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Absolute neighborhood retracts (ANR's) and spaces having the homotopy type of ANR's, 
like polyhedra and CW-complexes, form the natural environment for homotopy theory. 
Homotopy-like properties of more general spaces (shape properties) are studied in shape 
theory. This is done by approximating arbitrary spaces by ANR's. More precisely, one 
replaces spaces by suitable systems of ANR's and one develops a homotopy theory of 
systems. This approach Hnks the theory of retracts to the theory of shape. It is, therefore, 
natural to consider the history of both of these areas of topology in one article. A further 
justification for this is the circumstance that both theories owe their fundamental ideas to 
one mathematician, Karol Borsuk. We found it convenient to organize the article in two 
sections, devoted to retracts and to shape, respectively. 

1. Theory of retracts 

The problem of extending a continuous mapping f : A -> Y from a closed subset A of 
a space X to all of Z, or at least to some neighborhood 17 of A in Z, is very often en­
countered in topology. Karol Borsuk realized that the particular case, when Y — X and 
/ is the inclusion / : A ^- X, deserves special attention. In this case, any extension of / 
is called a retraction {neighborhood retraction). If retractions exist, A is called a retract 
{neighborhood retract) of X. In his Ph.D. thesis "O retrakcjach i zbiorach zwi^zanych" 
("On retractions and related sets"), defended in 1930 at the University of Warsaw, Borsuk 
introduced and studied these basic notions as well as the topologically invariant notion of 
absolute retract (abbreviated as AR). He thus laid the foundations of the theory of retracts. 
The very suggestive term retract was proposed by Stefan Mazurkiewicz (1888-1945), who 
was Borsuk's Ph.D. supervisor. The term absolute retract was suggested by Borsuk's col­
league Nachman Aronszajn, also a student of Mazurkiewicz. 

It appears that the original of Borsuk's thesis has been lost in the turmoils of the Sec­
ond World War. However, its main results were published in [27]. Absolute neighborhood 
retracts (abbreviated as ANR) were introduced in [28]. In the beginning Borsuk only con­
sidered separable metric spaces, especially metric compacta. Other early contributions to 
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K. Borsuk was born in Warsaw in 1905 and studied mathematics at the University of Warsaw. 
He spent the period 1931-1932 on postdoctoral studies with leading European topologists of 
that time (Karl Menger in Wien, Heinz Hopf in Zurich and Leopold Vietoris in Innsbruck). 
His habilitation at the University of Warsaw took place in 1934 and he became Professor in 
1946. After retirement in 1975, he continued with activities at the Mathematical Institute of the 
Polish Academy of Science. On four different occasions, Borsuk spent a Winter semester in 
US (Princeton, Berkeley, Madison, New Brunswick), which contributed to the quick spread­
ing of his theory of retracts and later, the theory of shape. Borsuk died in Warsaw in 1982. 
N. Aronszajn was born in 1907 in Warsaw, where he went to school and university, obtaining 
his Ph.D. in 1930. He then worked in Paris and Cambridge until 1948, when he emmigrated 
to US. There he spent most of his career at the University of Kansas in Lawrence. He died in 
Corvallis, Oregon in 1980. 

the theory of retracts, due to K. Kuratowski [154] and R.H. Fox [107], also refer to these 
classes of spaces. Gradually, the theory was extended, first to arbitrary metric spaces by 
C.H. Dowker [79] and J. Dugundji [85], then to more general classes of spaces C, closed 
under homeomorphic images and closed subsets, by S.-T. Hu [126], O. Banner [121] and 
E.A.Michael [184]. 

An AR (ANR) for the class C is a space Y from C, such that, whenever 7 is a closed 
subset of a space X from C, then F is a retract (neighborhood retract) of X. A space Y 
is an absolute extensor {absolute neighborhood extensor) for the class C, abbreviated as 
AE(C) (ANE(C)), provided, for every closed subset A of a space X from C, every mapping 
/ : A -> F extends to all of X (to some neighborhood (7 of A in X). It is not required that 
Y belongs to C. Clearly, if Y is from C and is an absolute extensor for C, then Y is also an 
absolute retract for C. The terminology AE and ANE was introduced in [184]. Gradually 
it became clear that the class C of metric spaces gives the most satisfactory theory. Hence, 
if we speak of ANR's and do not specify C, we mean ANR's for metric spaces. A rather 
detailed and reliable study of the spaces ANR(C) and ANE(C), for various classes C, has 
been carried out in Hu's monograph [128]. 

Borsuk's work on the theory of retracts had its precedents. The most important among 
these is the Tietze-Urysohn extension theorem. It was first proved, for metric spaces by 
H. Tietze [225]. Then P.S. Uryson proved his famous lemma: If A and B are closed disjoint 
subsets of a normal space X, there exists a mapping f :X -> / to the real line segment 
/ = [0, 1] such that / | A = 0 and f\B = l [232]. In the case of metric spaces, the 
assertion of Urysohn's lemma is an elementary fact, which was used in Tietze's argument. 
Replacing this fact by its generalization enabled Uryson to obtain the extension theorem 

Ernest A. Michael, Professor at the University of Washington in Seattle, was bom in Zurich 
in 1925. He obtained the Ph.D. in 1951 from the University of Chicago. Sze-Tsen Hu, Pro­
fessor at the University of California in Los Angeles, was born in Huchow, China in 1914. 
He obtained the B.Sc. from the University of Nanking, China and the D.Sc. in 1959 from the 
University of Manchester. 
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Heinrich Tietze (1880-1964) was born in Schleinz, Austria. He studied in Wien, Miinchen and 
Gottingen and obtained his Ph.D. in 1904 in Wien, where he became Privatdozent in 1908. 
From 1910 to 1919 he was professor at the Technical University in Brno and it is during that 
period that he obtained his extension theorem. He spent the rest of his career at the universities 
of Erlangen and Miinchen. Pavel Samuilovich Uryson (1898-1924) was born in Odessa. He 
was a student of D.F. Egorov (1869-1931) and N.N. Luzin (1883-1950) in Moscow, where he 
obtained his Ph.D. in 1921. Urysohn was one of the most promising Russian mathematicians 
of his generation, when he lost his life at the age of 25 in a tragic accident, while swimming 
in the rough seas of French Bretagne. His collected papers fill up two volumes. 

for normal spaces. In present terminology the theorem asserts that / = [0, 1] and the real 
line R are AE's for normal spaces. Recently, J. Mioduszewski drew attention to the fact 
that the argument used by Uryson in constructing the mapping / : X -> / appeared a year 
earlier (in a different context) in the only paper by W.S. Bogomolowa, a student of Luzin 
[25]. 

An important question raised in the early days of the theory of retracts was to determine 
whether an absolute retract Y for a class C is necessarily an absolute extensor for C. This is 
true for many important classes C. For separable metric spaces it was proved in [154] and 
for arbitrary metric spaces in [85]. To obtain this result, one first embeds F in a normed 
vector space L, in such a way that it is a closed subset of its convex hull K. For L one can 
take the space of bounded mappings / : F -> E, which is even a Banach space [155,248]. 
Then one applies the Dugundji extension theorem [85], an important generalization of the 
Tietze-Urysohn theorem. It asserts that every convex set in a normed vector space (more 
generally, in a locally convex vector space) is an absolute extensor for metric spaces. This 
result was made possible only after A.H. Stone proved that metric spaces are paracompact 
[223]. For separable metric spaces Dugundji's extension theorem was already known to 
Polish topologists. Note that paracompactness of these spaces is an elementary fact, be­
cause separable metric spaces are Lindelof, hence, also paracompact. Dugundji's theorem 
was later generalized to stratifiable spaces [26], a class of spaces, introduced in [56], which 
includes both metric spaces and CW-complexes. 

An important result in the theory of retracts was J.H.C. Whitehead's theorem that the 
adjunction space of a mapping / : A ^- 7, where A c X, Z and Y are compact ANR's, 
is again a compact ANR [244]. Another important result was obtained by Manner. He 
considered local ANE's, i.e. spaces which admit an open covering formed by ANE's, and 
proved that for metric (more generally, for paracompact) spaces, every local ANE is an 
ANE [121]. This theorem implies, e.g., that (metric) manifolds are ANR's. 

In introducing (compact) ANR's Borsuk wanted to generalize compact polyhedra in a 
way which excludes the pathology often present in arbitrary metric compacta. For example, 
compact AR's have the fixed-point property [27], but there exist acyclic (locally connected) 
continua in M̂  which do not have this property [29]. Generalizing a sum theorem from 
[9], Borsuk proved that the union X = Ai U A2 of two compact ANR's is an ANR, 
provided A\ Pi A2 is an ANR [28]. This implies that every compact polyhedron is indeed 
an ANR. In the same paper he showed that in the class of finite-dimensional compacta, 
ANR's are characterized by local contractibility. For an infinite-dimensional compactum 
X, local contractibility alone is not sufficient to ensure that X be an ANR [31]. 
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Kazimierz Kuratowski (1896-1980), one of the founders of the Polish topology school, was 
born and died in Warsaw. He obtained his Ph.D. from the University of Warsaw in 1921. 
He first worked at the Technical University in Lwow. Since 1934 he was Professor at the 
University of Warsaw. During the Nazi occupation of Poland, both Kuratowski and Borsuk 
lectured at the underground university in Warsaw. Clifford Hugh Dowker was born in 1912 
in a rural area of Western Ontario. He obtained his B.A. and M.A. in Canada and his Ph.D. 
in 1938 in Princeton, where he came to study under Solomon Lefschetz (1884-1972). In 
1950, during the period of McCarthyism, Dowker moved to England and eventually became 
Professor at Birckbeck College in London, where he worked until his retirement in 1979. He 
died in London in 1982. James Dugundji (1919-1985) was born in New York in a family of 
Greek immigrants. He obtained his B.A. degree from New York University in 1940. The same 
year he started his graduate studies at the University of North Carolina at Chapel Hill as a 
student of Witold Hurewicz (1904-1956). After spending four years of war in the US. Air 
Force, in 1946 he entered the Massachusetts Institute of Technology, where Hurewicz became 
Professor in 1945. Under him Dugundji obtained his Ph.D. in 1948. The same year he started 
teaching at the University of Southern California in Los Angeles, where he became Professor 
in 1958. The Swedish topologist Olof Hanner was bom in Stockholm in 1922 and obtained his 
Ph.D. from the University of Stockholm in 1952 with a thesis which consisted of three of his 
papers on ANR's. He became interested in ANR's during a visit to the Institute for Advanced 
Study in Princeton in 1949/50, where he came in touch with the work of Ralph Hartzler Fox 
(1913-1973) and Lefschetz. 

