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ON THE NORMAL BUNDLE OF A SPHERE IMBEDDED 
IN EUCLIDEAN SPACE' 

W. S. MASSEY 

1. Introduction. An important question in the topology of differ- 
entiable manifolds is the following: Is the normal bundle of a com- 
pact, orientable differentiable manifold imbedded2 in Euclidean space 
intrinsically determined by the manifold, independent of the imbed- 
ding? This question may be rephrased more precisely as follows: For 
any two imbeddings of a compact, orientable, differentiable n-mani- 
fold in (n+k)-dimensional Euclidean space, are the normal bundles 
equivalent? Apparently this question is rather difficult, and very little 
is known about it. The following are the principal known facts: 

(a) The characteristic classes of the normal bundle are intrinsically 
determined, independent of the imbedding. (The Stiefel-Whitney 
classes and the Pontrjagin classes are determined by the duality theo- 
rems. The Euler-Poincare class of the normal bundle is always 0.) 

(b) The normal bundle to a compact, orientable n-manifold im- 
bedded in (n+1) or (n+2)-dimensional Euclidean space is always 
trivial. This is well known, but we sketch a proof in ?2 for the sake 
of completeness. 

(c) The normal bundle to an n-sphere imbedded in (n+k)-dimen- 
sional Euclidean space is trivial if k> (n+1)/2. This is a recent 
result3 of M. Kervaire [4 ]. 

(d) If an n-manifold can be imbedded in some Euclidean space 
with a trivial normal bundle, then every imbedding in (n+k)- 
dimensional Euclidean space with k > n has a trivial normal bundle. 
This is an unpublished result of M. Kervaire. 

Probably the simplest case to consider is that of an n-sphere, or a 
manifold which is like an n-sphere, imbedded in Euclidean space. The 
purpose of this paper is to prove the following theorem for this case: 

Received by the editors March 11, 1959. 
1 During the preparation of this paper, the author was partially supported by a 

grant from the National Science Foundation. An abstract announcing the results of 
this paper was submitted to the American Mathematical Society in February, 1959. 
See Notices Amer. Math. Soc. vol. 6 (1959) p. 281. 

2 In this paper the word "imbedded" will always mean "imbedded differentiably 
without self intersections." For immersions (with self intersections allowed) the an- 
swer to this question is negative. Examples of S. Smale show S2 may be immersed 
in R4 with a variety of normal bundles. 

8 The author is grateful to Kervaire for sending him a copy of [4] before publica- 
tion. 
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THEOREM. Let Mn be a compact, differentiable, orientable manifold 
such that the integral homology groups Hi(Mn) vanish for 0 <i <n (i.e. 
Mn is a homology sphere. It need not be simply connected). Then the 
normal bundle to Mn is of the same fibre homotopy type4 as a product 
bundle for any imbedding in Euclidean space of any dimension. 

We will give two proofs of this theorem in ?2, both based on the 
Alexander duality theorem and the following simple criterion given 
by A. Dold [2] for a fibre bundle to be of the fibre homotopy type 
of a product bundle: Let p: E-*B be a fibre bundle with locally compact 
fibre F and base space B a polyhedron. Then E is fibre homotopy equiva- 
lent to the product bundle B X F if and only if there exists a continuous 
map h: E-*F such that h restricted to any fibre is a homotopy equivalence. 

COROLLARY. Let Mn be a differentiable manifold which is homeo- 
morphic to an n-sphere. Then the normal bundle to Mn is trivial for any 
imbedding in (n+3)-dimensional Euclidean space. 

The corollary follows from the main theorem by applying results 
of A. Dold [2] on the fibre homotopy type of sphere bundles over 
spheres. It is proved in ?3. 

By using this corollary and statements (b) and (c) above, one sees 
that for n < 6, any imbedding of an n-sphere in Euclidean space (of 
any dimension) gives rise to a trivial normal bundle. It is an open 
question whether or not it is possible to imbed a 7-sphere in Euclidean 
11-space with a nontrivial normal bundle. 

