Q, as defined in Chapter Two.
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Thus this C is the same as the span for an algebralc
dependence relation on projective R-modules.

As suggested in the discussion of dependence relations

in Chapter Two, we should be able to construct a dlivision
ring from an a.c.o. with an exchange property. Let us
first give a general lemma on inverses.
Lemna 4.4: Let Z = (CL,CR) be a right coherent palr on M.
Glven a zigzag (f/a\x) in Mz, suppose that (g) & CR(? g)
and (0 1) € cL(% %). Then =((0 1)/(7 2IN(Y)) 1s the
inverse of (f/a\x) in M.

Proof: First check it to be a right inverse, or

0 = (L/1\L) + (£/a\x)((0 1)/(2 SN«

’ 100 O 1
= ((1L f 00) 0 a0 -x 0l). By 3.5 we need
00a x 0
00f O 1l
1 100 O
0 0 a0 -x 0
0]€ cBu for u = {0 0 a x|. Since (1) € CRK? %), we get
1 O0f O
ot £f0 O
0 0O 0 1 1 0
0 Rl —2 -X R 0 0 0 R
oje.c’| a x| S Cu, so{0| ={0| +] Oj€ Cu.
1 f O 1 0 1l
-1 -f 0 1l -1
Also check 0 = (1/1\1) + ((0 1)/(} 6)\\(8))(f/§\x)
100 O 1
= ((1 01 0) 0ax O 0l), or
0 f 0 -f 0
000 = X
1 100 0
0 0Oax O
ole CBu. where now u = |0 f 0 -f|. Clearly we have
X 000 a
0 101 0
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0 0 0 O\ 1 1 0 0

X a a O R 0 0 X X

ol e cBlo| ¢ cBlr -r] € c™u, so (0] = |o]-{0l+]o| € chu.

X a 0 a X 0 0 X

0 0 0 O 0 1 1 0
Theorem 4Y.5: F'or C a right a.c.o0., let the zigzag local-

ization of Pp-ilod with respect to Z = (C*,C) give a ring
homomorpnisn R—-—-wirRZ. If C nas the exchange property with
respect to the object R, then BZ is a division ring.

Proof: Take any (£/e\x) in By with R-X—Q<2—p-LR,
and assume (f/a\x) # O. Then equivalently by Propositlion
3.5, (§) 4 C($). Now (% ?_)M = (3 g)_)M. so we get
(%) (A C(% g)_) = C(‘rf1 %). Thus usirg the exchange progerty,
($) € c(g ¥

We also claim that (0 1) € C*(? %). To see this, take

any v:R—>Q', J © 1Q.M and w € lQ.M and assume that

0 a x
(0)6 C((f 0
W 0 v

The domain of w is finitely generated projective over R,

0 0 0
M+ {0l). We want to show that {0\ & ClO}.
J w J
so W 1s in the right ideal generated by {we\ e has domaln R}.
Thus it will be enough to show that each such we satlsfles

0 0 0 0
ol€ clo]. But 1f{ o0 ?ec 0/, then clearly also

we J we J

0 a 0
(O % C(Qf\l\l + LO ). Then we can use the exchange property
we 0 J

x & 0 0 10
to get [0\ € c(|[r o}u +{0]). Composing with (5 3 8) on
v 0 we J

the left, we get (]é) € C(%), contradicting our assumption.
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0 0
Hence we have (O c G((]) ,» 80 We have shown that
W

(0 1) € c*(% 3.

Now by the Lemma (f/a\x) is invertible in R,, so we
are done.

Of c¢course the objéot R 1s not very specisl in this
situation. Any projective generator P will behave the
same, and in fact PEnd(P)‘MOd is equivalent to Pp-lod.

So if C has the exchange property with respect to P, zigzag
localization would give a homomorphism from End(P) to a
division ring.

Note that then P cannot be a direct sum Q" for some
projective Q and n > 1, for then g would become a vector
space of dimenslon 1/n over the division ring. Or, rather,
if P is such a Q®, then C is indiscrete and the zigzag
localization gives the zero ring (which is a divislon ring,
in the universal sense).

We can also see this directly; assume C has the
exchange property with respect to P and P = QIQ', even.

A map‘from P to P is a 2-by-2 matrix of maps among Q and Q.

Clearly we have lQ 0le C 1Q 0 = C(1lp). Now if
O O O lQl

00

on Q. If 1,0¢_COO,then(lO c{1, 0\ by the
(OQ o) (o o) oQ 1Q.\|€ (oQ o)

gxchgnge property with respect to P. 35o we get

1, O ¢ fo 0\, then we get 15 € C(0), and C is indiscrete
dQ 0 < <

LO )e_ C(J.Q) and lQ, € C(0), and C is indiscrete on Q'.
1 0
QI
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When Q' = Qn"l, then C is indiscrete on Q. But Q 1is
e projective generator (since P is), so C indiscrete on Q

implies C indiscrete on all of PR-Mod.
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CHAPTER FIVE

ZIGZAG LOCALIZATIONS OF MODULE CATEGORIES

AND TORSION THZORIES

In tnis chapter we consider the case when the additlve
category i 1s the category of all right modules over a
fixed ring R. We denote this category by Mod-R. We show
that an algebralc closure operator on right ideals of Mod~R
can be induced from one such on PR-Mod, and we compare
closure operators on llod-R with pre-torsion and torsion
theories on Mod-R. In particular, rings and modules of
quotients, as glven by the notion of a torsion theory,
can be constructed using the zligzag localization.

