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ON THE STIEFEL-WHITNEY CLASSES OF A MANIFOLD.**

By W. S. MassEy.

1. Introduction. It has been well known for many years that various
relations must hold between the Stiefel-Whitney classes of the tangent bundle
of a manifold which do not hold for the Stiefel-Whitney classes of an arbitrary
sphere bundle. For example, Whitney [6] showed that the 3-dimensional
Stiefel-Whitney class of an orientable 4-manifold is always zero. The three
main theorems of this paper are results of this kind. They assert that for
certain integers n and %, the k-dimensional Stiefel-Whitney class (or dual
Stiefel-Whitney class) of a compact n-manifold (or a compact orientable
n-manifold) is always zero.

2. Statement of results. Throughout this paper we will use only the
ring of integers mod?, Z,, for coefficients of any cohomology groups or co-
homology classes considered. The notation M will be consistently used to
denote a compact, connected, n-dimensional manifold, w;€ H*(M",Z,) will
denote the i-th Stiefel-Whitney class of its tangent bundle, and w; € H(M", Z,)
will denote the ¢-th dual Stiefel-Whitney class. The Stiefel-Whitney classes
and dual Stiefel-Whitney classes are related by the following formula:

(2.1) (Sw) (Siy) =1.

According to the Whitney duality theorem, the @; are the Stiefel-Whitney
classes of the normal bundle for any differentiable imbedding of M» in a
Buclidean space of any dimension.?

The following three elementary properties of the Stiefel-Whitney classes
of an n-manifold M» are well known (see Wu [7]):

* Received February 20, 1959.

1 During the preparation of this paper, the author was partially supported by a
grant from the National Science Foundation. An abstract announcing the three main
theorems of this paper was submitted to the American Mathematical Society in
December, 1958 (see Notices Amer. Math. Soc., vol. 6, p. 143).

2In his thesis [5], R. Thom showed how to define the w; and w,; when differen-
tiability hypotheses are lacking.
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STIEFEL-WHITNEY CLASSES. 93

(2.2) If n is odd, w,=0.
(2.3) w,==0 if and only if Mn is orientable.
(2.4) For any n, @,=0.

Qur theorems extend these results.

THEOREM 1. Let M» be a compact, n-manifold and let q be an integer
such that 0 < g < n. If wpq5~0, then there exvist integers hy,- - -, hy such
that hy =h, =+ - "= hy=0 and

m=2Mh 2 o -2
Moreover, if M» is orientable, the following additional restrictions must be
wmposed :
(a) g¢#1,
(b) If n=2mod4, then he~1,
() An odd number of the hi’s are not equal to hq—+ 1.

The proof of this theorem will be given in §4. For the present, we will
list the following corollaries.?

COROLLARY 1. If @,,540, then n is a power of 2 and M" is non-
orientable.

This is the case ¢ =1 of the theorem. Note that for n-dimensional real
projective space one actually has @,_, 540 if n is a power of 2. To prove this,
one can use the determination of the Stiefel-Whitney classes of n-dimensional
real projective space by E. Stiefel [4] and formula (1) above.

COROLLARY R. If @n25%0, then n=2%¥(R" 4 1) for non-negative integers
I and k. In addition, if M" is orientable, the cases n=2(2"+ 1) for h >0
and n=3.2% are not possible.

This is the case ¢==2 of the theorem. 2%(2"4 1) =2%" 4 2% so0 let
hi=Xk -+ h and h,=F%k. The two excluded cases correspond to cases (b) and
(c¢) respectively of the main theorem.

CorROLLARY 3. If n=2"—1, then ;=0 for i >n—r.

Proof. Since 27— 1=1-+42 4224+ - -4 271, the minimum value of
g which can occur in Theorem I is g==r.

31 have been informed by A. Shapiro that the result stated in corollary 1 has been
obtained independently by A. Dold.
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We leave it to the reader to derive other consequences of Theorem I.
In doing this it is often useful to observe that the following two conditions
are equivalent: (a) n=2m 4 %4 - - -4 R for non-negative integers
hy,* - ,he. (b) In the dyadic expansion of the integer =, the digit 1 does
not occur more than ¢ times.

TaroreEM II. If n is even and M~ is orientable, then w,,=0.