2. Proof of the theorem. First, we will prove statement (b) of the 
introduction, thus disposing of the case of an orientable n-manifold 
imbedded differentiably in (n + 1)-dimensional or (n+2)-dimensional 
Euclidean space. In the case of an n-manifold in (n+1)-space, it is 
obvious that the normal bundle is trivial. It is also trivial for the case 
of an orientable n-manifold imbedded in (n+2)-space, because of the 
following two facts: 

(2.1) Let Mn be a compact orientable n-manifold imbedded differ- 
entiably in Rn+k. Then the characteristic class of the normal bundle, 
WkCHk(Mn, Z), vanishes. This is an old theorem of Seifert and 
Whitney. For a modern proof, see Thom [6, Corollary III. 15] 

4 Two fibre bundles pi: E1--B and P2: E2-*B over the same base space B are of 
the same fibre homotopy type if the-e exist fibre preserving maps f: E1-+E2 and 
g: E2-+Ei such that the composed mapsfg and gf are both homotopic to the respective 
identity maps, with homotopies that preserve the fibres (i.e., are compatible with the 
equivalence relation defined by the fibration). This concept was introduced by Thom 
in Chapter IV of his thesis [6]. 
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(2.2) The equivalence class of an SO(2)-bundle5 over a given base 
space B is completely determined by the characteristic class W2 

EH2(B, Z) (this follows from the fact that the classifying space for 
the group SO(2) is an Eilenberg-MacLane space, K(Z, 2)). 

Before proceeding to the proof of the main theorem, it is convenient 
to state and prove a lemma. 

(2.3) LEMMA. Let Mn be a compact manifold which is imbedded 
differentiably in an (n+k)-sphere, Sn+k, with k>2. Then the comple- 
ment S+ - Mn is simply connected. 

Although this result is well known, we sketch a proof for the sake 
of completeness. Let f: S1 >_(Sn+k _-M) be a map of a circle into the 
complement. Using standard approximation theorems, we may as 
well assume that f is a differentiable map. Since Sn+k is simply con- 
nected, there exists a singular 2-cell F: E2 *Sn+,k such that F| Si =f, 
where E2 is a disc having SI as boundary. Again, by the use of known 
approximation theorems, we may as well assume that F is differenti- 
able. Of course F(E2) may intersect M![n; however, by use of Theorem 
1.5 of Thom [7], we see that by altering F by an arbitrarily small 
amount in a small neighborhood of F-'(Mn), we may obtain a map 
F1: E2 y>Sn+k such that FF '(Mn) is empty. This proves that the 
original map f is homnotopic to a constant in the complement of Mn. 

We will now prove the theorem stated in the introduction. Let 
Mn be a compact, orientable differentiable n-manifold which has the 
same integral homology groups as an n-sphere, and assume that Mn 
is imbedded in Euclidean (n+k)-space, Rn+k. Let Sn+k denote the 
one point compactification of Rn+k. In view of statement (b) of the 
introduction, we may limit ourselves to the case k > 2; then the com- 
plement, Sn+k - M, is simply connected. 

Choose a number e>0 so small that the set of all points of Sn+k 

whose distance from Mn is ?< is a tubular neighborhood T of the sub- 
manifold Mn (in the sense of Thom [7, Chapter I, ?3]); i.e. so that 
through each point x whose distance from Mn is ? e there is a unique 
geodesic normal to Mn of length < e. Let E denote the boundary of 
T, and let A denote the closure of Sn+k- T. Then obviously A is a 
deformation retract of Sn+k - Mn; hence A is simply connected. Sim- 
ilarly, Mn is a deformation retract of T. Note that A U T = S+k and 
ACNT -E. It is also known that E and T are fibre bundles over Mn, 
with fibres a (k - 1)-sphere and a k-cell respectively, and SO(k) as 
structure group. The bundle E is naturally isomorphic to the bundle 

5 The notation SO(n) denotes the group of all nXn real orthogonal matrices of 
determinant +1. 
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of unit normal vectors to Mn. We will now give two slightly different 
proofs that E has the fibre homotopy type of MnXSS--l by using the 
criterion of A. Dold. 

