

The Homotopy Thom Class of a Spherical Fibration Author(s): Howard J. Marcum and Duane Randall Source: Proceedings of the American Mathematical Society, Vol. 80, No. 2 (Oct., 1980), pp. 353-358 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2042976</u> Accessed: 01/02/2011 12:23

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

THE HOMOTOPY THOM CLASS OF A SPHERICAL FIBRATION

HOWARD J. MARCUM AND DUANE RANDALL

ABSTRACT. We investigate the following problems. Given a spherical fibration, does the Whitehead square of its homotopy Thom class vanish? If so, is the homotopy Thom class a cyclic homotopy class?

1. Introduction. Let $p: E \to B$ denote a Hurewicz fibration ξ with fiber F. Applying the mapping cone construction to the vertical maps in the commutative diagram

$$\begin{array}{ccc} F & \subset & E \\ \downarrow & & \downarrow P \\ \ast & \subset & B \end{array}$$

yields a map $\mu: \Sigma F \to T(\xi)$. The Thom space $T(\xi)$ of ξ is the mapping cone of p while μ is by definition the homotopy Thom class of ξ .

We consider only spherical fibrations over locally finite, connected CW-complexes. Let $p: E \to B$ be a fibration ξ whose fiber is homotopy equivalent to S^{n-1} . Recall that $T(\xi)$ is then (n - 1)-connected and μ generates $\pi_n(T(\xi))$, which is isomorphic to \mathbb{Z} if p is orientable and $\mathbb{Z}/2$ otherwise. Let $\bar{p}: \bar{E} \to B$ denote the associated cone fiber space of ξ . (See [4, Appendix].) The fiber inclusion of pairs $(CF, F) \subset (\bar{E}, E)$ induces a map of quotient spaces $CF/F \to \bar{E}/E$ which we can identify with μ . Let U denote the Thom class in integral cohomology for ξ oriented. Now μ is dual to U under the Hurewicz isomorphism with respect to the orientation on CF/F induced by U. For ξ nonorientable, μ is clearly dual to the mod 2 Thom class under the mod 2 Hurewicz isomorphism. The homotopy Thom class of an orthogonal vector bundle is defined with reference to the associated sphere bundle.

In this note we investigate the following:

Problem. Given a spherical fibration with homotopy Thom class μ , does the Whitehead square $[\mu, \mu]$ vanish? If so, is μ a cyclic homotopy class?

Let ω_n denote the Whitehead square $[\iota_n, \iota_n] \in \pi_{2n-1}(S^n)$ where ι_n represents the identity map. This problem generalizes the classical problem of the vanishing of ω_n , since ι_n is the homotopy Thom class of the trivial fibration $p: S^{n-1} \to *$.

© 1980 American Mathematical Society 0002-9939/80/0000-0531/\$02.50

Received by the editors May 25, 1979 and, in revised form October 9, 1979.

AMS (MOS) subject classifications (1970). Primary 55F05, 55E15; Secondary 57D25.

Key words and phrases. Spherical fibration, Whitehead square, cyclic homotopy class, span of a manifold, immersion.

2. Vanishing conditions for [μ , μ].

PROPOSITION 2.1. Let $p: E \to B$ denote an oriented (2m - 1)-spherical fibration ξ . If the Euler class $\chi(\xi)$ is divisible by an odd prime in $H^{2m}(B; \mathbb{Z})$, then $[\mu, \mu] \neq 0$. Further, $[\mu, \mu]$ is nontrivial in the rational homotopy of $T(\xi)$ if $\chi(\xi)$ is a torsion class.

PROOF. Suppose $[\mu, \mu] = 0$ and set n = 2m. Thus $\mu: S^n \to T(\xi)$ admits an extension $g: S^n \cup_{\omega_n} e^{2n} \to T(\xi)$. Let U denote the Thom class of ξ in integral cohomology. Since $S^n \cup_{\omega_n} e^{2n}$ is the Thom complex of the tangent bundle $\tau(S^n)$ of S^n, g^*U is (up to sign) the Thom class for $\tau(S^n)$. Up to sign,

$$g^*(U \cdot \chi(\xi)) = (g^*U)^2 = \chi(S^n) \cdot g^*U = 2(\text{generator}).$$

Thus $U \cdot \chi(\xi)$ and consequently $\chi(\xi)$ via the Thom isomorphism are not divisible by any odd prime.

