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These notes are part of the f i rs t  chapter of a ser ies  of lectures 

given by the author in the apring of 1970. The ultimata aim of the80 

notes will be to prove the theorem that the oet of topologically etable 

mappings form a dense eubset of C=(N,P)  for any finite dimensional 

maniiolds M and P where N is  compact. The f i r s t  chapter i s  8 atudy 

of the Thorn-Whitney theory of stratified sets  and stratified mappings. 

The connection of the material  in these notes with the theorem on the 

deneity of topologically atable mappinge appaaro in 4 11, where we give 

Thom'e second ieotopy lemma. This result gives sufficient conditions for 

two mappinge to be topologically equivalent. 



91. Condition a . We begin by introducing some notions that a r e  

due to Whitnay ([ 5'1 and [ 6 1) . 

Let be a positive number pr ca , which will be fixed throughout 

this chapter. By tlsmooth" we will mean differentiable of class cCL . 
P Let M be a smooth (i. e. , C ) n-manifold without boundary, By 

a smooth (i. e., cP) eubmanifold of M , we ur'.U mean a eubset X of 

M such that for every x E X there exists a coordinate chart ((0, U) 

k 
oi d a a a  cP such Uat x € U and @ X  fl Uj = W n@UI , fo r  a 

k 
suitable coordinate plane 3R in . In eht definition of submanifold, 

we do not aseume that X i s  closed. Howevcr, i t  follows from the 

definition of submanifold that X is locally closed f .  e. , each point in 

S has a neighborhood U in M such that X fl U is cloeed in . U . 

If X ie an r-dimensional submanifold of M and x E X , then 

the tangent space TX of X at x i s  a point in the Crasemannian 
X 

bundle of r-planes in TM . In what follows "convergence" means 
X 

convergence in the standard topology on this bundle. . 

Let X and Y be smooth submanifolds of M and let y E Y . 
Set r = dim X . 



DEFINITION 1.1. Y[e say the pair (X, Y )  satisfies condition a 

y if the following holds. Given any sequence x. of points in X euch 
1 - 

that xi 'y  a& TXq converges to some r-plane 7 s  TM , wehave - Y 

m c r .  
Y - 

Example 1.2. (Whitney [ 6 1) . Let x, y, 3; denote coordinates for 

3 
C . Let Y be the z-axiti and let X be the set  {zr2 - y2 = 0)  with 

the z-axis deleted. (In Figure 1, we have sketched the intersection of X 

3 
with El3 . ) Then X and Y a r e  complex analytic submanifolds of C . 
It i 8  eaaily Been that (X,Y)  satiafiee condition a a t  all points of Y 

except the origin, and that it does not satisfy condition a there. 

We will say that the pair (X,Y) satisfies condition a if i t  sa.tiafies 

condition a a t  every point of Y . 

In Example 1.2, the pair ( X ,  Y)  does not satisfy condition a .  If we 

set Z s 10) and Y' a Y - 2 , then the pairs ( X , Y  *I , (X, 2) , and 

(Y ', 2) do satisfy condition a .  
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4 2. Condition b. Vrs will bagin by defining V'hitnsy's c~nd i t lon  b 

for  rubmanifolds of nn . Then we extend this definition to eubmanifolds 

of an arbi t rary  manifold, using the definition in IRn . We will also rhow . 

that condition b implies condition a . 
If re y € 1' and.  I d z  y , then the secant will denote the line 

in EXn which i s  parallel to the l ine joining x and y and pasacs 

through the origin. For any x € in we identify T~R'  with lRn in 

the atandard way. 

Let  X, Y be (smooth) submanifolds of an . Let y 6 Y . Let 

r = dim X .. 

DEFINITION 2.1. Y'e say that the pair (K, Y) satisfies condition 

b a t  y if the following holda, L A  x be a sequence of points in X , - i 

converging to y and y a aequence of points in Y , alao*conver~inq 
i 

y . Suppo8e TXxi converges to some r-plane T IRn and that 

for all  i and the secants I 
Xi + "i xiY; converge (in projective space 

pn- l )  to some l i n q  1 Eln . Then 1 7 . - 

Let  (x', Y ') be o second pair of subrr~anifolds of lRn , and l e t  

y '  E Y' . 
LEMMA 2.2. Suppose there exist open nei~hborhoods U and U' 

y - and "' - in Eln and a (smooth) . -.--.. --- diffe_om_orphisrn : U - U' such I" I 



that y ( U n  X ) = U 0 M X '  , I p ( U f 3 Y ) = U 0 n  Y' q ( y ) = y 4 .  Then - - 
( X ,  Y)  satisfies condition b a t  y if and only if (x', Y ') satisfies - 
condition b at y' . 

Proof: Obvious. - 

DEFINITION 2.2. k t  M be a manifold and X, Y  submanifolde, 

. L e t  y  E Y  . We say  that ( X I  Y) patiafite condition b at y if fo r  - - - 
some coordinate chart  ((P, U )  about y , we have that the pa i r  - 
(du n X) , p(U n Y 1) satisfies conditlon b at ,  @ y )  . 

! 

In view of Lemma 2.2, if (X, Y )  sat isf ies  condition b a t  y , then 

for  every coordinate char t  ((o,U) about y , we have that ( ~ ( U f l  X) , rp(Ufl Y) 

rat isf ies  condition b at y  . i 
i 

F o r  the r e s t  of this section, l e t  M b e  a manifold a n d  X and Y  

submanifold# and l e t  y  E Y . 
PROPOSITION 2.4. ( X , Y )  sat isf ies  condition b a t  y then 

i t  satisfie. condition a Pt y . 
Proof: Since both conditions a and b are purely local ,  we may -.-- 

suppose that X and Y  are  submanifolds of . Le t  xi be  a 

. . sequence of points in X such that x - y and TICxi - T , for  s o m e  
! 
I ? E TJR" = lRn a Yre muat ahow that TY c r a Suppose otherwise. 

Y Y - 
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Then there  e x i s t s a  l ine  1 E IRn , passing through the origin, such that 

1 T Y  but 1 d T . Since 1 G TY , we can choose a sequence of points 
Y Y 

/1 Yi E Y such that y $= xi , yi 6 y and y x . But s ince 1 d 7 ,  this 
i i i e  

contradicts condition b . Q. E. D. 

We say  (XI Y) sat isf ies  condition b if i t  satisfies condition b a t  

every  poin t  y E Y . 
Example 2.5. Le t  X b e  the spiral  in E l 2  defined by the condition 

I that the tangent of X makes a constant angle with the radial  vector ,  and 
I 

l e t  Y be  the or igin,  In polar  coordinates, this spiral  i s  given by I 
. !  
i r - 88 = conntant. Then the pa i r  (X,Y) doea not satisfy condition b . . . 

. , 
% l  . . 

F o r ,  by definition, the angle a between the l ine TXx and the secant  i . . 
/I :! 
Ox i s  independent of x . If x E X i s  a sequence converging to 0 , 

i 
:. 

n i 1 
2 

then the tangents TXxi convergs  to a .  line T 5 ) and hi converge8 t I 
I 

to a l ine 1 , which makes a n  angle a with 4 . i 

Example 2.6. (.Vhitney [ 6 1). Let  x ,  y, z b e  coordinates fo r  c3 . . . . . 
? 1 

L e t  Y he the z-axis. Le t  X be the s e t  (y t  + i3 - r Z x Z  = 0 )  with 

the z-axis deleted. (In F igure  2 we have sketched the intereection of X 

3 
with R , ) I t  i s  easily seen that the pa i r  (XI Y ) sat isf ies  condition a,  

i 

and the pa i r  (X, Y) sat isf ies  condition b a t  a l l  points of Y except the j 

origin and that i t  does not satiafy condition b there. I 
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PROPOSITION 2.5. Suppose y € X - Y and (X, Y) sa t i s f i e s  - 
condition b at y . Then dim Y < dim X . - 

Proof: It i s  enough to consider the case when M = IRm . Since 

. . y E X , t he re  exis ts  a sequence x in X - Y which converges 
i 

to y . By the compactness of the Gtassmannian,  we may suppose, by 

passing to a subsequence if neceesary,  that TXXi converges to an  r 

plane T m" (where r t dim X). Since condition b implies  condition 

a (Proposi t ion 2 . 4 ) ,  T Y  E T . For  i sufficiently la rge ,  there  i s  a 
Y 

point y. on Y which minimizes the distance to x. . By passing to 
1 1 

a subsequence i f  necessary,  we may suppose the secants  XiYi converge 
n to a line I IR . Since " i minimizes the distance to x the 

i n  

secant  yixi i s  orthogonal to TYyi ; hence 1 is orthogonal to TY . 
Y 

Since ( X , Y )  condition b at  y , we have 1 . We have 
1 

shown TY $. f 7 and 1 i s  orthogonal to TY ; hence 
Y Y 

d im X = dim 7 > dim T Y  = dim Y . 0. E. D. 
Y 



4 3. Blowing up; In the next section, we will give an  intr insic  

formulation of condition b which will ba useful l a t e r  on. This formulation 

depends on the notion of blowing up  a manifold along a submanifold, which wa 

define in this eection. 

Let  N b e  a'mnnifold and U a cloaed eubmanifold. By the 

manifold b N obtainod by blowing up h' along U, we will mcan the  manifold U 

defined in the following way. Ae a s e t  BUN i s  thc dlajoint union 

(N - U)U P q U ,  whera PqU denotes the projective normal  bundle of U 

in N . 
Ry the natural projection r : BUN N , we mean the mapping 

defined by letting IT [PV be  the projection of U 
% on U and letting 

T I N  - U be  the inclusion of N - U into N . 

To define the differentiable s t ruc ture  on BUN , we f i r s t  consider 

d- the case  when N is open in Eln and U = IR fl N , where  lRr i s  the 

coordinate plane defined by the vanishing of the l a s t  n - r . coordina.tea. 

n-r-1 Then we have a mapping ct : BUN + Eln x IRP defined as followe. 

F i r s t ,  LY 1 P T ~  i s  the ntandard identification of Pqu with 

pn-r-1 
then a ( x )  = ( x , R ( x ) )  , where B(x) i s  the point in with 

homogeneous coordinates 
(Xr +I, * * . , x n ) .  



It i s  easily verified that ~ [ B ~ N ]  ia a ern submadfold of 

n-r-1 
IR" x l P , a s   follow^. Let (3, , xn) denote the coordinates of 

pn-r-1 . Let  Xrtl, ,X denote the homogeneous coordinate. for . 
n 

For  r + 1 1 1 1 n , l e t  
Zi 

denote the rubnet of IR P n-r-1 
defined by 

Xi # 0 , and le t  X be the rea l  valued function X a X I X  on Zi . 
l i ji 5 i 

Then the intermestion of uLBuN] with N x Zi is the se t  defined by 

- r  -1 
Therefore C Y [ A ~ N ]  i. 2 submanifold of nn Y ~8 . 

Since the mapping cu i s  injective, we may define a manifold structure 

on B N by pulling back the manifold atructure on ~ B ~ N ]  . U 

I Now, let  N' be a recond open subset of ELn , let UC = lRr n N' , 
I 

and 1st y : (N, U) ( N  U )  be a cP diffeornorphiem. Lot 

q* : BUN 6 Bu,NC he the induced rnappicg, d e f i ~ c d  by letling 

'pIIp~u : qU - -u' be the mapping induced by the differential, and 

letting % ( N  - U : N - U - NC - U* be the restriction of .)D. Then 9* 
is a diflcornorphisrn of class dld . 

- 1 
To show this, we f i r s t  obecrvc that i s  a bijection and (y*)-l = (9 )* 

Therefore, i t  suffices to show that 4P* of class T o a h ~ w t h i s ,  i t  
. . 

> i a  enough to ehow that -.x i * y *  i e o f c l ~ . g s  C , l ~ i s n ,  that (p; l)(~i)  is 

open, r + 1 S i n , and that Xji P* i. of clasa cp-l f o i  r + l s j z n  and 

j + i . Since 



where 1 : BUN - N is the natural projection, tho first statemmt is  

obvious. 

To prove the remaining two statementa, we aet 9 P xi (f and 

obeerve that there exiat functions 
'#'la 

of class cF-' , for  

r + 1 < i  , a ( n  , such that 

This ie proved a a  follows. Since for i + 1 i 5 n , we have that 'Pi 

vanishes on U = N n Illr , we get that 

so that * holds, where 

- 1 
In view of (*I  , p* (Zi) fl Zk i s  the subset of Zk defined by 

and hence i s  open. It follows that Zi i s  open. It also follows from 



(*) that 

- 1 
on rp* (z i )n  zk I and hence is of class C P - ~  there. 

This complete. the proof that rp* i s  r diffsomorphism of class cP-' , 

Now we return to b e  general situation where N i s  a maaifold, and 

U i s  a closed submanifold, both of class C' . In view of what we have 

just done, we can construct a differentiable s tructure on the part  of B ~ N  

which lies above any coordinate patch, and the differentiable structures 

ahove different coordinate patches a r e  c"~ compatible. Thus, r e  

o b k i n  the structure of a manifold of c lass  cP-l on BUN . 
Note that the natural projection n : B N d N is differeztiable of u-. 

class  CP.' , 

Since we have defined a structure of a manifold of class cP" on 

RUN , we have also defined a topology on DUN . In the local case. 

r when N = IRn and U = , this topology may be described more  

directly. Let (xi) be a .equet.ec of points in R - IRr , and S U ~ O S ~  

- . ~ E R ' .  Let  LEIRP n-r-1 
Xi , so  that ( x , l )  is a member of BUN, 



if we identify B N with the subset ~ [ B ~ N ]  of lRn X p?Rnmr , as u 
above. Then it ia  easily seen that x converges (in B  N) ta ( x , l )  i u 
if and only if the recants x.x.' converge to I , where x' denotes the 

1 1  i 

projection of x. on Elr . 
1 

Thia suggests that i t  should be possible to reforrnulatc condition b 

in terme of "blowing up". W e  do this in the next section. 



$4. An intrtnaic formulation of condition b . Lat N be a smooth 

manifold. Let  A N  denote the diagonal in N2 . By the fat square of N , 

we will mean the manifold F(N) obtained by blowing up N2 along 
&N 

The normal bundle TI of A N  in N2 can be identified with the 

tangent bundle TN in  a canonical way, a s  follows. If x E blv , then by 

definition 

The mapping of TNx O TN into TN which sends v (8 w to v - w 
X X 

induces an  isomnrphism of with TN . We use  this isamorphiam to 
X X 

identify q with TNx . 
X 

From this identification and the definition of the process  of blowing up 

a manifold along a aubmanifald, it follow8 that 

2 
F(N) r PT(X)  U (h' - bN) (disjoint union) 

where P T ( N )  denotes the projactive tangent bundle of N . Thus, points 

of F(N)  are  of two kindo: pa i rs  (x, y)  with x , y E N  and x = k y  

and tangent direction8 on N . 

It follows from the previous section that F(N) i e  a manifold of c lass  

c p - I  . 