Comparison with the P-liod Case. For M = Mod-R, we do

not have the nice correspondence between right ldeals of
M at an object N and submodules of N. Here we have only
that In(f) € Im(g) <=== f € gif, for f and g having codomain
N. If we deflne the image Im(I) of a set I of morphisms
with codomain N as before (the union of the images), then
a morphism f in 1lyM with image contained in Im(IM) may not
be in IM.

We can also denote the right ideal of morohisms in
1yM whose lmages are contained in a submodule N' & N by
NiN'M' where NiN' i1s the inclusion map of N' into N. Then

we get some kind of correspondence, namely that if f has
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codomain N and I & 1lyM, then
£ €yl = In(f) < Im(Nilm(IM)M) = Im(IM).

Now given an algebrailc closure operator C on right
ideals of PR—Mod, we have a corresponding closure operator
C on submodules of each object P of PR-Mod, as in Chapter
Four. “Then we want to extend this to a closure operator
C on submodules of objects N of M = Mod-R (just as deflned
in Chapter Two, but we now allow all modules instead of
just finitely generated projective ones), and thence to a
right a.c.o. on M, If p:P—>N, we will at least want
T(p(X),N) 2 p(C(X,P)) for X € P. This turns out to be
just enough to extend, provided that the original C 1s
finltary. So assume'C is finitary, and, for object N and
submodule N' of N, define

T(H',N) =4An€ N|{n @& p(C(X,P)) for some object P
of Pp-Mod, some X & P, end some
| p:P—>N satisfying p(X) € N'. J.
Then for I € 1yM, we can define the closure CL to be the

tdeal W18 (1m(1n),N)M-
Proposition 5.1: Suppose C is a finitary right a.c.o. on

Pp-#iod. Then defining C on M as above, C is a right a.c.o.
on M, and Af f:P—>Q is in Pp-Mod and I & lQ(PR-—Mod). then
f€ Cl «—= f e Clelg

Proof: We have the five conditlons to verify.

(1): I ¢ CI. Given z € I, we want to show that
Z eNi'(‘:(Im(IM).N)M' or that Im(z) ¢ C(Im(IM),N). So take

n € Im(z), and let p:R——>N be given by p(r) = nr. Ffor
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X = {l} C R, p(X) = {n} < Im(IM), since z € I. Thus
n € C(Im(IM),N), as needed.

(2): 1€ J == CI € CJ. We can see from the defi=-
nition of C that N' ¢ N'" ¢ N ==> C(N',N) ¢ C(N",N). Then
the needed result follows immediately.

(3): CCI = TI. The inclusion 2 is by (1) and (2),
so assume z & CCIL, or z € yig(1u(dr),y)N- Thus
Im(z) & C(Im(CI),N)

ClIn{yig(m() ,5)M))
= C(C(Im(IM),N),N).

Hence it is sufficient to show that C(C(N',N),N) = C(N',N).
So take any n € T(CT(N',N),N), or n € p(C(X,P)) with
X € P and p:P~—>N, p(X) € C(N',N). Here we may take X to
be a finilte set, since C was originally finitary. So for
each x € X, p(x) € C(N',N); hence there is Y, & P, and
P, :Py—>N with px(Yx) C N' and p(x) € py(C(Y,P.))e
Since X is finite we may take the direct sum of all the
Py (L.e., for all x in X), and call this P'. We then get
a big direct sum map p':P'-—>N Vand a big set X' © P!
satisfying p'(X') € N' and p(x) € p'(C(X',P")) for each
x € X. So now we get (p p'):PéP'~—>N and a set

Xy = @0 |xe x}u %-’;.) x €X, y'€ C(X',P')

with p(x) = p'(y') /,

Clearly X, < P&P' and (p p')(Xo) G N'. Furthermore
C(X,,PeP') includes (1) for each y' € C(X',P'), so
C(XO,PQP') also includes (8) for each v € C(X,P). Hence
{p p.')C(XO,P@P') includes n, and so n € T(N',N).
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(4): CI 1s a right ideal of M. This is clear; the
ideal is gensrated by Nia(lm(IM),N)‘

(5): For f:N—>L, £(CI) € T(fI). Take z € CI, so
Im(z) € C(Im(Il),N), and try to show fz € C(fI), for which
we need Im(fz) « C(In(fIM),N). But Im(fz) = £(Im(z)) and
Im(fIM) = £(Im(Il)), so we need only show that
£(C(N*,N)) &€ T(£(u?),L). This is clear by just using fp
instead of p in the definition of C(N',N).

To prove the last statement, first note that we
are regarding the object Q of PR—Mod as also an object
of Mod-R. The two closures C, C on submodules of Q are
the same, since we may take p = lQ in the definition.

Thus C(In(IM),Q) = Im(CIL), because the correspondence

between submodules and 1deals 1s exact in PR-Mod. So

£ €Tl = glg(n(n),q) < In(f) € C(In(IM),Q) = Im(CI)
<= { & CI.

Regarding the finitariness of C, each C on submodules
of N may be seen to be finitary, btut C is not necessarily
finitary on right ideals of M. This occurs because
M = Mod-R includes modules which are not finitely generated.