Suppose that $\chi(\xi)$ is a torsion class. Since the cup product pairing $H^n(T\xi; \mathbb{Z}) \otimes H^n(T\xi; \mathbb{Z}) \to H^{2n}(T\xi; \mathbb{Z})$ is not injective, $[\mu, \mu]$ is not a torsion class in $\pi_{2n-1}(T(\xi))$ by [13].

REMARKS. (i) It follows from Proposition 2.1 that $[\mu, \mu]$ is nontrivial for any oriented (2m - 1)-spherical fibration over B with dimension B < 2m.

(ii) The converse to Proposition 2.1 is false. For any integer n > 1, consider $\xi = n\eta$ over complex projective space CP^n where η denotes the complex Hopf line bundle. If $[\mu, \mu] = 0$, then $\sum (c \circ h)$ must have order 2 in $\pi_{4n}(\sum (CP^{2n-1}/CP^{n-1}))$ where $h: S^{4n-1} \to CP^{2n-1}$ is the Hopf fibration and c denotes the collapsing map. But the p-primary component of $\sum (c \circ h)$ must be nontrivial for any odd prime $p \leq n+1$ such that p does not divide n+1. Thus $[\mu, \mu] \neq 0$ while $\chi(\xi)$ is not divisible by any odd prime.

PROPOSITION 2.2. Let n be any odd integer such that n + 1 is not a power of 2. Let $p: E \rightarrow B$ denote any (n - 1)-spherical fibration ξ with dimension $B \le n - 2^s$ where the positive integer s is defined by $n + 1 \equiv 2^s \pmod{2^{s+1}}$. Then $[\mu, \mu]$ has order 2 where μ denotes the homotopy Thom class of ξ . If ξ has trivial Stiefel-Whitney classes and dimension $B \le n$, then again $[\mu, \mu]$ is nonzero.

PROOF. We write $n + 1 = 2^s + 2t$. Expansion of $\operatorname{Sq}^{2^s}\operatorname{Sq}^{2t}$ by the Adem relations and further decompositions of Sq^j for $n - 2^{s-1} < j \leq n$ yield a relation

$$Sq^{2t}Sq^{2t} + \sum_{i=0}^{s-1} Sq^{2t}\beta_i = 0$$

on mod 2 classes of dimension $\leq n$. Here β_i is understood to be the trivial operation whenever necessary. Let φ denote any nonstable secondary operation associated to the above relation. Suppose either that dimension $B \leq n - 2^s$ or else that dimension B < n and ξ has trivial Stiefel-Whitney classes. Clearly φ is defined on the mod 2 Thom class U of ξ and $\varphi(U)$ vanishes with zero indeterminacy by dimensionality. Recall that φ detects ω_n by [3]; that is, φ is nontrivial in the mapping cone of ω_n . So $\mu: S^n \to T(\xi)$ cannot extend to the mapping cone of ω_n by naturality of φ . REMARK. The following example shows the difficulty in obtaining an analogous result whenever n + 1 is a power of 2 and n > 7. Let α denote the real Hopf line bundle over S^1 . Let ξ denote the sphere bundle of $\sigma \oplus (n - 1)$ over S^1 . Note that $T(\xi) = S^n \cup_2 e^{n+1}$. For n odd and $j < 2n, 2 \cdot \pi_j(S^n)$ is the kernel of the morphism $\pi_j(S^n) \to \pi_j(S^n \cup_2 e^{n+1})$ induced by the inclusion of the bottom cell. Thus $[\mu, \mu] = 0$ iff $\omega_n \in 2 \cdot \pi_{2n-1}(S^n)$. For example, $\omega_{15} \in 2 \cdot \pi_{29}(S^{15})$ by [12].