The important property LC^ (local connectedness up to dimension n) was introduced 
in 1930 in Lefschetz's book [158] (see p. 91) and studied further in [159]. Generalizing 
Borsuk's work, Kuratowski proved that an ^-dimensional separable metric space X is an 
ANR if and only if it is LO^ [154]. The proof uses the fundamental concepts of nerve of 
an open covering and canonical mapping, whose origins can be traced back to the work of 
Alexandroff [2, 3] and Kuratowski [153], respectively. The Kuratowski theorem was later 
generalized to arbitrary metric spaces by several authors [151, 145, 87]. 

In 1973 W.E. Haver proved that a locally contractible metric space X, which is the union 
of a countable collection of finite-dimensional compacta, is an ANR [123]. This result had 
important consequences in the study of the space PLH(M) of piecewise linear homeo-
morphisms of a compact PL-manifold M. A.V. Chernavskii proved in 1969 that the space 
H(M) of homeomorphisms of a compact manifold M is locally contractible [68]. A sim­
plified proof of Chernavskii's result was obtained by R.D. Edwards and R.C. Kirby [104]. 
It follows from this proof that, for a compact PL-manifold M, the space PLH(M) is also 
locally contractible. On the other hand, R. Geoghegan showed that, for a compact polyhe­
dron P, PLH(P) is the union of a countable collection of compact finite-dimensional sets 
[113]. Consequently, Haver's result applies and yields the conclusion that, for a compact 
PL-manifold M, PLH(M) is an ANR. For compact topological manifolds M, the question 
if H(M) is an ANR, is still open. The analogous question for g-manifolds was answered 
in the affirmative, independently by S. Ferry [105] and by H. Torunczyk [229]. 

In general, the geometric realization of an infinite simplicial complex K can be endowed 
with the weak topology (also called CW-topology) or the metric topology [161]. The re­
sulting spaces will be denoted by | ^ | and \K\,n, respectively. We refer to spaces | ^ | as 
polyhedra. A polyhedron |i^| is metrizable if and only if the complex K is locally finite. 
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S. Lefschetz was born in Moscow and educated in Paris. After working for some years in 
industry, he turned to mathematics (following an industrial accident in which he lost both 
hands). In 1925 he joined the Mathematics Department in Princeton, where he became a 
leading topologist, together with O. Veblen (1880-1960) and J.W. Alexander (1888-1971). 
After retiring from Princeton University, he continued his activities at Brown University and 
in Mexico. John Henry Constantine Whitehead (1904-1960), another leading topologist, was 
born in India and educated in Oxford. He continued his studies in Princeton under Veblen 
and there obtained his Ph.D. in 1931. He became Professor in Oxford in 1945. He died in 
Princeton, where he was spending a year's leave. 

In this case the weak topology and the metric topology coincide. Polyhedra are special 
cases of CW-complexes (CV^-spaces), introduced by Whitehead in [246]. It was shown by 
Dugundji [86] that CW-complexes are paracompact spaces and ANE's for metric spaces. 
For polyhedra, the latter assertion was proved independently by Y. Kodama [144]. If a 
polyhedron |A |̂ is locally compact, then the complex K is locally finite and therefore, 
\K\ = \K\rn mustbean ANR. 

For an arbitrary simplicial complex K, the space \K\m is an ANR. To prove this im­
portant fact, one first proves the assertion in the special case of full simplicial complexes, 
i.e. complexes where every finite set of vertices spans a simplex. This is easily done by 
applying Dugundji's extension theorem. In the general case, one needs the fact that, for 
every subcomplex L c A', |LU is a neighborhood retract of | A |̂,„. The standard argument 
consists of showing that, in the first barycentric subdivision K^ of K, the star of the carrier 
of L' is an open set in the carrier of K\ which retracts to the carrier of L^ However, to 
apply this argument, one needs to know that \K\m = \K'\m. This was proved by Lefschetz 
in [161], a monograph devoted entirely to local«-connectedness and retraction. 

The French topologist Robert Cauty studied closely the relationship between polyhe­
dra and CW-complexes. In particular, in [50] he characterized spaces which embed into 
polyhedra as closed subsets. All CW-complexes satisfy his criterion. Moreover, if a CW-
complex X is embedded as a closed subset of a polyhedron P, then there exists an open 
neighborhood U of X in P which retracts to X. It is well known that every open subset 
of a polyhedron is itself a polyhedron. Therefore, CW-complexes are retracts of polyhe­
dra. Twenty years later, Cauty showed that an open subset of a CW-complex need not be a 
CW-complex [53]. He thus corrected an error, appearing occasionally in the literature. 

Cauty showed that there exist CW-complexes which are not ANR's for paracompact 
(hereditarily paracompact) spaces [49]. An example, due to E. van Douwen and R. Pol 
[78] shows that, there exist a regular countable space X (hence, a Lindelof space), a closed 
subset A c X and a mapping / of A to a 1 -dimensional polyhedron | ̂  |, which does 
not extend to any neighborhood of A. Consequently, | AT | is a not an ANE for paracompact 
spaces. On the other hand, for a simplicial complex K with no infinite simpHces, \K\,n is an 
ANE even for collection wise normal spaces [52]. This shows that the extension properties 
of complexes depend essentially on the choice of the topology. 

Cauty proved that every CW-complex is an ANR for stratifiable spaces [51]. This was 
achieved using topological convexity (abbreviated as TC) and local topological convexity 
(abbreviated as TLC). A space X is TLC provided there exists a neighborhood U of the 
diagonal AinX x X and there exists a mapping (p:U x I ^^ X such that (p(x,y,0) = x, 
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R. Cauty was born in 1946. He studied in Paris and belonged to M. Zisman's Algebraic Topol­
ogy Seminar. He obtained his doctorat d'etat in 1972. Since in Paris there was not much inter­
est in General Topology, Cauty learned the subject by himself, beginning with Kuratowski's 
Topologie. ANR's and complexes, being the meeting ground of General and Algebraic Topol­
ogy, constituted the natural topic of his research. 

0(x, y, 1) = y, for all (x, y) ^U and0(x,x, t) = jc, for all j e X,t e I. In addition, one 
requires that every point x e X admits a basis of neighborhoods V such that V x V Q U 
and 0 ( y X V X /) c y. Property TC is obtained by requiring that U = X x X. Clearly, 
locally convex topological vector spaces have property TC. There exist compact ANR's 
which are not TLC-spaces [42] (also see [33], Ch. VL4). 

A weaker notion, called equiconnectedness {local equiconnectedness) was already con­
sidered by Fox [108] and J.-P. Serre [212], who used the abbreviations UC (ULC). These 
properties are obtained from properties TC (TLC) by omitting the additional condition 
0 ( y X V X /) c V. It is easy to see that every AR (ANR) is a UC-space (ULC-space). 
Finite-dimensional metric ULC-spaces are ANR's [87]. For infinite-dimensional metric 
ULC-spaces, one finds in [88,125] additional conditions, which make these spaces ANR's. 
The question whether every metric ULC-space is an ANR, remained open for a long time. 
Only recently, a counterexample was obtained by Cauty, who exhibited a metric linear 
space (hence, a UC-space), which is not an AR [55]. Cauty's example depends essentially 
on the existence of dimension-raising cell-like mappings of compacta [83]. 

In the Hterature there are many results characterizing ANR's. Here we mention a clas­
sical criterion, based on realizations of simplicial complexes K with respect to a covering 
U. A full realization of AT is a mapping g : |A |̂ -> X of the geometric realization of K 
(CW-topology) such that every (closed) simplex a e K maps into some member UofU. 
A partial realization is a mapping f :\L\ -> X, defined on the carrier of some subcomplex 
Lof K such that, for every a € AT, the set / ( |L | n a ) is contained in some member U ofU. 
A metric space X is an ANR if and only if every open covering U of X admits a refinement 
V such that, for every subcomplex L ^ K, which contains all the vertices of K, every 
partial realization f :\L\ -^ X with respect to V admits an extension to a full realization 
g:\K\ -> X with respect to U. This was proved in [160], for compact metric spaces and 
in [87], for arbitrary metric spaces. The problem of finding convenient characterizations of 
infinite-dimensional ANR's still deserves attention. 