Comvarison with Pre-torsion Theoriss. In this sectlon

we recall the notion of a (right) pre-torsion theory,
noting that it is slightly less general than that of a
right a.c.o. on M = Mod-R. This discussion, as well as

that for torsion theories, 1s taksn largely from Lambek
({47, -cnapter 0).
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A pre~torsion theory alms to describe abstractly
what 1t means for a module to be a "torsion" module.
Specifically, one may glve a collection B of right mcdules,

called a pre-torsion clacs, such that B is closed under

taking 1lsomorphic images, factor medules, module extensions,
and direct sums of elements of B. (We say B 1s closed

under taking module extensions if whenever a submodule N'

of N and the factor moiule N/N' both belong to B, then N
does also. (Note Lambek says “group extensions".)) To
motivate this notion, suppose we are glven a ring homo-
morchism H:R—>3. If we take B to be the set of all
objects N of lMod-R such that N QB S =0, then B 1s a
pre-torsion class on Mod-R.

Likewise, one nay give a pre-torsion-free class: a

collection C of modules which is closed under taXing
isomorphic images, submodules, module extenslons, and
direct products.

Suppose we define a radical to be a function T which
asslgns to each module N a submodule T(N) of N, and which
satisfies the conditions: T(N/T(N)) = 0 for all N; and 1f
f:N—>L is 1ln Mod-R, then f(T(N)) & T(L). This T is sald
to be idempotent if T(T(N)) = T(N) for all N. Such an

idempotent radical abstractly gives the "torslon part"
of each module.
Finally, we may gilve an algebralc closure operator C

on submodules of objects of Mod-R. This closure operator

will be said to be pre-modular if (besides the conditions
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(1-5)) it satisfles (for any N of Mod-R with submodule N'):
(6) C(N'",C(N",N)) = C(N',N).
(7) C(X',N)/N' = C(O,N/N"').
Then we get the following equivalence:

Proposition 5.2: For any ring R, the followlng data on

M = Mod~R are equivaleht:
(a) a pre-torsion class B.
(b) a pre-torsion-free class C.
(c) an idempotent radical T.
(d) a pre-modular closure opevator C.

Proof: Given a pre-torsion class B, take C to be the
set of modules L such that M(N,L) = 0 for all N&€ B. The
verification that C is then a pre-torsion-free class 1s
straightforward. Conversely, given C we may take B to be
the set of modules N such that M(N,L) = O for all L € C.
The verification of the equivalence in this case 1is again
straightforward.

For the other parts, all the verificatlians continue
to be straightforward. We will indicate only how to
construct one biece of data from another.

Given C, we can T(N) to be the intersection of all
submodules X of N such that N/X € C. Conversely, given T
we take C to include just the modules N with T(N) = 0.

Given T, we take C(N',N) to be the (full) inverse
image of T(N/N') under the canonical map N—>N/N'. From
C we construct the radical T by just putting T(N) = C(0,N)

for each module N.
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Torsion Theories. The pre-torsion theories that

have been of most interest and have been studled by Lambek
and others are assumed to satisfy an additional "heredl-
tariness™ condition. We state the various forms .of this
condition in the following proposition, whose proof we
omit, since it is straightforward.

Proposition 5.3: Suppose we are glven a pre-torsion

theory, with all of its equivalent forms: B, C, an
idempoternt T, and a pre-modular C. Then the followirg
conditions are equivalent:

(a) B is closed under taking submodules.

(b) C is closed under injective hulls.

(¢) For N' a submodule of N, T(N') = T(N) M N'.

(d) For N' and N" submodules of N, C also

satisfies the strengthened corndition
~ (6+) C(N"AN',N') = C(N",N) N N'.

Definition: If the equivalent conditions of 5.3 are

satisfied, then (g.g) 1s called a torslon theory on Mod-R,

T is called a torsion radical, and the closure operator

C is called nodular.
In thls case there is still another formulation of
a torsion theory. We will call a set F of right ldeals

of the ring R an idempotent filter if the following

conditions hold:
(0) The unit ideal R is in F.
(1) If D& F and D' 2 D, then D' € F,
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(2) If DEF and r € R, then
r~ip = {XG R }rxe D}E F.
(3) If DE F and 4" D' € F for all 4 € D,
then D'} D € F.
(Note that these conditlons also imply that if D, D'& F,
then D\ D' € F.) To construct such an F from a mcdular
closure operator C, just take F to consist of those right
jdeals D of R such that C(D,R) = R (the dense right ideals).
Conversely, given F, define C by putting
cv ) ={ne€ N\{re Rlnr € 8} e F}

Rings and rodules of Cuotients. Glven a torsion

theory and any module in M = Mod-R, one can construct a
module of quotients with respect to that theory. The
presentation of this construction which we give here 1is
apparently somewhat obsolete (Lambek ([LI-]. p.22)), but it
is convenient for our purposes.

Suppose we are given a torsion theory, 1in the form of
an idempotent filter F of dense .right ideals of R. For a
right R-module N, put

L(N) = {m:D-—-—-:»N in IvIod-R}DG F}/N.

where (m:D—>N) ~ (a':D'—>N) if n and m' agree on the
intersection ideal DN D' € F. Let us denote the
rv-equivalence class of m:D—>N by [m]. Then L(N) 1is
easily made into an abelian group by En:D-—-—>Nl + [m':D'——>I§l
= [m+m':D 0 D'-——>N-l. To make it an R-module, put

Lm:D—,—-—Nﬂr = [mr:r'lD——-:’IS]l, where mr(d) = m(rd) for
d € r"lD. We also get a natural map N—>L(N) by taking
an element n of N to [m.n:R——v"N], for m.n(r) = NCe
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Recall that for a torsion theory in the form of a

filter F, the radical T is given by

T(N) = C(O,N) = {né‘. Nl {re R ]nr = O}G F}.
Then we define the module of quotients Q(N) to be L(N/T(N))
for any N. This is easlily shown to be a functor on M
and we get a natural ﬁap N N/T(N) —>L(N/T(N)) = Q(N).
Lambek ({4], pp.16,25) shows that applying the functor Q
to this map gives a natural isomorphism Q(N)-—>Q(Q(N)),
and that the homomorphism M(Q(R),Q(N))—>Q(N) given by
composing with B—>Q(R) 1s actually an isomorphism.

