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T H E  Q U O T I E N T  S P A C E  OF T H E  C O M P L E X  

P R O J E C T I V E  P L A N E  U N D E R  C O N J U G A T I O N  

IS A 4 - S P H E R E  

The purpose of this paper is to outline a proof of the following: 

THEOREM. Suppose we form the quotient space of the complex projective 
plane by identifying two points if and only if  their (homogeneous) coordinates 
are complex conjugates of each other. Then the resulting space is a 4-sphere. 

It is not difficult to verify that the quotient space is a closed 4-dimensional 
manifold which is simply connected and has the homology groups of the 
4-sphere. If the 4-dimensional Poincar6 Conjecture were known to be true, 
this would suffice to prove the theorem. In the paragraphs that follow, we 
will give a direct proof without invoking the Poincar6 Conjecture. In the 
course of the proof, we will use the following notation, which is more or less 
standard: 

S~= unit n-sphere in R n+l, euclidean (n+ l)-space. 
RPn= real projective n-space (the quotient space of S n under the 

identification of antipodal points). 
CPn= complex projective n-space. 
SPn(X) = n-fold symmetric product of the space X (the quotient space of 

the n-fold cartesian product under the obvious action of the 
symmetric group of degree n). 

We will make use of the following two known facts: 

CP 1 = S z ,  and 

SP n (S ~) = SP n (CP') = CP n . 

(This last fact depends essentially on the algebraic closure of the field of 
complex numbers). 

Let G denote the group of self-homeomorphisms of the product space 
S 2 x S 2 generated by interchanging the two coordinates of any point and 
by the antipodal maps on either factor. To be precise, G is a group of order 
8, consisting of the identity I and the seven other homeomorphisms of 
S 2 x S  2 which send the point ( x , y ) e S 2 x S  2 into the following seven 
points: (y,x) ,  ( - x , y ) ,  (x, - y ) ,  ( - x ,  - y ) ,  ( - y ,  x), (y, - x ) ,  and ( - y ,  
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-x). It is readily seen that G is isomorphic to the dihedral group, i.e. the 
group of symmetries of the square in the (x, y)-plane with vertices (+  1, +__ I). 
We also need to consider the following three subgroups of G: 

s = (z,  (~,  

r = {z, (=, 
(x, 

H = {I, (x, 
(x, 

The inclusion relations 
diagram: 

y)--*(y,x)} 

y)- .  ( -  x, y), (~, y ) - ,  (~, - y), 
y ) - ~  ( -  x, - y ) } ,  

y) ~ (y, ~), (x, y ) - .  ( -  x, - y), 
y ) - .  ( -  y, - ~ )}  

between these subgroups are shown by the following 

. , ,~ ,J '  " . ~ H ~ G  

We also have the corresponding diagram of quotient spaces and natural 
maps: 

S 2 x S  2 I , .  S a x S  2 

S a x S  , Z  J " - - - ~ - ~ I ~  S a x S  2 

(2) ~ S ,  x S 2 ~  G 
K 

Note the following facts about diagram (2): 
(a) (S'- x S2)IJ=Sp2(S2)= CP =. 
(b) (S 2 x S2)IK=RP 2 x RP 2. 
(c) To pass from (S 2 x S2)/E= CP 2 to (S 2 x S2)/H 

(arrow No. 1 in the diagram), form the quotient space of CP 2 under the 
action of the group H/d, which is cyclic of order 2. One can prove by an ex- 
plicit calculation (which we will not reproduce) that the action of the 
generator of Hid on CP 2 is equivalent to complex conjugation; therefore, 
to prove our theorem, it suj~ees to prove that (8 2 x $2)/H= S*. 

