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Thess notes are part of the {irst chaptar of & series of lectures

glven by the author in the spring of 1370. The ultimate aim of these

notes will be to prove the theorem that the set of topologically stable
mappings form a dense subset of C (N, F) for any finite dimensional
manifolds N and P where N is compact. The first chapter is & study
of the Thom-Whitney theory of stratified sets and stratified mappings.
The connection of the material in these notes with the theorem on the
density of topologically stable mappings appears in gll, where we give

Thom's second isotopy lemma. This result gives sufficient conditions for

two mappings to be topologically equivalent.




N S s Tcwu

1. :

§l. Condition a . Wea begin by introducing some notions that are

due to Whitney ([ 5] and[ & ] . .

Let i be a positive number pr @ , which will be fixed throughout

this chapter. By "smooth' we will mean diffarentiable of clasas cH .

Let M be a sarmooth (l.=., C‘"il n=manifold without boundary. By
s emaooth (1. 8., E.'u: submanifald of M, we will mean a subset X of
M such that for every x E X there exists a coordinate chast (g, U] i
' |
of class € guchihat x€U and F[:{ nuy= Iﬂknnp{ﬂ} , fora |
puitable coordinate plane El.k in R . In the definition of submanifold,

we do not assume that X is closed. Howewar, it follows from the

definition of submanifold that X s locally closed i.e., each point in

5 has aneighborhood U im M scchthat XKnU is closedin U.

If X isan r-dimensional submanifoldef M and x€ X, then
the tangent space T:.'IE.':l of X at = isa point in the Grassmannian
bundle of r-planss in TL{I . In what follows "eonvergence' meanas

convergence in the standard topology on this bundle,

Let X and Y be asmooth submanifolds of M and let y €Y. '

Bet r=dmX.

AN
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DEFIMNITION 1.1 e say the palr (X,Y¥) psatisfies condition a at

y Lf the following holds, Given any seguence x of points in X such

that x Y and Txxi converges to some r-plane TC "'."I--'ljlr » we have

TY 7.
¥

Exampls 1.2, (Whitney [ 6 ]}« Let =x,y,2 denote coordinates for

'EJ « Let ¥ be the z-axis and let X be the set {:::z - fl =0} with

the z-axis deleted. (In Figurel, we have sketched the intersection of X

3
with R’ .) Then X and Y are complex analytic submanifolds of C© .
It s eanily ween that (X,Y) wsatisfies condition & at all points of Y

except the origin, and that it does not satisfy condition a there.

We will say that the pair (X,Y) satisfies condition a If it satisfies

conditiosn a at every polntaf Y.

In Example 1.2, the pair (X,Y) does not satisfy conditien a. If we

aet Zu {0} and ¥ =¥ -2, then thepairs (X, ¥} , (¥,Z) , and

(Y",Z) do satisly condition a.
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Y2. Condition b, We will hegin by defining ¥hitney's conditlon b
for submanilolds of ]:I:ﬁ“I . Then we axtend this deflnitlen to submanlfaolds
of an arbitrary manifold, welng the dafinition In ]:I‘ul.]:l . Wea will alro show

that conditien b implies condition a . |

If x,y€MR® and. xwty, then the secant &y will denote the line

in MW" which is parallel to the line joining = and vy and passcs

through the orlgin, Forany x€ R~ weidentify T R" with R" |In

the standard way.

Let X.YT be (smooth) submanifolds of B™ . Let yeEY¥ . Lt

re=dim X ..

DEFIMITION 2.1. Y a sav that the pair (X,¥) satlafles condition !

b at y if the following holds. Let !1 be a sequenca of points in X,

convarging to ¥ and *|,rI a sequence of pointas in Y, alsg-converging

to y. Suppose T}:',_il converges to some r-plans 'I'EEL“ and that

x, h ¥, for all 1 and the secants .':"_.'1' canverge {in projective space

Pn_ll to some lne .t_l':,fﬂn s Thsn IST.

Let (X°,Y"] bea second pair of subrmanifolds of m" , and let ;

y'EY" .

LEMMA 2.2. Suppose there exist open nelghborhoads U and U

auch |

of y and y* in R anda (smooth) diffeomorphlam o:U=U




that H:(Uﬂ:ﬂ'}:ﬂ'nx' , iﬂﬂ'ﬂ"ﬂ'l!ﬂ'ﬁf' and @yl =y". Then

(X,¥) patisfies condition b at y ifand enly if (X*,Y") satisfies

-

condition b at y".

Praaf: Obwlous.

DEFINITION 2.2, Let M bea manifoldand X,Y submanifolds,

Let y€Y . We saythat (X,¥) patisfies conditien b at y iffor

some coordinate chart hP,T.TII about ¥, we have that the pair

(lUNX) , @lUNT)) satisfies condition b at Pyl -

[

Inview of Lemma 2.2, if (X,Y) satisfles condition b at ¥y, then
for every coordinate chart (©,U) about y, we have that {r|-.|{[i|l"| X)), :F['JFI ¥)

satisfies condition b at y.

For the rest of this gection, let M be a manifeld and X and Y

submanifiolds and 1et y £ ¥ .

3 PROPOSITION 2.4. If (X,Y) gsatisfles condition b at y then

il satisflies condition a at y.

Proef: Since both conditions a and b are purely local, we may
suppose that X and Y are submanifolds of M~ . Let x, bea
fequence of points in X such that x =Y and T_‘:-[f,_.‘:1 =g far some

rs Tﬂ: =R" ., Vamust show that TT‘_I’ ET ., Suppose otherwise.

J




5.
Then thére existsa lina I n", pasoing through the arlgln, such that
i T"IT but I T. Since IS '1"1"?  we can choose a sequence of points
Y; EY such that ¥ o X . ¥ Y and ;F::"-—:} » But aince g v, this

eontradicts conditien b . 0. E. D,

Ve say (X,Y] satisfies condition b if {t satiefles cond{tion b at

every point vy € Y,

Example 2.5. Let X be the spiral in Il'-l..z defined by the conditian
that the tangent of X makes & constant angle with the radial vector, and
let ¥ be the origin. In polar coordinates, thia spiral is given by :
r - @8 = constant, Then the pair (X,Y) does not satisfy condition b,
Faor, by definitlon, the angle o bebween the IE:_ru: TK:-‘. and the secant

~
O0x is independentof x. If x, EX {sasequence convergingte 0,

e ) e e <

2
then the tangents T'x,;l convergatoa line TSR, and Ih'.i converges

T

to a2 line !, which makes an angla &« with 7.

3
Example 2.6. (Whitney[ 6 ]). Let x,y,& be coordinates for €

£.0) with

Let ¥ bhe the z-axis. Let X be the saet hrz+ ::] = :E:
the z-axis deleted. (In Figure 2 we have sketched the intersection of X
with I{3 .) It is easily seen that the pair (X,Y) satizfles condition a,
and the pair ({X,¥Y) satiafies condition b atall points of ¥ except the |

origin and that it does not satiafy condition b there.




PROPOSITION 2,5. Suppose v EX = Y and (¥,Y) satisfies

condltien b at y. Then dim Y < dim X.

Proof: Itlils enough to conslder the case when M = I!{m . SHince
yEX -1 ., there extsts & seguence x In ¥ -¥ which converges
to ¥ . By the compaciness of the Grassmannian, we may supposs, by
pasaing to & subseguence If necessary, that T!-L!t convergeas o an ©
plane T =™ (where r=dim X). Since condition b implies condition
a |[Proposition &.4), TT? ET. For 1§ sulficiently large, there ina
print y, om Y which mioimizes the distance to X, . By pasning te
a subsequence if necessary, we may suppose the secants '1‘-’1 converge
to & line [ ]I-ln. « Since yi minimlzes the distanees to ::i , tha
sccant Yo% is orthogonal to T'!l"-ﬂ; hence I is orthogonal to T"l"? i

Since (X,Y) ‘satisfies condition b at y, wehave lcT. Wehave

shown 'I":’?i-l'-;'r and { i3 erthogonal to TTy} hence

dirm X = dim T > dim T"|"r=|:lim"|’, 0. E.D,




§3. Blowing “E: In the next sectlon, we will give an Intrinsic

formulation of condition b which will be ureful later on. This formulation
depends on the notlion of blowing vp a manifold along a submanifcld, which we

define in thlis section.

Let N bea manifoldand U a closed submanlicld, By the
manifold 'EUN' obtained by blowing up N along U, we will mean the manifold

defined in the following way. As 2 set BUN is the digjoint union

(W =-uly Pﬂu , whera Pn denctes the projective normal bundle of U

u
in M.,

By the patural projection = ET.TH =M, wemean the mapping
defined by letting 'rrlF'rIU. be the projection of F‘ﬂu en U and letting

7|M = U bethe inclusionof N -U into N.

To define the differentiable ptructure on EUT‘i . we firat conaider

r
the case when N is open in R" and U= IFLEI"I N, where R° i the

coordinate plane defined by the vanlshing of the last a - r. coordinates,

N=R® ¢y BP" " delincd as follows,

Then we have a mapping o EI'_,-

L]

First, o F'TTU ia the standard identification of 'F'I'FU with

U:r.IRF'“‘T‘IEJﬂn:tFFn-r_l. Lecondly, if """=[x'|,""r“-JEmn'Rr‘

then oix)=I(x,8(x)), where #&(x) is the pointin EP’n_r_l with

homogeneous conrdinates [::”_1_ ere ],




It ie eanlly verlfied that g[EU‘.H"f isa €% gubmanifold of

-r-1
m" x mP" l: ae follows. Let [xl.“'.::n'i denote the coordinates of

", Let X, 4t**s X, denote the homogeneaus coordinates for R i

For r+l=l<n, let Zi dencte the subaet of R Pn.r-ldeﬂ:nnd by

Ii st 0, andlet ‘.‘-\fﬁ

Then the intersection of n{_EUN] with Nx Z

be the real valued function X]l = :I-T.i.lrlliI o 3{ i

. {s the sat defined by

:_1=:{th{ r+l=jsmn , j£1I .

Therefore n'[BUN]. is a submanifold of B x IF‘.IP‘I-I i

Since the mapping o {8 Injective, we may define a manifold structure

on B N by pulllng back the manifold structure on ofD,, N .

Now, let N® be a second open subsetof H©, let U =R AN",
snd let & [N, U} ={N",U") bea it diffesormerphlem. Leat
Py ° HUN - HU,H’ be the induced mapping, defined by latiing
Py | F:}U P Py~ PﬂT.T" be the mapping induced by the differential, and
letting ﬁ,[ﬂ -U:N-U=N"-U" be the restriction of .. Then P

-1
is a diffeornorphism of class C'H

To show this, we first cbserve that @, lsa bljection and 1?*5“1 = ':'=§"d:|':|,,r

<1 :

Therefore, it sufflces to show that Pu is of clags © . Toshowthis, it
=1 . el + o

L8 snnugh to show :I:.-I:-:[ " Py iscfclrnes v lzign, that (e N f.['p is

open, r+l<i<n, and that xji.lh fs of clasa 'l:]‘l'L_lII for r+lzj=n and

§# 1. Since "




2.

xi;m.t=;|'_1i|lﬂlr i

where 7 BUH =N i the natural projection, the {irst statement la

ebviouas,

To prove the remaiping two statements, we set “1. =x * = and
. =1
obhaerve that there exiat functions q,m of clags P  for
r+l=zl , od=£n, such that

= i * z e

p=r+l

This is proved as follows. Since for r+1<i<n, wehave that P

vanisheson U=NAR", we get that

1

d
?liﬁ. L .Hﬂ:l " I .d'_'t{lﬂ{JIﬁ: e lxl.'l h':r*f-l’ w 'trﬂ}dt
0 .

n 1 e

i
.- E *a I B {II'.”'II"T“:H'.“ ,t;“}dt
a=r+l a o

gt that » holds, whars

1 E'P;

= et i s LRI dE ™
*}Lﬂ Eixu‘xl' '“r'b'trﬂ' 1:]“;n]

-1
In view of (*], Py ['-"-i] i TL’-hl is the subaet of Ih defined by
n

=+l

r

and hence is cpen. It follows that q::]'zi is open. It also follows from

— i



{*) that

n

X . e rﬂ-_:rilyrvh‘]jrr

i " P - -
o=+l n'\':#icr

on ;P;ln;zl].n Eh , and hence is of claass E"_l there,

This completes the proof that P, 182 diffeemorphism of class l:'_:J'l'l .

MNow we return tohe goeneral sitoation where N 18 a manifeld, snd

U is a closged submanlfold, both of clags C‘-“ - In wiew of what we have

ju.gt dtlnq' we chn conatruct a differentiable stroctare on the p:rt af BUH

which lies above any coordinate patch, and the differentiable structures

ahove different coordinate patches are Cu-l compatible. Thus, we

ckl . BN,

obtain the structure of 8 manifold of class U

Note that the natural projection w: B N -~N s differentiable of
=1

clags C"

=]
Since we have defined & structure of a manifold of class ck on

BUH s we have also defined a topology on EI.FN . In the local case,

when M = mn and U= Iﬂ;r this lnpulng}r iy be deseribed more

directly, Let hi] be a seguence of points In B -m", and BURFROBE

% ~x € BT, Let 2€MP" !, sothat (x.2) isa memberof B N,

u




1L,

r

if we [dentify B N with the subset afB N] of m"x PR, aa

4]
ahove, Then it 1s easlly seen that x, converges (in B,uh':l ta  [x,1)

if and enly if the secants :n:ix; converge to !, where x: denoctes the

projectlon of x, on -

This suggests that {t should be poasible to reformulate condition b

in termae of "blewing up''., We do this [n the next section.
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§4. An Intrlnele formulation of condltion b . Let N bLe a smoath

manifold. Let by, denote the diagonal in 'H'l » By the fat square of N,

we¢ will mean the manifold F(N) obtained by blowing up Na along aN ’
The normal bundle 7 of by Im N° can be ldentified with the

tangent bundle THN in a cenonical way, z2s follows., If xE 'E'N s then by

definitian

= N & TN di 1 .
n, (T = ::” agona

The mapping of 'I'If‘-il_l'IE 4] TN: into T.a"T! which sends v 3w to v -w
induces an ilumnr]:rhi;m af TT wlth TNI « Weanse this hﬂmﬂrphlum ko
=

identliy ﬂ: with TN::'

From this {dentification and the definition of the process of blowing up

a2 manifnld along a submani{eld, {t follows that

FIN) s PT(NJU (RS -4.) (disjeint union)

W

where PT[N) denntes the projective tangent bundle of W . Thue, pointe
of FiM) areof two kinds: pairs (=, v) with x,y€ N and x==v¥

and tangent directinone o M.

It follows from the previcus section that F(N} is = manifold of clase

ckl,
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Roughly speaking, a sequence [I:t,‘jl}] of polnts in Hz - ,ﬁh__
converges to a tangent directlon 4 eon W I the sequences l:'t} and
{Fi} converge to the same polnt x fm N and the direction from :1

ta :rl convarges to [, In the cage N = m" s Whis can be made preclse:
-[ﬂ::{.yl:l]- converges to (x,f) € " IFLP“FI If both f:;l] and {?1]

ennverga ko x , and the secants x converge ta 1.

11
Mow lat X and ¥ be smooth submanifolds of W and let v E Y .

Supnage Y 12 closed. In view of the previous paragraph, we obtain the

follnwing result.

PROPOSITION 4.1, The palr (X,Y) satisfies conditien b at vy [f

and only If the following condition holds. Let f:i} be any sequence of

Pnintl in ¥ and hi"l} any sequence af pﬂ-lﬂ.tﬂ- in ¥ guch that' :1'.{ =+ fi. M

Suppome {;l] =¥, {Yi} -y, “"1'1‘"5” converges to & line IEFTN? '

and {T}l::.,_[} converges [ln the Grasemannlan of r planes in TH

where r=dim X) to an r-plane 7 =THY + Then ICT.
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ks, "r'-"hitngttre—ﬂtrat'iﬂcuinh;_ Lét M be z smosth (I.e., E‘ul

manifold without boundary. Let & bea subsetof 4. By a pre-stratification

8 of 5, wewlll meansa coverof 5 by palreiss dlnjoint smoeth
submanifolds nf M , whichliein 5. We will say that & {a locally
finite if each point nf M has a nelghborhnnd which meets at most finitely

many strata, We say 3 gatiafias the condition of the frantierif {or each

stratumm X of B ity frentier (KX - XIN S 18 a unlon of strata.

We will pay 3 13 a Whitney pra-stratfication {f it i# locally finits,
satisfles the condition of the frontier, and (X,Y) satiafice condition b

far any pair (X, Y) of strata of 35 .

Let 8 bea Whitney pre-stratification of a gubset 5 ef a manifold

M, Suppose X and Y arestrata, Wewrite Y <X if Y lsin
the frontier of X . In view of Proposition 2.5, if Y <X then
dlm ¥ < dim X . It follows easily that the relation "< defines a partial

arder nn 3

Bemark, Let M beamanifold, 5 a ¢losed subsot of h-'l. and
3 a Whitney pre-stratificationof 5. Let x and x" be two points
in the same connected companent of & stratum of 3 ., Then there exists
& homeomnrphism h of M onnto itself which preserves 5 and 8

such that hix)=x" ., This follows from Them's theory [ 4 ] and we will

prove it below, In the case 8 has ouly two atrata, it is guite easy ta

-
]
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prove by an argument due to Thom [ 4 , p.242].

We akeich Thom's argument for the twa strata case here. The only
non-trivial cass ls when the two strata gatialy X <Y and the two points

% and x* arein X. Inthiscase X igclesed and X =T =¥YUX.

For simplicity, we will suppose that M Is compact, theugh i€ s not
difficult to modl{y the argument to make {t work In the case M I8

nof=- I:Cl!'l'.lpl.l:f.

Let N bea small tubslar neighborhead af X In M, let w:iMH-=K
be a smooth retraction, and let p hea smooth function on M such that
F:_:-_I.'l y K= {F= 0}, and ata point x € X, p lanon-degensrate on
the normal plane to X in the sense that the Hessilan matrixof p at

x has rank equal to the codlmension of X .

Mowlet x and x" be two points in the same connected component

of X . Let Vi be a smooth vector field on X  such that the trajectory

of v astartingat x arrivesat x” at timet=1,

For ¢ > 0 sufficiently amall, the subset H{ = {p: €} of N is
compact, and 1w ME =X s a submersion, Furthermore, "r‘r = ]'-.-'!!_ ny
13 camnpact, and it follows from condition b that w: '!I.'f =X lza

submarsion for ¢ suflficlently small, It follows easily that there ig a

vector fleld % on :M-:h‘.'_ dnd an l'lliﬂ such that v - {s tangent




lb.

along ¥, and the following hold.

i%) TP{m] =0 mEM-X
it
[#%) wvm) = \rxtfrl:n]- and p(m] < f

From * andthe compactness of M, It follows that the trajectory
of v  ostarting atany peint of W - X 1is defined for all time. Hence v
a 5
generates & one-parameter group f'h1 , tEM)} of diffeomorphisms of

M=-X. Clearly generites & one-parametor group fh;{ ttEM)

Yx
of diffeormorphisme of X . Let 'ht tM~M be defined by ht'” -X= h:I

and htlx!h:{ . It fellows frem (*) sand  (*=) that

1° Henca ht isa

homeomerphlam of M., Clearly ht preserves X , and furthermore

hi{m‘.m} = 'u'h::l[m] f meéM-X and F{m] 3 4

ht preserves Y , since v is tangentalong Y . Finally 'h]f:l::ldft‘

since trajectory of Vor starting at x arrivesat x* at Hmetwl.

Thus hsh, 1sthe required homeomorphism of M,

1
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§6. Tubular neighbarhoods. In this section, we define the notion of a

tubular neighborbood of a submanifold of a manifold, and prove an existence
and uniqueness thearem for tubular neighborhoods, Our existence and
uniqueneos theorem is slightly more general than the standard one

{cf., Lang [ 2 ]). The method of proof we use was suggested to us by

A Dw:i

¥ & recall that a vector bundle E owver a smooth manifold M (s said
ta be amooth if the coordinate transition functions which define E are
smooth functiona. By a smooth inner product on a vector lundle E, we
will mean a rule which assigne to each fiber Eu afl E aninner product
{ « 1 om Eu and which has the following property: If U is any open

. B are bwo smooth sectiona ef E above U then the

setin M and s 3

1
mapping u - Elllu]. '3[“”1.1. ie smoath., From now on, we will asppame all
vector bindles and inner products on vector undles are smooth, unless the
contrary is explicitly stated. By a (smooth) inner produet bundle, we mean

2 pair consisting of a2 (amoath) vector bundle E and a {mooth) laner

producton E.

I w:E=M isaninner product bundle over a manifold, and ¢ isa
positive function on M, then the open f-ball bundle Hr of E will be

defined as the setof e in E suchthat [e| <eire), where [e] is

1/2

defined ag [e, e} P




Let M be s manifcld and X a submaniiold.

DEFINITION. A tubular neighborhood T of X in M isa triple

{E.{.-p:l y where w:E-=X |isan inner product bundle, ¢ Iis a positive
smoath fupctienen X, and P is a diffeomorphism of BE onto an open

subset of M which cornmutes with the zero section [ of E:

>  —

Vieset |T| :-P[B‘b . By the projection associated to T , we mean

the mapping Tpe ¥ :Iu'I : |[T| =X . By the tubular function associated to

T , we mean the non-negative real velued function

2
I where plel = |e]
Pr*"P"F ¢ IT| = forall e€ |T} -~. °

It fellpws from these definitions that ‘I'T is a retraction of |T| on

X, lL.e., the composition

w

T

inclusion ]Tl 5

X

is the identity. Alse, X is the O-pet of Pr the differential of P

vanishes only em X , and (in the case Hz2)atapoint xE X, P is
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non-degenerate on the normal plane to X in the sense that the Hessian

matrix of p at x has rank equal to the co-dimension of X .

If U isasubsetof X, the restriction T|U of T to U s

defined as (E|U, ¢|U, ?[Ui .

