ABSTRACT NILGROUPS OF FINITE ABELTAN GROUPS

Robert Dawson Martin

This thesis deals with the following ;pr*oblem: given 7 a finite
abelian group, compute NK, (Zm). Here NKl(R) = Ker'(Kl(R[t]) —*KL(R))
where the map is that induced by au e.ntatioh. The group NKZL (Zm)
appears as a divect sumand in the group K (Zr') where ' is

finitely generated abelian and m is the torsion part of w'.

These caiculaticns consist of two parts. ‘In the first part it is
shown that NK, (Zm) = o for 7 of square free order. In the second
we show that otherwise the group l‘IKl(:Z_Tr) can be infinite. In par-
ticular we show that if |w (P)!>p2 p odd and m ) cyclic then-

N1<1CZm) ) is infinite torsion and p-primary. .

In addition several general facts about NK, and NK, are also proved

1 2
and utilized in these computations. The following results are of
independent interest.
i) , A surjective map of Artin Rings R —S induces a sur-
jection NK2 (R) ~—'>-NK2(S) .
ii) A surjection of finite abslian groups II —Ii' -

induces a surjection NK, (Zm) -—NK, (Zr').

Some other examples are given where the hypotheses of the theorems
proved cannot be weakened and certain other examples for infinite

NK_L’S are produced.
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INTRODUCTTION

The purpose of this thesis is the computation of nilgroups of finite
cyclic groups. In order to put these computations in their proper per-—

Spective we first recall the definitions of the functors KO’ 1<1 and K2

Let A be an associative ring with unity and denote by GL(A) the union

over all n of GLn(A). Here we view GLn(A)CGLTl +1(A) by the map.
v (Mo
v M {OI )

It eij is the standard matrix unit, (i.e. the ijth entry of e is 1,
. J

all other entries 0) we consider the subgroup E(A) of GL(A) generated

by matrices of the form In+aeij i3 1,j<n aeA. Tt can be shown that

E(A) is a perfect group and moreover is the commutator subgroup of

GL(A). Consequently GL(A)/E(A) is an abelian group denoted Kl(A) .

An, at first seemingly unrelated functor KO(A) can be defined as follows,
Let P(A) denote the catégory of finitely generated projective A-modules.
For each PeP(A), let (P) denote the isomorphism class of P. Then MA’

the set of all such classes, is a monoid under the binary operation

(PYB(Q)=(PEY), induced by direct sum. Since M is abelian there exists

A
an abelian group KO(A) and an additive map @A:MA—-+KD(A), such that for
all additive map f:MA—>G, where G is an abelian group, there exists a

homomorphism @:KO (A)+G such that f=do00 K A similar construction can be

(g
e

carried out for small categories with a product ( [2], [12]). We shall

See later there is an intimate relationship between KO

particularly exact sequences relating these to yet a third functor KA.

£

and K1 more

(1)



To define KQA we consider first some formal identities satisfied by

E(A). If G is any group put [a,b] = aba !'b ! for all a,beG. Let
a , '

Eij = In + aeijeE(A). Then one can easily verify the following

identities.

2, gP . = 2P
ij ~ij ij
2 a, beA

- E£ : :{1 if ik, 143
1] <1 E?E if =k
We can then define the Steinberg group St(A) as the free group on the
symbols Xaj, aeA subject to the relations ?2) above with xa e
plaCLng E‘j* Prom thls deflnltlon it is apparent that there is an
eplmorphlsm.of groupq St(A)+E(A) - The kernel.qf this homomorphlsm is

anéabel;an g;oup‘denoted KZCA),( (73, [10D.

In the work of J.H.C. Whitehead a certain quotient group of Ki(A) was
found to contain valuable topological information when A = ZW and
is the fundamental group of a C.W. complex. Since then in the work
of C.T.C. Wall ¢ [16] ) and others ( see [111 ) the computation

of Ki(gﬁ) has become of considerable interest to topologists.

This computation for an arbitrary group, 7, is difficult. Of the
little that is known in general, the nontrivial theorems apply to

essentially three situations.

1% 7 is finite.
2° 1 is finitely generated and abelian.
0

3" m 1s a generalized free product.

(i)



The results here apply to the first two situations. In particular
the study of Kl(;ﬁ) for 7 finitely generated and.abelian is based upon
two considerations, first a detailed study of related questions when 7
is finite, and second, considerations relating to the so called funda-
mental theorem of Algebraic K-Theory. Since the latter is essential

for our purposes we recall briefly its. statement.

et F be any functbr from rings to abelian groups. lLet t denote an

indeterminant. If e:A[t]+A is the augmentation t b1 we define,

3) NF(A)=Ker(FALt]E F(a))
i) LF(A)=coker(FA[tD@F(ATL Y] )+§'}( A[f,; +717))
where the latter map is induced by the obvious inclusions. In this

situation we have a natural decomposition 5) and a sequence 6)
5) F(ALtD=F(A) &NF(A)

6) 0-F(ASFALD ®FALE ] — F(ALt, 7115 LT(A)— 0

Tn 6) 6§ is induced by the map "Vé’:A»A[t]eéA[‘t"l],6,(_>'<)'=‘f(><',4°x‘);"""I-t";is
obvious from these definitions that 6) ié exact, except perhaﬁs at
F(ALtJeF([t 1), and that the composition of any two morphisms is zero.
We shall be concerned when 6) is a contractible complex of groups,
that is, when it is ewxact and p has a natural section. We call F
contracted if for all rings A this is the case. It follows that if

F is contracted there is a natural decomposition 7).

7)  FA[t,t *1=FA)®NF(A)BNFADLE(A)

We can now state the fundamental theorem ( [2], [121).

Pundamental Theorem KO’ Kl’ K2 are contracted functors. Moreover there

is a natural isomorphism LszKi i=1,2.

~1

(iii)



- Then putting A=Zw

AR R R B R R R e

This applies notably to the computation of F(Zm) when F=K 5 1=0,1,2
and 7 is finitely generated and abelian. One proceeds inductively

on the rank r of w. ‘If r=0 then 7w is finite abelian and this situ-
ation must be treated directly ([2]1,[51,[131). If r >0 write

T = ﬁOxT, where T is an infinite cyclic group and ﬂohas rank r-1.

o We have Zm=Alt,t ']. By the fundamental theorem

we find

8)  F(Zm=F(Zr ) & 0F(Zn YO LE(Zr ).

