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FROM RING EPIMORPHISMS TO UNIVERSAL LOCALISATIONS

FREDERIK MARKS, JORGE VITORIA

ABSTRACT. For a fixed ring, different classes of ring epimorphisms ldlisation maps are compared. In
fact, we provide sufficient conditions for a ring epimorphiso be a universal localisation. Furthermore, we
consider recollements induced by some homological ringnegphisms and investigate whether they yield
recollements of derived module categories.
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1. INTRODUCTION

It is well-known that Ore localisations yield ring epimorgims with a flathess condition. Different gener-
alisations of Ore localisation, notably localisation widspect to a Gabriel filter and universal localisation,
usually lack this flatness property. Localisations withpexs to Gabriel filters generalise Ore localisations
from a torsion-theoretic point of view. From a homologicakgpective, however, these localisation maps
are often difficult to deal with. In fact, they are not alwaysgrepimorphisms. Still, this setting is large
enough to include all flat ring epimorphisms and these Ieatiins are called perfect (s€el[24] for details).
Universal localisations, as developed by Cohnl([11]) ando8eld ([23]), provide a technique that largely
differs from the one above. In particular, they yield ringreprphisms satisfying some nice homological
properties. Universal localisations have shown to be ligefagebraic K-theory ([19],[20]) and the study
of tilting modules and derived module categories in reprgion theory ([1],[[2],[16],17], [8]).

In [1], both universal and perfect localisations were useddnstruct (large) tilting modules. Further-
more, [1] compares perfect and universal localisationséwnihereditary rings and Prifer domains. Also,
in [17], it was proved that universal localisations are iedtion with homological ring epimorphisms for
hereditary rings. These results motivate the study of wsaldocalisations from a homological point of
view, which we further in this paper, namely through our firgtorem.

Theorem A (Theoreni 3.B).et f: A— B be aring epimorphism such that B is a finitely presentedeft
module of projective dimension less or equal than one. Thierhémological if and only if it is a universal
localisation.

Recent work uses universal localisations to constructresteng examples of recollements of derived
module categories[([2], [6].[7].[8]). In this setting, weope the following theorem.

Theorem B (Theoren{ 4.1} et f: A— B be a homological ring epimorphism such that B is a finitely
presented left A-module of projective dimension less oakethan one. If Hom(coker(f),ker(f)) =0
holds then the derived restriction functay ihduces a recollement of derived module categories

D(B) —= D(A) — D(Endp(u(Kr)),

where K is the cone of f ifD(A). Moreover, if B is a finitely presented projective left A-miedthen there
is an isomorphism of rings Enga) (Kf) = A/1g(A), wheretg(A) is the trace of B in A.
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Note that theorem A cannot hold in full generality since ensal localisations are not always homo-
logical ring epimorphisms (see example 2.14) just as hogicéd ring epimorphisms are not necessarily
universal localisations, notably through Keller's exaenpl [15]. Using different methods, theorem A has
also been proved independently by Chen and Xiln [8] (corpl&a?).

Theorem B yields recollements in which both outer terms areveld module categories. These recolle-
ments are particularly relevant to recent results obtaind@|, [4] and [1§], where a Jordan-Hdlder-type
theorem for derived module categories of some rings has pemmd. Such a property cannot, however,
hold for all rings and a counter example can be constructed) usmiversal localisations[([6]).

This paper is organised as follows. In section 2 we recallespreliminaries and prove some easy facts.
Remark2.b and lemnia 2.9, in particular, give informationhomw to construct examples in our setting.
Section 3 contains theorem A and consequences for the chfieftey injective and surjective ring epi-
morphisms. Also, following subsection 2.4, we generalimedomparison between universal localisations,
localisations with respect to Gabriel filters and flat ringnegrphisms initiated in[1]. In section 4 we prove
theorem B, while examples illustrating this result are giug section 5. In particular, we use our methods
to obtain a large class of algebras which are not derivedlsimp

2. RING EPIMORPHISMS AND LOCALISATIONS

Throughout, A will be a ring with unit andK a field. We will denote the category of left (respectively,
right) A-modules byA-Mod (respectivelyMod-A), its subcategory of finitely generated modulesfssnod
(respectivelymod-A) and its subcategory of finitely generated projective meslldlyA-proj. The derived
category of leftA-modules will be denoted b (A).

