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PREFACE 

This book contains lectures on matrices given a t  Princeton University a t  
various times since 1920. I t  was my intention to include full notes on the his- 
tory of the subject, but this has proved impossible owing to circumstances 
beyond my control, and I have had to content myself with very brief notes (see 
Appendix I). A bibliography is given in Appendix 11. In compiling it, espe- 
cially for the period of the last twenty-five years, there was considerable difficulty 
in deciding whether to include certain papers which, if they had occurred earlier, 
would probably have found a place there. In the main, I have not included 
articles which do not use matrices as an algebraic calculus, or whose interest lies 
in some other part of mathematics. rather than in the theory of matrices; but 
consistency in this has probably not been attained. 

Since these lectures have been prepared over a somewhat lengthy period of 
time, they owe much to the criticism of many friends. In particular, Professor 
A. A. Albert and Dr. J. L. Dorroh read most of the MS making many sugges- 
tions, and the former gave material help in the preparation of the later sections 
of Chapter X. 

J. H. M. WEDDERBURN. 
Princeton, N .  J., 

July 20, 1934. 
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CHAPTER I 

MATRICES AND VECTORB 

Linear transformations and vectors. In a set of linear equations 

the quantities ql, 72, . . . , qn may be regarded as the coordinates of a point P in 
n-space and the point P'(q;, q4, e l  qA> is then said to be derived from P by 
the linear homogeneous transformation (1). Or, in place of regarding the q's as 
the coordinates of a point we may look on them as the components of a vector y 
and consider (1) as defining bn operation which transforms y into a new vector 
y'. We shall be concerned here with the properties of such transformations, 
sometimes considered abstractly as entities in themselves, and sometimes in 
conjunction with vectors. 

To prevent misconceptions as to their meaning we shall now define a few terms 
which are probably already familiar to the reader. By a scalar or number we 
mean an element of the field in which all coefficients of transformations and 
vectors are supposed to lie; unless otherwise stated the reader may assume 
that a scalar is an ordinary number real or complex. 

A vector1 of order n is defined as a set of n scalars (tl, h, a ,  6,) given in a 
definite order. This set, regarded as a single entity, is denoted by a single 
symbol, say x, and we write 

X = (511 [z, "., tn). 

The scalars 61, b, . . , En are called the coordinates or components of the vector. 
If y = (71, q2,  . ., qn) is also a vector, we say that x = y if, and only if, cor- 

responding coordinates are equal, that is, ti = qi (i = 1, 2, . . e, n). The vector 

is called the sum of x and y and is written x + y;  i t  is easily seen that the opera- 
tion of addition so defined is commutative and associative, and it has a unique 
inverse if we agree to write 0 for the vector (O,0, . ., 0). 

In chapter 5 we shall find it  convenient to  use the name hypernumber for the term 
vector which is then used in a more restricted sense, which, however., does not conflict 
with the use made of it here. 

1 



2 MATRICES AND VECTORS 

If p is a scalar, we shall write 

This is the only kind of multiplication we shall use regularly in connection with 
vectors. 

1.02 Linear dependence. In this section we shall express in terms of 
vectors the familiar notions of linear dependen~e.~  If xl, x2, ., xr are vec- 
tors and wll wz,  . . . , w, scalars, any vector of the form 

is said to be linearly dependent on xl, xz, . ., x,; and these vectors are called 
linearly independent if an equation which is reducible to the form 

can only be true when each w; = 0. Geometrically the r vectors determine an 
r-dimensional subspace of the original n-space and, if XI, x2, . ., x, are taken as 
the coordinate axes, wl, wz, . . ., w, in (2) are the coordinates of x. 

We shall call the totality of vectors x of the form (2) the linear set or subspace 
(XI, z2, . ., 5,) and, when xl, x2, . . . , z, are linearly independent, they are 
said to form a basis of the set. The number of elements in a basis of a set is 
called the order of the set. 

Suppose now that (xl, x2, . . ., a,), (yl, yz, . . ., y,) are bases of the same 
linear set and assume s >_ r .  Since the x's form a. basis, each y can be expressed 
in the form 

and, since the y's form a basis, we may set 

and therefore from (3) 

if we agree to set aij = 0 when j > r. Since the y's are linearly independent, 
(4) can only h d d  true if cii = 1, cik  = 0 (i # k) so that the determinant 

See for instance Bacher, Inlroduction to Higher Algebra, p. 34. 
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( c i k  ( = 1. But from the rule for forming the producb of two determinants it 
follows from (5) t,hat ( cik ( = I aik I \  b i k  ( which implies (i) that I a;k I # 0 and 
(ii) that r = s, since otherwise I ail, I contains the column ai, , + I each element 
of which is 0. The order of a set is t,herefore independent of the basis chosen 
to represent it. 

I t  follows readily from the theory sf linear equations (or from $1.11 below) 
that, if I aii I # 0 in (3), then these equations can be solved for the x's in terms 
of the y's, so that the conditions established above are sufficient as weil as 
necessary in order that the y's shall form a basis. 

Pf ei denotes the vector whose ith coordiuate is 1 and whose other coordinates 
are 0, we see immediately that we may write 

in piace of x = (b, E2, . a ,  En). Hence el, ez, . a ,  en form a basis of our 
n-space. We shall call this the fundamenta,l basis and the individual vectors e i  
the fundamental unit vectors. 

If xl, xz, . . -, x r k  < n) is a basis of a wbspace of order r, we can always 
find n - r vectors x, + 1, . . . , xn such that xl, x2, - . , xn is a basis of the 
fundamental space. For, if x, + I is any vector not lying in (xl, x2, . - ., x,), 
there cannot be any relation 

in which w, + # 0 (in fact every w must be 0) and hence the order of (xll 
x2, . . ., xr, x, + I) is r + 1. Since the order of (el, ez, a a -, en) is n, a repetition 
of this process leads to a basis xll 2 2 ,  - . ., x,, . . ., xn of order n after a finite 
number of steps; a suitably chosen ei may be taken for x, + The (n-r)-space 
(x, + . . ., xnj is said to be complementary to (xll xzl . ., x,); it is of course 
not unique. 

1.03 Linear vector functions and matrices. The set of linear equations 
given in $1.01, namely, 

! I 

define the vector y' = (n,, 7 , ,  a ,  7:) as a linear homogeneous function of 
the coordinates of y = . . * ,  vn) and in accordance with the usual func- 
tional notation it is natural to write y' = A(y); it is usual to omit the brackets 
and we therefore set in place of (6) 

yf = Ay. 

The function or operator A when regarded as a single entity is called a 
matrix; it is completely determined, relatively to the fundamental basis, when 
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the, n2 numbers aii are known, in much the same way as the vector y is deter- 
mined by its coordinates. We call the aii the coordinates of A and write 

or, when convenient, A = ( 1  aii 1 1 .  I t  should be noted that in aij the first s u f i  
denotes the row in which the coordinate occurs while the second gives the 
column. 

If B = 1 1  bij [ I  is a second matrix, y" = A(By) is a vector which is a linear 
vector homogeneous function of y, and from (6) we have 

where 

The matrix D = I /  d,i 1 1  is called thb product of A into B and is written AB. 
The form of (8) should be carefully noted; in it  each element of the ith row of A 
is multiplied into the corresponding element of the jth column of B and the 
terms so formed are added. Since the rows and columns are not interchange- 
able, AB is in general different from BA; for instance 

The product defined by (8) is associative; for if C = I I cii 11, the element in 
the ith row and jth column of (AB)C is 

and the term on the right is the (i, j) coordinate of A(BC). 
If we add the vectors Ay and By, we get a vector whose ith coordinate is 

(cf. (6)) 
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where cii = aij + bij. Hence Ay + By may be mittsen Cy where C = I I cij I I. 
We define C to be the sum of A and B and write C = A + B; two matrices 
are then added by adding corresponding coordinates just as in the case of vec- 
tors. I t  follows immediately from the definition of sum and product that 

A(B + C) = AB + AC, (B + C)A = BA + CA, 

A(x + y) = Ax + Ay, 

A, B, C being any matrices and x, y vectors. Also, if k is a scalar and we set 
y' = Ay, y" = ky', then 

y" = Ry' = kA(y) = A(ky) 

or in terms of the coordinates 

Hence kA may be interpreted as the matrix derived from A by multiplying 
each coordinate of A by k. 

On the analogy of the unit vectors ei we now define the fundamental unit 
matrices eij (i, j = 1,2,  ., n). Here eii is the matrix whose coordinates are 
all 0 except the one in the ith row and jth column whose value is 1. Corre- 
sponding to the form ZEiei for a vector we then have 

Also from the definition of multiplication in (8) 

a set of relations which might have been made the basis of the definition of the 
product of two matrices. It should be noted that it follows from the defini 
tion of eij that 

Hence the coordinates of Aek are the coordinates of A that lie in the kth column. 

1.04 Scalar matrices. If k is a scaiar, the matrix K defined by Ky = ky 
is called a scalar matrix; from (1) it follows that, if K = 1 1  Rii 11,  then kii = k 
(i = 1, 2, . . . , n), kij = 0 (i # j). The scalar matrix for which k = 1 is called 
the identity matrix of order n; it is commonly denoted by I but, for reasons 
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explained below, we shall here usually denote it by 1, or by 1, if it is desired 
to indicate the order. When written at  length we have 

A convenient notation for the coordinates of the identity matrix was intro- 
duced by Kronecker: if 6 i i  is the numerical function of the integers i, j 
defined by 

then 1, = I /  6i i  1 1 .  We shall use this Kronecker delta, function in future with- 
out further comment. 

THEOREM 1. Every matrix is commutative with a scalar matrix. 

Let k be the scalar and K = 1 1  kii 1 1  = I  I k6ii I / the corresponding matrix. 
If A = I  aii 1 )  is any matrix, then from the definition of multiplication 

so that AK = K A .  
If k and h are two scalars and K ,  H the corresponding scalar matrices, then 

K + H and K H  are the scalar matrices corresponding to k + h and kh. Hence 
the one-to-one correspondence between scalars and scalar matrices is main- 
tained under the operations of addition and multiplication, that is, t,he two 
sets are simply isomorphic with respect to these operations. So long therefore 
as we are concerned only with matrices of given order, there is no confusion 
introduced if we replace each scalar by its corresponding scalar matrix, just 
as in the theory of ordinary complex numbers, (a, b) = a + bi, the set of num- 
bers of the form (a, 0) is identified with the real continuum. We shall there- 
fore as a rule denote ( 1  6i i  / (  by 1 and / I  k6ii ( 1  by k.  

1.05 Powers of a matrix; adjoint matrices. Positive integral powers of 
A = 1 1  aij I /  are readily defined by induction; thus 

With this definition it is clear that ArAa = Ar + for any positive integers r ,  s. 
Negative powers, however, require more careful consideration. 
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Let the determinant formed from the array of coefficients of a matrix be 
denoted by 

I A I = det. A 

and let a,, be the cofactor of a,, in A,  so that from the .properties of deter- 
minants 

(14) aipapj  = I A ] dii = ai,api ( i ,  j = 1, 2, . . a ,  n ) .  

The matrix 1 1  aij 1 1  is called the adjoint  of A and is denoted by adj A. I n  this 
notation (14) may be written 

(15) A(adj A )  = I A I = (adj A)A ,  

so that a matrix and its adjoint are commutative. 
If I A I # 0, we define A-' by 

Negative integral powers are then defined by APT = (A-I)'; evidently A-' = 

(Ar)-'. We also set A0 = 1, but it will appear later that a different inter- 
pretation must be given when / A / = 0. Since AB.  B-'A-' = A .  BE-'.A-1 = 

AA-' = 1 ,  the reciprocal of t'he product AB is 

If A and B are matrices, the rule for multiplying determinants, when stated 
in our notation, becomes 

IABI = I A l I B I .  

In part'icular, if AB = I,  then I A I I B I = I ; hence, if I A I = 0, there is no 
matrix B such that AB = 1 or BA = 1. The reader should notice that, if k 
is a scalar matrix of order n, then I k I = k. 

If A = 0, A is said to be s ingular;  if A # 0, A is regular or non-singular. 
When A is regular, A-1 is the only solution of A X  - 1 or of XA = 1. For, 
if AX = 1, then 

A-1 = A-1.1 = A-lAX = X .  

If AX = 0, then either X = 0 or A is singular; for, if A-I exists, 

If A2 = A i 0, then A is said to be id impoten t ;  for example ell and 
- 1 1 i 4  -21i 

are idempotent. A matrix a power of which is 0 is called nilpotent. If the 
lowest power of A which is 0 is A', r is called the index  of A ;  for example, if A 
= el2 + ez3 + e34, then 

so that the index of A in this case is 4. 
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1.06 The transverse of a matrix. If A = 1 1  aii 1 1 ,  the matrix 1 1  aLl 1 in 
which a,', = aji is called the transverse3 of A and is denoted by A'. For instance 
the transverse of 

The transverse, then, is obtained by the interchange of corresponding rows and 
columns. I t  must be carefully noted that this definition is relative to a par- 
ticular set, of fundamental units and, if these are altered, the transverse must 
also be changed. 

THEOREM 2. The transverse of a sum i s  the sum of the transverses o j  t h  sepac 
rate terms, and the transverse of a product. i s  the product of the transverses of the 
separate factors in the reverse order. 

The proof of the first part of the theorem i j  immediate and is left to the 
reader. To prove the second it is sufficient to consider two factors. Let 
A = ( 1  ai j  11, B = ( 1  bij  ( 1 ,  C = AB = 1 1  cij ( 1  and, as above, set a i i  = aii, 
b : .  = b .  c : .  = c . . .  then 
I) 1'7 t ]  1 1 ,  

whence 

(AB)' = C' = B'A'. 

The proof for any number of factors foIlows by induction. 
If A = A', A is said to be symmetric and, if A = -A', it is called skew- 

symmetric or skew. A scalar matrix k is symmetric and the transverse of 
kA is kA'. 

THEOREM 3. Every matrix can be expressed uniquely as the sum of a sym- 
metric and a skew matrix. 

For if A = B + C, B' = B, C' = -C, then A' = B' + C' = B - C a n d  
therefore 

B = (A + At,)/2, C = (A - Af)/2. 

Conversely 2A = (A + A') + (A - A') and A + A' is symmetric, A - A' 
skew. 

I t  is also called the transposed or conjugate of A. It  is sometimes written A .  
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1.07 Bilinear forms. A scalar bilinear form in two variable vectors, x = 

Ztiei, y = Zqiei, is a function of the form 
n 

There is therefore a one-to-one correspondence between such forms and ma- 
trices, A = [ I aij I [ corresponding to A(x, y). The special form for which A = 

1 1  6ij  [ I  = 1 is of very frequent occurrence and we shall denote it by S ;  it is 
convenient to omit the brackets and write simply 

and, because of the manner in which it appears in vector analysis, we shall 
call it the scalar of xy. Since S is symmetric, Sxy = Syx. 

The function (17) can be conveniently expressed in terms of A and S; for 
we may write A(x, y) in the form 

It may also be written 

hence 

(19) SxAy = SyA'x, 

so that the form (17) is unaltered when x and y are interchanged if a t  the same 
time A is changed into A'. This gives another proof of Theorem 2. For 

Sx(AB)'y = SyABx = SBxA'y = SxB'A'y, 

which gives (AB)' = B'A' since x and u are independent variables. 

1.08 Change of basis. We shall now investigate more closely the effect of 
a change in the fundamental basis on the coordinates of a vector or matrix. 
If fl, fi, . . ., fn is a basis of our n-space, me have seen (51.02) that the j's are 
linearly independent. Let 

Since the j's form a basis, the e's are linearly expressible in terms of them, say 
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and, if & = I /  qii 1 1 ,  this may be written 

ei = C q i i z p k j e k  = FQei (i = 1, 2, . . . ,  n). 

Hence PQ = 1, which is only possible if I P 1 # 0, & = P-I. 

Conversely, if I  P / # 0, & = P-I, and j i  = Pei as in (20), then (22) holds 
and therefore also (21), that is, the e's, and therefore also any vector x, are 
linearly expressible in terms of the j's. We have therefore the following 
theorem. 

THEOREM 4. If ji = Pei (i = 1,2, . * ,  n), the vectors f i  form a 6asis if, and 
o d y  if, I  P 1 Z 0. 

If we have fewer than n vectors, say fl, ji, . . ., j,, we have seen in 1.02 
that we can choose j, + . ., j,, so that ji, j2, . . ., jn form a basis. Hence 

THEOREM 5.  If ji, f2, - - ., jr are linearly independent, there exists at least 
one non-singular matrix P such that P e i  = f i  (i = 1, 2, . . ., r). 

We shall now determine how the form Sxy, which was defined relatively to 
the fundamental basis, is altered by a change of basis. As above let 

be a basis and 

variable vectors; then from (23) 

and 

zt:ei = P-lx = Qx, Zq:ei = Qy. 

Let us set temporarily S,xy for Sxy and also put Srxy = ~[,:q', the correspond- 
ing form with reference to the new basis; then 

Consider now a matrix A = 1 1  aii 1 1  defined relatively to the fundamental 
basis and let Al be the matrix which has the same coordinates whkn expressed 
in terms of the new basis as A has in the old. From the definition of A and 
from Sj = S,eix we have 
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and hence 

We have therefore, remembering that Q = P1, 

THEOREM 6. Ij j, = Pe; (i = 1, 2, . ., n) is a basis and A any matrix, the 
matrix PAP-' has the same coordinates when expressed in terms of this basis as A 
has in terms of the fundamental basis. 

The matrix &-'A& is said to be similar to A and to be the transform of A 
by &. Obviously the transform of a product (sum) is the product (sum) of 
the transforms of the individual factors (terms) with the order unaltered. For 
instance Q-'ABQ = Q-'A&.&-lBQ. 

Theorem 6 gives the transformation of the'matric units eij defined in 51.03 
which corresponds to the vector transformation (23); the result is that, if jij 
is the unit in the new system corresponding to eii, then 

which is readily verified by setting 

A = eii = e,Seej( ), A1 = pij = fiSifi( ) 

in (25). The effect of the change of basis on the form of the transverse is 
found as follows. Let A* be defined by 

SjxAy = S,-yA*x; 
then 

S,yA*x = S,xAy = S,QxQAy = S,xQIQAy = SeQy(Q')AtQ'Q1: 

= S ~ Y  (Q'Q)AtQ'Qz. 
Hence 

1.09 Reciprocal and orthogonal bases. With the same notation as in the 
previous section we have Slj,jj = 0 (i Z j), Sjjijj = 1, Hence 

S i j  = SJifj = S e Q j i Q f j  = Sef iQ 'Qj i .  

If, therefore, we set 

we have, on omitting the subscript e in S,, 

(28) Sfif; = 6 i j  (i, j = 1, 2, . . ., 12). 

Since I QtQ I # 0, the vectors f:, f:, . . a ,  j,' form a basis which we say is recip- 
rocal to f,, j2, e . + ,  fn This definitio~ is of course relative to the fundamental 
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basis since it depends on the function S but, apart from this the basis (jil) is 
uniquely defined when the basis (ji) is given since the vect,ors f ,  determine P 
and Q = P-l. 

The relation between (jil) and (f, ) is a reciprocal one; for 

and, if R = (Qf)-l, we have jj = R'Rji.. 
If only the set (jl, f2, . . ., j,) is supposed given originally, and this set of 

linearly independent vectors is extended by I, + . . . , f, to form a basis of 
the n-space, then j: + l ,  . . ., ji individually depend on the choice of f, + l, 

., fn. But (28) shows that, if Sfix = 0 (i = 1, 2, . . ., T) ,  then x belongs to 
the linear set (j: + l, . . -, f A) ; hence this linear set is uniquely determined 
although the individual members of its basis are not. We may therefore with- 
out ambiguity call 5' = (f: . . ., I:) reciprocal to 5 = (fl, f2, . . ., f,); 
8' is then the set of all vectors x for which Sxy = 0 whenever y belongs to 5. 

In  a later chapter we shall require the following lemma. 

LEMMA I. I j  (jl, f2, . . ., jr) and (f: + 1, . ., j i )  are reciprocal, so also are 
(B-if,, B - 3 ,  . ., B-If,) and (B'j: + B'j: + . . ., By:) where B is any non- 
singular matrix. 

For SBy: B-tfi = Sf: BB-tfj = Sf: jj = 6 . .  11' 

Reciprocal bases have a close connection with reciprocal or inverse matrices 
in terms of which t h y  might have been defined. If P is non-singular and Pe; 
= j; as above, then P = ZjiSe,( ) and, if Q = ZeiSj', ( ), t'hen 

so that Q = Pd1. 
If QQ' = 1, the bases Cfi) and (j:) are identical and Sfifi = 6ii for all i and j; 

the basis is then said to be orthogonal as is also the matrix Q. The inverse of 
an orthogonal matrix and the product of two or more orthogonal matrices are 
orthogonal; for, if RR' = 1, 

(RQ)(RQ)' = RQQ'R' = RR' = 1. 

Suppose that hl, h2, . ., h, are real vectors which are linearly independent 
and for which Shihj = 6ii (i # j); since hi is real, we have Sh,h, # 0. If r < n, 
we can always find a real vector x which is not in the linear set (hl, . -, h,) 
and, if we put 

then h, + # 0 and Shih, + 1 = 0 (i = 1, 2, a ,  T). Hence we can extend the 
original set to form a basis of the fundamental n-space. If we set f i  = 
hi/(Shihi)', then Sfijj = 6;j even when i = j; this modified basis is called an 
orthogonal basis of the set. 
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If the vectors hi are not necessarily real, it is not evident that x can be chosen 
so that S h ,  + lh, + 1 # 0 when Shihi # 0 (i = 1, 2, ., r ) .  This may be 
shown as follows. In the first place we cannot have S y h ,  + = 0 for every y, 
and hence S h ,  + lh, + 1 # 0 when r = n - 1. Suppose now that for every 
choice of x we have S h ,  + lh ,  + 1 = 0; we can then choose a basis h ,  + l ,  . . ., h, 
supplementary to hl, ., h ,  such that Shihi = 0 (i = r + 1, ., n) and 
Shihj  = 0 (i = T + 1, ., n;  j = 1, 2, . - ., r ) .  Since we cannot have 
S h ,  + lhi = 0 for every hi of the basis of the n-space, this scalar must be differ- 
ent from 0 for some value of i > r, say r + k. If we then put h:  +, = h ,  + l  

+ h ,  + k in place of h ,  + we have Shih: + = 0 (i = 1, 2, - . ., r )  as before 
and also 

We can therefore extend the basis in the manner indicated for real vectors 
even when the vectors are complex. 

When complex coordinates are in question the following lemma is useful; 
it contains the case discussed above when the vectors used are real. 

LEMMA 2. W h e n  a linear set of order r i s  given, it  i s  always possible to choose 
a basis gl, g2 ,  . ., g,, of the fundamental space such that gl, . . ., g, i s  a basis 
of the given set and such that Sgigj = 6i i  where gi i s  the vector whose coordinates 
are the conjugates of the coordinates of g i  when expressed i n  terms of the funda- 
mental basis. 