A very useful theorem on ANR's asserts that sufficiently near mappings into an ANR 
must be homotopic. More precisely, ifU is an open covering of an ANR 7, then there exists 
an open covering V such that any two V-near mappings 0, V :̂ X -> 7 are W-homotopic, 
i.e. are connected by a homotopy H :X x I -^ Y with paths H{x x I), x e X, contained 
in members ofU [85, 120]. ANR's can be characterized as metrizable spaces Y having the 
property that, for every open covering U,Y is W-homotopy dominated by some polyhedron 
P, i.e. there exist mappings f \Y -^ P, g: P -^ Y such that gf and id are W-homotopic 
[87, 120]. Necessity of the condition is a consequence of the fact that every covering V 
of an ANR Y admits a polyhedron P and admits mappings / , g such that gf and id are 
V-near mappings. Spaces Y having this property are called approximate polyhedra [173]. 
That every ANR Y is an approximate polyhedron is a consequence of the bridge theorem, 
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which asserts that, for every mapping f :X -^ F of a space into an ANR and for every 
open covering V of 7, there exists a normal covering U of X and a mapping g:\N(U)\ -> 
Y of the geometric realization of the nerve N(U), such that, for any canonical mapping 
p'.X -^ |N(W)|, the mappings / and gp are V-near [127]. 

It was John Milnor who in 1959 renewed the interest of topologists in the class of spaces 
having the homotopy type of CW-complexes [187]. ANR's belong to this class, because 
every ANR X has the homotopy type of the geometric realization \S{X)\ of its singular 
complex S{X). For an arbitrary space X, there is a canonical mapping jx '• \S{X)\ -> X, 
which is a weak homotopy equivalence, i.e. it induces isomorphisms of homotopy groups. 
By a well-known theorem, a weak homotopy equivalence between CW-complexes is a 
homotopy equivalence [129, 245]. This theorem readily extends to spaces homotopy dom­
inated by CW-complexes and, therefore, applies to jx, whenever X is an ANR. For every 
space X, \S{X)\ is triangulable and thus, every ANR has the homotopy type of a polyhe­
dron. Actually, the geometric realization | A' | of any simplicial set Â  is a polyhedron. The 
proof given in [13] and reproduced in [169] contained an error, which was corrected in the 
Ph.D. thesis of Rudolf Fritsch, a student of Dieter Puppe [110-112]. 

Conversely, every polyhedron P has the homotopy type of an ANR. Indeed, if ^ is a 
simplicial complex such that P = \K\, then the identity mapping | ^ | -^ | ^ | „ | is a homo­
topy equivalence [80]. However, \K\in is an ANR. A recent result of Cauty characterizes 
ANR's as metric spaces all of whose open subsets have the homotopy types of ANR's [54]. 

One of the most useful results on ANR's is Borsuk's homotopy extension theorem [30]. 
A pair of spaces (X, A) is said to have the homotopy extension property (abbreviated as 
HEP) with respect to a space F, provided every mapping / : (X x 0) U (A x /) -> Y admits 
an extension F :X x I -^ Y. Borsuk's theorem asserts that every pair, where X is a metric 
space and A is closed, has HEP with respect to any ANR Y. Among many generalizations 
of this theorem, especially interesting was the result of Dowker, which asserts that pairs, 
where X x / is normal and A is closed, have HEP with respect to separable Cech complete 
ANR's, in particular, with respect to compact ANR's [81]. This result naturally led to 
the question, does normality of X imply normality of X x /? This proved to be a very 
challenging problem, which generated much research in general topology. It was finally 
solved in the negative by Mary Ellen Rudin [206]. 

After the development of the theory of fibrations [212, 130], it became clear that, for 
a pair (X, A), HEP with respect to all spaces Y, viewed as a property of the inclusion 
A -> X, is a notion dual to the notion of fibration, hence, it is referred to as a cofibra-
tion. Cofibration pairs (X, A) are also called neighborhood deformation pairs and play an 
important role in homotopy theory. 

One of the central problems of geometric topology in the last decades has been the 
recognition problem for topological manifolds: Find a Hst of topological properties which 
characterize manifolds among topological spaces. The properties should be easy to check, 
hence, they should not use notions like homeomorphisms. In 1978 James W. Cannon solved 
the famous double suspension problem, by showing that the double suspension of a ho­
mology 3-sphere is homeomorphic to the 5-sphere S^ [47]. This work led him to state 
the following conjecture, which would solve the recognition problem. Cannon's conjec­
ture: A topological space X is an w-manifold (separable metric), n ^ 5, if and only if 
it is a homology n-manifold having the disjoint disc property. By definition, homology 
n-manifolds are finite-dimensional separable locally compact ANR's X, whose local ho­
mology groups (integer coefficients) coincide with those of R", i.e. H,niX, X\{;c}; Z) ^ 
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H,n(M.^, M'̂ \{0}; Z), for all m. A metric space (X, d) has the disjoint disc property pro­
vided, for any two mappings f\, fi'.B^ -^ X of the 2-ball B^ and any ^ > 0, there exist 
two mappings gi.gi'.B'^ -^ Z, such that J ( / / , gi) < e, / = 1, 2, and the images g\ {B^) 
and g2(B^) are disjoint. Note that ANR's play an important role in this conjecture. 

A major step towards proving Cannon's conjecture was the cell-like approximation theo­
rem of R.D. Edwards, which considerably strengthened earlier work on cell-like mappings 
between manifolds [214]. Edwards announced his result in 1977 and pubHshed an outhne 
of the proof in [98]. A detailed proof, for n ^ 6, appeared in Daverman's monograph [77]. 
The Edwards theorem asserts that a cell-like mapping f :M -> X from an «-manifold 
M to a finite-dimensional space X is a near-homeomorphism, i.e. can be approximated by 
homeomorphisms, if and only if it has the disjoint disc property. Consequently, Cannon's 
conjecture is true provided X is the image of an n-manifold M under a cell-like mapping 
/ . Edwards theorem is the crown of years of efforts of many geometric topologists. An 
essential ingredient in the proof is R.H. Bing's shrinking criterion, which gives necessary 
and sufficient conditions in order that a proper mapping f :X -^ Y bt approximable by 
homeomorphisms. The criterion requires that for every pair of open coverings U of X and 
V of y, there exists a homeomorphism h:X -^ X having the following properties: 

(i) The mappings fh,f:X-^ F are V-near. 
(ii) For every y e Y, there exists SLU inU such that /z(/~^ (y)) c U [182]. 
In view of the cell-like approximation theorem, to complete the proof of Cannon's con­

jecture, it would have been sufficient to show that every homology n-manifold X, n ^ 5, 
is resolvable, i.e. it is the cell-like image of an w-manifold. Frank Quinn discovered an 
integer-valued obstruction i(X) = l(mod8) and showed that the above question has a 
positive answer if and only if i(X) = 1 [203, 204]. For a while it was not known if there 
actually exist homology manifolds with i(X) y^ 1. The existence of such homology man­
ifolds is a major recent achievement in topology, due to J. Bryant, S. Ferry, W. Mio and 
S. Weinberger [44]. 

A mapping f : X -^ 7 is cell-like provided it is proper (counter-images of compact sets 
are compact) and all the fibers f~^(y), y € F, are cell-like spaces, i.e. have the shape 
of a point. Cell-like spaces and mappings were studied before the advent of shape theory. 
Note that a space X is cell-like if and only if every mapping f :X ^^ P to an ANR P 
is homotopic to a constant mapping. A metric space X is cell-like if and only if for every 
embedding in an ANR M the following UV^ property holds: For every neighborhood 
U of X in M, there exists a neighborhood V of X such that V Q U and the inclusion 
/ :V -^ U is nullhomotopic. A special case of cell-likeness is cellularity of sets in an 
w-manifold M, a notion introduced by Morton Brown in connection with the Schoenflies 
problem [43]. A subset X of an n-manifold M is cellular in M if there exists a sequence 
(5f) of A2-dimensional balls in M such that 5;YI C Int J5f, for all /, and X = fl, 5f. 
Cellularity was studied extensively by D.R. McMillan, Jr. [183]. For a survey on cell­
like mappings see [157]. Mappings between ANR's with AR-fibers as well as mappings 
satisfying the corresponding LC^ and n-contractibility conditions were studied already 
in [217]. 

Problems encountered in the research concerning infinite-dimensional manifolds, espe­
cially manifolds modelled on the Hilbert space h and the Hilbert cube Q, were similar to 
problems encountered in the research concerning n-manifolds and progress in one area of­
ten stimulated progress in the other one. In many cases the infinite-dimensional problems 
turned out to be more accessible than the corresponding finite-dimensional problems and 
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R.H. Bing (1914-1986) was a student of the legendary topology teacher Robert Lee Moore 
(1882-1974) at the University of Texas in Austin. Bing obtained his Ph.D. in Austin in 
1945. He did pioneering work concerning decomposition spaces and homeomorphisms in 
3-dimensional manifolds [22]. The first systematic study of homology manifolds is due to 
another student of Moore, Raymond Louis Wilder (1896-1982) [247]. 

the solution of the former preceded the solution of the latter. The center of this research 
was the group around Richard Davis Anderson, Professor at the University of Louisiana in 
Baton Rouge. 

R.D. Anderson was born in Hamden, Connecticut in 1922. He was a student of R.L. Moore 
at Austin, Texas, where he obtained his Ph.D. in 1948. One can associate with the Anderson 
group T.A. Chapman, D.W. Curtis, S. Ferry, R. Geoghegan, D.W. Henderson, R.M. Schori, 
J.E. West, R.Y.T. Wong. 

The direct product of an n-manifold by the Hilbert space I2 is obviously an /2-manifold. 
In 1960 V. Klee asked the converse. Is every /2-manifold homeomorphic to the product 
of an n-manifold with /2? In 1961 in a surprising article Borsuk answered this question 
in the negative [32]. He also posed the following intriguing problems: Is it true that the 
cartesian product of a compact polyhedron (ANR) by Q is a Q-i^^i^ifold? Is it true that 
every Q-manifold is homeomorphic to the product of a compact polyhedron by Q? 