Wu indicates a proof of this result in case n=2mod4 (see [7]). The
proof for the case n==0mod 4 if given in § 5.

TaeoreM III. If n=3mod4 and M» ts orientable, then w,= wn_,

= Wp_p=0.

This theorem is an easy consequence of Wu’s formulas [7]. The proof
is given in § 3.

In a certain sense, Theorems IT and III together with statements (2.2)
and (2.3) are the best that one can hope for in this direction. This may be
seen by consideration of certain examples, as follows:*

In the case of non-orientable manifolds, statement (2.2) above is the
best possible. For if n is even, n=2Fk, then M"= (P,)* (the Cartesian
product of k copies of the real projective plane, P,) has non-vanishing Stiefel-
Whitney classes in all dimensions, while if n is odd, n =2k -+ 1, then
Mr = (P,)* X 8* (where S* denotes a 1-sphere) has non-vanishing Stiefel-
Whitney classes in all dimensions < n.

The case of orientable manifolds is more complicated. First consider the
case where n==4k. Let P,(C) denote the complex projective plane (a 4-
dimensional manifold), and let M» = [P,(C)]%, the Cartesian product of %
copies. Then w;=40 for all even integers ¢«=mn; in particular, w, .40, so
Theorem II can not be improved if n=4%k. If n=4%k + 1, one may obtain
examples of an M» for which w,,40 by taking M»= [P,(C)]* X S, or
Mm= P (1,2k), a manifold considered by A. Dold in [1]. For n=4k |2,
one may obtain an example of an M» for which w, .40 by taking Mn

¢ For the proof of the assertions made in the following paragraphs about these
example, the following result is needed. Let M and M’ be compact manifolds. Identify
the cohomology ring of the product space, H* (M x M’,Z,), with the tensor product
H*(M,Z;) @ H*(M',Z,) as usual. Ifw=1+4 1w, +w,+ - and w' =1+ w’; + w',
+ - - - denote the total Stiefel-Whitney classes of M and M’ respectively, then w ® w’
is the total Stiefel-Whitney class of M x M’. For the proof, see Thom, [5], pp. 142-143.
One also needs to know that for the real projective plane, P,, w0, = 0 and w, 5 0 (see
[41); for the circle, S, w, = 0; and for the complex projective plane, P,(0), w, = 0
and w, 0. The Stiefel-Whitney classes of Dold’s manifolds P(m,n) have been com-
puted by Dold [1].
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— [P2(0)]* X S* X 8* or M»=P(1,2k)X S*; therefore Theorem II can
not be improved in this case either. Similarly, for n—4k -}-3 one obtains
examples where w,, = 0 by taking M7= [P,(C)]* X [S8*]® or M"= P (1, 2k)
X St X 8t. Thus Theorem III can not be improved. Whether or not Theorem
I is a best possible theorem in this sense seems like a much more difficult
question.

Of course there are other directions in which one could try to extend
these theorems. For example, one could try to determine more general kinds
of relations between Stiefel-Whitney classes of a manifold. An example is
the relation w,w,=0 which holds in all manifolds of dimension =5 (see
Wu [7]). This important problem seems very difficult, and outside of the
case considered by A. Dold in [®], very little is known about it. One of the
most pertinent problems in this connection is the following: Can any relation
which holds between the Stiefel-Whitney classes of every n-manifold (or every
orientable n-manifold) be derived from the formulas of Wu ([7] and [8])?

It should be pointed out that Theorem I may have implications for the
problem of determining the lowest dimensional Euclidean space in which it
is possible to imbed a given manifold. Whitney has proved that it is possible
to imbed any n-dimensional smooth manifold differentiably in 2n-dimensional
Euclidean space. Moreover, if n = 2%, then it is possible to give an example
of an n-manifold which can not be imbedded in Euclidean (2n—1)-space:
n-dimnsional real projective space P, is such an example. To prove that P,
can not be imbedded in Euclidean (2n—1)-space if n =2F one uses the fact
that @,,540. On the other hand, Corollary 1 of Theorem I shows that
Wn-s =0 for any n-manifold if » is not a power of 2. Thus it is natural to
ask the following question: If n is not a power of 2, can any n-manifold be
imbedded in Euclidean (2n—1)-space? If the answer to this question is
“no,” it will require new methods to prove the existence of a counter-example.?