FIRST PROOF. Let Sk-' be a typical fibre of E. It is clear that the 
fundamental cycle on Sk'- and the fundamental cycle on Mn have 
linking number + 1, depending on the orientations chosen. For, S,-' 
bounds a k-cell of the bundle T and this k-cell intersects Mn orthogo- 
nally and in a single point. From the Alexander duality theorem, it is 
clear that the homology groups of Sn+k -Mn are isomorphic to those 
of a (k - 1)-sphere. Moreover, from the version of the Alexander 
duality theorem as given in (say) [ 1, Chapter II], it is clear that the 
fundamental cycle on Sk-l is a generating cycle for the (k-1)- 
dimensional homology group of Sn+k-Mn. Therefore, the inclusion 
map Sk-l >+(Sn+k - Mn) induces an isomorphism of homology groups 
in all dimensions. By Runge's theorem [1, pp. 143-146] Sn+k- Mn is 
triangulable. Since it is simply connected, a theorem of J. H. C. 
Whitehead (see [3, Chapter VII, Theorem 3.8 ]) can be applied to con- 
clude that the inclusion Sk-l-+(Sn+k - Mn) is a homotopy equivalence. 
We may now apply the criterion of A. Dold (Corollary 2 to Theorem 
1 of [2]) to the inclusion map E--+(Sn+k-Mn) to conclude that E 
has the fibre homotopy type of a product bundle. 

SECOND PROOF. Consideration of the Mayer-Vietoris sequence of 
the triad (Sn+k; A, T) shows that the homomorphisms ji: Hn(E) 

>Hn(T) and j2: Hk-l(E) -Hk-l(A) (induced by the inclusions) are 
isomorphisms onto in case k-i =n, while if k-I = n, they are both 
onto, and Hn(E) is the direct sum of the two kernels. 

Since the characteristic class of the normal bundles vanishes ac- 
cording to (2.1), it follows that any fibre Sk-l is totally nonhomolo- 
gous to zero, i.e., the homomorphism i*: Hk_l(Sk-l) >+Hk_l(E) is an 
isomorphism into (see Serre [5, Chapter II ]). 

Combining these two facts, we see that the composition of the two 
homomorphisms 

Hk_l(Sk-l) _+Hk-,(E) _+Hk-,(A) 

is an isomorphism onto. This is obvious if n5k-1, while if n =k-1, 
the following slightly more elaborate argument is needed. Consider 
the following commutative diagram: 

Hk_1(S11) S _(E) _+ Hk1(T) 

Hk:L( T) 
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Here p: E->Mn and p': T--Mn are projections of the fibre bundle 
structures mentioned earlier. By Proposition 5, Chapter III of Serre's 
thesis [5], the top line of this diagram is exact. The projection p' is 
obviously a homotopy equivalence; hence p*' is an isomorphism onto. 
It follows that image i* = kernel j2. Since Hk-l(E) is the direct sum 
of kernel ji and kernel i2, it follows that ji maps image i* isomorphi- 
cally onto Hk-l (A). 

In either case, we can now apply a theorem of J. H. C. Whitehead 
(Corollary 1 to Theorem 3 of [8]) to conclude that ji o i: Sk-1' >A 

is a homotopy equivalence. For, we have already pointed out that 
A is simply connected, and A is an absolute neighborhood retract 
since it is locally contractible and finite dimensional. Moreover, 
Hi(A) = 0 except for i = 0 and i=k-1 by the Alexander duality 
theorem. 

We can now apply the criterion of A. Dold (Corollary 2 to Theorem 
1 of [2]) to the inclusion map E->A to conclude that E has the fibre 
homotopy type of a product bundle. 

3. Proof of the corollary. Let Sn be an n-sphere differentiably im- 
bedded in RI'3; we will prove that the normal bundle to Sn is trivial. 

By the theorem just proved, the normal bundle has the same fibre 
homotopy type as the product bundle, SnXS2. Therefore, the homo- 
topy class of the characteristic map of the normal bundle belongs to 
the kernel of the homomorphism 

j*: 7rn-i(SO(3)) >_ 7rn_1(92) 

by Theorem 4 of Dold [2] (here 92 denotes the space of all maps of 
S2 onto itself of degree +1 and j: SO(3) >92 denotes the inclusion). 
Now consider the following commutative diagram of Dold (loc. cit., 
p. 130): 

7n-A(50k2))- 7n-1(SO(3)) 

i?~~~~i j n-i (S2,) 

(rnGI) ~ r_(q ) Ij* 

For n>2, 7r_1(SO(2)) =0; hence p1 is an isomorphism into by exact- 
ness. From the commutativity of the triangle on the right of this dia- 
gram, it follows that j* is an isomorphism into. Thus the kernel of j* 
is 0; hence the characteristic map of the normal bundle is null- 
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homotopic. It follows that the normal bundle is trivial. In case n ? 2, 
the result is easily proved by other methods, or Kervaire's theorem 
(statement (c) in the Introduction) can be used. 
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