A very special case of the first problem, contributed by Borsuk to the Scottish book in 
1938, asked whether the product of a triod with Q is homeomorphic to Q. It was answered 
affirmatively by Anderson in 1964. The first problem for (locally compact) polyhedra was 
answered affirmatively in 1970 by West [240]. In 1973 Chapman developed a procedure 
to perform surgery on infinite-dimensional manifolds, which enabled him to establish an 
infinite-dimensional version of the handle-straightening theorem of R.C. Kirby and L.C. 
Siebenmann [143]. This result was an essential ingredient in the proof of two important 
theorems of Chapman. The first one was the triangulation theorem, which answered af­
firmatively the second of the Borsuk problems [64]. The second one was an unexpected 
proof of the topological invariance of the Whitehead torsion, i.e. proof of the assertion that 
homeomorphisms between compact polyhedra are simple homotopy equivalences. The 
solution of this more than 20 years old finite-dimensional problem of WTiitehead was a 
great achievement of infinite-dimensional topology. More precisely. Chapman proved that 
a mapping between compact polyhedra / : X -> 7 is a simple homotopy equivalence if 
/ x i d i Z x Q — > y x g i s homotopic to a homeomorphism [65]. The converse impli­
cation was proved earlier by West [240]. Chapman also succeeded in extending the simple 
homotopy theory from compact polyhedra and CW-complexes to compact ANR's [67]. 

In 1973 Torunczyk proved that the direct product of a compact AR with the Hilbert 
space h is homeomorphic to h [227]. Generalizations to products of ANR's with normed 
vector spaces were obtained in [228]. Finally, in 1975 R.D. Edwards proved that the prod­
uct of a locally compact ANR with 2 is a g-manifold (see [66]). Combining Edwards' 
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ANR theorem with Chapman's triangulation theorem, one immediately concludes that ev­
ery compact ANR has the homotopy type of a compact polyhedron P, which answers a 
classical problem stated by Borsuk at the International Congress of Mathematicians held 
in Amsterdam in 1954. 

This problem was first solved by West. He proved that every locally compact ANR X is 
resolvable, i.e. it is the image of a Q-manifold M under a cell-like mapping f : M -^ X 
[241, 242]. Since cell-like mappings between locally compact ANR's are (fine) homotopy 
equivalences [124], X has the homotopy type of M. If X is compact, M is also compact 
and, by the triangulation theorem, M has the homotopy type of a compact polyhedron. 
The fact that Z x [0, 1) is resolvable is often referred to as Miller's theorem. Actually, R.T. 
Miller proved the analogous assertion for finite-dimensional ANR's and finite-dimensional 
manifolds [186], but the arguments were applicable to the infinite-dimensional case as well. 
Note the difference of behavior between Q-manifolds and w-manifolds, exemplified by the 
resolvability of ANR's and the lack of resolvabihty of homology n-manifolds (which are 
finite-dimensional ANR's). 

In Warsaw Torunczyk proved a remarkable characterization of 2-manifolds as locally 
compact ANR's having the disjoint n-cube property, for all n [230]. He discovered this 
property independently of Cannon's discovery of the disjoint disc property [47]. Actually, 
his result preceded Cannon's work by a few months (see p. 291 of [114]). The preprints 
were widely disseminated already in the beginning of 1977. However, the paper appeared 
only in 1980, because of the long waiting time in Fundamenta Mathematicae at that time. 
The strategy of Torunczyk's proof consisted in showing that the projection Z x Q -> Z 
(under the assumptions of the theorem) fulfills Ring's shrinking criterion, which yielded 
a homeomorphism X x Q ^ X. However, by the Edwards ANR theorem, X x 2 is a 
(2-manifold. Alternative proofs of Torunczyk's theorem were obtained by Edwards [96] 
and later by J.J. Walsh [238]. These proofs use neither the West resolution theorem nor 
the Edwards ANR theorem. Instead they use Miller's theorem and the scheme used in 
proving the characterization theorem for finite-dimensional manifolds. Torunczyk's char­
acterization theorem for Q-manifolds implies the Edwards ANR theorem and many other 
results on Q-manifolds. In 1981 Torunczyk characterized /2-manifolds as ANR's having 
the discrete-cells property [231]. An alternative proof was given in [21]. Torunczyk also 
considered the characterization of nonseparable Hilbert space manifolds and solved an old 
problem by proving that the weight of an infinite-dimensional Frechet space determines its 
topological type. 

There exist elementary examples of cell-like mappings f \X -^ Y between metric com-
pacta, which are not homotopy equivalences. A much deeper fact is the existence of cell­
like mappings which are not shape equivalences. The first such example was described by 
J.L. Taylor [224], who used sophisticated algebraic topology [1, 226]. In this example X 
is not an ANR and F = Q. There exist similar examples, where X = Q and Y is not an 
ANR [140]. At this point it was natural to ask whether the cell-like image of a compact 
finite-dimensional ANR must always be an ANR? It follows from a result of George Ko-
zlowski [149] that this is equivalent to the following question. Must a cell-like image Y 
of a compact finite-dimensional ANR X be finite-dimensional? This problem proved to be 
very difficult and for a number of years defied the efforts of many topologists. 

Finally, the problem was answered negatively. First it was proved that the following two 
problems are equivalent: (i) Does there exist a finite-dimensional metric compactum, which 
admits an infinite-dimensional cell-like image? (ii) Does there exist an infinite-dimensional 
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Thomas A. Chapman (born in 1940 in Mt. Hope, West Virginia) obtained his Ph.D. in 1970 at 
Louisiana State University from Anderson. Robert Duncan Edwards (born in 1942 in Freeport, 
New York) obtained his Ph.D. in 1969 from the University of Michigan under James Kister. 
Ross Geoghegan (born in 1943 in Dubhn, Ireland) obtained his Ph.D. in 1968 at Cornell 
University from David Wilson Henderson. James Earl West (bom in 1944 in Grinnell, Iowa) 
obtained his Ph.D. in 1967 at Louisiana State University from Anderson. Henryk Torunczyk 
(born in 1945 in Warsaw) obtained his Ph.D. in 1971 in Warsaw from Czeslaw Bessaga. Steven 
Charles Ferry (born in 1947 in Takoma Park, Maryland) obtained his Ph.D. in 1973 from 
Morton Brown at the University of Michigan. John Joseph Walsh (born in 1948 in Helena, 
Montana) obtained his Ph.D. in 1973 at the State University of New York in Binghamton 
from Louis McAuley. 

metric compactum X with finite (integral) cohomological dimension dim^ X < oo? The 
latter was a more than 50 years old unsolved problem of P.S. Aleksandrov. The equiv­
alence of the two questions was announced in 1978 by R.D. Edwards in an abstract in 
the Notices of the American Mathematical Society [97]. In 1981 J.J. Walsh published a 
proof in [237] with acknowledgement to Edwards. A construction described in this proof 
proved to be very useful in cohomological dimension theory and is usually referred to as 
the Edwards-Walsh complex. In 1988 Aleksandr Nikolaevich Dranishnikov in Moscow 
[83, 84] (a student of E.V. Shchepin born in 1958) solved the Aleksandrov problem by 
producing an infinite-dimensional metric compactum X having dim^Z = 3. He used 
the Edwards-Walsh complex and some sophisticated computations in reduced complex 
AT-theory with mod p coefficients [4, 45]. It was then easy to obtain a cell-like mapping 
f:S^-> y with dim 7 = 00. 

An important strengthening of cell-like mappings are the hereditary shape equivalences, 
i.e. proper mappings f : X -> Y, which have the property that, for every closed subset 
5 c y, the restriction of / to A = f~^{B) is a shape equivalence f\A: A ^- ^ . It 
was proved by Kozlowski [149] that the image of a compact ANR under a hereditary 
shape equivalence is always an ANR. Kozlowski's influential paper was never published. 
According to its author, the referee (Trans. Amer. Math. Soc.) required too many changes. 

Research in the theory of retracts was also going on in Moscow, especially in Smirnov's 
seminar. Yu.M. Smirnov, a well-known general topologist, started his seminar in 1953. In 
the beginning it was devoted to general and infinite-dimensional topology. Later it included 
the theory of retracts and shape. Yu.T. Lisitsa, a member of Smirnov's seminar, success­
fully applied factorization techniques to problems concerning the extension of mappings. 
In particular, he obtained extension theorems for mappings into LC^-spaces, which are 
analogues of Dugundji's theorems for mappings into LC"-spaces. Moreover, he showed 
that ANR's for metric spaces are always ANR's for the class of M-paracompact spaces, i.e. 
Hausdorff spaces, which admit perfect mappings onto metric spaces [166]. S.A. Bogatyi, 
another member of the seminar, studied various types of approximate retracts, especially 
from the point of view of shape theory [24]. Smirnov and his group devoted a number of 
papers to equivariant theory of retracts [218,219,6,7,170], a topic initially studied by J.W. 
Jaworowski [133, 134]. E.V. Shchepin obtained the surprising result that an ANR for the 
class of compact Hausdorff spaces must be either infinite-dimensional or metrizable [213]. 
The proof uses results on uncountable inverse systems of compacta, which he developed 
in his Ph.D. thesis. 
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Yurii Mikhailovich Smirnov, professor at Moscow State University, was born in Kaluga in 
1921. He began his studies at Moscow State University in 1939. He first belonged to the 
seminar of A.N. Kolmogorov (1903-1987). He became Alexandrov's student when, on Kol-
mogorov's recommendation, he was assigned to Aleksandrov to help him write his papers 
(Aleksandrov had a very poor eyesight). Smirnov's studies were interrupted by the second 
world war, which he spent in the navy. Returning from the war to the University, he defended 
his candidate's thesis in 1951 and his D.Sc. thesis in 1958. Yurii Trofimovich Lisitsa was born 
near Bershad' in Ukraine in 1947. He defended his candidate's thesis in 1973 at Moscow State 
University. Eugenii Vitalevich Shchepin was born in Moscow in 1951. He was the last student 
of Aleksandrov. At Moscow State University he defended the candidate's thesis in 1977 and 
the D.Sc. thesis in 1979. 