I T=[E, f.tjul and T” = (E”, t".jp*:l are two tubular neighborhoods i
of X In M, aninner product bundle isomorphism §$:E=E° will be
auld.. to be an isomorphism of T with T" if there exists a poaitive
:ﬂntinul;lu: function € on X suchthat € £ minle, e’} and
;'In-" ) |BE' = IFIJE-*_.* « Mote that if this holds, then "o |5aﬂi:.- = o |:I|:|EE.-
and  po. |4PHE- =FT"|5'°H¢"* + Mesay T and T are isomorphic and

————— 3 - :

write T~ T" U there exiats an Lsemorphiam frazn T to T . i
A ] o e e R A H

—_

A smooth mapping f: M=P will be said to be 2 submersion if

df : TME-' TP is onto for each x & M.

fla)

Throughout the rest of this section, let {: M =F bea smooth mapping,

and X a submanifold of M .

A tabular neighborhood T of X in M will be said to be compatible

with { if few = flIT|. A mapping h of M into itself will be said

to be compatible with f if f+h=f. Ahomotopy H:MxI-M of M

into iteelf will be said to be compatible with [ if [« Ht = f for all

tel (=[0,1]). By.an isotopy of M , we will mean a smooth mapping




£0

H:Mxl=M souch that I—In=1.d.:H—M and H".H-*M is a
diffeomorphism forall t€1. If h isa diffeomorphism of M into itself,
the support of h will mean the closure of {x € M : hix) %t x} . Likewise,

if H:Mx1l=M isanisotopy, the support of H will mean the closure of

{x€M: tEl , Hixtiskx}.

I M° is 2 second manifold and X° is a submanifold of M*, and
h:(M,X)=({M",X") lra diffeomorphism, then for any tubular neighborhood
1= iE.{.lip]- ef X we define a mubular nelghborhood h‘T of X* by

BT=()*E , €+h” , hsp.

We will begin by stating and proving a uniqueness theorem for tubular
neighborhoods, and then we will derlve an existence theorem f{romn the
unigueness theorem. This procedure of deducing the existence theorem

from the unigueness thearem was suggested to us by A. Oguws.

The gimplest uniquenens theorem for tubular neighborhoods states that
if X is cloged and Ty, and T, are tubular neighborhoodsof X n M,
then there exiats a diffeomorphism h of M onto itself which leaves X
peint-wise fixed such that h*Tg ~ Tl + Moreover, b canbe chosen so

that there ig anisotopy H of M with h] = H which leaves X

point wise fixed. We can generalize this result in various ways.
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Firat, under the hypotheais that TI:I and ‘1',E are compatible with { “

and f|X is a submersion, we can choose h and H to be compatible with

f. Secondly, if TQ|T.|'-- T1|U for semeopen set " U in X, and Z fsa

- —

clogped subset of M suchthat ZA XS U, then we canchoose h and H

to leave Z  polnt-wise fixed.

The following proposition implics these statements, and has some other

wrinkles as well, We will use it in itp full generality,

PROPOSITION 6.1 (Unigueness of tubular neighborhoods). Suppose the

submanifold X of M is cloged, and {|X:X =P isa submersion. Let

E

U be an open subsetof X, let U° and V" be closed subsets of X,

== a1 we———— I

let V bean open subsetof M, and suppose U U and view.

[See Figure 3.} Let TI:I and T]‘. be tubular neighborhoods of X i M

which are comnpatible with f and suppose thare is an 1mmurghism

,,g,u-.'ru|u-'rl|u. Then there is an isotapy H: M xI1 =M, compatible ;

with [, leaving X point-wise fixed, and with supportin ¥ , auch that

h_.Tn [V yu® - Tlr‘f' UU®, where hs= Hl . Moreover, I W |s&any

neighborhood of the diagonal in M x M, we can choose H such that

(H(x},x) €N forany t€1 and x€M . Also, we can choose H go that

there ks an isomorphism g : h*TQ v uu® - 'I'I [¥* U U* such that

F|u‘ =¢ﬂ|u',




Proof. Let mesdimM , e=codX, ond p=dimP. For k<m
k

k
let IR be embedded as I x l.'.}m " in BT, Wewill pay that we are

in the local case when V' is compact and there exiots a diffeomoarphism

@ of M ontoan open subeet of B . such that $X) = R™E NneiM), and

a diffeomorphism ¥ of P onto an open eubset of EP  such that the

following diagram commiutes, where w in given by ﬂ-[#l,r-r,xm:l = 1:':1,"'.1:?]
M P - m"
f
':F ¥ RP .

There are two staps in the proof:

Step 1, Reduction tp the loeal easge. From the hypothasis that (X is

a submerasion, it follows that for each = € X there exiats an open neighborhood

"-".I‘: of x in M, adiffeomorphism t!ﬁ-x of w:: onte an open subaet of

B Buch that 11’1"-"-’11'1 Xi= 11["r'|l'xrﬁ v ; et , and a dilleomorphism "}-x of
P

f[‘l'-"x] onio an open subset of IR

such that the following diagram commutes
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- W x o 1™
X
{ w
v
(W) X » RrP
_x

Furthermore, we may suppose each Wx is relatively compact, and that

r 4 =
“x NV #+0 Wx cVv
(*)
W AUS #Q=>W_NnXSU .

Then {M - X}U {Wx} is a cover of M, so that there exists a locally
finite refinement of it, which we may take to be of the form {M-X}u {Wi} .
where each Wi is contained in Wx(i) for some x € X. Since M has.
a countable basis for its topology, the collection {Wi) is countable. Now
we discard all W, for which W, N U +¢d or w,n V' = @, and we

index the remaining Wi's by the positive integers. Then we have

V'_C_UUWIUVZU-'- » and WigV forall i, by =*x.

We can choose closed sets W{ c Wi N X such that

V'gUUW UWIU++s . Since W’'cWwW , .,
2 1 x(i)

compact, it follows that W; is compact.

1 and the latter is relatively

i

.
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] Now we construct by induction a sequence Ho, Hl, Hz, +++ of isotopies

of M into itself and sequence 4’0'4’1'#’2' +++ of isomorphisma of tubular
neighborhoods. We let Ho be defined by Hf = identity , 0<t<gl, and

let 'PO be as given in the statement of the proposition.

For the inductive step, we suppose that Ho, Hl, cos ,H"’l and

qbo. v "bi-l have been constructed, are compatible with { and leave X

point-wise fixed. We let (.‘:j be the isotopy of M defined by
J_gd b, L0 N _
G =H o H = +oc.oH' . Weset g =Gj. Welet U;=UUW U-eU W,

and suppose supp Gi-l [ Ui-l N V. Furthermore, we suppose
(G;'l(x).x) €N forall x€M and t€[0,1], andthat §. . isan

. . i-1 - -
isomorphism of tubular neighborhoods g, TOIUi*-l - 'I.‘1|U;"_1 , where U’i"_1

is an open neighborhood of U’ U wl' UeerU WS in X

Then it follows from the local case of the proposition that H and zpi
can be chosen 80 that the conditions of the induction are satisfied, For, let

W? be an open subset of W, such that Wi' c Wo and W? is relatively

i

compact in Wi , and let U;‘ be an open neighborhood of

0
U’y Wl' Ueool Wi' in X whose closure lies in U:‘_l U Wi . From the

local case, it follows that we can construct an isotopy H of Wi .
compatible with f, leaving XN Wi point-wise fixed, and with support in

i i-1
¥

i

0 — — i
* ~ * = . o s
W,  such that h 'ro|u,l aw, ,'rl|ui NW , where h =H/ . (Thisis

i1 _ -
because g:‘ ’I‘o |U;‘.ln wi~ T1|Ui*.ln W1 and U:‘_IC WD.) Moreover, we may .




25

choose H' so that H: is arbitrarily close to the identity for all t,

and so there is an isomorphism

i i-l

b, P B8, Ty |U*nw —->'rlu*nw\

i

such that
TT# T - 1% 3%
plUfaw,nut, = ¢ lUFow auy, .

, Since supp H' isina compactl subset of Wi , we may extend H'
to an isotopy of M whose support lies in W. + Likewise, we may
* * i
extend ) to all of U by letting’ sb |U1_1 i-lIUi-l . Then H

and l)bi satisfy the conditions of the induction.

i
Now if it is true that the sequence Gt(x) is eventually constant

in a neighborhood of any point x € M, we can set

H(x) = 11mG (x)

and

P(x) = limy, (x)

i=co
(since the latter is eventually constant in a neighborhood of any point). I
we choose. N  so that the projection Lo N-M is proper (where 1r2'
denotes the projection on the second factor), theq it is easily seen that

the sequence Q:{x) is eventually constant in a neighborhood of any point

x€ M, and thatt H and § have the required properties.
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This completes the reduction to the local case.

P fint . = » » = ( LV ’ .
roof in the local case. Let ‘;‘0 (EO € (po) and Tl (131 61 501)

We will first construct an isomorphism P : EO - El

which extends zpo JU? , and then construct the isotopy H to have the

of inner product bundles

required properties.

The tubular nei ghborhood Ti (i =0,1) gives a natural identification

A of Ei with the normal bundle of X in M. Explicitly, if

Vx

x € X, the restriction of czi to the fiber Ei x is the composition
’

dep, .
E = TE, ) —it= 1M B2l 1y |TX = p .
i, x i, x0 x x x X,x

-1 . -
Let B = Q) g ¢ Eo E1 . Ve may consider B as a section of
Iso(Eo, El) , where the latter is the bundle whose fiber over x is the

space of isomorphisms of Eo.x into El,x . In general, /3 will not be

of class CcH . only of class C"J'.1 ; however, we may approximate §

arbitrarily closely on any compact subset of X by a section [31 of class

M

To canstruct P, we will need the following well known lemma in

linear algebra.

LEMMA, Let V and W Dbe vector spaces, provided with inner

products i and j. Let L : V~W bea vector space isomorphism,
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Then there exists a vnique positive definite self-adjoint linear mapping

H:W~-W suchthat He IL: V-V preserves inner products.

Remark 1. Itis easily seen that this is equivalent to the assertion that
any invertible matrix L of real numbers has a unique decomposition
| .
L=H U where H is a positive definite symmetric matrix and U is an

orthogonal matrix.

Remark 2, Similarly, itis easily verified that there exists a unique

positive definite self-adjoint linear mapping Hl t' V-~V such that

L e I-I1 : V~W preserves inner products, and that H1 = L-IHL .

Proof of the lemma. Existence. ILet e ,tetae be an orthonormal
1 n

basis for V, andlet A = (ozij) be the matrix given by aij = (Lei. Lej)j .

Then ¢« ., is symmetric and positive definite. It follows {rom the spectral
i

.

J
theorem for symmetric positive definite matrices that we may choose the

basis e, -, e 80 that (aij) is a diagonal matrix: ¢, =X 8§

1" ij iij
fwhere Gij is the Kronecher delta symbol). Let ii=L(ei)//Xi— . Then

fl, KR ,fn is an orthonormal basis of V¥ . Let H: W -W be given by

H(fi) = fi/‘/xi . Then H has the required properties.

Uniqueness. If there were two, H and H’ , we would have that

12 ‘1 / .,
U = (HL) « (H'L) is orthogonal, Then UH’L = HL go UH’=H..

lUH' = HZ .

Taking adjoints, we then obtain H'UY=H sothat H'®=H'U
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This implies H’ = H, since a positive definite self-adjoint mapping has

only one positive definite self-adjoint square root. Q.E.D.

Now we return to the proof of the uniqueness of tubular neighborhoods.
Foreach x€ X, let Ny be the unique self-adjoint positive definite limear

automorphism of El.x such that "bx =7, ° ﬂl,x : Eo,x - El, i Preserves

inner products. Clearly, p = {sz} is a smooth isomorphism of E, into

El , and it preserves inner products. From the fact that n, is positive

definite and self-adjoint it follows that (1 - t) identity +t‘r7x 18 an

automorphism of E for 0ctcl. Henceif ﬂl is chosen

y X

sufficiently close to g, it follows that

(1-t)p+tp: Eg~—> E,

is an isomerphism for 0 <t< 1. Mereover, if we choose 3. so that
73

]31 = B in a neighborhood of U’ {which we may do since tr?!U =g by

efinition o , then = identity in a nei orhood o so tha
defini f A h n=id ty ighborhood of U hat

10
¢IU‘=¢°N'.

Since we are in the local case, we may suppose without loss of generality
that M is openin R™ , P isopenin RF, x=RrR™C NM, and
f=w|M, Itis easily seen that there exists a neighborhood Vl of V% in

V  such that for all m ¢ Vl , we have that

gt(m) = .301 e {((1-t)3+th)e tp(;l(m)
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is defined. Since V’g X, we have gt|V' = inclusion. Since V° s

compact there exists an open neighborhood VZ of V' in Vl such that

gs(VZ) [ gt(Vl) for 0<s , t<1l. Let p bea C® functionon M
which is identically 1 in a neighborhood of V° and which has compact

support sz. Let Gé

¢ M ~M be defined by

G, (m) = (1-plmhm+pimigg ' tm) , meV,

8, t

m mEM-V .

G ,(m) >

s,t

Then Gs ¢ is a smooth mapping for 0<s , t <1, and it depends

smoothly on 3 and t. Since Gt ¢ = identity and there is a compact

set which contains the support of Gs ¢ forall 8 and t, it{follows that

there exists 6> 0 such that Gs is a diffeomnorphism for |s - t| <6.

» t

. 4 S
Let n be a positive integer such that a <§ and set

e G ’
t t 2t n-i
t g gy bt
Then Ht is an isotopy of M into M , and it follows from the definition
by P H o sg
of I that Hl &

follows from the definitions that g, and Ht is the identity in a sufficiently

in sufficiently small neighborhopd of V7. Also, it

small neighborhcod of U’ forall t, Thus H1 = gl in a sufficiently

&V

small neighborhood of U’ Uy V® ., Clearly ' supp HC V
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Furthermore, Hl P E P p ina sufficiently small
neighborhood of U”°U V’. Thus  is an isomorphism of HI*TOIU' uv’

with T |Ut UV,

It is clear from the construction that H 1is compatible with { and
leaves X point-wise fixed. Finally, by choosing the functic;n 0 usedin
the construction of G to have support in a very small neighborhoodof V°,

- we may arrange for Ht to be as cloge to the identity (in the compact-open

topology) as we like, Q. E.D.

\

Now we state and prove the existence theorem for tubular neighbbrhooda.

PROPOSITION 6.2. Suppose f|X:X~P isa submersion. Let U

be an open subset of X and let To be 2 tubular neighborhood of U in

M 3, Let U’ be a subsetof U whichis closedin X . Then there exists
 — DT e (g e /’ A
/ £ LT ST ~

~

a tubular neighborhood T of X in M ¥such that T|U’ ~ TOIU' .

—

Proof, It is enough to consider the case when X 1is closedin M,
For, in general, tl’xere.i.s an open subset M0 in M such that X isa
closed subsget of MO , since ‘X is locally closedin M. Clearlya

tubular neighborhood of X in MO is a tubular neighborhood of X in

M,

The local case of this proposition is trivial.
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To prove the proposition in general, we take a locally finite family {Wi}

of open sets in M having the following properties:

(a) For each i, there is a coordinate chart Y * Wi ~R"™ such that

(Pi(wi nx)= pi(wi) N IR"" € (where ¢ = codX) and such that there is a

coordinate chart l‘bi : f(Wi) ~RP  such that the following diagram commutes

.
w. 1 »R"
b
. ‘ N
P,
f(wi) L » rP

{b) each V&—’; is compact, and
(c) {win X} is a coverof X,

Furthermore, we can choose closed sets Wi' c Wi such that {W:}
is a coverof X . Since M has a countable basis for its topology, the

family {Wi} is countable. We will suppose that it is indexed by the

positive integers. For each positive integer we let Ui =UUWwWuy---u V‘i

and U’ =U7UW U ' UW’. Welet U .=U and U =U",
i -1 i o 0

Now we construct by induction on i an open neighborhood U’ of
. i

rEd

Ui' in X and a tubular neighborhood '1‘i of Ui . Wetake T, as.

o

]
;

e e i g Sam ey g ¢
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given. For the inductive step, we suppose U':l and Ti 1 have been

i

4 constructed. We let U{‘ be any open neighborhood of Ui' in X which

is relatively compact in Wi uvu

r 24
.

i-1"
Since U;‘ cw - Ui'-l )

that U =AUB, }Zgw-ui‘1

for tubular neighborhoods is true in the local case, we may choose a tubular

there exist open sets A and B in U;’ such
and B¢ Ui”1 . Since the existence theorem
neighborhood 'ri' of Wi AX in W. Then we have two tubular

neighborhoods of Ui"1 AW NX in M, namely the restrictions of 'I‘i‘

and Ti Since AN B is relatively compact in (Ui" -U;_l) n Vi nx,

1
we may find a diffeomorphism h of M onto itself leaving X. pointwise
fixed such that h*Ti-lA N B~ 'I‘i' |[An B. Furthermore, we may suppase h
is compatible with { and h 1is the identity outside an arbitrarily small
neighbprhOOd of ANB ; in particular, that h 1is the identity in a

1"
tubular neighborhood Ti of Ui” =AUB in M. such that

neighborhood of U’ Since h,T, .JANB~T/|ANB thereisa
i- *7i-1 i

|B . Clearly T, is compatible with f.

T,lA~ T |A and T,|B~h,T

Furthermore, Ti ~ Ti in a neighborhood of Ui' It follows

1 1’
easily that there is a tubular neighborhood T of X in M such that

T~ Ti in a neighborhood of U; for 21 i, and that this tubular

neighborhood is compatible with f. Q. E.D.

i

r_, /«-//4-/‘%
,/wéé gé.ns:/ov-v/ﬁﬁ ad;qz££+/
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§7. Cantrol data. Throughout this ssction, let M be 2 manifold and

8 a Whitney pre~-stratification of a subset S of M.

Suppose that for each stratum X of 8 we are given a tubular

neighborhood T of X in M. Let LV |'rx|—~x denote the

X
projection gssociatcd to TX and px : I’I‘XI --_IR the tubular function

associated t .
oclated to Tx

DEFINITION, The family {Tx} of tubular neighborhoods will be called

control data for 8 if the following commutation relations are satisfied:
o

if X and Y are strata and X <Y, then

(m) wx(m)

"y

pxwy(m) px(m)

for all m such that both sides of the equation are defined, i.e., all

m € ITXIn |TY| such that w, (m) € ITx' .

If f maps M into P, then the family {Tx} will be said to be

compatible with { ifforall X€§ andall mé€ |T |, wehave

fw (m) = f(m) . S s

PROPOSITION 7.1, If f:M~-P isa submcrsionY then there exists

a fﬁmily {Tx} of control data for 8§ which is compatible with {.

—~

ﬁ - . - o - 3 meo Y R
" ~ op o Co s -
, - : ! !
. . . )
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For the proof of the proposition, we will need Lemma 7. 3 below. The
proof of Lemma7.3&pends on Lemma 7.2,which says (roughly speaking) that

every tubular neighborhood is locally like a standard example,

DEFINITION. By the standard tubular neighborhood Tm of

mm-c X 0; in lRm . we mean the triple (E,€,0) ' where E is the
. m=-c . . c . Py s .
trivial bundle over IR with fiber R {provided with its standard

m .
inner product), €=1, and ¢: B€ - R is the restriction map of the

. . . . me-c c m
identification mapping R xR IR .,

[

More generally if U 1is open in IRm- ., the standard tubular

neighborhood of U in- R™  will mean Tm cIU'

LEMMA 7.2. If X isa submanifoldof M, Tx is a tubular

neighborhood of X, and x € X, then there exists a coordinate chart

(p:U“IRm, where U isopenin M and x€ U, such that

m-C

ofXnuU)=plU)N R {where ¢ = cod X) and such that

(p*(TXIX n U)~ Tm’clgo(Xﬂ Uy .
Proof. Immediate from the definitions.

If T=(E,¢,0) is a tubular neighborhoodof X in M and ¢’ is

any smooth positive functionon X, we let ‘T|€, = (o(B»e n E:,) ,

0 . .
I';‘I‘,-so(BEnBe,) an§ B|T|€,-P(B(OS€,) where Se' is the ¢




sphere bundlein E, i.e., S+ = {veE: |v]= ¢(n(v))} where

w: E=X denotes the projection. Clearly |T|€, is a smooth manifold
. . Y ' . e .
with boundary @ ITIE » and interior ITI(, . We will say ¢€° is

admissible if ¢ <¢ . .In this case the tubular retraction Tl |T |€o"‘ X

is a proper mapping .

LEMMA 7.3, Let X and Y be disjoint submanifolds of M such

Let T be a tubular

that the pair (Y, X) satisfies condition b,

neighborhood of X in M. Then there exists a positive smooth function

L4

¢ on X such that the mapping °

0
(promp) 1 Y 1N |T|€.——>IR x X

is a submersion.

Proof. Let X bethe setof y¢& |T| such that the rank of the

mapping '

(ppoTp) : YN T|— R x X

at vy is <dim (R x X). The lemma is equivalent to the assertion that
for any x € X there cxists a neighborhood N of x in M
NN Z =@ . Since this is a purely local statement, it follows from

Lemma 7.2 that it is enough to prove the proposition when M = IRm ,

X = mm-c X0 , and T is the standard tubular nc{ghborhood Tm c
C ) ’

guch that ‘

o e et et v e e et v o

|
l
:
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* of R™C in R™. In this case "o is the orthogonal projection of

r™ on RrR™°C , and P is the function which is given by

ply) = dist. {y, R™"€)° .

me=-C

Let y€ |T|-R . The kernel of the differential of (= ) at

T Pr
) me-c N m
y is the orthogonal complement of (IR X Oc) Q wa(Y) in IR . The

hypothesis that condition b ig satisfied implies that for y near R ,
'(lRm'c X Oc) e) y@) is close in the Grassmannian of m - c +1 planes

in m spacetoa wm - c +1plane whichlies in TYY . Hence for vy
near enough to Rr™C » we have that TYy is transversal to the kernel

of the differential of (ﬂT, p,r) at y, so that (1r,r, pT)IY is a submersion

at y, i.e., y€ZL. Q.E.D.

denote the family of strata of §

Proof of Proposition 7.1. Let 8

k
of dimension <k, andlet Sk denote the union of all strata in’ Sk .
V. e will show by induction on k that the proposition is true for Sk and

Sk inplaceof 8§ and S,

For the inductive step, we suppose that for each stratum X of
dimension <k, we are given a tubular neighborhood TX of X, and

this family of tubular neighborhoods satisfies the commutation relations.