The proof is a slight modification of the one already given for the real case. 
Suppose that g l ,  . . ., g ,  are chosen so that Sgigj = 6i i  (i, j = 1, 2, . . ., s )  
and such that ( g l ,  . . ., g,) lies in the given set when s < r and when s > T, 
then g l ,  . ., g, is a basis of this set. We now put 

which is not 0 provided x is not in (gl, . ., g,) and, if s < r ,  will lie in the 
given set provided x does. We may then put 

and the lemma follows readily,by induction. 
If U is the matrix ZeiSgi, then U = ZeiSgi and 

Such a matrix is called a unitary matrix and the basis gl, g ~ ,  . ., gn is called a 
unitary basis. A real unitary matrix is of course orthogonal. 
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1.10 The rank of a matrix. Let A = I I aii I ( be a matrix and set (cf. (12) 
$1.03) 

then, if 

is any vector, we have 

Any eepreasion of the form Ax = f: aiSbix, where a;. bi are constant vec- 
1 

tors, is a linear homogeneous vector function of x. Here (30) shows that it 
is never necessary to take m > n, but it is sometimes convenient to do so. 
When we are interested mainly in the matrix and not in x, we may write A 
= ZaiSbi( ) or, omitting the brackets, merely 

I t  follows readily from the definition of the transverse that 

No matter what vector x is, Ax, being equal to ZaiSbiz. is linearly dependent 
on al, an, -. a ,  Q, or, if the form (30) is used, on hl, h2, . -, h,. When ( A I 
# 0, we haw seen in Theorem 4 that the h's are linearly independent but, if A 
ie singular, there are linear relations connecting them, ~ n d  the order of the 
linear set (all h, . -, Q,) is less than n. 

Suppose in (31) that the a's are not linearly independent, say 

then on substituting this value of a, in (31) we have 

an expression similar to (31) but having at  least one term less. A similar 
reduction can be carried out if the b's are not linearly independent. After a 
finite number of repetitions of this process we shall finally reach a form 
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in which cl, 6, ., C, are linearly independent and also dl, dz, . a ., d,. The 
integer r is called the rank of A. 

I t  is clear that the value of r is independent of the manner in which the 
reduction to the form (33) is carried out since it is the order of the linear set 
@el, Ae2, . ., Ae,). We shall, however, give a proof of thia which inci- 
dently yields some important information regarding the nature of A .  

Suppose that by any method we have arrived at two forms of A 

where (CI, CZ, -, c,) and (dl, dB, . . ., d,) are spaces of order r and (pl, p2, 
, p ( 1 ,  q ..., q.) spaces of order s, and let (c: c :  +. . a : ,  c.), ..., 
(q: + I, q 8  + 2, . . -, q:) be the corresponding reciprocal spaces. Then 

and also Aqj = Z ciSdiq:.. Hence each pj lies in (cl, c2, - . a ,  c,). Similarly 
each ci lies in (pl, p2, . ., p.) so that these two subspaces are the same and, 
in particular, their orders are equal, that is, r = s. The same discussion with 
A' in place of A shows that (dl, d,, . . -, d,) and (ql, q,, . ., q,) are the same. 
We shall call the spaces @ r  = (cl, CZ, . ., c,), @, = (dl, dz, . a ,  d,) the left 
and right grounds of A, and the total space @ = (cl, . a ,  c,, dl, a ,  d,) will 
be called the (total) ground of A. 

If x is any vector in the subspace 92, = (d: + d: + 2, . . . , dk) reciprocal 
to @,, then Ax = 0 since Sdidj = 0 (i Z j). Conversely, if 

each multiplier Sdix must be 0 since the c's are linearly independent; hence every 
solution of Ax = 0 lies in 92,. Similarly every solution of A'x = 0 lies in 
' 321  = (c: + 1, c: + 2, . a ,  c;). We call 92, and '31 the right and left nullspaces 
of A ;  their order, n - r, is called the nullity of A. 

We may sumniarize these results as follows. 
r 

THEOREM 7. If a matrix A is expressed in the form 2 aiSbi, where @[ 
1 

= (al, s, . ., a,) and @, = (bl, b2, . a ,  b,) define spaces of order r, then, no 
matter how the reduction to this form is carried out, the spaces ( 3 1  and a, are always 
the same. Further, if illl and '3, are the spaces of order n - r reciprocal to @1 

and a,, respectively, every solution of Ax = 8 lies in '3- and every solution of 
A'x = 0 in 921. 

The following theorem is readily deduced from Theorem 7 and its proof is 
left to  the reader. 
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THEOREM 8. If A, B are matrices of rank r,  s, the rank of A + B is not 
greater than r + s and the rank of A B  is not greater than the smaller of r and s. 

1.11 Linear dependence. The definition of the rank of a matrix in the 
preceding section was made in terms of the linear dependence of vectors associ- 
ated with the matrix. In this section we consider briefly the theory of linear 
dependence introducing incidentally a notation which we shall require later. 

.I 

Let xi = (i = 1, 2, . . a ,  r ;  r I; n) be a set of r vectors. From the 
j = 1  

rectanguIar array of their coordinates 

there can be formed n!/r!(n - r)! different determinants of order r by choosing 
r columns out of (34), these columns being taken in their natural order. If 
these determinants are arranged in some definite order, we may regard t,hem 
as the coordinates of a vector in space of order n!/r!(n - r)! and, when thi8 
is done, we shall denote this vector by4 

and call i t  a pure vector of grade r. I t  follows from this definition that Ixlx2 
. . x, I has many of the properties of a determinant; its sign is changed if two 

x's are interchanged, i t  vanishes when two x's are equal and, if h and IJ are 
scalars, 

(36) ~ ( X X ~ + ~ X ~ ) X Z  ... x , I  = h I z l x 2  X , I + ~ I X ~ X Z  - - -  x , I .  
If we replace the x's in (35) by r different units ei,, ei,, . . ., e;,, the result is 

clearly not 0: we thus obtain (:) vectors which we shall call the fundamental 
unit vectors of grade r ;  and any linear combiaation of these units, say 

is called a vector of grade r. I t  should be noticed that not every vector is a 
pure vector except when r equals 1 or n. 

If we replace xi by B fijej in (35), we get 

where the summation extends over all permutations j,, jz, . . ., j, of 1, 2, . -, n 
taken r a t  a time. This summation may be effected by grouping together the 

' If i t  had been advisable to use here the indeterminate product of Grassmann, (35) 
would appear as a determinant in much the ordinary sense (cf. 85.09). 
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sets jl, jz, . . , j, which are permutations of the same combination ill i2, . . , ir, 
whose members may be taken to be arranged in natural order, and then sum- 
ming these partial sums over all possible combinations ill i?. . . ., i,. Taking 
the first step only we have 

where 6 i :  :: : i :  is the sign corresponding t,o the permutations (j:  j: : : : f :) and this 
equals I hi, . . . f r i ,  I 1 ei, . . ei, 1 ,  W.2 have therefore 

where the asterisk on Z indicat'es t'hat the sum is taken over all r-combinations 
of 1, 2, ., n each combination being arranged in natural order. 

THEOREM 9 1 ~1x2 xr I = 0 if, and only if, xl, xz, . . ., x, are linearly 
dependent. 

The first part of this theorem is an immediate consequence of (36). To prove 
the converse it is sufficient to show that, if I xlxz . . . x, - I # 0, then there 
exist scalars a, Q2, e ., a,-I such that 

Let z i  = 2 (iiei. Since I xlx2 . . . x. - I I # 0, a t  least one of its coordinates 
7 

is not 0, and for convenience we may suppose wibhout loss of generality that 

(38) 1 f l l E 2 2  . . . Er  - 1, r - I 1 Z 0- 

Since 1 21x2 x, I = 0, all its coordinates equal 0 and in particular 

1 . . .  E r - 1 ,  r - i t r i l  0 (i = 1, 2, - * . ,  n). 

If we expand this determinant according to the elements of its last colum'11, 
we get a relation of the form 

Pltrt + PzElz + . . + PrEr - 1, i = 0 

where the p's are independent of i and 81 # 0 by (38). Hence we may write 

(39) Er i  = alt~i + + Q , - I E , - I ,  i (i = 1, 2, ..., n) 

the a's being independent of i. Multiplying (39) by e ,  and summing with 
regard to i, we have 

which proves the theorem. 
If (a,, az, . . ., a,) is a linear set of order r, then some set of r a's form a 

basis, that is, are linearly independent while each of the other a's is linearly 
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dependent on them. By a change of notation, if necessary, we may take 
al, e, . , a, as this basis and write 

We shall now discuss the general form of all linear relations among the a's in 
terms of the special relations (40); and in doing so we may assume the order 
of the space to be equal to  or greatet than m since we may consider any given 
space as a subspace of one of arbitrarily higher dimensionality. 

Let 

be a relation connecting, the a's and set 

Then (40), considered as a special case of (41), corresponds to settihg for c 

and there is clearly no linear relation connecting -these vectors so that they 
define a linear set of order m - r. Using, (40) in (41) we have 

and, since alp s, - . , a, are linearly independent, we have 

whence 

,w that c it3 linearly dependent on cl, cz, . . . , em - ,. Conversely, on retracing 
these steps in the reverse order we see that, if c is linearly dependent on these 
vectors, so that 7 ,  + r (i = 1, 2, . q . ,  m - r) ere known, then from (43) the 

m m 

y ( j  = 1 2  -, I) are defined in such a way that c = 7 j e j  and 2 y ja j  = 
1 1 

0. We have therefore the following theorem. 
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THEOREM 10. If  a ~ ,  a2, . ., a ,  i s  a linear set of order r .  there exist m - r 
m 

.... linear r e l o l i m  ri,q = 0 ( i  = 1, 2, m - r )  such that ( i )  the vectors 
m j -1 

= ri,ei are linearly independent and ( i i )  if Z 7Pj = 0 i s  any linear relolion 
j - 1 

connecting the a's, and i f  c = Z r,ej, then c belongs to the linear set (cl, Q, 

. - - 1  c , - r ) .  

This result can be translated immediately in terms concerning the solution 

of a system of ordinary linear equntions or in terms of matrices. If ai = a jiecl 
* 

then (41) may be written 

a system of linear homogeneoue, equations in the unknowns n, y2, . -  ., 7,. 
Hence (44) has solutions for which some Ti # 0 if, and only if, the rank r of 
the array 

is less then m and, when this condition is satisfied, every solution is linearly 
dependent on the set of m - r solutions given by (42) which are found by 
the method given in the discussion of Theorem 9. 

Again, if we make (45) a square array by the introduction of columns or 
rows of zeros and set A = 1 1  aij 11 ,  c = 2 yiei, then (41) becomes A'c = 0 and 
Theorem 10 may t,herefore be interpreted as giving the properties of the null- 
space of A' which were derived in $1.10. 



CHAPTER I1 

ALGEBRAIC OPERATIONS WITH MATRICES. THE CHARACTERISTIC EQUATION 

2.01 Identities. The following elementary considerations enable us to carry 
over a number of results of ordinary scalar algebra into the algebra of matrices. 
Suppose j(A1, A2, . . ., A,), g(Xl, X2, . ., A,) are integral algebraic functions of 
the scalar variables X i  with scalar coefficients, and suppose that 

is an algebraic identity; then, when j(X1, ., A,) - g(X1, . . , A,) is reduced 
to the standard form of a polynomial, the coefficients of the various powers of 
the X's are zero. In carrying out this reduction no properties of the X's are 
used other than those which state that they obey the laws of scalar multiplica- 
tion and addition: if then we replace XI, X2, ., A, by commutative matrices 
XI, z2, - ., x,, the reduction to the form 0 is still valid step by step and hence 

An elementary example of this is 

or, when zy = yz, 

Here, if xy # yx, the reader should notice that the analogue of the algebraic 
identity becomes 

which may also be written x3 - y* = (z - Y)(Z + Y) + (YZ - ZY). 

2.02 Matric polynomials in a scalar variable. By a matric polynomial in a 
scalar variable X is meant a matrix that can be expressed in the form 

where po, pl, . . . , p, are constant matrices. The coordinates of P(X) are scalar 
polynomials in A and hence, if 

is also a matric polynomial, P(X) =- Q(X) if, and only if, r = s and the coefficients 
of corresponding powers of X are equal, that is, pi = qi (i = 1, 2, . . . , r). If 
( q, I # 0, the degree of the product P(X)Q(X) (or Q(X)P(X)) is exactly r + s since 
the coefficient of the highest power A'+' which occurs in the product is pogo 

20 
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(or q,po) which cannot be 0 if p, # 0 and 1 q, ( # 0. If, however, both I p,[ and 
1 q, ( are 0, the degree of the product may well be less than r + s, as is seen from 
the examples 

(ellX + 1) ( e d  + 1) = elle22X2 + (ell + e22)X + 1 = (ell + en& + 1, 

Another noteworthy difference between matric and scalar polynomials is that, 
when the determinant of a matric polynomial is a constant different from 0, its 
inverse is also a matric polynomial: for instance 

We shall call such polynomials elementary polynomials. 

2.03 The division transformation. The greater part of the theory of the 
division transformation can be extended from ordinary algebra to the algebra 
of matrices; the main precaution that must be taken is that it must not be 
assumed that every element of the algebra has an inverse and that due allow- 
ance must be made for the peculiarities introduced by the lack of commuta- 
tivity in multiplication. 

THEOREM 1. If P(X) and &(A) are the polynomials dejined by (1) and (2), 
and if I qo 1 # 0, there exist unique polynomials S(X), R(X), &(A), R1(X), of 
which S and S1 if not zero, are of degree r - s and the degrees of R and R1 are 
s - 1 at 'most, such that 

If r < s, we may take S1 = S = 0 and R1 = R = P ;  in so far as the existence 
of these polynomials is concerned the theorem is therefore true in this case. 
We shall now assume as a basis for a proof by induction that the theorem is 
true for polynomials of degree less than r and that r I s. Since ( qo I # 0, 
qo-I exists and, as in ordinary scalar division, we have 

Since the degree of P1 is less than r, we have by hypothesis P1(X) = Pt(X)Q(X) 
+ R(X), the degrees of P2 and R being less, respectively, than r - s and s; 
hence 

p(X) = (poqo-'Ar -' + Pz(X))Q(X) + R(X) = S(X)Q(X) + R(X) 

as required by the theorem. The existence of the right hand quotient and 
remainder follows in the same way. 

I t  remains to prove the uniqueness of S and R. Suppose, if possible, that 
P = SQ + R = TQ + U where R and S are as above and T, U are poly- 
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nomials the degree of U being less than s; t,hen (S - T)Q = U - R. If 
S - T # 0, then, since I qa I # 0, the degree of the polynomial (S - T)Q is 
a t  least as great as that of Q and is therefore greater than the degree of U - R. 
It follows immediately that S - T = 0, and hence also U - R = 0; which 
completes the proof of the theorem. 

If Q is a scalar polynomial, that is, if its coefficients q are scalars, then S = Sl, 
R = R1; and, if the division is exact, then &(A) is a factor of each of the coordi- 
nates of P(X). 

THEOREM 2. If the mat& polynomial (1) is divided on the right by X - a, 
the remainder is 

pour + plar - + . . + p, 

and, ij it is divided on the left, the remainder is 

As in ordinary algebra the proof follows immediately from the identity 

in which the order of the factors is immaterial since X is a scalar. 
If P(X) is a scalar polynomial, the right and left remainders are the same and 

are conveniently denoted by P(a). 
2.04 Theorem 1 of the preceding section holds true as regards the existence 
of S, S1, R, R1, and the degree of R, R1 even when I qo' (  = 0 provided I Q(X) I 

1 

# 0. Suppose the rank of qo is t < n; then by $1.10 i t  bas the form a$& 
1 

or, say, h($ .ii)lt where h and i. are nonringular matrices for which hei = ail 

krei = pi (i = l1 2, . . a ,  t). If el = 2 eii, then 
t + 1  

is a polynomial whose degree is not higher than the degree s of Q since clh-lqa 
= 0 so that the term in X" is absent. Now, if q = I h-I I ,  then 

I Q l I  = I s X +  l I I h - ' I I Q (  = (1 +X)"- 'qIQI,  

so that the degree of I Q1 I is greater than that of I Q I by n - t .  If the leading 
coefficient of Q1 is singular, this process may be repeated, and so on, giving 
QI, Q2, - . , where the degree of ( Qi 1 is greater than that of ( Q i  - 1. But 
the degree of each Qi is less than or equal to s and the degree of the determinant 
of a polynomial of the sth degree cannot exceed ns. Hence a t  some stage the 
leading coefficient of, say, Q j  is not singular and, from the law of formation (3) 
of the successive Q's, we have &,(A) = H(X)Q(X), where H(X) is a matric 
polynomial. 
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By Theorem 1, Qi taking the place of Q, we can find S* and R ,  the latter of 
degree s r 1 at most, such that 

The theorem is therefore true even if I qo 1 = 0 except that the quotient and 
remainder are not necessarily unique and the degree of S may be greater than 
r - s, as is shown by taking P = X a  ' 1, Q = el& + 1, when we have 

2.05 The characteristic equation. If x is a matrix, the scalar polynomial 

is called the charatteristic function corresponding to z. We have already seen 
($1.05 (15)) that the product of a matrix and its adjoint equals its deter- 
minant; hence 

( X  - z) adj (A - x )  = 1 X - x I = f(X). 

I t  follows that the polynomial f(X) is exactly divisible by X - x so that by 
the remainder theorem ($2.03, Theorem 2) 

(5) f(x> = Q. 

As a simple example of this we may take x = 

f ( X )  = ( A  - a ) @  - 6 )  - by = X 2  - (a  + &)A + as - By, 

and 

The following theorem is an important extension of thia result. 

THEOREM 3. If f ( X )  = I X - z 1 and B(A)  i s  the highest common fador of the 
fist minors oj I A - z 1, and i j  

(6) ( P ( M  = j ( X ) / O ) ,  

the Zeoding coe$kient of B ( X )  being 1 (and therefore also thud oj &)) ,  thes 

6) c p ( 4  = 0 ;  
(ii) i f  # ( A )  i s  any scalor polynomiat auch that #(x) = 0,  then ( P ( X )  i s  a factor 

of +(A), that is,  &) ia the scalar polynomial of h e s t  degree and with leading 
coeficient 1 wh that p(x) = 0 ;  

(iii) every root of f ( X )  i s  a r ~ o t  of c p ( X ) .  

The coordinates d adj(A - x) are the b a t  minors of I X - z I m d  therefore 
by hypothesis [adj(X - x)]/B(X) is integral; also 

hence ~Y(Z) = 0 by the remainder theorem. 
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If +(A) is any scalar polynomi~l for which J.(x) = 0, we can find scalar poly- 
nomials M(X), N(X) such that M(X)(p(X) + N(X)$(X) = {(A), where {(A) is the 
highest common factor of q and J.. Substitmuting x for X in this scalar identity 
and using (p(x) = 0 = J.(x) we have {(x) = 0; if, therefore, $(x) = 0 is a scalar 
equation of lowest degree satisfied by x, we must have +(A) = I;(X), apart from 
a constant factor, so that #(A) is a factor of &i), say 

Since $(x) = 0, - x is a factor of J.(X), say $(A) = (A - x)g(X), where g is a 
matric polynomial; hence 

Hence 

and this cannot be integral unless h(X) is a constant in view of the fact that 
O(X) is the highest common factor of the coordinates of adj(X - z); i t  follows 
that $(A) differs from &) by a t  most a cohstant factor. 

A repetition of the first pwt  of this argument shows that, if $(x) = 0 is any 
scalar equation satisfied by x, then cp(X). is a factor of $(A). 

I t  remains to show that every root of j(X) is a root of &). If XI is any root 
of j(X) = I X - x I ,  then from &) = g(X)(X - x) we have 

so that the determinant, [&JIn, of the scalar matrix&) equals I g(X1) I [XI - z 1, 
which vanishes since I X1 - z I = j(X1). This is only possible if q(X1) = 0, that 
is, if every root of j(X) is also a root of q(X). 

The roots of j(X) are also called the roots1 of x, &t) is called the reduced 
characteristic function of x, and cp(x) = 0 the reduced equation of x. 

2.06 A few simple results are conveniently given a t  this point although they 
are for the most part merely particular cases of later theorem. If g(X) is a 
scalar polynomial, then on dividing by q(X), whose degree we shall denote 
by V, we may set g(X) = q(X)q(X) + r(X), where q and r are polynomials the 
degree of r being less than v. Replacing X by x in this identity and remembering 
that cp(x) = 0, we have2 g(x) = r(x), that is, any polynomial can be replaced 
by an equivalent polynomial of degree less than v. 

1 They are also called the latent roots of z. 
2 If g ( ~ )  is a matric polynomial whose coefficients ere not all commutative with z, the 

meaning of g(z) is ambiguous; for instance, z may be placed on the right of the coefficiente, 
or it may be put on the left. For such a polynbmial we can eay in general that it can be 
replaced by an equal polynomial in which no power of z higher than the ( W  - 1)th occura. 
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If g(X) is a scalar polynomial which is a factor of &),  say p(X) = h(X)g(X), 
then 0 = ~ ( x )  = h(x)g(x) .  I t  follows that 1 g(x)  1 = 0; for if this were not so, 
we should have h(x )  = [g(x)]-I&) = 0, whereas x can satisfy no scalar equa- 
tion of lower degree than p. Hence, if g ( X )  is a scalar polynomial which has a 
factor in common with p(x) ,  then g'(z) is singular. 

If a scalar polynomial g ( X )  has no factor in common with &) ,  there exist 
scalar polynomials M ( X ) ,  N(X)  such that M(X)g(A) + N(X)p(A) = 1. Hence 
M ( x ) g ( x )  = 1, or [g(x)]-I = M ( x ) .  I t  follows immediately that any finite 
rational function of x with scalar coefficients can be expressed a& a scalar 
polynomial in x of degree v - 1 at  most. It should be noticed carefully how- 
ever that, if x is a variable matrix, the coefficients of the reduced polynomial 
will in general contain the variable coordinates of x and will not be integral 
in these unless the original function is integral. I t  follows also that g(x)  is 
singular only when g ( X )  has a factor in common with p(X) .  

Finally we may notice here that similar matrices have the same reduced 
equation; for, if 'g is a scalar polynomial, g(y-lxy) =. y-lg(x)y. As a particular 
case of this we have that xy  and yx have the same reduced equation if, say, y is 
non-singular; for xy  = y-I. y x .  y. If both x and y are singular, it can be shown3 
that xy  and yx have the same characteristic equation, but not necessarily the 
same reduced equation as is seen from the example s = elz, y = e22. 

2.07 Matrices with distinct roots. Because of its importance and com- 
parative simplicity we shall investigate the form of a matrix all of whose roots 
are different before considering the general case. Let 

where no two roots are equal and set 

( A  - X I )  . . . ( A  - X i  - I ) ( X  - Xi + 1 )  
. . , ( A  - A,)  j(Al/f1(A;S 

(9) It@) = 
- - 

( X i  - X i )  . . .  ( X i  - A i - l ) ( X i -  X i + l )  . . .  ( A i  - A,) A - A ,  ' 

By the Lagrange interpolation formula j,(A) - 1 ; hence 
i 

Further, f (X)  is a fact,or of ji(A)fi(h) (i # j )  so that 

hence multipl'ying (10)  by f ; (x )  and using (11)  we have 

(12) [ f i ( ~ ) l '  = f i ( ~ ) .  

Again, ( A  - Xi)ji(A) = j (X ) / j r (X i ) ;  hence (x - Xi)f,(x) = 0, that is, 

a For example, bp replnciug y by y f 6, 6 being a scalar, and considering the limiting 
rnse when a nppronrhes 0. 
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whence, summing with regard to i and using ( lo) ,  we have 

(14) x = Xlfl(x) + X2fz(x) + ' . ' + Xnfri(x). 

If we form xr from (14)) r being a positive integer, i t  is immediately seen from 
(11) and (12)) or from the Lagrange interpolation formula, that  

(15) xr = x;j, + G.i, + . . .. + x;j,,, 

where f i  stands for j,(x), and it  is easily verified by actual multiplication that, 
if no root is 0, 

2 - I  = xyljl + x;'fi + . . + x,'j* 
so that ( I  5 )  holds for negative powers also. The matrices f i  are linearly inde- 
pendent. For if Zy<f, = 0, then 

whence every y ,  = 0 seeing that in the case we are considering f(X) is itself 
the reduced characteristic function so that fi(x) # 0. 

