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THE HOMOTOPY THOM CLASS OF A SPHERICAL FIBRATION 

HOWARD J. MARCUM AND DUANE RANDALL 

ABsTRAcr. We investigate the following problems. Given a spherical fibration, does 
the Whitehead square of its homotopy Thom class vanish? If so, is the homotopy 
Thom class a cyclic homotopy class? 

1. Introduction. Let p: E -> B denote a Hurewicz fibration ( with fiber F. 
Applying the mapping cone construction to the vertical maps in the commutative 
diagram 

F c E 

* c B 

yields a map ,u: , F--> T(t). The Thom space T(t) of t is the mapping cone of p 
while IL is by definition the homotopy Thom class of (. 

We consider only spherical fibrations over locally finite, connected CW-com- 
plexes. Let p: E -> B be a fibration ( whose fiber is homotopy equivalent to S"'.- 
Recall that T(t) is then (n - 1)-connected and ,L generates -rn(T()), which is 
isomorphic to Z if p is orientable and Z/2 otherwise. Let p: E -- B denote the 
associated cone fiber space of (. (See [4, Appendix].) The fiber inclusion of pairs 
(CF, F) c (E, E) induces a map of quotient spaces CF/F -> E/E which we can 
identify with It. Let U denote the Thom class in integral cohomology for t oriented. 
Now It is dual to U under the Hurewicz isomorphism with respect to the orienta- 
tion on CF/F induced by U. For ( nonorientable, ,u is clearly dual to the mod 2 
Thom class under the mod 2 Hurewicz isomorphism. The homotopy Thom class of 
an orthogonal vector bundle is defined with reference to the associated sphere 
bundle. 

In this note we investigate the following: 

Problem. Given a spherical fibration with homotopy Thom class IL, does the 
Whitehead square [ ,u, ,u] vanish? If so, is ,u a cyclic homotopy class? 

Let wn denote the Whitehead square [in in] E S72n l(S") where in represents the 
identity map. This problem generalizes the classical problem of the vanishing of wn, 
since in is the homotopy Thom class of the trivial fibration p: S" -> * . 
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2. Vanishing conditions for [ IL, ,u]. 

PROPOSITION 2.1. Let p: E -> B denote an oriented (2m - 1)-spherical fibration (. 
If the Euler class X(t) is divisible by an odd prime in H2m(B; Z), then [ IL, ,u] 7# 0. 
Further, [ IL, ,I] is nontrivial in the rational homotopy of T(() if X(t) is a torsion class. 

PROOF. Suppose [ It, ,I] = 0 and set n = 2m. Thus ,u: S" -> T(t) admits an 
extension g: S" U e2n - T((). Let U denote the Thom class of ( in integral 
cohomology. Since Sn U ,) e2n is the Thom complex of the tangent bundle tT(Sn) of 
sn, g* U is (up to sign) the Thom class for T(Sn). Up to sign, 

g*(UU x(()) = (g* U)2 = X(Sn). g* U = 2(generator). 

Thus U x(t) and consequently x(() via the Thom isomorphism are not divisible by 
any odd prime. 

Suppose that x(t) is a torsion class. Since the cup product pairing Hn(T(; Z) ? 

Hn(T(; Z) -> H2n(T(; Z) is not injective, [ ,u, ,u] is not a torsion class in 72n- 1(T(t)) 
by [13]. 

REMARKS. (i) It follows from Proposition 2.1 that [,u, IL] is nontrivial for any 
oriented (2m - 1)-spherical fibration over B with dimension B < 2m. 

(ii) The converse to Proposition 2.1 is false. For any integer n > 1, consider 
= n7q over complex projective space cpn where i1 denotes the complex Hopf line 

bundle. If [,u, ,u] = 0, then X(c o h) must have order 2 in 74n(l(CP2n-l/CPn-l)) 
where h: s4n- I cp2n- is the Hopf fibration and c denotes the collapsing map. 
But the p-primary component of X(c o h) must be nontrivial for any odd prime 
p < n + 1 such that p does not divide n + 1. Thus [ ,u, ,u] =# 0 while X(t) is not 
divisible by any odd prime. 

PROPOSITION 2.2. Let n be any odd integer such that n + 1 is not a power of 2. Let 
p: E -> B denote any (n - 1)-spherical fibration t with dimension B < n - 2S where 
the positive integer s is defined by n + 1 25 (mod 2s '1). Then [,u, ,u] has order 2 

where ,u denotes the homotopy Thom class of (. If ( has trivial Stiefel- Whitney classes 
and dimension B < n, then again [ ,u, IL] is nonzero. 