2.1. Ring epimorphisms. We will be discussing some types of ring epimorphisms. Rebalk a ring
epimorphism is just an epimorphism in the category of ringh wnit. Two ring epimorphismg : A— B
andg: A — C are said to be equivalent if there is a ring isomorphisnB — C such thaig = hf. We then
say thatB andC lie in the same epiclass &f.

Proposition 2.1 ([24], Proposition XI.1.2) For a ring homomorphism fA — B, the following statements
are equivalent.
(1) fisaring epimorphism;
(2) The restriction functor ,f: B-Mod — A-Mod (respectively,sf: Mod-B— Mod-A) is fully faithful,
(3) f®aB=B®af:B— B®aB is anisomorphism of B-B-bimodules;
(4) Boacoker(f) =0.
Moreover, the functor B a — (respectively— ®aB) is left adjoint to f (respectively, 4).

Consider the following sequence of létmodules given by a ring epimorphisin A — B

0—ker(f) — = A—"~ B— coker(f) — =0,

which we unfold into two short exact sequences, namely

2.1) 0—ker(f) — = A—'= f(A) —=0,

(2.2) 0—— f(A)——= B ——=coker(f) —— 0.
The following easy observations follow from propositlod]2.

Corollary 2.2. Let f: A— B be aring epimorphism. The following assertions hold.
(1) Boaf(A) 2BaBXB;
(2) Boaker(f) = Tor)(B, f(A));
(3) If Tor{\(B,B) = 0then Tof'(B,coker(f)) = 0.



Proof. To prove (1), consider the commutative diagram given by giareno factorisation of

A f B
N
F(A)

and apply to it the functoB ®a —. By propositio 21B®a f : BaA — B®aB is an isomorphism and,
therefore, the induced epimorphidia f is also a monomorphism.

The statements (2) and (3) follow from (1) by consideringltmgy exact sequences given by applying the
functor B®a — to the sequencek (2.1) and (2.2), respectively.

0

Epiclasses of a ring\ can be classified by suitable subcategorie®\dflod. For a ring epimorphism
f : A— B we denote byxg the essential image of the restriction functor.
Theorem 2.3([13], Theorem 1.2/114]/T22], Theorem 1.6.I)here is a bijection between:
(1) ring epimorphisms A+ B up to equivalence;
(2) bireflective subcategorie¥s of A-Mod (respectively, Mod-A), i.e., strict full subcaiggs of A-Mod
(respectively, Mod-A) closed under products, coproduasyels and cokernels.

If A'is a finite dimensionaK-algebra, this bijection can be restricted between:

(1) ring epimorphisms A+ B up to equivalence, where B is a finite dimensidiedlgebra;
(2) bireflective subcategoriesg of A-mod (respectively, mod-A), i.e., strict full funcédly finite sub-
categories of A-mod (respectively, mod-A) closed underdierand cokernels.

Given a ring epimorphisni : A — B consider the adjunction in proposition P.1. For a kfinoduleM,
let Ym : M — B®a M be the unit of this adjunction &tl. Clearly, we have that

WUm(M) =1g@m, Vme M.

Note thatyy for a left B-moduleN is an isomorphism. The following easy lemma shows that the yna
is the Xg-reflection of the leftA-moduleM.

Lemma 2.4. Let f: A— B be aring epimorphism and M a left A-module. For any left Bdoie N and for
any A-homomorphism:gM — N, g factors uniquely througt.

Proof. Since the majy is an isomorphism, we can define a homomorphisr-aiodules

G:= Wy o (BOAQ).
Itis clear thatg = §o Yy and, by constructiorg is the unique map satisfying this property. O
Remark2.5. In particular, note that the ring epimorphisfnm A — B, regarded as a homomorphism Af

modules, is ag-reflection. Moreover, ifA is a finite dimensionaK-algebra, therf can be seen as the sum
of the reflections of the indecomposable projecfivenodules.

2.2. Flat and finite ring epimorphisms.

Definition 2.6. A ring epimorphismf : A— B is said to be

e flat, if f turnsB into a flat leftA-module;

o finite, if f turnsB into a finitely generated projective lef¢module;

o 1-finite, if f turnsB into a finitely presented lefA-module of projective dimension less or equal
than one.

Clearly, every finite ring epimorphism is flat and 1-finite.r@ersely, the following result holds.
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Proposition 2.7([12], Corollary 1.4) If A is a perfect ring, then a ring epimorphism A — B is flat if and
only if it is finite.