- 
Roughly opeaking, a aequanca {(xi ,yi ) )  of point' in N' - A N  

converges to a tangant direction 1 on N if the sequences (xi] and 

iYi} converge to the same point x in N and the direction f rom xi  I 
: 
i 

to yi converge. to  1 , In the case  N E 8" , this  can b e  mads precise: 

{(xI,yI)} converges to ( x . 1 )  E IR" x npn-' if both (xi) and (yi} 
I 
I , 

converge to x , and the secants  xiyi converge to 1 . I 

I 

Now l e t  X and Y b e  emooth eubmanifolds of N and l e t  y E Y . I 

Suppnia V is cloaed. In view of the previous parzgrsph,  we cbtr!r? the I 1 

I 

following result ,  I 

I 

PROPOSITION 4.1. T h a  pa i r  ( X , Y )  satisfies condition b y 
. . 

and only if the following condition holds. Le t  - x )  be  any aequenct of 
1 

~ o i n t .  i n  X and y )  ' any sequence of points in Y such t h a t  xi =b y i '  

Suppose x i  y {Yi) - y  . {(x ,y.)] converges to a l ine l G P T N  , i 1 . Y 

and {TX,~) converge. ( i n  the Grasemannian of r planes i n  TN , - 
where r = dim X )  to an r-plane r g TNy , Then 1 7 . 
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$ 5 .  V%itney prc-stratifications. Let  M be  a smooth (i .  e., cP) 

manifold without boundary. Let S be a subset of M ,  Ry a pre-stratifIcatIon 

s of S , we will mean a cover of S by pairwisa disjoint smooth 

submanifolde of M , which l i e  in S , We will say that 8 is  locally 

finite if tach p i n t  of M has a neighborhnnd which meets  a t  moat finitely - 
many strata.  We say  8 the condition of the fronticr if  for each 

stratum X of 8 i t s  frontier (X - X) n S ie a union of strata.  

; 
W e  will say  8 i s  a Whitncy pre-stratification if i t  ia locally finite, 

satisfies the condition of the frontier,  aad (X, Y )  satisfies condition b 

for  any pair  (X ,Y )  of s t ra ta  of s . 
Let R bc a Whitney pre-stratification of a aubaet S of a manifold 

M . Suppoee. X and Y a r e  strata.  W e  wr i tc  Y < X if Y is in 

the frontier of X , In view of Proposition 2.5, if Y < X . then 

dim Y c dim X . I t  follows easily that the relation "<" defines a part ial  

Remark. t b t  M be a manifold, S a closed subsat of M , and 
. . 

8 o Whitncy pre-stratification of S . Let x and x' bo two points 

in the same connected component of a stratum of 8 , Then there  exieta 

. . 
- ,  , a homcomnrphism h of M onto itself which p rcse rvcs  S and 8 

such that h(x) = x' , Thir followoe f rom Thorn's theory [ 4 ) and we will 

p rove i tbe low,  I n t h e c a s c  25 h a e o n l y t w o s t r a t a ,  i t i a q u i t e c a a y t o  



prove by an  arguAent due to Thorn [ 4 , p.242]. 

W e  sketch Thorn's argument for  the two strata case here. The only 

non-trivial case is when the two s t ra ta  satisfy X 6 Y and the two points 

- 
x and x* a r e i n  X .  In this case X i s  c l o a d  and X t Y  = Y  U X .  

For  simplicity, we will suppose that M is compact, though i t  is not 

difficult to modify the argument to make i t  work in the case M is 

non- compact. 

Let N be a small tubular neighborhood of X in - M , l e t  r : N -. X 

be smooth retraction, and l e t  p be a smooth fcnction on M such that 

p 2 0 , X = {p = 0 )  , and a t  a point x E X , p i r  non-degenerate on 

the normal plane to X in the sense that the Heseian matr ix  of p a t  

x has rank equal to the codim'ension of X . 
Now l e t  x and x' be two points in the same connected component 

of X . Let vX be a smooth vector field on X euch that the trajectory 

of v starting a t  x ar r ives  a t  x' ' a t  t ime t = 1 . 
For t > 0 sufficiently small,  the subset M = = €1 o f  N i s  

compact, and + : M - X  is a submersion. Furthermore,  
€ 

Y € = M  n~ 
t- 

is compact, and i t  followa f rom condition b that : Y - X i s  a 
C 

submersion for c sufficiently small. It follows easily that there i a  a 

vector field v on . M - X and an  c1 > 0 such that v . is tangent 



along Y , and the following hold. 

From * and the compactnerr of M , i t  follows that the trajectory 

of v starting a t  any point of M - X i s  defined for al l  time. Hence v 

generater a one-parameter group (h: , t E IR) of diffeornorphi~rns of 

M - X . Clearly v generaten a one-parameter group 
X 

fh: : t e r n )  

0 
of diffeomorphi~rnr of X . Let ht : M M be defined by ht JM - X = ht 

X 
and htlx s ht . It follows from (*) and (**) that 

X 0 
ht dm) = =lit(*) if m E M - X and ern) < tl . Hence h t is a 

homeomorphism of M . Clearly h preserves X , and furthermore t 

ht prerervca Y , since v i r  tangent along Y . Finally hl(x) x' 

eince trajectory of v rtarting at x oz i ivaa at x' a? tim6 t t' 1 . X 

Thua h c hl i s  the required homeomorphism of M . 
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46. ' hbu la r  n;ip;hborhoods. In this section, we define the notion of a I.. 

i 

tubular neighborhood of a submanifold of a manifold, and prove an existence 

and uniquenees theorem fo r  tubular neighborhoode. Our existence and 

uniquencos theorem i s  rlightly m o r e  general  than the standard one i . ,  

(ef., Lang [ 2 1). The method of proof we use wae suggested to US by I 
! 

A. Ogus. . i 
I 

H e r eca l l  that a vector bundle E over a smooth manifold M ie said 

to be  smooth if the coordinate transition functions which define E a r e  I 
, .  
I 

smooth functions. By a smooth inner  product on a vector b n d l e  E , we 

will mean a ru l e  which assigns to each fiber Ey of E a n  inner  product 
i 

( , ) on E and which has  the following property: I f  U i s  any open 
u u 

i 

se t  in  M and s l , s l  a r e  hvo smooth sections of E above U then the I 

. . 
mapping u - (sl(u), ~ ~ ( u ) ) ~  i s  smooth. F r o m  now on, we wit1 aaaumb a U  

i 
vector bundles and inner products on vector bundles a r e  emooth, unlees the 1 

! 
contrary i s  explicitly stated. 'By a (smooth) inner product bundle, w e  mean 

a pair  consisting of a (smooth) vector  bundle E and a (smooth) inner 

product on E . 

If a : E -* M is an inner  product bundle over s manifold, and f Is a 

positive function on M , then the open <-bal l  bundle B of E will be  
f 

defined aa the s e t  of e in E such that 11 e )I < € ( r e )  , where 11 e 1) ia 

1/2 defined a s  ( e ,  e) . 



Let M be a manifold and X a submanifold. 

DEFINITION. A tubular neighborhood T of X in M is a triple 

(E, f ,rp) , where u : E -. X , i s  an inner product bundle, c i s  a positive 

smooth function on X , and 9 is a diffeomorphism of B onto an open 
f 

subset of &A which commutes with the zero section I= of E : 

Yt e set IT1 = @Bc)  . By the projection associated to T , we mean , , 

the mapping n = r : T X . By the tubular function associated to 
T 

T , we mean the non-negative rea l  valued function 

where p!e)=_llell 
2 

fo P 911 e € :I ..:- . , 
, < .  --. 

It follows from these definitions that a is a retraction of I T (  on T 

X , i, e. , the composition . : 

n 
inclusion T 

X- 1~I-x 

i s  the identity. Aleo, X is the 0-set of PT * 
the differential of PT 

vanishes only on X , and (in the case p 2 2) a t  a point x E X , pT i s  



non-degenerate on tho normal  plane to X in the sense  that the Hessian 

mat r ix  of p a t  x has rank equal to the co-dimension of X . 

If U i s a s u b e e t o f  X ,  t he res t r i c t ion  T I u  of T to U i s  

defined a s  (E I U  , C ~ U  ., ? I u )  . 
If T = (E, c,?) and T' = (E', c ' , ~ ' )  a r e  b o  tubular neighborhoods 

of X in M , an  inner product bundle isomorphisrm $ : E -. E' will be 

said to be  an  isomorphism of T with T' if there  existe a positive 

continuous function C' on X such that C* L m i n ! ~ ,  c' j and 

?' . 0 I B ~ ,  = y (B<@, . Note that if this holds, then n ( B = rT, I ~ Y B ~ .  T c* 

and p T ( ~ B c H  = pT, IpBc.a . V, e say  T and T' a r e  inomorphic_ and ----- 
write  T - T' if t he re  exists  a n  iaomorphisrn f r o m  T to T' . --_ --...-. ._ ----- '--------- - 

A smooth mapping f : M - P will be said to be a submersion if 

df : TM - T P  
f(x)  

i s  onto fo r  each  x E M . 
X 

Throughout the r e s t  of this section, le t  f : M -. P be a smooth mapping, 

and X a submanifold of M . 

A tubular neighborhood T of X in M will be said to be  compatible 

with f if f rT = f 1 1 . A mapping h of M into itself will be said - 
to b e  compatible with f if f o h  = f . A homotopy H : M x I - M of M 

into itself will be said to b e  compatible with f if f Ht = f for a l l  

t E I: ( =  [0,1]) . Byran isotopy .of M , w e  will mean a smooth mapping . . 



H : M x I - M  ouchthat  H O = i d : M 4 M  and H t : M 4 M  i s a  

diffeomorphism for  all t E I . If h i s  a diffeomorphicrm of M into itself,  

the support of h wi l l  mean the closure of { x  E M : h(x) # x) . Likewiee, 

if H : M x 1 -. M is an isotopy, the support of H will mean the clocrure of 

If M' i s  a second manifold and X '  is a submanifold of M* , and 

. h : (M,X) - (M',X') is a diffeomorphiem, then f o r  any tubular neighborhood 

T = (E, c ,  ) of X we define a tubular neighborhood h*T of X *  by P 
h,T = ((hml)*g , c h , h . p) . 

We will begin by stating and proving a uniqueness theorem fo r  tubular 

neighborhoods, and then we will derive an existence theorem frorn the  

uniqueness theorem. Thir  procedure of deducing the existence th.eorem 

f r o m  the uniqueness theorem waa suggested to u s  by A. Ogus,, 

The simplest  uniqueness theorem for  tubular neighborhoods s ta tes  that  

if X i u  cloredand To and TI a r e  tubular neighborhood. of X i n  M ,  

then there  exists a diffeomorphism h of M onto itself which leaves  X 

point-wise fixed such that h * T g N T 1 ,  Moreover ,  h .  c a n b e c h o e e n s o  

t h a t t h e r e i s a n i s o t o p y  H of M with h = H  whichleaves  X 
1 

point wire fixed. We can generalize this resu l t  in  various ways. 



F i r s t ,  unde-r the hypothesis that T; and T1 a r e  compatible with f 

and f lX i s  a submersion. we can choose h and H to be compatible a i t h  

f . Secondly, if TO [U I. T ]U for  some open s e t  U in X , and Z i s  a 
1 

closed'eubclet of M such that Z n  X 5  U , then we can choose h and H 

to leave Z point-wise fixed. 

The following proposition impliee these statements, and has  some other 

; 
wrinkles a8 well. We will  use  i t  in i t s  full *enerality. ' 

I 

I 
PROPOSITION 6.1 (Uniqueness of tubular neiwhborhoods). Suppose the 

submanifold X of - M is closed, and f I X  : X -. P i s  a submersion. ' LA i 

be an open subset of l e t  - and - be closed subsets of 

le t  V be an open subset of M , and Suppose U' U & V' = V . - 
JSee Fipure 3. ) L s  To , a& TI be  tubular neighborhoods of X M 

which a r e  compatible with f and suppoae there i s  an i somorp t i sm 

: To I U  -. TJU . Then there  i s  an isotopy H : M x I - M , compatible 

with f , leaving X point-wise fixed, and with support in V , such that - - .  

h*To I v '  U U' - TI Iv' U U' , w h e r c  h = Hr Moreover,  if N i. any 

neighborhood of the diagonal in . M x ,. we can choose H such that I 

(Ht(x),x) E N for  any t E I - and x E M . Also, we can choose H so that I 

! 

there  i s  an isomorphism $I : htTO I V' U u -. T1 I v *  U U' such that 1 
! 

plu* = #, (u*  . 



Proof.  Let m = dim M , c = cod X , and p = dim P . F o r  k c m , 
k k 

le t  IR be embedded aa IR x Om,k in IRrn . W e  will say that we a r e  

in the local case when V' is compact and there  exists  a diffeomorphism 

9 of M onto an open subset of lRm , such that @(XI = IRm" n Q(M) , and 

a diffeornorphism JI  of P onto a n  open subset  of IR' such that the 

following diagram commutes, where r is given by o(xl, # xm) = (xl, , xp) 

There  a r e  two steps in the proof: 

Step 1. Reduction to the local case. From :be hypothesis that f I X  is 

a eubmersion, i t  followe that for  each x E X there exists an open neighborhood 

VZ of x in M , a diffeomorphism of W onto an open subset of 
X X X 

mrn rush  that O ( W  n XI = O(Vlx) f7 IR 
m- c 

and a diffeomorphism of 
X X 

f (Vf  1 onto an open subset of DlP such that the following diagram commutes 
X 
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These notes a r e  part of the f i r s t  chapter of a ser ies  of lecture8 

given by the author in the spring of 1970. The ultimate aim of them 

notes will be to prove the theorem that the se t  of topologically otabls 

mappings form r dense eubset of C-(N,P) for any finite dimensional 

manifolds M ond P where N i s  compact The f i r s t  chapter is r study 

of the Thorn-Whitney theory of stratified eats and stratified mappings. 

The connection of the material  in these notee with the theorem on the 

density of topologically stable mappings appaaro in 4 11, where we give 

Thorn's second ieotopy lemma. This result gives sufficient conditions for 

two mapping r to be topologically equivalent. 



91. Condition a . W a  begin by introducing some notions that are 

due to Whitnay ([ 5 ' 1  and [ 6 1) . 

Let  be a positive number pr  ca , which will be fixed throughout 

this chapter. By wsmooth" w e  will mean differentiable of class cP . 
Let M be a smooth (i. e. . c') n-manifold without boundary. By 

a smooth (i. e., c') aubmanifold of M , we will mean a eubset X of 

M such that for every x E X there exists a coordinate chart ( q , U )  

k 
of clase cP such that x E U and in(X n Ui = P f l f i t i )  . fo r  a 

suitable coordinate plane Etk in Eln . In the definition of submanifold. 

. . we do not assume that X is closed. However, i t  follows from the 

definition of aubmanifold that X is locally closed i. e. , each point in 

S has a neighborhood U in M such chat X f~ U is closed in . U . 

If X i s  an r-dimensional submanifold of M and x E X , then 

the tangent space 
=*x 

of X a t  x is a point in the Craasmannian 

bundle of r-planes in TM . In what followe "convergence" mean8 
X 

convergence in the standard topology on this bundle. 

Let  X and Y be smooth submanifolde of M and let  y E Y . 
Set r = dim X . 