PROPOSITION 2.3. Let $p: E \to B$ denote an oriented (n - 1)-spherical fibration ξ over a finite complex B. For n even, suppose that the reduced integral homology of B is torsion. Then $[\mu, \mu]$ has infinite order in $\pi_{2n-1}(T(\xi))$. For n odd, suppose that the reduced integral homology consists of odd torsion. Then $[\mu, \mu] = 0$ iff n = 1, 3 or 7.

PROOF. The case *n* even is a consequence of Proposition 2.1. For *n* odd with n > 1, the induced map $\mu_{(2)}: S_{(2)}^n \to T(\xi)_{(2)}$ on the simply-connected 2-localizations induces an isomorphism on integral homology and so is a homotopy equivalence. Thus $[\mu, \mu] = \mu_* \omega_n = 0$ iff $\omega_n = 0$.

We have been informed that W. Sutherland has unpublished results on the homotopy Thom class. We thank the referee for his helpful comments. The following two theorems are somewhat related to a conjecture of Mahowald in [9, p. 255].

We recall that the span of a smooth connected manifold M is the maximum number of linearly independent vector fields on M. A spin manifold is an oriented manifold for which $w_2M = 0$.

THEOREM 2.4. Let M^n be a closed connected oriented smooth manifold with $n \equiv 1 \pmod{4}$. If $[\mu, \mu] = 0$ then $1 \leq \operatorname{span} M \leq 2$ where $\mu: S^n \to T(\tau M)$ denotes the homotopy Thom class of the tangent bundle. Let ν denote the normal bundle to an embedding of M^n in \mathbb{R}^{2n} . Then $[\overline{\mu}, \overline{\mu}]$ has order 2 where $\overline{\mu}: S^n \to T(\nu)$ denotes the homotopy Thom class.

PROOF. We can suppose n > 1 since span $S^1 = 1$ and $\mu_*\omega_1 = 0$. Clearly span $M^n = 1$ if the Stiefel-Whitney class $w_{n-1}M \neq 0$. So assume that $w_{n-1}M = 0$. By [8] let Φ denote the nonstable secondary operation associated to the relation Sq²Sqⁿ⁻¹ = 0 on integral classes of dimension $\leq n$ such that

$$\Phi(U) = U \cdot (O(\tau M) + w_2 M \cdot w_{n-2} M)$$

with zero indeterminacy. Here U denotes the Thom class of τM while $O(\tau M)$ denotes the unique higher-order obstruction to two linearly independent sections. Now $\Phi(U) \neq 0$ since $[\mu, \mu] = 0$ by hypothesis and Φ detects ω_n by [3]. So $O(\tau M) \neq 0$ iff $w_2 M \cdot w_{n-2} M = 0$. Either $O(\tau M) \neq 0$ or $w_{n-2} M \neq 0$ so span $M \leq 2$.

Similarly, $\Phi(U_{\nu})$ is defined and vanishes with zero indeterminacy. We recall from [7] that the top cell in the Thom complex $T(\nu)$ associated to the normal bundle of an embedding in Euclidean space is spherical. Since Φ detects ω_n , $[\bar{\mu}, \bar{\mu}] = \bar{\mu}_* \omega_n$ must be nontrivial and so has order 2.

THEOREM 2.5. Let M^n be a closed connected smooth spin manifold with $n \equiv 3 \pmod{8}$. If $[\mu, \mu] = 0$, then span M = 3 where $\mu: S^n \to T(\tau M)$ denotes the homotopy Thom class of τM . Let ν denote the normal bundle to an embedding of M^n in \mathbb{R}^{2n} . Then $[\bar{\mu}, \bar{\mu}]$ has order 2 for n > 3 where $\bar{\mu}$ denotes the homotopy Thom class for ν .