This proceedure effectively reduces the computation of F(Zr) to the
coﬁputation of F and related functors for éﬁﬂo);. We .will be con-
cerned particularly in the case is finite (i.e. rank ﬂ=i7.

To illustrate the kinds of questions we seek to answer about Kl(gﬁ)l
we refer to the work of Bass and Murth ‘(frgfféjv ?steéﬂgléQl

([2] pg 663). The investigation in ( t5]  ) began as aﬁ attempt to
answer the following question of Milnor ([3]pg 408). If % is finitely
generated abelian is Whl(ﬂ) finitely generated? Here Whl(ﬂ) is the
quotient of Kl(gﬁ) by the subgroup of GLl(gﬁ) of elements of the form
+g, gem. Since T is finifely génerated‘this is essentially the same
as asking whether K,(Zm) is finitely generated. For m of rank 1,
this is a question as to finite generation of KngﬁO)i=0,l and
NKngﬁo). Finite generation for'Ki(gﬁO)i=D,1 has been settled

([133, [31 ). As for NKi(éﬁO) the question remained unsettled prior
to this thesis. For rank m>1, NKO(QWD) is a subgroup of Kl(gﬂg) and
this question was completely settled by computing NKSQQFO). Ve ex-
plicitly describe these results below. The p—primary subgroup of an

abelian group 7 will be denoted ﬂ(p).

(iv)



Theorem A. ILet 7T be finite abelian, then NKO (Zm) is a countable

torsion group.

1) If Iﬂ(P)lép, then (NKGQH))(P)=O

2) If [ﬂ(p)léﬁé,then (NKO(gﬁ))(p) is infinite;

3) Consequently NK (Zm)=0 iff || is square free.
Although we cannot prove the analogue of this theorem with Ki replac-
ing KO, we have obtained partial results which we indicate as theorem B.

Theorem B Let 7 be as in the theorem A, then NKlQéﬂ) is a countable
torsion group. . S SR o
g ‘) Ifli@ |‘<—‘P then, (NKlzfﬂ,)(p);O
2) Ifﬁ(ls)fis cyclicAand
P odd and lﬂ(p)lgi’z, . B T
or } then TNKiggw)(p) i§hinfiqite,‘

p=2 and Iﬂ(p}TE;S

3) Consequently NKi(éﬂ)?O if |m| is squarefree.

The approach we take in proving these results can be outlined as fol-
lows. We first prove 3) as theorem 2.1, this is‘éimplj an application
of the functorialty of the'NKi i=0,1 developed in section 1. To prove
2) we first show that a surjection w>m' of finite abelian groups in-
duces an epimorphisﬁ Nki(gﬁ)—+NKi(§ﬁ’) for i=0,1. This reduces 2) to
the case where 7 itself is cyclic of prime power order. The proof of
1) when 7 is not squarefree can then be handled using the machinery

set up in sections 2 and 3.
T would like to take this opportunity to thank my thesis advisor, Hyman
Bass, without whose patience, this thesis would not have been written.

New York  August 1, 1875
)
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.0 Preliminaries on Cartesian Squares

In this section we recall the representation of group rings as cartesian
products. Most of the results here are well known. Recall that a com-
mutative square 1) of additive groups and homomorphisms is called cart-
esian if A ={(alﬁa2)aAle2[ fl(ai):fz(aQ)}.

Py
1) A ——-~>A1
i . f

1’92‘ j( {
o

nE A

Example 0.1 In 1) above pu’c'Al#‘x2 and A'={0} then if 1-3". is cartesian A
is ﬁothing more than‘ the dir*eét product A=A1XA1.

If in 1) above the groups have 'addi”tional structure (e.g. rings, k-
modules, k-algebras) and the morphisms preserve this additional structure

we speak of a cartesian square of rings, k-modules,k-algebras. Given a

commutative square 1) we can define a homomorphism

. ________ T — Y
2) h: AlXA,Q. A h(al,az) fl:(al) fz(az)

Then clearly ker h is the cartesian product of Aland A, over A. We have

2

proved:

Prop 0.2 The commutative square 1) is cartesian iff the sequence 3)

is exact.

- PpEPy h .-
3) 0 —A ~—~~——>A1XA2—~+A

We now can construct the two principal types of cartesian squares which

are important in what follows.



Remark: This Droposition will be used repeatedly in the following sit-
uation A, A' are rings and & two sided ideal of A'. Then clearly 11)
will be a cartesian square of rings.

Proof We must show that 12) is exact, that is ker h = P{%P, (A)

D, Xp
12) 0—A =3 /g2 At/

Let (at¥’,a') € ker h. Thus at za'+¥i.e. a-a'e’ 1A This implies
a'eA. Since clearly (at¥.,a') = (a'+¥,a') = plxpzﬁa"’i) we have
plsz(a) e ker h. Moreover P{XP, is clearly injective.

Example 0.6 In 0.5 wé let A = Zm where 7 is a finite group. We put® -
the integral closure of Zm 'ip Qm and 4 : -{ag_éw[aﬁ_c__:_z_ﬂ'} the :condtll‘ctor

from #to Zr. Then % is non-zero ([2] pg 535) and the resulting

square will be referred to as the conductor situation.

We can use pﬁoposition 0.2 to produce further ekamples of cartesian
squares via

Prop 0.7 LetI) be A cartesian square of k-modules, and assume B is

flat k-module. Then the square 13) is cartesian.

S

R.. a.
A ®k B-——'*-—---,--’h3 Al@kB
13) P,®L, | | 1o
|
98, e s
A2®kB’ Tk

Proof * Exactness of 14) and k-flatness of B implies exactness of 15).
Thus 13) is cartesian by proposition 0.2, and the natural isomorphism
(A1XA2)®kB:(A1®kB) P (A2®kB)

, N 1
1) 0 -A A1XA2 —A




Pron. 0.3  Suppose that 1) is cartesian and fl and f2 are surjective.