Thus Q(R) ¥ 1K(Q(R),2(R)) becoues a ring, the ring
of guotients of R with respect to the torsion theory
originally chosen. This construction has been studied
by Lambek, Findlay, Popescu, and others.

The Ring of Quotients as a Zigzag Localization. In

fact, the ring (and modules) of gquotients can be obtalned
by a zigzag localization of M = iHod-R with respect tc

Z = (C*.C). where the right a.c;o. C arises from a modular
closure operator.

Theorem 5.4: Glven a torsion theory in the form of a

modular closure operator C, define a right a.c.o. C on

M

Mod-R by C(I) = Nic(Im(IM).I“I)M' for I & 1NM. Also put

7z = (c¥*,c), and take Q to be the functor from M to M giving
the module of gquotients with respect to the torslon theory.
Then there 1s a full and falthful additive functor G from

the localization M, to M, such that GE = Q as functors.
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Proof: (comprising essentlally the remainder of the
chapter). Our definition of Q uses the idempotent filter
P of right ideals, so recall that the closure operator C
is given from such a filter by

C(N',N) = {n € N‘ {re r|nrenie F}

Also, we need to determine the reflected left a.c.o.
¢* more specifically.

Lemma 5.5: Let a:N——>P and {:N—>V be morphisms in M.
Then £ € C¥(a) 1f and only Af for every n€ N with a(n) = 0
we have f(n) € C(0,V).

Proof of Lemma: If £ € C¥(a), then in particular

(?)M is C-disjoint from V, and so (taking J = 0)
c(EN O m = (go))-
This translates to C((2)(N),Pev) A (J) = (c(g,v))° Ir
a(n) = 0 then (f?n)) is in the left side of the latter
equation, hence in the right side; so f(n) € C(0,V).
Conversely, suppose the coqdition on f« We want to
show that (v?)M is C-disjoint from U for v:V—>U, or

Cl(y2)M + (f})) N (gU)M = C(g). This translates to

Cl(g7)(N) + (Ig(J))r PeU) N (8) = (C(im(()J)’U))o Because

of condition (6+) on C, the left silde is

C(2p)(Ker(a)) + (1o(g)) ()

0
= (C(vf(Ker(a)) + Im(J),U))

0
< (C(V(O,V) + Im(J),U))
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0
s (C(C(O,U) 4 Im(J).U)) ’

where we have used the assumption on f. But clearly this
last closure is Jjust (C(Im(()J).U))' since the C(0,U) part
cannot add to the closure. Thus the left side of the
desired equation is contalned in the right; but we know
that the other inclusion ils always true.

This concludes the proof of the lemma.

To continue the proof of the theorem, we want to
define the functor G. On objects E(N) of M, (for N an
object of M), Jjust put G(E(N)) = Q(N) in M. Now for a
morphism (f/a\x) in MZ(U,V), we need to get an
R-homomorphism G(f/a\x):L(U/T(U))—>L(V/T(V)). Let us
suppose the diagram is UZX>p<N-L 5V, with £ € c*(a)
and x € C(a). Then f is as in the Lemma, whlle X satisfles
x(U) € Cc(a(N),P). This means that for each u€ U,

{re R ‘ x(u)r € a(N)} € F.

Now go to the diagram U/T(U)=—>P/T(P)S—N/T(N)—>V/T(V)
obtained by factoring out the "torsion part" of each
module. The new R-homomorphisms are induced by the old
ones, because of the functorial property of the radical T.
We will generally denote thils new dlagram by T P& _F-L57.

In this new sltuation, we claim that if n € ¥ and
a(n) = 0, then f(n) = 0. Indeed, if a(n) = 0, then
(taking a representative n in N for n) a(n) € T(P), so
{r € R \a(n)r = O}G F. Hence the larger ideal

{r € R \f(n)r < C(O.V)} i1s also dense, so that
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f(n) € ¢(c(0,V),V) = C(0,V) = T(V) (and thils is independent
of the choice of n). Thus f(n) = 0. Also in this new
situation ¥ € C(2). To see this, plck any u€ U. Then
Kg = [r €R \ X(Wr € 5('1\'1')} > Zr € R l x(u)r Qa(NB (for
some representative u of u). Since the latter ideal is
dense, sO 1s KE’ as needed, Now notice that for r € Kﬁ,
we get a well-defined element of V by taking Ta-1%(ar),
because of the condition on f.
Suppose now that we are given an element of L(U/T(U)),
and we pick a representative m:D—>U/T(U) = U, for D
dense. If K = {E €D !E(m(s))é? E(N{} is dense, then we
can get a well-defined Ta 1Xm:K—>V, which we can use to
give the element G(f/a x)({m]) of L(V). But for any r € D,
rlk = §s € D [Z(n(rs)) € E(ﬁ)} D K, (y) € Fo so that
r-ig € F for all r € D; this implies that K 1s dense, so
we get'G(f/d\x)[mJ. This construction of the class
[f‘?i"’li'm] € L(V) is independent of the choice of m, because
checking equivalence just involves a restrictlon of the
domain. Hence we have a function G(f/a\x):L(U)=——>L(V).
This function is clearly additive by lts construction,
so let us check it is an R-homomorphism. Recall that for
[_m:D—-»\»;J] € L(U), scalar multiplicatlon by r gives the
class [@r:r"lD~——>j]. with mr(s) = m(rs). For
K = {s €D ‘ X(m(s)) € E('I\T)} as above, r~1K is suitable on
which to define Ta~- X¥mr, since ¥mr(r~1K) ¢ &(¥). Then
.clearly (Ta’lxm)r:r'lx-—>v 1s the same map as TE'li(mr).