PROOF. The case n = 3 follows since M^3 is parallelizable and $\omega_3 = 0$. Now Atiyah-Dupont [2] proved that span $M^n \ge 3$. Write n = 8t + 3 for positive t and suppose that $w_{n-3}M = 0$. By [10] there exists a nonstable secondary operation Ω associated to the relation $\operatorname{Sq}^4\operatorname{Sq}^{8t} = 0$ on integral classes x of degree $\le 8t + 3$ for which $\operatorname{Sq}^2 x = 0$ such that $\Omega(U) = U \cdot O(\tau M)$ with zero indeterminacy. Here $O(\tau M)$ represents a second-order k-invariant to lifting τM in the fibration

$$B \operatorname{Spin}(n-4) \to B \operatorname{Spin}(n).$$
 (2.6)

By [3] Ω detects ω_n . Since $[\mu, \mu]$ vanishes by hypothesis, $\Omega(U)$ must be nontrivial. Thus $O(\tau M) \neq 0$ so span M = 3.

Now $\Omega(U_{\nu})$ is defined and vanishes with zero indeterminacy since the top cell in $T(\nu)$ is spherical. If $[\bar{\mu}, \bar{\mu}]$ vanishes, then $\Omega(U_{\nu})$ must be nontrivial since Ω detects ω_n by [3]. Thus $[\bar{\mu}, \bar{\mu}]$ has order 2.

3. Is μ cyclic? Recall that μ is cyclic if the map

$$\iota \nabla 1 \colon S^n \bigvee T(\xi) \to T(\xi) \tag{3.1}$$

extends to the product $S^n \times T(\xi)$. Equivalently, μ is cyclic iff μ belongs to the *n*th evaluation subgroup $G_n(T(\xi))$ of $T(\xi)$. If μ is cyclic, then $[\mu, \mu] = 0$ by the composite

$$S^n \times S^n \xrightarrow{1 \times \mu} S^n \times T(\xi) \xrightarrow{g} T(\xi)$$
 (3.2)

where g extends $\mu \nabla 1$.

If μ is cyclic for an oriented (n - 1)-spherical fibration ξ and $T(\xi)$ is a suspension, Gottlieb showed in [5, Corollary 5-5] that n = 1, 3 or 7 and $T(\xi)$ is homotopy equivalent to S^n .

THEOREM 3.3. Suppose $\mu: S^n \to T(\xi)$ is cyclic for an oriented fibration $p: E \to B$ with B a finite connected complex. If $w_n(\xi)$ is trivial, then $T(\xi)$ is homotopy equivalent to S^n and n = 1, 3 or 7. If $w_n(\xi) \neq 0$, then n is odd, the Euler-Poincaré characteristic $\chi(B) = 1$, and the reduced integral homology of B is a vector space over $\mathbb{Z}/2$. Further, n = 7 if ξ is orientable with respect to complex K-theory.

PROOF. By hypothesis $G_n(T(\xi)) = \pi_n(T(\xi))$ so *n* must be odd by [6, Theorem 1]. Suppose $w_n(\xi) = 0$. Assume that the reduced integral homology of *B* is nontrivial and let *x* be a nontrivial cohomology class of smallest positive dimension. Then for any extension *g* of $\mu \nabla 1$,

$$g^*(U \cdot (x \delta w_{n-1}(\xi))) = g^*(U \cdot Ux) = g^*U \cdot g^*Ux$$
$$= s_n \otimes Ux + 1 \otimes U \cdot (x \delta w_{n-1}(\xi))$$
(3.4)

where s_n generates $H^n(S^n; \mathbb{Z})$ and δ denotes the Bockstein-coboundary operator associated to the coefficient sequence $\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/2$. So Ux and thus x via the Thom isomorphism have order 2. Since x was chosen arbitrarily, we may assume $\rho_2 x \neq 0$. (Here ρ_2 denotes reduction mod 2.) But $\rho_2(s_n \otimes Ux) \neq 0$ in (3.4), a contradiction. (Note that (3.4) uses $\lambda(Ux) = 0$ where $g^*(Ux) = 1 \otimes Ux + s_n \otimes \lambda(Ux)$, but that this fact is not necessary if dim x = n.) We conclude that $T(\xi)$ has the homology of S^n . Thus $T(\xi)$ is homotopy equivalent to S^n by the argument of [5, Corollary 5-3], since $T(\xi)$ is a suspension for n = 1. Finally, n = 1, 3 or 7 by Proposition 2.3 since $[\mu, \mu] = 0$.