From these results we have that, if g(X) is any scalar rational function whose 
denominator has no factor in common with cp(A), then 

I t  folloys from this that the roots of g(x) are g(X,) (i = 1, 2, . . ., n). For 
setting y = g(x), pi = g(Xi), we have as above 

+(A) being a scalar polynomial. Now $(y)fi = +(pi)ji; hence, if +(y) = 0, 
then also +(pi) = 0 (i = 1, 2, . . , n);  and conversely. Hence if the notation 
is so chosen that PI, p2, . . , pr are the distinct values of piJ the reduced charac- 

I 

teristic function of y = p(x) is (A - pi). 
1 

2.08 If the determinant I X - x ( = j(X) is expanded in powers of A,  it is easily 
seen4 that the coefficient a,  of A n  - is (- 1)' times the sum of the principal 
minors of x of order r; this coefficient is therefore a homogeneous polynomial of 
degree r in the coordinates of x. In  particular, -al is the sum of the coordi- 
nates in the main diagonal: this sum is called the trac'e of x and is denoted 
by t r  x. 

If y is an arbitrary matrix, p a scalar variable, and z = x + py, the coeffi- 
cients of the characteristic equation of z, say 

' For instance, by differentiating I X - z I n - r times with respect to  X and then set- 
ting X = 0. 
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and the powers of z are also polynomials in p, say 

where { z  :} is obtained by multiplying s x's and t y's together in every possi- 

ble way and adding the terms so obt,ained, e.g., 

If we substitute (18) and (19) in (17) and arrange according to powers of p, 

then, since p is an independent variable, the coefficients of its several powers 
must be zero. This leads to a series of'relations connecting z and y of the form 

x 
(20) { - - i + j s - j 

= 0 ( s  = 0, 1, 2, . .  .) 

x 
where aii are the coefficients defined in (18) and 

} is  n - s - i + j  s - j  

replaced by 0 when j > s. In particular, if s = I, 

which, when ry  = yz, becomes 

When x has no repeated roots, jl(X)  ha^ no root in common with j(X) and j'(z) 
has an inverse (cf. $2.06) so that y = g(z)/f'(z) which can be expressed as a 
scalar polynomial in x; and conversely every such polynomial is commutative 
with x. We therefore have the following theorem: 

THEOREM 4. 1j' x has no multiple rools, the only matrices commutative with 
it are scalar polynomials in  z. 

2.09 Matrices with multiple roots. We shall now extend the main results 
of $2.07 to matrices whose roots are not necessarily simple. Suppose in the 
first place athat z has only one distinct root and that its reduced characteristic 
function is &) = (A - XI)", and set 

?: = qi = (x -A1)' = (z - Al)qi-l (i = 1,2,  . a s ,  v - I) ;  

then 

7; = 0, XWI = Al%-l# mi = Alqi + T i  + 1 ( i  = 1, 2, . . a ,  v - 2) 
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where the binomial expansion is cut short with the term 7;-' since 7,' = 0. 
,4gain, if g(X) is any scalar polynomial, then 

I t  follows immediately that,  if gca'(X) is the first derivative of g(X) which is not 
0 when X = XI and (K - 1)s < v 5 KS, then the reduced equation of g(x) is 

I t  should be noted that the first v - 1 powers of 7, are linearly independent 
since cp(h) is the reduced characteristic function of x. 

2.10 We shall now suppose that x has  more than one root. Let the reduced 
characteristic function be 

T 

, =1  

and set 

We can determine two scalar polynomials, Mi(X) and N,(X), of degrees not 
exceeding v i  - 1 and v - v ,  - 1, respectively, such that 

then 1 - &p,(X) is exactly divisible by ca(X) and, being of degree v - 1 at most, 
must be identically 0 ;  hence 

Again, from (22) and (23), &) is a factor of pi(A)p,(X) (i # j) arid hence on 
multiplying (24) by cpi(X) we have 

Further, if g(X) is a scalar polynomial, then 
r 

~ ( h )  = g(h)~i(A) 
1 

(26) 
g('i- 1) (Xi) 

= 9 [g(hi) + gr(hi)(h - hi) ,+ - . 
I 

.(vi - I ) !  
(X - $Yi(X) + R 
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where R has the form ZCi(A)(A - Xi)'icpi(A), Ci being a polynomial, so that R 
vanishes when z is substituted for A. 

2.11 If we put x for X in (23) and set pi for cpi(x), then (24) and (25) show that 

It follows as i n  $2.07 that the matrices pi are linearly independent and none is 
.zero, since # 0 so that cp(X) is not a factor of &), which would be the 
case were cpi(x) = 0. We now put x for X in (26) and set 

(28) qi  = (x - Ai)pi (i = l , 2 ,  r). 

Since the vith power of (X - X;)cpi(X) is the first which has &) as a factor, q, 
is a nilpotent matrix of index v; (cf. 41.05) and, remembering that cp: = pi, 
we have 

(30) xp; = xipi + qi, xq i = xi,, i + sl; + ', 
equation (26) therefore becomes 

and in particular 
r 

(32) x 7 &pi + Ti] = zri. 
1 

The matrices pi and q, are called the principal idempotent and nilpotent 
elements of x corresponding to the root Xi. The matrices (pi are uniquely deter- 
mined by the followink conditions: if qi (i = 1, 2, . . ., r) are any matrices 
such that 

(i) x$i = +ixj 
(33) (ii) (x - XJ$i  is nilpotent, 

(iii) + = 1 $: = + i  ji 0, 
i 

then J.i = pi (i = 1, 2, . ., r) .  For let e,, = (F,+;; from (i) e i j  also equals 
ILjpi. From (ii) and (28) 

are both nilpotent and, since si and pi are polynomials in r ,  they are commu- 
tative with $; and therefore with E l ;  also 
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Hence (Xi - Xj)Bij = Sjqi - qi$j. But if p is the greater of the indices of ti 
and qi, then, since all the matriced concerned are commutative, each term of 

- q,-+J2r contains Sf OE ~f as a factor and is therefore 0. If eij Z 0, this 
is impossible when i f j since Bij is idempotent and X i  - X j  # 0. Hence 
( P ~ # ~  = 0 when i # j and from (iii) 

which proves the uniqueness of the q's.  

2.12 We shall now determine the reduced equation of g(z). If we set gi for 
g(z)~i ,  then 

say, and if si is the order of the first derivative in (34) which is not 0, then 
li is a nilpotent matrix whose index ki is given by ki = 1 < ui/si 5 ki .  

If @(A) is a scalar polynomial, and T i  = g(hi), 

so that @(g(x)) = 0 if, and only if, g(Xi) is a root of @(A) of multiplicity ki. 
Hence, if 

where when two or more values of i give the same value of g(Xi), only that one 
is to be taken for which ki is greatest, then *(A) is the reduced characteristic 
function of g(z). As a part of this result we have the following theorem. 

THEOREM 5. If g(X) is a scalar polynomial and z a matrix whose distinct 
roots are XI, Xz, . . , A,, the roots of the matrix g(x) are6 

If the roots g(Xi) are all distinct, the principal idempotent elements of g(x) 
are the same as those of z;  for condition (33) of 12.11 as applied to g(z) are satis- 
fied by (oi (i = 1, 2, . a ,  r), and these conditions were shown to characterize 
the principal idempotent elements completely. 

2.13 The s q w e  root of a matrix. Although the general question of functions 
of a matrix will not be taken up till a later chapter, it is convenient to give 
here one determination of the square root of a matrix x. 

6 That these are root8 of g(z) follows immediately from the fact that X - z is a factor 
of g(X) - g(z); but it does not follow so readily from this that the only roots are those 
given except, of course, when .r = nand all the quantities g(XJ are distinct. 
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If a and /3 are scalars, a z 0, and (a + /3)' is expanded formally in a Taylor 
series, 

. -  

then, if S. = a( 6,(/3/a)', i t  follows that 
0 

where T ,  is a polynomial in p/a which contains no power of /3/a lower t h a ~  the 
vth. If a and b are commutative matrices and a is the square of a known non- 
singular matrix at, then (35) being an algebraic identity in a and /3 remains 
true when a and b are put in their place. 

If xi = Xicpi + qi is the matrix defined in $2.11 (321, then so long as X i  # 0, 
we may set a = Xicpi, /3 = 7; since Xicpi = (~ fcp , )~ ;  and in this case the Taylor 
series terminates since 7 : i  = 0, that is, Tvi = 0 and the square of the terminating 
series for (Aicoi + ?;)+ in powers of q i  equals Xiapi + qi.  I t  follows immediately 
from (32) and (27) that, i f  x is a matrix no o w  of whose roots ig 0, the square 
of the matrix 

is x. 
If the reduced equation of z has no multiple roots, (36) becomes 

and this is valid even if one of the roots is 0. If, however, 0 is a multiple root 
of the reduced equation, x may have no square root as, for example, the 

matrix 11 11. 
Formula (36) gives 2' determinations of x+ but we shall see later that an 

infinity of determinations is possible in certain cases. 

2.14 Reducible matrices. If z = xl 9 xz is the direct sum of XI and x2 and 
el, ell are the corresponding idempotent elements, that is, 

then xr = x; + z; (r  2 2) and we may set as before 1 = x0 = zi 4- x: = el + ez. 
Hence, if j(X) = Am + blXm - 1 + . . + b, is any scalar polynomial, we have 
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and if g ( X )  is a second scalar polynomial 

Now if j i ( X )  is the reduced characteristic function of xi regarded as a matrix 
in the space determined by ei, then the reduced characterist,ic function of xi 
as a matrix in the original fundamental space is clearly X f i ( X )  unless X is a 
factor of j i ( X )  in which case i t  is simply j i ( X ) .  Further the reduced character- 
istic function of x = X I  + x2 is clearly the least common multiple of j l ( X )  and 
f 2 ( X )  ; for if 

J/.(V - f l ( v g l ( X )  = j d X ) g z ( V  

then 



CHAPTER I11 

INVARIANT FACTORS AND ELEMENTARY DIVISOitS 

3.01 Elementary transformations. By an elementary transformation of a 
matric polynomial a(X) = I ]  aij 1 1  is meant one of the following operations on 
the rows or columns. 

Type I. The operation of adding to a row (column) a different row (column) 
multiplied by a scalar polynomial O(X). 

Type 11. The operation of interchanging two ruws (columns). 
Type 111. The operation of multiplying a row (column) by a constant 

k # 0. 
These transformations can be performed algebraically as follows. 

Type I. Let 
P,j = 1 + O(X)eij (i # j), 

O(X) being a scalar polynomial; then I eii I = 1 and 

which is t.he matrix derived from a(X) by adding 0 times the jth row to the ith. 
The corresponding operation on the columns is equivalent to forming the 
product aPji. 
Type II. Let Qij be the matrix 

that is, Qi, is the matrix derived from the identity matrix by inserting 1 in 
place of 0 in the coefficients of eij and eji and 0 in place of 1 in the coefficients 
of e i i  and ejj; then I Qij I = - 1 and 

that is, &,,a is derived from n by interchanging the ith and jth rows. Similarly 
aQii is obtained by interchanging the ith and jth columns. 

Since any permutation can be effected by a succession of transpositions, the 
corresponding transformation in the rows (columns) of a matrix can be pro- 
duced by a succession' of transformations of Type 11. 
Type ZIZ. This transformation is effected on the rth row (column) by multi- 
plying on the left (right) by R = 1 + (k - l)e,,; it is used only when it is 
convenient to make the leading coefficient in some term equal to 1. 

1 The transformation corresponding to  the substitution (;,: 
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The inverses of the matrices used in these transformations are 

these inverses are elementary transfofmations. The transverses are also ele- 
mentary since Pi = Pji ,  and Q i i  and R are symmetr i~ .~  

A matric polynomial b(X) which is derived from a(X) by a sequence of ele- 
mentary transformations is said to be equivabnt to a(X); every such poly- 
nomial has the form p(X)a(X)q(X) where p and q are products of elementary 
transformations. Since the inverse of an elementary transformation is ele- 
mentary, a(A) is also equivalent to b(X). Further, the inverses of p and q 
cue polynomials so that these are what we have already called elementary 
polynomials; we shall see later that every elementary polynomial can be 
derived from 1 by a sequence of elementary transformations. 

In the following sections we require two lemmas whose prooh are almost 
immediate. 

LEMMA 1. The ranP of a malriz i s  not altered bp an elementary transformation. 

For if I P I # 0, A P  end PA have the same rank as A (#1.10). 

LEMMA 2. The highest common jactor of Ihe coord ides  o j  a matric polynomiak 
i s  not d e r e d  bp e n  elemeniary transj'ormation. 

This follows immediately from the definition of elementary transformations. 

3.02 The normal form of a matrix. The theorem we shall prove in this sec- 
tion is as follows. 

THEOREM 1. I f  a(X) i s  a matric polynomial of rank r, it can be reduced by 
ekmentary transjormations to a diagonal matrix 

The definition of an elementary transformation given above is the most convenient 
but not the only poeaible one. A11 three transformations have the form T = 1 $ zSy 
with the condition that  1 + Szy ie not 0 and is independent of A. 

8 By the rank of a matric polynomial is meant the order of the highest minor which does 
not vanieh identically. For particular values of X the rank may be smaller than r ;  there 
am alwaye values of for which i t  equals T and it  cannot be greater. 
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where the coeficienl of the highest power of X in each polynomial ai(X) is 1, ai is a 
.fador o j  (ri + 1, . . -, 0, (i = 1, 2, . a ,  r - I) ,  and P(X), Q(X) are elementary 
polynomials. 

We shall first show that, if the coordinate of a(X) of minimum degree m, say 
a,,, is not a factor of every other coordinate, then a(X) is equivalent to a matrix 
in which the degree of the coordinate of minimum degree is less than m. 

Suppose'that a,, is not a factor of a,i for some i ;  then we may set a,i = 
Ba,, + a;, where p is integral and a:, is not 0 and is of lower degree than m. 
Subtracting p times the qth column from the ith we have an equivalent matrix 
in which the coordinate4 (p, i) is a;{ whose degree is less than m. The same 
reasoning applies if a,, is not a factor of every coordinate ai, in the 9th column. 

After a finite number of such steps we arrive a t  a matrix in which a coordinate 
of minimum degree, say k,,, is a factor of all the coordinates which lie in the 
same row or column, but is possibly not a factor of some other coordinate kij. 
When this is so, let kPj = Bk,,, ki, = yk,, where B and y are integral. If we 
now add (1 - 8) times the qth column to the jth, (p, j) and (i, j) become 
respectively 

Here either the degree of kij is less than that of k,,, or kij  has the minimum 
degree and'is not a factor of kij, which lies in the same column, and hence the 
minimum degree can be lowered as above. 

The process just described can be repeated so long as the coordinate of lowest 
degree is n.ot a factor of every other coordinate and, since each step lowers the 
minimum degree, we derive in a finite number of steps a, matrix ) I  bij )I which 
is equivalent to a(X) and in which the coordinate of minimum degree is in fact 
a divisor of every other coordinate; and further we may suppose that b;, = 
al(X) is a coordinate of minimum degree and set b i i  = yib:,, b;, = 6ibil .  Sub- 
tracting yi times the first column from the ith and then J j  times the first row 
from the jth (i, j = 2, 3, . ., n) all the coordinates in the first row and column 
except b i l  become 0, and we have an equivalent matrix in the form 

in which orl is a factor of every bii. The coefficient of the highest power of X 
in a1 may be made 1 by a transformation of type 111. 

The theorem now follows readily by induction. For, assuming it is true for 

4 That  is, the coordinate in the pth row and i t h  column 
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matrices d order n - 1, the matrix of this order formed by the b's in (2) can 
be reduced to the diagonal matrix 

where the a's satisfy the conditions of the theorem and each has al as a factor 
(93.01, Lemma 2). Moreover, the elementary transformations by which this 
reduction is carried out correspond to transformations affecting the last n - 1 
rows and columns' alone in (2) and, because of the zeros in the first row and 
column, these transformations when applied to (2) do not affect its first row 
and column; also, sinoe elementary transformat,ions do not affect the rank 
($3.01, Lemma I) ,  s equals r and a(X) has therefore been reduced to the form 
required by the theorem. 

The theorem is clearly true for matrices of order 1 and hence is true for 
any order. 
Corollary. A matric polynomial whose determinant is independent of X and is 
not 0, that is, an elementary polynomhl, can be derived from 1 by the product 
of a finite number of elementary transformations. 

The polynomials ai are called the invariant factors of a@). 

3.03 Determinantal and invariant factors. The determinantal factor of t,he 
sth order, D,, of a matric polynomial a(X) is defined as the highest common 
factor of all minors of order s, the coefficient of .the highest power of X being 
taken as 1. An elementary transformation of type I either leaves a given 
minor unaltered or changes it into the sum of that minor and a multiple of 
another of the same order, and a transformation of type I1 simply permutes 
the minors of a given order among themselv&s, while one of type I11 merely 
multiplies a minor by a constantedifferent from 0. Hence equivalent matrices 
have the same determinantal factors. Bearing this in mind we see immediately 
from the form of (1) that the determinantal factors of a(X) are given by 

D, = a1a2 . a *  a, ' s  = 1. 2, . . ., r ) ,  D, = 0 (s > r), 
so thatb 

a, = D,/D, - 1. 

The invariant factors are therefore known when the determjnantal factors are 
given, and vice versa. 

' Since a, - I is a factor of a,, it follows that  also D: is a factor of D. - I D, + 
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The definitions of this and the preceding sections have all been made relative 
to the fundamental basis. But we have seen in 51.08 that, if al is the matrix 
with the same array of coordinates as a but relative to another basis, then 
there exists a non-singular constant matrix b such that a = b-'alb so that a 
and al are equivalent matrices. In terms of the new basis al has the same 
invariant factors as a does in terms of the old and a, being equivalent to all 
has therefore the game invariant factors in terms of the new basis as it has in 
the old. Hence the invariant and determinantal factors of a matric poly- 
nomial are independent of the (constant) basis in terms of which its coordi- 
nates are expressed. 

The results of this section may be summarized as follows. 

THEOREM 2. TWO matric polynomia,ls are equivalent i j ,  and only 'if,. they 
have the same invariant factors. 

3.04 Non-singular linear polynomials. In the case of linear polynomials 
Theorem 2 can be made more precise as follows. 

THEOREM 3. If aX + b and cX + d are non-singular linear polynomials which 
have the same invariant factors, and i f  I c 1 # 0 ,  there exist non-singular constanl 
matrices p and q such that 

We have seen in Theorem 2 that there exist elementary polynomials P(X),  
& ( A )  such that 

Since I c I f 0 ,  we can employ the division transformation to find matric poly- 
nomials p ~ ,  ql and constant matrices p, q such that 

Csing this in (3 )  we have 

and, since from ( 3 )  

where R = pPl-I + QP1ql - pl(aX + b)ql, which is integral in X since P and Q 
are elementary. If I? # 0, then, Since I c I + 0 ,  the degree of the right side 
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of (5) is a t  least 2, whereas the degree of the left side is only 1; hence R = 0 
so that (5) gives p(aX + b)q = cX + d. Since cX + d is not singular, neither 
p nor q can be singular, and hence the theorem is proved. 

When I c 1 = 0 (and therefore also 1 a 1 = 0) the remaining conditions of 
Theorem 3 are not sufficient to ensure that we can find constant matrices in 
place of P and Q, but these conditions are readily modified so as to apply to 
this case also. If we replace X by X/p and then multiply by p, aX + b is replaced 
by the homogeneous polynomial aX + bp; and the definition of invariant factors 
applies immediately to such polynomials. In fact, if I a I # 0, the invariant 
factors of aX + bp are simply the homogeneous polynomials which are equiva- 
lent to the corresponding invariant factors of ah + b. If, however, I a I = 0, 
then I aX + bp I is divisible by a power of p which leads to factors of the form 
pi in the invariant factors of aX + bp which have no counterpart in those 
of aX + h. 

If I c 1 = 0 but I cX + d 1 * 0, there exist values, X1 Z 0, pl, such +(hat 
I cX1 + dpl I # 0 and, if we make the transformation 

aX + bp, cX + dp become ala + blD, c ~ a  + dl@ where a1 = aX1 + bpl, CI = 
CAI + dp,, and therefore I cl I # 0. Further, when aX + bp and cX + dp have 
the same invariant factors, this is also true of ala + bl8 and cla + dl& Since 
I cl 1 # 0, the proof of Theorem 3 is applicable, so that there are constant 
non-singular matrices p, q for which p(ala + bl8)q = cia .+ dl& and on revers- 
ing the substitution (6) we have 

Theorem 3 can therefore be extended as follows. 

THEOREL 4. If the non-,"ingular polynomials aX + bp, cX + dp have the 
same invariant factors, there exist non-singular constant matrices p, q such that 
p(aX 4- bp)q = cX + du 

An important particular case of Theorem 3 arises when the polynomials 
have the form X - b, X - d. For if p(X - b)q = X - dl on equating coeffi- 
cients we have pq = 1, pbq = d; hence b = p-ldp, that is, b and d are similar. 
Conversely, if b and d are similar, then X - b and X - d are equivalent, and 
hence we have the following theorem. 

THEOREM 5. TWO constant matrices b, d are similar if, and only if, - b 
and X - d have the same invariant factors. 

3.05 Elementary divisors. If D = 1 aX + b 1 is not identically zero and 
if XI,  Xz, . a ,  A ,  are its distinct roots, say 

L, = (A - X1)Yl(X - X*)Y~ (X - h J V ~ )  
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then the invariant factors of aX + b, being factors of D, have the form 

where v j i  = v i  and, since a, is a factor of aj + 
j -1 

(8) vli 5 v2i 5 - < vni (i = 1, 2, - - . )  s) .  

Such of the factors (A - Xj)'i, as are not constants, that is, those for which 
v i j  > 0, are called the elementary divisors of ah + h. The elementary divisors 
of X  - b are also called the elementary divisors of b. When all the exponents 
v i j  which are not 0 equal 1, b is said to have simple elementary divisors. 

For some purposes the degrees of the elementary divisors are of more impor- 
tance than the divisors themselves and, when this is the case, they are indi- 
cated by writing 

where exponents belonging to the same linear factor are in the same paren- 
thesis, zero exponents being omitted; (9) is sometimes called the characteristic 
of ah + b. If a root, say XI, is zero, it is convenient to indicate this by writing 
vp, in place of vil. 

The maximum degree of 1 ah + b 1 is n and therefore v . .  ,, - < n where the 
equality sign holds only when I a I $ 0. i , i  

The modifications necessary when the homogeneous polynomial aX + bp 
is taken in place of aX + b are obvious and are left to the reader. 

3.06 Matrices with given elementary divisors. The direct investigation of 
the form of a matrix with given elementary divisors is somewhat tedious. 
It can be carried out in a variety of ways; but, since the form once found is 
easily verified, we shall here state this form and give the verification, merely 
saying in passing that it is suggested by the results of $2.07 together with a 
study of a matrix whose reduced characteristic function is (X - XIY.  