or (G(f/a\x)[m])r = G(f/a\x)[mr], as needed.
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Now we need to show that the definition of G(f/a\x)
depends only on the equivalence class (f/a\x). So assume

(g/P\y), U-LpreLont-B5V, 1s a zigzag equlvalent to

' X a 0
(£/a\x), so that (—y) € Clo b). Factoring out the torsion
0 fg
e e B m o %
part as before, we get JlpBre2T1-£wV and (-F| E C
0

o o
®Riclo

(same argument as before). For m:D—>0 with D€ F, put

K' = {s € D

x\ a0 _
(-y)(ms))e 0 BJ(NeN')p.
0 fg

By an argument as for the previous K, we get K'&€ I' and so

1%m and o~ %

we may define both fa~ ym on K'. But for s € K!,

there are n € N and n' € N' such that X(m(s)) = a(n) and

¥(m(s)) = B(n'), with T(n) - g(n') = 0. Thus

Ta-1%mw = gb~1ym on X', and so G(f/d\x)[qﬂ = G(g/b\y){m}.
Examination of the above part of the proof shows that

1t works precisely because equivalence in the zlgzag

localization M, 1is defined in just the way that makes

npg=l

x" well-defined. But compositlon and addition of
morphisms and the zero and identity morphisms are also
defined just so that the "fa"lx" interpretation ls composed,
added, etc. Thus we can easlly get proofs along the same
lines as the above paragraph which will show that G respects
composition, addition, and zero and ldentity morphisms.
Hence G is an additive functor, and GE = Q on objects

of M. For a morphism c:U—>V in M, we get T:T—>V and

thence Q(U) = L(T)-2%=L(V) = Q(V); this map Qc is given
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by composing a representative w:D——>U with c¢. On the
other hand E(c) = (c/c\c), so G{e/c\c)[m] = {E-E'l'é'm] = ['Em],
and we see that GE(c) = Q(c).

Since G is additive, to show faithfulness we need only
assume G(f/a\x) = 0 and show (f/a\x) = 0. Assume the
diagram 18 U-X=>pPe-2-N-L£5V, and take any u € U (and its
image U in U)s Then X = {s € R ‘X(u)s € a(N)} is dense,
since x € C(a). If we define m :R—>TU by my(r) = ur, then
G(r/a\x){m, ] = 0 means that ['f‘?a."l'imu] = 0. Hence ?E'li'mu = 0
on some dense 1ldeal D, say. Now for s&€ K 1 D, we get
x(u)s = a(n) for some n& N, and also T(n) = 0 (where n is
the luage of n in N); thls means that f(n) & T(V). Now
put K' = {r € R‘ (Xéu))r < (?)(N)}; we want K' to be dense.
But for s € KN D and x(u)s = a(n), we get

slkt = {re n| Z{er € (Hrm)}

i

frer|E™iredran}

> {r €z |rir = ol
This last ideal ls dense because f(n) € T(V), so that s-lK'
is also dense for each s € K N D. Hence K'Y KN D is
dense and so K' 1s also dense; thus Im(’é) < C(Im(?).P@V).
or (f/a\x) = 0.

Flnally, we need G to be full. 3So take any Mod-R
morpnism ¢:Q(U)—>Q(V). There are natural maps
1:U—>Q(U), JsV—>(V), so form the diagram
,U—g—i_-?Q(V)é-i—V-l‘—»V. For this to glve an Mj-morphism,

we need 1 € C¥(J) and ¢i € C(j). For the former, we
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use Lemma 5.5. Assume jJ(v) = O (for v € V and V its image
in V). Then my:R—>V given by m,(r) = ¥r is the zero
element of L(V), by the defintion of }. Thus m, is the
zero map on some dense ideal D. But then
pe{rer|vren}, sov=1vec(n(v),v) = co,v).
Thus L € ¢7(j). To get ci1 € C(j), we show that in fact
e(3(v),a(V)) is all of Q(V). So pick any m:D—>V a
representative in L(V) = Q(V). Recall that multiplication
of m by r& R glves ar:r-1D—>T with nr(s) = m(rs). For

[m].to be in C(3j(V),Q(V)), we need that

{rs B\ there is v € V with mr = J(v) on some K€ F}

{r €R ‘t‘nere is V€ V with mr(s) = vs for
all s€ K € F.}

{r € R ] there is VE V with m(rs) = vs for

]

all s€ K€ F}

is dense. But for r € D, m(rs) = m(r)s, so the dense
ideal D 1s contained in the above ideal; hence we are done.