Then there exist subgroups as of A such that
1°aNa ={0}
2° Ala, =As Ala, =A
3° Alaga = Al

conversely given an additive group and two subgroups a and p , the

2

square ¥) (all morphisms just quotient maps) is cartesian with fl and

£, subjective.
) AlaNb —A/a
!

A/p  —A/a+b
Proof: Assume that 1) is cartesian and put @,= ker p.. Then ker
v(plsz)v.»:a'ﬂ 'a;r'{Q}'by'propositiQn 0.2. Moreover Py is bsurjec»tive. In
effect let a,e Al and consider fl(al)e;A' , surjectivity of f2 jmpliesé i

an a28A2 such that f2(a2)=fl(a1) and therefore an” (al,al)gA such that

Pl(al,az):al. Similarly D is surjective and therefore Al = A/a, A?_=A/ttZ .
Since f 1 and f2 are surjective A' is a quotient of A(say A/ ), we have
a comutative diagram 5) with exact rows. By the '"snake lemma" g is
an ismorphism hence b = a+a,.

0+AT =Aa % A/hq—J» A/h=> 0
) T e
6) 0> A~ Ala x Ala,~ A/ata > 0

Remark: We note that ker f1

=P (C}Q:a,/i}\nd that by symmetry ker
f2 = p2(ker pl): ker Dy Conversely the exactness of 6) implies that
4) is cartesian by proposition 0.2.

Ixample 0.4 Let A =2[t] and f, g €Z[t] satisfy 7), equivalently

f and g have no common prime factor). Then the square 8) is cartesian.




7) FAMgA = fgA
8) A/fgA PLasea
P, | L5
AlgA "‘f;“* A/fA+gA

Of particular importance is the situation where, for a fixed rational

prime p, we write.

f(t) = x-1
p-1 p-2
- .+ x * +1
9 g(t) = x o

nr'«l-,

x = tP°

Then;
A/fgA = Zm m = the eyelic gz;r*oupé/pqn;_z_;‘ :
_ N n th s,
10) A/ghA = ZL {n] *{n—a' primitive p root of unity
A/fA =£Tl'n_l

AJEA+GA Lr & P": the field with p elements).

Under this identification the image of t will piay the role of a gén-
erator for ™ respectively "‘»wn_'l' in A/fgA, respectively 1n A/EA,
A/fA+gA, and the role of fn in A/gA. the maps 1n 8) then 5ecome .:z?e—m
duction modulo the obvious ideals. In the special case that n=1 we

notice that Py is the (split) augmentation Zm,—Z.

Prop 0.5 Let¥CACA' be a additive groups. Then the square 11) is

Cartesian, where the vertical arrows are the quotient maps.

A C A
11) + 4
Al CA'Y




- . . '. ]
15) 0 —)—A®kB - (A1®_kB) X (A2®kB) A ®kB

Cor 0.8 Let 1) be a cartesian square of rings and let T be a monoid.

Then 16) is a cartesian square of rings.

Pl[T]
A2[T] ——-+A1[T]

P,oLT] J ’ lfl[T]
A LT] —A'[T]

fz[T]

Proof Z[T] is free hence flat over Z.

Remark This applies notably when T:'g or thén we recover A[TI=A[t] S

or A[t,t_l] .




1. Cartesian Squares and Exact Sequences

In this section we present the important exact sequences of algebraic
K-theory within the framework of cartesian squares. With the machin-
ery devolped in the last section we show how to deduce the analogues

of these results for the functors NKi i=0,1,2. Our approach differs

somewhat from that of Bass ( [2] p 656 ) in being less axiomatic. The
methods we use allow us to prove these results with less machinery;

We begin this discussion with a definition.

Definition 1.1 Iet f:A »B be a monomorphism of rings and assume B

admits a decomposition as a finite product of rings say
o B = ITs;.

-If p. denotes the projection p. : B »B. and all of the composifes
i i i

piof-“. A +Bi are surjective we call f a subdirect monomorphism.

We give some examples of this phénomenon.

Example 1.2 If a,... >0 are two sided ideals in A then the mono-

morphism 2) -
n
2) A/alﬂ...ﬂa > HA/a.
S S

induced. by the maps A/% N.. .ﬁan—> A« i is a Subdir\ect mnomorvphism! )
In particular if 3) is carteslan and P, and p, are surjective then

‘the map Py X P, A +A1 e A2 is a subdirect monomorphism.




3) Py

Exémplé 1.3 If k is a flat Z - algebra and f: A »B is a subdirect

monomorphism, then so is 4)

Ly f&® : AR k B® k.
) Zk 7 g

The importance of this concept can be seen in the following “theorem of

Milnor see ([0]1,[6] App 2)

Theorem'1l.4 . ., Let 3)be a cartesian square of .rings and assume elther
1) fl and f2'are surjective, or

2) fl is surjective and Py is a subdirect monomorphism.
Then there is an exact sequence 5) which is natural in the category of

cartesian-squares of rings.

e

A)oK TA 1 - R ..&;Tu:' ' o v
5) KQ( ) 2(Alx AQ)*KQ(A )-&Kl(m xl(gix A2)~>K1A ——~>1<0_A+_KO(Ale2)+1_<OA'

The importance of this result is that is allows us to "approximate" the
groups KI(A)¢Via?theVintervening groups, which are in many cases better

understood. By virtue of corollary 0.8 we can extend this result as

follows (see also [2] pg 674)

Theorem 1.5 Under either of the hypotheses of 1.4 there is an exact

sequence 6) . Natural in the category of cartesian squares of rings.

‘W Wa Ji 1 s Yo l]‘ / LT
6) I\2(A>+m<2 (Ale2>+ NK,, (A1)~ ml(A, > \Kl(Ale2)+ N, (A")

Ky

{ s (A - 1
NKQ\A)+ NhO(Ale2)+ NKO(A )

Proof By example 1.3 and corollary 0.8 the cartesian square 7) satisfies




the hypotheses or 1.4 if 3) does. We can therefore apply 1.5 twice

and deduce a homomorphism of exact sequences 8).

pl[T] [
AL TT] =——hy T]

7 p,[T] j lfl[T] . |
AQET] —A'[T]
2l |

K2§A[t])+K2((A1XAQ)[t])+K2(A‘[t])+Kl(A[t]¢u.3+K0(A?[t3)

o | T

Kz(A)-+ KQ(Alez)-m——+ KQ(A})-—+ Ki(A) +.o.»KO(A')

This homorphism is induced by the augmentation e: A[t] -+ A and therefore
all the vertical maps split. From this we deduce exactness for the
sequence of kermels 6).

