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Computation of the equivariant 1-stem
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Abstract

LetGbe a compact Lie group. In this paper, combining a short exact sequence obtained by Balanov
and Krawcewicz with some additional topological techniques, we complete the computation of the
first equivariant stem�G st

1 . Using the exact sequence and a property of nonabelian connected compact
Lie groups, whose proof was suggested to us by R. Oliver, we show that this group is finite if and
only if G is finite.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A description of the homotopy classes, or of the stable homotopy classes of maps between
two topological spaces has been a classical question in topology. Particularly, the stable
homotopy classes of (pointed) maps between spheres, namely the so-called stable stems,
�st∗ , have been important objects to study. Historically, via the Brouwer degree theory, the
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0-stem was computed, namely�st
0 �Z. The Hopf map and the Pontryagin theorem provided

�st
1 �Z2. Let us mention that the Brouwer degree is the main tool in the Krasnoselsky (local)

and P. Rabinowitz (global) bifurcation theorems. Moreover, the nontriviality of the H. Hopf
map is the topological ingredient of the E. Hopf theorem on the bifurcation of periodic
solutions.

A variant of the question arises when we assume that a compact Lie groupG acts on all
spaces involved and that all the maps considered commute with the group action, namely,
that the maps areG-equivariant, orG-maps for short. Then the corresponding question is
to provide a description of the stableG-homotopy classes betweenG-spaces. Especially,
the stable homotopy classes of maps between unit spheres of orthogonal representations
pose an important question. It is quite easy to show that the negativeG-stems are zero, that
is �G st

k = 0 if k <0. In 1970, Segal[26], stated that for any finite groupG, �G st
0 �A(G),

whereA(G) is the Burnside ring ofG. This result was proved by Kosniowski[18], and
independently by Rubinsztein[24] with a gap that was filled later by Dancer[6]. Tom
Dieck [8] proved the same result for a general compact Lie groupG, giving a convenient
definition of the Burnside ringA(G) for this case.

The groups�G st
k , k >0, have been studied intensively by people working on nonlin-

ear analysis. First, tackling the question about the multiplicity of periodic solutions of a
nonlinear problem, one had to studyS1-equivariant maps. Second, they provide very inter-
esting applications to problems on bifurcations with symmetries (see[13]). Ize et al. have
made many computations of�G st∗ whenG is abelian[13,17]. We should emphasize that
for the applications in nonlinear analysis, not only the form of�G st

k is of importance, but
also a knowledge of which element of this group corresponds to a given (unstable) map
S(V ⊕ Rk) −→ S(V ).

Balanov and Krawcewicz[1] showed for a general compact Lie groupG that there is a
direct sum decomposition

�G st
k �

⊕
(H)

�k(H), (1.1)

where�k(H) denotes the subgroup of�G st
k corresponding to the isotropy type(H), for

a subgroupH ⊂ G; the sum ranks over all(H) such that dimW(H)�k. HereW(H) =
NH/H is the Weyl group ofH. Moreover, this splitting is in the unstable range (see[21] for
an alternative proof of this fact), unlike that given in[19, V.9.1]. Following computations
made in[10], where a construction of the equivariant degree is given, one obtains that if
dimW(H)=k, then�k(H)�Z or Z2, depending on whetherW(H) is biorientable or not.
On the other hand, in the treatment of�G st

1 made in[1] it was shown that for�1(H) ⊂ �G st
1 ,

with dimW(H)= 0, there is a short exact sequence

0 −→ Z2 −→ �1(H) −→ W(H)ab −→ 0, (1.2)

whereW(H)ab denotes the abelianization of the Weyl group. In[2], Balanov, Krawcewicz,
and Steinlein, using results of Ize and purely algebraic arguments, proved that this sequence
splits whenG is abelian.
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Cruickshank[5] has also considered stable equivariant homotopy groups of spheres. One
should beware, however, that his concept of equivariant 1-stem differs from that of our first
equivariant stem.