THEOREM 6. If XI, X2, ..., X I  are any constants, not necessarily all different 
and VI, vz, ..., v, are positive integers whose sum is n, and if ai is the array of vi  
rows and columns given by 

X i  1 0 . . .  0 0 
0 X i  1 0 0 
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where each coordinate on the ma in  diagonal equals Xi, those on the parallel on i ts  
right are 1, and the remaining ones are 0, and i f  a is  the matrix of n rows and columns 
given by 

composed of blocks of terms defined by (10) arranged so that the ma in  diagonal 
of each lies on the main  diagonal of a,  the other coordinates being 0, then X - a 
has the elementary divisors 

In addition to using ai  to denote the block given in (10) we shall also use it 
for the matrix having this block in the position indicated in (11) and zeros 
elsewhere. In the same way, if f i  is a block with v i  rows and columns with 
1's in the main diagonal and zeros elsewhere, we may also use f i  for the corre- 
sponding matrix of order n. We can then write 

The block of terms corresponding to Xji - ai has then the form 

A - X i  -1 
A - X i  -1 

(13) 
(vi rows and columns) 

. -1 
X - X i  

where only the non-zero terms are indicated. The determinant of these v i  

rows and columns is (A - Xi)vi and this determinant has a &st minor equal 
to =tl; the invariant factors of Xfi - ail regarded as a niatrix of order vi, 

are therefore 1, 1, . . . , 1, (A - Xi) "1 and 
transformation to the diagonal form 

(A - Xi)'i 
1 

hence 2 oan be reduced by elementary 

If we apply the same elementary transformations to the corresponding rows 
and columns of - a,  the effect is the same as regards the block of terms 
Xf; - ai (corresponding to ai in (11)) since all the other coordinates in the rows 
and columns which contain elements of this block are 0; moreover these trans- 
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formations do not affect the remaining blocks X f i  - ai ( j  # i) nor any 0 coordi- 
nate. Carrying out this process for i = 1, 2, . . a ,  s and permuting rows and 
columns, if necessary, we arrive a t  the form 

( A  - X1)' 

(A - A*) " 

1 
Suppose now that the notation is so arranged that 

but Xi  # a for i > p. The nth determinantal factor D, then contains ( A  - a )  
P 

to the power 2 v i  exactly. Each minor of order n - 1 contains a t  least p - 1 
1 

of the factors 

and in one the highest power ( A  - a)' is lacking; hence D, - contains (A - a )  

to exactly the power f= v i  and hence the nth invariant factor on contains i t  
2 

tb exactly the vlth power. Similarly the minors of order n - 2 each contain 
a t  least p - 2 of the factors (14) and one lacks the two factors of highest degree; 

8 

hence ( A  - a )  is contained in Dn - to exactly the power 2 v i  and in a ,  - 1  

7 

to the power v2. Continuing in this way we see that (14) gives the elementary 
divisors of a which are powers of ( A  - a )  and, treating the other roots in the 
fiame way, we see that the complete list of elementary divisors is given by (12) 
as required by the theorem. 

3.07 If A is a matrix with the same elementary divisors as a, it follows from 
Theorem 5 that there is a matrix P such that A = Pap-1 and hence, if we choose 
in place of the fundamental basis (el, e2, . ., en) the basis (Pel,  Pel, . . . , Pen), 
it follows from Theorem 6 of chapter 1 that ( 1 1 )  gives the form of A relative 
to the new basis. This form is called the canonical form of A .  I t  follows 
immediately from this that 

(15) P-'AkP = 
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where a! is the block of terms derived by forming the kth power of ai regarded 
as a matrix of order vi. 

Since D, equals I X - a I, it is the characteristic function of a (or A) and, 
since B, is the highest common factor of the first minors, i t  follows from 
Theorem 3 of chapter 2 that a, is the reduced characteristic function. 

If we add the j's together in groups each group consisting of all the j's that 
correspond to the same value of Xi ,  we get a set of idempotent matrices, say 
91, n, - . ., 91, corresponding to the distinct roots of a, say all az, . ., a,. 
These are the principal idempotent elements of a ;  for (i) aqi = via, (ii) (a - 
is nilpotent, (iii) Zpi = Zfi = 1 and vivj = 0 (i # j) so that the conditions of 
$2.11 are satisfied. 

When the same root cri occurs in several elementary divisors, the corresponding 
j's are called partial idempotent elements of a ;  they are not unique as is seen 
immediately by taking a = 1. 

If a is one of the roots of A ,  the form of A - a is sometimes important. 
Suppose that XI = Xz = . . - = A, = a ,  Xi # a (i > p) and set 

the corresponding array in the ith block of a - a (cf. (10)) (I 1)) being 

In the case of the first p blocks X i  - a = 0 and the corresponding bl, b2, . . ., b, 
are nilpotent, the index of bi being vi and, assuming vl 2 v2 > . . . 2 v, as 
before, ( A  - a)k has the form 

or, when k 2 v ,  
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Since none of the diagonal coordinates of bp + I, - . . , b,  are 0, the rank 
P a 

of (A - u ) ~ ,  when k 2 ul, is exactly n - = vi and the nullspace 
1 P+l 

of (A - a ) V s  then the same as that of (A - cu)'~. Hence, if there exists a 
vector z such that (A - a)k z = 0 but (A - a)k - z f 0, then (i) k 5 v,, 
(ii) z lies in the nullspace of (A - c u ) ' ~ .  

3.08 Invariant vectors. If A is a matrix with the elementary divisors 
given in the statement of Theorem 6, then X - A is equivalent to X - a and 
by Theorem 5 there is a non-singular matrix P such that A = Pap-'.  If we 
denote the unit vectors corresponding to the rows and columns of a; in (10) 
by e f ,  e:, ..., e,'; and set 

then 

and hence 

The vectors x j  are called a set of invariant vectors6 of A. 
The matrix A can be expressed in terms of its invariant vectors as follows. 

We have from (10) 

and hence, if 

then 

where it should be noted that the y's form a system reciprocal to the x's and 
that each of these systems forms a basis of the vector space since I P I # 0. 

If we form the transverse of A ,  we have from (21) 

If homogeneous coordinates are used so that  vectors represent points, an invariant  
vector is usually called a pole. 
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so that the invariant vectors of A' are obtained by forming the system recip- 
rocal to the x's and inverting the order in each group of vectors corresponding 
to a given elementary divisor; thus 

A matrix A and its transverse clearly have the same elementary divisors and 
are therefore similar. The matrix which transforms A into A' can be given 
explicitly as follows. Let qi be the symmetric array 

0 0 0 1 
0 0 1 0  
. . . . . . . . . . . . . . .  (vi rows and columns). 

It is easily seen that qiai = aiqi  and hence, if Q is the matrix 

we have &a = a'&, and a short calculation gives A' = RP1AR where R is the 
symmetric matrix 

(23) R = PQ-'P' = PQP'. 

If the elementary divisors of A are simple, then Q = 1 and R' = PP'. 
If the roots X i  of the elementary divisors (12) are all different, the nullity 

of ( A  - X i )  is 1, and hence x f  is unique to a scalar multiplier. But the remain- 
ing x j  are not unique. In fact, if the x's denote one choice of the invariant 
vectors, we may take in place of x j  

where the k's are any constant scalars subject to the condition kf  f: 0. Sup- 
pose now that XI = Xz = . . a  = X, = a ,  Xi Z a (i > p )  and vl 2 v2 2 . . .  2 V, 
as in $3.07. We shall say that 21, z2,  . . a ,  zk is a chain7 of invariant vectors 
belonging to the exponent k if 

I t  is also convenient to set zi = 0 for i < 0 or > k. We have already seen 
that k < v, and that zk lies in the nullspace of (A - a)'l; and from (17) it is 

' R e  shall sny t h a t  the  chain is generated by z k  
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seen that the nullspace of (A - a)'l has the basis (xf ; j = 1, 2, . ., vi, i = 

1, 21 . . ., PI. 
Since zk belongs to the nullspace of ( A  - a)"l, we may set 

and therefore by repeated application of (1 5) with X i  = a 

From this it follows that, in order that (A - = 0, only values of j which 
are less than or equal to k can actually occur in (25) and in order that 
( A  - - lzk Z 0 a t  least one {ik must be different from 0; hence 

Finally, if we impose the restriction that zk does not belong to any chain per- 
taining to an exponent greater than k, it is necessary and sufficient that k be 
one of the numbers vl, v2, . . -, v p  and that no value of i corresponding to an 
exponent greater than R occur in (27). 

3.09 The actual determination of the vectors x j  can be carried out by the 
processes of $3.02 and $3.04 or alternatively as follows. Suppose that the 
first sl of the exponents v; equal n , ,  the next sz equal n,, and so on, and finally 
the last s, equal n,. Let (32, be the nullspace of (A - a)"l and (32: the nullspace 
of ( A  - a)"l- I ;  then contains (32:. If '2Rl is a space complementary to 
9: in (32,) then for any vector x in Dl we have (A - a)rx = 0 only when 
r 2 nl. Also, if XI, xz, a ,  x,, is a basis of 221, the vectors 

are linearly independent; for, if 

some ti, being different from 0, then multiplying by ( A  - a)"l - -' we have 
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which is only possible if every 5;. = 0 since xl, x2, .:, xm, form a basis of Dl1  
and for no other vector of Dl1 is ( A  - a)"l- x = 0. The space defined by (28) 
clearly lies in !Ill; we shall denote it by C1. If we set 81 = 82 + C1 where 82 
is complementary to C 1  in 8 1 ,  then 8 2  contains all vectors which are members 
of sets belonging to the exponents nz, nr, a . but not lying in sets with .the 
exponent nl. 

We now set = 8; + where '3; is the subspace of vectors x in 9tz such 
that ( A  - a)"l- x = 0. As before the elements of %Q2 generate sets with 
exponent nn but are not members of sets with higher exponents; and by a repeti- 
tion of this process we can determine step by step the sets of invariant vectors 
corresponding to each exponent, ni. 



CHAPTER IV 

VECTOR POLYNOMIALS. SINGULAR MATRIC POLYNOMIALS 

4.01 Vector polynomials. If a matric polynomial in X is singular, the elements 
of its nullspace may depend on A. We are therefore led to consider vectors 
whose coordinates are polynomials in a scalar variable A; such a vector is called 
a vector polynomial. Any vector polynomial can be put in the form 

where zo, 21, . . a ,  z, are vectors whose coordinates are independent of X and, 
if zo # 0, m is called the degree of z(X). In a linear set with a basis composed 
of vector polynomials we are usually only concerned with those vectors that 
have integral coordinates when expressed in terms of the basis and, when this 
is so, we shall call the set an integral set. In a basis of an integral set the , 

degree of an element of maximum degree will be called the degree of the basis. 
In practice an integral set is often given in terms of a sequence of vectors 

which are not linearly independent and so do not form a basis. For the present 
therefore we shall say that the sequence of vector polynomials 

defines the integral set of all vectors of the form Zri(X)zi(X) where {'s are scalar 
polynomials, and show later that this is really an integral set by finding for i t  
an integral basis. The sequence (1) is said to have rank r if I zi,zi, . . zi, I 
vanishes identiczlly in X for all choices of s z's when s > T and is not identically 
0 for some choice of the z's when s = r .  

The theory of integral sets can be expressed entirely in terms of matric 
polynomials, but it will make matters somewhat clearer not to do so a t  first. 
By analogy with matrices we define an elementary transformation of a sequence 
of vector polynomials as follows. An elementary transformation of the sequence 
(1) is the operation of replacing it by a sequence z:, 26, . ., z; where: 

Type 111: z; = pi?,, (p = 1, 2, ., k) 
where the ['s are scalar polynomials and the p's constants none of which is 0. 

The rank of a sequence is not altered by an elementary transformation, and 
two sequences connected by an elementary transformation are equivalent in 
the sense that every vector polynomial belonging to the integral set defined 
by the one also belongs to the integral set defined by the other. 

Two sequences which can be derived the one from the other by elementary 
transformations are said to be equivalent. The corresponding integral sets 

47 
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may also be said to be equivalent; and if only transformations with constant 
coefficients are used, the equivalence is said t'o be strict. Equivalence may-also 
be defined as follows. If P is an elementary matrix which turns any vector of 
the integral linear set (zl, zz, . ., zk) into a vector of the same set, then it is 
easily shown. that this set is equivalent to (Pzl, Pzp1 . . ' , Pa) and conversely; 
we also say that the linear set (zl, z2, . . ., 2k) is invariant  under  P although the 
individual elements of the basis are not necessarily unchanged. If the restric- 
tion that P leaves (zl, z2, . . ., zk) invariant is not imposed, .the two sets are 
said to be similar. 

4.02 The degree invariants. M7e have seen in the previous section that 
the sequence in terms of which an integral set is defined may be transformed 
by elementary transformations without altering the integral set itself. We 
shall now show how we may choose a normalized basis and determine certain 
invariants connected with the set. Let the vectors ( I ) ,  when written in full, be 

and suppcse the notation so arranged that ml 5 mz < . . . < mk. Suppose 
further tfiat the leading coefficients zlo, zzo1 . . ., Z ,  - are linearly inde- 
pendent but that 

the q's being constants not all 0; then ma 2 mi ( i  = 1, 2, . . a ,  s - 1) and 

is either 0 or has a lower degree than z,, and it may replace 2, in the sequencc. 
After a finite number of elementary transformations of this kind we arrive 

a t  a sequence equivalent to (1) which consists of a number p of vector poly- 
nomials XI, xz, . . ., x p  in which the leading coefficients are linearly independent, 
followed by k - p zero-vectors. Now if we form I xlxz ' . . . x, 1 using the 
notation of (2) with x's in place of z's, the term of highest degree is hml + ' ' ' +'"P 

. I zloxz~ . X,O I, which is not 0 since the leading vectors xlo, XZO, . . ., xp,, are 
linearly independent. But the rank of a sequence is not changed by ele- 
mentary transformations; hence p = r and we have the following theorem. 

THEOREM 1. I f  21, 22, . -, zk i s  a sequence of vector polynomials of rank  r ,  

lhe set of vectors of the f o r m  {i(h)2i(h), the { 's  being scalar p o l y ~ ~ o m i a l s ,  form 
i 

a n  integral set w i th  a basis of order r which m a y  be so chosen that the leading coefi- 
cients of i t s  constituent vectors are linearly independent.  
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When a basis of an integral set satisfies the conditions of this theorem and 
its elements are arranged in order of ,ascending degree, we shall call it a nor- 
mal basis. 

Coro2lary. If xl, xz, . . ., x, is a normal basis with the degrees ml 5 m2 < 
. 5 m,, and if El, {P, . . ., tr are scalar polynomials, then the degree of the 

vector polynomial x = 2 [gi (E. # D) is not less than m.. 
1 

THEOREM 2. Ij xl, 2% . . ., x, is a normal basis of an 2ntegral set and 
ml 5 mz 5 . . . - < m, the corresponding degrees, and if yl, y,, . . ., y, is any 
other hasis with the degrees nl < nz 5 . - < n,, then 

Further, the exponents ml, m, . ., m, are the same for all normal bases. 

Let s be the first integer for which n, < m, so that ni < n, < m, for i i s. 
Since (xl, x2, . ., x,) is a basis, we may set 

Here no value of p greater than s - 1 is admissible since the degree ni of yi 
is less than m,. This would mean that the rank of yl, y2, . a ,  y, was less 
than s, which is impossible since t,hey form part of a basis. Hence m, 5 n. 
for all values of s. 

If both bases are normal, it follows immediately that mi I ni and also 
n, I mi, whence mi = nil that is, the set of exponents ml, mz, . a ,  m, is the 
same for all normal bases. We shall call these exponents the degree invariants 
of the integral set. 

4.03 Elementary sets. If zl(X), z2(X), . . a ,  z,(X) is a basis of an integral 
set, but not necessarily a normal basis, the r-vector 1 zlzz . . . z ,  1, which we 
call the determinant of the basis, is not identically 0 but may vani'sh for cer- 
tain values of X. If i t  vanishes for X = All  then zl(X1), z2(X1), ., zr(X1) are 
linearly dependent, that is, there is a relation B[izi(X1) = 0; we may assume 
{I # 0 without loss of generality. I t  follows that Z{,zi(X) has a factor of the 
form (A - XI)", a 2 1, and hence 

is integral; and, since # 0, every element of 
integrably expressible in terms of (2: (A), z2(A), a 



50 VECTOR POLYNOMIALS [ I v l  

the determinant of the new basis is of lower degree than that of the old and so, 
if we continue this process, we shall arrive after a finite number of steps fit a 
basis (xl(X), xz(X), . ., x,(X)) whose elements are linearly independent for aH 
values of A. A set which has a basis of this kind will be called an elementary 
integral set; and it is readily shown that every basis of an elementary integral 
set has the given property, namely, that its elements are linearly independent 
for every value of A. These results are summarized as follows. 

THEOREM 3. Every integral set of order r is contaked in an elementary set 
of the same order. 

We also have 

THEOREM 4. Let xl, z2, . . a ,  x, be a basis of an elementary set. If r < n, there 
exists a complementary elementary basis x, + 1, . . , x, such that I xlxz . . . x, I # 0 
for any value of X and this basis can be so chosen that its degree does not exceed 
that of xl, 52, . . , xr. 

THEOREM 5. If 21, XL, - ., x, i8 a basis of an elementary set, there exists an 
elementary matric polynomial X such that xi = Xei (i  = 1, 2, . . . , r). 

For let y be a constant vector which for some value1 of X is not linearly depen- 
dent on xl, x2, . - ., ?, so that we do not have identically y = Zqixi for any $s 
which are scalar polynomials. If fot some value of X, say X1, we have y = 
Ztixi(X1), the t's being constants, then y - Z[izi(X) has'the factor X - X1 and, 
as in the proof of Theorem 3, we can modify y step by step till we arrive a t  a 
vector polynomial x, + such that xl, x2, . ., x,, x, + form an elementary 
basis. The degree a t  each step of this process does not exceed that of the 
original basis since only constant multipliers are used. This procedure may 
be continued tiH a basis of order n is reached, which proves Theorem 4. 

The proof of Theorem 5 is immediate; in fact, using the basis derived in the 

proof of Theorem 4, X = xiSei satisties the required conditions and 
1 

I X I = 1 ~1x2 - - x, 1, which does not vanish for any value of X. 
As a converse to Theorem 5 we have that, if X is an elementary matrix, then 

xi = Xei (i = 1, 2, . a ,  r) is a basis of the elementary set (xl, x2, . . a ,  x,). 

4.04 If zl, z2, . . a ,  zk is a sequence of vector polynomials ot r a m  T ,  we may 
always assume k 5 n by merely increasing the order of the fundamental space, 
if necessary. Setting zi = ZCjiei, let us consider the matric polynomial 

1 If the question of degree is not important, any vector polynomial satisfying this 
condition may take the place of a constant vector. 



ELEMENTARY SETS 

The elementary transformations used in i4.02 in finding a basis of the integral 
set correspond when applied to Z to  a combination of elementary transforma- 
tions, as defined as $3.01, and because these transformations involve columns 
only, they correspond to multiplying Z on the right by an elementary poly- 
nomial Q,. Similarly, if 

the process of finding a basis for yl, yt, ..., yn, whose rank is r ,  corresponds 
to multiplying Z on the left by an elementary polflomial PI. 

We shall now suppose that k = r so that Ql = 1; then PIZ has the form 

We now bring Z1 to the normal form of $3.02, say 

where .?I, { z ,  . . a ,  CT are the invariant factors of Z (or 2,) and in doing so only 
the first r rows and columns are involved so that 

(3) Qei = ei, (i = r + 1, r + 2, . . a ,  n). 
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Therefore, if xi = (PP1)-lei, we have successively 

(4) rixi = ZQei = qliZl + q2iZz + . . + q&,, (i = 1, 2, . . . , r). 

But from (3) and the fact that I Q I is a constant different from 0, it follows that 
the determinant of the coefficients in (4) is also a constant different from 0, 
and hence these equations can be solved for the z's in terms of the x's giving, say 

where the b's are scalar polynomials. 
Returning now to the case k 2 r, we see that, since we can pass to t,he case 

k = r by elementary transformations, the {'s are still the invariant factors of 
k 

Z = 2 ziSei They are therefore also invariants of the integral set independ- 
1 

ently of the basis chosen to represent it, and so we shall call them the invariant 
factors of the set. 

We can now state the following theorem. 

THEOREM 6. If ll, Tz, . . ., {, are the invariant factors of an integral set of 
vector polynomials, we can jind a basis of the form 

{lxli l 2 ~ 2 1  ' ' 1 lrxr 

where XI, x2 ,  . e l  x, define an elementary set. 

4.05 Linear elementary bases. We shall derive in this section a canonical 
form for a basis of an elementary linear set. If 

is basis of an elementary linear set, it is convenient, t'hough not necessary, to 
associate with it the matrix 

where gl, g2, . - ., gr is a sequence of linearly independent constant vectors. 
When this is done, it should be noted that multiplying AX - B on the right 
by an elementary matrix P corresponds to replacing (5) by the similar sequence 
Pfzl, - . ., P'z,. Multiplying on the left by P has no immediate interpretation 
in terms of the sequence except when 
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in which case we. can write 

and the set (2: , zi,  - . a ,  z :) is equivalent to (5) ; when P is constant, the equiva- 
lence is strict. 

Instead of restricting ourselves to the matrix (6), we shah only assume to 
begin with that AX - B is a linear matric polynomial of rank r  < n. The 
nullspace % of AX - B is then an elementary integral set, a normalized basis 
of which we shall take to be 

(7) oi(X) = aioXrni + ailXmi - + . . . + a+ (i = 1, 2, . ., n - r ) .  

From (AX - B)ai = 0 we have 

or, if we set ail = 0 for t < 0 or t > m.i, 

We shall now show that the Oectors aij (i = 1 ,  2, -, n - r ;  j = 0, 1, 
. ., mi) are linearly independent. Assume that  aii are linearly independent 

for (i = 1, 2, ..., p  - 1; j  = 0, 1, - . a ,  mi) and (i = p ;  j = 0, 1, ..., q - 1) 
but that  

Let s' be the greatest value of j for which some aij # 0 and let s be the greater 
of s' and q. If we set 

then c - ~  = 0, c, = 0 and 

which is not 0 by hypothesis, except perhaps when q = 0 and every aij ( j  # 0 )  
in ( 9 )  is 0, which, however, is not possible since by Theorem 1 the leading 
coefficients aio in (7) are linearly independent. Also from (8) it follows that 
Act = Bcl - 1 ,  and hence 
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is a nubvector of AX - B of degree less than nap. But every such integral 
null-vector is linearly dependent on al, at, - ., a, - 1 with integral coeffi- 
cients, say 

and this gives 

which is impossible since c, 1 is obtained from (9) by hwering the second 
subscript in each term and no such subscript gr'eater than mi can occur in any 
asj. Hence the aij are lineaxly independent. 

In  order to simplify the notation we shall now set 

where Q is a constant non-singular matrix and e j  are fundamental units rear- 
i - 1  

ranged by setting, say, er = c j  when k = (m, + 1) t j + 1; as before 
57-1 

e f  = 0 for j < 0 and j > mi. Wbshall denote the space defined by the e j  
by !Dl, and the complementary space by 9&; since the bases of ! D l 1  and D2 
can be chosen as sequences of fundamental units, they are reciprocal as well as 
complementary. 

We return to the particular case in whlch AX - B is given by (6). Corre- 
sponding to (12) we define a new set of vectors w by 

and when this is done a normal basis of the nullspace !Ill of (AX - B)Q = 
ZyiSwi is given by 

(15) bi = e;hm' + eiXmi - + . . . + eAi (i = 1, 2, . ., n - r). 
We have seen in $1.10 that bl, b2, . . ., bn - r is the space reciprocal to 

n -  r 

wll U I Z ,  . a ,  w.. Now in Il  the mi vectors 
1 

are linearly independent; and they form the set reciprocal to (14).in !Dll since 
Sf$,  = 0 for all i, j, p and the sum of the orders of the two sets is Zmi + 
(n - r) which is the order of Zml.  Hence the total set (wl,  w2, . ., w,) recip- 
rocal to (bl, b2, - - b, - ,) is composed of (15) together with I s .  We shall 
call this farm of basis a canonical basis of the set (13).  We can now state  he 
following theorems. 
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THEOREM 7 .  A linear elementary set.oj order r has a basis of the form 

where the constant vectors gq, aii are linearly independent for all j  and i and the 
integers mi are those degree invorzants of the reciprocal set that are not 0. 