DEFINITION 1.1. VJa say the pair (X, Y )  satisfies condition a 

y if the following holds. Given any sequence x. of points in X euch 
1 

that x. - y and TXq converge@ to some r-plane T S TM , we have - 1 Y 

m ~ 7 .  
Y - 

Exa-mple 1.2. (Whitney ( 6 1) . Let  x, y, z denote coordinates for 

3 2 2  
C . Let Y be the %-axis and l e t  X be the se t  {zx - y = 0)  with 

tha t-axir deleted. (In Figure 1, we have sketched the intersection of X 

3 
with lR3 , ) Then X and Y are complex analytic aubrnanifolds of C . 
I t  i r  easily eeen that (X, Y )  satisfies condition a a t  all  points of Y 

except the origin, and that i t  does not satisfy condition a there. 
. . 

We will  say that the pair (X,Y) satisfies condition a i f  i t  sa.tisfies 

condition 2 at every point of Y . 

In Beample 1.2, the pair  (X, Y )  does not satisfy condition a .  If we 

set  Z a (0) and Y' s Y - 2 , then the pair8 (X ,Y  ') , (X,  2) , and 

(Y C ,  2) do satisfy condition a ,  



I '  

9 2. Condition b. We will bagin by defining V'hitnay's c ~ n d i t I o n  b 

fo r  rubmanifolds of mn . Then we extend this definition to aubmanifolds 
I 

of an a rb i t r a ry  manifold, using the definition in IRn . P c  will  a l s o  rhow , - 

that condition b implies  condition a . 
If X,Y E mn m d  x & y , then the secant - q will  denote the l ine 

in  mn which i r  para l le l  to  the l i ne  joining x and y and p a s s e s  I 

through the origin. For any x € IRn are identify T ~ ~ R ~  with lRn in 

the s tandard way. I 

Let X, Y be (smooth) eubrnanifolds of an . Let  y G Y , Let  

DEFINITION 2.1. Yre say that  the pa i r  (X, Y )  sat i  sfics condition 

b a t  y if the following holds. Let_ x be  a aequence of points in  X , - i 

converging to  y & yi a sequence of point. i n  Y , aleo*converpinq 

y . Suppose TXxi converges to aorne r-plane + s I R n  and that 

Xi + yi 
fo r  a l l  i and the secants  3 converge (in proiective space 

pn-') to some l i n q  I c IR" . Then 1 E 7 . - 
L e t  (x', Y ') be  o second pa i r  of rubmanifolds of IRn , and l e t  

LEMMA 2.2, Suppoee t he re  exist dFtn neighborhoods U - and U' 

and y' Eln and a (smooth)  dilfe_om_oorphisrn : U -. U ' such o f y -  . -.--.. --- P ! 
! 



that y ( U n X ) = U O n % '  , i p ( U n Y ) = U O n y '  a& ~ ( y ) = ~ ' .  Then - 
(X,  Y) satisfies condition b y if and only i f  (x', Y ') sat isf ies  

condition b at y' . 

Proof: Obviour. - 
DEFINITION 2.2. k t  M be a manifold and XI Y  submanifoldb 

. L e t  y E Y , We say that (XI Y )  patitcfies condition b y if f o r  - - 
some coordinate chart  ( U) about y , we have that the pa i r  r, - 
((p(U ll X) , rp(U n Y ) I  sa t isf ies  condition b at, @y) . 

! 

, In view of Lemma 2.2, if ( X , Y )  sat isf ies  condition b a t  y , then 

fo r  every coordinate char t  (rp, U )  about y , we have that (P(U 0 X) . 'p(Ufl Y) 

I 
natisfies condition b a t  y . 

i 

For  the t e s t  of thin esction, l e t  M be  a manifold and X and Y 

submanifolds rnd l e t  y E Y . 
L PROPOSITION 2.4. (X, Y )  sat isf ies  condition b y then 

i t  eatisfiee condition a y . 
Proof: Since both conditions a and b are purely local ,  we may - 

suppose that X and Y are submanifolds of lRn . Let  xi be a 

sequence of pointa in  X such that xi - y and TXxi 7 I fo r  some  
! 

1 ? E TJR" = Eln . Yre muat 8how that T Y  c 7 . Suppose otherwise. 
Y Y - 



5 .  

Then there e x i s t s a  l ine 1 g XRn , paseing through the origin, such that 

1 TY but I & T . Since 1 G TY , we can choose a sequence of points 
Y Y n yt E Y such that y =k xi , yI -+ y and y x - f . But since 1 d , this 

i i i  

contradicts condition b . Q. E. D. 

We say (X, Y )  satisfies condition b if it aatisfics condition b a t  

every point y E Y . 
Example 2.5. Let X be  the spiral in I R ~  defined by the condition 

that the tangent of X makes a constant angle with the radial vector, and 

l e t  Y be the origin., In polar coordinates, this spiral i s  given by 

r - = constant. Then the pair  (X,Y) doea not satisfy condition b . 
For ,  by definition, the angle cx between the line TXx and the secant 

A 
Ox i s  independent of x . If x E X is a sequence converging to 0 , 

i 
n 2 

then the tangents TXxt convergeto a line T G R and Oxl converges 

to a line 1 , which makes an angle a with 7 . i 

3 
Example 2.6. ( ' ~ r h i t n e ~  [ 6 1). Let x, y, z ba coordinates for Q; . . . 

i 
Let Y he the z-axis. Let  X be the se t  f y Z +  i3 - z 2 x 2 =  0) with 

6 

the z-axis deleted. (In Figure 2 we have sketched the intersection of X 

with m:' . ) I t  i s  caeily seen that the pair  (X, Y) satisfies condition a, 
i 

and the pair  (X, Y) satisfies condition b a t  all  points of Y except the i 
! 

origin and that i t  does not satiafy condition b there. 



. 6 .  

PROPOSITION 2.5. Suppose y E X - Y and (X, Y) satisfies - 
condition b 2 y . Then dim Y < dim X . - 

Proof: It i s  enough to consider the case  when M = nim . Since 
y E X , there  exis ts  a sequence x i n  ')c - Y which converges i 

to y . By the compactness of the Graesrnannian, we may  suppose, by 

passing to a subsequence if necessary,  that TXXi converges to an r 

plane T 2 mm (where r = dim X). Since condition b implies  condition 

a (Propoeition 2.4) ,  TY c 7 , F o r  i sufficiently la rge ,  there  i s  a 
Y - 

point y, on Y which minimizes the distance to x. . By passing to 
1 1 

a eubsequence if necessary,  we may suppose the secants  XiYi Converge 

to a line 1 IR" . Since 
'i 

minimizes the distance to x the 
i '  

recant  yixi i s  orthogonal to TYyi ; hence f i s  orthogonal to T Y  . 
Y 

Since (X, Y )  .satisfies condition b at y , we have 1 . s  T . We have 

shown TY + f c s and 1 is orthogonal to T Y  ; hence 
Y Y 

dim X = dim r , dim T Y  = dim Y , Q. E. D. 
Y 



7. 

4 3. Blowing up. In the next section, wa will give a n  intr insic  

formulation of condition b which will  ba  useful l a t e r  on. This  formulation 

depends on the notion of blowing up a manifold along a submanifold, which we 

define in  this  section. 

Le t  N b e  a rnnnifald and U a cloeed eubmanifold. By the 

manifold D N obtainod by blowing up N along U, we will n c a n  tbe manifold U 

defined in  the following way. As a ac t  BUN i s  the disjoint union 

( N  - U) U PqU , whero PqU denotes the projective no rma l  bundle of U 

in N . 
Ry the natural  projection r : BUN N , we mean the mapping 

defined by letting nipqu be the projection of PnU on U and lett ing 

T I N  - U be  the inclusion of N - U into N . 

To define the differentiable s t ruc tu re  on BUN , we f i r s t  consider 

r).r the case  when N i s  open in nn and U = IR fl N , where  i s  the 

coordinate plane defined by the vanishing of the l a s t  n - r .  coordina.tea. 

n-r -1 
Then we have a mapping CY : BUN - IRn x IRP defined as follows. 

7 

F i r s t ,  LY I pqU i s  the a t m d a r d  identification of P% with 

n-r-1 c r n n x m p  n-r-1 n 
U x lRP  - . Secondly, if x = (x l , ** - !x ,  ) E IR - ELr , 

IRpn-r- l  
then a ( x )  = (x, R ( x ) )  , where  B(x) i s  the point in  with 

homogeneous coordinates ( x ~ + ~ ,  * , xn) . 



It i s  easily verified that a[B N] is  a C- submanifold of 
. U 

n-r-1 
IR" x IR P , as  follows. Let (3, - .t ) denote the coordinates of 

ma . Let X ,  , X denote the homogeneous coordinate. for pn-r-1 
n 

For  r + 1 L i L n , l e t  
Zi 

denote the eubset of IR P 
n-r-1 defined by 

Xi # 0 , and let X be the real  valued function X = X I X  on Zi . 
j i ji j i 

Then the intcraectlon of a[BUN] with N x Zi is the se t  defined by 

-r-1 
Therefore a[R N] i e  a submanifold of ELn x f ~ 8  . U 

Since the mapping cu i n  injective, we may define a manifold structure 

on 8 N by pulling back the manifold structure on ~ B ~ N ]  . u 

Now, let N' be a recond open subset of DLn , le t  U' = lRrn N' , 

and le t  y : (N, U) (N' U be a C@ diffcomorphisrn. Let  

Q* : DUN - RUhN' be the induced rnapplng, defioad by letting 

' P * I P ~ ~  : p 1 1 ~  * mu# be the mapping induced by the differential, and 

letting I N  - U : N - U - N' - U' be the restriction cf .p . Then 9* 
i r  a diffeomorphisrn of class . 

-1 
To show this, we f i r s t  observe that ip* is a bijection and (Pt)-l = (y )* 

Therefore, i t  suffices to ahow that Y'* is of class c . To show this, i t  

P-' -1 i a  e n n ~ ~ h  to ehow that -.xi *Y)+  i s  of C ~ P . B S  C , l ~ i l n ,  that ((P* )(Zi) i s  

open, r 4- 1 5  i 5 n , and that Xji y, i. of claaa f o i  r + l z j j n  and 

j # i . Since 



where n : BUN - N is the natural projection. the first statement is 

obvious. 

To prove the remaining two statcmenta, we set (O 2 x. t+ and 
i r 

observe that there exist functions 
'ha 

of class cr-l , for 

r 4- 1 S i , a 5 n , such that 

This ie proved as  follows. Since for r + 1 5 i S n , we have that 
Y'i 

vanishes on U = N 0 Illr , we get that 

so that * holds, where 

-1 
In view of ( 1  q* ( X i )  l l  7. i a  the subset of 

k Zk defined by 

- 1 
and hence is open. It follows that cp* Zi i s  open. It also follows from 



( *) that 

on zi) n zk , and hence is of c lass  cPd there.  

I 

This complete. the proof that p* i s  a diffsornorphism of c lass  CP-' . 
Now we re turn  to ha general situation where N i s  a manifold, and 

U i s  a closed submanifold, both of c lass  C' . In view of what. we have 

junt done, we can conetruct a differentiable s t ruc ture  on the pa r t  of B ~ N  

which l i e s  above any coordinate patch, and the differentiable s t ructures  

ahove different coordinate patches a r e  compatible. Thus, r e  

c b k i n  the s t ruc ture  of a manifold of c l a s s  cP-' on BUN . 
Note that the natural  projection n : B N -. N is differantiable of u ' 

c lass  cp- I  

Since we have defined a s t ruc ture  of a manifold of c lass  cP'l on 

RUN , we have a l so  defined a topology on nUN . In the local case,  

r when N t lRn and U = IF, , this topology m a y  be  described m o r e  

directly. Let (xi) be  a aequsnce of points in ELn - Dlr , and suppose 

r 
X i - . X E R  . Let 1 E R P  n-r-1 , s o  that ( x , l )  i s  a member  of BUN , 

' .  



11. 

if we identify B U ~  with the subset a[B X] of IRn x PEL*-' , as U 

above. Then it is easily acen that x converges ( in BUN) to ( x . 1 )  i 

if and only i f  the recsntr x x' converge to I , where x' denotes the i i i 

projection of x. on IRr . 
1 

This suggest8 that it should be poasible to reformulate condition b 

in terms of "blowing up". W e  do this in the next section. 



44. An intrinsic formulation of condition b , Let  N be a smooth 

manifold. Le t  A N  denote the diagonal in N~ . By the fat square of N , 

we will mean the manifold F(N) obtained by blowing up N* along 
b~ ' 

The normal  bundle f i  of A N  in N~ can be  identified with the 

tangent bundle TN in  a canonical way, a s  follows. If x E A N  . then by 

definition 

The mapping of TNx Q T N  into TNx which sends v 8 w to v - w 
X 

i nduceaan iaomnrph i smnf  7 with TN . W e u s e t h i e i e o m o r p h i s m t o  
X X 

identify q with TNx . 
X 

F r o m  this identification and the definition of the proceee of blowing up 

a manifold along a aubmmifold, i t  follow8 that 

2 
F ( N )  = PT(h.) U (N - aN) (disjoint union) 

where PT(N) denntes the projective tangent bundle of N . Thus, points 

of F ( N )  a t e  of two kinds: paire  ( x , ~ )  with x, Y N and x * Y 
and tangent directions on N . 

It followa frnm the previous section that F(N) is a manifold of c l a s s  

cp-I . 



.. 
Roughly speaking, a scquance {(xi,yi)] of pointa in N' - A N  

converges to a tangent direction 1 on N if the requences (xi) and 

} converge to the same point x in N and the direction from x i 

to yi converge, to 1 . In the case N r lFtn , this can be  m a d s  preciae: 

{(xi, Yi)} converges to (x. I )  E x JRpn-' if both (xi) and iyI) 

converge to x , and the secants xiyi converge to I .  

Now le t  X and Y be smooth submanifolds of N and l e t  y E Y . I 

Su~pmie  Y 1s closed. In view of the previous parrgr tph,  we ebt=!r? the 

following result, 

I 

PROPOSITION 4.1. Thepa i r  (X ,Y )  satisfiescondition b y - i f  
I 

and only if the following condition holds. Let - x }  be any sequence of 
1 

~ o i n t s  in X and (Yi} any aeguencc of points in Y such that '  xi 6 yi 

Suppose {xi) - y , fY i )  - y , ( , . converges to a line f G PTN , 
i 1 Y 

and ( T X ~ }  converges ( in the Crsssmannian of r planes in T N  , - 
where r = dim X)  to an r-plane T Z; TN . T& 1 T . 

Y 



$ 5 ,  Vhltney pre-stratifications. Let  h" be r .smooth (1, e. ,  cP) 

manifold without boundary. Le t  S be a subset of M ,  Ry a pre-stratification 

8 of S , we will mean a cover of S by pairwisa disjoint smooth 

rubmanifolds of M , which l ie in S . W e  will say that 8 i s  locally 

finite if tach point of M has  a neighborhood which meets  a t  moet finitely - 
many strata ,  We say  8 satiefies the condition of the frontier if  for  each 

s t ra tum X of 8 i t s  frontier (X - X) f l  S i s  a union of strata.  