Recent advances in cohomological dimension theory led to the formation of a new area 
of topology, called extension theory. According to a classical theorem on the (covering) 
dimension, dim X ^ ^ if and only if every mapping / : A —> 5", defined on a closed subset 
A of X, extends to a mapping f \X -^ S". Similarly, for the cohomological dimension 
with coefficients in G, one has dim^ X ^ n provided every mapping f : A -> K{G, n) 
into the Eilenberg-Mac Lane complex K{G, n) extends to a mapping f :X -^ K{G, n). 
More generally, in extension theory one considers the problem of extending mappings into 
metric simplicial complexes and CW-complexes. This unifies and generalizes the theories 
of covering and cohomological dimensions [92]. 

2. Theory of shape 

It is generally considered that shape theory was founded in 1968, when Borsuk published 
his well-known paper on the homotopy properties of compacta [34]. Borsuk's starting point 
was the observation that many theorems in homotopy theory are valid only for spaces 
with good local behavior, e.g., manifolds, CW-complexes, ANR's, but fail when applied 
to spaces like metric compacta. A simple example of this phenomenon is the already men­
tioned Whitehead theorem that a weak homotopy equivalence between connected CW-
complexes is a homotopy equivalence. 

An example showing the failure of Whitehead's theorem for metric compacta is provided 
by the mapping / : X -> 7, where X is the Warsaw circle and Y = {*} is a point. The 
Warsaw circle, an object popular in shape theory, is the planar continuum obtained from the 
closure of the graph of the function sin(l /0, t e (0, I/TT], by identifying the points (0, 1) 
and (I/TT, 0). The mapping / is a weak homotopy equivalence, because all the homotopy 
groups of the Warsaw circle vanish. Nevertheless, / is not a homotopy equivalence. 

To overcome such difficulties, caused by local irregularities of spaces, Borsuk consid­
ered metric compacta embedded in the Hilbert cube Q (more generally, in a fixed absolute 
retract). Instead of mappings / : X -> 7 between such compacta, he considered/wnJa-
mental sequences (fn): X -^ 7, i.e. sequences of mappings fn'. Q -> Q, n = \,2,..., 
such that, for every neighborhood V of 7 in 2 , there exist a neighborhood L̂  of X in 2 and 
an integer m such that /„([/) c y, for n > m. Moreover, the restrictions fn \ U and /„' | U 
are homotopic in V, for n,n^ ^ m. Fundamental sequences compose by composing their 
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components, i.e. {gn){fn) = ignfn)- Two fundamental sequences (/„), (/„0 are considered 
homotopic provided every V admits a U and an m such that fn\U :^ fl^\U in V, whenever 
n ^ m. Homotopy of fundamental sequences is an equivalence relation and the homotopy 
classes [{fn)] compose by composing their representatives, i.e. [(gn)][{fn)] = [(gn)(fn)]' 
In this way one obtains a category, whose objects are compacta in Q and the morphisms 
are homotopy classes of fundamental sequences. Since arbitrary metric compacta embed 
in Q, one readily extends this category to an equivalent category Sh(CM), whose objects 
are all metric compacta. This is Borsuk's shape category. 

Every mapping / : X -> 7 induces a fundamental sequence, whose homotopy class de­
pends only on the homotopy class of / . In this way one obtains a functor S: Ho(CM )-^ 
Sh(CM) from the homotopy category of metric compacta to Borsuk's shape category, 
called the shape functor. Compacta X, Y of the same homotopy type have the same shape, 
sh(X) = sh(F), i.e. are isomorphic objects of Sh(CM). Borsuk showed that, for a compact 
ANR Y, shape morphisms F :X -^ 7 are in one-to-one correspondence with the homo­
topy classes of mappings X ~> Y. Therefore, for compact ANR's, shape coincides with 
homotopy type. The Warsaw circle and the circle S^ are examples of metric continua which 
have different homotopy types, but the same shape. 

Borsuk's work on shape theory also had its precedents. These include cell-like spaces 
and cell-like mappings, i.e. property UV^, as well as its finite analogue, the prop­
erty UV'\ They also include the Vietoris and the Cech homology (cohomology) groups 
[234, 57]. D.E. Christie's Ph.D. thesis, written in Princeton under Lefschetz's supervision, 
contains the beginnings of ordinary and strong shape theories [70]. In particular, Christie's 
homotopy groups coincide with Borsuk's shape groups. The 1-dimensional shape group 
was discovered even before [148]. The Brasihan topologist Elon L. Lima, a student of 
Edwin H. Spanier (1921-1996), generahzed the Spanier-Whitehead duahty to compact 
subsets of the sphere, by introducing a stable shape category [162]. However, in his paper 
no attempt was made to develop the shape category. Lima's work was "discovered" by the 
shape-theorists with considerable delay. 

Undoubtedly, many topologists became aware of Borsuk's work on shape theory after he 
presented his ideas and results in Baton Rouge, Louisiana, in 1967, during a symposium 
on infinite dimensional topology (the proceedings were published only in 1972) and in 
Hercegnovi (former Yugoslavia) in 1968, during an international conference on topology. 
At the second of these events Borsuk used for the first time the suggestive term shape [35]. 

Shortly after Borsuk's talks and seminal papers on shape theory [34-38], an avalanche 
of articles on this new branch of topology appeared. By 1980 the literature on shape theory 
already consisted of about 400 papers. Around the world, groups of shape theorists were 
formed. Three speciahzed conferences, organized in Dubrovnik in 1976, 1981 and 1986 
(Volumes 870 and 1283 of the Springer Lecture Notes in Mathematics) also contributed to 
the quick growth of shape theory. 

In the initial period Warsaw was the center of activities in shape theory and the seat of 
the Borsuk group, which included J. Dydak, S. Godlewski, W. Holsztynski, A. Kadlof, 
J. Krasinkiewicz, Krystyna Kuperberg, P. Mine, Maria Moszynska, S. Nowak, Hanna 
Patkowska, S. Spiez, M. Strok, A. Trybulec. 

In the US the first contributions to shape theory were made by Jack Segal, Professor at 
the University of Washington in Seattle (born in Philadelphia in 1934, Ph.D. in 1960 at 
the University of Georgia from M.K. Fort, Jr.), R.H. Fox (a well-known specialist in knot 
theory) and T.A. Chapman, Professor at the University of Kentucky. They were quickly 
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joined by Billy Joe Ball (born in 1925, died in Austin, Texas in 1996) and R.B. Sher (born 
in Flint, Michigan in 1939) (Athens, Georgia), J.E. Keesling (born in 1942) and Philip 
Bacon (born in Chicago in 1929, died in Gainesville 1991) (Gainesville, Florida), R. Ge-
oghegan and D.A. Edwards (Binghamton, New York), H.M. Hastings (Hempstead, New 
York), R.C. Lacher (Tallahassee, Florida), L.R. Rubin (Norman, Oklahoma), T.B. Rush­
ing (born in Marshville, N. Carolina in 1941, died in Salt Lake City in 1998) (Salt Lake 
City, Utah), J.B. Quigley (Bloomington, Indiana), D.S. Coram and R F. Duvall (Stillwa­
ter, Oklahoma), L.S. Husch (Knoxville, Tennessee), S. Ferry (Lexington, Kentucky), F.W. 
Cathey and G. Kozlowski (Seattle, Washington), G.A. Venema (Grand Rapids, Michigan) 
and many others. 

In Moscow, since 1924, Aleksandrov conducted a seminar on topological spaces and 
dimension theory. Smirnov was a member of Aleksandrov's seminar and from 1953 to 
1987 had his own seminar. Since 1970 the name of the seminar was Seminar for shape 
theory and retracts. Among the participants interested in shape theory and related areas 
were V.V. Agaronian, S. Antonian, S.A. Bogatyi, A.I. Bykov, A.Ch. Chigogidze, V.A. 
Kahnin, S.S. Kotanov, B.T. Levshenko, Yu.T. Lisitsa, I.S. Rubanov, A.R Shostak, E.G. 
Sklyarenko, G. Skordev. Smirnov's group especially studied FANR's and related spaces as 
well as equivariant shape theory. In the Soviet Union contributions to shape theory were 
also made in TbiUsi, Georgia, by Z.R. Miminoshvih, a student of L.D. Mdzinarishvih 
(who in his turn was a student of G.S. ChogoshviU (1914-1998), the leading topologist in 
Georgia). Research in shape theory and related areas was also done in Novosibirsk by V.I. 
Kuz'minov, LA. Shvedov, M.A. Batanin. 

In Japan contributions to shape theory came from Kiiti Morita (1915-1995), the founder 
of general topology in Japan (dimension theory, product spaces) and from the group around 
Yukihiro Kodama at the University of Tsukuba. Kodama's group included H. Fukaishi, 
H. Hosokawa, H. Kato, K. Kawamura, A. Koyama, J. Ono, K. Sakai, K. Tsuda, T. Watan-
abe, T. Yagasaki, K. Yokoi. 