From this result we can recover the exact sequence relating to a
surjective homomorphism £: A + A/a . Define A(a) by the cartesian

square 9).

Then there is a natural homomorphism A:A + A(a ) given by A (a) = (a,a)

: |

which is split by both pl.and Py If we apply 1.4 we get an exact ‘%
: D |

sequence 10) putting K, (A, @) = ker(GAC@) —2-1(A) i = 0, 1, 2 ‘

we easily deduce the exact sequence 11).




10) Ky(A @) + K, (A4 x A) » K,(Aa ) > K (ACa))». .. > K (A/a )

1) 0> KA, @) + K (A) »K (a/a) +’1<1(A3 @) > K (MK (Alad+. .. +K (Ala)

By virtue of the fact that cartesian products commute with flat base
change (Proposition 0.7),we have that

12) Alt] (aft] = ACa)[t], |

and therefore can deduce an exact sequence 13), by the same method as
in 1.5.

13) 0~ NTKQ'(A,a ) K, (A) SNK, (A/a) > NK (A, &) - NK (A)

» NK; (Aa) > NK, (A, @) > NK (A) —sw"vNKO(A/a ).
The only thing we need to show is that NKi(A,a) = kep (Ki(A[t],Ol rt3)
+Ki(A,a)) is a direct summand. This follows from the commutative

diagram 14).
' 0 0 0

b } }

Uvﬁ NKi(A, a) > Ki‘f (Alt], 4[1:]) > Ki(A, a) >0

0> MA@ ) — K ACa)[t] —— KAC@) = 0

1) 1
0 > NK.A ——— K.A[+] — — K.A > 0 -
1 1 ' ;Ll .-
Y
O )

0 0

Here all vertical sequences are split exact and induced by the

s e e

projections and all rows except possibly the first row (of -kérnels)

T

are split exact. Therefore the First row of 14) is also split exact

o

and we have established 13).
. Another result which we will require is the ability to compare

St

NKi(A,Cé ) and NKi(A,,B ) whenever aC 3 are ideals in A. In this

connection we have the following result. ([10] pg 56).
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Theorem 1.6 Let a CB be ideals in A. Then there are exact sequences.

Ly W Bla) (00 G (B > K (e, B
> KA, o) > KO(A,B) > K (Aa, Bla)

16). NKQ(A/O" Bla) ~ N}(l(A,a) —>-.NK1(A,B )~ NKl(A/CX,B/a )

> NK, (A, a) »NK (A, B) ~ NKOCA/a , Bla ).

As was remarked above 15) is well known, 16) follows from 14) applied to
ocfBCA and alt]l < B [t] € A[t] and by the splitting argument immediate-

ly above.
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2. Results on the Vanishing ~ of Nilgroups

In this section wé use the machinery so far developed to prove some
results concerning the vanishing of the group NKi(A).

An associative ring A is called right regular in caée4A is right
Noetherian and finitely generated right A-modules have finite pro-
jective dimension. The main result which we require for fhis dis-
cussion is due to Bass,Heller.Swan (  [4] } and Quillen

¢ [121 .

Theorem 2.1 If A is right regular then NKiCAj =0,i=0, 1, 2.

We can now state the main result of this section. It is interesting
to note that this theorem gives examples of rings; A, which are not
regular but for which NK&(A) =01-= 0,1. The case i = 0 was already
known to Bass and Murthy but our method of proof will allow us to
-handle both cases at once.
Theorem 2.2 Letthenote the nth cyclotomic extension of the integers,
and let m be an abelian group of order |m]|. Then‘if || is square-
free and either |

1) (rl, n) =1 or

2) (|w|, n) =2 and 44n

then NK.(R m) =0, 1=0,1. i

i ™n y
Proof The proof will be by induction. If m is a squarefree integer
we define the length & (m) +to be the number of prime factors of m.

Suppose first &(|m|) = 1, then |n| is a prime p and we can obtain

the cartesian square for R 7 2) by tensoring the square 1) for 7
1 n & 4
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~with R (see corollary 0.8 and example 0.4).

Zm — R RnTT —> Rn®

P L .p

: || > |
7 — F R —R ® F
= =p n - n Z=p

Regarding square 2) there are fwo cases to consider, if hypothesis
1) holds then R and Z[ %] are linearly disjoint in Q_ (that is their
quotient figlds are). Therefore we can identify Rn®§_[§' D] with Rnp'
Since Rn®%g R /PR and (p,n) =1,pZ does ot ramify in R_‘“thus .
Rn/pRn is reduced and therefore regtllar. In case hypothesis 2)
above holds and &(|m]) =1 we have m cyclic of order 2 and Rn:R2m
with (m,2) =1. In this situation we can obtain the square for
R ™ 4) by tensoring the square for Zm 3) with R . )

Zm ——7 R T ——R_ |
3) . woor ]
N 2 —F ‘ R — Rh®F2
Again since the prﬁe 22 does not ramify in R, ﬁnless Ldn Rn®£2
is'a product of Fields. In,éi‘cher' case the proof of 2.2 for
JC(]W!) =1 follows from = oo ‘ ' ' x
lemma 2.3 Let 5) be a cartesian square and aséume that
NG (A= NK(A)) = MK, (A1) =0(e.g.Ay>A, and A regular) for i=0
or i=1. Then NK, (A) = 0. |
Eéogi If we apply then 1.5 to 5) we obtain an exact sequence 6).

The exactness of 6) together with the hypotheses implies the result.