Remark2.8. For a perfect ringp, a ring epimorphismA — B is finite if and only if every finitely generated
projective leftB-module is finitely generated and projective as a fefnodule. EquivalentlyB is finitely
generated as a left-module and for alM in B-modits projective cover irA-modis also a lefB-module.

Recall that finite dimension& -algebras are perfect rings. From remarK 2.8 and thebreiwe get the
following immediate lemma.

Lemma 2.9. Let A be a finite dimension@-algebra. There is a bijection between
(1) finite ring epimorphisms A+ B up to equivalence;
(2) bireflective subcategorie&s of A-mod (respectively, mod-A) such that projective objetitg are
projective A-modules.

2.3. Homological ring epimorphisms. We are interested in ring epimorphisms with particularlyenino-
mological properties. Following Geigle and Lenzing ([14d)ring epimorphismf : A — B is said to be
homological ifTor(B,B) = 0, for alli > 0.

For any ring epimorphisni : A — B, we denote b¥; the object

f
A——B
in the category of complexes of leftmodules, wherd lies in position—1. Note that, regarded as an object

of D(A), K¢ is isomorphic to the cone of the mdpseen as a map of complexes concentrated in degree zero.
The following well-known result is an analogue of propasi{Z.1 for homological ring epimorphisms.

Proposition 2.10. The following are equivalent for a ring homomorphismA — B.
(1) fis a homological ring epimorphism;
(2) The derived restriction functor, f D(B) — D(A) is fully faithful;
(3) Bk f : B— B®j B is an isomorphism irD(A);
(4) BoxKs =0.
Moreover, the functor Bk — is left adjoint to f.

Proof. The fact that (1) is equivalent to (2) can be found_in [14] ¢iteen 4.4).

Itis easy to see that (1) is equivalent to (3). Indeed, na@eHR(B®% f) = B®a f is an isomorphism if
and only if f is a ring epimorphism. Also, far> 0, H'(B @k f) = Tor(B, f) is the zero map and it is an
isomorphism if and only iH! (B B) = TorA(B,B) = 0.

Finally, we check that (3) is equivalent to (4). Considerttiiengle inD(A)

f
A B K A1

and apply to it the triangle funct® % —. Clearly,B®% f is an isomorphism if and only B ®% K¢ = 0,
thus finishing the proof. d

Homological ring epimorphisms @& play a role in understanding how decomposéhe derived category
D(A) into other triangulated categories. Thliscompositions formalised by the notion of recollement.

Definition 2.11. Let X, 9", D be triangulated categories. A recollementiofby X and?’ is a diagram of
six triangle functors, satisfying the properties below.
i* Ji
4 L D J—*> X.
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Q) (i*,i.), (is,i"), (j1, §°) , (j*, j«) are adjoint pairs;
(2) iy, js, ji are full embeddings;

(3) i' 0 j, =0 (and thus alsg* oi, = 0 andi* o j, = 0);
(4) for eachZ € D there are triangles

iZ—=Z— 2021
n'Z—=2Z—iLi"'Z— jij*Z[1].

We now recall the following result from [21], stating how hological ring epimorphisms give rise to
recollements.

Theorem 2.12([21], 84). Let f: A— B be a homological ring epimorphism. Then the derived retstm
functor f, induces a recollement

f. .
D(B) —— D(A) —— Tria(Ky) ,

where TrigK;) denotes the smallest triangulated subcategoryDgA) containing K and closed under
coproducts.

2.4. Universal localisations. The following theorem defines and shows existence of uraté&salisations.

Theorem 2.13([23], Theorem 4.1)Let A be aring and a set of maps between finitely generated projective
left A-modules. Then there is a ring Aunigue up to isomorphism, and a ring homomorphismXA — As
such that

(1) As ®a0is an isomorphism of left A-modules for allc Z;
(2) every ring homomorphism:gA — B such that Bxa 0 is an isomorphism for alb € X factors in a
unique way throughsf i.e., there is a commutative diagram of the form

g
N
As.

We say that the rind\s in the theorem is the universal localisationfdat 2. It is well-known that the
homomorphismfs : A — As is a ring epimorphism witfTor}'(Asz,As) = 0 ([23]). The functorAs ®a —
is called the localisation functor of the universal locatlien and it is left adjoint to the restriction functor
fs. : As-Mod — A-Mod (see proposition 2/1). For a lefi-module M we call theXa, -reflectiony the
localisation map oM (see lemm&a?2]4).

