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1 Introduction 

The mapping class group representations related to quanttttn invariants (/~ la 
Jones, Witten [35], Reshetikhin-Turaev [26], Lickorish [17, tS], Blanchet et aL 
[5~, Wenz! ~34~, T~r~ev-Wenz~ ~3~, ~nd probably many more) are naturally 
only projective representations, as argued by Atiyah in [3]. A particularly nice 
way to observe this is through the approach from the skein theory of the Kautl- 
man bracket, where a simple existence proof of projective actions was given 
in Roberts [27]. (Related projective actions had previously been constructed by 
other authors, e.g. Kotmo [16], using other methods.) 

The ain~ of  this paper is to describe the central extensions of the mapping 
class group generated by the~e projective actions, and to see how the signature 
cocycle arises. 

Fix a standard genus g Heegaard splitting of the 3-sphere. The genus g 
mapping class group, denoted by F in this paper, is generated by the associated 
two handlebody subgroupz, which act naturally on the skein modules of the two 
handlebodies. This was used in [27] to construct a projective representaUon of 
the mapping class group. We call this the geometric action since it is obtained 
by moving around links in handlebodies. 

In genus one the situation is particularly simple. Here the mapping class 
group F is SI(2, Z), and, as is well known, the projective action can be lifted 
to a linear action. (This is no longer true ir~ higher ~enus.) Nevertheless, the 
natural geometric actions of the two Delta twists corresponding to the matrices 

( 1  11)and (_11 0 ) d o  generate a central extension, in fact, they generate 

the braid group B3. The starting point for this paper was the question of how 
this generalises to higher genus. 
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As this example already indicates, we do not consider a projective action 
as a homomorphism into a projective linear group, but as an explicit lift of  
that homomorphism on a generating set. In our case, such an explicit lift is 
naturally given on the union of the two handlebody groups. There is then a 
natural notion of the central extension generated by such a projective action. 
In our case, we have a series of projective actions corresponding to different 
roots of unity, and the extensions are naturally quotients of a common central 
extension of the mapping class group F by Z. This extension is denoted by/~2. 

We describe this extension in two ways. The first is through a presentation. 
We show that the restriction of the original geometric action to Dehn twists 
defines an extension/~l which is of  index two in/~2. The presentation of/~1 
induced by the geometric action looks just like Harer's [11] presentation of 
the mapping class group except that one relator is omitted. This presentation 
is given in Theorem 3.8. It is nice to observe that this is a straightforward 
generalisation of the genus one situation: the geometric action of Dehn twists 
defines an extension which is related to the mapping class group just as the 
braid group B3 is to St(2, Z). 

Second, we relate the extension class of/~2 in HZ(F; Z) to the signature 
extension in the following way. Using a skein-theoretical interpretation of the 
geometric action, the latter can be naturally extended to all Dehn twists. With 
hindsight from 'Topological Quantum Field Theory', we define a 'corrected' 
action by multiplying the action on Dehn twists by a certain constant factor. 
This corrected action defines an extension /~4, and /~2 is identified with a 
subgroup of index two in/~4. We show that/~4 is isomorphic to the signature 
extension, as described by Atiyah [3]. Hence twice the extension class of/~2 
in HZ(F; Z)  is represented by the signature cocycle. 

Note. The notations/~i (i = 1,2,4) are motivated by the fact that the extension 
class group H2(F ;Z )  is cyclic in all genus [11, 12], and the class of/~i is i 
times a generator. In genus at least three, the mapping class group is perfect, 
and the extension/~1 is its universal central extension. 

1.1 Motivation: the 9enus one case 

The starting point for this paper was the situation in genus one which is par- 
ticularly simple, and which we describe first. 

Consider the standard decomposition 

S 3 =  T [.3 T' 
81X 81 

of the 3-sphere into two solid tori T, T ~. Let ~ ( T )  (resp. ~ ( T ' ) )  denote the 
(lones-Kauffman-) skein module of the solid torus T (resp. T ' ) )  There is a 
hilinear form 

t The skein module 5a(M) of a compact oriented 3-manifold M is the Z[A,A-t]-module 
generated by isotopy classes of banded links in M, modulo the Kauffman [14] bracket rela- 
tions (so~ for example [18] where ~(T) is denoted by .~.) The Kauffman relations imply 
that ~(S 3) ~ Z[A,A-1]; th�9 isomorphism is called th�9 Kauffman bracket and denoted by 
().  R is normalised so that the bracket of the empty link is 1. 
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( , )  : 5e(T) x ~ ( r ' )  --, Z[A,A-'] 

which associates to a pair of banded links L, L' in T, T' the Kauffman bracket 
of the banded link L tO L t in S 3. 

This form was studied for Kauffman's skein variable A a primitive 4r-th 
root of unity in a series of papers by Lickorish [17, 18], and in the general 
case in Blanchet, Habegger, Masbaum and Vogel [5] where an orthogonal basis 
(over Z[A,A-I]) is described. It turns out that if one changes coefficients to 
the cyclotomic field Q(~2,o) (i.e. if one replaces A by a primitive 2p-th root of 
unity ~2e) for some integer p > 3, then the form ( , ) becomes degenerate, 
and the quotient of 5:(T) by its left kernel is a vector space Vp of dimension 
n = [(p - 1)/21. 