By shrinking the Tx if necessary, we may suppose that if X and

Y are strata of dimension <k which are not comparable (i.e., neither
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Y <X nor X <Y holds), then ITX| n ITYI =@ . To construct the

TX on the strata of dimension k, we may do it one stratum at a time,

since there are no comrnutation relations to be satisfied among the strata

of the same dimension., Let X be a stratum of dimension k.

We construct the tubular neighborhoods T in two steps, as follows,

X

for Y <X

For each 21 <k, welet U, denote the union of all {TYl

|
and dimY >2. Welet X‘ = Ul N X . In the first step, we consatructa
tubular neighborhood Tl of X‘ by decreasing induction on £ . In the
inductive step, we will shrink various lTYI , but this is permitted, since

we do it only a finite number of times., Then in the second step, we extend

-T0 to a tubular neighborhood Tx of X.

First step. For 1=k, wehave Xk = @, so there is nothing to
construct, For the inductive step, we suppose that T,Hl has been

constructed and that the following special cases of the commutation

relations are satisfied: if Y <X, dimY2>2+1 , m¢€ |T1+1| n |TY|

d. =
an 'rr1+l(m) € |TY | , where Tyel = Ty then
* PyTplm) = pytm)
("g+1) :

| n'YTrIﬂ(m) = nY(m) .

By replacing 'I‘“’1 with a smaller tubular neighborhood if necessary, we

may suppose that for m € ]T‘“] thereis Z <X with dim Z>1! such
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that m € ITZI and n“_l(m)e [TZ[ .

To construct T‘¢ it is enough to construct T‘ on ITY |nXx for

each stratum Y <X of dimension { seperately, sinceif Y and Y’
are twaq strata of dimension {, we have ITYI n ITY,I =@, since Y

and Y’ are not comparable.

Thus, we wish to construct a tubular neighborhood Tx v of

'ITY' N X whose restriction to ITYl n X“_ is isomorphic to the

1

restrictionof T such that the following commutation relation is

141’
satisfied: if m¢€ ITX.Y' n lTYl and vX'Y(m) € |TY" where

T then

XY~ "Tx, v’

PY"X.Y(m) = oy(m)

“Y“X.Y(m) = wY(m) .
By shrinking I'I-'Yl if necessary, we may arrange that if
m € ITJ-H, n ITYI and x, (m)é€ {TYI , then this commutation relation
is already satisfied (with :w1+1 in place of “X.Y) for the following reason,
Since m€ IT“_ll . the-re.exieta 'Z-<X with dimZ >, m¢ ITZI

and tr“l(m)é ITZ, . Since 17“_1(m)€ ]TYI n [TZI » the last named

space is not empty; hence Y and Z are comparable, and by dimension

resgtrictions Y < Z ., Therefore
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PyTys(m) = pywom, (@) = pew,(m) = p.(m)

1(m) = (m) = vaZ(m) = vY(m) .

Ty 4+ Ty 2 141

(V' e may have to shrink |T to guarantee that these equalities hold for

-
al me [T, [n[Ty].)
Furthermore, by shrinking TY further if necessary, we may

suppose that
(PY'“Y): |TY| NX—>RxY

is a submersion. The commutation relation that we must verify is

precisely the condition that Tx Y be compatible with the mapping

(pY. 1rY) : ITY| n Xl+1 <R xY. Therefore from t.he generalized tubular

neighborhood theorem, we get that if X;)H "is an open subsetof X
whose closure lies in X“_1 . then there exists TX,Y which satisfies the

. . . 0 N .
commutation relations and whose restriction to |Tyl n X‘H‘1 is isomorphic

to the restrictionof T

17 z
. ’ 0.
tubul hb M = ‘ i
ular neighborhoods TZ such that X.H-l c X“_l , where X“_l is
defined analogously to X, ., but with T. inplaceof T_. Then
2+1 Z Z
T has the required properties.

XY

This completes the first step: we conclude that there exists a tubular

satisfying (*0) forany Y <X.

0

neighborhood To of X

Now we replace T_. for Z <X by smaller

© o per mmmpms -

e e oy e e s
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Second step. From (¥%,), it follows that we may assume that T, is

compatible with f. For, by replacing T, with a smaller tubular

0
neighborhood if necessary, we may 2asume that if m € ITOI » then for some

Y <X, wehave m€ ITY' and w (m) € |'I‘Y|. ‘Then

Iﬂ’o(m) = Iron(m) = ftrY(m) = {{m) .

Since T0 is compatible with {, we may extend a suitable restriction
-o£ 'I‘0 to a tubular neighborhood T of X whichis compatible' with
f, by the generalized tubular neighborhood theorem. Then, by replacing
the 'I‘Y with possibly smaller tubular neighborhoods (as in Stép 1), we

get that the compatibility conditions are satisfied.

This completes the construction of T and therefore also completes

x ’

the proof of the proposition.
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§8. Abstract pre-stratified sets. If V isa closed subset of a manifold

M which admits a Whitney pre-stratification (in the sense defined in

i
¢
.
_‘..
!

Section 5) then we can find control data for this pre-stratification by the

O

previous section. This provides V with considerable structure. The
purpose of this section is to axiomatize the sort of structure which occurs.
We depart only slightly from Thom's notion of abstract stratified set

([3 Jand [ 4 }).

DEFINITION 1. An abstract pre-stratified set is a triple {V,8, T}

satisfying the following axioms, Al - A9,

(Al) V is a Hausdor{f, locally compact topological space with a

countable basis for its topology.

This axiom implies that V is metrizable. For, since V is locally

compact, it is regular, so the metrizability of V follows from Uryschn
metrization theorem (Kelly { 1 ]). Since V is metrizable, every subset
X of V isnormal(in the sense that any two disjoint closed subsets of
X can be separated by open sets). We will often use this-fact without

explicit mention. !

(A2) 8 is a family of locélly closed subsets of V , such that V

" is the disjoint union of the members of 8.
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The members of 8 will be called the strata of V.

'(A3) Each stratumof V 1is a topological manifold (in the induced

topology), provided with a smoothness structure (of class C“) .
{A4) The family & is locally finite,

(A5) The family 8 satisfies the axiom of the frontier: if X,Y €S

and YNX£ @, then YCX.

If Y g-}? and Y # X, we write Y <X . This relation is obviously

transitive: Z <Y and Y <X imply Z<X.

(A6) T is a triple {{Tx}, {ﬂx}. {px}} , where for each X €3,
Ty 1is an open neighborhoodof X in V, "y is a continuous

retraction o TX onto X, and- Px: X - [0, o) is a continuous

function,

Ve will call Tx the tubular neighborhood of X (with respect to

the given structure of a pre-stratified éet on V), Ty the local

retraction of 'I‘x onto X and PX the tubular function of X..

(A7) X ={ve Tx : px(v) =0},

It X d Y =
an are any strata,. we let TX,Y Tx ny,

i “X,Y = "XITX,Y , and P}(,Y = PXITX.Y . Then ﬂX,Y is a mapping
\/._.,._,_____,__.7\\

-~ . R

- —t . ) L - .- YR P ,'({ - . -
‘%./:;’ LC‘" /_-,/.—a-;_/ /,./-"-’./-" /,// O /Q P T - = P 4
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i 0, .
of TX,Y into X and Px, Y is a mapping of TX,Y into (0, o)
Of course, TX v may be empty, in which case these are the empty
mappings.
(A8) For any strata X and Y the mapping , e

("}C.Y’ PX,Y) : TX,Y —> X x (0, »)

is a smooth submersion. This implies dim X <dim Y when Tx v $0Q.
- 1 4
{A9) For any strata X, Y, and Z, we have

™, Y'Y, Zv) = Ty L)

(v) = {v)

Px,v"v,2z Px, z

whenever both sides of this equation are defined, i.e., whenever

and =«

VGTY,Z

v,z €Ty ¢ -

DEFINITION 2. We say that two stratified sets {V,3,7} and

{v’,3°,9’) are equivalent if the following conditions hold,

(a) V=V’ , 8=8", andfor each stratum X of $=38", the
two smoothness structures on X given by the two stratifications are

the same.

(b). If 3= {{Tx}. {vX}. {ox}} and T ’ = {{"g'(}. {ﬂ}'{}. {D;(}} , then

ryd

X

for each stratum X, there exists a neighborhaod T of X in

bt =AY e - ———r——y P
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i . »’ I ’, ” _ »*
'rxn Tx such that PXITX 2 pxl'I‘x and vxlTx = wx]Tx .

From the normality of arbitrary subsets of a stratified set, it follows
that any (abstract) pre-stratified set is equivalent to one which satisfies

the following conditions
“(Al0) If X,Y are strata and '1‘x v + @, then X <Y.
?

(All) If X,Y are strata and Txﬂ TY # @, then X and Y are

comparable, i.e., one of the following holds: X <Y , Y<X , or X=Y,.

From (AlQ), it follows that X <Y if and only if 'I‘x v #+ @, and

from (All) that X and Y are comparable if and only if Tx n Ty + Q.

Note that from (A8) it follows that the relation X <Y defines a partial
orderon 8 . Itis enoughto verify X <Y and Y <X do nothold

simultaneously, But (A8)implies X <Y =>dim X <dimY,

As an example of an (abstract) pre-stratified set, let V be a subset
of @ manifold M and suppose V admits a Vhitney pre-stratification
8, andlet {T}'{} be a family of control data for 8, and let P
¥ 1 T2 =X and T ={0,0), Set T ={TS}. Then {vss)\,‘/\A B
X' X and Px fix TN A / AL 1
is an abstract pre-stratified set, In this way, we associate with any system ™ ~

of control data for a Whitney pre-stratified set V, a structure of an

abstract pre-stratified seton V., ~ - 3
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Hence it follows from Proposition 7.1 that any Whtincy pre-stratified

set admits the structure of an abstract pre-stratified set,

1if (V,8,3) is a pre-stratified set, V’ is any topological space,
and P V° =V is a homeomorphism, then the structure of a stratified
set on V "pulls back' in an obvious way to give a structure

(V'.(P*l,w*'J) of a stratified seton V’ .

If (v,8%,3) and (V,3,T) are abstract pre-stratified sets, then
a homeomorphism P V’ =V is said to be an isomorphism of stratified

sets if (V?,3°,3”%) is equivalent to (V",cp*sff,tp*ﬂ’ﬁ .

The uniqueness result that we will prove below implies the following:
if (Vv,8,%)ie a Whitney pre-stratified set, and I and T’ are two

systems of control data, then the abstract pre-stratified aets (V,3,3)

7 - . 7 R o 4T
and (V,8,3) are isomorphic, /1»/_,'4»';'_'_,.’, AR L ity
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§9. Controlled vector ficlds. Throughout this section, we let (V,8, )

be an (abstract) pre-stratified set. We suppose u >2.

DEFINITION. By a stratified vector field 17 on V, wemeana

collection {‘ny : X €8}, where for each stratutn X, we have that

Ny is a smooth vector fieldon X.

By smooth vector field we mean a vector field of class C”-1 .

Let T = {{Tx}, {-n'x}, {px}} , and for two strata X and Y, let

T , T

X, Y ., and PX,Y be defined as in the previous section.

XY

DEFINITION. A stratified vector field 7 on V will be said to be

controlled (by ¥ ) if the following control conditions are satisfied: for any

4

stratum Y there exists a nejpghborhood TY

of . Y in TY such that

4
for any second stratum X >Y andany v¢€ TY N X, wehave

(9.1-2)

{9.1-b) (vY.x)*nx(v) = 'nY(-n'Y'X(v)) .

DEFINITION. If P jis a smooth manifoldand f: V=P isa

continuous mapping, we will say that £ is a controlled submersion if

the followine conditions are satisfied.

(1) {|X:X=-P iga smooth submersion, for each stratum X of V.,
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(2), For any stratum X, thereis a neighborhood T, of X in

Tx such that {(v) = In'x(v) for all veg Tx .

" Note that both the notions that we have just introduced depend only on

the equivalence ciass of the pre-stratified set (Vv,8,3), i.e., if (v,8,3%)

is a pre~stratified set which is equivalent to (V,3,3), then a controlled
vector field {or controlled submersion) with respect to one of these
pre-stratified sets is the same as a controlled vector field (or controlled

submersion) with respect to the other.

PROPOSITION 9.1. If f:V ~P isa controlled submersion, then

for any smooth vector field { on P, thereis a controlled vector field

7 _9_13_. V such that f*'q(v) = {{f(v)) forall veV.

Proof. By induction on the dimengion of V (where the dimension of
V is defined to be the supremum of the dimensions of the atrata of V).
By the k skeleton Vk of V, we will mean the union of all strata of

Y of dimension <k . Clearly Vk has the structure of a stratified set,

where the strata of Vk are the strata of V which lie in Vk ., the
tubular neighborhoods are the intersecticns with Vk of the tubular

neighborhoods {in V ).of strata in Vk and the local retractions and

tubular functionon V, are the restrictions of the local retractions and

k

tubular functionson V.-

:
¥
i
!

i
]
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In the case dim V =0, the statement of the proposition is trivial,
Hence, by induction, it is enough to show that if the proposition is true

whenever dim V <k then itis true when dim V=%k +1. Thus, we may
{and do) assume that dim V = k +1 and that there is a controlled vector

field n, ©°n v

K such that f*rzk(v) = {{f(v)) forall v¢€ Vk . We will shos

that there exists a controlled vector field 7 on V which extends M

“such that f,7(v) = Lf(v)) forall veEV.

To construct 7, itis enough to construct separately for each

Tix
stratum X of V suchthat dim X =k +1, because the condition that

a vectdr field be controlled involves only strata Y, X suchthat Y <X.

Since by the induction assumption e is controlled, we can choose

neignborhoods T;, of Y ‘in TY {one for each stratum Yng)

such thatif Y < Z are strata, then the control conditions (9.1) are
satisfied (With Z inplaceof X ) for vE T}I N Z . By the assumption

that f 1is controlled, we may choose the neighborhoods T; such that

1
f = »
{v) vK(V) for all vE€ TY

It i easily seen that we may choose neighborhoods Ti, of Y in

) _
TY {one for each stratum Y C Vk) such that the following holds: if

Y <Z are gtrata in Vk then

1

2 2
IZ(TYﬂ Tz)g'.',TY .
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Ve can furthermore choose the T,Z{ so that Tf{ is closed in V - Y
(where 9Y denotes the frontier of Y ), since V «3Y is metrizable
and therefore normal, and Y 1is closedin V--3Y . Finally, we can
choose the T,i, so that if Y 1is not comparableto Z, then

2 2
T,NT, = Q.

Now considez the following conditions on a vector field Ny o©n X:

(9. 2-a.Y). The control condition (9.1) is satisfied for any

vE Ti, ﬁ X,
(9.2 - bl f,n(v) = C(H(v)) forall veEX.

V. e claim that there is a vector {ield nx on X satisfying (9.2-b)

and (9. Z-a.Y) for all strata Y <X, To prove this claim will clearly be |

enough to prove the proposition.

Consider a peint v € X, The set Sv of strata Y <X such that
2 . .
v € TY is totally ordered by inclusion, sinceif Y and Z are not
comparable then T,i N TZZ =@, If Sv is not empty, then there is a

largest member Y = Yv .

Suppose for the moment this is the case and (9. Z—aY) holds at v.
Then (9.2-az) holds for all 2 € Sv . For either Z2=Y or Z<Y.

Z's ). Then

In the latter case wY(v) € le {by the choice of the - TY
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MxPz,x!¥) = xPz vy, x(V) = 0

and

(“z,x)*”x("’ = (“z,Y)*(“Y.x)*”x(")

(“Z.Y)*”Y(“Y. X(V))

= vz vy, xV)

(v)) .

N7, x

Tﬁus (9.2-&2) holds at v for all ZGSV. Furthermore

Leny(v) = AL e g ) my(v)

£y Ty 5 (V)

Cfv)) .

Thus (9,2-b) holds at v.

This shows that to construct satisfying (9.2-b) and (9.Z-aY)

4 "_’x
forall Y <X, itis enough to construct Ny satisfying (9.Z-ayv) at

v forall ve&X for which S, s non-empty, and satisfying (9.2-b)

at v forall v€ X for which Sv is empty, Clearly, we can construct
a vector field Ny in a neighborhood of each point v in X satisiying
the appropriate condition (9. Z-aY ) or (9.2-b). Since the set of vectors

v

satisfying the appropriate condition in 'I‘Xv is convex, we may construct

Ny globally by means of a partition of unity. Q. E.D.
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§10. One parameter groups. Let V be a topological space. By a

one-parameter group of homeomorphisms of V , . we mean 2 continuous

mapping - ¢: R XV -~V such that cst(v) = cxtas(v) for 311. t,8 € R
and all ve€ V. Now suppose V is a stratified set (v,8,3}) and «
preserves each stratum. If 7 is a stratified vector fieldon V, we
say that :7) generates ¢ if the following condition is satiafied. For
any v €V, the mapping" t-oo:t(v) of R into V s C1 (28 a

mapping into the stratum which contains v ) and

- d i
at (at(v)) t=0 = nv) . | _ :
Note that this implies

Lia v = nlaon tER .

It is well known that any Cl vector field on a compact manifold
without boundary generates a unique one-parameter group (see, e.g.,
[2, p. 66 ]) . It is also known that to extend this result to non-compact

manifolds, we must generalize the notion of one parameter group,

DEFINITION. Let V be a locally compact space. A local one-

parameter group {on V) is a pair (J,a¢), where J is an open subset

of RxYV and @:J =V isa continuous mapping such that the following

hold.
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(a). 0xVvel

(b)y If v €V, then the set Jv=Jn(lev)glR is an open interval
(a ob ).
vy

(c) If ve€V, and t,8 and t+s arein (a.v.bv) then

alt + 3,v) = alt, als, v)) .

(d). For any - v€ V and any compact set K&V, there exists

€>0 suchthat ofv,t)¢X if t€{a ,a +dU(b -¢Db ).
v' v v v

From now on in this section, we suppose (V,3,3) is an (abstract)

pre-stratified set, and 7 is a stratified vector fieldon V.,

DEFINITION. I1f (J,q) is a local one-parameter group {on V),

we say % pgenerates o if the following conditions a - ¢ are satisfied.

(a)., Each stratum X of V 1is invariantunder ¢, i.e.,

aJN (R xX))csX.

(b). For each v€ YV, themapping t-aft,v) of (a_,b ) intothe

1
stratum which contains v is C°,

(c), Forany vE YV, wehave

.

d
<-alt, v) =0 = niv) .

dt
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Since @ is a one-parameter group, condition. ¢ is equivalent to:
(c’). Forany (t,v)€J, wehave

%a(t.v) = nlalt,v) .

This generalizes the ordinary notion of what it means for a vector field

to generate a local one-parameter group.

Since (V,8,3) is a pre-stratified set, it makes sense to talk of a

controlled vector field on V (Section 5).

PROPOSITION 10.1. If 17 is a controlled vector fieldon V then 1

generates a unique local one-parameter greup (J,o) .

Proof. For each straturh X , the restriction % of 1 to X s

a smooth vector field on X (by the definition of stratified vector field);
hence Ny generates a smooth local one-parameter group (Jx.ax) of
diffeomorphisms of X, by a standard result in differential geometry
[2, 1v, §2 ]. Let (J,a) be defined by

J = UJ = .
XESX XESX

We assert that (J,a) is a local one-parameter group generated by 7.

b e e oy e -

o .
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Itis clear that a, b, and c¢ in the definition of local one-parameter
group hold, and thatif o is a local one-parameter group, then it is.gencrate
by v. Uniqueness is obvious, All that remains to be verified is that

J isopen, ¢ Iis continubue, and d holds.

We begin by showing that d bholds. If not, there exists v€ V anda
compact set K {n V such that «t,v) € K for values of t arbitrarily
close to a, or bv . We may suppose that gt,v) € K for values of t
arbitrarily close to bv ; the other case is treated similarly. Then tl;ere
exigts a sequence {ti) , converging to bv from below, such that

y = lim av(ti) exists and liesin K. Let X (resp. Y) denote the

stratum of V which contains v (resp. vy).

If X=Y, wegeta contradiction to the fact that oy is a one-paramete
group, Otherwise Y <X, For large i, pY,X(av(ti)) and wY'X(av(ti))

are defined, and the control conditions are satisfied for ‘mi =a ft.).

Thus, by taking i sufficiently large, we may suppose that there exists

€ >t-t such that [O,c]gin, where y (m.), andif T, is

i~ Ty, X Y

the tubular neighborhood of Y , Ty is the local retraction of TY onto

{m,) <¢ on

Y and Py is the tubular function of Y , then Py x(m, ¥

ayi([o,(]) and the control conditions for the pair Y,X are satisfied for

m € {py'x = Py xim)}n ,,_;}. xloy: ([0, e])n X . Since
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{pY x T Py X(mi)} N “;1 x(ayi[o, ¢]) 1is compact (because

(mi)<€Y on ayi([o,e])), and o stays ié X (by definition),

Py, x

it follows from the control conditions that

av(ti+8) € {PY,X = PY,X(mi)} n v;}' x(ayi(a))ﬂ X for 0<s8<c¢ .

But this contradicts the hypcthesis that o:v(tj) -~y as j=—o . This

contradiction proves d.

Now let (t,v)€J . We will show that J is a neighborhood of (t, V]

and ¢« 1is continuous at (t,v). V e will suppose t2> 0 ; the other case
is treated similarly. As before, let X be the stratum which contains v.

Since o

X is a local one-parameter group, there is a compact

neighborhood U of v in X andan ¢€>0 suchthat [-¢,t+¢]xUcT.
Let Tx denote the tubular neighborhood of X, "X the local retraction

of TX on X, and’ Px the tubular function of X . Since

ax([-e.t + €] x U) is compact, we may choose an € > 0 such that the
following hold: ‘

and ﬂx(y) € QX([‘G't +e]xU)}.