A A, :

< 1 g )

&) l l B) NK;,  (A") 9NK; (A) +NK; (AjxA,)
B AT




w2 next consider the general case
when £(|7]) =r Here we writa 7 :’lTp x ' Trp = a cyclic group of order p
where 2(|w*|)= r-1 (p, |7|)= 1. If we tensor 1) with R m' we obtain the

cartesian square 7)

Rm—
i)

O
33

7)
R &Rw" —R ®_ I’
n =p

Under hypotheses 1) and 2) Rn ®=Z= Rp: Rnp and 2([n']) = 2(|7])-1 therefore
the rings adjacent ‘o Rn'ir :'Ln 7) have trivial NKi by induction. On the other
hand Rn® Z£D is a product of fields whose characteristic p does not

divide ]1;_] so R ®Z £p1r' is semisimple hence regular. We are done by

lemma 2.3. Note *t}—lat if 2 = (n,|w]) the hypothesis “h cannot be relaxed
(see 3.9).

This theorem which I proved in 1972 produced the first known examples of
rings R which although not regular have NKl(R)=D. This type of wvanishing
also occurs in the following context. Let A be a Noetherian ring of

Keull dimension =1. Assume that the integral closure B of A, in the

ring of fractions of A is finite over A. In this situation

%= {beB|bB C A} is a nonzero ideal of B contained in A. We call &

the conductor from B to A, and if ‘*g/f;; =% we call such A se}mirwrzral.

By a similar technique we can deduce the next result.

Theorem 2.5 ZLet A be seminormal, then I~IKi(A) =0, i =0C,1.

Proof Using the notation above and proposition 0.4 we have a cartesian

T

square 8). Since B is the integral closure of A, Krull dim. B = L.
™ 2 s b g B/-(;‘- 7 b
Consequently B/% 1s finite, and since V¥ =¥ B/¥is reduced. There-

fore A/%¥ is alse finite and reduced. Consequently A/¥ and B/¥are
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oroducts of regular local rings thus regular. Since B is integrally

closed it is also regular. We finish by applying Lemma 2.3.

, e
Al C Bl

Example 2.6 In 2.5 the hypothesis that%; =¥is essential to the

theorem. Consider Z[2i] (Gaussian integers with even imaginary part),

then Z[2i] has Z[i] as its integral closure, but the conductor 2Z[1il1<%

. . . PO ; 1 — .
is not its own radical, e.g. (1+1)° = 2ie¥. With this in mind 8)

becomes 9).

Z[2i3. C  z[i]
) |

¥ ¥ :
F, = 2[2i1/220i] C ZLiV/ozlil = £ L] (e7=0)

By applying theorem 1.5 %0 S;) we get Nﬁl(__Z;[Zi]) = N_£2(£2 [eD)
We prove, in Chapter 3, that NK2(£2[€]) = £2[1:].

Remark: We can produce examples of this phencmenon for all primes p namely
the ring Z + pzl £ p]‘ It also can be shown that if |w| = p the ring
Zlpr] will also have large NK (Here if t = a generator of w, or

e b the rings described above arc the subrings consisting of elemer:s

- 2 p-1
X T = + T + . s + ] Z Ol
of the form x =7 0+ let pZQL . pr_lt R lEZ__
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3. Nonvanishing for NKl_(Zﬂ).

In this rather long section we prove the results 1) and 3) alluded
to in the introduction. We begin by recalling some fairly well known

results about the functor Kl’

When R is a commutative ring the determinant homomorphism.detn:GLn(R)*
U(R) (units of R) induces a homomorphism det :GL(R)+ U(R) which upon
abelianization induces a homomorphism Det: Kl(R)+U(R) which is easily
seen to be split by the inclusion U(R)Cle(R)e This results in a di-

rect product decomposition 1).

3 g =
1) Kl(R) SKl(R) @& UR)
Here SKl(R) denotes the kernel of Det. Applying this decomposition

to Kl(R[t]) we obtain a similar decomposition for NKl(R) 2).
2) NKl(R) = NSKl(R) @ NU(R)
To understand NKi(R) we study each summand separately. The less ex-

otic piece NU(R) is completely understood.

Proposition 3.1.([2] pg 671) When R is commutative there is an iso-

morphism. 1 + Nil1(R)[tl.t = NU(R). Consequently

if R is reduced then NU(R)=0.

Proof: If g(t)eNil(R)[t].t then the binomial theorem shows that g(t)

is nilpotent, therefore 1+g(t) is a unit congruent to 1 modulo tR[t].

Conversely 1if f(£)eNUR) then £(t)=1 (wod tR[t] ) and being a unit

J7¢



this forces the coefficients of t* i>0 to all be nilpotent([1] Chapt 1).

The next proposition shows that when R is an integral group ring

that NU(R)=0.

Proposition 3.2 Let R be an integral domain with quotient field k,

and m a finitely generated abelian group. Let Ty

denote the torsion part of 7 and assume;
1) k has characteristic p and (|m,[,p)=1,0r

2) k has characteristic 0.

Then Rm is reduced.
Proof.Tn either situation above the Maschke theorem assures us that
kﬂo is semisimple hence reduced. Consequently RWOC:kﬂO is also re-
duced. The theorem now follows by viewing Rr as a localization of the
reduced polynomial ring Rﬂo[ to,...,tn] at the multiplicative set gen-

erated by to,...,tn.
With these results we can now concentrate our attention on the groups
NSKl(R). The cornerstone of this investigation is the following theorem

due to Bass ([2] pg 685).

dheorem 3.3 Let R be a commutative Artin ring. Then NSK, (R)=0. Conse-
quently, if S—R is a homomorphism with S cummutative and reduced then
NKI(S}~+NK1(R) is zero.

Using this result we can prove an interesting result concerning

mpare [3], pg 22 thru 27).

pe a surjective homomorphism of commutative
Artin rings, then the irduced homomorphism NKQ(f):

W%GU“NK#S)iSSMﬁ&ﬁﬁm»




! 17

T £
Proof. et I

(&N

lenote the kernel of f. Then by (page 9, 11).) we have

an exact sequence 3).