Mre will say 8 i s  a Whitncy prn-stratification if i t  is locally finite, 

sat isf ies  the condition of the frontier,  aad (X, Y )  satisfies condition b 

for  any pair (X, Y 1 of strata of S . 
. , 

Let 3 be a Whitney pre-stratification of a subset S of a manifold 

M , Suppose X and Y a r e  strata.  We wri te  Y < X if Y i s  in 

the frontier  of X , In view of Proposition 2 . 5 ,  if Y < X then 

dim Y < dim X . It follows easily that the relation "C" definer, a part ial  

Remark. Lot M be a manifold, S a closed subsat of M , and 

8 a Whitncy pre-stratification of S . Let  x and x'  bo two points 

in the same connected component of a s t ra tum of 2) , Then there exists  

., a homeomnrphism h of M onto itself which preservcf, and S 

such that h(x) a X *  . Thia  follow*^ from Thorn's theory [ 4 ] and we will 

prove i t  below.' In tbe care 3 has olrly two s t r a t a ,  i t  icr quite caay t o  
- 

. . 



prove by an argument due to Thorn [ 4 , p.2421. 

We sketch Thorn's argument f ~ r  the two strata case here. The only 

non-trivial caee ie when the two s t ra ta  satisfy X < Y and the two point8 

- 
x and x' a r e i n  X .  In this case X i s  clabed and X t  Y = Y  U X .  

For  simplicity, we will suppoee that M is compact, though it is  not 

difficult to modify the argument to make i t  work in the caee M is 

non-compact. 

Let N be a small tubular neighborhood of X in M , l e t  n : N -. X 

be a smooth retraction, and l e t  p be a smooth function on M such that 

P 2 O , X = {P = 0} , and a t  a point x E X , P i s  non-degenerate on 

the normal plane to X in the sense that the Hessian matr ix  of P at 

x has rank equal to the codirn-cnsion of X . 

Now l e t  x and x* bc two points in the same connected component 

of X . Let vX be a smooth vector field on X such that the trajectory 

of v starting a t  x ar r ives  a t  x' a t  time t = 1 . 

For  < > 0 sufficiently small,  the subset ME = ( p  = r ? of N is 

compact, and n : M -. X is a sukmersion. Furthermore, 
C 

Y < = M  n y  
P 

i s  compact, and i t  follows f rom condition b that a : Y - X i s  a 
C 

subxnersion for c sufficiently small. It follows easily that there i s  a 

vector field v on . M - X and an c > O such that v . is tangent 
1 



along Y , and the following hold. 

From * and the compactnerr of M , it follows that the trajectory 

of v rtarting a t  any point of M - X i s  defined for a l l  time. Hence v 

generates a one-parameter group (h: , t E lR) of diffeornorphiams of 

M - X . Clearly vX generates a one-parameter group (6: : ~ E R )  

0 
of diffcomorphiarns of X . Let ht : M * M be defined by h t l ~  - X = ht 

X 
and htlx E ht . It followa from (*) and (**) that 

X 0 
ht d m )  = nht(m) if m E M - X and e m )  < rl . Hence ht is a 

homeomorphism of M . Clearly h preserves X , and furthermore t 

h prseervea Y , since v i s  hngsn t  along Y . Finally hl(x) x *  t 

since trajectory of v starting at x sri-ivsa at x' at tima' t t 1 . X 

Thus h = hl i s  the required homaomorphism of M . 



06.  Tubular n;iEhborhoods. In this section, we define the notion of a : 

tubular neighborhood of a submanifold of a manifold, and prove an existence 1 
and uniquenees theorem for tubular neighborhoods. Our existence and 

uniqueneos theorem is slightly more  general than the standard one 
! 

(d . ,  Lang [ 2 1). The method of proof we use  was auggeated to rfs by ! 

A. OWS. i i 
! 
! 

H e recall that a vector bundle E over a smooth manifold M is raid 1 
to be smdoth if the coordinate transition functions which define E a r e  i 

I 

smooth functions. By a smooth inner product on a vector hrndle E , we 

will mean a rule which asaigns to each fiber EU of E an i ~ e r  product 

( , ) on E and which hae the following property: I f  U is any open 
u u 

set in M and sl,sZ are two smooth sections of E above U then the I 

mapping u -  ( ~ ~ ( u ) , s ~ ( u ) ) ~  i s  smooth. Fromnow on, we will assume all' 

vector bundles and inner products on vector bundles a r e  smooth, unless the 

contrary is explicitly stated. .By a (smooth) inner product bundle, we mean 

a pair consisting of a (smooth) vector  bundle E and a (smooth) inner 

product on E . 

If n : E M is  an inner product bundle over a manifold, and t is a 

positive function on M , then the open c-ball bundle B of E will  be 
€ 

defined a s  the se t  of e in E such that Ile 11 < c(ne)  , where Ile 11 is 

1/2 defined a s  (e, e )  . 



Let M be a manifold and X a submanifold. 

DEFINITION. A tubular neighborhood T of X in M is a triple 

(E, t ,p) , where n : E - X , is an inner product bundle, c is a positive 

smooth function on X , and cp is a diffeomorphism of B onto an open 
C 

subset of &A which commutes with the zero section of E : 

Vie se t  ]TI = @BC) . By the projection associated to T . we mean . 

-1 
the rnapping sT = u : I T  I - X . By the tubular function associated to 

T , we mean the non-negative real valued function 

where p(e)  = ~ l e l l ~  
for all  e € ~ T J  .+- . . 

7 -- 

It folows from these definitions that n is a retraction of IT I on T 

X , i. e. , the compoeition 

n 
inclusion T 

X- IT(-x 

ia the idontity. Also, X i s  the 0-set  of PT * 
the differential of PT 

vanishes only on X . and (in the case p 2 2) a t  a point x E X . pT i s  



non-degenerate on tho normal  plane to X in the eenee that the Hessian 

mat r ix  of p a t  x has rank equal to the co-dimension of X . 

If U is a eubset of X , the res t r ic t ion  TIu of T to U i s  

def inedas  ( E I u ,  C I U ,  ~ I u ) .  

If T =  LE.c,y) and T' = ( ~ * , c * , ~ ' )  a r e h v o  tubular neighborhoods 

of X in  M , an inner product bundle isomorphiom J, : E -. E' will be 

said to b e  an  isomorphism of T with T' if there  ex is t s  a positive 

continuous function c' on X such that c" 5 min!c, c'j and 

?' . $I J B ~ '  = 'p 1 ~ ~ .  . Note that if this holds,  then sT l r ~ c ,  = aT. l P ~ c r  
and pT I 'P~cr = pTa ] y ~ c . 4  . M e  say T and T' a r e  inomorphic and ------ 
write  T- T' if t he re  ex is t s  a n  isomorphism froxn T to T' . 

-- -- -= --*-- ,-- -----.- 

A smooth mapping f : M P will  be  said to be  a submersion if 

df : TM -. TP i s  onto f o r  each x E M . 
X f(x) 

Throughout the r e s t  of this  sect ion,  l e t  f : M -. P be a smooth mapping, 

and X a submanifold of M . 

A tubular neighborhood T of X in M will be said to be  compatible 

with f i f  f 0 nT = f 1 I .  A mapping h of M into itself will be said - 
to be compatible with f if f oh = f . A homotopy H : M x 1 4  M of M 

into itself will be said to be compatible with f if f Ht = f for a l l  

t E I (=  [0,1]) . Dy,an isotopy of M , we will mean a smooth mapping 



H : M x 1 4 M  ouchthat H O = i d : M - M  and H t : M H M  i s a  

diffeomorphism for  all t E I . If h i s  a diffeomorphism of M into itself, 

the support of h will mean the closure of { x  f M : h(x) # x) . Likewiae, 

if H : M x 1 - M is an isotopy, the support of H will mean the closure of 

(%EM: t €  I , H ( x , t ) # x ) .  

If Ma i s  a aecond manifold and X' is a submanifold of M' , and 

h : (M, X) -, (M', x') is a diffeomorphism, then for any tubular neighborhood 

T = (E,  c . ~ )  of X we define a tubular neighborhood h*T of X *  by 

h*T = ( ( h - l ) ' ~  , c h , h . p) . 

We will begin by stating and proving a uniqueneso theorem for tubular 

neighborhoods, and then we will derive an existence theorem from the 

uniqueness theorem. Thir procedure of deducing the existence theorem 

from the uniqueness theorem was suggested to u s  by A. O y s ,  

The stmplest uniquener~s theorem for tubular neighborhoods states that 

if X ie c l o ~ e d a n d  T and T1 a r e  tubular neighborhoods of X in M , 
0 

then there exists a diffeomorphism h of M onto itself which leaves X 

point-wise fixed such that h T - T Moreover, h can be chosen so * 0 1 '  

that there is an iaotopy H of M with hl = H which leaves X 

point wire fixed. We can generalize this result in various ways. 



F i r s t ,  unde-r the hypothesis that To and T a r e  compatible with f 
1 

and f IX is a submersion, we can chooee h and H to be compatible with 

f . Secondly. if To I U  - T ~ ~ U  for  some  open l e t .  U in X , and Z i s  a 

closed'subeet of M such that Z n  X G U ,  t h e n w e c a n  choose h and H 

to leave Z point-wise fixed. 

The following proposition implies  these statements,  and has  some other 

wrinkles a s  well. We wiU u s e  i t  in i t s  full generality. 

PROPOSITION 6.1 (Uniqueness of tubular neip;hborhoods). Suppose the 

eubmanifold X of - M is closed, and f I X  : X -. P is  a submersion. L A  

U be an open subset of X , let U' - and V' be closed subsets  of X , 

l e t  V be an open subset of M , and suppose U* G U V' G V . - 
LSee F i m r e  3. ) LA To a& TI be tubular neighborhoods of X & M 

which a r e  compatible with f and suppoae there i s  an i somorphism 

Po : To]u - T I U  . Then there  i s  an isotopy H : M x I - M , compatible 
1 

with f , leaving X point-wise fixed, and with support in V , such that 
7 

h,To lv' U U' - TI Iv' U U' . where h = H1 . Moreover,  if  N is any 

neighborhood of the diagonal in M x , we can choose H such that 

(Ht(x),x) E N fo r  any t E I - and x E M . Also, we can choose H eo that 

t he re  i s  an isomorphism p : h*TO Iv '  u U' - TI Iv' U U' such that 

p lu' = #o lu' . 



Proof. Let m = dim M , c = cod X , and p = dim P . F o r  k c m , 
k 

le t  lR be embedded a s  
k 

xom,k in Dlrn . We will say that we a r e  

in the local case when V'  is compact and the re  ex is t s  a diffeomorphism 

9 of M onto an open subset  of , such that @(X) = 1 ~ ~ ' ~  n +(MI , and 

a diffeomorphiem \t of P onto an open subset of IEtP such that the 

following diagram commutes,  where n i s  given by n(xl, * . X  ) = ( x ~ . * * * . x ~ )  m 

There  are two steps in the proof: 

Step 1. Reduction t o  the local  case. Frem the hypothesis that f I X  i s  

a submersion, i t  follows that fo r  each x E X there  exists an open neighborhood 

VI of x in M , a diffeomorphism Q of W onto an open subset  of 
X X X 

lRrn such that 9 ( V I x n  X) = +(vl  ) n JR m- c , and a diffeornorphism Q of 
X X 

f ( W  ) onto an open subset of lRP such that the following d iagram commutes 
X 



Furthermore, we may suppose each W i s  relatively compact, and that 
X 

( * I  
w nu' + 0 3 W*" X'U 

X 

Then {M - X} U (W ) i s  a cover of M , so that there exists a locally 
X 

finite refinement of it. which we may take to be of the form {M - X}  U {w~) . 
where each Wi is contained in wfii) for s o m e  xi E X , Since M has 

a countable basis for i ts  topology, the collection { w ~ )  i s  countable. Now 

we discard all W. for which Wi f l  U *  # Q or  Wi fl V* = a ,  and we 
1 

index the remaining W . ' s  by the positive integers. Then we have 
1 

V ' E U U W  U V z U - * *  I 

1 
, and W, = V for all i , by * . 

1 

W e  can choose cloned sets W; E W. fl X such that 
1 

V ' C U U W ; U W ~ U * * *  . Since W r c W  , andthe la t te r i s re la t ive ly  
1 x(i) 

compact, it follows that W: is compact. 
I 



0 1 2  Now we conrtruct by induction a rrequence H , H , H , - - of isotopies 

of M into itrolf and sequence qO,  e2, . of isomorphisms of tubular 

0 0 
naighborhoods. We let  H be defined by Ht a identity , 0 b t 5 1 , and 

lat $0 be a8 given in the statement of the proposition. 

0 1 i-1 
For  the inductive step, we ruppore that H , H , ,H and 

6,. 8 $i-, have been constructed, a r e  compatible with f and leave X 

point-wise fixed. We le t  G' be the isotopy of M defined by 

& = H : .  t H; - '*****H: .  W e l e t  $ = c ~  ' j Wele t  u = U U W ~ U . - - U W  
j j 

i-1 
and suppose rupp G _C Ui_l  fl V . Furthermore, we suppose 

i -1 
(GI ( x ) , x ) E N  f o r a l l  x E M  and tE [O , l ] ,  andthat  $i-l i s a n  

- 1  ~lj* i sornorphism of tubular neighborhoods g* /I?* 0 i-1- '1 i - l  where U* i-1 

ia an open neighborhood of U U W; U U w{-~ in X . 

Then i t  follows f rom the local case of the proposition that H~ and li 
can be chosen so  that the conditions oP the induction are satisfied, For ,  le t  

W: be an open subset of Wi 
such that w . ' = w ~  and W O  i s  relatively 

I i 

compact in Wi , and let U* be an open neighborhood of 
1 

0 
U' U W; U e * * U  W[ in X whoa8 cloaure lies in U t l  U Wi . From the 

local ease, i t  follows that we can construct an isotopy H~ of Wi  , 
i 

compatible with f , leaving X n W point-wise fixed, and with support in 

W: auch that h,gl i i-1 T It* q WI - T IE* n Wi , where h i = H1. i (Thia is  
0 1 L i 

i-1 
because gy To Ic:-l n W I N  Tl WWI and U* c 2 .) Moreover, we m a y  

i -1 



2 5 
- 

i 
choose H~ so that Ht is arbitrari ly close to the identity for al l  t , 

and so there i s  an isomorphism 

such that 

i 
Since eupp H is in a compact subset of Wi , we may extend H~ 

to an isotopy of M whose support l ies in V . Likewise. we m a y  I 
! 

i 
extepd to all  of U: by let t ing Pi 1 ~ : ~  = P i - l I ~ t l  Then H j 

Pi  1 

and ipi satisfy the conditions of the induction. 1 
,I 

. . 

i 
Now if i t  is t rue  that the sequence G (x) i s  eventually conatant 

t 

in a neighborhood of any point x E M , we can eet 
! 

i 
Ht(x)  = lim G (x) 

i-co t 

! 

(since the latter is eventually constant in a neighborhood of any point). If I 
! 
i 

- 
we choose N so that the projection n : N -. M is proper (where n ' 

2 2 

denotes the projection on the eecond factor), then i t  is easily seen that 

i 
the sequence G {x) is eventually constant In a neighborhood of any point i 

: t ! 

x E M , and t h a t  H and (I have the required properties. 



Thie completes the reduction to the local case.  

Proof  in the local case.  Le t  To = (Eon f o , ~ )  and Tl = (El, cl,pl) . 
U1e will f i r s t  construct an isomorphism ) : Eo -. E of inner product bundles 

1 

which extends q0 Iu' , and then construct the i ~ o t o p y  H to have the 

required propert ies .  