3. Notation and preliminary results. We will use the following nota-
tion and ideas in what follows. They are due to W. T. Wu [7].

(a) U,;€ H* (M Z,) is the unique cohomology class such that
(3.1) z-Uy=28¢*(x)

for any z€ H**(M" Z,). The existence and uniqueness of the U, follow
from the Poincaré duality theorem. Note that U,=1, and U; =0 if 1 > in.

° As a matter of fact, it was the search for examples of n-manifolds with w, 0
which led the author to the discovery of Theorem I.
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(b) The cohomology classes U, € H#(M" Z,) are defined inductively by
the equation

(3.2) (S0) (S0) —1.

Here again U,=1. However it is not true in general that U; =0 for ¢ > n.
Wu proved the Stiefel-Whitney classes and dual Stiefel-Whitney classes
may be expressed in terms of the U; and U; respectively as follows:

(3.3) wy = 2 8¢*U,,
i

(3.4) ’L_Uk=28qk‘i(7¢.
i

These formulas are basic for all later computations.
In the following lemmas we record for later use some well known facts.

LemMma 1. 4 compact n-manifold, M», ts orientable if and only if the
homomorphism Sq*: H**(M" Z,) - H*"(M",Z,) 1s trivial.

This lemma is easily proved by using the fact that the homomorphism
Sq' is composition of the Bockstein homomorphism together with reduction
mod 2, plus the known structure of the integral cohomology group in dimen-
sion n of an n-manifold.

LeMma 2. If M" is ortentable, then Sqt:H™*(M" Z,) —> H"(M" Z,)
18 zero for ¢ odd.

This follows from the known fact that S¢* = S¢*S¢** for 1 odd, together
with Lemma 1.

Lemma 3. If M» is orientable, then Uy=U,=0 for ¢ odd.

The fact that U; = 0 for ¢+ odd follows from Lemma 2 and the definition
of U;. Then one can prove that U; =0 for ¢ odd by using formula (3.2).

In our proofs we need to make use of known properties of Steenrod squares
and iterated Steenrod squares. For the sake of convenience, we will use the
terminology and notation of Serre [3]. We assume the reader is familar
with the properties of Steenrod squares as listed in §2 of Serre’s paper.
Especially frequent use will be made of the properties of the homomorphism
S¢*. According to Cartan’s formula,

(3.5) 8¢ (z-y) = (S¢'z) -y + 2 (8¢'y),
i.e., S¢* is a derivation of the algebra H*(X,Z,). In particular,
(3.6) Sq* (%) = ka**- Sq'z
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for any positive integer k. Note also that
(3.7) Sq*Sq* = 0.
This implies that for any odd integer 1,
(3.8) S8¢*Sqt=0.

We conclude this section by proving Theorem II. For an orientable
manifold M* of dimension n =4k 4 3, U; = 0 unless ¢ is even and 0 =1 =2k
(see Lemma 3). From this and (3.3) it follows that w;=0 for ¢ > 4k as
desired.

4. Proof of the Theorem I. In the proof of Theorem I, frequent use will
be made of the properties of iterated Steenrod squares. If = (43,15, * , %)
is any sequence of positive integers, then the notation S¢! denotes the iterated
Steenrod square Sg*Sqt- - -Sgi». Such a sequence I= (i3, = *,4) is
admassible if 1, = 205,15, = 203,- * -, 4y = 21,. Hvery iterated Steenrod square
may be expressed as a sum of admissible iterated Steenrod squares by repeated
use of Adem’s relations (see Serre [3], §3%).

With any admissible sequence of positive integers I = (41,2, - -, %) one
may associate a sequence of non-negative integers (ay, s, - -, @) by the
formulas

(4.1) Gy =1y — R, Gy =1y — g, " * *, Apg =g — Dy, Up = 1.

It is clear that the sequence (@, - -, ) determines without ambiguity the
sequence (4y,* * *,%). The integer n(I) =1, -+ - -4, is called the degree
of I, and e(l) = a, +- * - + @, is called the excess of I.

LeMMA 4. For any mod 2 cohomology class z, Sq'(z) =0 if the degree
of x is less than the excess of I.

The proof depends on the fact that S¢*(x) =0 if ¥ is greater than the
degree of @. The details are left to the reader.