Suppose that $w_n(\xi) \neq 0$. By [5, Theorem 4-1], $\chi(T(\xi)) = 0$. Thus $\chi(B) = 1$ since $\chi(T(\xi)) = 1 + (-1)^n \chi(B)$. Let $x \in H^i(B; \mathbb{Z})$ denote any nontrivial class for i > 0. The calculation in (3.4) yields

$$g^*(U \cdot (x \delta w_{n-1}(\xi))) = s_n \otimes Ux + s_n \otimes Uz \delta w_{n-1}(\xi) + 1 \otimes U \cdot (x \delta w_{n-1}(\xi))$$
(3.5)

where $Uz = \lambda(Ux)$. So Ux and thus x must have order 2. Since x was chosen arbitrarily, the reduced integral homology of B must be a vector space over $\mathbb{Z}/2$.

Finally, we must show that *n* must be 7 under the orientability hypothesis. Since $w_n(\xi) \neq 0$ and orientability in complex K-theory implies that $\delta w_2(\xi) = 0$, *n* must be an odd integer ≥ 5 .

Let

$$S^{2n+1} \xrightarrow{h} \Sigma T(\xi) \xrightarrow{i} Y \to S^{2n+2} \to \cdots$$

denote the Puppe sequence for the map h obtained by the Hopf construction applied to (3.2). The map in (3.2) induces the trivial morphism on $H^{2n}(T(\xi); G)$ for any coefficient group G. Consequently, the Hopf invariant of h is ± 1 in integral cohomology (see [11]) and also in complex K-theory. That is, the free summand of $\tilde{K}^0(Y)$ is generated by x and y where

$$ch_{n+1}(i^*x) = \sum U \text{ in } H^{n+1}(\sum T(\xi); Q)$$

and $x^2 = \pm y$ in $\tilde{K}^0(Y)$ /torsion. Equating the coefficients of $\psi^2 \psi^3 x = \psi^3 \psi^2 x$ yields n = 7 by the argument of [1].

REFERENCES

1. J. F. Adams and M. F. Atiyah, K-theory and the Hopf invariant, Quart. J. Math. Oxford Ser. 17 (1966), 31-38.

2. M. F. Ayitah and J. L. Dupont, Vector fields with finite singularities, Acta Math. 128 (1972), 1-40.

3. E. H. Brown and F. P. Peterson, Whitehead products and cohomology operations, Quart. J. Math. Oxford Ser. 15 (1964), 116-120.

4. W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186.

5. D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.

6. ____, Witnesses, transgressions, and the evaluation map, Indiana Univ. Math. J. 24 (1975), 825-836.

7. M. E. Mahowald and F. P. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367-377.

8. M. E. Mahowald, The index of a tangent 2-field, Pacific J. Math. 58 (1975), 539-548.

9. R. James Milgram (Editor), Algebraic and geometric topology, Proc. Sympos. Pure Math., vol. 32, Part 2, Amer. Math. Soc., Providence, R.I., 1978.

10. E. Thomas, The span of a manifold, Quart. J. Math. Oxford Ser. 19 (1968), 225-244.

11. _____, On functional cup-products and the transgression operator, Arch. Math. 12 (1961), 435-444.

12. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, no. 49, Princeton Univ. Press, Princeton, N.J., 1962.

13. J. C. Wood, A theorem on injectivity of the cup product, Proc. Amer. Math. Soc. 37 (1973), 301-304.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, NEWARK CAMPUS, NEWARK, OHIO 43055

DEPARTMENT OF MATHEMATICS, PONTÍFICIA UNIVERSIDADE CATÓLICA, RIO DE JANEIRO, BRAZIL 22453