(a). Let §= {y ¢ Ty ply) < ¢

Then I is compact,

(b).- If y € L, then the control conditions for the pair X,Y hold at

y , where Y is the stratum which contains vy .
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Clearly, the set X‘o of y€ Tx such that px(Y)S_ € and
RX(Y) € U is aneighborhoodof v in V. I y€ZL,, it follows from

the control conditions that

px(ay( s)) = px(v)

ﬂx(ay(s)) = a'irx(yi(s)

forall s¢€ Jy such that ay(s') €Y for 0<s’”<s. From these facts

and d, it follows that [-e,t+e€]x I, ESJ; thus J containsa

o ——
neighborhood of (t,v)}.

The argnuient that we have juet given shows that if

(t.y)€[t-e,t+e]x I, then y'=a(t'.y)ETx . px(y')_<_c and

1 ]
-n'x(y') = o(t’, vx(y)) . Hence for an arbitrarily small neighborhood of
«l{t,x) we may choose ¢ >0 anda neighborhood 21 « Hence o« is

continuous at {t,v). Q.E.D.

COROLLARY 10,2, Let P be a manifold, and {: V=P bea

proper, controlled submersion. Then { is a locally trivial fibration,

Procf. It is enough to consider the case when P =IRk and show in

this case that there is a homeomorphism h: V - VO X IRk , where YV

0

denotes the fiberof V over 0, such that the following diagram commutes:
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Diagram 10.1

where P denotes the projection on the second factor.

- Consider the coordinate vector fields 31. ‘e, ak on ]Rk . By

Propc;sition‘lo.l, foreach 1, 1<i<k ., there is a controlled vector field

gi on V such that
£3.(v) =:3.(8(v)) ' vEV .
i i

By Proposition 19.1, each Bi generates a local one-parameter group
(Ji' ai) . Clearly f(ai(t. v)) = f{v) +(0,*++,0,¢t,0,¢++,0), where the

_ non-vanishing entry is in the ith place, Then from the assumption that
f is proper and condition d in the definition of one parameter grbup, it

follows that J’i =R xV. Let h be given by
h(v) = (.al(-tl' az('tzu' LR -ak('tk' v) - . ) v))

where we set f(v) = (t,,+v. ,tk) . It is easily seenthat h maps V into

'VO X IRk ~and that Diagram 10.1 commutes. Let h: Vo X mk -V be

defined by

ey gLy

T e it e

—
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h(vv(tlt' d .'tk) = ak(tka' . -.sz(tz.al(tl. V)))

From the fact that the ai'a are one-parameter groups, it follows that

hh = hh = identity. Hence h is a homeomorphism, as required. Q.E.D.

Note that VO has a natural structure of a pre-stratified set

(v.,8.,3.), where 80 and J are defined as follows. 8 is the

0°'°0’“0 0 0
collection {Xn vozxes}. If Xe8 and 'x0=Xn V0 is the

corresponding member of § then we let TXO = TX n Vo )

0 ’
“’X0=“XITX0 and px, = px|Tx0 « Note that nyx, maps Tx,

into Xo because f{ 1is a controlled submersion. We let 3’0 be the

triple {{Txo} ’ {Trxo} ' {PXOD .

Furthermore Vo X le has a structure of a pre-stratified set

(defined in an ebvious way).

COROLLARY 10.3. If h is constructed as in the proof of

Corollary 10.2, then h is an isomorphism of pre-stratified sets.

Procf, Immediate from the construction of h , (See the end of

Section 8 for the definition of isomorphism, )

COROLLARY 10.4. Let M be a manifold, let X’ be a closed

subset of M andlet § bea Whitney pre-stratificationof S. Let

X and Y be gtrata with X <Y . Let W be a submanifold of M
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which meets X transversally, Then XA WgcYNW.

Proof. Let x€XNW. Toshow x€YNW, itis enough to consider
what happens in a neighborhood of x . By replacing M with a sufficiently
small open neighborhood of x , we may suppose that X is connected and

closed, and there exists a tubular neighborhood Tx of X in M such

- -1 r . - . :
that wWn Tx = vx(“ N X), where Ty Tx X is the projection

associatedto T From Lemma 7.3, it follows that by choosing T

X® X

sufficiex;tly small, we may suppose that there exists ¢ >0 such that

PX <¢ on TX , where Px is the tubular function associated to Tx '

where (p.,7.,): T, = [0,¢) x X 1is proper, and where for each stratum
Py Ty X 18 prop

Z of 8, the mapping

(pgrmydZ 220 Ty —>(0,€) x X

is a submersion. ' :

Let 8" = {2Zn (T -X):Z¢ S} . Then 8§’ is a Whitney
pre-stratification of SN ('I‘x -« X) . By Proposition 10.1, there'is'a family

of control data ¥ for 8 which is compatible with (PX Then

'..Tr'x) .

(sn (TX - X),8°,3°) is an abstract pre-stratified set and (ox, wx) is a

controlled submersion. Hence byCorollary 10.2, SnN (TX - X) isa

locally trivial bundle over (0,¢)x X, and by Corollary 10. 3, the local

trivializations respect the stratification, -i
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It follows that any stratumof 8° (e.g., YN (Ty - X)) intersects
each fiber of (px, vx) . Inparticular @ #YnN (px, ﬁx)-l(c',X)g Ynw

far 0<e¢’ <¢. Itfollowsthat x€ YN W. Q.E.D.

The next corollary says that a pre-stratification which satisfies all the
conditions of a Whitney pre-stratification except the condition of the {rontier
also satisfies the condition of the frontier, provided that its strata are

connected,

COROLLARY 10.5. Let M be a manifold and 8 be a locally finite

pre-stratification of a closedsubset V of M whose strata are connected

such that any pair of atrata satisfy condition b. Then 8 is a Whitney

pre-stratification,

Proof., It suffices to show that the condition of the frontier holds.
Suppese X and Y arestrataand YN X % @ . The proof of Corcliary
10,4 shows that YN X is openin Y, Since YN X is clearly closed in

Y, and Y is connected, this proves Y g§ .
The proof of Corollarf 10, 4 also shows:

COROLLARY 10,6, Let M be a manifold, 8§ a Whitney

pre-stratificationof M, X a stratumof M, and T a tubular

X
neighborhood of X in M such that for any stratum Z of 8, the
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mapping (PX'”X) | ITX! -X)nzZ — x: ;a a s\ibmersion, where

T, =(E, ¢ ¢) and X, = {t, xe RxX: 0<t<e(x)}. Then the bundle o

(|Tx| - X, (PX, fX)'xt) is locally trivial and the local trivializations can

be chosen to respect the stratification.
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§11. The isotopy lemmas of Thom. In this section, we will state

Thom's first and second isotopy lemmas. We will prove the first and

sketch a proof of the second.

Throughout this section, we let M and P be smooth manifolds,
f:M =~ P a smooth mapping, and S a closed subset of M which

admits a Whitney pre-stratification, "

Proposition 11.1,Thom's firstisotopy lémma. Suppose f[S:S =~ P 'ig

o~

proper and {|X :X -~ P is a submersion for each stratum X of .

A

Then the bundie (S, f, P) is locally trivial,

Proof: By Proposition 7.1, we can find a system of control data for
S which is compatible with f ., This provides S with a structure of
an abstrac’.c stratified set in such a way that f{ 1is a controlled submersion.
Then the gonclugion of the theorem is an immediate conseguence of

~ Corollary 10. 2, Q.E.D.

Remark: Thom consideredthecase P = R. If a,b€ R, then
the proof of Proposition 10.1 constructs an isotopy from the fiber Sa

to the fiber Sb » whence the name '"isotopy lemma'',

The second isotopy lemma is an analogous rcsult for mappings instead

of spaces. Consider a2 diagram of spaces and mappings:
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We say that { is trivial over Z if there exists spaces Xo and Y

a mapping iO:X0 = Y, andhomeomorphisms X = Xy X 2 ,

Y = Y, x Z such that the following diagram of spaces and mappings is

0
d > Y
\/
VA

~ 7

commutative:

X

Z - —" Y A
Xo X £ xid ~ ‘o * /
0 7
\‘

Wg say f 1is locally trivialover Z ifforany z € Z, thereisa

neighborhood U of 2z in 2 such that in the diagram

(U) '_'—->-1T

N

we have that f is trivial over U,

o ?

s gy vt m o mam e en

(
.‘
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Local triviality of 2 mapping f over a space Z has a consequence
which will be very important in what follows., We thinkof { asa
family {fa 2 € Z} of mappings, where £ Xa - Ya is the mapping
obtained by restricting { to the fiber Xa of X over a, If Z
is connected and { {8 locally t;rivial over Z , then forany a and
b in Z, the mappings .fa. and £b are equivalent in the sense that
there exist homeomorphisms h: Xa ~ X, and h: Ya - Yb such

that h fa = fbh.

This {s the relation of equivalence that is used in the deﬁniti;n of
topologically stable mapping, and a step in the proof that the topologically
stable mappings form an open dense set will be to show that certain
families of mappings are locally trivial in the sense defined above, by

an application of Thom's second isotopy lemma,

Now suppose M’ {s a smooth manifold and S° is a closed
subset of M’ , which admits a Vhitney pr.e-stra.ti.ﬁca.tion g8’.
Let g:M” = M bea smooth mapping and suppose g(S°) ¢ S.
Thom's gecond isotopy lemma gives sufficient conditions for the following

diagram to be locally trivial; - ) . e

. ;(’i.'/ .
s -,
diagram 1.1 g* £ £ :'_7 . ')n/!',"’
G opere 0 0
3 <7 / 3 -
P . ’ T )
PERe 4 LT
g ) ,)',3-_,:.'_ ~ .
/L/-‘f/ ; - :
P \ e I/‘
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To state Thom's second isotopy lemma, we must introduce Thom's
condition 3 Let X and Y be submanifolds of M’ andlet vy
be a pointin Y ., Suppose glx and gIY are of constant rank,

We say the pair (X, Y)- satigfies condition a.g g}.' y if the following

holds:

Let x be any sequencé of points in X convergingto vy.
/f' ’
Suppose that the sequence of planes ker(d(g|X )xi) c 'l‘l\g‘:i
converges to a plane T ¢ TM;{_i’y in the appropriate Grassmannian

bundle. Then ke).'(d(le’)Y €.

Y/e say that the pair (X, Y) satisfies condition a.g if it satisfies

condition a.g at every point vy of Y.

Now, we return to the situation of Diagram 11.1. We will say that

g is a Thom mapping (over P) if the following conditions are satisfied.

’“ (a) g[S’ and f£|S are proper.
(b) For each stratum X of &, f|X. is a submersion.

(c) For each stratum X’ of 8°’, g(X’) lies iné. stratum X
of 8, and g:X’ = X isa submersion (whence g|X* isof

constant rank),

(d) Any pair (X’,Y’) of strata of 8 satisfies condition a,

(which makes sense in view of (c)).

o ey

rim g
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In the case P 1is a point, we will drop over P,

PROPOSIIION 1.2 (Thom's second isotopy lemma). If g isa

Thom mapping over P, then g is locally trivial over P,

The proof of this requires new machinery., Let {T} be a system
of control data for the stratilication § of S. We need the notion of
a system {T’} of control data over {T) for the stratification 8 *

of S’.

CAUTION: A system of control data over {T} 1is nota system of
control data as previously defined. If we were to require th;axt a system
of control data over {T} also be a system of control data tout court.
then the fundamental existence theorem for control data over {T)

(Propositioﬁ 11. 3, below) would not be true.

DEFINITION: Suppose g is a Thom mapping. A system {T’}

of control data for 8 “ over {T} is a family of tubular neighborhoods,

n e

indexed by 2°, where 'I‘}'{ is a tubular neighborhood of X in M’

with the following properties: -

(a) If X’ and Y’ arestratoof 8’ and X’ < Y’, then the

commautation relation




T’ Ty’ v) = m.iv)

holds for all v for which both sides are defined, i.e., 211

v € !Tx" n |Ty,| such that . .(v) € lTx,l .

Furthermore, if g(X’) and g(Y') lie in the same stratum

of 3 , then the commutation relation

PX' 'n'Y, (V) = PXJ (V)

holds for all v {or which both sides of this equation are defined.

(b) If X’ isa stratumof 8 ° and X 1isa stratumof 8§ which

contains g(X'), then

g""x'(v) = fog(V)

for all v for which both sides of this equation are defined, i, e., for

-1
all v € |Ty.|ng | Tyl -

Note that a 1is weaker than the commutation relation for control

data in the case g(X’) and g(Y’) are notin the same stratum of

S .

PROPOSITION 11.3. If g is a Thom rapping then for any system

{T} of control data for 8 there exists a system {T’} of control

data for 8° over {T}.

R

o g e




68

The proof of this is similar to the proof of the existence theorem

" for control data (Proposition 7.1}, We will only outline it.

Proof {Outline): Let 8 ;c be the family of all strata of $° of

dimension < k, andlet S‘: denote the union of all strata in 8§ ‘: .

We will show by induction on k that the proposition is true for 8 1’(
and Sl: in place of 8’ and S’. This will suffice to prove the

proposition,

The case k = 0 is trivial. For the inductive step, we suppose
that for each stratum X’ of &’ of dimension < k, we are given

a tubular neighborhood T of X’ and that this family of tubular

xl
neighborhoods satisfies conditions (a) and (b) above.

By shrinking the 'I'x' if necessary, we may suppose that if
X’ and Y’ are strata of dimension < k which are not comparable,

then |T,{.| fi ITY" = @, To constructthe T on the strata

Xl
of dimension k, we may do it one stratum at a time, since the

relations (a) and (b) impose no conditions on pairs of strata of the

same dimension. Let X’ be a stratumof &’ of dimension. k.

V/e construct the tubular neighborhood TX' in two steps as

follows. For each £ <k, welet Uz' denote the union of all |T

'
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for Y <X’ and admY’ > 1. WVelet x;: Ufn X’ . In the first

step, we construct a tubular neighborhood 'I‘l' of Xl' by decreasing

induction on £, shrinking various T:{ where necessary.

This step is carried oﬁt in essentially the same way as the first
step in the proof of Proposition 7.1. We start the inductionat ¢ = k,
where there is nothing to prove. For the inductive step, we suppose
T/ has been constx;ucted. We observe that to construct T/ itis

1H1 T 1

enough to construct TI on lTy,l N X’ for each stratum Y’ <X’

of dimension 1 separately. Then there are two cases.

Casel. If g(¥Y’) and g(X”) are in the same stratum of ,
then the construction is carried out in the same way as the corresponding
construction in the proof of Proposition 7.1. In this way we define TI'

oh ITY,I N X° bo that the commutation relations (a) hold.

(Note that condition (b) follows from {(a) in this case.)

 Cage 2. In the case g(Y’) and g(X’) are notin the same stratum
of 8 , the proof must be modified, Let X be the stratum which
contains g(X’) andlet Y be the stratum which contains g(Y’).

Then Y < X, By shrinking |T,2,| if necessary, we may suppose that

g(ITY'I) c |T,|. Let

Y

vV = (ITYI N X)X Y

TEITITIEITITT
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where the fiber product is taken with respect to the mappings

'n'Y:|TY|nX——>Y

g: Y — Y .
Then the mapping
G = (8. "Y'.) : |TYI| N X— Y

is defined because the following diagram commutes:

. v 4
Tyl N X° —F— ¥
g g
A Y
v T \

|Ty|nx——l—>y ,

by the inductive hypothesis that (b) is satisfied for those tubular

néighborhoods which are already defined.

LEMMA 11.4. Thereexists a neighborhood N of ¥’ in ITY,l such that

GINN X" : NA X —> Vv

is a submersion, -

Proof: Let I be the set of points in lTy’I N X’ where the

differential of G 1is not onto. It suffices to show that Y’ N 33_ = ¢,

O



Lét x’ € ITY" n x*, x=gx%),y" = ‘NYI(X')- and

y = gly’) = 1'rY(x) . ‘Then

x

= ’ , . a' = ] TY’,
aG_. (d(n'Y,X,)x, , d(glx )x) TX, —> TVg .y = TX xTYV

By definition, x° € ¥ if and only if this mapping {s not onto. Since
’ s o TX', —
d(g|x ) . TX_
is onto (by hypothesis), it follows that this mapping is onto if and only if"

d(“Y‘X')x‘ : ker(d(g]}{' x') —_—> ker(d(g]Y')Yo>

is onto. From condition ag , it follows that Y’ does not meet the

closure X of the set of pointé where this mapping is not onto. Q. E.D.

Now we extend T; over |T N X’ in such a way that (a)

yad
ho].;:ls (the weak {2)!) and (b) holds. We may do this by the generalized

existence theorem for tubular neighborhoods and Lemma 11, 4.
This completes the inductive step.

Now the second step {extension of Tl‘ from Ua over all of X°*)

is carried out in exactly the same way as in the proof of Proposition 7.1,

The rest of the proof of Proposition 11. 2 will be carried out in

three steps. I'irst, we define the notion of a controlled vector field

y

L
3
l
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over another controlled vector field. (WARNING: this is not a special |
case of the notion of a controlled vector field.) Then we prove a lifting
theorem for cont;'olled vector fields. Finally, we show that every
cmtréned vector field over another controlled vector field generates

a local one parameter group.

Now we suppose g is a Thom mapping. We suppose that we are
given a gystem {T)} of control data for S and a system {T’}
o _
of contral data for S° over {T}. Let 7 = {'ryx}xeg be 2

controlled vector fieldon. S.

DEFINITION: By a controlled vector field on S° over 7. we

will mean a collection {nx;}x ‘g’ where Tyo is a vector field

on X°, such that the following conditions are satisfied.
(a) Forany X°€8° and x°¢€ X’°, wehave
L4 4 - L4
(g]x )e Ny x ) = ‘nx(g(x .

(b) Forany X’,Y’€ 8" with ¥’ < X’, thereis a neighborhood

N,., of Y° in |TY,| such that for y’¢ ITY.|nX', we have

(TfYoxo)* ‘nx;(x') = T]Yo(ﬂ’Y'xo(x ))
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and if g(X’) and g(Y’) arein the same stratumof 8 then we have

f]xo pY;X'(x') = 0 .

{Note that condition b is weaker than the condition that we imposed
on a controlled vector field in Section 9 in the case . g{(Y¥*) and g(X*)

are not in the same stratum of 8 .)

PROPOSITION 11.5. There exists a controlled vector fieldon S’

over Jf} .

The proof is completely analogous to the proof of Proposition 9.1,

and we omit it.

PROPOSITION 11. 6. 1f ?]' is a controlled vector field on S’

over 7, then 1]' generates a local one parameter group, which

commutes with the one-parameter group on S generated by 1.

The proof of this is essentially the same as the proof of Proposition 10.1.

'The only additional remark to be made is thatif X* and Y’ are
strata of 8 with Y’ <X’, and g(Y°)' liesin Y and g{x”)
lies in X, then, inthe case Y < X, a trajectory %’ of 9’
starting at a point of X” cannot spproach Y’ because the image of

v’ is a trajectory of 7 and therefore cannot approach a point of Y .

We omit the proof.

TR




Proof of Proposition 1. 2. To prove that g is locally trivial over

P, it suffices to consider the case P = R' and prove that g is
trivial over P in this case. By Proposition 7.1 we can find a system
{T} of contro.l data for 8 compatible with f, and by Proposition 11.3
there exists a system {T’)} of control data for 8&° over {T}.

Let 31' oo ,ap be the coordinate vector fields on IRF ., By

Proposi'tion 9.1, we can lift 3, to a controlled vector field Si on S,

i

and by Pruposition 11.5 we can lift Si to a controlled vector field %,i

on S’ over ai.

By Propositions 10.1 and 11, 6 the vector fields si and S‘ generate

i
local one parameter groups 73i and ‘T;i' Since the mappings { and

g are proper and ai generates a (global) one parameter group c,oi ,

it follows that ai and :Fi are (global) one parameter groups.

Let SO {resp. Sé) denote the fiber of S (resp. S°) over 0.

To complete the proof, it is enough to construct local homeomorphisms

h - and h’® such that the following diagram comrmutes.




x/
\ \L’

—_—
S OX1d S

P
oxIR .

We define h and h® as follows.

fegix)

[tl coe t)

h’(x)

4 P .
. oo (x), t where t
Gop, -t:p 1)01' -tl )

f(x)

h{x)

(tll e ntp)

Gpp. -tpe ° h?l. -tl(x) » t) Where t

It is easily verified that the above diagram commutes and that h and

h’ are homeomorphisms. Q. E.D.
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Thess notes are part of the first chapter of & series of lactures
given by the suthor in the spring of 1970. Thes ultimats aim of thess
notes will be to prove the theorem that the set of topelogically stabla
mappings form & dense subset of c(N,P) for any finite dimensional
manifolds M and P wherse N is compact: The first chapter {» a study
of the Them- Whitney theory of stratifisd sats and stratifled mapplngs.
The connection of the material in these notes with the theorem on the
deneity of topologically stable mappings appeasrs in *11, where we give

Thom's secand isstopy lemuma. This result gives sufficient conditions for

two mappings to be topolagically equivalent.
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fl. Condition a . We begin by introducing some notions that are

due to Whitney ([ 5] and [ & ]} . :

Let g be a positive number pr @ , which will be fixed throughout

this chapter. By "smooth' we will mean differentiable of class cH. :

Let M be a amooth (1. e., E'u} n-manifald without boundary. By
a smacth (l.a8., E”_l pubmanifald of M , we will mean 3 subeet X of
M such that for every = € X there exists a coordinate chart [y, U) I
of class C* wuch that x EU and :,-_:-{1{ N U)s= Iﬂkﬂg{ﬂl , fora '|
sultable coordinate plane :I:El.h in I, In the definition af submanifold, i
we do not assume that X is closed. However, it followas from the

definition of submanifold that X L2 locally closed i.e., each point in

& has a neighborhood U in M suchthat XN U is closedin U. i

If X isan r-dimensional sebmanifald ol M and x€ X, then /
the tangent spaca TK: of X at = is a peint in the Crassamannian
bundle of r-planes in TM: « In what follows "convergance" means

convergence in the standard topology on this bundle.

Let X and ¥ be smooth submanifolds of M and let y €Y.

