COUNTING HOMOTOPY TYPES OF MANIFOLDS

MICHAEL MATHER

(Received 26 October 1964)

THEOREM (1). Let C be a topological space dominated by a finite CW-complex K. Then $C \times S^1$ has the homotopy type of a finite CW-complex.

Proof. Replace the given space C by the mapping cylinder of the given map $K \rightarrow C$, which has the same homotopy type as C. Then the map $C \rightarrow K$ becomes a map $f: C \rightarrow C$ whose image lies in K embedded in C, and which is homotopic to the identity. We may suppose that f|K is cellular.

Define the mapping torus T(f) of f by taking $C \times I$ and identifying $c \times 1$ with $f(c) \times 0$ for each $c \in C$. As with a mapping cone, $1 \simeq f$ implies $T(1) \simeq T(f)$. T(1) is $C \times S^1$, so $C \times S^1 \simeq T(f)$. Define a homotopy $h_t: T(f) \to T(f)$ by:

$$\begin{split} h_t(c \times s) &= c \times (s+t) \quad \text{for} \quad s+t \leqslant 1 \\ &= f(c) \times (s+t-1) \quad \text{for} \quad s+t \geqslant 1. \end{split}$$

This can be visualised as pushing the mapping torus through an angle $2\pi t$. This homotopy is a weak retraction of T(f) to T(f|K), naturally embedded in T(f). Hence $C \times S^1 \simeq T(f) \simeq T(f|K)$.

But T(f|K) is a finite CW-complex, so the theorem is proved.

THEOREM (2). The set of homotopy types of spaces dominated by finite CW-complexes is countable.

Proof. Let C be any such space. Then, by Theorem (1), $C \times S^1$ is homotopy equivalent to a finite CW-complex K. But the set of homotopy types of finite CW-complexes is countable. Hence we need only prove the theorem for spaces C such that $C \times S^1 \simeq K$.

Choose a particular homotopy equivalence $h: C \times S^1 \to K$ for each such space C. (We suppose that all spaces have base points, which are preserved by maps but not by homotopies.) Now C is homotopy equivalent to $C \times R$, which is the covering space of $C \times S^1$ determined by the subgroup $\pi_1(C)$ of $\pi_1(C \times S^1)$. It follows that C is also homotopy equivalent to the covering space of K determined by the subgroup $h_*\pi_1(C)$ of $\pi_1(K)$. But $\pi_1(C)$ is finitely generated and $\pi_1(K)$ countable, so that there are only a countable number of such subgroups. This proves the theorem.

COROLLARY. The set of homotopy types of compact topological manifolds is countable.

Proof. Any such manifold is a compact ANR [1, Theorem (3.3)], and so is dominated by a finite CW-complex [1, Theorem (6.3)]. Hence we may apply Theorem (2).

I am grateful to Dr. D. B. A. Epstein for suggesting that this corollary follows from Theorem (1).

REFERENCE

1. O. HANNER: Some theorems on absolute neighbourhood retracts, Ark. Math. 1 (1950), 389-408.

University of Warwick