To complete the proof we need only show that
G(1/3\el) = c. BSo take m:D——>U any representative in
L(T) = Q(U) and show G(1/j\ci)[m] = c({m]). Now to
define G(1/3\ci){m], put K = {re D \cIm(r) € 3('\7)} '
using the diagranm I_J'—LQ(U)—%Q(V)G—E—V-—L»V. (It 1is
easy to show that T(Q(V)) = 0, so ¢ = ¢c; or see Lambek.)
We have seen that K 1s dense, and G(1/j\ci)[m] = {j-lc-fn;.l
is defined at least on K. Now take D' to be a cholce of
dense -ideal which is a domain for c[m], so write

c[m] = [.m':l , for m'":D'—>V. We intend to show that
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m' and j-lcIm agree on D' N D NK. Recall that the action
of r € R on m glves nri:r=ip———sT, where mr(s) = m(rs).
Then if r € D, clearly r™iD = R and so [m]r = [mr} = 1(m(r))
in Q(U). If in fact r€ D' D NK, then cfor] = cim(r)
1s in J(V). But ¢ is an R-homomorphisu, so c{pﬁ] =
c([m]r) = c(tp])r = [mf]r = [m'él, vhere m'rir=iD! —e—s¥
is gilven by m'r(s) = n*(rs). Since r ¢ D', r“lD' = R,
so T teTu(r) = F"IG{mé] = j'l[m'é] =nm'r(l) = m'(r).
Since D' N D N K is dense, c[m] = Em'] =U-lc-fm] , which
is G(l/j\ci)[m]. Since m was arbitrary, G(1/j\ci) = c.
This completes the zroof of 5.4.
Lambek has called the modules which are isomorphic
to (W) for some N the "torsion-free divisible" modules.
(He actually glves a more constructive definition.) Since
G has the property that every Q(N) is isomorphic to some
G(N),‘we have shown that G is an equivalence between MZ
and the full subcatezory of Mod-R = M of all torsion-free
divisible modules.

Rings not Rings of quotients. We can quickly show

also that not all rings constructible as zigzag localizations
are constructible as rings of gquotients with respect to

some torsion theory. To do thls, put R = k(x,i}, the

free assoclative algebra in variables X and y over a

field k. Also put S = k(x,y,x“l.y";>, obtained by simply

ad jolning inverses of x and y to B« Then RS 5 1s an
épimbfphism of rings, so every element of S 1s expressible

as a zigzag in (PR—Mod)Z. for Z some coherent pair of



a.C.0.'s. Each such zigzag can be considered as a zigzag
on Mod-R as well, so S 1ls constructible as a zigzag
localization of R.

If we assume that S 1ls also a ring of quotients
Wwilth respect to some torsion theory, then a result of
Lambek ([4]. Prop. 2.6) says that the right R-module S

18 an escscontial ertension of R; that is, cach R-submodule

of S intersects R nontrivially. But the R-submodule

(x"l + y’l)R of S can easily be seen to intersect R only
in {O}. (This can be seen, for example, by noting that S
1s exactly the group algebra of the free group on two

generators.) Thus S is not a ring of guotients of R.

77
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APPENDIX 1
THE RATICNAL CLOSURE

Suppose R and S are rings with R & S. Recall the
definition of the rational closure £(R,3) as the set of
all elements of S which occur as an entry in a square
matrix over S which is the lnverse of a matrix over R.
Cohn ([g], pp. 249-251) has shown that £(R,S) 1s a subring
of S containing R.

Cohn's term "rational closure" derives from the fact
that, if S is ; division ring, then £(R,S) is the
sub-division ring of S generated by R. Hence Z(R,S) 1is
closed under taking inverses of elements of Z(R,S) which
are invertible in S.

We are interested in further Jjustifying the term
"eclosure" for this subring, by showing that, for fixed S,
£(~-,S) satisfies the three conditions for a closure
operator, namely:

(1) For a subring R of S, R € x(R,S).

(2) For subrings Ry € R, of S, Z(Ry,5) & £(R,,8).

(3) For a subrirg R of 3, £(Z(R,S),S) = Z(R,S).
Part (1) is by Cohn's result, while (2) is obvious. The
main purpose of this Appendix is to prove (3).

Let us put & = %»(R,S) and take A to be a Z-matrix
which is invertible over S. Our task is to show that all

the entries of A~l are in fact in % already. We wlll do
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‘this by producing a (large) R-matrix whose inverse in S
contains the matrix A™Y as a submatrix.

Let A be n-by-n wilth entry alj in the row-i, column-j
position. Since a13 € &, we have that aij is an entry in
AI%. for Alj an R-matrix invertible over S. We can get
a large R-matrix B (say n~by-m) whose inverse over S
contains every alj as an entry, by putting

Allo s e O

O Il e e 0
B = . .12 : :
0 0 eee A [
ACTUALLY Let us give functions f,g:{},g,-»-,ﬁ}.._,{?,z....’é)
We Neeh | by requiring that ay 4 occurs as the row-f(i), column-g(J)

meeﬁ? Cad~{ entry of B~l, Then take n-by-m matrices Eif(i) (for each 1)
)?ﬂ”"$“fﬂ“¢ which have only zero entries, except for a 1 in the
o (1,f(1)) position. Likewise take m-by-n matrices Eg(j)J
{3@('\%“{()”\‘ (for each 3), and that E B g 1 t

4 or each j), an e see a 1r(1) 2 (3) 3 s Jjust an

; mm%{b.ml n-by-n matrix of zeroes, except for a4 3 in the (1,])

AMD position.
gV VaList : _ -1 - -1
(J_ ;j ‘ Hence A = iS’JJEif(i)B Eg(J)J = UB™+V, where
= : ["_\ L: f(L'J "‘")
L h - -
U L? = % Eif(i) and V = ? Eg(j)j' Recall that A 1s assumed
- t/
\/ E -B -V

{~ 3lej to be invertible over S. Then the R-matrix (-U 0) has an

4

inverse over S, namely

-B -v)—l -lva~igp~t - 3~1 .p~lva-l

= -1

U 0 -A~lyp-1 A .