We can also define universal localisations with respect tertain set ofA-modules. Indeed, letl be a
set of finitely presented leA-modules of projective dimension less or equal than one. et byA; the
universal localistaion of atX = {oy |U € U}, whereoy : P — Qs a projective resolution dj in A-mod
Note thatA¢; is well-defined by([11] and we will call it the universal lotsation of A at?l. The following
easy example shows that universal localisations do noemegl, yield homological ring epimorphisms.

A B

Example 2.14. Let A be the quotient of the path algebra o¥epf the quiver

1- 9.2 ".3
by the ideal generated f3a. Consider the universal localisation of A @t := {P,}. Note thatA¢ and
A/A&A lie in the same epiclass @. It is easy to check thafory(Aq,Aq) # 0 and, hence, the ring
epimorphismA — Ag; is not homological.
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2.5. Localisations with respect to Gabriel filters. These localisations generalise the torsion-theoretical
properties of Ore localisations. In fact, right GabrieHitt in a ringA are in bijection with hereditary torsion
classes ilA-Mod. Also, in contrast with Ore or universal localisation, tleedlisation functor associated
to a Gabiriel filter is not necessarily the tensor product whth localised ring. For details and definitions
we refer the reader t6 [24]. In what follows we discuss sonop@rties of these localisations that motivate
some of the questions answered in this paper. We start bysdisg how flat ring epimorphisms relate to
this notion of localisation.

Theorem 2.15([24], Theorem XI.2.1, Proposition X1.3.4)A localisation with respect to a Gabriel filter
yields a flat ring epimorphism if and only if the localisatifumctor is naturally equivalent to the tensor
product with the localised ring. Moreover, any flat ring epipphism f: A — B lies in the same epiclass as
the localisation of A with respect to a Gabriel filter of rigieals of A.

A localisation with respect to a Gabriel filter is said to befeet if it yields a flat ring epimorphism. The
following corollary establishes a first connection betweaiversal localisations, localisations with respect
to Gabriel filters and flat ring epimorphisms.

Corollary 2.16. If a universal localisation is a localisation with respecta Gabriel filter then it is perfect,
i.e., it yields a flat ring epimorphism.

Proof. The localisation functor of a universal localisation is teasor product with the localised ring. The
result then follows from theorem ZJ15. O

3. A SUFFICIENT CONDITION FOR UNIVERSAL LOCALISATION

In this section we provide sufficient conditions on a ringnegiphism for it to be a universal localisation.
Recall that a quasi-isomorphism is a morphism of complexésding isomorphisms in the cohomologies.

Proposition 3.1. Let f: A— B be a ring epimorphism. The following are equivalent.
(1) There is a quasi-isomorphism from,R complexP; L P9 of projective left A-modules, tofK
(2) Bis aleft A-module of projective dimension less or equahtbae.
Moreover, if these conditions hold, B is finitely presenteahd only if B can be chosen as a complex of
finitely generated projective left A-modules.
Proof. (1) = (2) Suppose we have a quasi-isomorphism as in the diagram

ki g

(3.1) 0—— ker(g) Pt PO . cokerg) — 0

:lk ) lnzf lnl zlc

0 — ker(f) A B—2- cokef(f) — 0.

Define a complex as follows:

0—=pP1 P Agp 2. .0

pr:Pyt— Ao P? p2:A®P) — B
X (T2(X), 9(X)) (¥,2) = f(y) —mu(2).
It is easy to check, by diagram chasinglin {3.1), that thissh@t exact sequence. Hen&ehas projective
dimension less or equal than one.
(2) = (1): Choose a projective resolution Bfof shortest length

h m

B 0

0 PP RS
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and consider a Cartan-Eilenberg resolutiorkefgiven by

i

p

f
A—F5

id L
Y f Y
A——B

It is well-known (seel[25], §5.7) that there is a quasi-isopinesm from its total complex

f+h B

A& PP P

to K, thus finishing the proof. O

Remark3.2 This proposition can be easily generalisedtof any finite projective dimension. Since our
focus is on 1-finite ring epimorphisms, it is convenient tefx¢he statement and proof as above.

The following theorem shows that certain homological ripgrerphisms can be characterised as uni-
versal localisations.