In the first part of the paper we give another geometrical interpretation of the kernel in
the short exact sequence (1.2) and then show that the sequence always splits (Theorem
2.19). This, together with well-known facts, leads to a complete description of�G st

1 for any
compact Lie groupG in Theorem 2.7. It is worth to point out that this theorem works in the
unstable range, provided that the representation fulfills some conditions (see Proposition
2.18).

After analyzing some examples in Section 3, we prove that the firstG-stem is finite if
and only ifG is finite; otherwise, the firstG-stem is not even finitely generated. This will
be a consequence of the decomposition (1.1), following a suggestion of Bob Oliver. Note
that one can deduce this result also from the short exact sequence (1.2).

Finally, we would like to remark that, despite this sort of splitting theorems have been
studied for years, for instance, by Kosniowski[18], tom Dieck[7], and Hauschild[11],
who have proved results in this direction in the seventies as well as by Lewis, Jr., May, and
McClure, who proved a general result in[19,V.10.1]in 1986, we did not find in the literature
any description of�G st

1 as the one given in Theorem 2.7 of the next section. We believe that
this explicit description might be applied to bifurcation problems with symmetry as were
studied by Chossat and coll. in[4].

We wish to thank W. Krawcewicz, who, after reading a preliminary version of this paper,
pointed out a mistake in the proof of Proposition 2.18. We also thank Bob Oliver for giving
us the proof of Proposition 2.18.

2. Computation of the first G-stem

In this section, by showing that the short exact sequence (1.2) always splits, we compute
the first equivariant stem for any compact Lie groupG.

Given any orthogonal representationV of G, SV will denote the one-point compactifica-
tion ofVwith the inducedG-action.

Definition 2.1. We define thekth equivariant stem for a compact Lie group Gor briefly
thekthG-stem, k = 0,1,2, . . . , by

�G st
k = colim

V
[SV+k,SV ]G,

whereV varies along a cofinal set of orthogonalG-representations and[−,−]G denotes
the set of pointedG-homotopy classes of pointedG-maps. Of course,V + k denotes the
orthogonal representationV ⊕ Rk with G acting trivially in the second summand.

Remark 2.2. For the concept of a colimit in general, we may refer the reader to Mac Lane’s
book on categories[20]. Observe, anyway, that the elements of�G st

k can be represented by
maps of pairs

� : (V × Rk, V × Rk − 0) −→ (V , V − 0)

for some orthogonal representationV of G (see also[23]).
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Remark 2.3. In the language of modern algebraic topology,�G st
k can be considered as

thekth homotopy group of the infinite loop spaceQG = �∞
G S∞ = colimV �VSV , where

�VSV=MapsG(S
V ,SV ).This follows from the adjunction[SV X,SWY ]�[X,�VSV Y ].

For the case of nonlinear analysis, it is more convenient to use the definition that we gave
above. For instance, in the Schauder approximation of a map of the formL + �, L linear
Fredholm and� completely continuous, we are lead in a natural way to the form of our
previous definition.

Let W(H) denote theWeyl groupof H ⊂ G, defined byW(H) = NH/H , where
NH ⊂ G is the normalizer ofH in G.

For thekthG-stem, one has the following decomposition formula derived using an equiv-
ariant transversality argument in[1, 2.8]; namely

�G st
k �

⊕
(H)∈OrG

dimW(H)�k

�k(H). (2.4)

Recall that a compact Lie group� is said to bebiorientable if it has an orientation
invariant under left and right translations (see[1,10], or [22]). From considerations in[10]
(see also[22]) the following can be proved:

Proposition 2.5. LetdimW(H)= k. Then

�k(H)�
{

Z if W(H) is biorientable,
Z2 otherwise.

Note 2.6. For instance, a compact Lie group� is biorientable if it is either finite, abelian,
or connected (cf.[10]). The simplest nonbiorientable group (of dimension 1) isO(2).