The shape group in Zagreb (earlier Yugoslavia, now Croatia) was led by Sibe Mardesic 
(born in 1927 in Bergedorf near Hamburg, Germany). It included Z. Cerin, Q. Haxhibeqiri, 
K. Horvatic, I. Ivansic, Vlasta Matijevic, N. Sekutkovski, S. Ungar, N. Uglesic. In Ger­
many, shape theorists were led by Friedrich Wilhelm Bauer, Professor in Frankfurt a.M 
(born in Berlin in 1932). His group included B. Gtinther, P. Mrozik, H. Thiemann. In Great 
Britain the first contributions to shape theory were made by Timothy Porter, Professor at 
the University of Wales in Bangor (born in Abergavenny, Gwent in 1947). Further contri­
butions were made by Allan Calder from Birckbeck College in London. In France shape 

K. Morita was born in Hamamatsu-shi, Shizuoka. He studied at Tokyo Higher Normal School 
and Tokyo University of Science and Literature. He defended his Ph.D. thesis in 1950 at the 
University of Osaka. However, he was essentially a self-taught topologist. He was Professor 
at the Tokyo University of Education, which later became the University of Tsukuba. Morita 
also worked in algebra (module and ring theory). Y. Kodama was born in Tsuruoka in 1929. 
He obtained his B.Sci. from Tokyo University of Literature and Science in 1950 and his Ph.D. 
from Tokyo University of Education in 1960, under Morita. For his work in topology he was 
primarily inspired by studying the papers of Aleksandrov and Borsuk. He was Professor at 
Tsukuba University until his retirement in 1993. 
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S. Mardesic obtained his Ph.D. in 1957 from the University of Zagreb. He is essentially a self-
taught topologist, influenced primarily by the work of Aleksandrov and Borsuk. F.W. Bauer 
obtained his Ph.D. in 1955 in Frankfurt a.M. In his work he was primarily influenced by 
W. Franz, P.S. Aleksandrov and S. MacLane, and considers himself a member of the Aleksan­
drov school. T. Porter obtained his Ph.D. from the University of Sussex in 1972. J.-M. Cordier 
obtained his doctoral d'etat from University Paris 7 in 1987. J.M.R. Sanjurjo obtained his 
Ph.D. in Madrid in 1979 under the supervision of J.M. Montesinos. Being a knot-theorist, 
Montesinos came in touch with shape theory through Fox. 

theory began with Jean-Marc Cordier and Dominique Bourn from the University of Pi-
cardie in Amiens. The Spanish shape group was led by Jose M.R. Sanjurjo, Professor at 
the Complutense University in Madrid (born in Madrid in 1951). His group included A. Gi-
raldo, V.F. Laguna, M.A. Moron, F.R. Ruiz del Portal. Some shape theory was also done in 
Belgium (R.W. Kieboom), Canada (L. Demers), Italy (E. Giuli, L. Stramaccia, A. Tozzi), 
Mexico (Monica Clapp, R. Jimenez, L. Montejano, Sylvia de Neymet), Romania (I. Pop), 
Switzerland (H. Kleisli, C. Weber). 

Jack Segal spent the academic year 1969/70 in Zagreb. The result of this visit was joint 
work with Mardesic, generalizing Borsuk's shape theory to compact Hausdorff spaces 
[178, 179]. The new description of shape was based on a systematic use of inverse sys­
tems. Every compact Hausdorff space X can be represented as the inverse limit of a 
cofinite inverse system X = (Xx, pxx', ^ ) of compact polyhedra (or compact ANR's). 
Shape morphisms F :X -> F are given by homotopy classes of homotopy mappings 
{f, f^)\X ^^ y = (F^, p^^' , M). The latter consist of an increasing function f : M -> A 
and a family of mappings f^ : X/(^) -> Y^ such that, for /XQ ^ Ml, the following diagram 
commutes up to homotopy 

P/(/^o)/(Mi) 

^ / ( M o ) -^ ^ / ( M i ) 

(1) 

^Mo/^1 

Two homotopy mappings (f\ f), {f", fp are considered homotopic if there exists an 
increasing function / ^ f\f' such that f'^Pf'{n)f{n) ^ f^!iPf"{n)f{n)' Equivalence 
with the Borsuk approach was proved using inverse systems which consist of a decreasing 
sequence of compact ANR-neighborhoods of X in g and of inclusion mappings. 

While Borsuk's approach was rather geometric, the inverse system approach was more 
categorical and led quickly to further generalizations. In 1972 Fox generalized Borsuk's 
approach in a different direction, i.e. to arbitrary metric spaces X [109]. He embedded X 
as a closed subset in a suitable absolute retract L and used inclusion systems of ANR-
neighborhoods of Z in L. Both generalizations were unified in the papers by Mardesic 
[171] and K. Morita [191], where the general shape category Sh(Top) of arbitrary topo­
logical spaces was defined. Morita allows his systems X to be homotopy systems, i.e. the 
usual conditions on bonding mappings px\': Xx' -^ Xx and projections px'.X -> Xx are 
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replaced by homotopy conditions pxx'Px'x" — Pxx", Pxx'Px' — px^ ^ ^ ^' ^ ^"- More­
over, some theorems from [179] now became conditions (Ml), (M2), which are part of the 
definition of a system being associated with a space: 

(Ml) For every mapping / : X -> P to a polyhedron (or ANR) P, there exist a X E yl 
and a mapping fx'.Xx^ P such that fxpx - / . 

(M2) For every X e A and mappings fx, f^'.Xx -^ P such that fxpx — fxPx, there 
exists an index X' ^ X such that fxPxx' — fxPy^x'-

Morita proved that the Cech system, formed by the nerves of all normal coverings of X, 
is a homotopy system associated with X [192]. In the terminology first used in algebraic 
geometry [116], shape morphisms are given by morphisms X ^^ Y from the category 
pro-Ho(Top), where Ho(Top) denotes the homotopy category of topological spaces. 

One of the first successful apphcations of shape theory is Fox's theory of overlays, a 
modification of covering spaces [109]. The classical theorem of covering space theory 
asserts that n-fold covering spaces of a connected arcwise locally connected and semi-
locally 1-connected space X are in a one-to-one correspondence with the classes of ho-
momorphisms of the fundamental group Tt\ {X) into the symmetric group X'̂ , where two 
homomorphisms 0, yj/ belong to the same class provided there exists an inner automor­
phism 0 : En -^ ^n such that 0 = ^i/r. Fox's shape theoretic version of the theorem, 
refers to overlays of arbitrary metric spaces X (embedded in some ANR). However, the 
fundamental group 7ti{X) has to be replaced by iht fundamental pro-group 7ri(X, *), the 
inverse system of fundamental groups of ANR-neighborhoods of X. 

Further significant successes of shape theory were the shape-theoretic versions of 
the theorems of Whitehead, Hurewicz and Smale. The statements of these results also 
use pro-groups, i.e. inverse systems of groups. Application of the singular homology 
functor H,n(.',G) to X yields an inverse system of Abelian groups H,n(X; G) = 
(H,n{Xx', G), pxx'^, A), called the m-th-homology pro-group of X. Similarly, for sys­
tems of pointed spaces {X, *), one defines the m-ih-homotopy pro-group 7Tm(X, *). If X 
and (X, *) are systems of ANR's associated with the space X and (X, *), respectively, 
then these pro-groups do not depend on the choice of the associated systems. Moreover, 
they are shape invariants of X and (X, *), respectively. The inverse limit H,n{X\ G) = 
lim Hm(X; G) is the Cech homology group. The shape groups ftmiX, *) = \imnm(X, *), 
were first defined in [70]. One should keep in mind that the Cech groups and the shape 
groups give less information about the space than the corresponding homology and homo­
topy pro-groups. 

The most general version of the Whitehead theorem in shape theory is due to K. Morita 
[190]. It asserts that a morphism of pointed shape F: (X, *) -> (Y, *) between finite-
dimensional topological spaces is a shape equivalence, i.e. an isomorphism of pointed 
shape if and only if it induces isomorphisms of all homotopy pro-groups F# : 7Tm (X, *) -^ 
7im(Y, *). In contrast to the classical Whitehead theorem, there are no restrictions on the 
local behavior of the spaces involved. Morita's result was preceded by less general versions 
of the theorem, obtained by Moszynska [193] and Mardesic [172]. The restriction to finite 
dimensions cannot be omitted. A counterexample was obtained in [82], using a metric 
continuum defined by D.S. Kahn [135]. For every odd prime p, one considers the CW-
complex Xo, obtained by attaching a (2/7 + l)-cell to 5^^ by a mapping of degree p. One 
defines X^+i as the (2/7 — 2)-fold suspension E^P~^{Xn), n ^ 0. A particular mapping 
fi'.Xi -^ Xo is chosen. For « > 1, one defines mappings fn : X„ -^ X„_i by putting 
/„ = i;^^~^(/„_i). The Kahn continuum is the limit of the inverse sequence defined 
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Stanislaw Spiez (born in Kalisz, Poland in 1944), Slawomir Nowak (born in Sosnowiec, 
Poland in 1946) and Jerzy Dydak (born in Brzozow, Poland in 1951) obtained their Ph.D. 
degrees from the University of Warsaw in 1973, 1973 and 1975, respectively. They were Bor-
suk's students. Dydak moved to US in 1982. 

by the spaces Z„ and by the mappings /„ . The crucial property that all the compositions 
fi o ' " o fj, i < j , are essential mappings depends on deep results in homotopy theory 
[1,226]. 

In the Whitehead theorem mentioned above the restriction to finite-dimensional spaces 
can be replaced by the weaker restriction to spaces of finite shape dimension sd (also called 
fundamental dimension and denoted by Fd). This is a numerical shape invariant introduced 
by Borsuk [36]. An extensive study of this notion was carried out by Polish topologists 
S. Nowak [196] and S. Spiez [220, 221]. 