Theorem 3.3. Let f: A— B be a 1-finite ring epimorphism. Then f is homological if amdlyaf it is a
universal localisation.

Proof. Suppose thaf is a universal localisation. ThePor}(B,B) = 0 and, sinceB is a left A-module of
projective dimension less or equal than ohé homological.

Conversely, letP; be a complexP{l 9. P? of finitely generated projective lef--modules quasi-
isomorphic toK¢, which exists by proposition 3.1. Sindeis homological, by proposition 2.1.0, we have

0=B&%kK; >~ B®kP; = BoaP

in D(A), showing thaB ®a g is an isomorphism of lefA-modules. Therefore, by theorém 2.13, there is a
commutative diagram of ring epimorphisms

f
A B
oA

Arg)

showing that, in particular, the essential images of theesponding restriction functors for right modules
satisfy, by propositioh 211,

Xg C XA{Q} C Mod-A.

In order to prove the reverse inclusion, we will see thaf, @a f is an isomorphism of left (and right)
A-modules. To do so, consider the short exact sequence

g

(3.2) 0—— ker(g) Pt g(Pft) —=0

induced by the map. Observe that a similar argument to the one in the proof afltzoy[2.2(1) shows that

A(g) ®agis an isomorphism. Using the commutative diagraml (3.1)rgbsethe quasi-isomorphism froRy
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to K¢ and applying the functohg, ®a — to the short exact sequences (3.2) (2.1) we get the falipw
diagram of leftA-modules

0 _ = _
Ay @aker(g) — Argy ®aP; t — Ay @ag(Pr ) —=0

lA{g}@@Ak L l
Agr®aky Agp@naf

Aig @aker(f) —— Aig @aA Aig @a f(A) ——0.

It shows that, sincé g ®@akis anisomorphismi\ g, ®@a ki = 0 and thush;g; ®a fisan isomorphism. Now,
applying the functoAg ®a — to the sequenceé (2.2), we get

TOI’f(A{g},COkeI( f)) — A{g} XA f(A) —_— A{g} paB——0.

In order to computd ory'(Ag;, coker( f)), consider a projective resolution ebker( ) of the form

d

p-2 Pt — > P? —— coker(f) —=0

and apply to it the functoA;q, ®a —. By definition, Ajg, ®a g is an isomorphism and, therefore, the first
cohomology of the new complex is zero. This shows preciMTor’f(A{g},coker(f)) = 0 and, thus,
using the epi-mono factorisation éf we can conclude that

Atg) Oa T A aA = Ag ©aB
is an isomorphism of lefA-modules. It is, however, easy to check that this is also @amdsphism of right
A-modules. Hencélq has a natural righB-module structure, i.e, it lies ing. SinceA, is a generator

of Xa,,, this shows that(a , C Xg and, thus Xa ,, = Xs. By propositior2.IL, this means thay, andB lie
in the same epiclass éfand, therefore, are isomorphic.

Remark3.4. As mentioned in the introduction, theorém]|3.3 can be derik@u independent current work
of Chen and Xi by observing that, under our assumptions, ¢éneglised localisation in[[8] (corollary 3.7)
is a universal localisation.

Remark3.5. Note that, for a homological 1-finite ring epimorphisin A — B, the above proof together
with the proof of propositiofi 3]1 explicitly constructs apngin A-proj with B = Ay,. Indeed,g depends
only on the choice of a projective resolution of B of shortesgth inA-mod

In particular, for finite ring epimorphisms, we have the daling result.

Corollary 3.6. Let f: A— B be a finite ring epimorphism. Then B lies in the same epiadégs as the
universal localisation 4y, where f is seen as an element of A-proj.

With further assumptions on the ring epimorphidgmthe universal localisation in theordm 3.3 takes a
particularly nice form.

Corollary 3.7. Let f: A— B be a homological 1-finite ring epimorphism. The followirggds.
(1) If f is injective then cokeif) = B/A is a finitely presented A-module of projective dimensiss le
or equal than one and B and gy, lie in the same epiclass of A.
(2) If f is surjective then keif) is a finitely presented projective A-module and B angh#y), lie in
the same epiclass of A.

Moreover, if A is a finite dimensiond-algebra and f is surjective then B and/AeA lie in the same
epiclass of A, for some idempotent e in A.