In what follows, by showing that the short exact sequence (1.2) always splits, we shall
compute the subgroups�1(H) of the firstG-stem to obtain a full description of it. Combin-
ing this with Proposition 2.5 and the decomposition (2.4), we shall obtain the main result
of this section as follows.

Theorem 2.7. There is a sum decomposition of the first G-stem

�

G st= ⊕
(H)∈OrG

dimW(H)�1

�1(H)

1 .

Here, if dimW(H)= 0,

�1(H)�Z2 ⊕W(H)ab, (2.8)

whereW(H)ab is the abelianization ofW(H), and, if dimW(H)= 1,

�1(H)�
{

Z W(H) is biorientable,
Z2 if W(H) is not biorientable.

(2.9)
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In view of Proposition 2.5, we only need to prove Eq. (2.8). For doing this, we shall make
some general considerations.

Assumption 2.10.Vdenotes aG-module and the elements in�G st
k are represented by maps

(V ×Rl+k, V ×Rl+k−0) −→ (V ×Rl , V ×Rl−0), with l�k+3, whereGacts trivially
on the second factor.

In the rest of the paper, we denote the Weyl groupW(H) ofH ⊂ G by �H , or simply by
� when there is no danger of confusion. Note that� acts effectively onVH . We denote by
U the representationVH ×Rl+k of �, with the obvious action, and byU0 the representation
VH × Rl . Let (P ) be the principal orbit type of the action of� onU, and letUP =U − S,
whereSconsists of all points inU with isotropy group type different from(P ) (see[8]).

Note 2.11.

1. The setUP is in general disconnected; however, it is connected, provided that dim(U −
UP )� dimU − 2. This holds if dimU�′ � dimU − 2 for any(�′)> (P ), and this can
always be attained in the stable range. For this, it is enough to replaceV by V ⊕ V .

2. Even beingUP connected, it need not be simply connected. By Lefschetz duality,UP will
be simply connected if dim(U −UP )� dimU − 3. This holds if dimU�′ � dimU − 3
for any(�′)> (P ). For this, it is enough to replaceV by V ⊕ V ⊕ V .

3. Increasing the size ofV further (summing again with itself) we may also assume that
UP has an orientation-preserving�-action.

Denote by�� fr
k (UP ) the group of bordism classes of�-framedk-submanifolds ofUP .

For the definition and more details about the equivariant bordism, refer to[1]. One has the
following result of Balanov and Krawcewicz.

Proposition 2.12(Balanov and Krawcewicz[1, 3.2]). Let dim��k. Then�k(H)�
�� fr
k (UP ).

To focus on the proof of Eq. (2.8), assume in what follows that dim� = 0; that is,� is a
finite group. Note that� acts effectively onU, but since� is finite, the principal orbit type
corresponds to trivial isotropy, i.e., the action of� onUP is in fact free.

LetUP denote the quotient spaceUP /�. There is a homomorphism�k : �� fr
k (UP ) −→

�k(UP ), where�k denotes the usual oriented bordism ofk-submanifolds. The image of the
canonical homomorphism�� fr

k (UP ) −→ �fr
k (UP ) lies inside�fr

k (UP )
�, where�fr

k (UP )

has the action of� induced by that onUP . Consequently, if[M, �] ∈ �fr �
k (UP ), thenM is

a framed�-submanifold ofUP (and� is a�-trivialization of the normal bundle), and thus�
acts freely onM andM =M/� is an oriented submanifold ofUP . By the Steenrod–Thom
theorem, we know that there is a homomorphism�k(UP ) −→ Hk(UP ; Z) that is an
isomorphism fork�3 and an epimorphism fork = 4 (see[25]). In the casek = 1, that we
are concerned with, we thus have an isomorphism.