(d) To pass from (S 2 x S2)/K=RP 2 x RP 2 to (S 2 x S2)/G (arrow No. 2), 
form quotient space of RP 2 x RP 2 under the action of the group G/K, which 
is cyclic of order 2. It is clear that a generator of G/K acts on RP 2 x RP 2 
by interchanging coordinates. Therefore 

(S 2 x S2)]G = SP 2 (Rp2). 
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(e) To pass from (S2x S2)/H to (SZx S2)/G (arrow No. 3), form the 

quotient space of  (S 2 x S2)/H by the group G[H, which is cyclic of  order 2. 
It  is easily verified that the generator of  G/H acts on (S 2 x S2)/H without 
fixed points. Therefore (S2x  S2)/H is a 2-sheeted unbranched covering 
space of  (S 2 x S2)/G=Sp2(Rp2). 

The complete the proof, it suffices to prove that Sp2(Rp2)=RP4; it will 
then follow from the preceding sentence that (S 2 x S2)/H=S '*, as required. 

Actually, we will prove the following more general statement*: 

LEMMA 1. spn(Rp2)= RP 2n. 
This lemma, in turn, is an easy consequence of  the following lemma: 

L EMMA 2. Let X be a compact Hausdorff space with a fixed-point free 
involution T:X- ,X .  Let T':SP2"(X)~SP2"(X) denote the induced in- 
volution of the 2n-fold symmetric product. Then the fixed point set of T' is 
naturally homeomorphic to SP"(X] T). 

The proof  of  this lemma may be left to the reader. 
To derive Lemma 1 from Lemma 2, take X=S z and T:S2-~S 2 the 

antipodal map. One needs to check that the induced involution T ' :  CP2"~ 
CP 2~ is equivalent to complex conjugation. 
This completes the proof  of  the theorem. 
Remarks. (1) It is a curious fact that the closed 4-manifolds of  most 

common occurrence are among the quotient spaces of  S 2 x  S 2 under the 
action of  various subgroups of  the group G. In addition to those which 
occur in the above proof, the Grassmannian manifold of all (unoriented) 
2-planes through the origin in R 4 also occurs, as does RP 2 x S 2. 

(2) Define an action of  the group SO(3) of  all 3 x 3 orthogonal matrices 
of  determinant + 1 on S 2 x S 2 as follows: 

r(x,  y) = (rx, ,'y) 
for any (x, y)6S 2 × S 2 and r ~SO(3). Then the action of  SO(3) on S 2 x S 2 

commutes with the action of  G on S 2 x S 2, and hence defines an action of  
SO(3) on each of  the quotient spaces. This suggests another way of proving 
our main theorem, as follows: There is an obvious way to define an action 
of  SO(3) on CP z, in terms of  the homogeneous coordinates. This action 
commutes with complex conjugation, and hence defines an action of  SO(3) 
on the quotient space. There is also a non-trivial action of  SO(3) on S 4 
defined as follows: The group SO(3) acts on the space of  all 3 x 3, real 

* I believet his 1emma and its proof are originally due to Dennis Sullivan. A more general 
result is given in the appendix to a recent paper of J. L. Dupont and G. Lusztig, 'On 
Manifolds Satisfying wl a = 0', Topology 10 (1971). 
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symmetric matrices of trace 0 by conjugation. Give this 5-dimensional 
vector space a positive definite, SO(3)-invariant inner product. The restric- 
tion of the action to the unit sphere is the desired action of SO(3) on S 4. 
Then by analyzing the orbit structure of the action of SO(3) on the quotient 
space of CP 2 and on S 4, one would hope to prove that the two manifolds 
are homeorphic (by an SO(3)-equivariant map). 

(3) The dihedral group G contains a unique cyclic subgroup of order 4. 
We leave it to the reader to verify that this subgroup acts freely on S 2 x S 2. 
Note also that the subgroup K acts freely on S 2 x S 2. Thus both of the 
possible groups of order 4 can act freely on S 2 x S 2. On the other hand, by 
using the theory of covering spaces and the fact that the Euler characteristic 
of S 2 x S 2 is 4, one can prove that only groups of order 2 or 4 can act 
freely on S 2 x S 2. 
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