Proof. LetPs be a complefo‘1 9. P? of finitely generated projective le-modules quasi-isomorphic

to K¢, which exists by proposition 3.1.
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(1) Sincef is injective, g is injective andcoker(f) = coker(g) is a finitely presented A-module of
projective dimension less or equal than one. By thedremiBf8|lows that B lies in the same
epiclass ofA asAg1 = Aqcoker 1)} -

(2) Sincef is surjectiveg is surjective and thus a split map. It follows ttetr( f) = ker(g) is a finitely
presented projective A-module. Again, by theofem 3.3, welg B lies in the same epiclass Af
asA(g), Which is easily seen to be the universal localisa#hggLker(f)} = Afker(f)} -

Note that, iff is surjective therker(f) is an idempotent ideal &%, since we have
0=Tor}\(B,B) = Torx(A/ker(f),A/ker(f)) = ker(f) /ker(f)?2.
Thus, ifAis a finite dimensionaK-algebra therker( f) is generated by an idempotesin A. O

As a consequence of theoréml3.3 we can also establish a dsorphetween universal localisations and
localisations with respect to Gabriel filters, motivatecdthy results in[1].

Corollary 3.8. Let A be a perfect ring and :fA — B a ring epimorphism. Then f is a universal localisation
and a localisation with respect to a Gabriel filter if and onllyf is flat.

Proof. If f is both a universal localisation and a localisation withpezs to a Gabriel filter, it is flat by
corollary[Z.16. Conversely, if is flat, it is a localisation with respect to a Gabriel filterthgorem 2.15. By
propositio 2.7, sincd is perfect,f is finite and, thus, a universal localisation by corollar§. 3. O

4. RECOLLEMENTS OF DERIVED MODULE CATEGORIES

We will now use homological 1-finite ring epimorphisms to stroct recollements of derived module
categories. For two le-modulesM, N we denote byt (N) the trace oM in N, i.e., the submodule df
given by the sum of the images of &thomomorphisms fronM to N.

Theorem 4.1. Let f: A— B be a homological 1-finite ring epimorphism with Hgfmoker( f), ker(f)) = 0.
Then the derived restriction functoy induces a recollement of derived module categories

D(B) —— D(A) — D(Endp(u)(Kr)).

-

Moreover, if f is finite then there is an isomorphism of ringdi a) (Kf) = A/Ts(A).

Proof. By theoreni 2,12, we have the following recollement of trislated categories induced by the derived
restriction functorf,

D(B) —— D(A) —— Tria(Ky).
SinceB is 1-finite, by propositioh 3]1K; is quasi-isomorphic t®;, a complex Pf‘1 L P9 of finitely
generated projective lef-modules, and therefore it is compactir{A). We will prove that it is exceptional.
Recall that (see, for examplé, [25], corollary 10.4.7)&iX in D(A), Homya) (K, X) = Homya) (Pt, X),
where K (A) denotes the homotopy category of complexes of Aefhodules. Clearly, for all > 2 and
i < -2, we have
Hornp(A)(Kf,Kf [i]) = HomK(A)(Pf,Kf [i]) =0.
Since, by assumption, we know that
Homa(coker(g),ker(f)) = Homa(coker(f),ker(f)) =0,
we also get
HOI’TI])(A)(Kf, Kf [—1]) = HomK(A)(Pf , Kf [—1]) =0.
It remains to show that

HOI’TI])(A)(Kf K¢ [1]) = HomK(A)(Pf K¢ [1]) =0.
9



Note that every elemen in Homya) (Ps, K¢[1]) is uniquely determined by a morphispin Homa(P; 1, B)
which, by lemmad 24, factors through tb(@—reﬂectiontppffl. This shows thatb factors througB ®a Ps,

which is zero inD(A) (see argument in the proof of theoréml|3.3). SiBcea Ps is a two term complex, it
is also zero inx(A). Thus, we havep = 0 and

Homy,a) (K, K¢ [i]) =0, Vi # 0.
We conclude thaK; is a compact exceptional object #1(A). Therefore, by a result of Keller[ ([16],
theorem 8.5), we get a recollement of derived module caigegor

D(B) ——= D(A) —— D(Endp(a(Kr)).