Lemma 5. Let I= (4, - +,4,) be an admaissible sequence of ewcess
e(I). Then there exists a unique admissible sequence J = (ji," * *,7s) and
a power of 2, m = 2%, such that for any cohomology class x of degree e(I),

8¢ (z) = (8¢’z)™
and e(J) <e(I).

For the proof, see the proof of Lemma 1, p. 204, of Serre [3].
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Lemmas 4 and 5 together show that when considering iterated Steenrod
squares operating on cohomology classes = of a fixed degree g, we can restrict
our attention to those iterated squares Sq! such that e(I) =g¢—1. In this
case it is convenient (following Serre [3], p. 12) to let ap=¢q—1—e(I).
Then one can derive the following formulae in case z is any mod 2 cohomology
class of degree ¢:

degree (Sq'z) =n(I) +¢

(4.2) — S @ —Datq—Ta—el) +¢
=$2“’a,~+a0+1 =1+$24a1.

T
Since X a;=0,+ ¢(I) =¢g—1, there are in all (¢—1) powers of 2 in
i=0
formula (4.2). Therefore we can rewrite this formula as follows,
(4.3) degree(Sqlz) =14 M 4 2% - - - | 2hey

where hy = h, = - = hey =0, and ?¢ occurs o; times in this sum (this is
formula (17.5) of Serre [3], p. 212).

Next we will prove a couple of lemmas which are needed in the proof
of Theorem I.

Lemma 6. Forany z€ HY (M Z,), 0 <k < ny, 2 Wpie = 2, (SG*T) D ptpse
>0
Proof. By equation (3.4),

Wnge =2 8¢ Un-1

i=o0
= Un—k + 2 Squvnr-H
>0
By equation (3.2),
Upto = 2 UsU o
i>0
hence
@ﬂ—k = 2 (Utﬁﬂ-—k«—'i + Sq‘ﬁn—k—i) .
i>o
Therefore if © € H*(M", Z,),

X ﬁ)"_k = go(x . Utﬁn—lo—t + T Sqiﬁn_k,_.‘) .
But
U Up = Ui(2Unri) = S8qtnr4) (€Unpi)

]
= % (8qz) (8q" Un-r),
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from which it follows that

T Wy = 2, é (8q"2) (Sq* " Un-ri)

i>0 r=1

= 2 (8¢z) (8q"Un-r)
0<r=i

=2 [(Sqz) 2 8¢/ Unsori]
>0 j=o

=3 (8¢") Wptr-
r>0

as was to be proved.

Lemuma 7. The homomorphism H*(M», Z,) — H"(M",Z,) defined by
T—> T Wny 18 a sum of iterated Steenrod squares.

In view of Lemma 6, this lemma is obvious: one applies Lemma 6
repeatedly until the desired reduction to a sum of iterated Steenrod squares
is obtained.

We are now in a position to prove Theorem I. Assume that i, ,
€ H~9(M~,Z,) is non-zero. By the Poincaré duality theorem, the homo-
morphism HY(M",Z,) — H"(M" Z,) defined by z— z- @, is also non-zero.
By Lemma 7, this homomorphism is a sum of iterated Steenrod squares, which
we may assume to be admissible on account of Adem’s relations. Hence the
hypothesis of the theorem implies the following statement: There exists a non-
zero admissible iterated Steenrod square

Sqf: Hi(M» Z,) - H" (M, Z,),

where I = (4y, - -,4,). By Lemma 4, e(I) =gq. Moreover, if e(I) —g, it
follows from Lemma 5 that there exists an admissible sequence J = (j,* - -, js)
and a power of 2, m — 2%, such that

8¢’ (x) = [S¢’ (z) I
and e(J) < ¢. Therefore
n = degree (Sqlx) = 2*- degree (Sq’z)
= (P 2P

by equation (4.3). Here ky, ks, - - - are integers such that &k, =k, =- - -
= kg1 =0. If now we let

(4.4)

(4.5) h1=k1+k,h2=k2+k>" ':hq—1=kq—1+k:hq=k,
then (4.4) takes the form
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(4:.6) n=2h1+27‘2+.--+2hq

with by =h, = -+ - = hg=0, and the first part of the theorem is proved.