Set r=dim X,

TR WL e



DEFINITION L1, YWe say the pair (X,Y) satisafies conditlon a at

y if the following holds. Given sny seguence x, of points in X such

that x = and T'J{,_l converges to some r-plane T TMT y we have

Y 7.
Y

Example 1.2, (Whitney [ & ]}« Let =x,y,z denote coordinates for
€. Let Y bethe y-axisandlet X bethe set {zx° -y° =0) with
the z-awis deleted. (In Figure l, we have sketched the intersection of X
with B ks R and o iee coiale saoite s et

It is eapily seen that (X,Y) weatiefies condition a atall points of Y

except the origln, and that it does not satisfy condition a there.

We will say that the pair (X,Y) satisfies condition a i it satisfies

condition a at every pointaf Y.

In Example 1. 2, the pair (X.¥Y) does not satiefy condition a. If we

set Zu {0} and Y =Y - Z, then the pairs .Y ., (%.2) ., and

(¥", z) do satisly condition .




R T e AN

3.

t2. Condlton b, We will hagin by defining ¥hitmey's conditlon b
for submanifolds of M" ., Then we extend this deflnition to submanifolds
of an lrh[trlr}r manifold, using the dafllnltion In mu « Wewlll also show

that condition b Implies condition a . i

U xyeE m" and ===y, then the secant Q will denate the lines
In WB" which s parallel to the line joining x and y andpasses
through the origin. For any =x € B we {dentify T:‘Hn with ®" in

the standard way.

Let X,¥ he (smooth) submaniiolds of B™. Let vyEY . Let

r=dimX.

DEFINITION 2.1. Ve say that the palr (X, Y] satisfles conditlon

b at y {f the following holds. Let x, be a sequence of points in X,

converging to y and 'fi a sequence of pointsa in Y , also‘converging i

to ¥y . Suppose TIti converges to some r-plane rcM"  and that

x, - ¥, for all 1 and the secants IE'_.rl' converge {in projective space

.Pn'li to same line .!'gIE“ . Then I[CT,

Let (X°,Y") bea second pair of submanifolds of m" , and let .

v EY".

LEMMA 2.2. Suppase therc exist open nelghborhoods U and U”

® anda {smooth) diffeomorphism P U-=U" such !

Jrindr'i_nﬂ




that @UAX)=U"NX" , @UNY)=U'NY" and ¢ly)=y", Then

(X, Y] satlefies conditlen b at y Iif and only if (X*.¥7) matisfies

condition b at ¥ .

Proaf: Obvlous,

DEFIMITION 2.2. Let M bea manifeld and X, Y psubmanifolds,

Let y€Y, We say that [X,¥Y) gatiefles condltlon b at y {ffor

some conrdinate chart :;F. U} about v, we have that the pair

{plUN X) , (U N Y)) satisfies conditien b at -:ph.r]l.

In view of Lemma 2.2, f (X,Y) satiafles condition b at v , then
for every coordinate chart [, U) about ¥y, we have that (plun X}, ;I'JIT_TI“. ¥)

satisfies conditlon b at vy.

For the rest of this secton, let MM be a manifold and X and ¥

submaniiclds and let vy € Y .

; FROPOSITION 2Z.4. If (X,Y) satisfles condition b at y then

it satisfias condition a at vy.

Proof: Since both conditions a2 and b are purely local, we may
suppose that X and ¥ ere submanlfaldg of :R“ . L&t xi. be &
| sequence of poilnts in X such that x =y and T}[ii =T , for some
: rC TIH: = R", Ve must show that ".I."l!'? =T . Suppose otherwise.

-1




5.
Then there axists.a linae I m", passing through the erlgin, such that
i1g TTT but 1€ T. Since IC TT? » we can choose & sequence of polnts
rt-E"l" such that flqﬁxl P Yy and ;:;::?-1.! « But since fg T, this

eantridicts conditen b . C. E. D,

We say (X,Y) esatlisfles condition b If {t satiefles condition b at .

every point yE Y,

Example 2.5. Let X be the spiral in R’ defined by the conditian
that the tangent of X makes & constant angle with the radlal vector, and
let Y be the origin. In polar coordinates, this spiral is given by
r - B8 = constant. Then the pair (X,Y) does not satisfy condition b .
For, by dellnltion, the angle & bebtwesn the li_rJ.-e T}Ex and the secant |
ﬂ {s Independent of x. If *, € X isa sequence converging to 0,
then the tangents TI,:! convergeto s line TEIR,':':J and Ct:l converges .

to a line J, which makes an angle a with 7.

Example 2.6, (Whitney [ & ]}). Let x,y,z be coordinates for ﬂ.-‘:s =

} o 2%xPa0) wh !

Let Y bethe s-axis. Let X be the set [y +x
the z-axis deleted. (In Figure 2 we have sketched the [ntersection of X
with Iﬂj + ] Itim ezsily seen that the pair [(X,Y) satisfles condition a,
and the pair (X,¥)] satlefies condition b at all points of Y except the

origin and that it does not satiafy condition b there.

|




PROPOSITION 2.5. Suppose yE X = Y and (3,Y)] satiafias

i

condition b at y. Then dimY <dim X.

Proof: It ls ensugh to conslder the case when M = J:El.m . Since
yE X - T , there exists o sequence ::i in ¥ -% whleh convergaa
to ¥ . By the compactness of the Grassmannian, we may suppose, by
pasping to & subsequence lf necessary, that T?{!i converges o an T
plane ‘-"Eﬂ'im {where r=dim X}, Since condition b implies condition
a |Proposition &.4], TT}* T, For 1§ safficlently large, there ls a
point ¥y, on ¥ which misimizes the distance to X, By passing to
a subseguence if nécesmary, we may suppose the secants J:;'g.ri CORNVETga
to & line l-.';mn.‘ Since ?‘i minimizes the distance fo xi , the
secant Y% is orthogonal to Ty 3 hence I im orthogonal to TY
Since (X,Y) -satisfies condition b at y, wehave [CT. We have

shown TT?-!-l;r and ! is orthogomalte TY 1 hence

dirmn X = dim T > dim TT}f sdim Y, 0. E. D,




§3. Blowing ""'E: In the next saection, we will give an intrinsic

formulatlon of condition b whlch will be useful later on, This formulation
deptnd.u on the notion of blowing up a manifold along a submanifold, which we

define in this section.

Let M beamanifeldand U a closed submanifold. By the
manifald I!-UN' obtaipod by blowing up N aleng U, wa will mean the manifold i
defined in the following way., As a set BUN is the digjoint union

denotes the projective normal bundle of U

(W - Uy P‘r]-u. , whera Pnu

in M., '

By the natural projectlen w: B, M -=N, we mean the mapping

u
defined by letting | Fr;lU ba the projection of F"I'TU on U and letting 3

m|N = U be the inclusionof N -U into N.

Ta define the differentiable strocture on BUN , we [ilrat conaslder

r .
the case when ™ iz open in M and U= IFL*I'I N, where m° is the

coordinate plane defined by the vanlshing of the last n - r. coordinates,

=t =1

Then we have a mapping o: B, N - IIE“ x BP delined as follows.

T
Firat, ﬂ'l F'ﬂu is the |t:|:nﬂa.rd identification of F‘?TU with

n=-r=1 n-r=1

UxRP EﬁlanF . Secondly, if :::ﬂxl.r--,:i]fﬂ’-u-m-r.

than o} =tz 8zl ; where Blx) lsthepointin RE™T  with

r+1"“'xn]'

homogensous conrdinates (x




It Lo eanlly verified that n[HUN] isa G submanifold of

fA=r=1
R" x P as follows, Let I::l.---.::“:l denote the coordinates of

n A=r=1

R Let 'J{_rﬂ.'- ' .}:n denote the homogeneous coordinates for B P

For r+l<i<cqp, let 21 denote the subset of R Pn'r"ldeﬂnudb]r

Ii £ 0, andlet iji be the real valued function 'J{ii = }'f.'JJ"'.‘I'!:1 on El .

Then the Intersection of El‘f_BuH] with N x Z  is the set defined by

Ijﬂxj!.!'l r+lcfjen , j£I1 4

Therefors n-i'HuN] ls 2 submanifold of M x :I:F',,'.Iihr'1 .

Since the mapping o is Injective, we may define a manifeld structere

on BUH by pulling back the manifold structure on EI'_I!-UN] .

How, let H" be a second cpen subset of m', le¢t U'aR NN’ .
andlet @: (N, U} ~(N°, U} bea ct diffeomorphism. Let
Py ! ]}UH - EU.-N' be the induced mapping, defined by letting
!P#IFTILI' 5 F'r]lu - P"'u* be the mapping induced by the differential, and
letting o, M -U:N-U=N"=U" bethe restriction of ¢ . Then Fo

is & diffecmorphism of class l:-‘,'l-l .

To show this, we first observe that o, is 2 bijection and "'il:'.ll'-lI % ':':I’l-l]q:

=1 i =
Therefore, it suffices to show that P is of class C° . Toshow this, it

ke ennugh to show that %

=1 .
epen, r+1s5i<n, end that le. ., ls of class c*™" for r+lziz<n and

*p, isofclnes l:'u_l. l<i<n, that iﬁn;]}[iﬂii is

j#i. Since "
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My My WIMAIERE S '

where 1 EUH =¥ is the patural prejection, the first statement ia

ohvious,

To prove the remaining two statements, we aat §Tx .p and
observe that there exist functions '#lu. of class 'C.F_l s for |
r+l<i ., o<n, wsuchthat :

|

o foe

[*] % = x . [
'Pi q:zrl-l I

This s proved as follows. Sincefor r+1<{i<n, wehave that 1:-1
vanishesem U=HN[ ]H.r , we get that
! g |
FE{tl'...'Iu} = ‘r -a_ttplt']'..."Ir't:rlhlilll‘“n:ldt |
0

i ): ’afa_li:“‘l"”':'m41""‘“1‘“
a=r+l *er £er - !

so that 4 holds, where

1l Elr,u-i
Wig = ,;.j-'-;;u:[11'+”'Ir’ur+l"”'mn!dt

In view of (¥), ﬁi'l:ll:?:i}ﬂ T..k ig the subgpet of zk defined by

n
X .h =0
ﬂ;zrﬂn-klnr

and henee s apen. It follows that 1};12.1 is open. [t alsg follows {rom
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(#*) that

n
¥ il Eg:,::riljlrrlr'l-tmji'm
jl " P s

ol n'k?iu

-] =
en @ !21][1- Zk , and hence lg of class ct b there.

This completes the proof that ¢, 1s a diffeomorphism of class C-uul Z

HNow we return tohe general situation where W s a manifold, snd

U ig & closed submanifsld, both of class e . In view of what wa bava

just done, we con construct a differentiable structure on the part af BUH
which lies above any coordinate patch, and the differentiable structures
ahove different coordinate patches are E‘u-l compatible. Thus, we

c*! on B.N.

obtain the gtructure of a manifold of claas o

Mote that the natural projection = : BUH =N is differsntiable of

class EF"l .

=l
Blnce we have defined a structure of a manifold of class ":H- on

HUN » ‘we have also defined a topalogy on ['-Uh' . In the local case,

when N=R" and U= m_r this topology may be described more

directly, Let {xt} be 3 sequence of pointa In ®" - R", and suppose

x ~x€mW . Lot IE mp" Tl . #o that (x,#} s a memberof B N,




if we identify ﬁu:q with the subset ofB N] of m" x PR"T , as

ahove, Then it 15 easlly scen that ¥, converges [in EUN] tn (=, 1)

if and only if the secants :i::; canverge to ! , whearse u; denctes the

prejection of x, on m*

This suggests that {t should be poasible to reformulates condition b

in terme of "blowing up”. We do this {n the next section.
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f4. An intrinsic formulation of condition b, Lat M bea amooth

manifold. Let by denote the dlagonal in N, By the fat squarsof N,
we will mean the manifsld F(N) obtained by blowing up ‘.I'-.'E along .5” X
The normal bundle m of by In N® can be identified with the

tangent bundle TH in a cenonical way, as follows, If x € bﬁ ; then by

definltian

I ITH: 3 TH“:I.Fdl.a.g:nn:l

"

The mapping of 'IT-II o TH: Into TN:: which sends v Q@ w to v -w
induces an lsomnrrphism af 1. with TH: « We use this isemorphiam to

identlfy ﬂx with TNK.

From this dentification and the definition of the process nf blowing up

a maniiold slong a submenifold, it follows that

F(N) = PT{K]U(N° - &) (dlsjeint union)

]
where PT(N) denntes the projective tangent bundle af N . Thus, points

of F[MN) areof two kinds: paire ([x,v) with x,yEN and ==ty

and tangent directinns on N.

[t (ellews from the previcous section that F{N] Is a2 manifold of class

ch-t,
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Roughly speaking, a sequence {Eu{.yk}} of polnts in N® - by
converges to a tangent direction £ om W {f the sequences I':fl} and
{]rl} converge to the same point x In N and the direction from X,
to ¥, converges to f. Inthecass Ne=IR", this can be mada precise:

f[xi.',*ii]' converges to I::l:.!}'EIE!“:n:IE=|.P‘r":l if both I::I'J and [1.-1}

converge ko x , and the secants xlfl convarge to I .

Mew let X and Y be smooth submanifolds of W andlet v €Y.
Supprse Y  ie closed. In view of the previcous parzgraph, we cbtain the ]

follawing result, |

PROPOSITION 4.1. The pair (X,Y) satisafies condition b at y [f

—ma

and enly if the following condition holds. Let {’xi} be any sequence of

points in X  and f'_ri] any sequence of pointa in ¥ such that :r.l = T_i -

Suppose {::1.]- -, {y{} -y, {'[xi.'ﬁri]} converges to a line IEFTH? i

and {Txx{] converges (in the Grassmannian of r planes in TN,

where r=dim X)toan r-plane ¢ TH? + Then ICT.
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£5., V¥Yhimey pre-stratifications, Let » be a smooth (l.e., EF]

manifold without boundary, Let 5 bea subsatof 3y, By a pre-stratification

2 of 5, wewill meana coverof 5 by pairedss dlsjoint smooth
submanifolds nf M, whichliein 5. We will say that 8 s locally
finite if sach point nf M has a nelghborhand which meets at most finitaly

many strata, We say & gatiaflias the condition of the frontier if far each

stratum X of 3 its frontier (X = XIN 5 s a unlon of strata.

We will gay 8 3 a Whithoy pre-stratification {f it is locally finite,
satinfles the condition of the froptler, and (X, Y) satisgfies condifion b

far any pair (¥, Y) of strata of 8 .

Let & bea Whithey pre-atratification of 2 subset 5 of a manifold
M. Seppose X and Y arestrata. Wewrite Y <X {f ¥ isin
the frontier of X . In view of Proposition 2.5, If ¥ <X then
dim ¥ < dim X . It follows easily that the relation "< defines a partial

arder an &

Hemark, Let M he a menifold, 5 a closed subsetof MM, and
& & Whitney pre-stratification of 5. Let x and =" be two points
in the same connected component of a stratum of 3 , Then there exists
& hemesmarphism h of M  anto {taelf which preserves S5 and 3§
such that hix) = x” . This followas from Thom's theory [ 4 ] and we will

prove it below, In the ease 3 has ouly two atrata, it is quite casy to




15.
prove by an argument due to Thom [ 4 , p.2a2].

We sketch Thom's argument for the two strata case here. The only
non=trivial case ip when the two strata gatiasfy X <% and the two points

x and x' arein X. Inthiscase X fisclesmdand X=¥=YUX.

For simplicity, we will suppose that M s compact, thouogh it 1s not
difficult to modify the argument to make {t work in the cane M 1ia

ﬁn-n-l:-umpltt.

Let N bea small tubular neighborhoodef X In M, let n:N=X
be a amoath retracticn, and let p be a amooth fenetion on M puch that
an R {F= 0}, and ata point x €EX, p 13 nen-degenerate on
the normal plane to X in the sense that the Hesslan matrix of p  at

x has rank equal to the codimvension of X .

Mowlet x and x° be two points in the same connected component

of X. Let Vi be a smooth vector field on X such that the trajectory

of v startingat x arrivesat x* at timet=1,

For ¢ >0 sufficiently amall, the subset M*_ = {P =¢} of W is
compact, and w Mr =X 1{sa submersion, Furthermore, "fr = Mr nYy
is compact, and it follows from condition b that w: Tr =X isa

submmersion for ¢ sufficiently small, It follows easily that there i3 a

vecter fleld v on M - X andan t'l. >0 such that v {s tangent

R R S
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along ¥, and the following hold.
i #) vf.{m] = 0 meEM-X

(%] w,vim) = v_{wm) and plm) < ¢

X 1 %

From ¥ apdthe compactness of M ; {t follows that the trajectory
of v wstarting at any pointefl W - X (s defined for all tlrne, Hence v
generates & one-parameter group {hr , tEM} of diffeomorphisms of

M-X, Clearly vx Eenerates & one-parametar group {hf'- ttEM}

of diffeomorphiams of X . Let 'I1.t t M = M be defined by 'hth-{ - X = hf

x

and b [X =k

+ It follows from (*)] w=mnd (**) that
h::w{m] o :]:.E[m] ff meéM-~-X and F[m] < 1'1 . Hencs ht in a
hemesmorphism of M. Clearly ht preserves X , and furthermore

hl: preserves Y , since v s tangentalong Y . Finally ]"i-'l[l-']="1'!li

since trajectory of vx starting at x sSrrives at x at Hmet=1l.

Thus h=h, isthe required homeomorphism of M.
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ft. Tubular neighborhoads. In this section, we define the notion of a

tubular neighborhood of a submanifold of a manifold, and prove an existence
and uniqueness theorem for tubular neighborhoods. Our existence and
uniquenens theorem is slightly more general thaa the standard one

{cf., Lang [ 2 ]). The method of proof we use was suggested to us by

A, Ogus,

W e recall that a vector bundle E over a amooth manifeld M is said
ta be smooth if the coordinate transition functions which define E are

smooth functions. By a smooth inner product on a vector lundle E, we

will mean a rule which assigns to each fiber E_ of E aninner product
[ . ]u o E“ and which has the following property: If U is any open
getin M and 8,8, are bwa amooth sections of E  above U then the
rmapping u - {.1[1.1.]. Ellu”u is amooth, From now on, we will ssgsume all
vector bundles and inner products on vector bundles are smooth;, unless the
contrary is explicitly stated. By a (smooth) inner product bundle, we mean

a pair consisting of a (smooth) vector bundle E and a (smooth] inner

product on E .

If w:E=F igan innar p:rl:-l:lul:l: bundle over a manifald, and ¢ s a

positive function en M, then the open ¢-ball bundle Bt ol E will be

defined aa the setof & in E such that ;':!l ':{{H:ﬁ i where “l:” s

f2

1
defined asa (e, &)




18

Let M be s manifold and X a submanifold.

DEFINITION. A tubular neighborhaod T of X In M isa triple

(E; w.nguil s where w:E=X isan inper product bundle; ¢ is a positive
smooth functionon X, and ¢ isa diffeomorphism of B,r onte an open

rubset of M which commutes with the zero section [ of E:

B
3
o
o
.4

—b M :

Veset |T| l-F{Et_I + By the projection associated to T , we mean

the mapping tT Cl &n-l $ |'T'| = X . By the tubular fupnction associated to

T , we mean the non-negative real valued function

- 2
Py * ,'D"i':'-l'r]Ti—'J]F- where ple)= [ef

forall e€ JTI g o
It follows from theae definitions that " ig a retraction of |T] on
X, lL.e., the composition
inclusion 'T
X - ITI = X

is the identity. Also, X is the O=pet of P+ the differential of P

vanishes only on X , and (in the case p22)atapoint x€E X, Pr ig

- _
P




non-degenerate on the normal plane ta X in the sense that the Hessian

matrix of p at x has rank equal to the co-dimension of X.

If U isasubsetof X, the restriction T|U of T to U is

defined as (E|U, ¢|U, @|u).

If T= [E.hcjgl and T' = IE‘,{'.F'l are two tubular neighborhoaods ;
of X in M, aninner product bundle jsomorphism ¢ : E=E" will ba

gaid to be an isomorphism of T with T* if there exists a positive -

continuous function ¢ on X such that ¢" < minfe,¢") and
tF.- i #]BE, B 'PJB';' . MNote that if this holds, then =T|$1B{, = iT,hpE.t,.

and FT]‘FE{:FT'LFE["' Vesay T and T- are igomorphic and
e &

&

write T~ T° if there exists an isomorphism fromm T o T".

— F lfaat=t i S e ——
i B -
-

A smooth mapping {: M =P will be said to be a2 gubmersion if

df : TM =-TP is onto for each x € M .
x 1ix)

Throughout the rest of this section, let f: M =F be a smooth mapping,

and X a submanifold of M .

A tubular neighborhood T of X in M  will be gaid to be compatible
with § if fom = f|IT|. A mapping h of M into itself will be said

to be compatible with § {f fh=f, Ahogmotopy H:MxI=M of M

into iteelf will be said to be compatible with [ f [ « Ht el for all

téIl (=[0,1]). By.an isotopy of M, we will mean a smooth mapping
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H:MuI=M wsuch that Hnnlrl'.hi-rh{ and Ht'.M-M is a

diffeomorphism forall t€I1. If h is a diffeomorphismof M into itself,
the support of h will mean the closure of {x € M : hix) % x} . Likewise,
if H:Mx1=M 1isanisctopy, the supportef H will mean the closure of

{xeEM: t€I , Hix.tl#x).

I M* is a2 second manifold and X° is a subrmaniiold of M*, and
h(M,X)= (M, X"} isa diffeomorphism, then for any tubular neighborhood

TI{E.E,Fj of X we define a tubular peighborhood h-T of X* by

=] =1
b Taf{h J*E , ¢+h , LR

We will begin by stating and proving a uniqueness theorem for tubular
nelghborhoods, and then we will derive an existence theorem [rom the
uniquenenss theorem. This procedure of deducing the existence theorem

from the unigueness theorem was suggested to us by A. Ogus.