. 8 o
3) NKZ(R) 3JA2(S)———+ le( R,T)

It is clear ([10] pg 54) that the image of the map § is contained
in the group NSKﬁ(R,I). Hence the result will follow if we show that
this latter group is trivial. Recall that NSKl(R ,I) is the kernel
of the map NSKl(R(I)) —~——#-NSK1(R) induced by Py in the cartesian

square 4).
R(D) >R
i) Py
v v
R ——R1I

This square gives rise to an exact sequence of R-modules 5):

5) 0> R(I)»> R® R+ R/I> 0

Here R acts on R(I) via the diagonal A: R> R(I). Thus when R is Noe-
therian, or more generally when I is finitely generated, R(I) is a
finitely generated R-module. R Artin implies that R(I) has finite
length as an R-module and is therefore also Artin. The theorem now
follows from 3.3.

As an immediate consequence of this we obtain

Theorem 3.5. Let aC f be ideals of a commutative ring R and assume

that R/@ is Artin. Then the natural homomorphism 6) is

surjective.

6) NSK, (R,0) = 1K) (R,8)

Proof. By 1, 13) there is an exact sequence, part of which is 7).

i
37¢
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7) K (R o WK (R, B) > MK (R, B/e)

Using the naturality of the decomposition 2) above we obtain the ex-

act sequence 8).
8) NSK; (R,e) NSKl(R,B) -~ N ‘:L_L(R/a,ﬁ/a)

Since R/a is Artin then by 3.4 R/a(f/a) is also Artin, therefore we
have that NSKl(R/a,ﬂ/a):O.

In order to show that NSKl (Zm) is nonzero in many interesting cases
it is convenient to reduce this question to one about various special

cases. The next result accomplishes this.

Theorem 3.6 lLet my+ iy be a surjective homomorphism of finite abelian

groups. Then the induced map NK, (Zm)>NK; (Zr, ) is sur-

jective.

Proof. We consider the embeddings ZwcC (ﬁi of the integral group rings
into their maximal orders ([14] pg 63). The unique extension of the

surjection éﬂ0—> Zr, to the‘,,s‘urfjecticin :QJTO—* glt] induces a surjective

1 ,
homomorphism @0—> ﬁl of the integral closures. letting Efi denote the
respective conductors and f the surjection of the maximal orders we

clearly have that f G?C% . Thus the diagram 9) commutes.

Oy 70
9) L

|

7y G,

Here the verticals denote the canonical quotient homomorphisms. From
these considerations it is clear that the cube 10) commutes. This di-
agram is by definition a homomorphism of the cartesian squares which
comprise the rront and back faces of the cube. Yunctoriality of the
exact sequences of 1.5 vields the commutative diagram with exact rows

11).

a7¢
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=) 1
. / /
S
Zn, l ~0
10) |
Zn,/ & &%,
/ o
Zny/ % 4%,

NK (O ) ——— NK, (2 ) ————> NK, (Zr/ £ )

133 1

NKz(éal/ifl)-~*~—-——*‘NK1(Zﬁ1) "-——~—~—é‘NKl(gﬁl/§?l)

Now in 11) both maps NKl;gﬂi > NKIZﬁi[ifi are trivial by virtue of 3.2
and 3.3. Moreover NK2<56/550 > NKzéﬁi/jfi is surjective by theorem

3.4. By exactness, the result follows by considering the diagram 12),

¢ ¢ e NKL S
NK, ﬁo/,é’o NK 2 > 0
12)
4 7 e NPT e
NK, &)/ &4 MK, Zmy 0

With the followinz few results we will be set to prove the main result
<3

of this section.

W7



ihoorem 3.7 L. Fxcision). Let f: A + B be a homomorphism of
rings and assume either
1) f is surjective or
2) f is a subdipect monomorphism, (1,1)

Let o and B be ideals s.t. f(a)=R. %ﬁem NKﬁ(A,a) = NKl(B,B)

. Proof Under either of the hypotheses above it is known ([101 pg 55, [2]
pg 484) that there is an isomorphism Kl(Aoa) 8 Kl(B,B). As flat base
change preserves 1 and 2 we also have in this situation
Kl(A[t]’ olt]) = :Kl(B [+1, g [th. Corﬁ,:nuﬁa?i;iyity of 13) plus exaciness
of the-columns and all except possibly the first row yields the

conclusion.

0 —r NK (A, @) —— NK (B, B ) ——> O

3

00— Kl(A[t], alt])

> Kl(B [t1, Bt ——— 0

0 ——— Kl(A,cx) —_——— Ki(B>‘3 )

0 0
Prop. 3.8 Let 14) be a cartesian square of rings and assume fiand £,
surjective and AQ regular. Then NKl(A) o NKl(Al’ Kep fl)
g

lL\) "‘*“‘_‘""_}"-“"* A_l
1) %[ lfr‘l

Ay A

7
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oo Since 1y) <

)]

cartesian fl surjective implies g, surjective.
By inspection of the exact sequence of the surjection 2 15) one deduces

NKl(A) = NKl(A, ker g,) from the regularity of A

2 2°

s : A
15) NkZ(AQ)%-NKl(A, ker gz) > NKl(A) M (A )

As g, is surjective 3.7 implies NKl(A,ker gz)E NKi(A17 ker fl> and the re—
sult. \

| . .
We can now give an example of a nonzero, NK1 for an integral group ring
and at the same time show that (see theprem 2.2) in proving that

NKi(Rnﬁ) = 0 when |7| is square free and (n,|w|)=2, +the hypothesis

tn cannot be deleted. Below we let | be a cyclic group of order pl

Example 3.9 NKl(éwzxwl) is infinite two-torsion when p=2.

To see this we consider the cartesian square 16).

;ﬁl X, _——+:£[ijﬂl

16) ' J(

Y

;ﬁl XM - ;ﬁl X my

The exact sequence of 16) reads in part

17) NK, (Zr +NKi(Zw X, )GﬁNK (7[1]ﬂ ) +ﬁmiﬁ37wl,x . )

Since ié(wlx ﬂw)iS Artin and all other intervening rings are reduced

18) Nchgﬁ- XH£-+ NKng[i]ﬂl).

The result will follow from an explicit computation of the latter Froup.
Notice that Z[i]ﬁl 1s tre simplezt example of failure for the above

mantioned hypothesis.