Let t (resp. t ~) denote the self-map of 5a(T) (resp 5:(T~)) induced by 
a positive Dehn twist. It turns out that t descends to V~, and that t r has an 
adjoint t*, defined by requiring (t*(x),y) = (x, t ' - l(y)} for all x ,y  E Vp. With 
the methods of  [18] or [5], it is quite easy to check that the endomorphisms t 
and t* satisfy the following two relations in End(V~): 

tt* t = t* tt* (1) 

(tt.t)2 = ~p6-p(p+l)/2 idvp (2) 

Observe that this is a projective representation of the mapping class group of 
the toms S 1 • S I. Indeed, the latter is the group Sl(2, Z), which is generated 

b y t h e m a t r i c e s a = ( ~  I )  a n d b = (  11 0 ) , w i t h r e l a t i o n s _  

aba = bah (3) 
(aba)4= 1. (4) 

Because of formula (2), the smallest extension of S/(2, Z )  which resolves the 
projective action on Vp to a linear action is a central extension by a cyclic 
group of order growing with p. To obtain an extension which acts linearly on 
all of the Vp, we must suppress relation (2) and keep only the braid relation 
(1). The group so presented is the braid group B3. 

Thus, we have a series of  projective actions of Sl(2, Z) which combine to 
'generate' a central extension of Sl(2, Z)  by Z, and the class of this extension 
(the group B3) is well known to be a generator of H2(SI(2,Z); Z ) ~  Z/12. 

We shall see that the above generalises quite nicely to higher genus. 

Remark 1.1 As pointed out by Atiyah [3], in genus one the projective action 
can be renormalised to a linear action. (This does not generalise to higher 
genus.) In fact, one can renormalise to a linear action ofPSl(2,  Z). In formulas, 
the renormalised action is given by 

= Kp I t* ? = x ; I t ,  ?* - 

where xp is such that 
6 = ~6-p(p+t)/2 (5) /r 
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Observe that relation (1) is unaffected, but relation (2) becomes 

(??~r t")2 = i d  Vp �9 

Since (aba) 2 is the mapping class zc represented by the central element 

0 - E Sl(2, Z), this is indeed a linear action of PSI(2, Z). (It is nice 

to observe that the mapping class 7~ extends to the solid toms T, and its geo- 
metric action on the skein module 6~(T), hence on Vp, is indeed the identity.) 

Note. This renormalised action of PSI(2,Z) was used by Freed and Gompf 
[8] to compute the Witten [35] invariant for certain Seifert manifolds. Here is 
the precise relationship: Assume p = 2k + 4 is even. Put (2p = - e  2~i/2r and 
rp = e 2~id24 where c = 3k/(k + 2) is the so-called central charge. Then ? and 

??* ? are the matrices 7 ~ and S used in [8]. 

2 The projective actions pp 

2.1 The geometric action of the handlebody groups 

The representation space Vp(g) of the geometric action pp is constructed as 
follows. Consider the standard genus g Heegaard splitting S 3 = H Uz H' .  As 
in the case of  genus one, the Kauffman bracket gives a bilinear form 

( , ) : S~(H) • ~ ( H ' )  ~ ~ ( S  3) = Q(~'2p) 

(Here we work with coefficients in the cyclotomic field Q((2p), with Kauff- 
man's skein variable A replaced by a primitive 2p-th root of unity (2p.) 

Definition 2.1 Vp(g) is the quotient of the skein module 5e(H) by the left 
kernel of  the form ( , ). 

The vector space Vp(g) is finite-dimensional. This was shown in 1991 
by Blanchet et al., as part of their construction of TQFT's from the Kauff- 
man bracket [6]. A purely skein-theoretical proof of the finite-dimensionality 
of  Ve(g ) was later independently given by Lickorish [19] in the case where 
Kauffman's skein variable A is a 4r-th root of unity (i.e. when p is even.) 

Let K,K ~ be the handlebody subgroups, i.e. K (resp. K I) is the subgroup of  
the mapping class group F = rco(Diff+(X)) consisting of those mapping classes 
which extend to H (resp. H'.) Clearly K acts on 6~(H) and K'  acts on 6a(Hr). 

Theorem 2.2 [27] The actions of  the handtebody groups K on ~ ( H )  and K' 
on 6e(H') induce a linear action pp of  Free(K U K') on Ve(g ) which descends 
to a projective action Be of  the mapping class group F. 

This is proved directly in [27] purely within skein theory in the case of a 
4r-th root of unity. The result can also be deduced from the general theory in 
[6], and is true for 2p-th roots of unity with odd p as well. 
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We call pp the geometric action, since it is obtained by moving links 
around in handlebodies. 

Here is a description of the action. If x E 6e(H) and f E K, denote by 
f , ( x )  the result of moving x with the unique (up to isotopy) diffeomorphism of 
H extending f .  Put pp(f)(x) = f , ( x ) .  If f E K', define pp( f )  E End(l"p(g)) 
by 

(pp(f)(x), y) = (x, f~ l (y) )  

for all x E 6a(H), y E Sr 
Note that P p ( f l f 2 ) =  pp(fl)pp(f2), where, as usual, f l f 2  means first 

apply f2  then f l ,  and so pp is a left action. Note also that the linear actions 
Pp of K and K ~ on l/t,(g ) coincide on K M K'. 

Language. An element of a skein module 6e(M) of a 3-manifold M will be 
called a skein element in M. The manifold 2~ x I will be called a shell. 

Notation. If  s is a skein element in the shell 2~ x I, denote by Add(s) the 
endomorphism of 6e(H) given by adding s in the shell 27 x I (viewed as an 
external collar of H)  and pushing the result back into H. 

Remark 2.3 Here is an outline of Roberts' proof of Theorem 2.2. One observes 
that 

pp(f)Add(s )pp( f -  1 ) = Add( f  ,(s)) (6) 

(where f , ( s )  is s transported by f extended to 27 x I.) If a word r 6 Free(K U 
K') represents a relator in F, then r , ( s )= s. Hence pp(r) commutes with 
Add(s) for all skein elements s in 27 x I. One now shows that End Vp(g) is 
generated by endomorphisms of the form Add(s). Hence, pp(r) is central in 
End(Vp(g)), i.e. pp(r) is multiplication by a scalar. This proves that pp is a 
projective action of F on Vp(g). 