The tubular nei ghborhood Ti (i = 0.1) gives a natural  identification 

0. of E. with the no rma l  bundle y of X in  M . Explicitly, if 
1 1 X 

x E X , the restr ic t ion of a. to the f iber  E. i s  the composition 
1. 1, x 

-1 
Le t  8 5 ( y  Q : EO @ El . We may consider /3 a s  a sectioxl of 

Iso(E E ) ., where the l a t t e r  i s  the bundle whose f iber  over  x is the 
0' 1 

space  of isomorphisms of 
x 

into E . In general,  P will  not be 
1, x 

of class cC . only of c l a s s  cP-' ; however, we m a y  approximate B 

arb i t ra r i ly  closely on any compact subset  of X by a section of c l a s s  
1 

To canatruct # , we will  need the following well known lemma in  

l inear  algebra. 

LEMMA. LA V a& be  vector spaces ,  provided with inner  

products  i j . L A  L : V - V7 be a vector  space isomorphism. 



Then there exists a unique positive definite sclf-adjoint l inear mappinq 

H : W -. W such that H L : V V prese rves  inner products. 
I 
I I 

Remark 1. I t  i a  easily seen that this  i s  equivalent to the asser t ion  that 
i 

any invertible mat r ix  L of r e a l  numbers  has a unique deccrnpositi3n 

- 1 L = H U where H i s  a positive definite symmetr ic  ma t r ix  and U i s  an 

orthogonal matrix.  

Remark  2. Similarly,  i t  i s  easily verified that there  exis ts  a unique I 

I 
I 

positive definite self -adjoint l inear  mapping 
H1 

: V -. V such that 1 

L H1 : V - W prese rves  inner  products,  and that H = L"HL . 
1 

Proof of the lemma. Existence. Le t  e . , e be an or thonormal  ! 
1' n 

I 

bas is  f o r  V , and le t  A = (a. .) be the matr ix  given by 
'i j  = ( L e i l L e . )  . 1~ I j 

Then a. is symmetr ic  and positive definite. It follows f r o m  the spectral  
l j  

theorem for  symmetr ic  positive definite mat r ices  that we may choose the 

basis  . , e so that (a. .) i a  a diagonal matrix: a,. = 1.6.. 1 

elf n IJ 11 1 IJ 

(where 6.. i a  the Kronecher delta symbol). Le t  f. = L e  , Then 
1J 1 1 

fl, , f i s  an or thonormal  bas i s  of V . Let H : \V -. V/T be given by 
n 

H(f.  = f./r . Then H has  the required propert ies .  
1 1 1  

! 

Uniqueness. If there w e r e  two, H and H' , we would have that 

U = (HLI ( H ' L ) - ~  i s  orthogonal. Then uH'L = HL ao UH' = H .. 
- 1 - 1 2 

Taking adjoints, w e  then obtain H'U = H eo that H" = H'U UI-I' = H . 



This implies H' = H , since a positive definite eelf-adjoint mapping has 

only one positive definite self-adjoint square root. Q. E. D. 

Now we return to the proof of the uniqueness of tubular neighborhoods. 

For each x E X , let 7 be the unique self-adjoint positive definite linear 
X 

automorphisrn of 
=1, x such that I,!I = qx * h S x :  E - E  pr  eservea 

X 0 , X  1,IC 

inner  product^. Clearly. = { )  i s  a smooth isomorphism of Eo into 

El , and it preserves inner products. F rom the fact that q i s  positive 
X 

definite and self -adjoint it followa that (1 - t) identity itq, 1 8  an 

automorphism of E for 0 t 1 . Hence if 4 i s  chosen 
I , x  

sufficiently close to , i t  follows that 

f in a neighb~rhood of U' (which we may do since f l ~ i  = :I0 by 

definition of , then q = identity in a neighborhood of P' U1 , LIO that 

J Iu' = $ J ~  I U *  . 
Since we a r e  in the local case, we may suppose without Ioes of generality 

m-c 
that M i s o p e n i n  E l rn ,  F i s o p e n i n  E l P ,  X = l R  p M ,  and 

6 = n I M  , It is easily seen that there exists a neighborhood Y1 of V' in  

V much that for all m E V we have that 
1 '  

- 1 = pl ((1 - t ) p  + t$) . qo (m) 



29 

i s  defined. Since V' X , sue have gt I v '  = inclusion. Since V' i s  

compact there exist8 a n  open neighborhood V2 of V' i n  VI such that 

g$VZ) gt(VI) for 0 j s , t 1 Le t  p be a cm function on M' 

which is identically 1 . in a neighborhood of V' and which has  compact 

support S V2 . Le t  G : M - Id be defined by 
8 ,  t 

-1 mE V2 G (m) = I 1  - p(m))m + p(m)gt8, (m) 8 , 6, t 

Then G is a smooth mapping for  0 5 s  , t ( 1 ,  a n d i t  depends 
8, t 

smoothly on 8 and t . Since G = identity and the re  i e  a compact 
t ,  t 

s e t  which contains the support of G for  a l l  s and t , it follows that 
8, t 

there  exista 6 > 0 such that  G is a diffeomorphism for ( s - t 1 < 6 . 
8 .  t 

1 
Le t  n be a positive integer  such that - < 6 and  s e t  n 

Thon Ht i e  a n  ieotopy of M into M , and i t  follows f r o m  the definition 

d H tho: HI = in sufficiently small ne ighborho~d  of V'  . Also. i t  

followe f r o m  the definitiona that 
g t  

arid Ht is the identity in a sufficiently 

sma l l  neighborhood of U' for  all t . Thus Hl = g1 in a sufficiently 

sma l l  neighborhood of U ' U 'I' . Clearly aupp H V2 V . 



I Furthermore,  
HI fi = gl . yo ~0 yl . $ in a sufficiently small  * neighborhood of U' U V' . Thue ) i s  an isomorphism of Y * T ~ I U '  U V' 

with T~Iu'uvI. 

I t  is clear  from the construction that H i s  compatible with f and 

leaves X point-wire fixed. Finally, by choosing the function o used in 

the construction of G to have support in a very smal l  neighborhood of V' , 

we may ar range  for  I.I to be a s  close to the identity (in the compact-open 
t 

topology) a s  we like. 0. E. D. 

Now we state  and prove the existence theorem for  tubular neighborhoods. 

PROPOSITION 6.2. Suppose f I X  : X P is  a submersion. L U 

be an  open subset of X and let  To be a tubular ne i~hborhood of U & 

3:. Let - U' be a eubset of U which i s  closed in X . Then there exists 
I R,... 
/4. ,/A= L :  .. - # - ' "- + 

a tubular neichborhood T - of X if? M Ysuch that T Iu' - To I u #  . 

Proof. It is enough to consider the case  when X is closed in M . - 
For ,  in general, there is a n  open subset Mo in M such that X i s  a 

closed subset of Mo , since X i s  locally closed in M ; Clearly a 

tubular neighborhood of X in Mo i s  a tubular neighborhood of X in 

The local case  of this proposition is trivial. 
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To prove the proposition in general,  we take a locally finite family {wi} 

of open sets in M having the following propert ies:  i 
I 

n 
(a) F o r  each i , there  is a coordinate cbart . : W R auch that 

1 

pi' wi MI = Y ~ ~ ( w ~ J  (where c = cod X )  and such that t he re  i s  a 

i 
coordinate cha r t  6. : f(Wi) - ELP such that the following d iagram cornmutea 

1 

- 
(b) each W i s  compact,  and 

i 

( c )  {W, n X }  i s  a cover  of X . 
Fur thermore ,  we can chooac closed sets  W: V l i  auch that {w; ) 

i s  a cover of X . Since M has  a countable basis fo r  i t s  topology, the 

family {wi} i s  countable. We will suppose that it is indexed by the 

positive integers.  F o r  each positive integer w e  let U = U U 5 U * U  V 
i i 

and u.' = U'U W ; u * * . U  YI . ' .  We let  Uo = U and U; = U'. 
1 1 

Now we construct  by induction on i an open neighborhood U " of 
i 

U: in X and a tubular neighborhood Ti of u;'. W e  take To ae 



given. For  the inductive step, we ruppoee u;:] and T have been 
# I-1 

conetructed. W e  let u;* be any open neighborhood of U[ in X which 

i n  relatively compact in Wi U Ui'I1 . 
Since u:' 5 Wi - U L I  , there exist open se t s  A and B in U* such 

A i - 
that u;' = A u B , A s  W - uL1 and g uG1 . Since the existence theorem 

for tubular neighborhoods i s  t rue in the local case, we may choose a tubular 

neighborhood T; of W. f l X in W. . Then we have two tubular 
1 1 .  

neighborhoods of U" fl W. fl X in M , namely the restriction8 of 
1 r T; 

and T . Since A n  B is relatively compact in (u; - U' ) fl V.  Q X , 
i-1 i-1 1 

we may find a diffeomorphism h of b onto itself leaving X pointwise 

fixed such that h*T. A n B .- T: JA n B . Furthermore,  we m a y  suppose h 
r-1 

is compatible with f and la i s  the identity outside an arbitrari ly emall - 
neighborhood of A fl B ; in particular,  that h is the identity in a 

neighborhood of U L l  . Since h*Ti-I IA 0 8 - T.' ( A  fl B there is a 
1 

tubular neighborhood Ti of U; = A U B in M such that 

T ~ J A -  T ~ I A  and T ~ I B - ~ * T ~ - ~ ~ B .  Clearly Ti is compatible with f . 

Furthermore, Ti - Ti-l in a neighborhood of uk1 . I t  follows 

easily that there i s  a tubular neighborhood T of X in h4 such that 

T -- Ti in a neighborhood of U; f o r  all i , and that this tubular 

neigtiborhood i a  compatible with f . Q. E. D. 



$7,  Control data. Throughout this roction, l e t  M be a manifold and 

8 a Whitney pre-stratification of rr subsat S of M . 

Suppose that f o r  each stratum X of 8 we a r e  given a tubular 

neighborhood =x of X in M .  Let  nX : ITXI - X  denote the 

projection associated to T and pX :  IT^ I - IR tho tubular function 
X 

as eociated to =x ' 

DEFINITION. The family {TX} of tubular nciqhborhooda will be called 

control data for  S if the following commutation relations a r e  entisfied: 

if X a& Y a r e  s t ra ta  and X < Y , t k  - 

for  a l l  m such that both s ides  of the equation a r e  defined, i. e . ,  al l  

mE JTJ n 1 ~ ~ 1  such that ny(m) E I T ~ I  . 

If f maps M into P , then the family { T }  will be said m be 

compatible with f if for  a l l  X E B and all  m E ITX I , we have 

PROPOSITION 7.1. If f : M -. P i s  a submersion? then there e x i s t s  

n family {TX) of control data for S which i s  compatible with f . 
/ A 

-. 



F o r  the proof of the proposition, we will  need Lemma 7. 3 below. The 

proof of Lemma7.3ckpenda on Lemma 7.2,which eaye (roughly speaking) that 

every tubular neighborhood i a  locally l ike a a tandard example. 

DEFINITION. By the s tandard tubular neighborhood T o f 
m , c  - 

1 ~ ~ ' ~  x 0 & XRm . we mean the t r ip le  ( E ,  . h e  E is the 
C 

tr ivial  bundle o v e r  with fiber (provided with i t s  s tandard 

inner  product),  c = 1 , - and tp : - mm i s  the restr ic t ion m a p  of the 
=t 

identification mapping lRm-c X I R ~ - I R ~ .  

More  generally if U i s  open in IRm-c , the s tandard tubular 

neighborhood of U in. lFtm will mean T I U  . *, c 

LEMMA 7.2. X a eubmanifold of , TX is  a txbular 

neighborhood of and - then the re  exis ts  a coordinste char t  

9 : U -Rrn ?here U i s  open in M x E U . ~ u c h  that 

(P(X n U) = @(U) n nm" h e  c = cod X) and such that 

Proof. Immediate f r o m  the definitions. - 
i f  T = (E, c .v) is a tubular neighborhood of X in M and ' irr 

- 
any smooth positive function on X , we le t  I T  1 <. = d B c  n Bt .) . 

0  TI^. = ?(BE n B t O )  and 3 I ~ l ~ r  = p ( B C  SCr )  where SC,  i s  the r' 



- 
sphere bundle in E , i. e. . Sc, = {v E E : l v  1 = ('(n(v))} where 

r : E - X denotes the projection. Clear ly I T  I €. is a smooth manifold 

0 
with boundary 8 ( T I  and inter ior  I T  I <. . We will m y  ' i s  

admissible  if C '  < < . .In this ca se  the tubular retract ion r T :  IT&,-x , 
, , 

is a proper  mapping r 

i 

i 
; 

LEMMA 7.3. Let X and Y be disjoint submani iolda of M such 
I 

that the pair  (Y,  X) sat isf ies  condition b . Let T be a tubular 
I 

neighborhood of X M . Then there exists a positive smooth function 

c' on X such that the mapping 

i i s  a submersion. 

I 
! Proof. Let 3 be the set of y E I T /  such that the rank of the L 

mapping 

a t  y i s  C dim (W x X) . The lemma i s  equivalent to the asser t ion  that , 

f o r  any x E X there  exis ts  a neighborhood N of x in M such that I 

! 
N fl T: = 0 . Since this i s  a purely local statement,  it follows f rom 

! 

Lemma 7.2  that i t  i s  enough to prove the proposition when M = 1~~ , I 

x = mm'C x 0 , and T is the standard tubular neighborhood T 
c m, c 



% 
of R ~ - ~  in Elrn . In thia c a ~ o  a i s  tho orthogonal projection of 

T 

nrn on nrn" , and pT i e  the function which i a  given by 

~ e t  y €  I T /  - nm-' . The kernel  of the differential  of (n p ) a t  
T '  T 

m- c n y is the orthogonal complement of (P x Oc) 8 ynT(y) in  I R ~  . The 

hypothesis that condition b is satisfied impl ies  that fo r  y n e a r  XRrn-' , 
P. (mm" x 0 ) C) yr (y) i s  close in the Crassrnannian of rn - c t 1 planes 

c T 

in  rn space to a rn - c + 1 plane which lies in  TY . Hence for  y 
Y 

near enough to JRrn-' , we have that TYy i s  t r ansve r sa l  to the kerne l  

of the differential  of (n a t  y , SO that (nT, pT) I Y i s  a submersion 

a t  y ,  i . e . ,  y C Z .  Q. E. D. 

Proof of Proposition 7.1. Le t  Sk denote the family of s t ra ta  of B 

of dimensiqn 5 k , and let Sk denote the union of a l l  s t ra ta  i n  S k *  

V. e will show by induction on k that the proposition i s  t r ue  for Sk and 

Sk in place of S and S . 

F o r  the inductive step, we suppose that for each s t r a tum X of 

- dimeriaion < k , we a r e  given a tubular neighborhood T~ of X , and 

this family of tubular neighborhoods sat isf ies  the commutation relations.  