Hence A"} is a L-matrix, completing the proof.
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More generally, we can let Zk(R.S) be the set of
elements of S which occur as an entry in an m-by-n matrix
over S which is the inverse of a matrix over R, where m
and n are any positive integers satisfying m = n (mod k).
(An n-by~-m matrix is invertible if it has an m-by-n inverse
matrix, such that the.product of the matrix by 1its inverse
on each slde is the identity matrix of the appropriate
size.) Cohn's original %(R,S) definition is the k =0
case. Then a slight variatlion of Cohn's proof shows that
Zy(R,S) is a subring of S containing R for each k.
Purthermore, the above proof of condition (3) can be
slightly modified to demonstrate that Zk(-.S) 1s a closure
operator on subrings of S, for each k.

Note also that these rational closures satisfy the
conditlons for ZK(R,—) to be a "coclosure operator" on
overrings S, for fixed R. These conditlions are:

(1') For an overring 3 2 R, £,(R,3) & S.
(2') For overrings S; & S, of R,
EK(R,Sl) S.Zk(R,Sz).
(3') For an overring S of R,
Z,(R,EL(R,8)) = Z,(R,S8).
Parts (1') and (2') are obvious, while (3') follows
because the inverse of an appropriate R-matrix over S has

all its entries in Zk(R,S).
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APPENDIX II
A PRIME MATRIX IDEAL YIELDS A DIVISION RING

Given a ring R,. recall Cohn's definition of a prime

matrix ldeal P over R as a colleétlon of square R-matrices

(of any sizes) satisfying:
(1) If A is n~-by-(n-1) and B is (n-1)-by-n, then
AB & P.
(2) If matrices A, B, and C agree except on one
row (or column), and if the corresponding row
(or column) of C is the vector sum of the
corresponding rows (or columns) of A and B,
and A\f A € Pand B€ P, then C € P.
(3) If A € P and B is square, then (% g € p.
(4) The l-by-1l matrix (1) is not in P.
(5) If A O) € P, then either A € P or B € P.
Then Cohn ({2], pp. 268-279) showed that such a P gives
rise to a division ring KP and a ring homomorphism R-——>KP.
such that the image of a square R-matrix is invertlble over
KP if and only if the matrix 1s not in P.

In this Appendix we intend to construct such a
division ring KP in a manner similar botn to Cohn's method
and to the zlgzag localization construction. The author
expects eventually to be able to do this by zigzag local-

1zation alone, using Theorem .5, but as yet the correct

choice of right a.c.o. i1s not confirmed.
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Before we describe the construction, let us recall
a few of Cohn's lesmas which will make 1t easier.

Lemma IX.l: If A is n-by-n and B is m-by-m, and if C

N A0 A C
s n-by-m, then (o B)EP if and only if (o B) € P.

Lemma II.2: Glven any matrix in P, each of the following

operations on 1t results in an element of P:
(1) exchanging rows (or columns);
(11) adding one row to another (or one coluun
to another);
(111) multiplying a row by a scalar on the left
(or multiplying a coiumn by a scalar on
the right).

These lemmas allow what we have called "generalized
row and column operations", so that the proof that this
construction works will be much like that for the zigzag
localization. Hence we willl omit much of 1t.

To construct £p, first take Lp to be the set of all
triples (f,a,x) such that a 1s an n-by-n R-matrix (for
some n) which is not in P, £ is 1l-by-n and x 1s n-by-1.
Put a relatlon ~ on Lp by putting (f,a,x) ~ (g,0,¥)

0b-y|l€ P.

exactly winen the matrix a0 X
fg O

Theorem II.3: The relation ~ is an equivalence relation.

Proof: Symmetry 1s obvious by changing signs and
rearranging rows and columns. Reflexivity follows since
a0 O

(a 'X)E P by (1), and so |0 a -x}]€ P by (3) and II.l;
0 0 £0 0
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then we add and subtract rows and columns to get
a -a X a0 x
0 a -x| € P, and finally [0 a -x] € P, as needed. To

f 0 0 f £ 0

do transifivity, assume both (f,a,x) ~ (g.,b,y) and

X b0 ¥y
-y|€ P, [Oc -z|& P
0 g h O

€ P, s0 use condition

a

(gibty) 3 (h,C,Z). Then (O
'y

imply €& P and

Bouvo Roo

R CTO
50 OO0
1

— N >0 00

OOk

H oo
HooP
O N QO

(2) to get € P. Then (5) says the "b" part

BOOO OO N
SO0 00
ONOM

may be dropped, or (? g -%) € P, completing the proof.

Now we put Kp = Lp/~ and denote the equivalence class
of (f,a,x) by the familiar (f/a\x). Then we make the
definitions of +, -, -,FO. 1, E in a nanner almost the same
as for the zlgzag locallzatlion:

(+) (£/a\x) + (g/5\y) = ((£ §)/(3 BIN(I))-

(=) -(£/a\x) = (£/a\-x).

(*) (£/a\x)*(2/B\y) = ((£ 0)/(§ *E)N\IN.