An essential step in deriving�1(H) when dim� = 0 was done in[1, 4.3], where details
on the previous comments can be seen; namely we have the following.
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Theorem 2.13. ker��Z2 and thus one has a short exact sequence

0 −→ Z2 −→ �� fr
1 (UP )

�−→H1(UP ; Z) −→ 0. (2.14)

Moreover, ker� consists of thosebordismclassesofG-framed invariantmanifolds[M, �] ∈
�� fr

1 (UP ), whereM≈diff S1 and � is an equivariant trivialization of the normal bundle
such that the quotient manifoldM =M/� ⊂ UP ,M ≈ S1, is nullbordant.

In [2, 2.5], it is shown that ifG is abelian, then the sequence (2.14) splits. Their argument
is purely algebraic and makes use of the computation in[14] of �1(H) as a product of
p-factors (see also[17]), p prime. We show in what follows that (2.14)alwayssplits.

Note 2.15.There is an isomorphism

�� fr∗ (�x)= �� fr∗ (�)��fr∗ (∗), (2.16)

that is a consequence of the following well-known fact (see[8]). Namely, there is a bijection
[SV ∧X,SV ∧Y ∧�+]��[SV ∧X,SV ∧Y ], that provides the isomorphism (2.16), since
the homology theory�� fr∗ is equivalent to the theory�� st∗ . In particular,

�� fr
1 (�x)��fr

1 (∗)�Z2.

HereX andY represent topological spaces with some distinguished base point, and the
+-sign means adding an isolated point as a base point.

Lemma 2.17. Takex ∈ UP . If i�x : ���x ↪→ Up is the inclusion andi∗ = i�x ∗ :
�� fr

1 (�) −→ �� fr
1 (UP ) is the induced homomorphism, then

ker� = im(i∗).

Proof. Recall first thatd = dimUP = dimUP �3 (see Assumption 2.10), and assume
that we have a metric onUP that is �-invariant and take	>0 sufficiently small, that
�−1(D	(x))= ⊔


∈� 
D	(x) ≈ � ×D	(x), whereD	 denotes the correspondingd-balls of

radius	, and letM be the boundary�D2
	/2(x) ⊂ UP of a 2-disk of radius	/2 contained in

D	(x). HenceM is diffeomorphic toS1.
Let �0, �1 : �(M) −→ M × Rd−1 be trivializations of the normal bundle ofM such

that [M, �0] = 0 ∈ �fr
1 (D	(x)) and [M, �1] �= 0 ∈ �fr

1 (D	(x)). Let jx : D	(x) −→
D	(x) be the inverse diffeomorphism to that induced by�, and callMx = jx(M). Define
M = ⊔


∈� 
Mx ⊂ UP . M is homeomorphic to� ×M.

Note that�(Mx) ⊂ D	(x) is diffeomorphic to�(M) via the mapping(m, v) �→ (�(m),
D�(m)v). On the other hand,


Mx ⊂ 
D	(x)=D	(
x) and �(
Mx)= 
(�(Mx)),



W. Marzantowicz, C. Prieto / Nonlinear Analysis 63 (2005) 513–524 519

since
 induces a diffeomorphism, because it is a linear orthogonal map. Consequently, the
tubular neighborhood

�(M)=
⊔

∈�


(�(Mx))

and thus we can define an equivariant trivialization�i : �(M) −→ M × U0, i = 0,1, by

�i (
m, 
v)= (
m, 
�i (�(m),D�(m)v))

for m ∈ Mx andv ∈ �m(Mx). Observe that�i is equivariant, since for� ∈ � we have

�i (�(
m, 
v))= �i ((�
)m, (�
)v)
= ((�
)m, (�
)(�i (�(m),D�(m)v)))
= (�(
m),�(
�i (�(m),D�(m)v)))
= ��i (
m, 
v).