The shape-theoretic Hurewicz theorem involves homology pro-groups. One assumes 
that X is a (n — \)-shape connected space, n ^ 2, i.e. its homotopy pro-groups 7tm(X, *) 
vanish, for m ^ n — I. One concludes that the corresponding homology pro-groups 
Hfn(X; Z) vanish and there exists a natural isomorphism 0„ : 7r„(X, *) -^ Hn{X; Z) of 
the n-th-pro-groups. The general result is due to Morita [190]. Earlier versions involv­
ing shape groups were obtained by M. Artin and B. Mazur [10] and K. Kuperberg [152]. 
A Hurewicz theorem involving Steenrod homology is due to Y. Kodama and A. Koyama 
[146] and to Yu.T. Lisitsa [168]. 

The classical Smale theorem is the homotopy version of a theorem of Vietoris concern­
ing cell-like mappings of compacta [217]. The shape-theoretic Smale theorem was proved 
by J. Dydak [89,91] and asserts that, for metric compacta, every cell-like mapping induces 
isomorphisms of homotopy pro-groups /# : 7r„(X, *) -> 7r„(F, *), for all n and all base-
points. Consequently, if sd Z, sd 7 < oo, the Whitehead theorem applies and / is a shape 
equivalence. 

Among the most important contributions of Borsuk to shape theory is the introduction 
of two shape invariant classes of metric compacta, the fundamental absolute neighborhood 
retracts FANR's [36] and movable compacta [37]. X is an FANR provided, for any com­
pact metric space Y containing X, there exist a closed neighborhood U of X in Y and a 
shape retraction R:U -> X, i.e. a shape morphism which is a left shape inverse of the 
inclusion mapping i\X -> U, RS[i} = id^. Clearly, every compact ANR is an FANR. 
Many results from the theory of retracts have their analogues in the theory of shape. For 
example, if X is shape dominated by X' (i.e. there exist shape morphisms f \X ^^ X' and 
g'.X' -^ X such that gf = idx) and X' is an FANR, then X is also an FANR. This im­
plies that FANR's coincide with metric compacta which are shape dominated by compact 
polyhedra. 

A compact space X, embedded in the Hilbert cube Q, is movable provided every neigh­
borhood [/ of X in g admits a neighborhood U^ of X such that, for any neighborhood 
U" c ^ of X, there exists a homotopy H.U'xI ^ U with H(x,0) = x, H{x,l) e U\ 
for all X € U'. In other words, sufficiently small neighborhoods of X can be deformed ar­
bitrarily close to X. Borsuk proved that this remarkable property is a shape invariant. In a 
subsequent paper, he characterized FANR's by a similar property, called strong movabil-
ity [38]. From its definition it is clear that FANR's are always movable. In fact, Borsuk 
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introduced movability as a tool needed to detect that some compacta, e.g., the solenoids, 
are not FANR's. Borsuk also introduced the notion of n-movability and proved that LC^~^ 
compacta are always ^-movable [39]. A compactum X Q Qis ^-movable provided every 
neighborhood U of X in Q admits a neighborhood U^ of X in g such that, for any neigh­
borhood U^' c i7 of Z, any compactum K of dimension dim K ^ n and any mapping 
f :K -> U\ there exists a mapping g: K -^ U'\ such that / and g are homotopic in U. 
Clearly, if a compactum X is /2-movable and dim Z ^ /i, then X is movable. The notion of 
Ai-movability was the beginning of n-shape theory, which was especially developed in the 
papers of A.Ch. Chigogidze [69]. The n-shape theory is an important tool in the theory of 
n-dimensional Menger manifolds, developed by M. Bestvina [19]. 

Further studies revealed the importance of pointed FANR's and pointed movability. For 
example, the union of two pointed FANR's, whose intersection is a pointed FANR, is 
again a pointed FANR [94]. The main protagonists of this research were D.A. Edwards, 
R. Geoghegan, H.M. Hastings, A. Heller and J. Dydak. It was shown in [99, 101] that 
connected pointed FANR's coincide with stable continua, i.e. continua having the shape 
of a polyhedron. In general one cannot achieve that this polyhedron be compact. This is 
because there exist noncompact polyhedra P, which are homotopy dominated by compact 
polyhedra, but do not have the homotopy type of a compact polyhedron [236]. Edwards and 
Geoghegan [100] defined a Wall obstruction a (X) for FANR's X and they showed that X 
has the shape of a compact polyhedron if and only if a (X) = 0. Since a (X) is an element 
of the reduced projective class group K^ini (Z, *)) of the first shape group n\ (X, *), this 
result linked shape theory to AT-theory. 

The question whether every FANR is a pointed FANR eluded the efforts of shape the­
orists for several years. Finally, in 1982, Hastings and Heller proved that this is always 
the case [122]. The crucial step in their proof is a purely homotopy theoretic result. This 
is the theorem that on a finite-dimensional polyhedron X every homotopy idempotent 
f :X -^ X splits, i.e. f^ — f implies the existence of a space Y and of maps u.Y ^^ X, 
v'.X -^ Y, such that vu 2:: ly, uv 2:^ f. The proof uses nontrivial combinatorial group 
theory as well as the spectral sequence of a covering mapping. More precisely, it uses a par­
ticular group G and a particular homomorphism (t)\G ^^ G, which induces an unsplittable 
homotopy idempotent / : K{G, 1) -> K{G, 1) of Eilenberg-Mac Lane complexes. It also 
uses the fact that the construction is universal in the sense that whenever f^:X-> X is an 
unsplit homotopy idempotent, then there is an injection G ^- TTI ( Z ) , which is equivariant 
with respect to /# and /^. The group G itself has been considered before by R.J. Thomp­
son (unpublished). Parts of the argument were discovered independently by R Mine, by 
J. Dydak [90] and by R Freyd and A. Heller (unpublished). The question whether movable 
continua are always pointed movable is still open. 

For movable spaces various shape-theoretic results assume simpler form. For example, 
if / : (X, *) -^ (F, *) is a pointed shape morphism between pointed movable metric con­
tinua, which induces isomorphisms of shape groups /# : TCkiX, *) -^ likiY, *), for all k 
and if the spaces X, Y are finite-dimensional, then / is a pointed shape equivalence. This 
is a consequence of the shape-theoretic Whitehead theorem and the fact that such an / 
induces isomorphisms of homotopy pro-groups TikiX, *) -^ 7r^(F, *) [141, 91]. 

In 1972 a new direction in shape theory was inaugurated by Chapman. He applied meth­
ods of infinite-dimensional topology to the study of shape of metric compacta [62]. More 
precisely, he considered compacta X which are Z-embedded in the Hilbert cube Q, i.e. 
have the property that there exist mappings f: Q -^ Q, which are arbitrarily close to 
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the identity but their image f{Q) misses X. This condition, introduced by R.D. Anderson 
[5], impUes tameness and unknottedness of compacta and proved to be fundamental in the 
development of the theory of Q-manifolds [66]. Chapman's complement theorem asserts 
that two compacta X, Y, embedded in Q as Z-sets, have the same shape if and only if their 
complements Q\X, Q\Y are homeomorphic. Chapman also exhibited an isomorphism of 
categories T : yVV -> S. The domain of T is the weak proper homotopy category of com­
plements M = Q\X oi Z-sets X of Q. Morphisms of WV are equivalence classes of 
proper mappings f: M -> N = Q\Y. Two such mappings f,g'.M -> Â  are consid­
ered equivalent provided every compact soi B ^ N admits a compact set A c M and a 
homotopy H: M x I -^ N such that H connects f to g and H((M\A) x /) c N\B. 
The codomain of T is the restriction of the shape category Sh(CM) to Z-sets X of Q. On 
objects M = Q\X of W P one has T(M) = Q\M = X. 

Subsequently, Chapman published a second paper, which contained a finite-dimensional 
complement theorem, i.e. a theorem where the ambient space was the Euclidean space 
[63]. This paper had a strong geometric flavor and immediately attracted the attention of a 
number of specialists in geometric topology, in particular in PL-topology, who produced a 
series of finite-dimensional complement theorems. In most of these theorems one assumes 
that X and Y are "nicely" embedded in the Euclidean space R" and satisfy the appropri­
ate dimensional conditions. The conclusion is that X and Y have the same shape if and 
only if their complements R^\X, R^^\Y are homeomorphic. The most general of the re­
sults obtained is the complement theorem from [132]. It assumes that X and Y are shape 
r-connected, sdX = sdY = k, n — k ^ 4 and n ^ max{5, 2k -\-2 — r}. The "niceness" 
condition is the inessential loops condition ILC, introduced by G.A. Venema [233]. A com-
pactum X c R" satisfies ILC provided every open neighborhood t/ of X in R'̂  admits an 
open neighborhood V of Z in L̂ , such that each loop in V\X, which is null-homotopic in 
V, is also null-homotopic in U\X. This condition was preceded by McMillan's cellularity 
criterion CC [183]. Complement theorems in more general ambient spaces and different 
categories were studied extensively by P. Mrozik [195] 

A compact metric space X embeds up to shape in a space Y provided Y contains a metric 
compactum X' such that sh (X) = ^h{X'). L.S. Husch and I. Ivansic obtained several 
interesting results concerning this notion. In particular, they showed that every r-shape 
connected and pointed (r -|- l)-movable compactum X with sd(X) =k,k^?>, embeds up 
to shape in R^^-^ [131]. 