By shrinking the TX if necessary,  we m a y  suppose that if X and 

Y are  s t ra ta  of dimension c k which a r e  not comparable (i-e. ,  nei ther  



- 
Y < X nor  X < Y holds) , then  IT^ I fl I T~ I = Q . To construct  tho 

TX 
on the s t r a t a  of dimeneion k , we may do i t  one s t r a tum at  a t ime,  

since there  a r e  no commutation relations to be satisfied among the s t r a t a  

of the s a m e  dimeneion. L e t  X be a s t r a tum of dimension k . 

W e  construct  the tubular neighborhood8 
TX 

in two steps,  a a  follows. 

F o r  each I d k , we let  UI denote the union of a l l  ITy 1 for  Y < X 

and d im Y 21 . U1e l e t  XI = UI n X . In the f i r s t  s tep,  we  construct  a 

tubular .neighborhood T1 of X by decreasing induction on 4 . In the 
I 

inductive step, we  will shr ink various IT, I . but this i s  permitted, since 

we do i t  only a finite number of t imes. Then in the second atep, we extend 

- To to a tubular neighborhood TX of X. 

F i r s t  step. F o r  1 = k , we have Xk = O) , so  there i s  nothing to 

construct. F o r  the inductive step. we suppose that TI t1 
h a s  been 

constructed and that the following special ca ses  of the commutation 

relations a r e  satisfied: if Y < X . dim Y 2 1 t 1 , m E 1 n I T~ I 
and n ( m )  E I T~ 1 . where  It1 =1+1 = "T1t1 ' then 

By replacing 
TLtl 

with a s m a l l e r  tubular neighborhood if necessary ,  we 

may suppose that for. m E  IT^+^ 1 thcre  i e  Z < X with dim Z > 1 such 



that mE I T = (  and n (m) E I T ~ I  . 
1 t1 

To construct. T i t  i a  enough to construct T~ on 1 ~ ~ 1  n x for  
f 

each stratum Y < X of dimension I seperately, since if Y and Y '  

a r t  two strata of dimension 1 , we have ITy I fl ITy. 1 = 0 . since Y 

and Y a r e  not comparable. 

Thur, we wish to construct a tubular neighborhood =x. Y 
0 f 

. ITy I n X whose restriction to I T ~ I  flXf+l i s  isomorphic to the 

restriction of Tf+l , such that the following commutation relation is 

~ t i s f i e d :  if m E ITX, 1 fl 1 T~ 1 and w (m) E I T~ 1 , where X# Y 

l r  X , Y  = "Tx,Y * 
then 

By shrinking 1 Ty 1 if necessary, we may arrange that i f  

m E I T1+l I n I Tu I and w (m) E I Ty I , then this commutation relation 
t tl 

i a  already satisfied (with a in place of n ) for the following reason. 
1t1 x, Y 

Since mE I T ~ + ~ I ,  thersexiato Z < X  with d i m Z > 1 ,  mE 1 ~ ~ 1  

and =1+1 
(m) E ( T Z I  . Since n (m) E J T ~  I fl I . the las t  named 

1 +l 

space i s  not empty; hence Y and Z a r e  comparable, and by dimension 

restrictions Y < Z . Therefore 



n rr ( m )  = n n n (m) = r r (m) = r y ( m )  . 
Y i t 1  Y z I t1  Y z 

(V e may have to ahrink  IT^ I to guarantee that theae equalities hold for  

al l  m E  l ~ ~ + ~ l n  1 ~ ~ 1 . )  

Furthermore,  by shrinking Ty further if necessary, we may 

suppose that 

is a submersion. The commutation relation that we must  verify i s  

precisely the condition that T 
XIY 

be cornpatible with the mapping 

(pyI  uy) :  IT^ I n XI, - IR x Y . Therefore from the generalized tubular 

neighborhood theorem, we get that if 0 
i s  an open subset of X 

whose closure l ies  in XH1 , then there exists T x, Y 
which satisfiea the 

commutation relations and whose restriction to 0  IT^ 1 tl Xf i s  iaornorphic 

to the restriction of . Now we replace TZ. for Z < X by smaller 

tubular neighborhoods T; auch that X' O . where 
i + i C X i + 1  x;+l i e 

defined analogously to XI+i , but with T' in place of z TZ , Then 

=x. Y has  the required properties.  

Thia completes the f i r s t  step: we conclude that there exists a tubular 

neighborhood To of Xo satisfying L ' ~ )  for any Y < X . 



Second step. From (*0) , it follows that we may assume that To i s  

compstible with f . For, by replacing To with a smaller  tubular 

neighborhood if necessary. we may assume that if m E  IT^ I , then for some 

Y C X ,  wehave mE  IT^^ and no(m)E [ T ~ } .  Then 

Since To ia compatible with f , we may extend a suitable restriction 

of To to a tubular neighborhood T of X which i s  compatible with 

f , by the generalized tubular neighborhood theorem, Then, by replacing 

the Ty with po~e ib ly  smaller tubular  neighborhood^ (as  in Step 1). w e  

get that the compatibility conditions a r e  eatiefied. 

This completca the construction of 
TX , and therefore also completes 

the proof of the propoeition. 



48. Abstract pre-stratified sets. If V la a closed subset of a manifold 
! 

M which admits a Whitney pre-stratification (in the sense defined in 

Section 5) then we can find control data for  this pre-stratification by the 

previous section. This provides V with considerable structure. The 

purpose of this section is to axiomatize the sor t  of structure which occurs. 

I 
We depart only slightiy f rom Thomfs notion of abstract stratified s e t  I 

([ 3 ] and [ 4 )) . 

~EFINITION 1. An abstract pre-stratified se t  is a triple (v,s, 3) 

i 
satisfying the following axiome, A1 - A9. . i 

(Al) V is a Hausdorff, locally compact topological space with a 

countable basis for  i t s  topology. 

This axiom implies that V irr metrizable. For, since V i s  locally 
I 
I 
I 

compact, i t  ie regular, so the rnetrizability of V follow'e from Uryeohn i 
metrization theorem (Kelly [ 1 1). Since V i s  metrizable, every subaet I 

X of V is normal (in the sense that any two disjoint closed subsets of 

X can be separated by open sets). W e  will often use this fact without 

explicit vention. 

! 
(AZ) 8 ie a family of locally closed subsets of V , such that V 

i 

is the disjoint union of the members of 8 . 



Tha membars  of 8 will be callad the s t r a t a  of V . 

(A31 Each s t r a tum of V i s  a topological manifold (in the induced 

topology), provided with a smoothness structure (of c l a s s  c'). 

[A4) Tha family 8 i s  locally finite. 

(A5) The family 8 satisfies the axiom of the  frontier:  i f  X, Y  E 8 

- 
and Y 0 .  then Y S X .  

If Y and Y # X , we wri te  Y < X . This relation i s  obviously 

transitive: Z < Y  and Y CX imply Z < X g  

(Ab) 3 i s  a t i  ((T~}, {nX}, {pX}) , where  fo r  each X E S , 

TX Is an open neighborhood of X in V , n i s  a continuous X  

retract ion d TX onto X , and , pX : X -, [o, m) is a continuous 

function. 

B e  will call  TX the tubular neighborhood of X (with respec t  to 

the given s t ruc ture  of a pre-etrat i f ied s e t  on V ) , n the local X 

retract ion of -- TX onto X and Px the tubular function of X . 

If X and Y a r e  any s t ra ta ,  we le t  =x, Y = T x "  , 

n = n I T  
X , Y  X X , Y '  and Px, Y = P X I ~ X ,  y Then n i s  a mapping 

1 x, y 
L-- ------ -- - 

P 

f' 
." 

*/&* -C J //%<- '/- : - -, , , - - . -.. :, /" 
. - /' , ' - / ,' _ -l . , - , , - .  -- .+ ) / & ' .  

4 ' 

L - #-- a 1 r/-  

* -  8 
e - ? 

- I 
/ - 

Lbw: -i,' -;- , . - - 
J' T 



of T Into X and px is o mapping of TxI Y 
into (0,m) . 

x, y , Y 

Of course,  Tx,  Y 
may be empty, in which case  these  are  the empty 

mappings. 

(A8) F o r  any s t r a t a  X and Y the mapping ~ $ 7  
1 

i s a  smoothsubmersion.  Th ie impl i e s  d i m X  < d i m Y  when T x, y 
# a .  

(A9) F o r  any s t r a t a  X , Y , and Z , we have 

whenever both s ides  of this  equation a r e  defined, i. e . ,  whenever 

v E  T ~ I ~  and nu, Z(v) E TX, 

DEFINITION 2. W e  say that two strat i f ied se t s  {V,8 ,3  ) & 

{ ~ ' , 8  ', 3 ') a r e  equivalent if tho following conditions hold. 

(a). V = V' , 8 = 5' , and fo r  each s t r a tum X of 8 = 3' , the 

two smoothness s t ruc tu re s  on X given by the two stratifications a r e  

the same. 

(b). If 3 = {{T~), (trX)I ( D ~ ) }  and J ' = {{s). {G), {P;}) then 

for  each s t r a tum X , t he re  ex is t s  a neighborhood T; of X in  



T n T;( such that p IT" a p 0  IT" and W~ITG s n0 IT*'. X X X  X X  X X 

From the normality of arbitrary rubsets of a etratified set, it follows 

that any (abstract) pre-stratified se t  is equivalent to one which satisfies 

the following conditions 

(A10) If X,Y a r e  strata and T # 0 , then X < Y . x, y 

(All) If X,Y a r e  strata and TX n Ty # Cb , then X and Y a r e  

comparable, i. e. ,  one of the following holds: X < Y , Y < X , or X = Y . 
From (AlO), i t  follows that X < Y if and only if T # Cb , and x* Y 

f rom (All) that X and Y a r e  comparable if and only if  TX fl Ty + a) . 
Mote that f rom (A8) i t  follows that the relation X < Y defines a partial 

order on 8 . It ie enough to verify X < Y and Y < X do not hold 

s i~ul taneously .  But (A8) implies X < Y 5 dim X < dim Y , 

As an example of an (abstract) pre-stratified set,  l e t  V be a subset 

of a manifold M and suppose V admits a Vhitney pre-stratification 

8 , m d  le t  { T ~ J  be a family of control data for 8 , and ict L _- 
/'---',, / 

1 
wX : T G - X  and PX :~;-@,rn). Set 3 = {TX,. ' ' l h e n  Q V ' ,  - 

is an abstract pre-stratified eet. In this way, we associate with any system :' - 
-- 

of control data for a Whitney pre-stratified set  V , a structure of an 

abstract pre-stratified se t  on V 



Hence i t  follows from Proposition 7.1 that any Whtiney pre-stratified 

eet admits the structure of an abstract  pre-atratified set. 

t . . 
If ( 8 ,  ) is a pre-stratified set,  V' i s  any topological space, i 

i 

and rp : V' - V is a homeomorphism, then the structure of a stratified . I  . f 

se t  on V "pulls back" in an obvious way to give a structure 

( v , *  of a stratified aet on V' . 
1 
! 

, If (~ ' ,8*,3 ')  and (V,g, 3) are abstract pre-stratified sets ,  then j . 
a homeomorphism y : V' - V is said to be an isomorphism of stratified .I 

.' I 

sets  if ( ~ ' , 8 ' , 3 * )  is equivalent to ( V ' , r p * ~ ~ , ~ * 3 * j .  
1 .  
i 
I 

I 
! 

The uniquenees result that we will prove below implies the following: I 
I . 

if (V,s,Z)is a Whitney pre-stratified set,  and 3 and 3' a r e  two 

ayatems of control data, then the abstract pre-stratiiied sets  (V, 3,3 ) 
/ (7--4 , < 

1 - 1- f ,  -. ,1" - , I 
and (V.8.3) arc isomorphic. /Vek " . . 7r - ,  -- ,- I 

/ 9 .  I I -  t 

,- / 
; p 4  ": .,I -:- +/ .2 L -\ v , \Lz - 

, / I -  

2 ,/'. , * 

i 

< ,  - A  3 \/->> 'J - Y -  

4-. 
I ,  - . 

4 / -1 



$9 .  Controlled vector fields. Throughout this section, we l e t  (V,  8 ,  7) 

be an (abstract) pro-strat i f ied set. W e  suppose p 2 2 . 
DEFINITION. By a stratified vector field on V , we mean a 

collection : X E 8 } , where for  each s t r a tum X , we have that 

?'x is a smooth vector  field on X . 

By smooth vector  field wo mean a vector field of c l a s s  cP-' . 

Lot 3" r {{T~}, {vX}, {pX}} , and for  two strata X and Y . l e t  

T ~ , ~  . " x, y , and Px, Y be  defined as in the previous section. 

DEFINITION. A strat i f ied vector field 17 on V will be  sa id  to be 
. . 

controlled (by 3 ) i f  the followinfi control conditions a r e  satisfied: for  any 

there exists a neighborhood such that - 
fo r  any second s t r a tum X > Y and any v E T; n X , we have 

(9.1-b) 1 17 C V )  nyCry, ,(v)) 
('Y.x * X 

DEFINITION. - If P i s  a smooth manifold and f : V -. P -. is  a 

continuous mappinp, we will say that f i s  a controlled submersion if 

the following conditions are satisfied. 

(1). f I X  : X -. P is a smooth submersion,  fo r  each s t r a tum X of V . 



( 2 ) .  F o r  any s t r a tum X , t he re  is a neighborhood T;( of X i n  

T~ 
such that f(v) = fvx(v) for  all v E T* 

X ' 

Note that both the notions that we have just introduced depend only on 

the equivaience c laes  of the pra-s trat i f ied s e t  (V,S,  3) , i. e. , if ( ~ ~ 5 ~ 3 ' )  

itl a pre-strat i f ied s e t  which i s  equivalent to (V,8,5) , then a controlled 

vector field ( o r  controlled submersion)  wit-h respec t  to one of these  

pre-stratified se t s  is the s a m e  a s  a controlled vector field ( o r  controlled 

siibinef eion) with respec t  to the  other. 

PROPOSITION 9.1. - If f : V -. P is a controlled submersion,  then 

for any smooth vector  field on P , there  is a controlled vector  field 

7 on V such that f*r](v) = <(f(v)) for  al l  v E V . 
Proof. By induction on the dimension of V (where the dimension of 

V i s  defined to be the supremum of the dimensione of the e t r s t a  of V). 

By the k skeleton V of V , we wit1 mean the ulrion of all  s t r a t a  of 
k 

V of dimension _< k . Clearly Vk has the s t ruc ture  of a s t rat i f ied set ,  

where the s t ra ta  of V a r e  the s t r a t a  of V which l i e  in 
k Vk , the 

tubular neighborhoods a r e  the intersect ions with Vk of the tubular 

neighborhoods (in V ) of s t r a t a  in Vk and the local re tract ions and 

tubular function on 
Vk 

a r e  the res t r ic t ions  of the local re tract ions and 

tubular functions on V . 



h the case dim V = 0 , the statement of the proposition is trivial. 

Hence, by induction, i t  is enough to show that if the proposition i r  t rue  

whenever dim V k then it i e  t rue when dim V = k + 1 . Thus, we may 

(and do) aaeume that dim V = k + 1 and that there is a controlled vector 

field on V such that f q (v) = <(f(v)) for al l  v f Vk . W e  will s h o ~  
k k * ik 

that there exists a controlled vector field on V which extends 7 
k 

such that f*q(v) = <(f(v)) for all v f V . 