2,2 A skein-theoretical description of the action 

Notation. Let c~ be the set of isotopy classes of unoriented simple closed 
curves on 27. Let ~ be the corresponding set of positive Dehn twists. If �9 E c~, 
let t~ E ~ be the positive Dehn twist about ~. 

Convention. We shall identify ~f = ~ .  

Notation. For ~ E c~, let ~(+) (resp. a(-~) be the banded circle (annulus) in 
the shell 2~ x I whose underlying circle is the curve 0t 'drawn' on Z x �89 and 

l such that the band has framing +1 (resp. - 1 )  relative to 27 x 3" 

From now on we work over the ring Q((2p)[xp]/(x 6 - (~6-p(p+l)/2) (com- 
pare this with formula (5) in Remark 1.1). 

L e m m a  2.4 There is a skein element cop in the solid torus such that if t~ E 
n (K U K') then 
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pp(t~ 1) = tc~3Add(ot(q:)[cop]) (7) 

where a(~:)[cop] is the skein element in 2g x I obtained by cabling ~(~:) by ~Op. 

Remark 2.5 This result is well known. The skein element cop is up to scalar 
multiples the one used by many authors (e.g. [17, 18] [5] [24]) to construct 
3-manifold invariants. The precise normalisation of cop is as in [6], Sect. 2. 
Formula (7) in genus one is an equation which determines COp completely (not 
as a skein element, but as an element of Vp = lip(l).) 

Definit ion 2.6 Define a new projective action ~p o f f  on Vp(o) by setting 

~ p(t~') = Add(c~<~:)tcop]) (8) 

for all Dehn twists t~ E ~. Also, extend the original projective action pp to 
all of ~ by setting 

pp(t~l) +3- • = rcp pp(t~ ) (9) 

2.3 The main lemma 

Consider a word w = 1-Iin__i re~ E Free(~), where c~i E ~r and Ci E {-1-1}. Let 
L(w) be the banded link in 

H U ( Z x l U " U Z x l )  u H ' = S 3 ~  z �9 z 

(n copies of Z x I) given by inserting ~}-q) into the (n - i)-th shell (counting 
from the left.) We define a "signature" function ab : Free(~) ~ Z as follows. 

Definition 2.7 ab(w) = signature L(w), where signature L(w) is the signature 
of the 4-manifoM obtained by attaching 2-handles to the 4-ball along L(w). 
(The subscript b in orb stands for 'ball'.) 

Notation. Let ~ = ker(Free(~) --* F) be the set of all relations between Dehn 
twists in F. For a mapping class f E K U K +, let wf E Free(~) be a word in 
Dehn twists representing f .  Let e(w) be the exponent sum of a word w E 
Free( ~ ). 

Lemma 2.8 (Main lemma) Recall that pp : Free(~ U K U K') ~ End(Vp) is 
well-defined. Then we have 

1~ 3(e(r)+ab(r)) for all r E ~,  (i) pp(r)= p 

(ii) pp(w f f  -1 ) = p p ( f - t w f )  = x~ (e(wD+~bCwy)) for all words wf represent- 
ing f E K tO K +, 

_3~b(r) for all r E ~. (ii i)  /~p(r) = ~p 

Proof. Observe that (i) is a special case of (ii), and that (i) implies (iii) by 
the definitions of pp and/~p. Hence, it suffices to show (ii). 
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Let ~(wf) be the skein element in the shell Z x I obtained by cabling the 
3e(w f ) ^~ 

link L(wf )  (which lies in the shell) by co v. Let s(wf)  = top s[wy). So 

pp(w f ) = add(s (wf  ) ). 

Because the word w f f - l  represents the identity mapping class, and pp is 
a projective representation of the mapping class group, p p ( w f f  -1) is a scalar 
multiple of the identity. This scalar may be computed as follows. Let v~ denote 
the element of Vp(g) represented by the empty link in H. Using the bilinear 
form ( , ), the empty link in H '  defines a linear form on Vv(g ) which will be 
denoted by ( , v0). Let (s(wf) 1 be the bracket of s(wy), considered as a skein 
element in S 3 = H U~ (X x I)  LJz H'. It is clear from the definition of Vp(g) 
that 

( ; e ( w l  ), vo) = ( s (wD)  . 

On the other hand, 
(pp(f)(vo),vo) = (v~,vO)= 1 

since any f E K fixes the empty vector v0, any f E K I fixes the linear form 
(,  v0), and by convention the number (v~, v0), which is the bracket of the 
empty link in S 3, is 1. Hence 

p p ( f - l w f  ) = pp(wf  f -1) = (s(wf )) . 

3 e ( w f )  ~,, . 
Since s(wf)  = xp s[wf), it remains to show that 

The reason behind formula (10) is that the skein element cop is the one that 
gives 3-manifold invariants, and is correctly normalised. Here are the details. 

Notation. For f E F, let 

c ( y ) = s •  U s• [�89 
(x,�89189 ) 

be its mapping cylinder. Let My denote the closed 3-manifold 

H U C ( f ) U H '  
z z 

Thus, My has Heegaard splitting ( 2 , f ) .  Observe that i f f  is in K or K t, then 
M f  is diffeomorphic to S 3. 

The following is well known. 

Lemma 2.9 Let ~ ~ qr The result o f  surgery (rel. boundary) on the banded 
link o: (~:) C X • I is the mapping cylinder C(t~l). 

It follows that if f E F is represented by a word w = I'Iin__l t~ I ~ Free(D), 
then the result of surgery along the banded link L(w) is precisely the manifold 
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Proof of  formula (10), By Kirby's theorem about surgery presentations of 
3-manifolds and the fundamental property of ogp, the number x~3~bCw)(g(w)) is 
a topological invariant Ip(Mf) of the closed 3-manifold Mf. (This invariant is 
just a renormalised version of the invariant obtained in [18] and in [5].) In our 
case, f E K U K j, hence Mf = S 3. But Ip(S 3) = I (since S 3 is also obtained 
by surgery on the empty link.) The result follows. 