We shall call each set gj ( j  = 1,  2 ,  . ., m i )  a chain of index mi, and define 
the integers ml, mz, . . ., m, as the Kronecker invariants of the set. A basis 
of the form (17) will be called canonical. 

THEOREM 8. TWO linear elementary sets m e  similar i f ,  and only i f ,  they have 
the same Kronecker invariants and the same order. 

I t  should be noted that, if r is the order of the set, then 

(18)  m t . E m i =  r ,  m + (m i  + 1 1 - 5  n, v  < n - r- 
1 1 

If r = n, all the Kronecker invariants are 0 and there are no chains in the basis. 
If zl, z2, . . a ,  z ,  is a normal basis of an elementary linear set, the first m being 

constant and the rest linear in A, and gq, gj is a canonical basis, the notation 
being that of Theorem 7 ,  then clearly the set gq ( j  = 1, 2 ,  . ., m) is strictly 
equivalent to (z,, z2, ., 2,) and the remaining vectors have the form 

(19 )  gj = w j  + uf + x v j  

where u j and v  j belong to (z,, z2, . . , 2,) and the w j are constant linear combina- 
tions of z, + 1 ,  . . , z,. Since,a canonical basis is also normal, 

(20)  gg ( j =  1 , 2 ,  . a ; ,  m),  wf ( i  = 1 , 2 ,  - a s ,  v ; j =  1 , 2 ,  - . - ,  m i )  

is a normal basis strictly equivalent to ( z l ,  22, a ,  2,). Now (19)  may be 
written 

where bf = vf - 1 - uf is a constant vector of the linear set (g: ,  g ; ,  . a ,  g i )  and 

Here (22) together with the gg form a canonical basis which from (21) is strictly 
equivalent to (20)  and therefore to (z l ,  z2, . a * . ,  2,). We therefore have the 
following theorem. 

THEOREM 9.  Every normal basis of a linear ekmentary set i s  strictly equivalent 
to some canonical basis. 

4.06 Singular linear polynomials. Let AX + B be a matric polynomial 
of rank r < n. I ts  left and right grounds are linear integral .sets of rank r ,  

and by Theorems 3 and 7 we can find canonical bases in terms of which the 
vectors of the two grounds can be integrally expressed, say 

(23 )  21, 22, . . ' ,  ~r and I U I ,  ~ 2 ,  a . . , WI, 
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respectively, where the first a z's and f i  w's are constant and the rest linear in A .  
When AX + B is expressed in terms of these bases, then, remembering that no 
second degree term can appear, we see that i t  has the form 

r-a 8 n r - R  

The row vectors 
B 

form a set of r linearly independent vectors and, since the set (25") depends 
only on /3 w's, we must have r - a I /3. Setting7 = a f p - r we may 
replace w, + 1, . . ., wp by pa + 1, . . ., p ,  in (23) without destroying the canon- 
ical form of the basis. A similar change can be made independently in the 

n 

r basis by replacing r, + j by ki ,  p + ,zp + i (j = 1, 2, . . ., r - p = a - 7 ) .  
1 

When we assume that these changes have been made to begin with, we may 
take in place of (24) 

Figure 1 shows schematically the effect of this change of basis. To begin with 
the coefficients in (24) may be arranged in a square array AR of side r ;  the 
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first double sum corresponds to the rectangle AL, the second to JQ and the 
third to CM, and the rectangle LR contaios only zeros. After the transforma- 
tion which leads to (26), the only change in the scheme is that in JQ the part 
J P  is now zero and the square KQ has 1 in the main diagonal and zeros else- 
where, and CM also takes a similar form. 

If we set 

then zl, . ., z, z:,,, . a ,  z :  and w1, - ., wg, w;+1, . . ., W :  are still elementary 
bases of the right and left grounds, and in terms of them (26) becomes 

The number of terms in these summations after summing for j is 7 + (r - a)  
+ (T - 8) = r. Hence the rank of the square array hi$ + kij (i, j = 1, 2, 

. a ,  7) is -y and by a change of variable of the form X - X1 = A', if necessary, 
we can secure that the array ki, is also of rank 7. 

The transformation just employed disturbs the canonical form of the basis 
and we have now to devise a different transformation which will avoid this. 
Let us set in place of wl, WZ, - - -, W, 

where the p's are constants to be determined later, and for brevity set also 

since the rank of ki,  (i = 1, 2, . ., 7) is 7, the vectors kl, k2, . ., k7 form a 
basis of (zl, zz, - ., 2,). After this change of basis the part of the first double 
sum (cf. (26)) which corresponds to i = 1, 2, . . a ,  7 ;  j = 7 + 1, . ., /3 is 

Consider now a single chain of z's of index s which by a suitable change of 
notation we may suppose to be z, + 1, z. + 2, . , 2, + ,; we shall seek to det,er- 
mine t,he p's so that the corresponding part of (27) shall become 
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the g's being vectors in the spade (21, 22, a ,  2,). Equating corresponding 
terms in (27) and (28) we have 

Choosing ptl  (t = 1, 2, . ., y) arbitrarily we define go by the first equation; 

then the second defines p, since the vector h, + + x ptlhl - k, + can be 
t 

expressed uniquely in terms of the basis (kl, kz, . ., k,); and the remaining 
p's are similarly determined in succession, while the last equation defines g.. 

If we now in our basis put in place of z ,  + i 

and combine the corresponding part of (27) with z z. + iSw, + il the two 

together give 2 I ,  + iSw, + i and the new basis is still canonical. We then 
i = 1 

treat all the z chains in the same way and have finally in place of (26) 

The changes in the bases used above have replaced the  coordinates hij, kij 
by 0 for the range i = 1, 2, y; j = y + 1, . ., p and have left them 
wholly unaltered for i = y + 1, . . ., a; j = 1, 2, . . e l  y. We can therefore 
interchange the r6les of the 2's and w's and by modifying now the w-chains we 
can make these coordinates zero for the second range of subscripts without 
altering the zeros already obtained for t,he first range. Hence it is possible 
by a suitable choice of the original canonical bases to assume that (26) is 
replaced by 
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Here the first summation can be reduced to a canonical form without affecting 
the rest of the expression; we therefore neglect it in the meantime and deal 
only with the remaining terms. This is equivalent to putting y = 0, and in 
making this change it is convenient to alter the notation so as to indicate the 
chains in the bases. 

As in 54.05 let the chains of the z and w bases be 

+ X j j  ( j  = 1,2, .:., s i ; i  = 1,2,.  a m . ,  v l )  

and 

gPq-l+ XgPq (q = 1)2 ,  ...) t p ; p  = 172) " ' )  v*) 

respectively, and denote the constant vectors of the respective bases by z :  
and wj where i, j, p, q take the values indicated above since, when y = 0, we 

Y .  Y.  

have 2 g = I - n = p P tq = r - p = a. We have then to determine 
U 

1 1 

a canonical form for the matrix 

and in doing so we shall show that the first summation can be eliminated by a 
proper choice of the bases of the chains. 

I t  will simplify the notation if we consider first only two chains, one of index 
s in the z-basis and the other of index t  in the to-basis and, omitting the super- 
scripts, choose the notation so that these chains are jo + X j l ,  . . ., j, - + Aj, 
and go + Xgl, . . ., gl - + Xgr. We now modify these by adding aj - + Xui 
to f j  - t.' X j j  and bi - + Xbi to gi - + Xgi choosing 

aj-  x n i j ~ i  ( j = O , l ,  a * - ,  e ) ,  bi = C / 3 i j w j  (i = O , 1 ,  ..., 1 )  

in such a way as to eliminate the corresponding terms in the first summation 
of (30). To do this we must choose the a's and p's so that 

For j > 1 this gives ai, j - = hi, j - - pi, j and hence if lij = kij - hi, - 
we may write 

If we give aio (i = 1, 2, . . ., t )  arbitrary values, (32') defines Pil for i = 0, 
1, . . ., t - 1 and leaves b l l  arbitrary; then j = 2 in (32") gives piz for i = 

0, 1, . . ., t - 1 and leaves Ptz arbitrary, and so on: and when the 0's are found 
in this way, certain of them being arbitrary, the first equation of (31) gives the 
remaining a's. 



60 VECTOR POLYNOMIALS - [ I v l  

Combining every z chain in this way with each w chain in turn, we finally 
eliminate all the terms in the quadrupli! sum in (30)) and (29) may therefore, 
by a proper choice of the two bases, be replaced by 

(33) 

where no two of the linear sets 

have any vector in common, and also no two of 

have any vector in  common. 
We shall now for the moment suppose that the order n of the fundamental 

space is taken so large that we can introduce vectors z; (p = 1, 2, . . , v2 )  into 
the third set in (34') without causing the three spaces to overlap, and also 
w: (i = 1, 2, . . ., vl) into the second set of (34"). As a matter of convenience 
we can then find two constant non-singular matrices P, Q such that 

where the range of the affices is as in (34) and where 

and, when this is done, 

This matrix is composed of a number of blocks of terms arranged along the 
main diagonal, the remaining coordinates being 0. I t  must be carefully observed 
however that, owing to the introduction of the vectors z ; ,  wi and to the fact 
that a chain of index s depends on s + 1 constant vectors, the total number 
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of rows and columns employed is greater than the rank r by the total number 
of chains in the left and right grounds. 

The first summation in (35) gives a block I /  hJ  + kij I I of -y rows and columns. 
Each chain in the second and third summation gives a block of the respec- 
tive forms 

If we take AX + BF in place of AX + B and calculate the invariant factors 

these forms show that we obtain the invariant factors of (hiiX + k;+)e;Sej 

together with a number of 1's from the blocks of type (36), the number con- 
tributed by each being one less than the number of rows it contains, that is', 
the index of the corresponding chain. This gives the following theorem. 

THEOREM 10. TWO matric polynomials AX + Bp and CX + Dg are strictly 
equivalent ij, and only i f ,  they have the same invariant factors and their respective 
right and left grounds have the same Kronecker invariants. 

That these conditions are necessary is obvious; that they are sufficient follows 
readily from the form (33) derived above. In the first place, since the Kro- 
necker invariants are the same for both, the second and third summations in 
(33) have the same form for both and are therefore strictly equivalent by 
means of transformations which do not change the terms in the first summation. 
Secondly, the first summation in both yields the same invariant factors since 
the number of 1's due to the remaining terms depends only on the number of 
chains, which is the same for both; hence these summations are strictly equiva- 
lent and, because of the h e a r  independence of the constant vectors involved, 
the equivalence is obtainable by transformations which do not affect the 
remaining terms. 

When the first summation in (35) is in canonical form, we shall say that 
AX + B is in its canonical form. This is however not altogether satisfactory 
since the space necessary for this form may be of greater order than n. If 
v is the greater of v l  and "2, (33) shows that the minimum order of the enveloping 
space is -y + Zs,  + Zt, + v. A canonical form for this number of dime~sions 
can be obtained as follows. Pair the blocks of the first and second types of 
(36) till all of one type are used up, taking the order of the constituents in, say, 
t,he order of (36): then in the composite block formed from such a pair discard 
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the first column and also the row which contains the first r6w of the second 
block. This gives a canonical form for such a pair, namely, 

If the number of chains in the left and right grounds is not the same, there 
will of course be blocks of one of the types (36) left unpaired. 



CHAPTER V 

COMPOUND MATRICES 

5.01 In chapter I it was found necessary to consider the adjoint of A which is a 
matrix whose coordinates are the first minors of I A I. We shall now consider 
a more general class of matrices, called compound matrices, whose coordinates 
are minors of I A I of the rth order; before doing so, however, it is convenient 
to extend the definition of Sxy to apply to vectors of higher grade. 

5.02 The scalar product Let xi  = Z(i,e,, yi = Zqi je l  (i = 1, 2, . . a )  be 
arbitrary vectors, then, by equation (37) $1.11 we have 

and hence it is natural to extend the notion of the scalar product by setting 

We then have the following lemma which becomes the ordinary rule for multi- 
plying together two determinants when r = n. 

again 

The lemma follows easily by a repetition of this process. 
The Laplace expansion of a determitlant can clearly be expressed as a scalar 

product. This is most easily done by introducing the notion of the comple- 
63 
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mcnt of a vector relative to the fundamental basis. If i l ,  iz, . . , i, is a sequence 
of distinct integers in natural order each less than or equal to n and i, + 1, . -, i, 
the remaining integers up t'o and including n, also arranged in natural order, 
the complement of I ei,ei, . . . ei ,  1 relatively to the fundamental basis is 
defined as1 

(4) I ei,ei, - * e i ,  1, = 

and the complement of 1 x1x2 

(5)  1~1x1 ' * .  xr l c  = 

which is a vector of grade n 
Laplace's expansion of a determinant in terms of minors of order r can now 

be expressed in the following form. 

Further as an immediate consequence of (5) we have 

5.03 Compound matrices. If A = Zai,eij, then, as in ( I ) ,  

But Aej = oi,ei; so a second application of ( 1 )  gives 
i 

But the determinants 1 l l j l  . . . f T j r  1 are the coordinates of the r-vector 
1 xlz2 . . x. I ; hence I Axl . - Ax, I is a linear vector form in 1 21x2 . . . xr I 
in the corresponding space 6f ( y )  dimensions. We denote this vector func- 
tion or matrix by Cr(A)  and write 

We shall call C,(A) the rt,h compound of A .  Important particular cases are 

The Grassmann notation cannot be conveniently used here since it conflict8 with. the 
notation for a determinant. It is sometimes convenient to  define the complement of 
I cler ... en 1 as 1. 
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and, if k is a scalar, 
(8") C,(k) = k'. 

THEOREM 1. 

(9) C,(AB) = Cr(A)Cr(B).  
For 

1 ABxlABxz  . . A B x ,  1 = C,(A)  I B X I B X ~  B z r  1 
= C,(A)C,(B) 1 21x2 . - . 2, 1. 

Corollary. If I A  1 # 0, then 

(10) [C,(A)]-I = C,(A-I). 

This tjheorem follows by direct substitution for A  i r  the left-hand side of (8 )  
I t  gives a second proof for Theorem 2. 

If r = m, (12) consists of one term only, and this term is 0 unless m is the 
rank of A ,  a property which might have been made the basis of the definition 

of rant .  In particular, if X = 2 eiSxi, Y = 2 ySe. then C r ( X )  = 

i , j  

Comparing t,hese two forms of C.(XY) therefore gives another proof of the 
first lemma of $5.02. 

If we consider the complement of I AxlAx2  . . . Ax,. I we arrive a t  a new 
matrix C r ( A )  of order (:) which is called the rth supplementary compound of A .  
From (7) and (12) we have 

and derive immediately the following which are analogous to Theorems 1 and 2. 
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The following theorems give the connection between compounds and supple- 
mentary compounds and also compounds of compounds. 

This is the Laplace expansion of the determinant / A  I. Using equation (6) 
and setting 1 e 1 for / elez . . . c, I we have 

[ A  I S ~ X L X ~  . a .  x , l C l x r + 1  . . .  X n I  = / A  ISIXL . . .  x ~ I  
= S 1 Axl Ax, 1 1  e 

and, since the x's are arbitrary, the first part of the theorem follows. The 
second part is proved in a similar fashion. 

Putting r = n - 1  in (16) gives the following corollary. 

Corollary. adj A  = Cn - ' (A ' ) .  

For from (16) with A' in place of A ,  and from the fact that the order of 
C r ( A )  is (:), we have 

and, since I A  I is irreducible when the coordinates of A are arbitrary variables, 
it follovds that I C r ( A )  j is a power of I A  / .  Considerations of degree then show 
that the theorem is true when the coordinates are variables and, since the 
identity is integral, it follows that it is also true for any particular values of 
these variables. 
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Using (15)) (16) and (17) we get 

c.(cn - r ( ~ l ) ) ~ ( ' ) - a ( ~ n  - ?(A)) = I cn - ?(A)  I = 1 A 1 P Y I )  

therefore 

1 A C.(C,(A)) = 

- - 
Similarly 

C,(Cr(A))C,(Cn - r(A' ) )Cn - .(Cn - ' ( A ) )  

C,(C,(A)Cn - ' (A ' ) )Cn - .(Cn - r ( A ) )  

c, ( I A I )Cn - .(Cn - r (A) )  

I A [Cn - .(Cn - ' ( A ) ) .  

An important particular case is C,(Cn - ' ( A ) )  = ( A I s  - 'Cn - " A )  whence 

5.04 Roots of compound matrices. If A has simple elementary divisors 
and its roots are X I ,  X p ,  . . -, An, the corresponding invariant vectors being 
al. a%, ., an, then the roots of C,(A)  are the products Xi ,Xi ,  . X i ,  in which 
no two subscripts are the same and the subscripts are arranged in, say, numerical 
order;and the invariant vector corresponding to hi,Xi, Airis I ai,ai, a;, I .  
For there are (:) distinct vectors of this type and 

Similarly for C r ( A )  the roots and invariants are Xi,Ai ,  . . . X i ,  and 
I Ui,Ui!  . . air l e a  

It follows from considerations of continuity that the roots are 'as given above 
even when the elementary divisors are not simple. 

n 

5.05 Bordered determinants. Let A = / /  aii 1 1  = aiSe,, a ,  = 2 oileil 
j = 1  

be any matrix and associate with it two sets of vectors 
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Consider the bordered determinant 

where r < n, and 0, is a square block of 0's with r rows and columns. 
If we introduce r additional fundamental units en + l, - ., en + ,, A, can he 

regarded as the determinant of a matrix a of order n + r ,  namely, 

C .  + .(PI) = x* lei, e in+,  I S  I di, di,.. I (i = 1, 2, . - . ,  n + 27-1. 
( i )  

In this form any I ci, . ein +, / which contains more than n out of all  . ., a,. 
XI ,  ., x, is necessarily 0; also, if it does not contain all the x's, the corre- 
sponding I di,, a * . .  din ,, 1 will contain more than n out of el, . . . ,  e,., 
yl, ..., yr and is consequent,ly 0. We therefore have 

and hence, passing back to  space of n dimensions, 

This relation shows why the bordered determinant is frequently used in 
place of the corresponding compound in dealing with t,he theory of forms. 

5.06 The reduction of bilinear forms. The Lagrange method of reducing 
quadratic and bilinear forms to a normal form is, as we shall now see, closely 
connected with compounds. 
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If A is any matrix, not identically 0, there exist vectors xl, yl such that 
SxlAyl Z 0;  then, setting A = Al for convenience, the matrix 

has its rank exactly 1 less than that of A.  For, if Alz = 0, then 

and, conversely if A2z = 0, then 

say, or Al(z - ky:) = 0. The null-space of A2 is therefore obtained from that 
of A1 by adding yl to its basis, which increases the order of this space by 1 
since Alyl # 0. 

If A2 Z 0, this process may be repeated, that is, there exist x2, yz such that 
SzzAzyz # 0 and the rank of 

is 1 less than that of AS. If theyank of A is r ,  we may continue this process 

where Sx,A,ys ti 0 and Al = A, A, = 0; we then have 

where %, = A,y, - SAixa is a matrix of rank 1. Generally speaking, one may 
SxsAsu, 

take x, = y, and it is of some interest to determine when this is not possible. 
If SxBx = 0 for every x, we readily see that B is skew. For then SeiBe, 
= SejBej = S(ei + ej)B(ei + e,) = 0 and therefore 

0 = S(ei + e,)B(e; + e,) = SeiBe; + SejBej + SeiBe, + Se,Bei, 

that is, SeiBe, = -Se,Bei and hence B' = -B. Hence we may take x, = y, 
so long as A, # -A:. 

5.07 We shall now derive more explicit forms for the terms in (23) and show 
how they lead to the Sylvester-Francke theorems on compound determinants. 

Let xl, x2, . . ., xT, yl, y2, . . ., yr be variable vectors and set 

(24) J = S I x ~ ~ ~ x ~  . . . X r  1 Cr  + l(As) I y3y1y2 . . . Y' I 
= S 1 z,z1x2 . . . xr 1 1 A,yaA,yl A,yT 1 ;  
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then from (22) 

J = S1x,xl ~ ' j l A , y , A ~ + l y l  A,+lyrI 

= I SX,A,~,SX'A, + ly' . . - SxTA, + ly' 1. 
If the x's denote rows in this determinant, the first row is 

Sx,A,y,, SX,A, + l y l ,  a ,  S X J ,  + U' 

each term of which is 0 except the first, since x. lies in the null-space of A: + I ,  

and Sx,A,y, # 0. Hence 

(25) J = Sx,A,y, / SxlA, + l y l  . . SxrA, + l y p  I 
and therefore from (24) 

(26) S 1 x8x1 . X' 1 Cr + l(Aa) 1 Y ~ Y '  . . yr  I 
= Sx8A,yaS [ x1 . X' 1 Cr(A, + 1) 1 y1 . . . yr 1. 

Repeated application of this relation gives 

To simplify these and similar formulae we shall now use a single letter to 
indicate a sequence of vectors; thus we shall set X, ,  , + t - 1 for z,x, + 1 . . 
x, + - and Y T  for y1y2 . . yT; also C,, , for Cr(A,). Equations (26) and (27) 
may then be written 

We get a more convenient form for (26a), namely 

by replacing r by r + t - s and then changing x1x2 . xr +'  - "nto 
X ,  + 1 . . . X ~ X '  . . . xT along with a similar change in the y's. Putting s 
= 1, 2, . . ., t in succession and forming the product of corresponding sides of 
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the equations so obtained from (28) we get after canceling the common factors, 
which are not identically 0 provided that r + t is not greater than the rank of A, 

which may also be written in the form 

in particular 

This gives a definition of A t  + I which may be used in place of (22) ; it shows that 
this matrix depends on 25 vector parameters. I t  is more convenient for some 
purposes to use the matrix A(;)  defined by 

Hence 

which is readily recognized as Sylvester's theorem if the x's are replaced by 
fundamental units and the integral form of (33) is used. 

5.08 Invariant factors. We shall now apply the above results in deriving 
the normal form of $3.02. We require first, however, the following lemma. 

LEMMA 4. If A (A) i s  a m ~ t r i c  poZynomia1, there exists a constant vector y and a 
vector polynomial z such lhnt S z A y  i s  the highest common factor of Ihe coordi- 
nates of A. 

Let y = Zqiei  be a vector whose coordinates are variables independent of A. 
Let a1 be the H. C. F. of the coordinates of A = I 1  ai ,  l i  and set 
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There is no value XI of X independent of the q's for which every Bi = 0; for if 
this were so, X - XI would be a factor of each bi, and al could not then be the 
H. C. F. of the ai,. Hence the resultant of PI, pz, . ., pn as polynomials in X 
is not identically 0 as a polynomial in the 7's; there are therefore values of the 
q's for which this resultant is not 0, and for these values the p's have no factor 
common to all. There then exist scalar polynomials tl, [z, . ., En such that 
Zfiai = 1 and therefore, if x = XEiei, we have SxBy = 1 or SxAy = al. 

Returning now to the form of A given in $5.06, namely 

we can as above choose x,, 7~. in such a manner that Sx,A,y. = a, is the highest 
common factor of the coordinates of A, and, when this is done, v, = A,y,/a,, 
u, = A:z,/a, are integral in A. We then have 

Moreover Asyi = 0 = A:xi when i < s and therefore in 

all terms on one side of the main diagonal are 0 so that it reduces to Sx,A,yl 
. . .Sx,A,y, = ala2 " -  a,. Hence, dividing by a1 . . . a, and replacing 
A;y,/a, by v j  as above, we see that I XI . . . z, I and I VI . . . v ,  I are not 0 for 
any value of A, and therefore the constituent vectors in each set remain linearly 
independent for all values of A. I t  follows in the same way that the sets 
UI, - - -, U, and yl, - .  ., y,, respectively, are also linearly independent for all 
values of A, that is, these four sets are elementary sets. 
rem 5 $4.03, that we can find elementary polyn~mials 

Pvi = ei = Q'ui (i = 1, 2, - - ., 
and hence 

1t follom from Theo- 
P and Q such that 

which is the normal form of $3.02. 

