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Vol. 11, No. 2, April 1969

COMPLETION OF A SYMMETRIC UNITARY MATRIX*
ROBERT F. MATHIS*

The symmetric unitary matrix has received special attention in physics and
electrical engineering because, ‘“The scattering matrix is symmetrical and unitary
for a lossless junction’ [1]. The present note resulted from an attempt to extend
the work of Harold F. Mathis [2] to find a simple procedure for designing a lossless
junction, given any number of rows in its scattering matrix.

A given set of orthonormal vectors can be extended to a complete orthonormal
set by adjoining arbitrary linearly independent vectors, using the Gram—Schmidt
orthogonalization process, and normalizing. If the given set of orthonormal
vectors are considered the first rows of a matrix, this method can be used to com-
plete a unitary matrix. If the given rows satisfy a simple minimum condition, the
following method yields a symmetric unitary matrix. This method proceeds, as does
the Gram-Schmidt process, by constructing one row at a time.

THEOREM. Given a square matrix A and a rectangular matrix B with the same
number of rows as A, the rectangular matrix (A :B) can be extended to a symmetric

A B
unitary matrix [BT X] ifand only if A = AT and AA* + BB* = .

Proof of necessity. From the definition of a unitary matrix,
A B[ A* B
1 = I
C A BY|. .
Thisimplies that A4* + BB* = I. The symmetry of BT x implies 4 = AT.

Proof of sufficiency. The matrix X to be found must be symmetric. The proof
will be by induction on the number of rows of X. In particular, the first column of
X will be constructed, and it will be shown that when A and B are enlarged using
the elements of this column, the resulting incomplete matrix again satisfies the
conditions of the theorem.

Equation (1) is expanded to give

2 AA* + BB* = I,
3) AB + BX* =0,
(@) BTA* + XB* =0,
() B™B + XX* =1

Equation (4) is the conjugate transpose of (3), so it is only necessary to consider
(3) and (5). Let X, B, and 0, denote the first columns of X, B and 0, respectively.

* Received by the editors July 2, 1968, and in revised form September 18, 1968.
+ Department of Mathematics, The Ohio State University, Columbus, Ohio 43210.
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262 ROBERT F. MATHIS

After taking the conjugate of (3), the corresponding equations for X, are
(6) ZB] + BXl = 01 N

First it will be shown that it is always possible to find a column matrix a such
that BB*a = B,. If BB* is nonsingular, it is obvious that a exists. If BB* is
singular, there exist nonzero column matrices A such that A”BB* = 07. For any
such 1, ATBB*] = 0 = (BT)"(B"]), which requires BTA = 0, and BT1 = A"B, = 0.
Consequently, BB* and the augmented matrix formed by adding B, as an extra
column to BB* have the same rank. This is a well-known criterion for the existence
of a.

Finally, let X; = BT(@ — A*a) — 1,, where I, denotes the first column of I.
Next, using (2), it is verified that X ; satisfies equations (6) and (7):

AB, + BX, = AB, + BB"(a — Aa) — BI,
B, + By — (I — AA)Aa — B,
B, — A(I — AA)a
= AB, — ABB*a = 0,,
BTB, + XTX, = BTB, + (@'B — a"AB — IT)(B*a — B*4a — I,)
= BTB, + a'B, — a'(I — AA)Aa - a"B,
—aTAB, + aTA(I — AA)Aa + a"AB,
— Bla+ B{da + 1
= BYB, — a"ABB"a + a"(I — BB")BB"a
—Bla + BTAa + 1
= BTB, — (BB*a)'B, + 1 = 1.
Let B = (B;:B,), let x,, be the first element of X, and let X7 = (x,,:XJ).
Now A4 is changed to |:A B, :I and B is changed to [f(ZTJ‘ So (2) becom;:s

Il
|

I
N

T
Bi x4 2

A B; A By |* B, B, |*
(8) - + =1
Bi x4 B{ X11 Xg Xg

Equation (8) follows directly from (2), (6) and (7).

Thus the desired column matrix X, can be constructed. The first row of X
is X7, and the first column of X is X,. This process can be repeated until the
complete matrix X is found. If the first column of B is interchanged with some
other column, it is possible to begin constructing X with this column. It is obvious
from the nature of the problem and the proof that X need not be unique.

Remark. In some cases the computation of X, is easier and more direct than
in the proof of the theorem. If B; = 0,, then X, = I, is a solution. If there exists
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a column matrix b such that B*b = I,, let X; = —BTAb. It can be verified that
this X, satisfies (6) and (7).

If there exists a column matrix ¢ such that B¥*Bc = I, let b = Bc. If B*B is
nonsingular, it is always possible to solve the equation B*Bc = I, . Consequently,
if B*B is nonsingular, X, = —BTAB(B*B)™ I, satisfies (6) and (7).
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