To construct q , i t  is enough to construct "x separately for each 

stratum X of V 8uch that dim X = k + 1 , because the condition that 

a vector field be controlled involves only s t ra ta  Y, X such that, Y < X . 

Sincs by the induction assumption flk is controlled, we can choose 

neighborhood8 
1 Ty of Y 'in Ty (one for each stratum Y E Vk ) 

such that if Y < Z are strata,  then the control conditions (9.1) a r e  

1 
~at is f ied  (Gith Z in place of X for  v E Ty n Z . BY the assumption 

that f is controlled, we may choose the neighborhoods T: 
such that 

1 
f(v) = fir (v) for all v E Ty . 

Y 

It is easily seen that we m a y  choose neighborhoods 
2 

Ty of Y in 

1 
Ty (one for each stratum Y c V ) such that the following holds: i f  

k 

Y < Z are strata in V then 
k 



- 
Y-e can furthermore choose the 

2 
Ty 80 that T: i. closed in V - aY 

(where aY denotes the frontier of Y ) , since V - aY ie rnstrizable 

and therefore normal, and Y is closed in V . -  bY . Finally, wa can 

2 
choose the Ty so that if Y is not comparable to Z , then 

Now consider the following conditions on a vector field t) on X : X 

(9. 2 - a y )  The control condition (9.1) i s  satisfied for any 

(9.2 - b), f*t))((v) = <(f(v)) for all v E X . 

V. e claim that there is a vector field q on X satisfying (9.2-b) X 

and (9.2-a ) for all strata Y < X . To prove this claim will clearly be Y 

enough to prove the proposition, 

Consider a point v E X , The set Sv of s t r a b  Y < X such that 

2 
v E Ty ie totally ordered by inclusion, since if  Y and Z a r e  not 

2 2 comparable then T n TZ = a) . If Iv i s  not empty, then there is a 
Y 

largest member Y = Y . 
v 

Suppose for the moment this i e  the case and (9.2-a ) holds at v . 
Y 

Then (9.2-a ) holds for all Z E Sv . For  either Z = Y o r  Z c Y . z 
2 In the latter case ny(v) E T' (by the choice of the T y l s  ) . Then z 



and 

Thus (9.2-a=) hold8 at v fo r  a11 Z E 8 . Fur the rmore  
v 

Thus (9.2-b) holds a t  v . 

This shows that to construct 
qX satisfying (9.2-b) and (9.2-a Y ) 

for a l l  Y < X , it is enough to construct q X satisfying (9. 2-ayv) a t  

v f o r  all v E X for which SV is n ~ n - e m p t y ,  and satisfying (9.2-b) 

. at v for  all v E X f o r  which SV i s  empty. Clearly,  we can construct 

a vector field q in a neighborhood of each point v in X satisfying 
x 

the appropriate  condition (9.2-a ) or (9.2-b) . Since the set  of vectors  
y v 

satisfying the appropriate condition in TX is convex, we m a y  construct 
v 

"x globally by mean8 of a partition of unity. Q. E. D. 



$10, One parameter groups. Let  V be a topological space. By a 

one-parameter  group of homeomorphisms of V , we mean a continuous 

mapping : IR x V -. V such that a (v)  = a a (v) for  all t, e E IR t t s  t s  

andall v E  V. Now suppose V is a stratified s e t  (V,S,3)  and a 

prese  rvea each stratum. If is a stratified vector field on V , we 

say that q generates a if the following condition i s  satisfied. F o r  

any v E V , the mapping t - a t ( v )  of R into V is c1 ( a s  a 

mapping into the s t r a tum which contains v ) and 

Note that this implies 

It is well known that any vector field on a compact manifold 

without boundary generates a unique one-parameter group ( see ,  c. g, , 

[ 2, p. 6 6  1) . I t  i s  also known that to extend this resul t  to non-compact 

manifolds, we must  generalize the notion of one parameter  group, 

DEFINITION. Let  V be a locally compact  space. A local one- - 
parameter  proup (on V ) is a pair where is  an open subset 

m x v  and - is a corltinuous mapping such that the followin< 

hold. - 



(a). O x V s J  . 

(b). Lf v € V , then the set  J = J n (IR x v) = IR is an open interval 
v 

(aV.b,,) . 
(c). If v E  V ,  and t , e  and t + e a r e  in (aVJbv) then 

a ( t  + 3 , ~ )  = &(t,a(a,v)) . 

(d). For any v f V and any compact set  K = V , there exists 

r > 0 such that a(v,  t) P K if t E (avl av + d U (bV - C. b . 
v 

From now on in this section, we euppose (VJS,3) is  an (abstract) 

pre-stratified set, and 71 i s  a stratified vector field on V . 

DEFJIJITION. _11 (J ,  a) is. a local one-parameter group (on V ) , 

O! if the followina conditions a - c a re  satisfied. 

(a). Each stratum X of V is invariant under ol , i. e., 

a[J n (IR x x)] x . 
(b). For each vE V , the mapping t + a ( t .  v) of (ay, bv )  into the 

stratum which contains v is C' . 
( c ) .  For any v E V , we have 

t=, = V(V) 



Since a is a one-parameter group, condition c is equivalent to: 

(c'). For  any ( t ,v )  E J , we have 

This generalizes the ordinary notion of what it means for a vector field 

to generate a local one-parameter group. 

Since (V,S,3) is a pre-stratified set,  it makes sense to talk of a 

controlled vector field on V (Section 5). 

PROPOSITION 10.1. If is a controlled vector field on V then q - 
penerates a unique local one-parameter groue (J,cY) . 

Proof. For  each stratum X , the restriction '1x of Q to X i s  

a smooth vector field on X (by the definition of stratified vector field); 

hence q generates a smooth local one-parameter group x ( J x , ~ )  of 

diffeomorphisms of X , by a standard result in differential geometry 

[2,  IV, 92 ] . Let (J ,  a) be defined by 

J = " Jx o r =  ua* . 
XES XES 

We as se r t  that (J,cr) i s  a local one-parameter grcup generated by q . 



I t  i e  c l ea r  that  a , b , and c in the definition of local one-parameter  

group hold, and that if cx i s  a loca l  one-parameter  group, then i t  is .genorate 

by v . Uniqueness is obvious. All that r ema ins  to be verified i s  that 

J is open, i s  continuoue, and d holds. 

We begin by showing that d holds. If not, there  exists v E V and a 

compact s e t  K in V such that q ( t , v )  € K f o r  values of t a rb i t ra r i ly  

close to a o r  b . W e  may suppose that a ( t ,  v) E K fo r  values of t 
v Y 

a rb i t r a r i l y  close to b . the other  c a s e  i s  t rea ted  similarly.  Then there 
v *  

exis ts  a acquence {ti) , converging to  b f r o m  below, such that 
v 

y = l i m  a ( t  ) exists  and l ies  in  K . L e t  X ( resp .  Y ) denote the 
v i 

s t r a tum of V which contains v ( resp .  y )  . 

If X = Y , we get a contradiction to the fac t  that % i s  a one-paramete 

group. Otherwise Y < X . F o r  l a r g e  i , , q v t i ) )  and w (a (t.)) Y,X v 1 

a r e  defined, and the control conditions a r e  sat isf ied for  m. = a.Jt:) . 
1 . . 

Thus, by taking i rufficiently l a rge ,  we may  suppose that t he re  exists 

c > t - t such that [0, r ]  J,,. , where  
i 

m , and if 1: i a  
1 Y i = n ~ , ~  I Y 

the tubular neighborhood of Y , ny i s  the loca l  re tract ion of T onto Y 

Y and py i s  the tubular function of Y , then p y e X  (m.1 I < ty on 

a i ( 0  €1) and the control conditions for  the  pa i r  Y, X a r e  sat isf ied for  

- - 1 
6 - PyeXlmi ) )  n ~,,x(u,,i([O.cJ) n X . Since 



- L 
m 1 , xwyi[O, c ]  compact (because {f'y,x= Ri.x i 

(m.1 < c y  0" q i ( [ O ,  €1)) , and w,, etaya in X (by definition), ~ = Y , X  t i 

i t  follows f rom the control conditions that { ;, 

-1 
oy( t i  i - 8 )  E {pYOX = h " y , X ( ~ y i ( s ) )  f l X  for  0 s s ( t . 

But this contradicts the hypcthesis that (t.) -. y a s  j - cx, . This 
" J  

contradiction proves d . 

Now Ict ( t ,v )  E J . W e  will show that J is a neighborhood of jt ,vj 

and a is continuous a t  ( t ,  v)  . V e will suppose t 2 0 ; the other case 

i s  treated similarly. As before, l e t  X be the stratum which contains v . 
Since is a local one-parameter group, there is a compact 

neighborhood U of v in X and an c > 0 such that [ - c ,  t + c] x U = J . 
Let TX denote the tubular neighborhood of X . nX the local retzaction 

. . 

of TX on X , and ' pX the tubular function of X . Since 

rr ( [ - c ,  t + C ]  x U) is compact, we may choose an rl > 0 such that the 
X 

following hold: 

( a ) .  Let C = iY E TX : pXly) 5 tl and vX(y) E ax([-€, t + €1 X U)) 

Then C i s  compact. 

(b).  If y € C , then the control conditions for the pair X, Y hold a t  

y , where Y i s  the stratum which contains y . 



Clearly, the se t  ZO of y E TX such that px(y) b and 

rX(y) E U i n  a neighborhood of v in V . If y E Co . it follow8 f r o m  

the control conditions that 

for all r E J such that (6') E C for 0 5 s' < s . From these facts 
Y Y 

and d , i t  follows that [-c. t + r ]  x ZO 5 J ; thus 3 contains a 

neighborhood of (t, v) . 
Tha a t g r s r , ~ e , *  that nro ha= j t b a t  given A~IOWS that if 

( t - , y ) f  [t - c , t  + €1 x C o ,  then ya=or(t ' .y)E TX . p X ( ~ ' ) S C I  and 

T ~ ( ~ * )  z & ( t @ ,  uX(y)) . Hence fo r  an arbitrari ly smal l  neighborhood of 

a(t,x) we may choose c > 0 and a neighborhood * 
Hence o! is 

continuous a t  (t,v) . Q. E. D. 

COROLLARY 10.2. L P be a manifold, and f : V -. P 

r o  er controlled submersion. Then f is a locally tr ivial  fibration? PP - -,- -- . --. .- -- - . . - . . .. , -- 
k 

Proof. It is enough to consider the case when P =IR and show in 
119 

this ca.e that there is r homeomorphiern h : V - Vo x EZk . where Vo 
denotes the fiber of V over 0 , such that the following diagram commutes: 



Diagram 10.1 

where a denotes the projection on the eecond factor. 
2 

1, 
Consider the coordinate vector fields a l ,**  *, ak on I R ~  . BY f 

~ r o ~ d s i t i o n  10.1, for  each i , 1 5 i 5 k , there i a  a controlled vector field I 
1. 

S'' on V much that 

f*si(v) =: a i ( f w )  # V E V  . 

By Proposition 10.1, each ai generates a local one-Parameter group 

(Ji, 4) . Clearly f(4(t, v)) = f(v) + (0. , 0, t, 0, . , 0 )  , where the 

non-vanishing entry is in the i th place. Then f rom the assumption that 

f is proper and condition d in the definition of one parameter group, it I 
f 

follows that J. = IR x V . Let  h be given by t 
1 L 

I 

P 

where we set  f(v) = (tl, , \) . I t  i e  easily eeen that h mape V into j 
k ! 

Vo x IEZ and that Diagram 10.1 commutes. Let < : Vo x I R ~  - V be I i 
! 

defined by 



From the fact that the ori'. a r e  one-parameter groups, it follows that 

- - 
hh = hh = identity. Hence h i e  a homeomorphism, a s  required. Q. E. D. 

Note that 
Vo 

has a natural s tructure of a pre-stratified set 

(V 8 3 ) ', where go and z0 a r c  defined a s  follows. 9, i s  the 
0' 0' 0 

collection {Xn V,: X E 8 ) .  If X E 8  and X O  = X i l  Vo i s  the 

corresp-~nding member of So , then we le t  Tx0 = TX fl Vo , 

ux0 = rX 1 TxO and pxO 5 pX 1 TxO . Note that wx maps 
0 =xo 

into Xo because f i r  a controlled submersion. W e  le t  30 be the 

triple {(TxJ . t"xo) ' { P X ~ ) )  

Furthermore Vo x lFlk has a structure of a pre-atrrtified set  

(defined in an obvious way). 

COROLLARY 10.3. h i s  constructed as in the proof of 

Corollary 10.2, then h i s  an isomorphism of pre-stratified sets. 

Procf Immediate from the construction of h . (See the end of -* 

Section 8 for  the definition of isomorphism. ) 

COROLLARY 10.4. Let M be a manifold, le t  X be a closed - , . 

subset  of M and  let  S be a Whitnev pre-stratification of S . Let 
X Y be strata with X < Y . Let W be a submanifold of M 



- - 
whish moets X transvcreslly. Thcn X f l  W Y t7 W . - 

- 
P r o d .  Let x C X n W . To show x 6 Y n W , i t  i s  enough to consider 

what happens in a neighborhood of x . By replacing M with a sufficiently 

small open neighborhood of x , we may suppose that X is connected and 

closed, ,and there exists a tubular neighborhood Tx of X in M such 

- 1 
that W fl TX = nX (W n X) , where n : TX X ie  the projection X 

aseociated to Tx . From Lemma 7.3, i t  follows that by choosing Tx 
sufficiently small,  we may suppose that there exists f' > 0 such that 

p x ' c  on TX , where px is the tubular function associated to TX , 

where n ) : TX - [0, 0 x X is proper, and where for each stratum 
(''XI X 

Z of 8 , the mapping 

i s  a submersion. 

locally trivial bundle over (0, c )  x X , and by Corollary 10. 3, the local 

trivializations respect  the stratification. 

Let 8 ' -  { 2 n ( T X - X ) :  Z E s ) .  Then ' i s a w h i t n e y  

pre-stratification of S n ( T  - X) . By Proposition 10.1, there ' is  .a family 
X 

of control data 0 for 4 which is compatible with (pX;.n;O . Thcn 

( S  n (TX - ~ ) , 8 * , 5 * )  i s  an abstract  pra-stratified set  and i s  a 

controlled submersion. Hence by Corollary 10.2, S n (TX - X) is a 



I t  follows that zmy s t r a tum of 8' (e.  g. , Y Cl (TX - X)) i n t e r sec t s  

each fiber of (px, vx) . In part icular  O # Y n (pX, rX)-'(c #,x ) Y f~ W 
- 

f a r  0 < c < E . I t  follows that x E Y n W . Q. E. D. 

The next corol lary says  that a pre-s trat i f icat ion which sat isf ies  a l l  the 

conditions of a Whitney pre-s tratification except the condition of the f ront ie r  

aloo rat ief ies  the condition of the f ront ie r ,  provided that i t s  a t ra ta  a r e  

connected. 

COROLLARY 10.5. Let M be a manifold and 8 .be a locally finite 

pro-stratification cd a closed eubset V of M whose s t r a t a  a r e  connected 

such that any pair of s t ra ta  eatiafy condition 

pre-stratification. 