5.09 Vector products. Let X i  = Z[ije, (i = 1, 2, . . ., r )  be a set of arbi- 
trary vectors and consider the set of all products of the form bi,Fsi, . . . tri, 
arranged in some deh i t e  order. These products may then be regarded as the 
coordinates of a hypernumber2 of order nr which we shall call the tensor product3 

The term 'hypernumber' is used in place of vector, as defined in 81.01 since we now 
wish t o  use the term 'vector' in a more restricted sense. 

a This product was called by Grassmann the general or indeterminate product. 
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of xl, XZ, . ., x, and we shall denote it by xlxz . . x,. In particular if we 
take all the products e;,ei, . . ei, (il, iz, . . . , zr  = 1, 2, . . , n) each has all 
its coordinates zero except one, which has the value I ,  and no two are equal. 
Further 

x1x2 . - . xr = 2[lilt2i, . . t ,,,e, . .I e .  r 2  . ei,. 

If we regard the products ei,e;, . ei, as the basis of the set of hypernumbers, 
we are nahuraily led to consider sums of the type . 

where the w's are scalars; and we shall call such a hypernumber a tensor of 
grade r.  It is readily seen that the product xlx2 x, is distributive and 
homogeneous with regard to each of its factors, that is, 

The product of two tensors of grade r and s is then defined by assuming the 
distributive law and setting 

I t  is easily shown that the product so defined is associative; it is however not 
commutative as is seen from the example 

Here the coefficients of ei,ei, - e;,ei, (i, < is) are the coordinates of 1 xlxz I 
so that this tensor might have been defined in terms of the tensor product by 
setting 

1 21x2 1 = 21x2 - XzX1. 

In the same way, if we form the expression4 

and expand it in terms of the coordinates of the x's and the fundamental units: 
it is readily shown that the result is 

' The determinant of a square ar ray of vectors z,, (i, j = 1, 2, . . ., T )  may be defined ae 

I n  this definition the  row marks are kept in normal ordcr 2nd the  column marks permuted; 
a different expression is obtained if the  rbles of the row and column marks are inter- 
changed but,  a s  these determinants seem to  have l i t t le intrinsic interest, i t  is not worth 
while to develop a notation for the  numerous variants of the definition given above. 
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Here the scalar multipliers are the same as the coordinates of 1 xlxz . x, I 
and hence the definition of 51.11 may now be replaced by 

1 21x2 a - - xp'l = Zsgn(il, i 2 ,  . . , i . ) Xz,Xi2 . . xir, 

which justifies the notation used. We then have 

I t  is easily seen that the tensors 1 ai,ei, . . ei, I are linearly independent and 
(37) therefore shows that they form a basis for the set of vectors of grade r. 
Any expression of the form 

is called a vector of grade r and a vector of the form (37) is called a pure vector 
of grade T. 

5.10 The direct product. If A i = I I a',',' I I (i = 1, 2, . . . , r) is a sequence 
of matrices of order n, then 

where 8 is a linear homogeneous tensor function of ~ 1 x 2  . . .. x,, that is, a matrix 
in space of nr dimensions. This matrix is called the direct product6 of 
A1, A2, . . ., A7 and is denoted by A, X A2 X e X A,. Obviously 

and the form of (38) shows that 

From (39) we have, on putting r = 1 for convenience,' 

Making Ai = 1 (i = 2, 3, . . ., r )  in (38) we have 

and hence the determinant of t,he corresponding matrix equals I A ,  I"'-'. 
Treating the other factors in the same way we then see that 

Again if as in $5.04 d e  take XI as an invariant vector of Al ,  x2 as an invariant 
vector of A2, and so on, and denote the roots of Ai by Xij ,  we see that the'roots 

This definition may be generalized by taking XI, zp, . .  . as vectors in different spaces 
of possibly different orders. See also $7.03. 
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of A1 X A2 X . X A, are the various products XI~,X~~, Arj,. When the roots 
of each matrix,are distinct, this gives equation (41) and, since this is an integral 
relation among the coefficients of the A's, it follows that it is true in general. 

An important particular case arises when each of the matrices in (38) equals 
the same matrix A; the resu l ta~t  matrix is denoted by &(A), that is 

(42) R,(A) = A X A X . (r  factors). 

I t  is sometimes called the product transformation. Relations (39), (40)) and 
(41) tben become 

5.11 Induced or power matrices. If z,, x2, . -  ., x, are arbitrary vectors, 
the symmetric expression obtained by forming their products in every possible 

+ + 
order and adding is called a permanent. I t  is usually denoted by I xlzz a a . z, 1 
but it will be more convenient here to denote it by {zlzz . z,J ; and similarly, 
if aij is a square array of scalars, we shall denote by {allan - a,,) the func- 
tion L1a1ila2i, - - - arir in which the summation stretches over every permuta- 
tion of 1, 2, a . , r. 

If some of the x's are equal, the terms of (x1x2 a . xrj  become equal in sets 
each of dhich has the same number of terms. If the x's fall into s groups of 
i,~, iz, . a ,  i, members, respectively, the members in each group being equal 
to  one another, then 

has integral coefficients. For the present we shall denote this expression by 
(XLXZ . . - z,JP, but sometimes it will be more convenient to use 
explicit notation 

in which il of the x's equal X I ,  ,i2 equal xi, etc.; this notation is, in 
already used in $2.08, for instance, 

The same convention applies immediately to ( ( Y ~ ~ L Y ~ ~  . . . air). 
In the notation just explained we have 

the more 

fact, that 

where the summation 2" extends over all combinations iliz . . i, of the first 
n integers repetition being allowed. This shows that the set of all permanents 
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of grade r has the basis (ei,ei, ei,] of order (n  + r - l ) ! / r ! (n  - I ) ! .  
From (44) we readily derive 

which is a linear tensor form in ( x , x2  . x,}. We may therefore set 

where P,(A) is a matrix of order ( n  + r - l ) ! / r ! (n  - I ) !  whose coordinates 
are the polynomials in the coordinates of A which are given in (45); this matrix 
is called the rth induced or power matrix of A. As with C,(A)  and n,(A)  it 
follows that 

also the roots of P,(A) are the various products of the form x ~ ~ ~ x ~ ~ ~  . - hlar 
for which Zari = r .  

5.12 Associated matrices. The matrices considered in the preceding sec- 
tions have certain common properties; the coordinates of each are fuictions of 
the variable matrix A and, if 'T(A) stands for any one of them, then 

Following Schur, who first treated the general problem of determining all such 
matrices, we shall call any matrix with these properties an associated matrix. 
If S is any constant matrix in the same space as T ( A ) ,  then T I ( A )  = ST(A)S-1 
is clearly also an associated matrix; associated matrices related in this manner 
are said to be equivalent. 

Let the orders of A and T ( A )  be n and m respectively and denote the corre- 
sponding identity matrices by 1, and 1,; then from (48) 

If s is the rank of T(l,) ,  we can find a matrix S which transforms T(1,) into a 
diagonal matrix with s 1's in the main diagonal and zeros elsewhere; and we 
may without real loss of generality assume that T(1,) has this form to start 
with, and write 

The second equation of (49) then shows that T ( A )  has the form 
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and we shall therefore assume that s = m so that T(1,) = 1,. It follows 
from this that I T ( A )  I + 0  so that T ( A )  is not singular for every A ;  we shall 
then say that T  is non-singular. 

A non-singular associated matrix T ( A )  is reducible (cf. $3.10) if it can be 
expressed in the form T ( A )  = T I ( A )  + T 2 ( A )  where, if El = T1( ln ) ,  E2 = 

Tz(l ,) ,  so that El + El = l,, then 

so that 

and there is therefore an equivalent associated matrix t (A)  which has the form 

When T ( A )  is reducible in this manner we have 

so that T l ( A )  and Ta(A)  are separately associated matrices. We may there- 
fore assume T ( A )  irreducible without loss of generality since reducible associated 
matrices may be built up out of irreducible ones by reversing the process 
used above. 

5.13 We shall now show that, if X is a scalar variable, then T(X) is a power 
of X .  To begin with we shall assume that the coordinates of T(X) are rational 
functions in X and that T ( l )  is finite; we can then set T(X) = Tl(X)/j(X) where 
j(X) is a scalar polynomial whose leading coefficient is 1  and the coordinates 
of T I @ )  are polynomials whose highest common fact,or has no factor in common 
with j(X). If p is a second scalar variable, (48) then gives 

hence f ( X p )  is a factor of j(X)f(p), from which it follows readily that j(Xp) 
= j(X)j(p); so that f ( X )  is a power of X and also 

We also have j(1) = 1  and hence T1(l ,)  = T(1,) = 1,. 

Let Tl(X) = Fo + XF1 $ + X8F,(F, # 0 ) ;  then from (50) 
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which gives 

Now 

therefore 

and hence on comparing powers of X we have 

FiT(A) = T(A)F( 

and, since Z F i  = T1( l )  = 1, and we have assumed that T(A)  is irreducible, 
it follows that every F i  = 0 except, F,, which therefore equals 1,. Hence 
TI(X) = X a  and, since f ( X )  is a power of X ,  we may set 

Since T(XA) = T(X)T(A) = XrT(A), we have the following theorem. 

THEOREM 9. I f  T ( A )  i s  irreducible! and i f  T(X) i s  a rational function of the 
scalar variable A, then T(X) = X *  and the coordinates o j  T ( A )  are homogeneous 
functions of order r in the coordinates of A. 

The restriction that T(X) is rational in X is not wholly necessary. For 
instance, if q is any whole number and e a corresponding primitive root of 1, 
then Tg(e) - 1, and from this it follows wit,hout much dificulty that T(E)  = e n  

where s is an integer which may be taken to be the same for any .finite number 
of values of q. It follows then that, if T(X) = / I  t i i (A)  11, the functions t i j @ )  
satisfy the equation 

2 i i ( c X )  = e a t t i i ( X )  

and under very wide assumptions as to the nature of the functions tii it follows 
a 

from this that T(?) has the form A'. Again, if we assume that ?'(A) = h a x  Trhr, 
-a 

then T(X)T(p) = T(Xp) gives immediately 

so that only one value of r is admissible and for this value T, = 1 as before. 

5.14 If the coordinates of T ( A )  are rational functions of the coordinates aii 
of A, so that r is an integer, we can set T ( A )  = T1(A) / f (A)  where the coordi- 
nates of T, (A)  are integral in the aii and f(A) is a scalar polynomial in these 
variables which has no factor common to all the coordinates of T , ( A ) .  As 
in (50) we then have 
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I t  follows from the theory of scalar invariants that f(A) can be taken as a 
positive integral power of I A 1 ;  we shall therefore from this point on assume 
that the coordinates of T(A) are homogeneous polynomials in the coordinates 
of A unless the contrary is stated explicitly. We shall call r the index of T(A). 

THEOREM 10. If  T(A) i s  a n  associated matr ix  o i  o~c le i  m and index r ,  and if 
the roots of A are al, ag, . - ., a,,, then the roots of T(A) have the form a;'a," . - 
.a:" where Z r ;  = r .  T h e  actual choice of the exponents r depends on  the particular 
associated h a t r i x  in question but,  i f  a;l a,'? . . . oAn i s  one root, 011 the distinct 
quantities obtained from i t  by  permuting the a's are also roots. 

If the roots of A are arbitrary variables,' then A is similar to a diagonal 
matrix A, = Zaie,;. We can express T(A,) as a polynomial6 in the a's, say 

where the F's are constant matrices. If now B = SPieii is a second variable 
diagonal matrix, the relation T(AIB) = T(AI)T(B) gives as in (50) 

and hence T(A1) can be expressed as a diagonal matrix with roots of the required 
form; these roots may of course be multiple since the rank of F,, ... ,, is not 
necessarily 1, the elementary divisors are, however, simple. 

Since t.he associated matrices of similar matrices are similar, it follows that 
the roots of the characteristic equation of T(A) are given by those terms in 
(52) for which F,,,, ... ,, Z 0; and, since this equation has coefficients which 
are polynomials in the coordinates of A, the roots of T(A) remain in this f w m  
even when the roots of A are not necessarily all different 

The rest of the theorem follow from the fact that the trace of T(A1) equals 
that of T(A) which is rational in the coordinates of R and Is therefore sym- 
metric in the a's. 

THEOREM 11. The value of the determinant of T(A) i s  / A Irmln and r m / n  is 
a n  integer. 

For T(A)T(adjA) = T(j A I) = 1 A 1 '  and therefore I T(A) I is a power of 
I A 1, say I A l a .  But T(A) is a matrix of order m whose coordinates are poly- 
nomials in the coordinates of A.  Hence s n  = m r  and rm/n is an integer. 

5.15 Transformable systems. From a scalar point of view each of the 
associated matrices discussed in ii5.03-5.11 can be characteiieed by a set of 
scalar functions fk (k = 1, 2, . * ,  m) of one or more sets of variables ( F , , ,  

If we merely assume tha t  T(rl1) is a convergent series of the form (52)' equation (53) 
still holds. I t  follows that  there are only a finite number of terms in (52) since (53) shows 
that there is no linear relation among those F,, ... ,, which are not zero. Let F ,  be the 
sum of those F,, ... ,, for which zr j  has a fixed value p , ;  then T(k) = ZX'LF,, and as before 
only one value of p l  is admissible when T ( A )  is irreducible. 
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j = 1, 2, . . ., n), i = 1, 2, - . ., T ,  which have the following property: if the 
E's are subjected to a linear transformation 

and if fi is the result of replacing E i j  by itj in fk ,  then 

where the a's are functions of the aii and are independent of the ['s. For 
instance, corres~onding to C2(A) we have 

for which 

We may, and will, always assume that there are no constant multipliers such 
that ZXfi = 0. Such systems of. functions were first considered by Sylvester; 
they are now generally called transjormable systems. 

If we put T(A) = 1 1  aij I ) ,  we have immediately T(AB) = T(A)T(B), and 
consequently there is an associated matrix corresponding to every transformable 
system. Conversely, there is a transformable system corresponding to an 
associated matrix. For if X = 1 1  tij ( 1  is a variable matrix and c an arbitrary 
constant vector in the space of T(A), then the coordinates of T(X)c form a 
transformable system since T(A)T(X)c = T(AX)c and c can be so determined 
that there is no constant vector b such that SbT(X)c = 0. 

The basis j k  (k = 1, 2, . . ., m) may of'course be replaced by any basis 
which is equivalent in the sense of linear dependence, the result of such a change 
being to replace T(A) by an equivalent associated matrix. If in particular 
there exists a basis 

such that the g's and the h's form separate transformable systems, then T(A) 
is reducible; and conversely, if T(A) is reducible, there always exists a basis 
of this kind. 

5.16 Transformable linear sets. If we adopt the tensor point of view 
rather than the scalar one, an associated matrix is found to be connected with 
a linear set 8 of constant tensor's, derived from the fundamental units e;, such 
that, when ei is replaced by Aei (i = 1, 2, . . ., n) in the members of the basis 
of 8, then the nvw tensors are linearly dependent on the old; in other words 
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the set 8 is invariant as a whole under any linear transformation A of the funda- 
mental units. For instance, in the case of C2(A) cited above, 3 is the linear 
set defined by 

We shall call a set which has this property a transjormable linear set. 
Let ul, uz, . . a ,  u, be a transformable linear set of tensors of grade r and let 

u: be the tensor that results when ei is replaced by Aei ( j  = 1, 2, . ., n) in ui. 
Since the set is transformable, we have 

where the oij are homogeneous polynomials in the coordinates of A of degree r. 
If we employ a second transformation B, we then have 

and therefore T(A) is an associated matrix 
We have now to show that there is a transformable linear set corresponding 

to every associated matrix. In doing this it is convenient to extend 'the notation 
Suv to the case where u and v are tensors of grade r. Let Ei (i = 1, 2, - . a ,  nr) 
be the unit tensors of grade r and 

any tensors of grade r ;  we then define Suv by 

where the numerical divisor is int'roduced solely in order not to disagree with 
the definition of i5.02. 

Let xi = ZEijei (i = 1, 2, - . ., r )  be a set of variable vectors and Xi (i = 1, 
2, . . ., s) the set of tensors of the form xf'x~' . xf' (Zji = r);  we can then 
put any product & ,$!,,? for which ZBij = r in the form kSEiXj, k 
being a numerical factor. This can be done in more than one way as a rule; in 
fact, if pii = Bi, then 

and from the definition of Suv it is clear that the factors in eel1 . . e!'" can 
be permuted in any way without altering the value of the scalar. I t  follows that 
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and repeating this process we get 

where kl is a numerical factor whose value is immaterial for our present purposes. 
I f f  is any homogeneous polynomial in the variables tii of degree p, it can be 

expressed uniquely in the form 

where the inner summat~ion extends over the partitions of Pi into Pi,, Piz, . . . , Bin 
(i = 1, 2, . . ., r )  and the outer over all values of PI, p2, . . a ,  pr for which 
zPi = P We may therefore write 

where, as above, X j  = x:''x!? . . xtr 'and 

The expression of f in this form is unique. In  the first place, Fi # 0 unless 
each qb, ,  . . . brn is zero, since the set of tensors of the form 

are clearly linearly independent. Further, if Z S F j X j  = 0, then each S F i X j  
is zero since each gives rise to  terms of different type in the ti,; and finally the 
form of F j  shows t,hat S F i X i  = 0 only if Fi = 0 since in 

each term of the summation is of different type in t,he tii. 
Let (fk) be a transforrhable system; we can now write uniquely 

i 
and we may set 

n" 

where f i  = 0 when i > m. If we transform the x's by A = 1 1  aij 1 1  and denote 
IIr(A) temporarily by n, then X i  becomes lTX j  and F is transformed into F* 
where 
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But the f's form a transformable system and hence by this transformation ji 
becomes 

k 

so that 

Comparing (55) and (56) we have 

and therefore, as was proved above, each of the terms of the summation is zero, 
that is, 

and therefore, if j is kept fixed, the linear set 

is transformable provided F l j ,  Fzi, . . .  are linearly independent. 
If there is no j for which the set (59) is linearly independent we proceed as 

fsliows. Let jid = SFiiXi so that 

If the removal of any column of this array leaves the new j'i so defined linearly 
independent, they form a transformable system which defines the same asso- 
ciated matrix as the original system; we shall therefore suppose that the removal 
of any column leads to linear relations among the rows, the coefficients of these 
relations being constants. Remove now the first column; then by non-singular 
constant combinations of the rows we can make certain of them, say the first 
ml, equal 0, the remainder being linearly independent. On applying the same 
transformation to  the rows of (60), which leaves it still a transformable system, 
we see that we may replace (60) by an array of the form 
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where jml + i - jml + i, (i = 1, 2, . ., m - ml) are linearly independent. It 
follows that jl, . . .,Ifm, are transformed among themselves and so form a 
transformable system. For these functions are transformed in the same way 
as jll, jil . . ., jm,l, and if the last m - ml rows of (61) were involved in the 
transformation, this would mean that fill, . . ., j,,l, when transformed, would 
depend on fml + 1 ,  i etc., which is impossible owing to the linear independence 
of j m ,  + i - fml + i ,  1 (i = 1, 2, ..., m - ml). 

Corresponding to the first column of (61) we have tensors Fll, Fzl, . a ,  Fml 
and we may suppose this basis so chosen that Fi, (i = 1, 2, . . ., p) are linearly 
independent and Fil = 0 for j > p; and this can be done without disturbing 
the general form of (61). If p = m, we have a transformable system of the 
type we wish to obtain and we shall therefore assume that p < m. We may 
also suppose the basis so chosen that s F ~ ~ F ~ ~  = 6ii (i, j = 1, 2, . . a ,  p) as in 
Lemma 2, $1.09. It follows from what we have proved above that Fll, Fzl, 
. ., FmI1 is a transformable set. 
Let A be a real matrix, the corresponding transformation of the F's, being, 

as in (58), 

(62) F:, = aijFjl = II'F,,, (i = 1, 2, . . . .  p ) ;  
i 

we then have 

(63) F:, = Qj1 = n1(a)Fi1 
i 

so that the F;l also forms a transformable set. Since Fll, . ., Fmll form a 
transformable set, aii and Eij  are 0 when i > ml and j I ml no matter what 
matrix A is. Now 

which equals 8 for i _< ml, j > ml since by (63) r r1 (~ ' )P j l  is derived from 
by the transformation A' on the x's and for j 5 ml is therefore linearly depend- 
ent on Fjl (j = 1, 2, . . ., ml). Hence the last m - ml rows in (61) also form 
a transformable system, which is only possible if the system j i ,  j 2 ,  . . ., f, is 
reducible. If T(A) is irreducible, the corresponding transformable system is 
irreducible and it follows now that there also corresponds to it an irreducible 
transformable set of tensors. 

5.17 We have now shown that to every associated matrix T(A) of index r and 
order m there corresponds a transforniable linear set of constant tensors 
R,  F2, . . ., F, of grade T whose law of transformation is given by (62). Also 
since II1(A) = rI(A1), we have 

where T(A1) = 1 1  a: j  1 1 .  
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Since K ,  F2, - . . , F, are linearly independent, we can find a supplement to 
this set in the set of all tensors of grade r, say 

such that 

I t  is convenient also to choose bases for both sets such that 

Since the two sets together form a basis for the space of n, we can set 

and this gives 

Bii = SP~I-I'G~ = sGinF, 

which is 0 from (64) and (65), hence the G's are transformed among themselves 
by II'. This means, however, that II' is reducible, and when it is expressed 
in terms of the basis (F,, . . ., F,, G1, . . ., G,), the part corresponding to 
(Fl, . . , F,) has t,he form 1 1  crii 1 1  and is therefore similar to T(A). Hence: 

THEOREM 12. Every irreducib'le associated matriz T(A) of indez r is equiva- 
lent to an irreducible part of H,(A), and conversely. 

5.18 Irreducible transformable sets. If F is a member of a transformable 
linear set 5 = (PI, F2, . ., F,), the total set of tensors derived from F by all 
linear transformations of the fundamental units clearly form a transformable 
linear set which is contained in 5, say S1; and we may suppose the basis of 5 
SO chosen that 81 = (Fl, F2, . ., Fk) and SFiFi = 6ii (i, j = 1, 2, . . a ,  m). 
Let G be an element of (Fk + . - ., F,) and G' a transform of G so that 

Then SPiG' = Ti. But SF,G1 = sF',G, where F: is the transform of Fi obtained 
by the transverse of the transformation which produced G' from G s e t h a t  P: 
i s i n & f o r i  2 k. Hence yi = Ofor i  = 1,2 ;  . . a ,  k, tha t i s ,  (Fk+], : . a ,  F,) 
is also a transformable set; and so, when the original set is irreducible, we must 
have fjl = 8. If we say that F generates 8, this result may be stated as follows. 

LEMMA 5. An irreducible transformable linear set is generated by any one of 
its members. 

We may choose F so that it is homogeneous in each ei; for if we replace, say, 
el by Asl, then F has the form 2AkHk and by the same argument as in $5.13, 
any Hk which is not 0 is homogeneous in el and belongs to 5. A repetition of 
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this argument shows that we may choose F to be homogeneous in each of the 
fundamental units which occur in it. If r is the grade of F, we may assume 
that F depends 'on el, ez, . a ,  e,, and, if kl, kz, . . . , k. are the corresponding 
degrees of homogeneity, then Zki = r and, when convenient, we may arrange 
the notation so that kl >_ kz >_ . . > k,. 