Suppose now that is finite andPr = K. We will describeEndya) (Kt) = Endy(a) (Kt). Note that, for
any elementuin A, there is a unique morphism Bndya) (Ky) defined byka(1a) = aandkg(1g) = f(a)
as in the following commutative diagram

0 A—'.B 0

|l e

0 A B 0

It is easy to see that we get a surjective ring homomorptsnA — Endya) (Kt), whose kernel can be
described by homotopy. It turns out that an elerreeimt A lies in the kernel of if and only if it existshin
Homa(B,A) with h(1g) = a making the diagram

]

commute. It remains to show thiker(Q) = 15(A). It is clear thatker(Q) C tg(A). Conversely, lea
be an element ing(A). Let h be a map irHoma(B,A) such thata = h(b) for someb € B. We define
a morphismh € Hom (B, B) = Ends(B) by mapping & to b. Thereforeho h lies in Homa(B,A) and it
satisfieshoh(1g) = a. Hencea lies inker(Q), finishing the proof. O

Following [26], we say that a ring\ is derived simple if it does not admit a non-trivial recollent of
derived module categories.

Corollary 4.2. If A admits a non-trivial homological 1-finite ring epimorigm f: A — B which is either
injective or surjective, then A is not derived simple.

Let f : A— B be a finite ring epimorphism. It is well-known that, as thetraf a projectiveA-module
in A, 1g(A) is a two-sided idempotent ideal. In particularAifs a finite dimensionaK-algebra, theng(A)
is generated by an idempotenti.e., 1g(A) = AeA More precisely, we have the following easy lemma.

Lemma 4.3. If A is a finite dimensionaK-algebra, B a finitely generated projective left A-modula& an
| :={ey,...,en} @ complete set of primitive orthogonal idempotents in Antive have

1A = Y AeA
2
Ag|B

Following ([10], §82.1), for a finite dimension&-algebraA, we call an idempotent ide&leAof A strati-
fying if the associated ring epimorphist— A/AeAis homological.
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5. EXAMPLES

In this section we will discuss recollements arising froradtem4.1L for three classes of homological
1-finite ring epimorphisms. Examples b.1 5.2 considectses of injective and surjective ring epimor-
phisms, while proposition 5.3 and examiplel 5.5 focus on fiiig epimorphisms which are neither injective
nor surjective.

Example 5.1. Let f : A— B be a 1-finite, homological and injective ring epimorphisnhef, by corollary
[3.7,B lies in the same epiclass Afas the universal localisatiohg/ay and, by [5] (theorem 3.5), the finitely
generated lefA-moduleT := A® B/Ais tilting. Using theoreni 4]1, we get the following recollent of
derived module categories

D(B) — D(A) —= D(Enda(B/A)).
Note thatB/A is isomorphic toKs in D(A). If B/A is a left A-module of projective dimension one, this
recollement is precisely the one induced by the universallisationAg /A, and by the tilting moduld in

[2] (theorem 4.8).
Indeed, takeA to be the quotient of the path algebra oleof the quiver

Y 2
3
by the ideal generated I3o. Consider the mag : P, — Py in A-proj given by multiplication withy. Using

remark 2.5, it is not difficult to see th&t— A+, is a 1-finite, homological and injective ring epimorphism
and, thus, it yields the recollement

D(A(y}) —= D(A) —— D(Endp(p)(Agy/A)).

In fact, we can describe explicitly the outer terms of thehement. On one hand, the universal localisation
Ay Is Morita equivalent to th&-algebraC given by the quotient of the path algebra o¥eof the quiver

1

1 2

B

by the ideal generated 3a. On the other hand, sino&.,/A is isomorphic tocoker(y*)®? as a leftA-
module, it follows thaEndya) (Agy) /A) is isomorphic taK @ K. Moreover, it is easy to check, on a case
by case analysis, that this recollement is not induced byatifging ideal ofA.

Example 5.2. Let f : A— Bbe a 1-finite, homological and surjective ring epimorphidinen, by corollary
3.4, ker(f) is a finitely generated projective lefi-module andB = A/ker(f) lies in the same epiclass of
A as the universal localisatiofye 1), Using theoreni 411, we get the following recollement of ieuti
module categories

D(A/ker()) D(A) D(Enda(ker())).

Note that we hav&; = ker(f)[1] in D(A).

Moreover, ifAis a finite dimensionaK-algebra then, again by corolldry BBandA/AeAlie in the same
epiclass ofA, for some idempotergin A. The above recollement is then the one induced by the girggif
ideal AeAof A, namely

D(A/AeA D(A) D(eAs.