(0) 0 = (1/1\0).
(1/1\1).
(E) For r € R, E(r)

(1) 1

(1/1\r).

The only changes are in (~), (0), (E), since (f/a\x) is

only defined for a ¢ P.

Theorem II.4: The above definitions give a well-defined

ring structure on KP. under which KP 1s a division ring.
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FPurthermore, E:R-—-—>KP is a ring homomorpnism, and E takes
a square matrix A to an invertible matrlx over KP if and
only if A& P.

_ Proof: Hach of the definitlons above clearly ylelds
an element of LP. The proof that KP is a ring involves
checking that +, - and ¢ are well-deflned, + and * are
associative and have identity elements 0 and 1, + 1is
conmutative, and °* distributes over +. These all follow
the proof of Theorem 3.4, except perhaps the proof of
well-definedness for +; let us prove that only.

Assume (f/a\x) = (g/®\y) and (h/c\z) = (3/d\¥), and
show (f£/a\x)-(h/c\z) = (g/b\y)+(3/d\w). Thus we want

a -xh 0 0O O
0 ¢ 0 0 =z c 0 z
0 O0b-y} 0]€ P. From(Od-wGPweget
0 00 d -w hJj O
0 g 0 0
c 0 2z 0 c 0 z O
0d4d -w 0 \€ P, whence p = 0 d -w 0| € P. Also
hj 0 g h J Og
0 0 O b+yg -yh -yjJ 0 Db
c 0 z O c 0 z 0O
0 d -w 0\e P, whence q = 0 da -w 0\ € P.
h §J 00 -h = 00
-yh -yJ O Db -yh -yJ 0 b
c 0 z O
Applying condition (2) to p and q we get 0 d -w 0|€ P,
0 0 0 g
~-vh -y 0 b
c 0 z00
0 d -w 0O
80 0 0 O0g f}|&€ P. Rearrange to obtaln
-yh =y 0b O
0 0 00a
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€ P. To finish, we need only show

d
i}
HROOOoOR
1
L]

O 00O
Rogoo
i
<
O OO
OH ONO

that the entry =yh in the third row of t can be changed
to a ~xh in the first row (same column). This must be
done by changing one column of -yh at a time; we show the
technique for the first column only.

Let h = (hy h') and ¢ = (¢g ¢'), where hy 1s a scalar,

h' a row vector, and cq a column vector. Then
0 0 0
a0 x -yn' -y} O
0b —y) € P gives 0 0 0|€ P. Rearrange
f g O c'! 0 =z
0 d -w
a 0 0 0
0 0 0 2z
this to obtain {0 b -y} O0}€ P, so we can use
0 0 d -w
T g 0O O
a PXhl 0 0 0
0 cy c'{ O 0 z
condition (2) with t to get 0 0" -yn'| b -y3 0O} € P.
0’ 0 0 0 d -w
f 0 0 g 0 o

Continuing similarly, we obtaln the needed result.

The map E is easily shown to be a homomorphism, as in
Theorem 3.4; note that 1ts kernel in this case consists of
of those r € R such that (r)& P. Further, Kp is a
division ring because a non-zero (f/a\x) has (?: §)¢ P,
so we can use ((0 1)/(% j6)\(/9_)) as the (f/a\x)"l. just
as in Lemma 4.4,

- Now for a square matrix a¢ P, we want to invert E(a)

over KP‘ Let ey be the column vector of zeroes, except
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for a 1 in the 1-th place, and let e? be its transpose,

a row vector. Then it 1s easy to see that the (i,])-entry
of E(a)™t ts just (ef/d\sg)é; Kpe We can write thls as
E(a)™t = (I/1\a)"! = (1/a\I), where I is the identity
matrix of the appropriate size.

Conversely, suppose a € P; we wlsh to show E(a) is
not ianvertible in Kp — equivalently, that the columns of
E(a) are linearly dependent over KP. By rearranging rows
and columns of a (this does not change non-invertibility),
let us assume that the upper left corner of a is the
maximal square suhmatrix of a which does not belong to P
(1f there is none, then E(a) = 0, not invertible). So

let us write a = (Ali a _*), where Aj_¢ P 1s this maximal
1 a

submatrix (say m-by-n), a, and &, are column vectors, and
the *fs represent the remainder of the matrix a. Then

we can show that the column (Zﬁ) is a right linear
combination over Kp of the preceding columns in a. If

we recall our sligntly generallized notation of (I/Ai\az)

for a column vector with i-th entry (ez/Af\az). then
in fact Efaz| = E[{a;\«(I/a\a,).

To check this, we check each row has equallty; or that

t

E(eio as\) = E(é§~ Ay )-(I/Ai\az) for each 1. It is
a )+ A3

easlly checked that what we need is the equalltles

Ll/I\e§~(ag ) = (éi' Ay Af\az).-or in matrix form
au' A3
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Al 0 az
t (a
et . (Al) 1 0
i .AB

Equivalently by a row operation, we need

Al 0 a,
t 32
o 1 -ei-(%) € P,
t (A\ t ra
e, o1\ 0 e 2)
i A3 i (au’
Ay 8y

or t Ia t 1a € P. But this is now clear; if
e '( 1 e .( 2
i A3 i au’
A4 m
i 5‘}{, then we have a repeated row; if 1 >/yf, then the
matrix is in P because it 1s a submatrix of a and Al is

maximal. Hence E(a) is not invertible over Kp 1f and only

1f a € P, completing the proof.
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