If we now replace el in F by el + Xe; (i > s), the coe5cient H of X is not 0, 
since i > s, and H becomes klF when el is replaced by el; it therefore forms a 
generator of 8 in which the degree of el is one less than before. I t  follows that, 
when r _< n, we may choose a generator which is linear and homogeneous in r 
units el, ez, . . ., e,. I t  is also readily shown that such a tensor defines an 
irreducible transformable linear set if, and only if, it forms an irreducible set 
when the transformations of the units are restricted to permuting the &st 
r e's among themselves. Further, since the choice of fundamental units is 
arbitrary, we may replace them by variable vectors xl, xz, . ., x,. For 
instance, the transformable sets associated with II,, P,  and C ,  are xlsz x,, 
(z1z2 - . x,) and I xlxz . . . x, 1 ,  respectively, and of these the first is reducible 
and the other two irreducible. 

5.19 I t  is not difficult to calculate directly the irreducible transformable sets 
for small values of r by the aid of the results of the preceding paragraph. If 
we denote XI,  x2, . . . by 1, 2, . . ., the folIowing are generators for r = 2, 3. 

generator r = 2 order 

2.1 (12) n(n + 1)/2 
2.2 1 12 1 n(n - 1)/2 

T = 3 
3.1 I1231 n(n + l ) (n  + 2)/6 
3.2 1112311 n(nz - 1)/3 
3.3 1 l (23 )  / n(n" +j$3 - 
3.4 1 123 1 n(n - l ) (n - 2)/6. 

This method of determining the generators directly is tedious and the follow- 
ing method is preferable.' Any generator has the form 

1, 2, 
and if pi, . , denotes the substitution (. . . . I), we may write 

21 22 

where q1 may be regarded (see chap. 10) as an element of the algebra S whose 
units are the operators q of the symmetric group on r letters. Now wl gener- 
ates a transformable set and hence, if wi = qi(xl . . . x,) (i = 1, 2, . . a )  is a 

Fuller details of the  actual determination of the  generators will be found in Weyl: 
' Gruppentheorie und &uanlenlheorie, 2 ed. chap. 5. 
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basis of the set, and Q is the set of elements ql, q2, . . . in S, then the set of 
elements Qq = (qlq, qzq, . - .) must be the =me as the set Q, that is, in the 
terminology of chapter 10, Q is a semi-invariant subalgebra of S ;  conversely 
any such semi-invariant subalgebra gives rise to a transformable set and this 
set is irreducible if the semi-invariant subalgebra is minimal, that is, is con- 
tained in no other such subalgebra. 

I t  follows now from the form derived for a group algebra such as S that we 
get all independent generators as follows. In the first place the operators of S 
can be divided into setsB S k  (k = 1, 2, . - -, t) such that (i) the product of an 
element of Sk into an element of Si (k # j )  is zero; (ii) in the field of complex 
numbers a basis for each S h  can be chosen which gives the algebra of matrices 
of order n: ; and in an arbitrary field S is the direct product of a matric algebra 
and a division algebra; (iii) there exists a set of elements U ~ I ,  U ~ Z ,  . . -, ut., 

in S k  such that uk; is the identity of S k  and u:, = uk; # 0, ukiuri = 0 (i # j )  
i 

and such that the set of elements uk;Skuki is a division algebra, which in the 
case of the complex field contains only one independent element; (iv) the 
elements of S k  can be divided into vk sets uk;Sk (i = 1, 2, - a - )  each of which 
is a minimal semi-invariant subalgebra of S and therefore corresponds to an 
irreducible transformable set. 

It is shown in the theory of groups that t equals the number of partitione of r.  



CHAPTER VI 

SYMMETRIC, SKEW, AND HERMITIAN MATRICES , 

6.01 Hermitian matrices. If we denote by 2 the matrix which is derived 
from x by replacing each coordinate by its conjugate imaginary, then x is 
called a hermitian matrix if 

We may always set x = XI + ix2 where xi and x2 are real and (1) shows that, 
when x is hermitian, 

so that the theory of real symmetric and reaI skew matrices is contained in that 
of the hermitian matrix. The following are a few properties which follow 
ipmediately from the definition; their proof is left to the reader. 

If x and y are hermitian and a is arbitrary, then 

x 4- y, 2, XI, ax&, xy 4- yx, i(xy - yx), 

are all hermitian. 
Any matrix x can be expressed uniquely in the form a + i b  where 2a = 

x + 5', 2b  = -i(x - 2') are hermitian. 
The product of two commutative hermitian matrices is hermitian. In  

particular, any integral power of a hermitian matrix x ii hermitian; and, if 
g(X) is a scalar polynomial with real coefficients, g(x) is hermitian. 

THEOREM 1. If a, b, c, . . . are hermitian matrices such that a2 + b2 4- c2 + 
. . = 0, then a, b, c, . . . are all 0. 

If Za2 = 0, its trace is 0; but Za2 = Za&' and the trace of the latter is the 
sum of the squares of the absolute values of the coordinates of a, b, . . ; hence 
each of these coordinates is 0. 

THEOREM 2. The roots of a herntitian matrix are real and its elementary 
divisors are simple. 

Let x be a hermitian matrix and g(X) its reduced characteristic function. 
Since g(x) = 0, we have 0 = ~ ( 2 )  = ~ ( x ' )  and, since x and x' have the same 
reduced characteristic function, it follows that g(X) = Q(X), that is, th_e coeffi- 
cients of g are real. Suppose that EL = a + iP (@ # 0) is a root of g@?; then 
& = a - ip # El is also a root, and we may set 



[ 6.01 j HERMITIAN MATRICES 89 

where gl, 9.2 are real polynomials of lower degree than g, neither of which is 
identically 0 since g is real and 51 complex. Now 

[91(x)I2 f [92(2)12 = [91(~) i92(~)1[91(~) - igz(x)l 

and this product is 0 since from (3) X - f l  is a factor of g,(X) - ig2(X) and 
(A - &)(gl(X) + igz(X)) = g(X). But, since the coefficients of g1 and gz are 
real, the matrices gl(x), g2(x) are hermitian and, seeing that the sum of their 
squares is 0, they both vanish by Theorem 1. This is however impossible 
since gl(X) is of lower degree than the reduced characteristic function of x. 
Hence x cannot have a complex root. 

To prove that the elementary divisors are himple it is only necessary to show 
that g(X) has no multiple root. Let 

g(V = (A - €)'h(X), WE) + 0. 

If r > 1, set gl(A) = (1 - [)' -'h(X); then [gl(X)I2 has g(X) as a factor so that 
the square of the hermitian matrix gl(x) is 0. Hence by  Theorem 1, gl(x) is 
itself 0, which is impossible since the degree af g, is less than that of g. It 
follows that r cannot be greater than 1, which completes the proof of the 
theorem. 

Since the elementary divisors are simple, the canonical form of x is a diagonal 
matrix. Suppose that n - r roots are 0 and that the remaining roots are 
11, €2, . . ., 5'; these are of course not necessarily all different. The canonical 
form is then 

0. 

The following theorem is contained in the above results. 

THEOREM 3. A hermitian matrix of rank r has exactly n - r zero roots. 

It also follows immediately that the characteristic equation of x has the form 

xn - alxn - 1 + . . . -k ( - l ) ra ,xn- r  = 0 (a, # 0) 

where a i  is the elementary symmetric function of the E's of degree i. Since a, 
is the sum of the principal minors of x of order r, we have 

THEOREM 4. I n  a hermitian matrix of rank r at least one principal minor of 
order r is not 0. 
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In view of the opening paragraph of this section Theorems 1 4  apply also 
to real symmetric matrices; they apply also to real skew matrices except that 
Theorem 2 must be modified to state that the roots are pure imaginaries. 

6.02 The invariant vectors of a hemitian matrix. Let H be a hermitian 
matrix, al, a 2  two different roots, and a], az the corresponding invariant vectors 
so chosen that Sapd = 1; then, since Hal = aria,, Rdl = albl, we have 

and, since a1 # az, we must have Sadl = 0. Again, if a is a repeated root of 
order s and al, az, . . ., a, a corresponding set of invariant vectors we may 
choose these vectors (cf. $1.09) so that Saicii = 6ii. The invariant vectors 
may therefote be so chosen that they form a unitary set and 

If U is the matrix defined by 

(5) Ue,- = ai (i = 1, 2, ., n), 

then 

so that U is unitary, and if A is the diagonal matrix 2 aieiSeil then 
1 

We may therefore my: 

THEOREM 5. A hermitian matrix can be transformed lo its canonical form by 
a unitary matrix. 

If H is a real symmetric matrix, the roots and invariant vectors are real, 
and hence U is a real orthogonal matrix. Hence 

THEOREM 6. A real symmetric matrix can be transformed to its canonical 
form by a real mlhogonal matrix. 

If T is a real skew matrix, h = iT is hermitian. The non-zero roots of T 
are therefore pure imaginaries and occur in pairs of opposite sign. The invari- 
ant vectors corresponding to the zero roots are real and hence by the proof 
just given they may-be taken orthogonal to each other and to each of the 
other invariant vectors. Hence, if the rank of T is r, we can find a real orthogo- 
nal matrix which transforms it into a form in which the last n - r rows and 
columns are zero. 

Let ia be a root of T which is not 0 and a = b + ic a corresponding invariant 
vector; then Ta = iaa so that 

Tb = -ac, TC = arb. 
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Hence 

-aSc2 = ScTb  = -SbTc = -aSb2,  -aSbc = SbTb  = 0,  

which gives 

We can then choose a so that Sb2 = Sc2 = 1 and can therefore find a real 
orthogonal matrix which transforms T into 

We have therefore the following theorem. 

THEOREM 7. I f  T i s  a real skew matrix, its non-zero roots are pure imaginaries 
and occur i n  pairs of opposite sign; its rank i s  even; and i t  can be transformed 
into the form (8) by a real orthogonal matrix. 

6.03 Unitary and orthogonal matrices. The following properties of a unitary 
matrix follow immediately f,rom its definition by equation (6). 

The product of two unitary matrices is unitary. 
The transform of a hermitian matrix by a unitary matrix is hermitian. 
The transform of a unitary matrix by a unitary matrix is unitary. 
If H I  and Hp are hermitian, a short calculation shows that 

are unitary (the inverses used exist since a hermitian matrix has only real 
roots). Solving (9) for H I  and H I  on the assumption that the requisite inverses 
exist we get 

These are hermitian when U 1  and U 2  are unitary, and therefore any unitary 
matrix which has no root equal to -1 can be put in the first form while the 
second can be used when U has no root equal to 1. 

THEOREM 8. The absolute value of each root of a unitary matrix equals 1 

Let a + i p  be a root and a + ib  a corresponding invariant vector; then 

V ( a + i b )  = ( a  + i b ) ( a  + i b ) , i ( a  - ib)  = ( a  - @)(a  - ib ) .  
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Hence 

S a 2  + Sb2 = S ( a  + i b ) (a  - ib)  = S ( a  + ib)  U 1 u ( a  - ib)  = S U ( a  + i b ) U ( a  - ib)  

so that ct2 + P2 = 1. 
Corollary. 

U-I(a + ib)  = ( a  - @)(a  + i b ) ,  
(10)  

U ' ( a  - ib)  = U- l (a  - ib)  = (a  + @)(a  - ib) .  

THEOREM 9. The elementary divisors of a unitary matr ix  are simple. 

For, if we have 
U(a1 + ibl)  = ( a  + i@) (a1 + ibl) ,  U (a2 + ibd .  = (a + $3) (a2 + ib2) + (a1 + i b J ,  
then from (10 )  

which is impossible since S(a1 - &)(al + ibl) = Sa:  + Sb: # 0. 
The results of this section apply immediately to real1 orthogonal matrices; 

i t  is however convenient to repeat (9). 

THEOREM 10. I f  U i s  a real orthogonal matrix, it  can be expressed in the form 
( 1  + T ) / ( 1  - T )  i f  i t  has no root equal to 1 and in the form ( T  - 1 ) / ( T  + 1) 
if it  has no root equal to - 1,  the matrix T being a .  real skew matrix in both cases; 
and any  real matrix of this form which i s  not infinite, i s  a real orthogonal matrix. 

6.04 Hermitian and quasi-hermitian forms. Let H be a hermitian matrix and 
x = u + iv a vector of which u and iv are the real and imaginary parts; 
then the bilinear form f = SZHx  is called a hermitian form. Such a form is 
real since 

j = S x n 5  = S x H 1 3  = S Z H x  = f .  

In  particular, if x and H are real, f: is a real quadratic form and, if H = iT is a 
pure imaginary, T is skew and f = 0.  

If we express H in terms of its invariant vectors, say H = Za&?& and 
then put x = ZEiai, the form j becomes f = Zah,$;.  This shows that, if all 
the roots of H are positive, the value of j is positive for all values of x ;  H and j 
are then said to be positive definite. Similarly if all the roots ,are negative, 
H and j are negative dejinite. If some roots are 0 so that f vanishes for some 
value of x # 0, we say that H and f are semi-definite, positive or negative as 
the case may be. I t  follows immediately that, when H is semi-definite, S Z H x  
can only vanish if H x  = 0. 

The first part of the theorem applies also t o  complex orthogonal matrices. 
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THEOREM 11. If H and K are hermitian and H is definite, the elementary 
divisors of HX - K are real and simple. 

Since HA - K and -(HA - K)  are equivalent, we may suppose that H is 
positive definite. Its roots are then positive so that 

has real roots and hence is also hermit'ian so that H-bKH-4 is hermitian. But 

so that HA - K is equivalent to X - H-tKH-t which has real and simple ele- 
mentary divisors by Theorem 2. 

In  order to include the theory of complex symmetric matrices we shall now 
define a type of matrix somewhat more general than the hermitian matrix and 
closely connected with it. If A = A(X) is a matrix whose coefficients are 
analytic functions of a scalar variable X,  we shall call it quasi-hermitian if 

For convenience we shall set An(X) for A(-A) with a similar convention for 
vector functions. 

If A = B + XC, B and C being functions of X2, then A'' = B - XC so that, 
if A is quasi-hermitian, B is symmetric and C skew just as in the case of a 
hermitian matrix except that now B and C are not necessarily real. If A is 
any matrix, 

so that any matrix can be expressed in the form P + XQ where P and Q are 
quasi-hermitian, 

If z = u + Xv, where u and v are vectors which are functions of X 2  and if A 
is quasi-hermitian, then 

(12) f(X) = SxNAx = f(-1) 

is called a quasi-hermitian form. Again, if / 1 + XA 1 + 0, and we set 
Q = (1 - XA)/(l + XA), then 

Q' = (1 - XA') - 1 - XA" - = ( Q N ) 4  
1 + XA' 1 + XAr' 

so that 

(13) Q'Q" = 1> 

We shall call such a matrix quasi-orthogonal. 

6.05 Reduction of a quasi-hermitian form to the sum of squares. We have 
seen in 55.06 that any matrix A of rank r can be expressed in the form 
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where 

and the null space of A, + , is obtained by adding (yl, y2, . . a ,  ys) to the null 
space of A and the null space of A: + by adding (xl, x2, . . ., x,) to that of A'. 

Suppose now that A is quasi-hermitian and replace y,, x, by z,, z: and set 
z, = u, + Xu,, A, = B, + XC, so that 

and, so long as A, is not 0, we can clearly choose z, so that Sz:A,z. f 0. Each 
matrix A, is then quasi-hermitian since A: = A: ,  and 

If x is an arbitrary vector and 

then #, and x ,  are linear functions of the coordinates of x which are linearly 
independent and 

which is the required expression for f(X2) in terms of squares. 
If A is hermitian, then X = i and $,, x,, SZ:A,Z, = SZ,A,z. are real and, 

if SZ,A,z, = a;', (16) becomes 

If X = 0, then A is symmetric and 

where the terms are all real if A is real. 
In terms of the matrices themselves these results may be expressed as follows. 

THEOREM 12. If A is a hermitian matrix of rank r, there exist an  infinity of 
sets o j  vectors a, and real constants a, such that 
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and, i f  A i s  symmetric, there exists an infinity of sets of vectors a,  and constante 
a, such that 

a, and a, being real i f  A i s  real. 

If a of the a's in (19) are positive and v are negative, the difference a = a - v' 
is called the signature of A .  A given hermitian matrix may be brought to the 
form (19) in a great variety of ways but, as we shall now show, the signature is 
the same no matter how the reduction is carried out. Let K1 be the s u n  of 
the terms in (19) for which a, is positive and -K2 the sum of the terms for 
which it is negative so that A = Kl - K2; the matrices K1 and K2 are positive 
semi-definite and, if kl and k2 are their ranks, we have r = k l  + k2. Suppose 
that by a different method of reduction we get A = MI - M2 where M1 and 
M2 are positive semi-definite matrices of ranks ml and ma and ml + m2 = r ;  
and suppose, if possible, that k2 < m. The orders of the null spaces of K2 
and MI relative to the right ground of A are r - k2 and r - ml = mz and, 
since r - k2 + m2 > r, there is a t  least one vector z in the ground of A which 
is common to both these null spaces, that is, 

and hence SZKlz = -SZM2x. But both K1 and M2 are positive semi-definite; 
hence we must have SfKlx  = 0 which by 56.04 entails Klx = 0. We have 
therefore arrived at  a contradiction and so must have k2  = m2 which is only 
possible when the signature is the same in both cases. 

In  the case of a skew matrix the reduction given by (16) is not convenient 
and it is better to modify it as follows. Let A' = -A  and set 

So long as A,  # 0, the condition Sx,A,y, # 0 can always be satisfied by a 
suitable choice of x; and y, and it is easily proved as in 55.06 that the null 
space of A, + is obtained from that of A, by adding x,, y,; also A, is skew so 
that we must necessarily have XI # y,. I t  follows that the rank of A is even 
and 

where each term in the summation is a skew matrix of rank 2 and 
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This form corresponds to the one given in Theorem 12 for symmetric matrices. 
If we put 

then (22) may be put in the form A = PTP'  = QRQ'. When r = n, the deter- 
minant of T equals 1 and therefore I A I = I P 1 2 .  The following theorem 
summarizes these results. 

THEOREM 13. I f  A i s  a skew matrix of rank r,  then (i) r i s  even; (ii) A can be 
expressed by rational processes in the form 

where P, Q, R and T are given by (23); (iii) if r = n, the determinant of A i s  a 
perfect square, namely I P 12; (iv) if x and y are any vectors and w = 

Zar, I az. -laze I, then 

(25) S x A y  = S 1 xy I w. 

The following theorem contains several known properties of hermitian 
matrices. 

THEOREM 14. I f  T(A) i s  an associated matrzx jor which T'(A) = T(A'), 
then, when A i s  quasi-hermitian, T(A) i s  also quasi-hermitian. 

For A' = A" gives T'(A) = T(A') = T(A1') = T"(A). 
Particular cases of interest are: If A is hermitian, T(A) is hermitian. If 

T(rA) = /.IT(A) and A is skew, then T(A) is skew if s is odd, symmetric if 
s is even. 

6.06 .The Kronecker method of reduction. Let A = 2 x ~ S Y ,  be a quasi- 
I 

hermitian matrix of rank r ;  then 

from which it follows that yi is linearly dependent on x; ,  x;, . *, x:, say 
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Using this value of y i  we have 

and therefore 

(27) 

Further, since I qij I Z 0 ,  we can find sij (i, j = 1, 2, . . ., r )  so that 

i 

and then (27) gives sij = sli. 
Let X I ,  ., x,, x ,  + . ., zn be a basis and z l ,  zz ,  . a ,  z ,  the reciprocal basis. 

sjizr, the basis reciprocal to y:', . . ., y:, x ,  + . . -, x, is w;, 

. . . , w!, z I+1,  -.., 2,. Hence 

is quasi-hermitian. Further, if u = 2 jix, then SdfPu = Z[ : ( j ~ i j ;  and we 
1 

can choose u so that this form is not 0. We also have 

whence APu = u. 
Let 

whem P, is formed from A, in the same way as P is from A and u, is a vector 
of the left ground of A, such that Su:P,u, # 0 ;  also, as above, A,P,u = u 
for any vector u in the left ground of A, and A, in quasi-hermitian. The 
vector u: belongs to the right ground of A, and therefore every vector of the 
null space of A, lies in the null space of A, + I ;  also 

Hence the null space of A,  + is derived from that of A, by adding P,u, to it. 
I t  then follows as in 56.06 that A can be expressed in the form 
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which is analogous to (16) and may be used in its place in proving Theo- 
rem 12. 

We may also note that, if Q is the matrix defined by Qtei = zi ( j  = 1, 2, 
.-., n),  then 

r 

where B is the quasi-hermitian matrix qiieiSei. It may be shown by an 
I 

argument similar to that used for hermitian matrices that a basis for the x's 
may be so chosen that Q is quasi-orthogonal provided A is real. 

6.07 Cogredient transformation. If SzAy and SzBy are two bilinear forms, 
the second is said to be derived from the first by a cogredient transforma- 
tion if there exists a non-singular matrix P such that SzAy = SPzBPy, that is, 

(30) A = P'BP. 

When this relation holds between A and B, we shall say they are cogredient. 
From (30) we derive immediately A' = P'B'P and therefore, if 

then 
R + AS = P1(U + AV)P 

so that R + AS and U + XV are strictly equivalent. 
Suppose conversely that we are given that R + AS and U + XV, which are 

quasi-hermitian, are strictly equivalent so that there exist constant non-singular 
matrices p, q such that 

then, remembering that R and U are symmetric, S and V skew, we ha 

Equating these two values of R and S ,  respectively, we get 

or, if W stands for U or V indifferently, and 
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we have 

J W  = WJ', 

repeated application of which gives 

From this it follows that, if !(A) is a scalar polynomial, 

(33) f (J) W = Wf (.?') = W(f(J))'. 

In particular, since I J I # 0, we may choose f ( h )  so that j ( J )  is a square root 
of J and, denoting this square root by K, we have K W  =. WK' or 

W = K-lWK', KZ = J, (W = U or V). 

Using this in (31) we have 

R = pK-'UK'q, S = pK-1VK'q 

and from (32) p = q'J = q'K2 or 

pK-I = q'K = (K'q)'. 

Hence, if we put P' = q'K, there follows 

R = P ' U P ,  S - P ' V P  
or 

A = R + S = P'(U + V)P = P'BP. 

We therefore have the following theorem, which is due to Kronecker. 

THEOREM 15. A necessary and su jk ien t  condition that A and B be cogredient 
i s  that A + XA' and B + XB' shall be strictly equivalent. 

If A and B are symmetric, these polynomials become A(l  + X) and B( l  + A) 
which are always strictly equivalent provided the ranks of A and B are the 
same. Hence quadratic forms of the same rank are always cogredient, as is 
also evident from Theorem 12 which shows in addition that P may be taken 
real if the signatures are the same. 

The determination of P from (31) is unaltered if we suppose S symmetrical 
instead of skew, or R skew instead of symmetrical. Hence 

THEOREM 16. If R, S, U, V are all symmetric or all skew, and if R + AS 
and U + XV are strictly equivalent, we can Jind a constant non-singular matriz  P 
such that 

R + AS = P'(U + XV)P, 

that is, the corresponding pairs of forms are cogredient. 

In the case of a hermitian form SfAx changing x into Px replaces A by 
P A P  and we have in place of (30) 
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If we put B = 2/3,bSS6,, then 

P'BP = 2fiSP1b,S6,~ = z p , ~ ' b , ~ ~ ' 6 ,  = ~/~,c,SE,. 

where c, = P'b,. Equation (34) 'can therefore hold only if the signature as well 
as the rank is the same for B as for A. Conversely, if A = 2a,a,S&, and 
A and B have the same signature and rank the notation may be so arranged 
that a, and p, have the same signs for all s; then any matrix for which 

where r is the common rank of A and B, clearly satisfies (33).2 Hence 

THEOREM 17. Two hermitian forms are cogredient i f ,  and only i f ,  they have 
the same rank and signature. 