The glmplest unlqueness theorem for tubular neighborhoods states that

if X g elocgedand T gnd T

o are tubular neighborhoode of X in M,

1

then thera exists & diffecrmorphismn h of M  onto itself which leaves X

point-wise fixed such that h*Tu ~ T Moreover, h can be chosen so

1"

that there ts anisotopy H of M with h =H which leaves X

1

point wise fixed. We can generalize this result in varicus ways.
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Firet, under the hypothesis that TEI and TI. are compatible with f -
and f{|X s a submersion, we can choose h and H to be compatible with .
f. Secondly, {f T:}]'LTr- TIJU for someopen wet U in X, and Z isa !

cloged subsetof M suchthat ZN XS U, then we can choose h and H

to leave Z  polat-wise fixed,

The following proposition implics these staternents, and has some other

wrinkles as well. We will use it in ita full generality.

o e ®

PROPOSITION 6.1 (Unigueness of tubular neighborhoodns), Suppose the

submanifold X of M is closed, and fl|X:X=P isa submersion. Let

U bean open subsetof X, let U” and V' be closed gubsets of X "

let ¥V be an open subsetof M, and suppese U U and V'ESV.

]

{Ses Figure 3.) Lat 'I'ﬂ| and Tl be tubular neighborhoods of X

which are cnmpaﬁhl: with § and SUpPpoAE thore i3 an {unmarg}dgm

1'_.“ t Tnll.l -*Tll'LT . Then there s an {aotopy H:i:Mx1l=M, compatible :

with f * le-avi.ng x pa‘l:nl!-winq fixed, and with support in ¥ i guch that

1-.*1‘“ [V uu’~ TI |¥*UU", where h= H . Moreover If W lsany

neighborhood of the diagonal in M x M , we can chooge H such that

!Hr{x}.xi EN forany tEI and x €M . Also, we can choose H so that .

there {8 an leamoarphiam gt h-Tn“'” yu* - Tl"""* UU* such that f

plu” = gglu”.




Proof, Let m=dimM , cecodX, and p=z=dimP. For k<m,

k
=t O be embedded an I'-I.k ¥ Um K in R™ . We will say that we are

in the local cese when V°  is compact and there exiats a diffeomorphism

e of M onte an open subset of llm . such that HX) = m'“'“n PiM) . and

a dilfeomorphism ¥ of P onto an open subset of rP auch that the

following diagram commutes, where w is given by n[xl. " "'m} n {111 L .HF]
M ™
f T
:3 ¥ 3 ;F.P

There are two steps in the procl:

Step 1. Reduction to the loeal case. From the hypothesis that f|X  is

a submersion, it foliows that for each x € X there exists an open neighborhood

".".T: of x in M, a diffeomorphism I:a-! af "-'.-’“ onto an opon subaet of

R such that @(W_NX)=@(W )N R™™®, and a diffeomorphism ¥ of

i[‘l'-"::l onto an open spboet of IR,P auch that the following diagram commutes




Z1

) s
W s ,-]Rm
X
{ |
¥ \
fiW ) = > mF
x

Furthermore, we may suppose sach Wx is relatively compact, and that

WAV #0=W cV
(*) .

W NUS $@=W nXcU

Then {M -X}uU {wx] is a cover of M, so that there exists a locally
finite refinement of it, which we may take to be of the form {M - X} U {wi]n .

whare each "Hl fe contained in Wﬁ“ far some Ii.E X. Snce M has

s countable basis for its topalogy, the collection {Wt] is countable. Mow

Jir1u’=.r=1;.|l or w‘nv*ra, and we

index the remaining ‘ﬁ'i'l by the positive integers. Then we have

we discard all ‘l.’n",l for which W

V'EUUWIUYIU--- . and wi;‘ll" forall L, by =,

We can choose closed setn "Fl

= "-'-"il'l X such that

VEeUUW UW s+ , Since w:;wx

1 2 and the latter is r:l;tivuh.r

{i} '

compact, it followa that ".-'r'; is compact,

|
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6 _1_2 .
_How we construct by induction a sequence H H ,H ,..- of isotopies
of M into {teself and sequence \bn"Fl"Pz' s+ of lsomorphisms of tubular

neighborhoods. Welet H' bedefinedby H_ =identity , 0<t<l, and

let ¥o be as given in the statement of the proposition.

For the inductive step, we suppose that Hu.Hl. T .H{-I and

ﬂln- AL .If.lil i have been constructed, are compatible with { and leave X

point-wise fixed. We let 'E‘rj be the isotopy of M defined by

j_d odel, o0 i w _
G =H) o K, reeo HO . We set EJ—GI. Welet U =UUW UweeUW,

and suppose supp Gl'l [ = ”1.-1” ¥ . Furthermore, we suppose
“:’:_'l{x"*" EN forall x€M and t€[0,1], andthat y , isan

isomorphism of tubular nelghborhooda ;l:l;ITﬂ |ﬁ;‘-1 - 'I‘1|.T.T“;"'_.l + where T_I'i*_l

is an open neighborhood of Uy W{ U-«-U w;-l in X

Then it follows from the local case of the proposition that H and #i
can be chosen 8o that the conditions of the induection are satisfied. TFor, let

. 0
Wf be an open subset of W, such that "l"-l'i cW

i i
compact in W, , and let U¥ be an open neighborhood of

and wiﬂ is relatively

0
u’u "H'; sl ‘I.'.’i' in X whose closure lies in U:‘_l u ‘I.'a'i . From ths
local cape, it follows that we can construct an isotopy I'Ii of "l'l'i i

i - i
compatible with {, leaving XN W point-wise fixed, and with support in

0 L -1 =, -_ i .
W, such that h g, Tl:l'lui. nw, ~ T1]Ui nWw, . where h =H,

- T1|E:’ln 1,'.11 and U* 'i= ‘ﬁ'ﬂ.,'l Moreover, we may
i i

[This in

because g::.-]".['ﬂ |EI..+I. nw,
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chooae Hi' so that H: is arbitrarily close to the identity for all t,

apd so there {8 an isormorphism

; i i=l — T
1 L B om— T T W,
'Fi h*g* Tﬂ |Ut f { ll i 'l i

e e S .

puch that

Rl wnug, = g, lupnwaug, .

i i
, Since supp H isina compact subset of ‘Fl’i y we may extend H
to an isotopy of M whose support lies in ‘lﬂ.l'lI « Likewise, we may

i
; - »
extend B, to all of T.J.: by letting Pi."ui:-l_?i-llui-l' Then H

and Ilbi. satisly the conditions of the induction.

Mow if it {8 true that the sequence 'E'r:':[.'r-} is eventually constant

in a neighborhood of any point x € M , we can set
Hi{x) = li.mGin::]
:I - i~ oo t
and
pixl = limi, (=) i
l—im 1

{since the latter is eventually constant in a neighborhood of any point). If

wa choose MW o that the projection -u'z s N =M is proper (where 'rrz'

denotes the projection on the second factor), then it is easily seen that

the sequence G_.:[;b is eventually coanatant ln a neighborhood af any polnt

xE M, andthatt H and ¢ have the required properties.
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This completes the reduclion to the local case.

Proof in the local cage. Let TD = ‘En*fﬂ'q:'ﬂ} and Tl = {El, ;1.-&01! i
We will first construct an isomorphism ¢ : E, - El of inner product bundles
which extends ‘*'EI |U", and then construct the isotopy H to have the

required properties.

The tubular nel ghborhaod Ti {f = 0,1} pives a natural identification
o, of Ei with the normal bundle Vo of X in M. Explicitly, if

x € X, the restriction of e o the {fiber Ei. & is the composition

dpn
—'L'"ETMJE—EL} ™ |TX_ = v :

E .= TE X, x

)
T, X =0
Let 8= ui-l% t Eg = E, . Wemay consider § aea section of
Im:-iEﬂ. Elj , where the latter is the bundle whose [iber over =  isn the
ppace of isomorphisms of EU‘.-‘: into E].,x . In general, J will notbe

of class Eu . only of clase E“-l : howewer, we may approximate §

arbitrarily closely on any compact subset of X by a section 'ﬁl of class

™

To construct $ « we will need the following well known lemma in

linear algebra.

LEMMA, LLL v aﬂj. W be vector apaces, prl:nr:i.ded with innes

products i and j. Lot L:V~-W beavectar space isomorphism,
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Then there exints a vnigue poasitive deflinite :;l:lf-é_ljinint linear mapping

H:W=W suchthat He L : V=Y preserves inner products.

Femark 1. Itis casily seen that this is eguivalent to the assertion that
any invertible matrix L of real numbers has a unique decompasition
1

L=H U where H isa positive definite symmetric matrizx and U is an

arthagonal matrix,

Remark 2. Similarly, it is casily verificd that there exists a unique

pasitive definite self-adjoint linear mapping Hl : Y =% such that

L= |'11 1 ¥ =W preserves inner products, and that HI. = L‘H-IL i

Froaf of the lemma, Existence. Let = s be an orthonormal
1

basis for ¥V, andlet A= mi.j! be the matrix given by r_':u. = I.JL-l:i.LEjIIIEI .

Then u{_ fa symmetric and positive definite. It follows from the spectral
J

theorem for symmetric positive definite matrices that we may cheose the

basis & ,-"-, & so that [ ) ls a diagonal matrix: & =% §
1 n £j ij L ij

fwhere ﬁi.j ia the Kronecher delta symbol), Let Ii = Lliei};"‘,.:l_T ., Then

f:l.' e 'In ig an orthonormal bagis ef ¥ , Let H: W =W be given by

H!fi] = IEJ".-'T;_ + Then H has the required properties.

Uniqueness. If there weretwo, H and H" , we would have that

4 _I - F]
U ={HL) = {H'L) is orthogonals Then UH L=HL &80 UH s H,

Y- 1 2

=H'U UH" = H

5 N & 4 "1
Taking adjoints, we then obtaim H'U = H so that H
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This implies H' = H, esince a positive definite self-adjoint mapping has

only one posltive deflinite self-adjoint square root. . E. D,

MNow we return to the proof of the uniqueness of tubular neighborhoods.
For each x¢€ ¥, let T be the unique self-adjoint positive definite Mimear

automorphism of E such that qﬁ: oty T H x E,} e El i Preserves

1, x
inner producta. Clearly, ¢ = {a}x} ig 2 smooth iscmorphisam of Eﬂ ints
EI  and (¢ preserves inner products. From the fact that n, is positive
definite and pelf-adjoint it follows that (1 - &} identity +t'.r]x 18 an
automorphiam of E for DCtZl. Henceif lEl is chosen

sufficiently close ta g . it follows that

(1-tig+tp: E,— E

is an isomerphism for 0 £tS 1. Mereover, if we choose 2. &0 that
|E’1 ® f ina neighborhood of U” (which we may do since iE|1;.T = dn by
definition of #), then p = identity in a neighborhood of Ul . 8o that

glu”=pous.

Since we are in the local case, we may suppose without lnes of generality
that M {s open in m ; P lsopenin & ; X = 1 nM, and
f=w%|M, Itis easily seen that there exists a neighberhood "-’1 of V' in

¥ such that for all m g \."l . we have that

=1
glm) = g U1 =)+ 1h) » Pg tm)
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i# defined, Sinece V' =X, we have g:pv‘nincluu{an. Slnee V° s

* Im ¥, such that

compact there exists an open neighbarhood v..! af WV 1

E:{vll ;gt["fll for 08 , t<l. Let P be a Cm function on M
which ls identically 1 In a neighborhood of V' and which haa compact

support V.. Let EE . M=M be defined by

2
-1
Ght{mi C F.{mnm + p{m!gtgu [m) . mEV,
E.'t[m]=m 1".|'|.[Ei|'..-I-"«"3 .

Then vl‘_"r. is a amooth mapping for 0 <as , tx<1, anditdepends

4

amoothly on 8 and t. Since Gt e {dertity and there is & compact

sat which containa the support of E' " forall s and t, it followa that

there exista 63> 0 such that G ¢ 18 & diffeomorphism for |s -¢| <6,

1
Let n be a positive integer such that i 4 and sst

¢ 3 EE-G "

M=
e ...“.tt.l:

[-i-

t 0

g~

Then H, isaniectepyof M inte M , and it follows from the definition
of H that Hy =g in sufliciently small nsighberhood of V. Alaso, it
followas from the deflinitions that £, and Ht is the identity in a sufliciently

gmall neighborhood of U° forall ¢, Thus H in a sufileiently

1" R
small neighborhood of U Y V' . Clearly suppHEV

=V, !
2= [
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Furthermare, Hl . 'Jﬂcl LR e ¥ in a sufficiently small
neighborhoaed of U U V", Thus 3 is an isomorphism of Hj_Tu[U’ uwv

with T [UTU V.

It is elesar from the construction that H 1s compatible with [ and
leaves X polot-wise Hxed. Finally, by choosing the function p wused in
the construction of G to have pupport in a very small pneighborhood of v,
we may arrange for Ht to be as close to the identity (in the compact-open

topologyl as we like, O, E. D,

Now we state and prove the existence theorem for tubular neighborhoodas.

FROPOSITION 6.2. Suppose {[X:X=P isa submersion. Let U

be an open subset of X and lst TEI be a tubular neighborhood of U in

Z=, Let U” hea subeetof U whichis closedin X . Then there exists

N g

i - P el v oy -
a tubular neiphbothoed, T of X in M ¥ such that T|U ~T,lU”,

Proof, Itis enough to consider the case when X la elasedin M.,
Far, in general, there is an open subast Mﬂ in M suchthat X isa

closed subpet of M since X is locally elosedin M . Cleariy a

u r

tubular neighborhoed of X in Mﬂ is a tubular pneighborhood of X in

M,

The local case of this proposition is trivial.
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To prove the proposition in general, we take a locally finite family {Wl}

of open sets in M  having the following properties: i

o

() For each i, there is a coordinate chart Ii:.l.l H Wi =4 J'.'El.“ such that

Pt{wh nxy= ﬁqwi: nm"*© [where ¢ = cod X) and such that there in a |

coordinate chart I'hi : iiwil - mBF  such that the following diagram commutes

w |
W, j . !

¥

I{W‘ij - mF

(b) each T'I;: is compact, and

(e} {Wiﬂ X} isacoverof X, i

Furtharmu.r:. we can choose elosed sets ".'.I'i' [ "r'Fi such that {Wl']l
isna coverof X . Since M has a countable basis for ite topology, the
family ['-'l’l} ia countable. We will suppase that it is indexed by the
positive integers, TFor each positive integer we lot l._li =Uu 'l|l.r1 Yre-U¥ i

and U:zu"uw'u---uwi’, We let U

1 =U and Uu=l-T.

o

Mow we construct by induction an {1 an open neighborhood U;' af
U; in X anda tubular neighborheod Ti af 'I.J:". We take Tn as

__
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given. For the inductive step, wea suppose ui':l and Ti. 1 have been

L)

: in X which

[ constructed., We let LT;‘ be any open neighborhood of U

is relatively compact in Wl uu

Fr
i=1"

Since U_:"; W, -Ul'l, there exist open sets A and B in I.I';J such

Since the exlstence theorerm

o

that U =AUB, ACW-U’. and fgul, .

i-1

for tubular neighborhoods {8 true in the local case, we may choose a tubular

neighborhood T; of WJ' X in “?i. . Then we have two tubular

n Wj X in M, namely the restrictionsa e T

[ *

i-1 i

and Ti 1" Since AN B is relatively compact in {Uiﬂ -'LT;‘]}l'I '1’1 nx,

neighborhoods of U

we may find a diffeomorphism h of M onto iteelf leaving X pointwise
fixed such that h*Ti-lﬁ B~ T: |AnB. Furthermore, we may suppose h
is compatible with f and h is the identity cutside an arbitrarily amall
neighborhood of ANB : in particular, that h i3 the identity in a

neighborhood of ui'd Since h“Ti_lj.A NE~ Ti’ |[AnB thereisa

1

tubular neighborhood Ti of UI'I:.H.LIB in M such that

Ti]h... T;EJL and '1'1.!3...1-.*'1‘_1 |B . Clearly T‘l is compatible with [,

Furthermore, "."'_i s T.l in a neighborhoed of U . It follows

1 i-1

easily that there is & tubular neighborhood T of X in M such that

T~ TL in a neighbarhood of T.ri" for all §, and that this tubular

nelghborhood is compatible with . Q. E. D.

et
ff:ﬁ"fﬂ?’—-—_}f "

/
.-"‘“",-ﬂ-,mﬁ
& < : :

EM ""fi'-é-#.ﬂ

il

_..rrﬁ'll—-ﬂ_
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§7. Cantrol data. Throughout this wsction, let M  be a manifold and

8 a Whitney pre-ptralification of 8 subset 5 of M.

Suppose that for each stratum X of 3 we are given a tubular

neighborhoad T}E of X Iim M. Lat L |T. X denote the

x!=
projection associated to T and Py ]T | =R the tubular function !

iated to T, .
BeFOCia w

DEFINITION, The family {T!I-E} of tubular nelghborhoods will he called

control data for 3  if the following commutation relations are satisfied: '

_5.'_1'_ x ﬂ'!. b4 are ntrata and X <% i then

ux-:r,l,llmr = w_.(m)

X

Pxmylml = pylm) !

for all mm such that bath sides of the equation are defined, §.e,, all

m & |T:{[|'| |1:,f| such that =, (m) € |ij.

If f maps M into P, then the family [Tx} will be said to be

compatible with  ifforall X €35 andall mE |T:{|. we have

fr_(m) = fim]} .
x k] —l—'l._

Wyf_ﬁi a‘:f"""{'{ &

FROPOSITION 7.1, If [:M=FP iaa i:uhﬂ'ter:inn": then there exists

a famil {T:'-'.J of contrel data for 8 which is eampatible with [,

/,/ C-'—- Fxs F!J-—:zi*j}

-j.-r""f,-f: /""‘izi. l'_'-T 3 %7, A M}.ﬁéf (Sk}g ).—?(ijng-‘:
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For the proof of the propasition, we will need Lemma 7. 3 below. The
proof of LermmaT. 3depends on Lemma 7.2 which says (roughly speaking) that

every tubular neighborhood {8 locally like a standard example.

DEFINITION. By the standard tubular neighborhood S of

it 0 in B™, we mean the triple (E,¢,8), where E ja the
m=c . ; = .
trivial bundle over IR with fiber IR~ (provided with its standard

inner product), € =1, and gp: Bt‘ - IEtm is the restriction map of the

Ti=C

identification mapping M % IE.r' = ]Rm "

More generally if U  is open in g . the standard tubular

nelghborhood af U in R will mean Tmclu'

LEMMA 7.2. I X jisa submanifold of M, TI.' is a tabular

nelighbarhood of X, and x € X, then there exists a coordinate chart

qp:U-IFlm, where U isopenin M and x€ U, such that

£

elXnU)=wuln mm- {where ¢ = cod X) and such that

P Ty lXn U~ T lelXn U},

FProal, Immediate from the definitions.

[

Il T=(E,t,¢) imea tubular neighborhoodof X in M and ¢ ias

any smooth positive function on X, we let ET|"_* = m{BE g} E:,.J- .

o ! ”
ITI'.=5ﬂB'nB(.J and ajr]t.-?m{nsi,l where 5 . isthe ¢




N
i oL L -
L dr e R T L
- : i T :
E LT
sphere bundlein E, il.e., 5‘- = {vEE: [v]= ¢’(nivl)} where '

¥:E=X denotes the projection. Clearly ITJ‘_, is 2 smaoth manifold
4] PR
with boundary @ iTl{, and interior |'I'If¢ . Wewill pay € s

adminssible if ¢” <¢ . In this case the tubular retraction L |T|l_, =X

is a proper mapping

LEMMA 7.3. Let X and Y bedisjoint submanifolds of M such

that the pair [¥,;X) szatialies condition b, Let T be a tubular

neighborhood of X in M. Then there exists a positive smooth function

€ on X such that the mapping

1]
} =2 R 1
'PT' "T: Y ﬂ |TI{ k-3 :':I. I

[ ]
ig a submersian. |
|

Proof. Let I bethe setof y € |T| wsuch that the rank of the

mapping !
ﬁpT.ﬂTJ:YﬁFT[—?]R::x |

gt ¥ is <dim (B x X} . The lemma iz equivalent to the assertion that
forany x € X there cxists a neighborhood W of x in M such that

HNZ=©. Since this is a purely local staternent, it follows {rom
Lemma 7T, 2 that it is enough to prove the proposition when M = - i

XeR " Cx0 , and T is the standard tubular neighborhood T
c

mi; &

; ‘
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of RT° In B". Inthis case 1w

T {g the orthogonal projection of

R on RTC ; and P ip the function which fs given by

m=c, &

ply) = diet. [y, R ) .

Let y€ |T|-BR™ %, Thekernel of the differential of (r.p.) at

- ? o
¥y is the orthogonal complerment of {mm ¥ x ﬂ:j [ ] }"I'T[]";l tn R « The

hypothesis that condition b s satisfied implies that for vy near .'IRm-: .
“ o
Ilﬂm € x 'IJ':] i} yrrT['r:I is close in the Grassmannian of m=c+1 planes

in m spacetoa ™ -2 +1plane which lies in T'!'Y . Hence for vy

near enouph to mn‘n-c ¢ we have that TT? is transversal to the kernel

of the differential of 1:T.pT} at vy, =so that i_rT,pT]]Y is a submersion

at ¥ irl-. ]"! Er E'-.E-Dr

Proof of Propesition 7.1, Let 8§ dencte the family of strata of 3

k

ef dimepalen <k, and leg Ek denote the union of all strata in Ek .

¥ ¢ will ghow by induction en  k  that the proposition is true for Sk and

EH inplace of 3 and 5.

For the inductive step, we guppose that for each stratum X of
dimension <k, weare given a tubular neighborhood T:": of X, and

thig farnily of tubular neighborhoods satiafies the commutation relations,

By shrinking the T if necespary, weé may suppose that if X  and

X

¥ are strata of dimension <k which are not comparable (i.e., neitherp
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=

Y <X nor X <Y holds), then IT}El n [T‘fl = @ . To construct the
TJ{ on the strata of dimension k , we may do it one etratum at a bime,
since there are no commutation relations to be satisfled among the atrata

of the same dimension. Let X be a stratum of dimension % .