3 Three central extensions of the mapping class group 

3.1 Extensions generated by projective actions 

Let G be a group and V a free k-module where k is a commutative ring with 
unit. It is well-known that a projective representation of G on V, thought of  
as a homomorphism ~ : G ~ PGLk(V), may be 'resolved' to a linear action 
of a central extension G~ of G by k*. 

This may be thought of  in several ways. From a formal point of view, 
G~ may be constructed by pulling back the 'tautological' central extension 
k* ---+ GLk(V) ~ PGLk(V) by the homomorphism ft. 

By the central extension generated by a projective action, we mean a 
slightly different concept. We define a projective action of G on V to be a 
pair (S,p) such that S C G is a generating set, and p : S ~ GLk(V) is a map 
such that the induced homomorphism p : Free(S) ~ Aut(V) satisfies p(r) E k* 
for all relators r in G, i.e. for all r E R = ker(Free(S) --~ G). Note that (S, p) 
induces a homomorphism ~ : G ~ PGLk(V). 

We define the central extension of  G generated by the projective action 
(S,p), denoted by G(S,p), to he the smallest quotient of Free(S) that (i) 
maps homomorphically to F and (ii) resolves the projective action to a lin- 
ear action. The group G(S,p) is the quotient of Free(S) by Rp, where Rp = 
{r E Rip(r) = 1}. (Note tha tR n is a normal subgroup of Free(S).) The map 
p induces a homomorphism G ( S , p ) ~  Glk(V) which is again denoted by p. 

Note. The extension G(S,p) is a central extension of G by the subgroup p(R) C 
k*, i.e. it is naturally identified with a subgroup of G~. (In fact the kernel is 
generated by the set of values p(r), for a set of  relators in a presentation of 
G by the set S.) 

3.2 Definition o f  the extensions F1, F2, and F4 

Recall that we have defined three projective actions of the mapping class group 
on Vp(9): the original geometric action (K tAKI, pp), its skein-theoretical ver- 
sion ( ~ , p p )  on Delta twists, and the 'corrected' action (~,fip).  They all in- 
duce the same homomorphism F ~ PGt(Vp(9)), but the extensions generated 
by them will turn out to differ slightly. 

By the main lemma, for all three of  these projective actions, any relator 
acts by a power of ~:~ which is independent of p. Hence in all three cases 
the projective actions for different p fit together to generate a common central 
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extension. The latter will be an extension by Z since the order of the root of 
3 is not bounded as p ~ c~. unity Xp 

Definition 3.1 We denote by ?b ?2, and ?4 the central extensions of the 
mapping class group F generated by the three projective actions referred to 
above, i.e. by a slight abuse of notation 

?2 = ?(K U K',p) 

?4 = ?(~, fi) 

Let us denote the isotopy class of a small (null-homotopic) unknot in ~ by 
T E c~. Continuing our convention :g = ~, let T denote also the corresponding 
Dehn twist in ~. Observe that/~p(T) = x~ 3 and orb(T} = -I. (Note that T is 
the identity as a mapping class, but does not map to I under jOp.) The main 
Lernrna 2.8 immediately gives the following: 

Theorem 3.2 (i) The group ?4 = ?(~, :) is a central extension of F by Z. 
The kernel of  1"4 ~ F is generated by T. Under :?, it acts as multiplication 
by ~c'~ 3 on Vt,(g ). 

(ii) The group ?4 has a presentation 

:4 "~- (~1{ rTab(r):r E ~})  = (~l{r :r ~ ~,crb(r) = 0}). 

Note. The group ? ( ~ ,  tSp) is the quotient of/~4 by the relation T~p = 1 where 
vp is the order of the root of unity x~. 

3.3 Comparing the extensions 

The three central extensions are related in the following way. Let ~o = ~ N 
(K U K r) be the set of Dehn twists about curves that bound a disc in H or 
H I (this set still generates F). One has the following commutative diagram of 
inclusions: 

:(~o,p) ~ :2 

?i & ? . .  

Here, the maps ? (~o ,P)  ~ ?z and ?(~o,P) ~ 71 are induced by the inclu- 
sions ~0 C K U K' and ~0 C ~.  Observe that every Dehn twist is conjugate to 
one in K, and pp is the identity on conjugation relators by Roberts' argument 
(see Remark 2.3, putting s --- fl(-)[o)~,].) Thus extending the geometric actions 
pp from ~0 to ~ does not produce any new projective factors. Hence the map 
?(~0,  P) ~ ?1 is an isomorphism, as indicated in the diagram. 

Thus, ?x is naturally a subgroup of ?2, which justifies the notation (0 for 
both the maps 72 ~ F4 and ? l  "--+ ?4. They are defined as follows: 

q~(f) = TabfWf )wf 

q~(t~) = T-lt~ 
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where f E K U K'  is represented by wf  E Free(~), and t~ E ~.  (To see that 
this gives well-defined inclusions maps it suffices to check e.g. ~p( tp( f ) )= 
p p ( f )  which is trivial using the main lemma 2.8.) 

Theorem 3.3 (i) The injection q~ : ?2 ~ ?4 has index two. 
(ii) The injection ~o : 71 ~ ?4 has index four. 

o) 
Proof. The higher genus generalisation of the element ~t = _ E 

S/(2,Z) is a 180 degree twist along the (separating) waist curve of a 1-handle 
of  H. Denote this mapping class again by ~. It lies in K n K'. In F, ~ may be 
written as wn = (ML) 3 where M and L are Dehn twists along the meridian and 
the longitude of the handle. We now use the relator lt-I(ML) 3 to show that 
the index of the inclusions ?2 ~-~ ?4 (resp. 71 ~-~ ?4) is at most two (resp. 
four.) 