PROOF. We write n + 1 = 25 + 2t. Expansion of Sq25Sq2t by the Adem relations 

and further decompositions of Sq' for n - 2- 1 < j < n yield a relation 

s-i 
Sq2Sq2' + , Sq2hi = 0 

i=O 

on mod 2 classes of dimension < n. Here 3,i is understood to be the trivial 
operation whenever necessary. Let p denote any nonstable secondary operation 
associated to the above relation. Suppose either that dimension B < n - 2 or else 
that dimension B < n and ( has trivial Stiefel-Whitney classes. Clearly p is defined 
on the mod 2 Thom class U of t and (p(U) vanishes with zero indeterminacy by 
dimensionality. Recall that p detects (On by [3]; that is, p is nontrivial in the 
mapping cone of )n. So IL Sn - T(() cannot extend to the mapping cone of )n by 
naturality of (p. 
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REMARK. The following example shows the difficulty in obtaining an analogous 
result whenever n + 1 is a power of 2 and n > 7. Let a denote the real Hopf line 
bundle over S 1. Let t denote the sphere bundle of a ff (n - 1) over S 1. Note that 
T(M) = S" U2 e For n odd andj < 2e 2 (Sn) is the kernel of the morphism 

j>(S"n U2 en+ ) induced by the inclusion of the bottom cell. Thus [,Lu, ,u] 
=O iff wn E 2 * 7T2n_I(Sn). For example, 015 E 2 * 7T29(S'5) by [12]. 

PROPOSITION 2.3. Let p: E -> B denote an oriented (n - 1)-spherical fibration t 
over a finite complex B. For n even, suppose that the reduced integral homology of B 
is torsion. Then [,u, ,u] has infinite order in 'TT2n (T(t)). For n odd, suppose that the 
reduced integral homology consists of odd torsion. Then [ ,, IL] = 0 iff n = 1, 3 or 7. 

PROOF. The case n even is a consequence of Proposition 2.1. For n odd with 
n > 1, the induced map /(2): S(2) -> T()(2) on the simply-connected 2-localizations 
induces an isomorphism on integral homology and so is a homotopy equivalence. 
Thus [ u, ,u] = A*wn = O iff wn = 0. 

We have been informed that W. Sutherland has unpublished results on the 
homotopy Thom class. We thank the referee for his helpful comments. The 
following two theorems are somewhat related to a conjecture of Mahowald in [9, p. 
255]. 

We recall that the span of a smooth connected manifold M is the maximum 
number of linearly independent vector fields on M. A spin manifold is an oriented 
manifold for which w2M = 0. 

THEOREM 2.4. Let Mn be a closed connected oriented smooth manifold with n 1 
(mod 4). If [,u, ,u] = 0 then 1 < span M < 2 where ,: Sn -> T(TM) denotes the 
homotopy Thom class of the tangent bundle. Let v denote the normal bundle to an 
embedding of Mn in R2n. Then [j,, fL] has order 2 where : Sn -> T(,) denotes the 
homotopy Thom class. 

PROOF. We can suppose n > 1 since span S1 = 1 and 1*.w = 0. Clearly 
span Mn = 1 if the Stiefel-Whitney class wn -IM 7# 0. So assume that wn__M = 0. 
By [8] let 'D denote the nonstable secondary operation associated to the relation 
Sq2Sq`- 1 = 0 on integral classes of dimension < n such that 

?(U) = Us (O(QM) + W2M Wn-2M) 

with zero indeterminacy. Here U denotes the Thom class of TM while O(TM) 
denotes the unique higher-order obstruction to two linearly independent sections. 
Now D( U) :# 0 since [ ,, ,u] = 0 by hypothesis and (D detects wn by [3]. So 
O(TM) 7# 0 iff w2M wn-2M = 0. Either O(TM) 7# 0 or wn-2M 7# 0 so span M < 
2. 

Similarly, 1( U,,) is defined and vanishes with zero indeterminacy. We recall from 
[7] that the top cell in the Thom complex T(P) associated to the normal bundle of 
an embedding in Euclidean space is spherical. Since 4D detects wn, [Ij, jI] = jA.Wn 
must be nontrivial and so has order 2. 
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THEOREM 2.5. Let M' be a closed connected smooth spin manifold with n _ 3 
(mod 8). If [ ,u, ,u] = 0, then span M = 3 where ,u: S" -> T(TM) denotes the homo- 

topy Thom class of TM. Let v denote the normal bundle to an embedding of M' in 

R2n. Then [j,, ,u] has order 2 for n > 3 where ,u denotes the homotopy Thom class for 
P. 