Proof. It ruff ices  to show that the condition of the f ront ie r  holds: - 
Suppose X and Y a rc  s t ra ta  and Y fl 'jT # Cb . The proof of Corollary 

10.4 shows that  Y n i s  open in Y . Since Y n ST i a  c lear ly  closed in 
- 

Y , and Y is connected, this proves Y EX . 
The proof of Corollary 10.4 a l so  showe: 

COROLLARY 10.6. Let M be a manifold, 8 a Whitney 

pre-atratification of h4 , X a s t r a tum of M , and TX a tubular 

ne i~hborhood  of X M such that fo r  any s t r a tum Z of 8 ,  the 



mapping (Px,nx ) : ( ] T ~ I  - X) n Z 4 Xc ia a submersion, where 

TX=(El p e )  - and X6 = I t ,  x r  l R x X :  O < t < <  ( x ) ) .  Thenthebundle 

( 1 ~ ~ 1  - XI (px y ) X ) i s  locally trivial and the local tr ivial izat ion~ can 
# X S  L 

be chosen to respect the stratification. 



911. T h e  isotopy lemmas of Thom. In thie section, we will state 

Thorn's f i r s t  and second isotopy lemmas. W e  wil l  prove the f i rs t  and 

sketch a proof of the second. 

Throughout this section, we let  M and P be smooth manifolds, 

f : M - P a smooth mapping, and S a closed subset of M which 

admits a Whitney pre-stratification. . 

Proposition 11.1, ?horn's f i rs t  isotopy lemma. Suppose f I S  : S P 'is 
-, proper and f l ~  : X - P is a submersion for each stratum X of i, . 

Then the bundle (S , f ,  P) i s  locally trivial. 

Proof: By Proposition 7.1, we can find a system of control data for . . - 
S which i e  compatible with f . This provides S with a structure of 

an abstract  stratified set in such a way that f i s  a controlled submersion. 

Then the qcnclusion of the theorem is an immediate cor.seq~e.n,ce of 

Corollary 10.2. Q. E. D. 

Remark:  Thom considered the case  P = IR . If a ,  b E IR , then 
-.-.---a 

the proof af Proposition 10.1 constructs an isotopy f rom the fiber S 
a 

to the fiber Sb , whence the name "isotopy lemma". 

The second isotopy lemma is an analogous rcsult for mappings instead 

of spaces. Considcr a diagram of spaces and mappings: 



W e  say that f i s  trivial over Z if there exists spaces Xo and Yo , 

a mapping fo : Xo - Yo and homeomorphisms X 2 Xo X Z , 
. , 

Y -' Y x Z such that the following diagram of spaces and mappings i s  
0 

I 

commutative: 

L 

V!e say f i s  locally trivial over Z if for any z E Z , thcre i s  a 

neighborhood U of z in Z such that in the diagram 

we have that f is trivial over U . 



Local triviality of a mapping f over a space Z has  a consequence 

which will be very important in what follows. We think of f a s  a 

family {f : a E 2) of mappings, where fa : X + Y i s  the mapping 
a a a 

obtained by restricting f to the fiber Xa of X over a . If Z 

is  connected and f is locally trivial over Z , then for any a and 

b in Z , the mappings f and fb a r e  equivalent in the sense that 
. a 

there exist  homeomorphisms h : X - Xb and h' : Y - Y,, such 
a a 

that h'f = fbh . 
a 

This i s  the relation of equivalence that is used in the definition of 

topologically etable mapping, and a step in the proof that the topologically 

stable mappings form an open dense se t  will be to show that certain 

families of mappings are locally trivial in the sense defined above, by 

an applicatioxl of Thorn's second isotopy lemma, 

Now ruppose M' i s  a smooth manifold and S *  i s  a closed 

subset of M' , which admits a VAaitney pro-stratification 8 ' . 
Let g : M' - M be a smooth mapping and suppose g ( ~ ' )  E S . 
Thorn's second isotopy lemma gives sufficient conditions for the following 

'. * .  
diagram to be locally trivial: d 

t 

diagram 11.1 



To state Thorn's second isotopy lemma, we must introduce Thorn's 

condition a . Let X and Y be submanifolds of M *  and l e t  y , 

g 

be a point in , Y . Suppose g I X  and g I Y  a r e  of constant rank. 

We 'say the pair  (X , Y )  satisfies condition a a t  y if the following 
+ 8 -  

hold8 : 

Let xi be any sequence of points in X converging to y . 
Suppose that the sequence of planes k e r ( d ( g l ~ f ) ~ )  5; ~s~ 
converges to a plane 7 E TM: in the appropriate Graseznannian 

r L y  
bundle. Then ker (d(g 1 Y ') 6 T . 

Y .: 
---  

We say that the pair ( X ,  Y) satisfies condition a if i t  sat is f ies  
8 

condition a a t  every point y of Y . 
g 

Now, we return to the situation of Diagram 11.1. We will say that 

g is a Thorn mapping (over P) if the following conditions a r e  satisfied. 

,- (a) g l s *  and f l ~  a r e  proper. 

. . 
(b) For each stratum X of 8 , f l ~  i s  a submersion. 

b 
(c)  For each stratum X* of 8 ' , g ( ~ ' )  lies in a stratum X 1. 

t 

I 

of S , and g : X' - X is a submereion (whence g l ~ '  i s  of 
I 

constant rank). i 
- (d)  Any pai r  (x',Y') of strata of 8' satisfies condition a 

g 
(which malces senee in view of ( c ) ) .  

1 

- 1. 
., I r - - 

? '  I 

. b -. . - 
-, 

/ - 



I 

4 
/', I 

In the c a s e  P i s  a point, we will drop o x  P . I 
I 

PROPOSITlON 11.2 (Thorn's second isotopy lemma).  If g & 

Thorn mapping over  P , then g i s  locally t r iv ia l  over P . 

The prot3f of this requi res  new machinery. L e t  {T) be a sys t em 

of control data fo r  the strati i ication S of S . W e  need the notion of 

a sys tem (3' ' )  of control data o z  {T) for  the  stratification 8 ' 

CAUTION: A sys t em of control data over  {T) i s  not a sys tem of 

control data a s  prcviously defined. If we w e r e  to r equ i r e  that a sys tem 

of control data over  (T) a l so  be a sys t em of control data tout cour t  I 

then the fundamental existence theorem for  control data over {T) 

( ~ r o ~ o s i t i o i  11.3, below) would not be true. 

DZFINITION: Suppose g is a Thorn map pin^. A system {T') 

of control data f o r  8 ' 03 {T) i s  a family of tubular n i h b o r h o o d s ,  

indexed by 9' where ' -  T; io a tubular ne i~hborhood  of X in M' 

with the .-- fallowing - propert ies:  

(a) If X'  and Y' a r e  s t ra ta  of 3' and X' < Y' , then the 

commutatioo relation 



holds for all v fo r  which both sides a r e  defined, i. e., a l l  

v E~T~,I"T~,I such tha t  ny,(v) E 1 ~ ~ ~ 1 .  

Furthermore, if g(X') and g (Y ' )  lie in the same stratum 

of 8 , then the commutation relation 

pxrny@(v) = p X 0  (v) 

holds for a l l  v for which both sides of this equation a r e  defined. 

(b) If X' is a s t ra tum of S ' and X is a s t ra tum of 8 which 

contains g (x') , then 

for all v for which both sidcs of this equation a r c  dcfined, i. e. ,  for 

- 1 all  v E  IT^^^ i7 g IT,~. 

Note that a is weaker than the commutation relation for control 

data in the case g ( x O )  and g ( ~  ') a r c  not in the s a m e  s t ra tum of 

3 .  

PROPOSITION 11.3. If g i s  n Thorn map pin^ then for any system 

{T) of control data for Y there exists a system {T') of control 

data for S ' over {T)  . - 



The proof of this i s  similar to the  proof of the existence theorem 

' 

for control data (Proposition 7.1). Me will only outline it. 

Proof (Outline]: Let 8 ; be the family of a l l  s trata of 8 ' of 

dimenmion k , and le t  S' denote the union of all strata in S 
k k ' 

W e  will show by inhrctioa on k that the propoaition is t rue  for  8 1; 
and S i  in place of 8 ' and S' . This will suffice to prove the 

proposition. 

The case k = 0 i s  trivial. For  the inductive step, we suppose 

thatfor each stratum X' of %' of dimension < k ,  w e a r e  given 

a tubular neighborhood TXI of X' and that this family of tubular 

neighborhood.r eatisfiea conditions (a )  and (b) above. 

By shrinking the T X r  if necessary, we m r y  suppose that if 

X' ap3 Y '  are strata of dimension < k which a r e  not comparable, 

then 1 ~ ~ ~ 1  fl  IT^,^ = Q .  Toconst ruct the  TX. on the s t ra ta  

of dimension k , we may do it one stratum a t  a time, sincc the 

relations (a) and (b) impose no conditions on pai rs  of s trata of the 

same dimension. Let X' be a stratum of 8' of dimension k . 

Vfe  construct the tubular neighborhood TXI in two steps as 

iollows. For each i k , we le t  U' denote the union of a l l  ( Ty ,I P 



for Y' < X' and dim Y '  2 1 . We let  X' = U; n X' . In the first 
I 

step, we construct a tubular neighborhood T; of X; by decreasing 

induction on P , shrinking various T; where necessary. 

This step is carried out in essentially the same way as the f i rs t  

step in the proof of Proposition 7.1. We s tar t  the induction a t  I = k , 

where there i s  nothing to prove. For  the inductive step, we suppose 

has been constructed. We observe that to construct 
T;+l . Ti i t  is 

enough to construct T; on  IT^, I n X' for each stratum Y' < X' 

of dimension I separately. 'Fhen there a r e  two cases. 

Case 1. If g ( Y  ') and g (X") are in the same stratum of , - 
then the construction i s  carr ied  out in the same way a s  the corresponding 

construction in the proof of Proposition 7.1. In this way we define Ti' 
on  IT^, 1 fl X' so that the commutation relations (a) hold. 1; 

1 5  

i '  

(Note that condition (b) follows from (a) in this case. ) 3 
I 
!. 

Case 2. In the case g ( ~ ' )  and g ( ~ ' )  a r e  not in the same stratum - I 

i 

of 8 , the proof must be modified. Let X be the stratum which i 
contains g ( X  ') and let  Y be the stratum which contains g { ~  ') . 1 

I. 
I, 

Then Y < X . By shrinking ITy, ( if necessary, we may suppose that i 
6 ( ITy ' l )  C_ ITyl Let 

v = ( I T , [  n x) 5 ~ '  



wharo tho fiber product is taken with raspect to tho mappingo 

Then the mapping 

is defined because the following diagram commutes: 

by the inductive hypothesie that (b) i s  satisfied for those tubular 

neighborhoods which are already defined. 

LEMMA U. 4. There exists a neighborhood - N of Y' in I T  . I such that Y 

is a aubmersion. 

Proof: Let C be tho set of points in 1 Ty, 1 n X' where the - 
differential of G ie not onto. It euffices to show that Y' fl ; = @ . 

- 



y = g(y') = oy (x) . Then 

By definition, x *  C C i f  and only if this mapping fe not onto. Since 

i s  onto (>y hypothesis), it follows that this mapping is onto if and only if 

is onto. From condition a , it followe that Y' doea not meet the 

- 
closure C of th6 sc t  of points where this mapping is not onto. Q. E.D. 

Now w e  extend T' over  IT^, 1 n X' in such a way that ( a )  ! 

P ) I  

holds (the weak (a)! ) and (b) holds. We may do this by the generalized 

existence theorem for tubular neighborhoods and Lemma 11.4. 

This completes the inductive step. 

I 

Now the second step (extension of Ti from Ui over a l l  of X') i 

i s  carried out in exactly the same way as in the proof of Proposition 7.1. Q. E. D. 

Thc res t  of the proof of Proposition 11.2 will be carried out in !. 

I 
i. 

three steps. Fi rs t ,  we define the notion of a controlled vector ficld ! 
F 
i 



over another controlled vector field. (WARNING: this is not a special - 
case of the notion of a controlled vector field. ) Then we prove a lifting 

theorem for controlled vector fields. Finally, we show that every 

controlled vec tor  field over another controlled vector field generates 

a local one parameter group. 

Now we suppose g is a Thorn mapping. V l e  suppose that we a r e  

given a eyotem (T) of control data for S and a system {T'} 

of control data for  S' over {T) . Let 7 = { t ) ~ ) ~ ~ ~  be a 

controlled vector field on.  S . 

DEFINITION: By a controlled vector field on S' over , we 

will mean a collection { I ) ~ ' ) ~  #E is a vector field 

on X' , euch that the following conditions a r e  satisfied. 

(a ) For cny X' E 8' and x' E X*  , we have 

g *  x '  = T?*(g(x')) 

(b) For any X' , Y '  E 8' with Y' < X' , there is a neighborhood 



.. 
and if g ( ~ ' )  and (Y ') are in the s a m e  stratum of S then we have 

(Note that condition b is weaker than the condition that we impoaed 

on a controlled vector field in Section 9 in the case g(Y') and g ( ~ ' )  

a r e  not in the same stratum of 8 .) 

PROPOSITION 11.5. There exists a controlled vector field on S' 

over - 7 *  

The proof is completely analogous to the proof of Proposition 9.1, 

and we omit it. 

PROPOSITION 11.6. If 7' is a controlled vector field on S* 

over - 7 1  t& 7' generates a local one parameter ~ r o u p ,  which 

commutes with the one-parameter proup on S generated by . 

The proof of this is  essentially the same ae the proof of Proposition 10.1. 

The only additional remark to be made i s  that if X' and Y' a r e  

strata of 8 with Y' < X' , and g (Y ') , lies in Y and g (X') 

lies in X , then, in the case Y < X , a trajectory y* of q' 

starting a t  a point of X' cannot approach Y e  because the image of 

y' is a trajectory of q and therefore cannot approach a point of Y . 

We omit the proof. 



Proof of Proposition ll. 2. To prove that g i s  locally trivial over 1 

P , i t  euffices to coneider the case P = I R ~  and prove that g i e  
I 

I 

trivial over P in this case. By Proposition 7.1 we can find a eystem I 
I 

{T) of control drta for 8 compatible with f , and by Proposition 11.3 I 
I 

there exists a system {T8) of control data for  8 over {T) . 
Let 3 ,  , be the coordinate vector fields on R . By a~ 

" 
Proposition 9.1, we can lift a to a controlled vector field a on S , 

i i 
m 

and by Prljposition 11.5 we can lift to a controlled vector field a 
i i - 

on 5' over ai . 
" 

By Propositions 10.1 and 11.6 the vector fields a i  and gi generate 

I 3  
local one parameter groups Pi and Q . Since the mappings f and 

i 

g a r e  proper arrd ai  generate. a (global) one parameter group yi , 

i t  follow. that and ;i a r e  (global) one parameter groups. 
i 

Let SO iresp. s') denote the fiber of S (resp.  S') over 0 . 0 

To complete the proof, it is  enough to construct local homeomorphisms 

h and h' such that the following diagram commutes. 



W e  define h and h' as follows. 

. . .  n* -tl ' fx )  . t) where t = (tl, * , t p ) =  f(x) . 

It i s  easily verified that the above diagram commutes and that h and 

h' are homeomorphisms. Q. E. D. 
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