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COUNTING HOMOTOPY TYPES OF MANIFOLDS 

MICHAEL MATHER 

(Received 26 October 1964) 

THEORE~I (1). Let C be n topological space dominated by nJinite C W-complex K. Then 
C x S’ has the homotopy type of afinite CW-complex. 

Proof. Replace the given space C by the mapping cylinder of the given map K-+ C, 

which has the same homotopy type as C. Then the map C-t K becomes a mapf: C- C 

whose image lies in K embedded in C, and which is homotopic to the identity. We may 

suppose that fj K is cellular. 

Define the mapping torus T(f) off by taking C x I and identifying c x 1 withf(c) x 0 

for each c E C. As with a mapping cone, 1 =vJ’implies T(1) N T(f). T(1) is C x S’, so 

C x S’ N T(j). Define a homotopy 11~ : T(f) --t T(f) by: 

h,(c x s) = c x (s + t) for s + t < 1 

=f(c)x(s+t-1) for s+t>l. 

This can be visualised as pushing the mapping torus through an angle 27~. This homotopy 

is a weak retraction of T(f) to T(fl K), naturally embedded in T(f). Hence C x S’ N T(f) 2: 

T(flKc>. 

But T(flK) is a finite CW-complex, so the theorem is proved. 

THEOREM (2). The set of homotopy types ofspaces dominated byjinite CW-complexes is 

countable. 

Proof. Let C be any such space. Then, by Theorem (I), C x S1 is homotopy equivalent 

to a finite CW-complex K. But the set of homotopy types of finite CW-complexes is count- 

able. Hence we need only prove the theorem for spaces C such that C x S’ z K. 

Choose a particular homotopy equivalence h : C x S’ --+ K for each such space C. (We 

suppose that all spaces have base points, which are preserved by maps but not by homo- 

topies.) Now C is homotopy equivalent to C x R, which is the covering space of C x S’ 

determined by the subgroup n,(C) of rr,(C x S’). It follows that C is also homotopy 

equivalent to the covering space of K determined by the subgroup h,n,(C) of n,(K). But 

x1(C) is finitely generated and X,(K) countable, so that there are only a countable number 

of such subgroups. This proves the theorem. 

COROLLARY. The set of homotopy types of compact topological manifolds is countable. 
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Proof. Any such manifold is a compact ANR [l, Theorem (3.3)]. and so is dominated 

by a finite CW-complex [l, Theorem (6.3)J. Hence we may apply Theorem (2). 

I am grateful to Dr. D. B. A. Epstein for suggesting that this corollary follows from 

Theorem (1). 
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