The number trb((ML) 3) is the signature of  the linking matrix of the link 
of  six -1-framed unknots in S 3 corresponding to the word wn = (ML) 3. This 
is easily computed to be -4 ,  either directly from the matrix or by doing a 
few handleslides on the link first. Since e((ML )3) + trb((ML ) 3) = 6 -  4 = 2, 
the main lemma 2.8 implies 

cp (~ - I (ML)  3) = T -2  . (11) 

Thus, the index of ~o :/~2 "-~ ?4 is at most two. Since n 2 is a Dehn twist in 
~ ,  and q~(n-2(ML)6) = T -4, it also follows that the index of  q~ : Fl ~ F4 is 
at most four. 

Theorem 3.3 now follows from the main lemma and the following result 
which is worth stating independently. 

Proposition 3.4 (i) I f  f E K U K' is represented by wf  E Free(~), then 
e(wf ) + ~b(wf ) is even. 
(ii) I f  r E ~ ,  then e(r) + ab(r) - 0 rood 4. 

Proof. For (i), observe that taken modulo 2, the exponent e(wf)  is the size 
of  the linking matrix of  L(wf),  and the signature is its number of non-zero 
diagonal entries once diagnnalised. Thus ~r(wf)+e(wf)  equals (mod 2) the 
number of zero diagonal entries, that is the first Betti number of the 3-manifold 

3 Mw I.  But Mw z = S ,  since wf  ~ K, hence this is zero. 
We defer the proof of  (ii) until subsection 3.5, where we will make use of 

the presentation of the mapping class group which we have so far avoided. 

Note. It is possible to prove (ii) without using a presentation (in fact using 
Meyer's [23] result that the signature of  a surface bundle over a closed surface 
is divisible by 4). 
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3.4 A presentation of  the mapping class group 

The first explicit presentation of F for all genus was written down by Wajnryb 
[32], following the work of Hatcher and Thurston [13] and Harer [11]. For our 
purposes, the following (infinite) presentation, implicit in Harer's work and 
easily derived from Wajnryb's (finite) presentation, is sufficient. 

Let cg~ C ff be the set of isotopy classes of unoriented simple closed curves 
on 2; which are non-separating (i.e. which are essential in homology.) Let 
~ns C ~ be the corresponding set of Dehn twists. The positive Dehn twist 
about a curve 6 will be denoted by to. Observe that twists about non-separating 
curves ~, j~ satisfy the relation 

t~tp(t~) - l  = t~, (12) 

in F, where /3 ~ denotes the curve/~ translated by t~. The corresponding relator 
of the mapping class group is called a conjugation relator, and denoted by 
r~.~ E Free( ~,~ ). 

Note. It is nice to think of the set of  non-separating curves in the surface as 
acting on itself in this way, giving it the structure of a wrack (or rack) (see 
e.g. [7].) 

Theorem 3.5 [11, 32] The mapping class group F is presented as 

u {c.d)) 

where Rconj = {r,,t~[0~,/3 6 cg,~} are the conjugation relations between elements 
of ~,~, and c,d are two exceptional words described below. (In 9enus one 
and two, relator d is omitted.) 

The exceptional words are c = (ABA) 4 in genus one, e = (ABC)4D-1E -1 
in genus > 2, and d = AtAzA3A4B~1B~tB( t in genus -> 3. Here the A,B, . . .  
are twists around the curves shown in Figs. 1 and 2. More precisely, the 
word c is obtained from an embedding of the 2-holed toms into 2~ such that 
the five curves A,B, C,D,E are non-separating in 27; Fig. 1 shows a standard 
way of doing this, from which it is clear that in genus two, one has D --- E, 
and in genus one, one has A = C, and D and E are suppressed. The word 
d is obtained from an embedding of the 3-holed disk shown in Fig. 3 such 
that the seven curves AhA2,A~,A4,B3,B2,Bt are non-separating in 2:; again, 
Fig. 2 shows a standard way of doing this and shows that d exists only in 
genus >= 3. (Observe that the choice of  the embeddings is actually irrelevant, 
because any two embeddings of  the 2-holed toms or the 3-holed disk with the 
above properties are related by a diffeomorphism of 27.) 

The following well known result will be needed later. 

Lemma 3.6 The group presented as (~,~lRco,j) is a central extension of  F. 

Proof. Let the word r E Free(~ns) be a relator in F. Let t0 be any twist in 
~ ,  then by applying a series of conjugation relations, rt~r -1 = tot, where 5 r 
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denotes 6 translated by the mapping class represented by r. Since r is a relator, 
~5 r = ~5. Thus r commutes with all Dehn twists, hence is central in (~,~lR~o~j). 
The result follows. 

Remark 3. 7 Relator d is the so-called lantern relator (usually pictured as in 
Fig. 3.) Its existence shows that F is perfect in genus > 3, and (hence) has 
a universal central extension. According to Harer [11], p. 238, the latter is 
presented as <~nslRcony U {d}). 

Note. Gervais [9, 10] has shown that one may replace R~o~j by the subset of 
those conjugation relators r~,t~ where the curves ~ and fl intersect in at most 
one point. 

3.5 Proof of Proposition 3.4(ii) 

Here is the proof of part (ii) of  Proposition 3.4. We must show that e(r) + 
o'b(r) = 0 mod 4 for all r E ~ = ker(Free(~) ~ F): equivalently, that pp(r) 

~2 It is sufficient to show this is always a power of  xp .  
(i) for relators c,d and the conjugation relators r~,# in Harer's presentation 

of F as quotient of Free(~ns), and 
(ii) for relators of the form (t~)-lw~ where w~ is a word in F r e e ( ~ )  

representing a Dehn twist t~ along a separating curve 6. 
We first show (ii). Since any Dehn twist is conjugate to one in K, we 

may assume t~ E K is a twist around a waist curve 6. Since 6 is separating, 
we may write t~ = f 2  for an f E K (corresponding to a 180 degree flip of  
one half of  the surface). Thus, we may take w~ = w~ where w / E  Free(~ns) 
represents f .  Observe that ~o((t6)-Iw~) = q~(f-lwf)2. Now we know already 

that e(wf)+ ob(wf) is even, hence ~o(f-lwf) is a power of  T:. It follows 
that q~(f-lwf)2 is a power of  T 4, whence the result for t~. 