We construct the tubular neighborhoods T]L’ in two steps, as followas.

Foreach 1k, welast UI demote the union of all IT far ¥ = X

v ]
and dim Y 20. We laet :{.I = U! N X . Inthe first step, we construct a

tubular neighborhood T! of R! by decreasing inductionon 1. In the |
inductive step, we will shrink various |T,r | , but this is permitted, since :

we do it only a finite npumber of timmes, Then in the pecond step, we extend

= T, toatubular neighborhoed T aof X.

a = i
Firat atep, For fsk, we have !{k e 3, po there is nnlhi.'ug to
construct. For the inductive step, we suppose that T has been

I+l

constructed and that the following special cases of the commutation

raelati a tisfied: §f i
1ona re Fatislia T{:‘:| dlm‘fl!"‘l L] mE ITI+1|.|"| ET'Erl

and w . [(m)E lT‘i’! . where LA PR, then
; Py Ty lml = gy lm)
(T1+1)
| '.'."T1T1+1:Tl'|]' = 1'|'Y1.“'|-j '
By replacing Tl 41 with a smaller tubular nelghborhood if necessary, we

may suppose that far mE lT.I-I-I.] thereis Z <X with I‘HTI.'l Z 31 such
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that m€ [T,| and =« (m)é 17,1

|

To construct '.l'l it is enough to construct Ti on ITTJ nx for

cach stratumm Y <X of dimension ! seperately, sinceif ¥ and Y~
are twg strata of dimension I, we have ITY | n ITT.I w @, since ¥
and Y® are not comparable,

Thus, we wish to construct a tubular neighborhood T}: . of

IT‘h"l N X whose restriction to lT’!’[ n xl-l-l

such that the follewing comrmutation relation is

is isomorphic to the

restriction of T1+l "

satisfied: if méE ]T}LYLH |Ty| and Ty ylml € |Ty |+ where

" then

X.¥ "Tx,¥*

PyTy yi™ = oylm)

Ty, gl = mylml

By shrinking ITY'

me T, |0 |T,.!,] and ¥

i necegeary, we may arrange that if

l+1{1.':-|.h ] |T?r , then this commutation relation

is already satisfied (with LT in place of =«

there exists Z <X with dimZ>1, mé¢ |Ta|

H.Y:I for the following reason.

Since mé€E FT.HI' i

snd w, (m)€ |T_|. Since = . (ml€ |[Tyln [T |. thelastnamed

space i3 not empty; hence ¥ and Z  are comparable, and by dimension

regtrictions Y = & . Therefore




m
Prmeatl™ = Pymampal™ = pyvgiml = pylm

TrTali™ F Wy Fomlml = wgvaiml 2 wyim) .

{¥ & may have to shrink |T to guarantee that these egualities hold for

vl
all mE|T“L[I"|ITT|-} !

Furthermore, by shrinking T further if necesdary, we may

Y

suppose that
pyempt [T N X—> R x ¥

is 2 pubmersion. The commutation relation that we must veridy is

precisely the condition that TJZ ¥ be compatible with the mapping

IPY"T} F |T?] f E.H-l =M % . Therefors from the generalized tubular ’

neighborhood theorem, we get that if }Ef+ is an open subaetof X

1

whaose elosugre liea in X then thers exiata T which satygfies the

1+l XY

1]
commutation relations and whose reastriction to IT‘!’ | n :".'“_1 is isomorphic

ta the restriction of T'+1_ v MNow we replace TE. far Z <X by smaller
(1]
tubul ighh a e h I i
ar neighhorhoods TE such that x1+l = J':"]; + where x.!+l is

defined analogously to

but with "1"z in place of T Then

x1+1 . .

T:': v has the required properties.

This completes the firat step: we conclude that there exists a tubular I

neighborhood TI:I of }En satisfying (*g) forany Y <X.
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Second step. From I:".n:l it follows that we may assume that TD im
compatible with . For, by replacing Tu with & smaller tubular
neighborhood {f necessary, we may aesume that if mE ITnI  then far some

¥ <X, wehave mE|T?| and fruﬂm]E|T Then

‘I""

f‘ﬁniml = I'-'IY'u'n[m:I = :I':Timl = flm) .

Sinece Tl:ln is compatible with [, we may extend a suitable restriction
of Tl:l to a tubular neighborhoed T of X which is compatible with
{. by the generalized tubular neighborhood theorem. Then, by replacing
the T"I" with possibly smaller tubular neighborhoods (as in Step 1), we

get that the compatibility conditions are satisfied.

This completes the construction of TZ‘{ y and therefore also completes

the proof of the proposition.
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§8. Abstract pre-stratified sets. If V iz closed subset of a manifold :

M which admits 8 Whitney pre-stratification {in the sense defined in

Sectiom 5) then we can find contral data for this pre-stratification by the
previcous section. This provides V with considerable structure, The ;
purpose of this section is to axiomatize the sort of structure which occurs. JI

We depart only slightly from Thom's notion of abstract stratified set

([3 ] and [ & ).

DEFINITION 1.  An abstract pre-stratified set is a triple {V.3, 7}

aatisfying the following axiama, Al - A9.

(Al}) ¥V is a Hauesdorll, locally compact topological space with a

countable basle for ite topelogy.

This axiom implies that ¥V is metrizable. For, since ¥ is locally

compact, it is regular, so the metrizability of V follows from Urysohn

metrization theorem (Kelly [ 1 ]). Slnce V¥ is metrizable, every subaset
X of ¥V isnormal(in the sense that any two disjoint closed subsets of

XA can be separated by open sets), We will oiten use this fact without

explicit mention.

(A2} 3 is a family of locally closed subsets of ¥V, such that WV

is the disjoint union of the members of 3 .
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The membars of 3§ will be called the ateata of V.

(A3) Each stratumof V 1isa topological manifold {in the induced

topology), provided with a smoothness strocture (of class I::'“:ll-
{A4) The family 8 is locally finite.

(A5) The family 3 satisfies the axiom of the frontier: if X, Y ES

and YNX %G, then YCX.

If ‘!’;? and ¥ 3¢ X, wewrite Y <X . This relation is obviously

transitive: Z <Y and ¥ <X imply Z <X.

(a6) 3 isatriple {{Tyh{rg b {py}) . wherefor each Xe3,
TJ{ is an open neighborhoad of X in VW, Yy is a continuous

retraction o T onta X

% , and FH’. X = [IJ-,u::;I iz & continuous

lunetion,

Yo will eall TK the tubular neighborhosd of X [with respect to

the giveén structure of & pre-ptratified seton ¥V}, Mo the local

retractlon of T:.: onte X and F.‘.r: the tubular function of X .

(AT) X={veET {w] = 0} .

x * Px

If X and Y areany strata, we let TK,‘:’ B Txl'l Y,
"y " EI]T}:.? , and F}E,Y = FJ':'T:{.'I' . Then vy is a mapping
by et S57 A a “
jﬁ-’f#f; #____,"T.'.'.’. S e T R T ..r"'f-.# . -—: :I
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“ f
[nt a, m) . !
of T}I:,'i' lnto X and Py, v s a mapping of T}[.T o | |
Cf course, T:H: y TOSY be empty, in which case these are the empty :
MARPings. ‘I
|
1
(AB) For any strata X and Y the mapping P — :
a |
i
: —s X % (0, '
v e,y T,y AR, ;
in a smooth submersion. This implies dim X <dim Y when T.'.l( v i Q. |
; |
{A%) For any strata X, ¥, and Z, we have |
"%, ¥y, 2" 7 Tx,zV) !
!
Px, y%y, 2"} = pg 2V '
i
whenever both sides of this equation are defined; i.e., whenever
]
wE T"f. z and Ty 'E.I:ﬂ = TK,Y .
DEFIMITION 2. We say that bwo stratified sets ‘["n"',!-J E']' and
{(v",8°,3°] are eqguivalent if the fallowing conditions hold.
fa), ¥Y=¥" , 8=8", andfor each stratum X of 8 =38’ the

two smoothness structures on X given by the two stratifications are

the same.

(b). I 3= “T}:L {ﬂx}.fpx}} and T " » {{Ti}l{ﬂ;{}- {D‘;{}}' then

for each stratum X , there exists a neighborhood T;E of X in !

T R
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T, N T, such that Fx|T;E'=rF;:|T" and

L - L
w % v T, = 'KlTJ{ .

]{l}:

From the normality of arbitrary subsets of a stratified set, it follows
that any [abstract) pre-stratified set is equivalent to one which satisfies

the following conditions

[AlD) If X,Y are strata and T

x,y @, thea X<V,

(AlL) If X,Y arestrataand T I'ITYI#'G. them X and Y are

X
comparable, |, e, one of the following boldes; X <¥ |, ¥ <X , or X=7%,

From (AlD), it follows that X <Y if and only if T}E . # @, and

from (All) that X and Y arecomparableifandenlylf T, NT,#£@.

Mote that from (AE) it follows that the relation X <% defines a partial
orderon B . Itis encughtoverify X <Y and ¥ <X do not held

slmultanecusly, But (AB) implies X <Y =dimX <dim Y,

Asg an example of an (abstract) pre-stratified saet, let V be a subset
of a manifold W and suppose V admlita a YV hitney pre-stratification

8, andlet {T;:] be a family of control data for 8, and let —-

R

. o - ' L ] ..i.-l"'
LS TJ'E X and Py .Tx (0.}, Set T = {.T'."E} ' Th:n@ﬂ.ﬁl} e
_o—'—'_'_'-
is an abstract pre-stratified set, In this way, we assoclate with any system »

of control data for a Whitney pre-stratified set V , a structure of an

abetract pro-stratified set on V., et =
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Hence it follows from Proposition 7.1 that any Whtiney pre-stratified

set admits the stracture of an abhatract pre-stratified set.

If (V,3,7) is a pre-stratified set, ¥v* is any topological space,
and @ : ¥* =% jisahomeomorphism, then the structure of 2 stratified
set on ¥V "pulls back' in an cbvious way to give a structure

E

I;\",:F*.l,.-,n'lﬂ of a stratified getan V° .

If (v*,3°,7) and (V.3,7) areabstract pre-stratified sets, then
a hemeomoarphiam P = V' =V is said to ba an isasmorphiam of stratified

sets 1f (V°,37°,37°) ia equivalent ta (V'.p*2 £ %1 .

The uniqueness result that we will prove belew implies the following:
if (V.3,9)is a Whitney pre-stratified set, and T and 7" are two
systemns of control data, then the abstract pre-atratified sets (V,3,7)

s ; T,
and (V,8,7) are isomorphie, M-": - N

A 2

I

§
1
i

1 e —— e — e — g E

e pere e s ee— =

—_— - R
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§9. Controlled vector ficlds, Throughout this section, we let (V,3, T)

be an (abstract) pre-stratified set. We suppose p 22,

DEFINITION. By a stratified vector field § on V, we meana

collection {T]'x : X E 2 ]' . whera for each stratem X g Wwe hawve that

Ty is & smooth vector field an X,

By smooth vector field we maan a vector field of class -IZ.‘."'L']L .

Let T = {{TH’}' {rx]'. {p}:}} , and for two strata X and Y , let

T , and be defined ag in the previous section,

XY * "%, Y Px, vy

DEFINITION. A stratified vector field 1 on ¥V will be said to be

controlled (by ¥ ) if the following control conditions are satisfied: for any

stratumn Y there exists a naighborhood T;, of . ¥ in T‘!u!' such that

for any second stratum X >Y andany vE T.;!. X, wehve
{9.1-a) npr'xtﬂ = 0

{9.1-%) {“?.x}*“x{"’ -r WI{"?.K{"'” ,

DEFINITION. If P is s smooth manifold and f: V=P isa

conHnuous mapping, we will say that { is a controlled submersion if

the followineg conditions are satisfied.

1) f|X:X =P isa smooth submersion, for each stratum X of V.,
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{2). For any stratum X, thereis a neighborhood T;: of X in

T,

% auch that fiv) = [“}E{ﬂ forall wE€T

#
%"
Mote thet both the notions that we have just introduced depend only on

the equivalence class of the pre-stratifled set ([V,.5.7), Loe., i (v.8.77)

T i e . e B e o i i

is a pre=stratified aet which is equivalent to (V,2,7)}, then a controlled

vactar field (or contralled submeraion) with respect to one of thess
pre-stratified sete is the same as a controlled vector field (or controlled

submersion) with respect to the other.

e LA L - Y et - L

PROFOSITION 9.1. If f:V ~F isa controlled submersion, then

for any smooth vector field { on P, thereis a controlled vector field

7 on V¥V suchthat fn{v)=({lflv)] forall vEV.

FProof. By induection on the dimensgion afd V¥V (where the dimension af
V is defined to be the supremum of the dimensions of the atrata of V). i
By the k sheleton "i"'k of V, we will mean the union of all etrata of

¥ of dimension €k . Clearly V has the structure of a stratified set,

k

where the strata of 1'rl-: are the strata of ¥V which lie in vh , the

tubular neighborhoods are the intersections with ‘n"k of the tubular

neighborhoods (la W ) of atrata in "."IIc and the local retractions and

tubular function on "-’R are the restrictions of the local retractions and

tubular functions en % .
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In the case dim ¥V =0, the statement of the proposition is trivial,
Hence, by induction, 1t is enough to show that if the proposition is true

whenever dim ¥V £k then it s true when dim V=k +1. Thus, we may
{and do) sseume that dim V =k +1 and that there I8 a controlled vector

field The on ¥ We will shos

K such that f_th'l.r] = (fiv)) forall wgE "l",ﬂ .
that there exists a controlled vector field 1 on ¥V  which extends n

such that { miv) = {l{{v])) forall veEV,

To construct n , itis enough to construct The separately for each
atraturn X of ¥V such that dimX =k +1, because the condition that

a vecior field be controlled invelves only strata ¥, X sduchthat Y <.

Zince by the induction assumption The ks eontrolled, we can choose
neighborhoods T,:, of ¥ "in TT’ {one for each stratum Y ¢ ‘h"k )
such that if ¥ < Z are strata, then the control conditions (9.1) are
satiafied (with 2Z inplaceof X | for wE T,],f N & . By the assumption
that { {» controlled, we may choose the neighborhoods T} such that

Y
1
i 2
{v) = I'HYE""" for all wvE T‘!‘

) ' 2
It i# easily seen that we may choose neighborhoods T,l, efl ¥ in

1
T,I, [ene for cach stratum Y ij puch that the [ollowing holda: if

Y<«Z are strata in ‘ll'h then

2 2 1
AT, ATIET, .
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e can furthermora choose the Ti, 80 thatg Ti in clased in ¥ = 3Y
[w]:u:-rq a¥ denates the frontier af % ) i since WV =3Y is metrizables

and therefore normal, and ¥ is closedin VW - a¥ . Finally, we can

chooss the Ti go that If ¥ ls not comparableto Z, then

Inﬂ.

2
T T
‘fn i

Mow cemnsider the following conditdons en a vectar fleld Ty ©n & 1

(9. Z.-a?]. The control conditlon (9.1) is satisfied for any

i
v E 11‘, M & .
(9.2 = bl I‘nxtv} = D(fw)} forall ve X.

V. e claim that there i3 a vector {lald Ty on X satisfying (9. 2-h)

and (9.2-a,) for all strata ¥ <X . To prove this claim will clearly be

b

ensugh to prove the preposition.

Consider a point v E X, The set 5" of strata ¥ <X such that

2
v E T‘f is totally ordered by inclusion; since i ¥ and Z are not

2
camparable then TY n T; e, If E\r is not empty, then there is a

largest member ¥ = '1"1|r .

Suppose {or the moment this is the case and (9, 24.?] holds at v .

Then {'J.E—nzl helds far all Z € 3 - For gither 2=Y or Z <Y.

2,

In the latter case w.r{'.r} € T; {by the choice of the TT

3 }). Then

. s

e —— T e e

Ly el T b M
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TT:..;F’I__':-:“] . “xPz,Y"ﬂ'f}[[ﬂ Sk

and

{

"z,x:'t”xw] {"z.,v‘l'xr"’?_xh*"x{ﬂ'

t"z.,‘!']-“'u't"‘f,:-:hr”

ﬂzﬂ'l'z‘ wa'xlvn

“zl"z, xlﬂ] ’

Thiaa H.?_-lz} holds at » for all EEEv. Furthermore

LMylv) = ey Ll mytv]

Ly lmy S vh)

CiEv)) .

Thus (9.2-b) holds at v .

This shows that to conatruct satisfying (9.2-b) and (9.2-a,)

X
forall ¥ <X, itis enough to construct My patisfying {Q-I-E-{v] at

v forall v€ X for which $, 13 non-empty, and satisfying (9. 2-b)

at v forall v€X for which Ev in empty., Clearly, we can construct

a veelor fleld n in a neighborheod of each peint v in X satialying

-~
the appropriate conditien (9. :'.-—i.,!, bor (9:2-b). Since the sst of vectors
v

satialying the appropriate condition in Txv is convex, we may construck

Ty globally by means of a partition of unity, Q. E. D.
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§10. One parameter groups. Let ¥ be a topological space. Dy a

one-parameter group of homeomorphisms of YV, we mean a continuous

mapplng @: R x V=V gsuch that :rl_“l[v} = q:tﬂ!’i#]- for all t, s € I

and all v € V. Mow suppose V iaa stratified set (V,5,7) and o

prese rves each stratum. I 71 is a stratified vector fleldon V. we

say that 7 pgenerates g i the followlng condition 1s satisfied. For

any v € ¥, the mapping ¢t -*c:t{v} ef R inte V¥V is 1.:I' (2z a ;

mapping into the stratum which contains v ) and

4
ar eVl g = miv)

Hote that this implies
2 ledv)) = nleiv])) teE R
at Ty e . :

It is well known that any Gl vectoer field on a cempact manifold
without boundary generates a unique one-parameter group (6ee, €. g,
[ 2, p. BB ]}« Itis alse known that to extend this result to non-compact

manifolds, we rmust generalize the notion of one parameter group.

DEFINITION, Let V & . i
£ e e 3 locally compact space, A local ane

parameter group {on V¥V |} is a pair (J,g), whore J is an open subset

of BxV and @:J =V isa continucus mapping such that the following

hold.




. M
Bl # #
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(s}, 0xVecy

(bl If v€V, then the set J\r =JA(R xv)=HR {san open interval

Elvi h".:l ]

flc). f vE¥, and t,3 and t+s arein I_.l?.h”] then

alt + 8, v) = alt, cels, v)) .

[2). Forany €Y and any compact set KC V¥V, there exists

£>0 suchthat aglv,tié K & t€la ,a +8U(b -¢.b ).
W W W W

From now on in this section, we suppose (V,3,7) iz an (abstract)

pre-stratified get, and n is a stratified vector field on V.

DEFINITION., If (J,a)l isa local one-parameter group {(om V),

we SAY N Efnerntzu o 'L::thz following conditione g = € are satisfied,

lal. Esch stratam X of ¥ is invariantunder o, 1. 8.,

alIn (R xX)jsX.

(b, For each v € V, the mapping t-g(t,v) of [a“,bqi inte the

1
atratumy which containg « s C .

fc), Feorany vEV, wehave

7
et o = wiv)
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Since g is a one-parameter group, condition ¢ is equivalent to:
{c’). Forany (t,v}€J, wehave

La(t,v) = ratt, vi)

e ; :

This generalizes the ordinary notion of what it means for a vector field i

to gemerate a local cne-parameter group.

Since ([V,5,7) ls8 a pre-stratified get, it makes sense to talk of a

controlled vector fleld on W (Sectlon 5).

PROPOSITION 10.1. If 7 isa controlled vector flelden V then n

generates a unigue local one-parameter group  (J, o) .

Proof. For each stratum X , the restriction ef n toa X 1=

My

o smmooth vector field on X [by the definition of stratified vectar field):

i - ey e R e L T

heaneca ﬂx gen-&t‘itzﬁ a smoath laeal unznpa,rlm:t:r Eroup {Jx,ﬂ}:} af

diffeomorphisms of X , by a standard result in differential geometry

[2, 1v, 52 ]. Let (J, ) be defined by |

T = U J a= U p .
Xes * Xea *

We agsert that (J,x) is a local one-parameter group generated by 1.




a4

lt is elear that a , b, and ¢ in the definition of local one-parametar
group hold, and thatif @ is a local one-parameter grovp, then it is.gencrate
by w. Unigueness is obvious. All that remains to be verified 1s that

J isopen, & 18 continuous, and d holdas,

We begin by showing that 4 helds. If not, there exists vE VY anda
compact et K in V  such that oit,v) € K  for values of t arbltrarily
elose to s, ©F 'h-I|Ir + We may suppose that git,vl € K for values of ¢
arbitrarily close ta hv ; the other case is treated similarly. Then there
exigts 3 sequence {li] , converging to hv from below, such that
y = lim n"-*”l.b exizsta and lles in K . Let X (resp. 7Y ) denote the

stratum of V which containse v (reap. ¥).

If X =Y, wegeta contradiction te the fact that Gy is & one-paramete
group. Otherwise Y <X, For large 1, Py J{[Eﬁ" t-ij-]' and 'T,J{m\r‘ Li”

are defined, and the control conditions are satisfied for i - ﬂ“{tz:l .

Thus, by taking i sufficiently large, we may suppose that there exists

¢ >t-t such that [L‘l.r]EIi, wherae y-i:r,r.x[miil, and if T,l, is

i ¥

the tubular neighborhood of Y , Ty is the local retraction of T.,I. onto

¥ and Py is the fubular function of Y , then im,} < ¢

Py xS & on

ﬂ'&,i{[nﬁf]} and the contrel conditions for the pair Y,X are satisfied for

=l "
m € {py x = Py, xI™}N vy ylayd[0.c]ln X . Since
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{FY_I = F‘t.x{'“i” M -.-r;]" x[n-ﬂ{u-, ]} is compact (because
p‘f.}.'.{m[' <€, on ::ni{ﬂ'.{]]'} v and o staysin X (by definiticn),

it follows from the control conditions that .‘{

=1
u"'[ti-lrulE {'P'f‘:{u F’Y.:-:[mL”n "'f.:(‘“‘-fl“”“x far 0 <s<q .