11



We now give sufficient conditions for universal localisasoto yield finite ring epimorphisms. In what
follows, an elementv # 0 of an admissible idedl of the path algebra of a quiver is called a relation if it
is a linear combination of paths with the same source anetatgch that for any non-trivial factorisation
w = uv neitheru norv lie in I. Note thatl is generated by its relations.

Proposition 5.3. Let A= KQ/I be a finite dimensionaK-algebra given by a connected quiver Q and an
admissible ideal | ifKQ. Assume that there are vertices i and j and an aroow — j in Q such that:

(1) aisthe unique arrow in Q starting at vertex i;

(2) aisthe unique arrow in Q ending at vertex j;

(3) there is no relation in | ending at vertex j.
Then the ring epimorphism :fA — Ay, is finite, wheren™ : P; — B is the map in A-proj given by multi-
plication witha. Moreover, { induces a recollement of derived module categories

D(Aga+) D(A) D(K).

Proof. By our combinatorial assumptions and lemimd 2.4, it is eaghéxk the following isomorphism of
left A-modules for each indecomposable projecivenodulePy

~) Po k#]
A{a*}@’AF’k:{ P, k=j.

Using remark 2J5, we conclude that A — Ay is a finite ring epimorphism and, when regarded as an
A-module homomorphism,

f: @H( — @(A{a*} XA H()
k k

is given by right multiplication with the square matrix
1

wherea lies in position(j, j).
We now show thaHomu(coker(f),ker(f)) = 0. Clearly, we have
coker(f) = cokera™) =S,
ker(f) =ker(a®).
Note thatf is injective if and only if there is no relation ih starting at vertex. Now assume that
Homa(coker(f), ker(f)) = Homa(S,ker(a*)) # 0. Consequently, there is a non-trivial elemarih e Ag;

such thatiu is zero inA, a contradiction to condition (3) in the assumptions. Tfuwee by theorerh 4]1, we
get the following recollement of derived module categories

@(A{a*}) D(A) Q)(A/TA{U*}(A))7

where, by Iemm&,A{a*}(A) is isomorphic toAeAfor e:= ¥ &. Hence, we have
KZ]

AfTaq., (A) = A/AeA= K.

O

Remark5.4. Note that similar conditions to the ones above are congiderd9] (example 3.6.2), in the
setting of expansions of abelian categories. Indeed, tr@myeghat the inclusion functo?(A{u*} — A-modis
a right expansion. Itis also a left expansion if the nodps injective.

We provide an application for the proposition.
12



Example 5.5. Letn € N. 1 andA be the quotient of the path algebra o¥enf the quiverQ below

1— 2

/ N\

n 3

AN /

P —; |

by an admissible idealwhich is not a power of the ideal generated by the arrow@.aonsequently, there
are vertices and j and an arrowx : i — | in Q such that there is no relation irending at vertey. We can
now apply propositiofi 513, yielding the recollement

D(Aga+) D(A) D(K).

In particular, A is not derived simple. This conclusion can also be obtainedldserving thaA admits a
stratifying idealAeA for some idempoterg in A. Again by assumption, there are verticeands and an
arrowf3: r — sin Q such that there is no relation irstarting at vertex. Hence, by multiplication witis we
get an injective morphisrf8* : Ps — P, andcoker3*) = S is of projective dimension 1. Now consider the

universal localisation oAat U := { @ Pk}, whereA ¢, lies in the same epiclass AfasA/AeAfore:= 3 e.

k#r k#£r
SinceXa,, is equivalent taadd{S }, the ring epimorphismh — A, is 1-finite and, hence, homological.
We conclude that the idempotent idéeAis stratifying and it yields the following recollement ofrided
module categories

D(K) ——= D(A) —— D(eAs.

Note that in many cases the algeler&ein the above recollement can be chosen to be Morita equivalen
to Arq+y. For example, leB be the quotient of the path algebra o¥eof the quiver

1 2

B

by the ideal generated Ia3. On one hand, the finite ring epimorphighi— Ay:1, whereA,-} is Morita
equivalent tdK[x] /x?, yields the recollement

D(K[X] /x?) D(A) D(K).

On the other hand, the stratifying ide®»A induces the recollement
D(K) D(A) D(eAe),

wheree,Ae; andK|[x] /x? are isomorphic as rings.
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