Next, we show (i). For a conjugation relator, the result is clear since we 
know that pp(r~,#) = 1 from Roberts' argument (see Remark 2.3.) For d, ob- 
serve that e(d)= 1 and oh(d)= - 1  (for the last statement, observe that the 
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seven curves in the word d are mutually unlinked unknots.) For relator c, 
12 the result is e(c)+ trb(c)= 4, which is equivalent to pp(c)= (s(c))= rp. 

To see this, observe that L(c) is a 14-component link lying in a neighbor- 
hood of a torus in S 3. It follows that it is sufficient to do the computation 
in the case of genus one, when A = C and {s(c)) = (s((AB)6)). But the word 
(AB) 3 represents the mapping class n E K, and by formula (11) we know that 
pp(Tz-l(AB)3) = (s((AB)3)) = ~6. Hence (s(c)) = rr 2, as asserted. This com- 
pletes the proof. 

3.6 Presentations of the extended groups 

We can now spell out presentations of the extended groups. Recall that the 
mapping class group is presented as F = (~,~lRco~y U {c,d}). 

T h e o r e m  3.8 For genus g > 3, the extended groups have presentations 
(i) /%1 = (~nslRconj U {d}) 
(ii) /%2 = (~ns U {U}lRcony U {d, cU -2} U {U central}) 
Off) /%4 : (~ns  I.J {r}lRco,j u {dr-',cT -6} u {T central}) 

Proof. In the preceding subsection, we have seen that pp(d) = 1, pp(c) = r.p12, 
and pp(r~,p) = 1 for all ~,fl E qfns. It follows that P(~ns, P) is presented as 
{~nsiRconj O {d}). Observe that we do not need relators expressing that c is 
central because the group presented as (~,~lRconj} is already a central extension 
of F (see Lemma 3.6.) Also, part (ii) of the proof of Proposition 3.4(ii) shows 
that the inclusion ~ns C ~ induces an isomorphism 

P(~,~, p) ~,/%(~,p) =/%, 

This implies the result for/%1. For/%2, the result follows from Theorem 3.3(i). 
(Geometrically, U is the relator rt-l(ML) 3 used in formula (11).) For/%4, one 
may use Theorem 3.3(ii) (or compute/~p(d) = ~ 3 ,  ~e(c ) = ~;18.) 

Remark 3.9 (i) The kernels of the extensions are generated by relator c, U 
and T respectively. The groups act linearly on Vp(g) by the representations 

12 U as /s and T as ~:~3. pp, pp,/~p respectively, under which c acts as top, 
(ii) In the case of genus one or two, the relators corresponding to d are 

omitted. In the case of genus one, the relator cT -6 in/~'4 must be replaced by 
cT -4 because c is defined differently. 

(iii) In genus one, ~0 = ~ n ( K U K ' )  C F is identified with {a,b} C 

( l  1 ) a n d b = (  1 ~ )  The extension F, i s t he  SI(2,Z), where a =  0 1 -1  " 

braid group B3 = (a, b I aba = bab). It is obtained from the presentation of 
SI(2,Z) by omitting the relation (aba)4= 1 (i.e. relator c.) It is nice to 
observe that in higher genus, the situation is exactly the same: the extension 
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/=1 is presented just as the mapping class group F, except that relator c is 
omitted) 

Theorem 3.10 In H 2 ( F ; Z ) ,  [/~4] = 2[F2] = 4[/~1]. The extension class [/~1] 
generates H2(F; Z), and [P4] is represented by the signature cocycle. 

Remark 3.11 It is known that the group H2(F;Z)  is cyclic in all genus: in 
fact H2(F;Z) is Z in genus at least three, Z/12 in genus one, and Z/IO in 
genus two, see [11, 12]. The fact that the signature cocycle represents four 
times a generator (in all genus) is well known (Meyer [23], p. 240.) 

Proof of Theorem 3.10. The first statement follows from Theorem 3.3 by stan- 
dard group cohomology. The second statement follows from the presentation 
of Pl obtained in Theorem 3.8. Indeed, in genus at least three, the presenta- 
tion f l  = (~.~lRconj u {d}) shows that H1(F1 ;Z)=  0, and since H l ( F ; Z ) =  
0, it follows by elementary group cohomology that [/~l] is a generator of 
H2(F; Z)  = Z. In genus one and two, the presentation/~t = (~nstRconj) shows 
that Hi(/~I;Z) = Z. But now H2(F; Z)  = Ext(Hl(F;Z),Z), and the class [/~1] 
is represented by the short exact sequence Z--* Hl(/~l;Z)--~ HI(F;Z) .  Since 
HI (FI ;Z)  = Z, this proves [/~l] is a generator. As for the third statement, 
we shall give in subsection 4.3 a direct proof that /~4 is isomorphic to the 
signature-cocycle extension by using pl-structures. 

4 The relationship with Atiyah's extension and pl-structures 

4.1 2-framings and pl-structures 

Atiyah [3] has described extensions of mapping class groups in terms of 2- 
framings, and explained their relationship with the signature cocycle. He de- 
fined a 2-framing on a closed 3-manifold to be a framing of twice the tangent 
bundle. 

As in [6], it will be convenient to replace the notion of 2-framings by 
the more homotopy-theoretical notion of pl-structures which makes sense in 
all dimensions. (This is analogous to the case of spin structures, where it is 
sometimes convenient to think of a spin structure on an oriented manifold M 
as a fibre homntopy class of lifts of the stable tangent bundle to BSpin.) The 
formal definition is as follows. 