Hence we get that[M, �0], [M, �1] ∈ �� fr
1 (� × D	(x)) ⊂ �� fr

1 (UP ). Consequently,
M =M/� is nullbordant, thus implying that[M, �0], [M, �1] ∈ ker�. By construction,
they lie in im(i∗) = im(i�D	 ∗), wherei�D	

: � ×D	 ↪→ UP , and obviously,[M, �1] �= 0 in

�� fr
1 (UP ). �

Proposition 2.18. If � is finite andUP is connected, then

�� fr
1 (UP )�Z2 ⊕H1(UP ; Z).

If, moreover, UP is simply connected, then

�1(H)�Z2 ⊕ �ab.

Proof. Consider the following commutative diagram:

�� fr
1 (�) i∗−−−−−→ �� fr

1 (UP )

�

��

�

�� fr
1 (�/�) −−−−−→

i∗
�fr

1 (UP /�),

where the vertical homomorphisms divide out the action of�. By the note above,� is an
isomorphism, and both groups on the left are�fr

1 (∗)�Z2. The homomorphism is well
defined, since the action of� onUP is orientation-preserving and thus dividing out this
action preserves the trivialization of the normal bundles and thus sends�-framed manifolds
to framed manifolds. Hence, the diagram is equivalent to

�� fr
1 (�) i∗−−−−−→ �� fr

1 (UP )

�

��

�

�fr
1 (∗) −−−−−→

i∗
�fr

1 (UP /�).
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In order to produce a splitting of the topi∗ we consider�′ : �fr
1 (UP /�) −→ �fr

1 (∗) on the
bottom, given by the obvious mapUP /� −→ ∗. This obviously splits the bottom row and
thus� = �−1 ◦ �′ ◦  : �� fr

1 (UP ) −→ �� fr
1 (�) is well defined and provides the desired

splitting. �

Therefore, we have the following.

Theorem 2.19.The short exact sequence

0−−→�� fr
1 (�x) <

�− −−−→
i∗

�� fr
1 (UP )

�−−→H1(UP ; Z)−−→0.

splits.

Combining 2.12 and 2.13 with the previous theorem, we obtain our main Theorem 2.7.

3. Some applications of the decomposition theorem for the firstG-stem

We start this section with a brief discussion of examples of the Decomposition Theorem
2.7 beginning with the simplest groups. We do this for the convenience of the reader, since
they are all spread in the literature, mostly written in rather different ways.

Examples 3.1.

1. LetG= 1 be the trivial group. Then there is only oneH ⊂ G andW(H)=G/H = 1
has dimension 0. Thus�st

1 = Z2.
2. Historically, the first case of�G st

1 described was forG= S1, when

�S1 st
1 �Z2 ⊕

⊕
H⊂S1

Z

and was given this way by Dylawerski[9].
3. LetG be a finite group. Then for everyH ⊂ G, dimW(H)= 0. Thus

�G st
1 �

⊕
(H)∈Or(G)

(Z2 ⊕W(H)ab). (3.2)

If G is abelian, thenW(H)=G/H and thus

�G st
1 �

⊕
H⊂G

(Z2 ⊕G/H). (3.3)

Particular cases areG= Zp, wherep is prime. Then

�
Zp st
1 �Z2 ⊕ Z2 ⊕ Zp.

Description (3.3) agrees with the decomposition in terms of prime factors ofG given
by Ize and Vignoli[14–17].
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4. LetG be eitherO(2) orSO(3). ThenG has infinitely many conjugacy classes of closed
subgroupsH such thatW(H) is finite (see[3, IV.(4.10) Ex.9]). Thus�G st

1 has infinitely
manyZ2-summands and for each of them also aW(H)ab-summand (see[2] for further
details on the caseG= SO(3)).

5. LetG = O(k). ThenG has infinitely many finite conjugacy classes of subgroupsH
generated by reflections such thatW(H) is finite (see[3, V.(2.19) Ex.6]). Thus, as in
the previous example,�O(k) st

1 has infinitely manyZ2-summands and for each of them
also aW(H)ab-summand.