PROOF. The case n = 3 follows since M3 is parallelizable and W3 = 0. Now 
Atiyah-Dupont [2] proved that span Mn > 3. Write n = 8t + 3 for positive t and 

suppose that wn-3M = 0. By [10] there exists a nonstable secondary operation a2 

associated to the relation Sq4Sq8t = 0 on integral classes x of degree < 8t + 3 for 
which Sq2x = 0 such that g2(U) = U O(TM) with zero indeterminacy. Here 

O(M) represents a second-order k-invariant to lifting TM in the fibration 

B Spin(n - 4) -> B Spin(n). (2.6) 

By [3] 02 detects wn. Since [ ,u, IL] vanishes by hypothesis, 2( U) must be nontrivial. 

Thus O(TM) #& 0 so span M = 3. 
Now S2(U,,) is defined and vanishes with zero indeterminacy since the top cell in 

T(,) is spherical. If [j,, -u] vanishes, then Q( U,) must be nontrivial since a2 detects wn 
by [3]. Thus [f,, ,u] has order 2. 

3. Is ,L cyclic? Recall that ,L is cyclic if the map 

ILVI: Sn V T(()_> T(t) (3.1) 

extends to the product Sn x T(t). Equivalently, ,u is cyclic iff ,u belongs to the nth 

evaluation subgroup Gn(T(t)) of T(t). If ,u is cyclic, then [,L, ,u] = 0 by the 

composite 

S" x S" -_ Sn x T(A)4 T(t) (3.2) 

where g extends ,IV 1. 
If ,u is cyclic for an oriented (n - 1)-spherical fibration t and T(() is a suspen- 

sion, Gottlieb showed in [5, Corollary 5-5] that n = 1, 3 or 7 and T(() is homotopy 
equivalent to sn. 

THEOREM 3.3. Suppose I: Sn -- T(() is cyclic for an oriented fibration p: E -* B 

with B a finite connected complex. If wn(() is trivial, then T(() is homotopy equivalent 
to Sn and n = 1, 3 or 7. If wn(() =# 0, then n is odd, the Euler-Poincare' characteristic 

x(B) = 1, and the reduced integral homology of B is a vector space over Z/2. 
Further, n = 7 if ( is orientable with respect to complex K-theory. 

PROOF. By hypothesis Gn(T(t)) = 7T(T(()) so n must be odd by [6, Theorem 1]. 

Suppose wn(t) = 0. Assume that the reduced integral homology of B is nontrivial 
and let x be a nontrivial cohomology class of smallest positive dimension. Then for 
any extension g of ,uV1, 

g*(U * (x8wn1(t))) = g*(U * Ux) = g* U * g* Ux 

= Sn C UX + 1 E) U (X8wn-I(0)) (3.4) 

where sn generates Hn(Sn; Z) and 8 denotes the Bockstein-coboundary operator 
associated to the coefficient sequence Z -> Z -- Z/2. So Ux and thus x via the 
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Thom isomorphism have order 2. Since x was chosen arbitrarily, we may assume 
p2x 7# O. (Here P2 denotes reduction mod 2.) But P2(sn ? Ux) # 0 in (3.4), a 
contradiction. (Note that (3.4) uses X(Ux) = 0 where g*(Ux) = 1 ? Ux + s,n ? 
X( Ux), but that this fact is not necessary if dim x = n.) We conclude that T(() has 
the homology of Sn. Thus T(() is homotopy equivalent to Sn by the argument of [5, 
Corollary 5-3], since T(() is a suspension for n = 1. Finally, n = 1, 3 or 7 by 
Proposition 2.3 since [ tL, ,] = 0. 

Suppose that wn(() -# 0. By [5, Theorem 4-1], X(T(()) = 0. Thus x(B) = 1 since 
_n= 1 + (-1)X(B). Let x E H'(B; Z) denote any nontrivial class for i > 0. 

The calculation in (3.4) yields 

g*( U (X3wn1(())) = Sn ? UX + Sn ? UZWn -1() + 1 ? U* (xw 1(-)) 

(3.5) 

where Uz = X(Ux). So Ux and thus x must have order 2. Since x was chosen 
arbitrarily, the reduced integral homology of B must be a vector space over Z/2. 

Finally, we must show that n must be 7 under the orientability hypothesis. Since 

wn(() -# 0 and orientability in complex K-theory implies that 6w2(() = 0, n must be 
an odd integer > 5. 

Let 

S2n+1 I 
T()A() y S2'+2- 

+ 2 

denote the Puppe sequence for the map h obtained by the Hopf construction 
applied to (3.2). The map in (3.2) induces the trivial morphism on H2n(T((); G) for 
any coefficient group G. Consequently, the Hopf invariant of h is ? 1 in integral 
cohomology (see [11]) and also in complex K-theory. That is, the free summand of 
K0( Y) is generated by x andy where 

chn+I(i*x) = >2U inHn '( T((); Q) 

and x2 - +y in K?(Y)/torsion. Equating the coefficients of k2+3x = +3I+2x yields 
n = 7 by the argument of [1]. 
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