But this contradicts the hypothesis that ﬂv{lj' =y as j=oo. This

contradiction proves d.

I'i-:.:-w let (t,w)eJ . Wewill show that J s a neighborhood of (&, v} I

and g is continucuaw at (t,v). Ve will suppose t2 0 ; the other case
is treated similarly. Aws before, let X be the stratum which containa v .

Sinea @

e is & loecal sne-parameter group, there 8 4 compact

neighborhood U of v in X andan ¢€>0 suchthat [-¢.t+e]lxUcCT.

Lat T}: denote the tubular neighbnrhnqd af X, Fx the lacal retraction 1

al T}: on X, and Px the ubular function of X . Slnce

:rx'l[-l.'.l +e] x U) is compact, we may choose an € = @ such that the

following hold:

(a). Let E‘—-{‘:’ET:{!:IH{}'!::rl and 1xtr]Eax[[-nt+-¢]:Ui}-

Then I i3 compact,

(b} If y€ L, then the control conditions for the pair X,Y hold at

¥+ where ¥ i3 the stratum which contains vy .
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Clearly, the sat .':'u of TET}: such that pxh-j_gfl mnd
rxi_ﬂ €U is aneighborheedof v in V. H y£ Eg s it follows from

the control conditicns that

pyle (s)) = pyly)

':rx!r.t?l-]']' = n'rx[‘fi“}

for all .E.:I'? such that u‘f{l'iEE for 0<s8” <s. From these facts

and d, it follows that [-¢,t+¢€] x EQEJ’: thug J contains a

neighborhood of (t,v) .

The argoean et that we have joet given aliwwe that if

f.vre [t - t.li‘l't'Ix.Eﬂ. then T'Iu[t*.ﬂET}: i pxlr’}jt and

1 ]
#x[y':l = u[t',ﬂxl_ﬂl » Hence for an arbitrarily small neighborhood of

glt, %) we may choocae € > 0 and a neighborbood El. Hence o i

continuous at (t,v) . O.E.D.

COROLLARY 10,2, et P bea manifold, and f: V=P beas

="}

proper, controlled submersion, Then f is a locally trivial fibration,

o . e

Proof, It s enough to consider the case when P =ﬂh and show in

e
¥R , where WV

this cape that there i3 8 hoameomorphism hi ¥V = ".fu 0

denotes the fiberof ¥V over 0, such that the following diagram commutes;
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Diagram 190.1

whera = denctes the projection on the second factor.

Z

k
Consider the coordinate vector fields Ell. " ey Ek en H , By

Proposition 10.1, for each i, 11 <k, there is a controlled vector field

5'1'. on ¥ such that

i.-ﬁ'il{'-rl = E'.lilﬂ'-']-} ' vEV

By Propoasition 10,1, each Bi generates a local one-parameter group
(3 El!i] + Clearly ﬂal{t. vl = flv) 4+ (0,*++,0,t,0,++,0}, where the
non-vanishing entry ig in the ith place, Then from the assumption that
f is proper and condition d in the definition of one parameter group, it

follows that 'Tl =R x¥. Let h be given by

hiv) = {all-tl.uzl—ta.- . ""Ik""k' wi= « o)), 0v))

where we aet f{v) = “1' faa 'tl;} . Itis casily seen that h maps V into

.H. -
"fu X IR and that Diagram 10.1 commutes, Let h: "rn X IE'.k =% bas

defined by

AR Ty Y

Qi S
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hl"-[tll" N ..tk. = ﬂ'-kilkp- U .ruz{ll'ﬁluli v}}} Y

From the fact that the u_l'n are one-parameter groups, it follows that

hhk = hh = identity. Hence h is a homeomorphism, as required. ©Q.E.D.

Note that ‘lu"u has a natural structure of a pre-stratified set

ED,HBI. whers Bn and Hﬂ

collection {X N ‘I.FD:JI:EE-}. If X3 and X

v are defined as followe, # is the

o 1]

¢=}In"||'u is the

corresponding member of B than we let Txﬂ = T}[n ".-’E ;

u | ]
=, '|'r::|:.|T3.|:‘:I and PXg = P}:l'Txu . Mote that "Xy ™aps Tx,
ints xn because § {p & controlled submersion. We let :I'D be the

triple {{T:{n] ' [“:l:u] " {.ﬂ}f_D]} .

Furthermore V, x n’l.k has a structure of a pre-stratified set

(defined in an abvious way).

COROLLARY 10.3. If h is constructed as in the proof of

Corollary 10.2, then b is an isomorphism of pre-stratified sets.

Procf, Immediate from the constroction of k. (See the end of

Section & for the definition of isomorphism. )

COROLLARY 10.4, Let M bea manifold, let ¥ be a clesed

subset of M andlet 3 bea Whimey pre-stratificationof 5. Let

X and ¥ be strata with X <Y . Let W be a submanifold of M
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which maeeta X transversally, Then XN WEY Wo.

Proof. Let x€ XN W . Toshow x€Y¥YNW, itis enough to conpider
what happens in a neighborhood of x . By replacing M witha sufficiently
small open neighborhood of x , we may suppose that X s connected and

closed, and there exists a tubular neighborhood T:."-'. of X in M such

=] 3
that Wn T}{ = wxi‘w’ M X}, where T T:{ = X 1{ipgthe projection

associated to T}L'  From Lemma 7.3, it follows that by choosing T}E
Euﬂititr;ﬂ'p' small, we may suppose that there exista ¢ >0 auch that
Fx <g on Tj{  where Py ia the tubular function associated to T}: .
where i_px.frxl : T:{ - [0,¢) x X is proper, and where for each stratum

Z of 3, the mapping

lpyer T 2 2 20 T, —= 0, x X

iz a submersion.

Let 53" = {znrrx -X):Zgg}. Thean 3" isa Whitney
pre-stratification af 5[ [T}C = X} . By Propoesitien 10.1, there'is a family
of contrel data ¥ for 3 which {8 compatible with [p}:l_rr'x] . Then
(5n 1T:{ -X),2%,7%) is an ahstract pre-stratified set and tgx,w:{il {g a

controlled submersion. Hence by Corallary 10,2, 5n ETI = X) isa

locally trivial bundle over (0,¢) x X, and by Corellary 10, 3, the local

krivializations respect the stratification, ;




&0

It {ollows that any stratum of 3° (e.g.. ¥ N {T'ﬂ - ¥X}} intersects

each liber of :PK' In particular @£ YnN I_px, ﬂxi-l{[’.}t}EY nw

'ﬂ'.x:l #

far O0<e¢”"«<¢g. Itfollowsthat x€E YN W. Q. E.D.

The next corollary says that a pre-stratification which satisfies all the
conditions of a Whitney pre-stratification except the condition of the frontier
aleo satigfles the condition of the frontier, provided that ite sirata are

connected.

COROLLARY 10.5. Let M be a manifold and 83 be a locally finite

pre=piratification of a closed subset V ef M whose sirata are connected

guch that any pair of strata satisfy condition b. Then 8 isa Whitney

pre-stratification,

Proof., It suffices to show that the condition of the frontier halds,

Suppose X and Y are strata and YN X+ B, The proof of Corcllary
10,4 shows that YN X is openin Y, Since YN X is clearly closed in

Y, and ¥ is connected, this proves Y g'f.
The proof of Corollary 10. 4 also shows:

COROLLARY 10.6. Let M Dbe a manifold, 8 a Whitney

pre-stratification of M, X a atratumef M, and T'."'.' a tubular

neighborhesd of X in M such that for any stratum Z of §, the
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mapping [F.‘{"’FKJ :{th] - XN —= I{ i# & submersion, where

Tx=ﬁ:-plﬁ and }E- = {t, x¢e RxX: 0<t<e(x)}. Then tha bundls

”T}El - X, {P.‘-'{. fx].x.: is locally trivial and the local trivializations can

be chosen to respect the stratification.

S Pl B ol e TR Sl |
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§11. The inotopy lemmas of Them, In this section, we will state

Thom's firet and second isotopy lemmas. We will prove the first and

sketch a proof of the secand.

Throughout this section, welet M and P be smooth manifolds,
f:M = P aemooth mapping, and 5 a closed subset of M which

admits a Whitney pre-stratification,

Proposition 11, l. Thomls firstisotopy lemma. Suppose [|[5:5—= P 18

Proper and le 1 X = P isa submersion for each stratum X of T

F

Then the bundle (S,f, P} is locally trivial,

fi?-i"-f.: By Proposition 7.1, we can find a system of control data for
5 which is compatible with [, This provides 5 with a structure of
an abgiract gtratified set in such a way that { 1s a controlled submersion.
Then the cenclusion of the theorem is an immediate consegeence of

Corollary 10. 2. Q. E.D.

Roemark: Thotn conmsidered thecagse P = L. If a,b&€ IR, then
the proaf of Proposition 10.1 constructs on isotepy from the fiber Eal

to the fiber Eh y whence the name "jaotapy lemma'.

The second isotopy lemma i8 an analogous result for mappings instead

of spaces. Conaider a diagram of spaces and rmappings:
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We gay that [ is trivial over 2Z {f there cxists spaces :.:EI' and "I"u

& mapping !'I:.'.Z!'I:[:I - ‘!|!’Iﬁl and homeosmorphisms X ~ ]l:u -

¥ ~ ‘j'u ¥ Z such that the following diagram of spaces and mapplngs is

comimutative:

¥ Z

We say f is locally trivial over & ifforany z€ Z , thereis a

neighborhood U of 3 in Z asuch that in the diagram

[U:I —-—--:J- ¥ z[LT:I

A\

N I

we have that §  is trivial over 1.
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Loecal triviality of a mapping { over a space Z has o conseguence
which will be very important in what follows. We thinkof { asa
family {:I'IL :a € Z} of mappings, where fl : ]{l = Y‘ is the mapping
obtained by restricting { to the [ibar ]L'a of X over a, If Z
is connected and £ 48 locally trivial ower Z , then foramy a and
b in Z, the mappings fi and II: are eouivalent in the sense that
there exiat homeomorphisms b ]{l = :{b and h*: Ta = ¥, such

b

* —
that h In -~ !'.hh,

This is the relation of equivalence that is used in the definition of
topologically stable mapping, and a siep in the proof that the topelogically
stable mappings form an open densa set will be to show that certain
families of mappings are locally trivial in the sense defined above, by

an application of Them's second isotopy lemma,

Now suppose M” is 2 smooth manifold and 5% isa closed
subset of M”" , which admita & Vhimey P:‘I#-ll:rlﬁﬁl:iﬁﬂn Ry
Let g:M" = M bea gmooth mapping and suppose g(5") € 5.
Thom's second isotopy lemma gives sufficient conditions for the following

diagram to be locally trivial: . <53 :

dizsgram 1.1 g*f i s et =
L3 fu= 1
P a r - - '.I'r
i ) I-'— "
RS A
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To state Thom's second isotopy lemma, we must introduce Thom's
candition ‘E ., Let X and Y be submanifolds of M* andlet ¥
be apointin ¥ . Suppose g|X and g|¥Y are of constant rank.

We say the pair (X, ¥} satisfies condition ii at vy if the following

holde:

Lt x be any sequence of points iIn X converging to y .
Suppose that the sequence of planes kcrﬁdlg]i‘(’]:q]l o TM;:j.
converges to a plane 7 ¢ Tf'-'g;-il}; in the appropriate Grassmannian

bundle. Then k.ur{d{g[‘f"]r ET.

YWe aay that the pair (X, ¥) satisfies condition .15 if it satisfies

conditicn lg at every point ¥ of Y.

Now, we return to the situation of Ddagram 11.1. We will say that

§ is a Thom mapping (over FP) if the following conditions are satisfied.

{a) gl5* and f|5 are proper.
(b) For each stratum X of 3, Il:': ig 2 submers on.

(¢} For each stratum X* of 3", g(X") liesina stratum X
of 5, and g:X" = X is a pubmersion (whence g|X* is of

constant rank),

{d) Any pair (X7, Y*) of strata of 3° patisfies condition a

(which makes senpa in view of [2]).

T TETITTE e il —e— | ——
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In the case P is a point, we will drop over P.

PROPOSITION 11. 2 (Thom's second isotopy lemma). If g isa

Thom mapping over P, then g is locally trivial over P,

The proof of this requires new machinery. Let {T} be a system
of comtrol deta for the stratidleatlen % of 5. We need the notion of
a system  {T")} of control data over {T} for the stratification 8§ °

-

of &

CAUTION: A system of control data sver {T} is nota system of
control dota as proviougly deflined. If we were fo require that a system
of coptrel data over {T} also be a system of control data tout court
then the fundamental existence theorem for control data over {T)

{ Proposition 11. 3, below) would not be true,

s 3 Thom mapping. A syatern {T"]

DIZFINITION: Suppose g

E.f contral datd far & 7 owap {T]- is a :I'.a.r.n.il\r of tubular ncig!‘l'hnrhnqﬂ:,

indexed by %%, where T 1isa tubular peighborhoodof X in M-

with the following properties:

(a) If X* and ¥* arestrataof 3* and X“< ¥", then the

commutation relatian
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u:{.ﬂ' WYJ t""'] = *.:.:F ['I.l':

holds for all v for which both sides are defined, i.e., all

v E!T}:'in |TY"| such that WT.{vi E |T:_,:,| .

Furthermorae, if g(X*) and g(Y¥”’) liein the same stratum

ef 3 , then the comrutation relation

F:{"t‘f" fw) = Inx,hr}

holds for all v for which both sides of this equation are defined.

(b) If X* igacstratumof 3 * and X isa stratumof B which

contains p {xX*), then

gfrxpi-..-} _ 'rr}:g{v}

for all w for which both sides of this equation are defined, i.e., for

=]
all w & lT]{'l n g |T}:| .

Mote that a la weaker than the commmutation relation for contral

data in the case g(X"} and g(Y’) are notin the same stratum of

% .

FROPOSITION 11. 3. f p is a Thom mapping then for any system

{T} of contral data fer 4 there exists & system {T']- of contral

data for 8 ° over {T].
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The proaf of this is similar ta the pr.:.af of the extatence thearem

for contrel data (Prepesition 7.1). We will only sutline it.

Proof (Outline): Let 2 L be the family of all strataof 3° of

dimenaslon < k, andlet 51:. denote the union of all strata in § k' '
We will show by induction on k that the proposition is true for 8 ;_

and 5; inplace of 3% and S5". This will suifice to prove the

proposition,

The case k = 0 istrivial. For the inductive step, we suppose
that for cach stratumm X° of 3° of dimension <k, we are given
& tubular neighborheod TJ'I:' of X andthat this family of tubular

neighbarhoods satialies conditions (&) and (b} above.

By shrinking the T:.:-I if necessary, we may suppose that if
X’ and Y¥* are strata of dimension < k which are not comparable,

then |T.‘.{"I n |TT"I s @. Tocomstructthe T._.. on the strata

X
of dimenaien k , we may do i one stratum at a timme, sinco the

relations (a) and (b) impose no conditions on pairs of strata of the

game difnension. Let X° bea stratummof 57 of dimension k.

Ye construct the tubular neighbarhood T}:. in two steps as

Jollorers, For each I = k i we Lk U; denote the umion of all ITY,l

=
[
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for Y ' <X* and dimY¥ 21. Welet :-:; = uI’ A X’ . Inthe firet
step, we caonstruct a tubular neighborhood T; of }I:; by decreasing

induction en f , shrinking various T.;. where necegsary.

This step is carried cut in essentially the same way ag the first
atep in the preof of Proposition 7.1. We start the induction at £ = k,
where there is nothing to prove. For the inductive step, we suppose

Tr

14 hap been congtructed, We obssarve that to constract T" itis

enough to conatruct TI on |T~!_,I N X’ for each stratam ¥’ <X’

of dimension § separately. Then there are two casas.

Casel, If g(¥") and g{X*]} arein the same stratum of

then the construction {s earried out in the same way as the corresponding
constraction in the proof of Proposition 7.1. In this way we define T:

oIk ]T N X° eothat the comrmutation relationa (a) held,

-rl'

[Mote that eondition (b) follows from (a) in this case.)

Case 2. Inthe case g(Y") and g(X") are notin the same stratum
of 3 , the proof must be modifled, Let X be the stratum which
eontaing g{X°) andlet ¥ be the stratum which contains glY’).
Then ¥ < X . By shrinking ITYJ[ if necessary, we may suppose that

et e T Let

'E’I'

L [|T,£| n %) x Y

TSR S

g

!
1]
:
i
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whare the fibar product is taken with raspect to the mappinge

ﬂ'?:[Tvlﬂx—!’T

E:‘f‘ — 1' ¥
Then the mapping
G = i_;,w,r,} : |T?,| n X¢—= v

is defined becauge the following diagram commuites:

Wop

s —Es v

¥ T L
|TY| [l g ———

by the loductive bypothesis that [b) is satisfied ior those tubular

neighborhoods which are already defined.

LEMMA 1.4, Thereexists a nelghborhosd N of ¥ in [T .| suchthat

GNAN X : NOA X' — ¥

is a submersion.

FProof: Let E be the set of points in [TT"l N X* where the

differential of G is not onto. It sufflcea to show that Y* N E = 0,

et A
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Let x* € [Ty.l N X%, x = glx")oy” = 7y0(x”), and

y = gly’) = :r,!_l:x]'. Then

¥ ) "
deJ = {d{ﬂ'?}xp}xt " d{nlx J:p} H TK:.: - TV

-
Glx’) © HIIT?F T‘fy"

By definitien, x" € & If and only if this mapping i» not onto. Since
dig|x ::-:' P TE, —> TX
is onto (by hypothesis), it follows that thls mapping is onto if and only U

d{i'.i..u}:,:lx, : h:a:r{:ﬁlig{]{’x.] —_— Hnr{d{gf?'l}r,}

is onto, TFrom condition aE, it follows that Y* does not meet the

closure L of tha set of points where this mapping is not onto. Q. E. D,

Mow we extend T;' over LT"!’" N X* in such a woy that (a)
holds (the weak (a2}l ) and (b) holds. We may do this by the generalized

existence theorem for tubulay neighborhoods and Lemma 11, 4.
This completes the inductive step.

HNow the second step (extension of T" from UEI'

over all of X7)

ie carried out in exactly the same way 23 in the proof of Proposition 7.1, Q.

The rast of the proof of Proposition 11. 2 will be carried out in

three steps. First, we define the notion of a controlled vector ficld

E. L.

e ——

]
1
|
5
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over another controlled vector field. [WARNMNIMG: this is not 2 special
case of the notion of a controlled vector field.) Then we prove a lifting
theorem for controlled vector fields. Finally, we show that évary

controlled vector field over ancther controlled vector fleld penerates

a local one parameter group.

Now we suppose £ is a Thom mapping. We suppoge that wo are
given & system (T} of control data for 5 and a system {T°}
of centrel data for 5% over (T}. Let 7 = {T"}E}JEEH be a

controlled vector field on. S .

DEFINITION: By o controlled vector field on 5° over 7. we

will mean & ﬂ.ﬂllﬂ'ﬂtiﬂﬂ. [qxa}x -i-Ea " whg_fg ‘liirx # ii a vector ﬁfld

on X" . auch that the following conditicns are satisfied.
{2) Porany X* e 8" and x*¢X’, wehave
[ - L
(X", nyslx®) = my (alx"))

(b) Forany X°,Y“¢€ 8" with YY" < X*, thereis a neighborhood

HT, of ¥ in |T'f"| guch that for y° € |TY,Ir'|.'K s we have

[“v'x']’.u ﬂx;[n ) = ﬂ.!.,in',f:xelx 1]




T3

andif g{X’) and g{¥"} arcinthe same stratumof 3 then we have

Mac* p,l,-x-{x'j = 0
(Mote that condition b is weaker than the condition that we Imposed

en a controlled vector field in Section 9 in the case g(¥*) and g(X") I

are not in the same stratum of 3 .)

FROPFPOSITION 11,5, There exists a contralled vector field en 57

over -IJI .

The proof is completely analogous to the proof of Proposition 9.1,

snd we amit it |.

FROFPOSITION 11.6, If 1]|" in a2 controlled vectar fleld an 57

over 1, then 'rlil‘+ generates a local one parameter proup, which

commutes with the cne-parameter group on S generated .E:i i

B

The proof of this is essentially the same as the proof of Proposition 10.1,

The only additional remark to be made is that if X* and Y* are
strataof 8 with ¥ < X", and g(Y") UWesin ¥ and g(X’)
lisg in X, then, in the case ¥ < X, a trajoctory ¥° of n’
starting at a point of X° cennot approach ¥° becauge the image of

',-'" is a trajectory of 7 and therefore cannot approach a pointof Y .

We omit the proof.

e e — e g L g




Proof of Proposition 11. 2. To prove that ¢ is loecally trivial over

P, itsuflices to consider the case P = RF and prove that g is
trivial over P in this case, By Proposiden 7.1 we can find a system
{T} of control deta for 3  compatible with {, and by Proposition 11. 3
there exists & system {T’)} of comtrol data for & over {T}.

Let 31,- - .ap be the coordinate vector fields on HF . By

Proposition 9.1, wea can 1ift 51 to a controlled vactor field ii on 5,
and by Proposition 11. 5 we can lft E; to a controlled vector field ?i

g 5°  ower Ei.'

By Propositionas 10.1 and 11, & the vector fields ‘E and Efi generate

i
local one parameter groups tFi. end Fq;[ « Since the mappings f and

§ A&re proper and ai generates a (global) one parameter group IPi .

it followa that Ei and $l are (global) one parameter groups.

Let ED [reap. 55! denote the fiber of 5 (resp. S°) over 0O,

Ta complete the proof, it is enough to construct local homeomorphiamas

h and h* such that the following diangram eommutes.




=]

5 —E =
foq
f
h* : U

Ny
/-

a B P
Eu x R W Sn x IR i
Wedefine h and h” as follows.
h*(x) = @B’;"'p. : "Ff.-rl“‘"tj where t= (f,een,t) = foglx) :
i
hix} = IEBP.—I: . ”-Pl.—t ix}, tj} wheres t = [t1.+--.tp:| = flx) . .

1

It is easily verified that the above diagram commutes and that h and

h* are homeomorphisma. Q. E. D, |

¥
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