Next, we will assume that M» is orientable and prove the remaining
parts of the theorem. In this case we can apply the results of Lemmas 1
and 2.

First assume that ¢ —=1. Then n = 2" from what we have just proved,
and h; — k according to equation (4.5). Therefore the only non-zero iterated
Steenrod square

Sql: HY(M», Z,) — H»(M», Z,)
would be of the form Sq!(z) = 2" with n =2*. Since n is even, 2" — S¢*(z"?)
by equation (3.6). By use of Lemma 1, we see that if 2740, then M» is
non-orientable, as was to be proved.

Next we will consider the case were n=2mod4, i.e., n =4I + 2, and

hq=1. Then it follows from (4. 5) that ¥ — 1. Therefore Sq’(z) = [Sq¢’(z)]3;
and by equation (4.4),

n = degree (Sqlz) = 2 - degree (S¢’z).
Hence degree(Sq¢’z) =n/2 =21+ 1. Thus
8¢'(z) = 8¢**[8¢’ ()]

which is zero by Lemma 2. But this is a contradiction. Thus part (b) of
Theorem I is proved.

Finally, we consider the case where an odd number of the ks are equal
to hg+ 1. Then it follows from equation (4.5) that an odd number of the
ks are equal to 1. Thus in (4.3), the summand 2* occurs an odd number
of times,® i.e., @; is odd, it follows from equation (4.1) that 7, is odd in the
expression

S¢!(2) = [8¢’ (&) I" = [S¢*- - - 8¢’ ()],
where m — 2% Since j; is odd,
Sgh=8¢'8¢",
and Sq¢*S¢’(z) =0 by equation (3.8). Therefore
(89" (2) 1" = 8q*{[Sq"*Sg’s- - - 8¢i* (2)] - [S¢’ () ]}

which is again zero by Lemma 1. Thus we have again reached a contra-
diction, and part (c) is proved.

° Actually, we are here concerned with the analog of equation (4.3) which is
obtained by replacing I by J and h, by k; for i=1,2,- - -, q—1.



STIEFEL-WHITNEY CLASSES. 101

5. Proof of Theorem II for the case n=0mod 4. The following well-
known lemma will be used in the course of the proof:

Lemma 8. If z is @ mod 2 cohomology class of degree 1, then
Sgi (a4) = O,
where Cf is the binomial coefficient reduced mod 2. In particular, if k is a

power of 2, then Sqia* =0 unless j=0 or j=Fk.

The proof is left to the reader.

Now assume that M» is a compact orientable manifold of dimension
n=4%k. Then

Wp— = Wyp—1 = quk_1U2k

by (8.3). To prove that w,, =0, it suffices to prove that «-w,, =0 for
any ¢ € H'(M»,Z). Now

T Wy =2I" quk'lek
— 8¢ (z- Usn) + (8¢'2) (S *Us).

However the first term on the right is zero by Lemma 2, and in the second
term, Sq¢*v =2 Therefore

(5.1) T Wy =% Sq*H2U g
We will now show that if p=2¢ is a power of 2 and 2 = p < 2k, then
(5.2) aP- 8q**rl o, = a? - S0 .
To prove this, one computes as follows:
(5.3) aPS g P Uy, = Sq¥-r(aP - Ugy) + @*28q%2P U gy

Here we have used the formula for the Steenrod square of a cup product
together with Lemma 8. Next, note that

Sq#2 (2P Usgy) = Ugpop (a? U%)
(5.4) = Usi(2? Usiip) = S¢** (2 Usp)
= (2P Uspp)? =2 U?spp
— 8g (@ UPy) — 0

by (3.5), (8.6), and Lemma 1. Substitution of (5.4) in (5.3) gives (5.2),
as desired.

One can now apply (5.2) to (5.1) repeatedly with p=2%,4,8,- - -, in
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succession. If n is not a power of 2, this procedure leads to the result that
T Wy =0, as desired. If n is a power of 2, this same procedure shows that
Z Wy, — 2" for any ¢ € H*(M",Z). However in this case, since n is even,

zn = Sq¢* (2" 1)

by (3.6). But Sq*(z*') =0 by Lemma 1, as was to be proved. The proof
of Theorem IT is complete.

BrowN UNIVERSITY.
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