Definition 4.1 [6] Let X be the homotopy fibre of  the map Pl : BO ---* K(Z,4)  
corresponding to the first Pontrjagin class of  the universal stable bundle 7 over 
BO. Let ~x be the pull-back of  ? over X. A pl-structure on a manifoM M 
is a fibre map Ji'om the stable tangent bundle of  M, ~M, to Tx. 

Thus, a fibre homotopy class of pl-structures is the analogue of a spin 
structure, where the second Stiefel-Whitney class w2 is replaced by the first 

2 It is tempting to say that this relator is 'quantized'. 
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Pontrjagin class pt. (For the relevant classical algebraic topology, see for in- 
stance [29].) 

Note. A pl-manifold is a manifold together with an actual pl-structure, rather 
than a homotopy class of such structures. This is important when it comes to 
gluing them together. 

It is easy to see that every manifold of dimension < 3 admits a Pl- 
structure. In dimension ~ 2, pl-structures are unique up to homotopy. In di- 
mension 3, homotopy classes of pl-structures 4 on a closed connected oriented 
3-manifold M are classified by the Z-valued invariant a(M, 2) defined as fol- 
lows. There exist compact oriented 4-manifolds W with dW = M. Given such 
a W, let pL(W,~)E Z denote the obstruction to extending 4 to W, evaluated 
on the fundamental class. 

Definition 4.2 I f  4 is a pl-structure in M, let 

a(M, 4) = 3signature(W) - pl(W, ~), 

where W is any compact oriented 4-manifold with boundary M. (Compare 
[3]: our definition corresponds to 3 times Atiyah's ~r.) 

The fact that this number is independent of the choice of W follows from 
Hirzebruch's signature theorem. 

Remark 4.3 There is an obvious notion of pl-surgery, that is, we demand 
that the trace of the surgery has a pl-structure. If M~ is obtained from M~ by 
surgery along a framed knot or link, then every pl-structure on M13 extends 
over the trace of the surgery (uniquely up to homotopy), and hence determines 
a pl-structure on M~ (uniquely defined up to homotopy). 

4.2 The extended mapping class groups Fs and F t, I 

Let 2; be a connected oriented closed surface, and let F be the mapping class 
group of ,~. For f E F, let C( f )  be its mapping cylinder. Fix a pl-structure 
r on 2:. 

Definition 4.4 The extended mapping class group Tm is the set of  pairs 
( f , [4])  where f E F, and [4] is a homotopy class (rel boundary) of  Pl- 
structures ~ on the mapping cylinder C( f )  extending 4o on ~, x 0 and Z, • 1, 
together with the obvious composition. 

If ~ is a pl-structure on C ( f )  extending ~0, let ~ be the pl-structure on 
the mapping torus T ( f )  obtained by gluing. This induces a bijection between 
homotopy classes of pl-structures on the mapping cylinder (rel bounflary) and 
the mapping toms. Thus for ( f , [ 4 ] )E  Tpl, the number a(T(f) ,~)  is well 
defined. The resulting function/~pl ~ Z will again be denoted by a. 

The forgetful map/~p~ ~ F is a central extension by Z. 

Remark. Atiyah's extended group [3] i s  defined in terms of 2-framings 
on mapping toil. The assignment ~ ~-~ ~ together with the identification of 
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homotopy classes of 2-framings with homotopy classes of pi-structures pro- 
vides an identification of the extension Fe~ with Atiyah's group. 

Definition 4.5 Denote by Ps the subset of  those x E F't, I such that a(x) = 
0 rood 3. (The subscript 's' stands for signature.) 

Proposition 4.6 Fs is a subgroup of index 3 in Fpt" 

Proof. This follows easily (by Hirzebruch's formula and additivity of the sig- 
nature) from the fact that a pl-structure ~ on a 3-manifold M can be extended 
to some compact 4-manifold if and only if its a-invariant is divisible by 3. 
In other words, the cobordism group f2~ '1, of oriented 3-manifolds with Pl- 
structure, is isomorphic to Z/3Z. 

It is clear that the kernel of the extension Fpt ~ F is generated by the 
element Tl = (id, [~]) where ~ satisfies a(2~ x S I, ~) = 1. Thus 

o'(T1) = 1. (13) 

Moreover, it is clear that for all x E Fp~, one has 

a(x. T l ) =  a(Tl . x )=  a(x)+ 1 . (14) 

Because of  properties (13) and (14), the function a : F?l ~ Z corresponds 
to a set-theoretical section of the extension, and determines a 2-cocycle c: on 
the mapping class group F. (The cocycle is given by c#( f l , f2)  = a( f l  . f 2 )  - 
a ( f l )  s a(f2), where f l , f ~  are any lifts of f b f z . )  Similarly, the function 
a/3 : Fs --~ Z determines a cocycle cs on F. Clearly c~ = 3c~. 

Proposition 4.7 [3] The 2-cocycle cs is the signature cocycle. 

This result is a direct consequence of  the definition of the signature cocycle and 
Hirzebruch's signature theorem. Thus the cocycle c~ is three times the signature 
cocycle. Hence, as observed by Atiyah [3], the extension/~pl represents twelve 
times a generator in Hz(F;  Z)  (since the signature extension is four times a 
generator.) 

4.3 Identifying if'4 and Ps 

We now complete the proof of  theorem 3.10. For a Dehn twist t~ E 9 ,  pl- 
surgery on the curve ~c-) in 2: • I equipped with the product structure ~0 • 1 
defines a lift ?~ E/~s. Equivalently (a simple check), define ?~ by requiring 
a(?~) = -3 .  Extend this definition to a homomorphism ~b :Free(g) ~ Fs by 

= 

Proposition 4.8 ~, induces an isomorphism of  extensions ~ : F4 ~, r's 

Proof. First, ~ is surjective, because ~(T) = T1-3 is the central generator of 
r , .  If  we show that #b(w) = 0 for any word w E Free(g) satisfying ~/(w) = 1, 
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then the kernel of 0 is {r E ~ : orb(r) = 0}, and the result follows from the 
presentation of/~4 given in theorem 3.2. 