Examples 2, 3, and 4 above show infinite compact Lie groupsG, for which�G st
1 is also

an infinite—and quite complicated—group. This is true in general, as we shall prove below.
We have the following.

Theorem 3.4. Let G be a compact Lie group. Then�G st
1 is finite if and only if G

is finite.

Remark 3.5. In fact, we prove that ifG is not finite, then�G st
1 is not even finitely generated;

i.e.,�G st
1 is either finite or infinitely generated.

The proof of the theorem requires to construct an infinite collection of nonconjugate
subgroups ofG, such that their Weyl groups have dimension 0 or 1. In the first case, each of
them contributes with at least aZ2-summand; while in the second, with aZ- orZ2-summand,
according to Theorem 2.7.

Before passing to the proof of the theorem, we shall state some results in this direction.
The following is an immediate consequence of the structure theorem on compact abelian
Lie groups and of the fact that the sequence of sets of roots of unity of growing orderm
builds up such a collection for the circle (see, for instance[17]).

Lemma 3.6. Let G be an infinite compact abelian Lie group. Then the groupsZm,
m ∈ N, constitute an infinite sequence of nonconjugate subgroups of G that satisfydim
W(Zm)= 1.

The next result, whose proof was suggested to us by Bob Oliver, is the main result of this
section. It is, clearly, the nonabelian counterpart to Lemma 3.6.

Proposition 3.7. Let G be a nonabelian connected compact Lie group. Then there exists
an infinite sequence of nonconjugate subgroups{Hm} such thatW(Hm) is finite.

Proof. We start with the further assumption thatG is semisimple.
Let T be the maximal torus and letk = |W(T )| be the order of the Weyl group. For

simplicity denoteW(T ) by W andN(T ) by N. We have 1<k<∞. Let Tm = {g ∈
T | gm = 1}, and let� = �k : T −→ T be given by�(g) = gk. Since the exten-
sionT ↪→ N�W represents an element in the cohomology groupH 2(W ; T ), and since
this group is anihilated by multiplication byk, then there is a commutative
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diagram

1 −−−→ T −−−→ N −−−→ W −−−→ 1

�

�
��

�1W

1 −−−→ T −−−→ T�W −−−→ W −−−→ 1,

whereT�W is the semidirect product given by the canonical action� of W on T by
conjugation; that is,�(q(y))(t)=yty−1 (q : N�W the quotient map, and(t, w)((t ′, w′)=
(t�(w)(t ′), ww′)). Moreover,�(y)= (t, q(h)) if y=ht ∈ N , t ∈ T . Recall thatt �→ (t,1)
embedsT as a subgroup ofT�W , and(t, w) �→ w is a quotient map of groups. (Remind
that the bottom row with the semidirect product represents the 0 element inH 2(W ; T ), see
[12] for this and all related topics.)

PutHk = �−1(W). This group has the following properties:

• Hk ∩ T = Tk,
• Hk ↪→ N�W is surjective.

Finally take for allm ∈ kZ,Hm =Hk · Tm ⊆ N . Then we have

• Hm ∩ T = Tm.
• Tm ⊆ Hm is a subgroup such thatHm/Tm�Hk/Tk�W .

Thus it follows|Hm| = |Tm||W | = c(m). We have

m �= m′ �⇒ c(m) �= c(m′), thus m �= m′ �⇒ (Hm) �= (H ′
m).

If G is semisimpleand connected, thenZ(G) is finite (see[3, Chapter V.(3.13),(3.14)]).
Thus

(a) T W is finite, sinceT W = Z(G); and also
(b) the centralizerCG(T ) is an abelian subgroup that containsT. ThusCG(T )= T .

To see (a), observe that ift ∈ T W , then, by[3, (2.6)], for all g ∈ G, t = gtg−1, hence
t ∈ Z(G). So T W ⊂ Z(G). Conversely, sinceZ(G) ⊂ T , and sinceZ(G) remains
pointwise fixed under conjugation by any element, we haveZ(G) ⊂ T W .