To see that NK Z J“& is infinite we apply 3.8 to the cartesian square

19) obtained by tensoring 7w, with Z[i].

a7¢
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I.J
=

Hl
N
™
H
[

[i] > _‘,_E2®_Z[i]
= ===

flea

From B.é we have T\E{_L(Z[i]'n )=N"K1(Z[i], ker g). Since
E ® Z[l] Eolel ("Dual numbers" over P2) and g is just reduction
modulo the ideal 27Z[il, regularity of Z[il] implies that
NKl (Z[i], ker g):}PKZ (fTel) To complete this example we have only to
show that NKQ_E_[E] is infinite (a later quoted result will show that
it is torsion. To see this we first quote a highly non-trivial
theorem of Van der Killen ( 151 2.
Theorem 3.10 Let R be a commutative ring. Then KQ(R[G])zKQREBV(R)
wheres

V(R) is an abelian group with the following
presentation 3

generators: d(r), veR

d(r)+d(r!“) + F(IT") where (F(r)=d(r+l)-d(r)

!
relations: d(r+r )

rd(r) + 1 d(r)

1
d(rr )
F(r+rt) = F(r) + F(r )y, F(r)
there is a natural surjection V(R —«'*Q,{/Z(’{)(I\dhler defeﬂuﬁJaT 3). Tt

is bijective if 2 € R° or R is a perfeqt field.

£

Notice that frcm this theorem 1” (F[s ﬂ) K?(E (thaevr ?[t]) and

=
FleD= K. I.,7(w) =Q F./7 S:ue-' rfect and K =
Kz(_f:‘zue,/ L?___.’“,,( ) Q—i;i/-: (8in %18 perfect and KZLLL] 2_,? =0).
As Qm_, =0 ([2] g 71 Jwe have NK, F[&:T V(E, [t]}. . We show that

la7e
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this latter group 1s nonzero by considering the fundamental exact

sequence for Q  ([3] Theorem 57)

Theorem 3.11 Ilet X -A B be homormorphisms of rings. Then the se-

quence 20) is exact.

20) ' Q ., ®B — Q — Q —
A/K A B/K B/A

For a definition of the maps the reader is referred to (Loc. Cit. ).

gl

Putting K = 2,A = £,,3 = Flt] and using the fact that § E,/2 =0,

Jo o = ~ F it 2 4)e S.
we have Q_EQ[’C]/_E QF [t1/E. = E:Z[L]. (T9] pg 184) Since

AL,
V(:Ez[t]) — £2[;__] iz is surjective this completes 3.9.

We now turn to the oroof o% the main result of this section namely

Theorem 3.12 Assume that either p.is odd and n > 2 or p is .even and

n' >3 then NK](ZTTH) is infinite torsion.

In the course of the proof we shall isolate certain other results
which are of independent interest. By the next result due to Bass we

know NKl(_ZTr) is torsion for finite abelian w. (L2] p 648 )

Theorem 3.13 Let ATB be a subdirect monomorphism of rings with B

a regular ¥ing and assume mBCA for some meZ. Then if T denotes a

finitely generated free commutative monoid then any element of

L :\kez’(1<1~CA[’]7])"-+';’.7 (A) ‘has order dividing some power of m.

By theorem 3.6 we can assure n = 2 if pisodd andn = 3 if p = 2,

We have however ths following result valid for all n.

(m,2) = 2,4tn

Prop. 3,14 IF % or +then there is a natural isomorphism

A(Row ) = NKL(Rw Yy R oW
B n-1" p m

moon 1" m Ti— 1L

a7¢
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Under either of the above hypotheses the ring Rm‘p n = Rm® an. Therefore
Ccartesian square 21) obtained by tensoring the square for ern ¢ 0.7 )

with R satisfies the hypothesis of 3.8.

Moreover as f is just reduction modulo p R m the result follows
R ™ "R el

21) l f
, SR S
S n——"i*‘pTT n‘—"1®Rm

By considéring this situation withm = 2 we get

22) | NK (Zm ) = NK (Zm 4, Pz )

1= Il

Thus we can prove 3.12 if we can show that the latter group is infinite

1}

under the hypothesis p odd,n > 2 or p = 2,1 > 3.

Theorom 3.15 If poddandn> 2 orp = 2 > 3 then NKl (:Z:']Tn__l, R_Zjn_l)

is infinite.

We can assume that if p is odd n = 2 and if p = 2 n = 3 since by 22)

and Theorem 3.6 the natural map

23) NK, (Zm. ,DZ.K)—NK, (Zm ‘
H(l(zﬂl ,p;;ri}() NK1(=W..j_—l péﬂ.i_l)

is surjective. TFTor the rest of this proof let ™y denote a cyclic group

of odd prime order and T, a cyclic group of order 4. Now =Z_jri is a Z-order

in the semisimple Q algebra Qr.. Tt is well Jmown ([14] pg 63) that

Z.

; can be embedded (subdirectly) in a maximal Z-order #.. Since & .
== i i

is maximal & 5 is hereditary hence regular ([1y] p oy ). In this situ-

o

ation w2 have a cartesian saquare 23) where 55’3, denotes any (9. idzal
- N -

~—

% Com. (0.0

Zm C 2,
233 ’
- L4 ~ s
/e CO/E
! e 1. 1

§97£
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A " 7Yy W_ (7
24) MK, @L —> NK ﬁi/ggi — NK_l(é’i,%i) » MKy (270

2

N " 7 o Iy a ; = T 19

Since [Tril ﬁic Zm, ([14] pg.63) we can take ¥, ]nilé’i. Since
O. is regular the exact sequence of the surjection f 5 24) yields

NK2 @L/ g5 = NKl( é’i, %’i). Moreover a direct computation yields.

A o=7xz7[{] ot
25) . 1 { a primitive p~ root of 1
& =2xZxZIli]
o) # = E % —%[)T] P - g
26) :
P Zpg * Ly X 23,7149

It is clear that NK, (& l/ 5;’.1 ) is infinite since @i/f{l maps surjective-
ly onto :lfp[e] (apply 3.4). iﬂoreover Dennis and Stein ([8] pg 14 ) have
shown that NK2 (Z 74Z) is an infinite elementary two group of coun‘téble
rank, hence NK, (@2 / 552):15 likewise infinite. |

To complete the proof we notice that NK, (Zm..%%.) = NKl(@’i, Sfi) by 3.7
and furthermore that NKZL (Z Tss p__Z:ﬂi) maps surjectively to NKl (;Z__il;i ,&ﬁ’i )
by applying 3.5 To p;n‘ic 555 Thus we have constructed a chain of maps

according to the scheme 27).