Based on Quillen's homotopical algebra [202], Edwards and Hastings introduced a ho­
motopy category of inverse systems, denoted by Ho(pro-Top). It is obtained from the cate­
gory pro-Top by locahzation at level homotopy equivalences. Using this category instead 
of pro-Ho(Top), they defined a strong shape category SSh( CM) of compact metric spaces. 
Strong shape has distinct advantages over shape, e.g., Edwards and Hastings showed that 
the analogue of Chapman's category isomorphism theorem assumes a more natural form. 
It asserts the existence of an isomorphism T :V -^ SS, between proper homotopy cate­
gory V of complements M = Q\X of Z-sets X of Q and the restriction SS of the strong 
shape category SSh(CM) to Z-sets of Q [102, 147]. The strong shape category for metric 
compacta was first defined by J.B. Quigley, a student of J. Jaworowski at the University of 
Indiana in Bloomington [201]. 

Through efforts of various authors over several years, in particular. Porter [199], 
Bauer [15, 16], Calder and Hastings [46], MiminoshviU [189], Cathey and Segal [48], 
Lisitsa [167], Lisica and Mardesic [163, 164], Dydak and Nowak [93], Gunther [117], 
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David A. Edwards was bom in 1946 in New York. He obtained his Ph.D. in 1971 from 
Columbia University in New York. Harold M. Hastings was bom in 1946 in Dayton, Ohio. 
He obtained his Ph.D. in 1972 from Princeton University. 

a strong shape category for topological spaces SSh(Top) was defined and so was a strong 
shape functor S : Ho(Top) -> SSh(Top). It is related to the shape functor 5 by a factoriza­
tion S = E S, where E : SSh(Top) -^ Sh(Top) is a functor which forgets part of the richer 
structure of strong shape. 

In defining the strong shape category for arbitrary spaces, one needed a method of asso­
ciating with any given space X a system of polyhedra (or ANR's) in the category Top. One 
way of doing this is provided by the Vietoris system [199, 118]. Another approach, used 
by Bauer, rigidifies a construction from [171] and associates with X a 2-category Px. Its 
objects are mappings into polyhedra g:X-^P and its 1-morphisms gi -> g2 are given by 
a mapping r : P\ -^ P2 and a homotopy CD, which connects rg\ with g2. The 2-morphisms 
are defined by homotopies of order 2. This approach was generalized to homotopies of 
arbitrarily high order (expressed in simplicial terms) by Gunther [117]. 

Another method is based on the notion of resolution of a space X [173] (more generally, 
on strong expansions [93, 117, 174]). A resolution/i: Z —> Z is a morphism of pro-Top 
which satisfies a stronger version of Morita's conditions. 

(Rl) Given a polyhedron P and an open covering V of P, any mapping f :X -> P 
admits SLX e A and a mapping h\Xx -^ P such that the mappings hpx and / are V-near. 

(R2) There exists an open covering V' of P, such that whenever, for a A € y\ and two 
mappings h,h' \Xx -> P, the mappings hpx, h'px are V'-near, then there exists a Â  ̂  A. 
such that the mappings hpxx', h^Pxx' are V-near. 

To define a strong shape morphism F : X —> F, it suffices to choose (cofinite) polyhedral 
resolutions/?: X ^^ Y, q:Y -^ Y and a morphism Z -^ Y of Ho(pro-Top). 

It is an important fact that the category Ho(pro-Top) is equivalent to the coherent ho­
motopy category CH(Top), which can be viewed as a concrete realization of the for­
mer category [163, 164]. Its morphisms are coherent homotopy classes of coherent map­
pings f'.X-^ Y. The latter consist of an increasing function f \M -^ A and of map­
pings /^Q: X/(^Q) -^ F^Q, which make diagram (1) commutative up to a homotopy 
//xoMi '^/(/xi) X / -^ y^Q, which is also part of the structure of/. For three indices 
/̂ o ^ Ml ^ ^2, one has homotopies //xoMiAt2 • ^/(M2) X ^^ -^ ^MO' where A^ is the stan­
dard 2-simplex. One requires that, on the faces of A^, f^iQiiMii is given by the mappings 
//X1/X2, //ioM2' /MO/̂ 1 as indicated on the following figure. 

MlM2 

•^/^O fixQfji^ / M I 
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Analogous requirements are imposed on higher homotopies ffiQ...fM„ : ^/(/x„) x zi'̂  -> F^̂ Q, 
for all increasing sequences /XQ ^ • • • ^ /x„ and all n. There are other, more sophisti­
cated descriptions of coherent categories, due to J.M. Boardman and R.M. Vogt [23, 235], 
Cordier and Porter [72, 73], N. Sekutkovski [211], Batanin [14], but they all yield cate­
gories equivalent to CH(Top). 

An important circle of ideas, related to strong shape, refers to strong or Steenrod homol­
ogy. It was originally defined only for metric compacta [222]. Over the years, especially 
in former USSR, much work was done on strong homology of general spaces [215, 216]. 
The relation of strong homology to singular and Cech homology is similar to the relation 
of strong shape to homotopy and ordinary shape. For pairs of spaces (X, A), where A is 
normally embedded in X (e.g., if A is closed and X is paracompact), all the Eilenberg-
Steenrod axioms are fulfilled. From the point of view of shape theory, the most important 
property of strong homology is its invariance with respect to strong shape [163, 165]. In 
contrast to Cech homology, Cech cohomology has a long record of successful applica­
tions. The explication lies in the fact that direct limit is an exact functor, while inverse 
limit is not, i.e. in general, the derived functors lim'̂  of lim are nontrivial. The higher limits 
Xmi^Hm{X\ Z) of the homology pro-groups play an important role in strong homology of 
spaces. Actually, there exist paracompact spaces X with lim"//;„(X; Z) / 0, for n arbi­
trarily high [175]. However, if X is compact, lim"//„,(Z; Z) = 0, forn ^ 2 [156, 176]. 

Using a suitable approximate homotopy lifting property, D.S. Coram and RF. Duvall 
have introduced approximate fibrations as mappings f '.X -^ Y between ANR's, which 
generalize cell-like mappings and share many homotopy-theoretic properties with fibra­
tions [71]. This class of mappings proved very useful in the study of mappings between 
manifolds. For mappings between metric compacta, approximate fibrations had to be re­
placed by shape fibrations [111, 250]. The definition of a shape fibration between arbitrary 
spaces required the notion of resolution of a mapping [173]. A very useful generalization of 
the latter notion was introduced by T. Watanabe, who introduced approximate resolutions 
of mappings [239]. Subsequently, a more general theory was developed in [181]. 

Appropriate variations of the basic ideas of shape led to new types of shape theories. 
In particular, there is fibered shape [138, 249], equivariant shape [8, 61], stable shape 
[197, IS], proper shape [12, 11], uniform shape [209, 188]. 

Generally, one expects to find applications of shape theory in problems concerning 
global properties of spaces having irregular local behavior. Such spaces naturally appear 
in many areas of mathematics. A typical example is provided by the fibers of a mapping 
as in the case of cell-like mappings. Other examples are given by remainders of com-
pactifications, by sets of fixed points, by attractors of dynamical systems and by spec­
tra of operators. In the latter, strong extraordinary homology plays and important role 
[137,136,17,76]. 

Keesling has devoted a series of papers to the study of the remainder )6X\Z of a locally 
compact space X in its Cech-Stone compactification [142]. In this research he used his 
earlier results concerning the Cech cohomology groups of movable spaces. Recently, shape 
theory found applications also in the field of geometric group theory. More precisely, the 
boundary 9G of a (discrete) group G is defined as a Z - set of a finite-dimensional compact 
AR X, such that the following two axioms hold: (i) X = X\Z admits a covering space 
action of G with compact quotient; (ii) The collection of translates of a compact set in 
X forms a null-sequence in X, i.e. for every open covering U of X all but finitely many 
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translates are W-small. The boundary 9 G is determined up to shape, i.e. if Z\ and Z2 satisfy 
the above axioms, then sh(Zi) = sh(Z2) [20]. 

Shape theory also led to new developments in the fixed point theorems. For every com­
pact ANR X and every mapping / : X -> Z, the Lefschetz number A{f) is a well-defined 
integer. If A{f) / 0, then / has a fixed point. This well-known theorem is not true for 
arbitrary metric compacta, because for acyclic continua A{f) = 1 and they need not have 
the fixed point property. Nevertheless, Borsuk proved that, for an arbitrary metric com-
pactum X, A(f) ^ 0 impUes the existence of fixed points, provided / belongs to a certain 
class of mappings, called nearly extendible mappings [40]. Another new result asserts that 
the space 2^ of nonempty compacta and the space C{X) of nonempty continua in a locally 
connected Hausdorff continuum X have the fixed point property [210]. This was known 
before only for Peano continua X. 

As an example of application of shape theory in dynamical systems we state the follow­
ing result. A finite-dimensional metric compactum embeds in a (differentiable) manifold 
M as an attractor of a (smooth) dynamical system on M if and only if it has the shape of 
a compact polyhedron [119, 208]. Another appUcation of shape concerns the definition of 
the Conley index for continuous and discrete dynamical systems [205]. 

Shape theory has also applications in the theory of continua. For example, joinable con­
tinua were characterized as pointed 1-movable continua [150]. H. Kato successfully ap-
phed shape theory to the study of Whitney mappings of hyperspaces 2^ and C{X) [139]. 

There are many situations, where shape itself does not apply, but its methods do. Typ­
ical examples are properties at infinity of locally compact spaces (see [58]) and proper 
homotopy (see [185,200,59]). Ideas of shape theory had a bearing on homology of groups 
[115]. The abstract aspects of shape led to categorical shape theory [75] and opened further 
possibilities of application, e.g., in pattern recognition [198, 74]. 

The approach to shape by inverse systems of polyhedra or ANR's is not the only one. 
A different approach, recently inaugurated by Sanjurjo [207] and further developed by 
Cerin [60] is based on the idea of replacing mappings by multivalued mappings, which 
map points into sufficiendy small sets. 
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