If  ~b(w) = 1, then by definition of ~, Pl-surgery on the link L(w) C (E x 
I, ~o x 1) produces (Z • I, ~), where C is homotopic to Co • 1. 

Let S 3 = H U (Z x I) t3 H r with pt-structure r x 1 on Z x I, extended 
arbitrarily outside. Regard this as the boundary of the 4-baU, and perform the 
pl-surgery above corresponding to w. Because C is homotopic to Co x 1, the 
a-invariant (computed in S 3) does not change under this surgery. Also the 
relative Pontrjagin classes involved in computing these a-invariants are equal, 
by definition of a pl-surgery. Therefore the signature of B 4 union 2-handles 
along L(w) equals that of B 4, hence the result ab(w) = O. 

5 Further remarks 

5.1 Cocycles cohomologous to the signature cocycle 

Let X be any pl-CObordism from (27, r to itself. Let ax : Fp~ ---, Z be defined 
as follows. For ( f , [ r  Fpl, take the corresponding structure on C ( f )  and 
define the number ax( f ,  [C])) to be the o'-invariant of the closed pl-manifold 
obtained by gluing the mapping cylinder C ( f )  and X together along ZH - Z .  
The function ax satisfies (13) and (14), hence defines a cocycle cx on F. All 
such cocycles (for different X) are cohomologous, since they classify the same 
extension. 

The two isomorphic extensions F4 and/~s fit into this picture, as follows. 
First, take X = H ~ II H, where S 3 = H Us H ~ is the standard Heegaard split- 
ting, and H, H I are equipped with the restrictions of a pl-structure ~ on S 3 
such that a(S 3, ~) = 0. The associated function ax satisfies the following: If 

f E/~4 is represented by a word w E Free(~), then 

= r  . 

On the other hand, if X0 is the identity cobordism (with product pl- 
structure), the function ]axo is simply the function �89 Thus, the cocycles 
defined from the functions ab and ] a  are cohomologous. 

Remark 5.1 If  Xl, X2 are as above, the difference ~rxl - aXz is a well-defined 
function on the original mapping class group F, and the difference cxt -cx2 
is the coboundary of that function, considered as a 1-cochain. In fact, since 
F is perfect (in genus 3 or more), this is the unique such 1-cochain. One 
may use Wall's non-additivity of signature formula to describe this function in 
terms of homological data. It would be nice to know whether there is a nice 
formula for this function in the case of interest here. (Compare this with the 
case of genus one, where the signature cocycle is the coboundary of a unique 
(rational) cochain which is almost the Rademacher ~b-function (see e.g. [23] 
[1] [4] [15]).) 



148 G. Masbaum, 3.D, Roberts 

5.2 Three-manifold invariants without Kirby's theorem 

Let f E F be represented by a word wf E Free(9), and let M = Mf have 
Heegaard splitting ( Z , f )  as in subsection 2.3. In [27], the projective action of 
F on Vp(g) was used to give a very simple proof that the absolute value of 
(pp(Wf)(V~),VO) (considered as a complex number) is a topological invariant 
of  M. (This invariant is the absolute value of the invariant It,(M ) that was used 
in the proof of  the main lemma.) The proof in [27] used only the Reidemeister- 
Singer theorem about Heegaard splittings, but not Kirby's theorem on surgery 
presentations of  3-manifolds (which is generally considered more difficult). 

In fact, one can obtain the invariant Ip(M) itself in this way, using the 
corrected action/~p of the extension/~4 on Vp(g). Define a section s : F ~ /~4  

by s( f )  = T~bOC/)wf. Then 

Ip(M) = (~p(s(f))(v$), v~) . 

One can take this as the definition of Ie(M), and apply the methods of [27] 
to prove its topological invariance, without using Kirby's theorem. (One needs 
to use a presentation of  F, and the Suzuki generators [30] (see also Lu [20, 
21]) of  the handlebody groups). 

Note. While pp is defined over Q((2p), the corrected action /$p :/~4 ~ Gl 
3 (Only r6, which is a power (Vr(g)) depends on a choice of sign for rp. 

of the skein variable A = (2p, is determined by skein theory.) One can check 
that s( f )  lies in the subgroup of index two in /~4 if and only if bl(Mf) is 
even. This corresponds to the fact that making a different choice of sign for 

3 multiplies the invariant lp(M) by ( - 1 )  bl(M). /r 

5.3 The relationship with the TQFT-]unctors of [6] 

While the geometric action pp has an obvious skein-theoretical meaning, the 
corrected action /$p is quite natural from the point of view of the TQFT- 
functors Vp of [6]. (An introduction to the concept of Topological Quantum 
Field Theories (TQFT) can be found in Atiyah [2].) 

Here is the precise relationship. Consider a closed surface E equipped with 
the fixed pt-structure 30. The TQFT-functor Vp associates to Z a module Vp(Z) 
(which is free of finite rank), and any cobordism M with 'structure' from Z 
to itself (i.e. with a pl-structure extending the given G0, and possibly contain- 
ing banded links) induces a well defined endomorphism Zp(M) of Vp(Z). In 
particular, the assignment ( f ,  [3]) ~-~ Zt,(C(f), 3) is a left action of the group 
/~p, on Vp(2:). 

As in the proof of  proposition 4.8, fix pl-structures ~ti,~H, on H,H r ex- 
tending Go on Z. By the general theory in [6], the choice of (H, r and 
(Hr,r determines an identification Ve(Y. ) = Vp(g), and one can show the 
following 
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Proposition 5.2 Under this identification, the action ~p(t~) on Vp(g) is identi- 
fied with the natural actfl~n of  the canonical lift ~ E I'pl (defined in subsection 
4.3) on Vp(Z). 
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