3.1h4
NKL(,Z;-_WiJrl) —— Nl’(l(:?iﬂi,pz'.ri)
3.5
27) NI (7., (/".33—.?—2» NK (/’/:’ ‘)
BT R RV

&26), with i = 1

N (E fe D e WK(EIT)

\aze
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Combining 27) with theorem 3.13 we see a surjection
NKl(Zvrl) — NKQ(FPET]) which gives the following corolary

- o .
) (;_P[T]) is p~torsion

Corollary 3.16 Every element of NK

This does not appear to foilow easily from the presentation for

K, Fp[f,t] of Demnis & Stein. ( [8] ).

We can use theorems 2.5, 3.6 and 3.15 to show if w is cylic and

4 +]m| then NK Zn = 0 iff Ir| is square free. ‘fhe troublesome
restriction U4 |w) is dué'to the fact théirt theorem 3.15 does not apply
to the cyclic group of order 4. At the moment there is no indication
as to NKl(Z’IT), T cyclic |w| = 4 is nonzero or not. Also we have no

indication as to the behavior of NKléw for m and elementary p- group

of rank >2. To examine this case it suffices by 3.6 to first look at the

rank 2 case. We show next that the corpartment of NK| (Zr) for m
elementary of rank 2 can be reduced to the study of a partial converse

of 2.5.

Proposition 3.17 Let p be a rational prime and m a cyclic group of
orcier p- Then there is an isomorphism
28) NK] (Zmsar) =N (20 € 3w, (3-8 20§ Im)

(here { is a pramitive pth root of unity?

Proof We consider the cartesian square 29) for Zm x m and note that

f. is a split epimorphism.

1 S~
Zm % —2 YA
29) £ l } 5
Y
T - — F 7
'::TT gl =P

Aari
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It follows that the Nil exact sequence for fl reads
30) 0 +NKiQ§ﬁXﬂ,ker fl) +Nki(§ﬁxw) +NK1Q§ﬁ)
by theorem 2.9 NKl(ZW) = 0 hence,
31) NKl(gﬁxw, ker fl) = NKl(gﬁXW).

By excision since f2 is surjective we deduce

R

32) NK, (Zmxm, ker £) NKl(;[s*]w, ker g,).

' Since the kernel of g, is ({~L)ZL{1m the result is clear. Notice that
NKlf.2 is a surjecfive map, this is by considering the Mayer.Vietoris
sequence of 29) and using the fact that the far right hand map is
trivial 33).

33) NK (Zmsm) >NK, (Zm) >NK, (20 Jn) N E T

Now the ring Z[{] = Rpﬂ'*“is the simplest example of the failure

of the hypothesis in 2.5 that the order of the extension and that of the
group be relatively pfime. (Conpare with example 3.9). We ask is

NKl(RPﬁ)#O ?  We now turn to the proof of 1) in theorem B Above.

Theorem 3.18) Let 7 be finite abelian and assume that ]ﬂ(p)]: p then

NKi(gﬁ)(p)= 0.

Proof We can write gﬁiéﬁwaD where ﬂp is eyelic of order p and

by

(|rt],p) = 1. This allows us to express Zm as a cartesian product 34).

Zar s Zar!
34) I I
ZL It >'£§W1 {-a primitive pth root of unity.

1 ..
m ) = 1 we deduce semisimplicity for the ring

F'eom the fact that (p, |
f%wlahenoe its regularity. The Nil exact sequence for 34), is therefore
=7

35).
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35) 0 ~+N}< (Zm) -—rrNK](Z:r )->N}f @zl §In') —0

From the fact that passing to p - torsion is exact we recover 36)

36) 0 -—NK (zm( >—+NA1(7TT ) ——)NK (zZ[ ¢ n? ) ) —0

Now for any Dedekind domain R with quotient field of characteristic 0

’

we have

37) |m|& C R

for any R erder & 7 Rrn. Hence it follows that Zn', 7L { Jn! satisfy the
hypotheses of 3.13 with B a maximal order and m = [Tr |. It follows that

the groups Nl(l(;ﬂl)(p) and NK, (Z[ { ]ﬂl)(D)a'pe trivial (p,|w']) = 1).

a7¢
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Concluding Remarks 23

As was remarked above the techniques developed here do not apply to the
situation where 7 is cyclic of order U4 or elementary abelian of rank
> 2. If we could prove results analogous to those treated in theorem B

part 2) we could prove theorem A with K. replacing }<D. To extend

1
these results more knowledge of the func:tor*K.2 must become available.
We also remark that the techniques employed here will not extend to
analogous results for NK2° This is because the Mayer-yVietoris gequence
¢ 1.n ) does not extend to K. (For a discussion of this we refer
the reader to R.W. Swan. Excision in Algebraic K-Theory. Journal of

Pure and Applied Algebra 1, 1971)

Some interesting topics for further consideration are the following
questions:
1) Does a surjection m — 7' of finite groups induce a surjection for

NK, (Zm) -4-NKi(;ﬁ1)?

2)  Same question for NK2° In particular what can be said in case

T, ! are abelian?

It should be remarked here that an affirmative response to 2) or 3)
below in the abelian case would allow us to deduce the resulte alluded

to in the first paragraph.

3) Compute NKQ(QW) for cyelic groups . Is NK, (Zn) trivial for ]
squarefrea?
4) Extend the results of this thesis to arbitrary finite groups.

If 7 is finite does NKl(gj):O For |w| squarefree?

?q97£



®) Find reasonable nessessary and sufficient conditions on a ring A
so that NKl(A)ZO.

We remark here that the techniques of sections 1) and 2) along with the
i
Hilbert Basis and.SyZygy?heorems allow us to assert

K.(ALTD = K. (A) i=01
1 1

95
for any finitely generated free commutative monoid and any ring A satis-

bying the hypotheses of theorems 2.2 or 2.5.

6) To what extent does this hold in general i.e. does

NKl(A}:O imply NKl(A['t]):O?

(a7
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