Since
⋃
mTm is dense inT, we haveCG(

⋃
mTm)= T . Hence

Tm ⊂ Tm′ �⇒ CG(Tm) ⊃ CG(Tm′)

and{CG(Tm)} is a decreasing sequence of subgroups. It has to be stationary and so there is
an l with

CG(Tl)= T .

We may assume thatk|l. ThenCG(Hl) ⊂ T W . Namely, observe first thatCG(Hl) ⊂
CG(Tl) = T . Takeg ∈ CG(Hl) and = �t ∈ N(T ), wheret ∈ T and� ∈ Hk, which
can be done by the choice ofHk . Then(�t)g(�t)−1 = �tgt−1�−1 = �g�−1 = g, because
CG(Hl) ⊂ CG(Hk).



W. Marzantowicz, C. Prieto / Nonlinear Analysis 63 (2005) 513–524 523

SinceT W is finite, so isCG(Hl), and sinceN(Hl)/CG(Hl) acts effectively onHl , the
quotient group is a subgroup of the symmetric group�|Hl |, thus finite. This shows that also
the normalizerN(Hl) inG is finite, and with itN(Hm) for allmdivisible byl are also finite.

Thus{Hm | m ∈ lZ} is an infinite family of finite subgroups ofG, no two conjugate
(since they have different order), all of which have finite normalizers. Hence, all Weyl
groupsW(Hm) are finite.

Finally, if G is connected butnot semisimple, then the quotient groupG = G/Z(G)

is semisimple. As above, takeH 1, H 2, . . . a family of nonconjugate (of different order)
subgroups ofG such that the normalizersNG(Hm) are finite for allm.

Let Hm be the inverse image ofHm in G under the quotient homomorphism. Then
Hm�Z(G) × Hm andNG(Hm)�Z(G) × NG(Hm). Thus the Weyl groupsWG(Hm) =
NG(Hm)/Hi�NG(Hm) are finite for allm. Clearly these groupsHm are not conjugate to
each other, since otherwise the groupsHm would be conjugate to each other.�

Lemma 3.8. Let G be a compact nonabelian Lie group and consider its extensionG0 ↪→
G�� = G/G0, whereG0 is the connected component of the unit element. If there exists
an infinite sequence of subgroups{H 0

m}, H 0
m ⊂ G0, such thatdimW(H 0

m) = 0, and such
that they are not conjugate inG0, then there exists an infinite sequence of subgroups{Hm},
nonconjugate in G, such thatdimW(Hm)= 0.

Proof. DefineHm=H 0
m ⊂ G0 ⊂ G. We shall show that among the members of this family

there are infinitely many conjugacy classes. Observe first that the relation to be conjugate in
G0 is finer than that of being conjugate inG. Moreover, each conjugacy class inG is a union
of at most|�| conjugacy classes inG0. Thus, if we pick an element in each conjugacy class
in G of the family{Hm}, we still obtain an infinite subfamily of nonconjugate subgroups.

According to the above, it is now enough to show that ifW0(Hm)=N0(Hm)/Hm is finite,
thenW(H) = N(H)/H is also finite, whereN0(Hm) is the normalizer ofHm in G0. The
proof of this fact is straightforward.�

Proof of the theorem. If G is finite, then clearly, by Theorem 2.7,�G st
1 is finite. Thus we

assume thatG is infinite and consider two cases.
Case1:G0 is nonabelian. Apply Proposition 3.7 and Lemma 3.8.
Case2:G0 is abelian. In this case,G0 = T is the torus. Then apply Lemmas 3.6 and 3.8
Thus we have in both cases that�G st

1 is infinitely generated. �

We obviously have the following consequence.

Corollary 3.9. Let X be any finite G-CW-complex. Then�G st
1 (X) is finite if and only if G

is finite.
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