The reader will readily prove the following extension of Theorem 16 by the 
aid of the artifice used in the proof of Theorem 11 

THEOREM 18. Ij A, B, C, D are hermitian matrices such that A + XB and 
C + AD are (i) equivalent (ii) both dejinite for some value of A,  there exists a con- 
stant non-singular matrix P such that 

6.08 Real representation of a hermitian matrix. Any matrix H = A + iB  
in which A and B are real matrices of order n can be represented as a real 
matrix of order 2n. For the matrix of order 2 

satisfies the equation ii = - 1 and, on forming the direct product of the original 
set of matrices of order n and a Bet of order 2 in which i2 lies, we get a set of 
order 2n in which H is represented by 

As a verification of this we may note that 

AC - BD - ( A D  + BC) 
A D  + B C  AC - B D  11 

which corresponds to 

( A  + i B ) ( C  + i D )  = A C  - B D  -f %(A-D + B C ) .  

2 The proof preceding Theorem 15 generalize3 readily up to equation (33); a t  that 
point, however, if K = j ( J ) ,  we require K' = j ( ~ ' ) ,  which is only true when the coefficients 
of /(A) are real. 
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This representation has the disadvantage that a complex scalar CY + i p  is 
represented by 

II 8" -: II 
which is not a scalar matrix although it is commutative with every matrix of 
the form @. Consequently, if H has a complex root, this root does not corre- 
spond to a root of @. If, however, all the roots of H are real, the relation 
HK = OLK is represented by @R = a9 when CY is real so that CY is a root of 
both H and $5. 

To prove the converse of this it is convenient to represent the vector x + i y  
in  the original space by (z, y)  in the extended space. Corresponding to 

( A  + i B ) ( x  + i y )  = A x  - B y  + i ( B x  + A y )  

we then have 

If therefore @ has a real root a and (x, y)  is a corresponding invariant vector 
so that 

we have 

which gives 

( A  + i B )  (z + i y )  = a(x + iy) .  

I t  follows that invariant vectors in the two representations correspond provided 
they belong to real roots. This gives 

THEOREM 19. T O  every real root of H = A + i B  there corresponds a real 
root of 

and vice-versa. 
In this representation R and H' correspond to 

respectively, and hence, if H is hermitian, B' = - B  so that @ is symmetric. 
The theory of hermitian matrices of order n can therefore be made to depend 
on that of real symmetric matrices of order 2n. For example, if we have proved 
of real symmetric matrices that they have real roots and simple elementary 
divisors, it follows that the same is true of hermitian matrices, thus reversing 
the order of the argument made in 56.01. 



CHAPTER VW 

COMMUTATIVE MATRICEB 

7.01 We have already seen in $2.08 how to find all matrices commutative with 
a given matrix s which has no repeated roots. We shall now treat the some- 
what more complicated case in which z is not so restricted. If 

then zrv = yzr so that, if f(X) is a scalar polynomial, then f(z)y = yf(z). I n  
particular, if fi  is a principal idempotent element of z, then jiy = yfi. R.emem- 
berim that Zfi = 1 we may set 

and also, by $2.11, zi = Xifi + zi, where z i  is nilpotent. Since yizj = 0 = z,yi 
(i f j ) ,  the determination of all matrices y which satisfy (1) is reduced to 
finding y so that 

We can therefore simplify the notation by f i s t  assuming that z has only one 
principal idempotent element, 1, and one root which may be taken to be 0 
without loss of generality; z is then nilpotent. 

Let el, ep, a . a ,  e, be the partial idempotent elements of x and let their ranks 
be nl, nz, . , n,; x is then composed of blocks of the form 

0 1 0 ..- 0 
0 0 1 . . .  0 
0 0 0 . - .  0 (ni rows and columns) . . , . . , . . . . . . . . .  
8 0 0 1 
0 0 0 0 

provided the fundamental basis is suitably chosen. To simplify the notation 
further we divide the array of n2 units eij into smaller arrays forded by sepa- 
rating off the first nl rows, then the next n2 rows, and so on, and then making a 
similar division of the columns (see figure 1). And when this is done, we shall 
denote the units in the block in which the ith set of rows meets the jth set of 
columns by 
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It is also convenient to put e j i  = 0 for p > ni or q > ni. 

- - .--- 
132 133 I . . .  .--- 
( . I . I . . .  

The expression for x is now 

and we may set 

where 

The equation x y  = yx is then equivalent to 

If we now suppress for the moment the superscripts i, j, which remain con- 
stant in a single equation in (2), we may replace (2) by 

ni -  1  n i  n j  ni n j  n j - 1  

C e p s p + l  2 C = 2 ,.elm C e q , , + ,  
P =  1  1 = 1  m = l  1 = 1  m = l  P - 1  

or 

Equating corresponding coefficients then gives 

Since q 2 1 on the right of (3), i t  follows that 7 ,  + = 0 (p = 1, 2, . . ., 
ni - 1) and, since p < ni - 1 on the left, q n i q  = 0 ( q  = 1, 2, . . ., ni - 1) 
and hence from (4) 

wherep = 0, 1, ..., ni - t ,  q = t + 1, s + 2, ..., nj - 1, t = 0, 1, . . . ,  
From (4) we see that in yii all coordinates in an oblique line parallel to the 

main diagonal of the original array have the same value; from the first part 
of (5) those to the left of the oblique AB through the upper left hand corner 
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are zero, as are also those to the left of the oblique CD through the lower right 
hand corner; the coordinates in the other obliques are arbitrary except that, 
as already stated, the coordinates in the same oblique are equal by (4). This 
state of affairs is made clearer by figure 2 where all coordinates are 0 except 
those in the shaded portion. 

FI~. 2 
Ae an example of this take 

a 1 
a 

a I 
a 1 

a 
a 1 

a 1 
a 1 

a 1 
a 

The above rules then give for y 

where the dots represent 0. 
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If we arrange the notation so that nl I Q I . . - 5 n,, a simple enumera- 
tion shows that the number of independent parameters in y is 

We have therefore the following theorem which is due to Frobenius. 

THEOREM 1. Ij the elementary divisors o j  x are (X - XJn{i, i = I ,  2, . - ., r, 
j = 1, 2, . . a ,  si, where XI, A*, * . -, Xr are all diflerent and nil 5 niz 5 . . . _< nisi, 
then the general form of a matrix commutalive with x depends on 

independent parameters. 

7.02 Commutative sets of matrices. The simple condition xy = yx may 
be replaced by the more stringent one that y is commutative with every matrix 
which is commutative with x. To begin with we shall merely assume that y 
is commutative with each of a particular set of partial idempotent elements ei; 
as in the previous section we may assume that x has only one principal idem- 
potent element. 

In order that eiy = yei for every i it is necessary and sufficient that yii = 0 
when i # j; if ul, uz, - ., u. are the partial nilpotent elements of x corre- 
sponding to el, e2, . ., e, and we set mi = ni - 1, this gives for y 

If we now put z = (Bi~i + ui)j where no /3i = 0, and if g(h) is any scalar 
i 

polynomial, then (cf. 52.11) 

and when y is given, we can always find g(X) so that 

provided the BJs are all different. Hence every y, including x itself, can be 
expressed as a polynomial in z.  

We now impose the more exacting condition that y is permutable with every 
matrix permutable with x. Let nij (i # j) be the matrix of the same form as 
yij in 57.01 but with zero coordinates everywhere except in the principal oblique; 
for example in (6) 2 4 ~  is obtained by putting jo = 1 and making every other 
coordinate 0. We then have 
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Hence yuii = u i ~  gives yiiuij = uiiyii and therefore from (7) 

with the understanding that q i k  does not actually occur when k > mi. When 
c is the matrix used in deriving (6), these conditions give in place of (6) 

Comparing this form with (7) we see that y is now a scalar polynomial in x, 
which in the particular case given above becomes g(x - a) where 

The results of this section may be summarized as follows. 

THEOREM 2. A n y  matrix which is  commutative, not only with x, but also with 
every matrix commutative with x, is  a scalur polynomial i n  x .  

7.03 Rational methods. Since the solution of xy - yx = 0 for y can be 
regarded as equivalent to solving a system of linear homogeneous equations, 
the solution should be expressible rationally in terms of suitably chosen param- 
eters; the method of 57.01, though elementary and direct, cannot therefore be 
regarded as wholly satisfactory. The following discussion, which is due to 
Frobenius, avoids this difficulty but is correspondingly less explicit. 

As before let xy = yx and set a = X - x;  also let b = L-laM-l be the normal 
form of a. If u is an arbitrary polynomial in X and we set 
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then 

Conversely, if Pb = bQ and, using the division transformation, we set 

where y and y1 are constants, then 

or a(v - vl)a = ayl - ya. Here the degree on the left is a t  least 2 and on 
the right only 1 and hence by the usual argument both sides of the equation 
vanish. This gives 

ava = avla, ay, = ya 

whence vl = v and, since a = X - x, also yl = y so that xy = yx. 
Hence we can find all matrices commutative with x by finding all solutions of 

Let a', az, . .. , a, be the invariant factors1 of a and nl, nz, . . ., n, the 
corresponding degrees so that b is the diagonal matrix Baieii, and let P = 

I I  Pii 111 Q = I I  Qij  /I; then 

(1 1) p..ff. = 
( 7  1 z 17. 

By the division transformation we may set 

and then from (10) we have 

Hence P = p, Q = q is a solution of (10) for which the degree of pij is less than 
that of ai and the degree of qij is less than that of aj. I t  is then evident that,  
when the general solution p, q of (12) is found, then the general solution of 
(10) has the form 

P = b R + p ,  Q = R b + q  

where R is an arbitrary matric polynomial in A .  We are however not con- 
cerned with I?; for 

so that in (9) the value of y depends on p only. 

Since we may add a scalar to  z we may clearly assume that the rank of a is n. 
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The general solution of (12) is given by 

where s k ,  is an arbitrary polynomial whose degree is a t  most n,  - I and which 
therefore depends on n, parameters. I t  follows that the total number of 
parameters in the value of y is that already given in i7.01. 

7.04 The direct product. We shall consider in this section some properties 
of the direct product which was defined in $5.10. 

THEOREM 3. IJ fii (i, j= 1,  2,  . . ., m )  i s  a set of matrices, of order n, for 
which 

(4 41 fijfp. = s jp f i ,  x fii  = 1, 

then m i s  a factor of n and any  matrix of order n can be expressed uniquely i n  the 
form .Zaijfij where each aij i s  commutative with every f pq ;  and, if n = mr,  the rank 
of each jpq  i s  r. 

For, if x is an arbitrary matrix and we set 

a short calculation shows: 
(i) x = Z a i j f i j ;  

(ii) a i A q  = fp,aij for all i, j, p, q; 
(iii) the set % of all matrices of the form (15)  is closed under the operations 

of addition and multiplication; 
(iv) if bll, b12, . . . are members of %, then Zbijjii is zero if, and only if, each 

b . .  11 = 0.. 
If (al ,  a2, ., a ~ )  is a basis of 8,  it follows that 

is equivalent to the basis (eii, i, j = 1, 2, . ., n) of the set of matrices of ordei 
n. This basis contains lm2 independent elements and hence n2 = lm2 so that 
n = mr,  1 = r2. Let rij be the rank of fij .  Since fii = fijjji, it follows from 
Theorem 8 of chapter I that r,i < rji; also from fj,f;i = fji we have r j i  < rii; 
hence rii = r j i  and therefore each rii has the same value. Finally, since 
1 = Zji;, and j i ; j j j  = 0 (i # j )  and ri; = rj,, we have mrii = n and hence each 
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We shall now show that a basis g i j  can be chosen for 'i!l which satisfies the 
relations (14) with r in place of m. Since the rank of f i i  is r,  we can set 

where the sets of vectors ( a i k )  and ( P i k )  ( i  = 1, 2, . ., m; k = 1 ,  2, . ., r)  
m 

each form a basis of the n-space since 2 f i i  = 1 .  If (a:  , ) ,  (8: ,) are the corre- 
i = l 

sponding reciprocal sets and 

Hence 

that is P i k  = 

Since f i j  = fiijijjij, the left ground of f i j  is the same as that of f i i  and its right 
ground is the same as that of f j j .  Let 

The vectors Tjk (k = 1, 2, . ., r )  then form a basis for the set ale (k = 1 ,  2, 
. - .  f .  T )  and, since the basis chosen for this set in (16) is immaterial, we may 
Buppose yjk = aik ( j  = 1 ,  2, . . - ,  m; k = 1 ,  2, . . a ,  r ) ,  that is, 

Similarly we may set j j l  = 2aikSelk and then since 

we have O l k  = aik and therefore 
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and finally 

If we now set a i k  = Pe(; - + k, then by 51.09 P is non-singular and a:, 
= (P')-leci - + k; hence, if 

we have 

Also if 

(21) 

then 

so that the set (eij) of all matrices of order n may be regarded as the direct 
product of the sets (hii) and (kij). Finally, since any matrix can be expressed 
in the form 2bijhij, where the bi j  depend on the basis (kii), i t  follows that an 
arbitrary matrix can also be expressed in the form 

PbijP-1 depends on the basis (PkiiP-') and hence, if we set 

gij = PkijP-l (i, j = 1, 2, . . a ,  r )  

the g's form a basis of % which satisfies (14). 

7.05 Functions of commutative matrices, Let x and y be commutative 
matrices whose distinct roots are XI, Xz, . and p1, p2, . - - respectively and 
let Ri be the principal idempotent unit of x corresponding to X i  and similarly 
Si the principal idempotent unit of y corresponding to pi. Since Ri and Si 
are scalar polynomials in x and y, they are commutative. If we set 

those Tij which are not 0 are linearly independent; for if 2[ijTii = 0, then 

since RpRi = 6piRp, S,S, = 6iqS,, so that either tpq = 0 or T,, = 0. 
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From the definition of Tii i t  follows that TiiT,, = 0 when i # p or j # q, 
and T:, = Ti,, 2T i j  = 1; hence 

x = 2 [hi + (X - hi)ITijj Y = [pi + (Y - ~31Tifi  

where (X - Xi)Tii and (M - pj)Tii are nilpotent. If +(A, p) is any scalar poly- 
nomial then 

where # f are scalars, we have therefore 

and r runs from 1 to pi  - 1, where fii is the smallest integer for which 
(x - hi)~,Ri = 0, and s has a similar range with respect to y. The matrices 
T ;  j are commutative and each is nilpotent; and hence any.linear combination 
of them is also nilpotent. 

Let 
z = 2+(hi, pi) T ~ ~ ,  w = ZZ+ f ! ~ " 9 .  $ 1 1  

then u, being the sum of commutative nilpotent matrices, is nilpotent. If we 
take in E only terms for which Tii # 0, we see immediately that the roots of z 
are the corresponding coefficients +(Xi, pi); and the reduced characteristic 
function of z is found as in 52.12. We have therefore the following theorem 
which is due to Frobenius. 

THEOREM 4. I j  Ri, S ,  (i = I, 2, , - ;  j = 1, 2, a - )  are the principal idem- 
potent units o j  the cominutative matrices x, y and Tij = RiSi; and i f  X i ,  pi are the 
corresponding roots of x and y, respectively; then the roots of any  scalar function 
+(z, y) o j z  and u are +(Xi,.pj) where i and j take only those values for which T;; f 0. 

This theorem extends immediately to any number of commutative matrices. 

7.06 Sylvester's identities. I t  was shown in 52.08 that, if the roots of z 
are all distinct, the only matrices commutative with it are scalar polynomials 
in x; and in doing so certain identities, due to Sylvester, were deril :d. We 
shall now consider these identities in more detail. 

We have already seen that i~ 
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the coe5cient a, of An - is (- 1)' times the sum of the principal minors of z 
of order r ;  these coefficients are therefore homogeneous polynomials of degree r 
in the coordinates of x. We shall now denote (-l)la, by [:I. If x is replaced 
by Ax + py, then [:I can be expressed as a homogeneous polynomial in A, p 

of degree r, and we shall write 

We shall further set, as in i2.08, 

where ( : :) is obtained by multiplying s x's and t y's together in every possible 
way and adding the terms so obtained. 

In this notation the characteristic equation of Xx + py is 

where in the second summation [; :] or (: i )  is to be replaced by 0 if either 
p or q is negative and [ 3  i] = 1. Since X is an independent variable, the 
coefficients of its various powers in (25) are identically 0, and therefore 

a series of identical relations connecting two arbitrary matrices. 
These identities can be generalized ipmedi&tely. If xl, XZ, - - ., x, are any 

matrices and XI, Xz, . ., scalar variables, we may write 

and by the same reasoning as before we have 
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where sl, s2, . . a ,  s, is any partition of n, zero parts included, and as before 
a bracket symbol is 0 when any exponent is negative. 

zxixi Since [ ] is the sum of the principal minors of Zhixi of order r, we see 

that Exl 2 2  . . xm] (2ri = r) is formed as follows. Take any principal minor r] T2 * * . Tm - - 

of xl of order r and the corresponding minors of x2, x3, . ., x, and replace rz 
of its columns by the corresponding columns of x2, then replace r3 of the remain- 
ing columns by the corresponding ones of x3, and so on; do this in every possible 
way for each of the minors of order r of x1 and add all the terms so obtained, 

There is a great variety of relations conneqting the scalar functions defined 
above, a few of which we note here for convenience. 

(ii) The value of rX1 x2 ' '-1 is unchanged by a cyclic permutation of 
L 4 

the x's. 

(iii) 

where the summation extends over the n!/r!(n - r)! ways of choosing r integers 
out of 1, 2, - . ., n, the order being immaterial. 

7.07 Similar matrices. Ih addition to the identities discussed in the pre- 
ceding section Sylvester gave another type, a modification of which we shall 
now discuss. If x, y, a are arbitrary matrices, we have 

- (xra + sr - lay + sr -2ay2 + . . . + ayr)y 

or say 

x ~ + I . ,  . Y ~ + I  = d x ,  a, y)r - (2, a, y ) r ~  
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where 

Suppose now that x and y satisfy the same equation f (X)  = 0 where 

z and y being commutative with each ai and a commutative with every ai. Let 

then 

If I u I # 0, it follows that y = u-lxu, that is, x and y are similar. 
I t  can be shown that a can be chosen SO that I u I + 0 provided x and y have 

the same invariant factors and f ( X )  is the reduced characteristic function. 



CHAPTER VIII 

FUNCTIONS O F  MATRICES 

8.01 Matric polynomials. The form of a polynomial in a matrix has already 
been discussed in 92.11 but we repeat the principal formulas here for con- 
venience. If z is a matrix whose reduced characteristic function is 

and 

and if g(X) is a scalar polynomial in X, then 

This formula can still be interpreted when the coefficients of g(X) are matrices, 
but in this case the notatjon g(z) is ambiguous. Let g(X) = a. + alX + . . . 
+ &Am; then 

a0 + alz + . . . + a,xm and a. + xul + - .  a + zma, 

are called, respectively, the deztro- and laevo-lateral polynomials corresponding 
to g(X). I t  is clear that (4) holds for a dextro-lateral polynomial and will 
give the corresponding laevo-lateral polynomial if g(Xi)qi, gf(Xi)hi, etc., are 
replaced by (pig(Xi), higf(Xi), etc. 

8.02 Infinite series. If ao, al, - . are matrices and X a scalar variable the 
coordinates of the matrix 

are scalar infinite series in A; and if each of these series converges for mod X less 
than p, we say that the series (5) converges. When this condition is satisfied, 
the series 
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converges for any matrix x for which the absolute value of the root of greatest 
absolute value is less than p. For if g, is the sum of the first m terms of (6), 

then by (4) g,,, = 2 g,,,i where 

The matrices qi, hi are independent of m and, since the absolute value of each 
X i  is less than p, g,(Xi), g;(~i), a ,  g,(vi- ')(Xi) converge to g(Xi), gf(Xi), . - e l  

g('i - ')(Xi) when m approaches infinity. 
As an illustration of such a series we may define exp x and log (1 + x) by 

(7) 
5 x2 

expx = c z  = 1 + 
x2 xa 

log (1 + z) = z - - 
2 +,+ 

The first of these converges for every matrix z, the second for matrices all of 
whose roots are less than 1 in absolute value. 

The usual rules for adding series and for multiplying series whose coefficients 
are commutative with x and with each other hold for matric series. For 
instance we can show by the ordinary proof that, if xy = yz, then a z  + u = 
t z c v  but this will not usually be the case if xy # yx. 

8.03 The canonical form of a function. In the case of multiform functions 
(4) does not always give the most general determination of the function 
which is only obtained by taking into account the partial as well as the princi- 
pal elements of the variable z. As in i3.06 suppose that z has the canonical 
form 

where dr is a block of terms 

. . . . . . . . . . . . . . . .  
(ri rows and columns). . . . . . . . . . . . . . . . .  
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I t  is convenient to let ai stand also for the matrix derived from (9) by replacing 
every a,  by 0 except when j = i. We can then write 

and we may set 

where (cf. 53.07) e: = ei, zi is a nilpotent matrix of index ri, and 

The part of zi which is not 0 is given by the oblique line of 1's in (10); z2 is 
obtained by moving all the 1's one place to the right except the last which d i s  
appears, and in general zm - has a line of 1's starting in the mth column of 
(10) and running parallel to the main diagonal till it meets the boundary of 
the block. 

I t  is now easy to see the form of a scalar polynomial g(z) or of a convergent 
power series with scalar coefficients; for 

and the block of terms in g(x) which corresponds to ai in (10) is, omitting the 
subscripts for clearness, 

where all the terms to the left of the main diagonal are 0, the coordinates in 
the first row are as indicated, and all those on a line parallel to the main diagonal 
are the same as the one where this line meets the first row. 

If the characteristic function is the same as the reduced function, no two 
blocks of terms in (9) correspond to the same root and ei, z ,  are the principal 
idempotent and nilpotent elements of x corresponding to Xi and (13) is the 
same as (4). This is not tbe case when the same root occurs in more than one 
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of the blocks (10) and, when this is so, the ai are not necessarily uniquely deter- 
mined. For instance let 

Here we have 

But if 

the j's form a set of matric units and 

so that we might have chosen fl = fil, f2 = fiz + f33 = ez2 + e 3 3  + e13 as idem- 
potent elements in place of el and e2. 

I t  should be carefully noted that fl, f2 are not commutative with el ,  ez and 
in consequence different determinations of a multiform function may not be 
commutative with each other. For instance, if x is the matrix given in (15) 
with y # 0, and yf is a particular determination of the square root of y, we have 
already seen in $2.13 that determinations of xi are given by 

and these two values of xt are not commutative. 

8.04 Roots of 0 and 1. The reduced equation of a nilpotent matrix of index 
m is xm = 0 and this matrix can therefore be defined as a primitive mth root 
of 0; the index m cannot be greater than n and it  exceeds 1 unless x = 0. The 
canonical form of x must contain a t  least one block of order rl = m, similar 
to (10) but with A, = 0, and a number of like blocks of orders, say, ri (i = 

2, 3, . . .) where r ;  < r l  and 2 r i  = n. This gives rise to a series of distinct 
1 

types in number equal to the number of partitions of n - m into parts no one 
of which exceeds nz, and x is a primitive mth root if; and only if, i t  is similar 
to one of these types. 
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If x is a primitive mth root of 1, its reduced characteristic function is a 
factor of Am'- 1 and hence x has simple elementary divisors. Let a be a scalar 
primitive mth root of 1, and let jl, f2, - - ., j, be idempotent matrices of ranks 

i-1 

rl, ro . for which f f j  = 0 (i # j ) ,  zfi = 1; for instance, if pi = rj, we 
j-1 

may set 

The canonical form for x is then 

where the exponents t i  are all different modulo m and a t  least one efi,  say the 
first, is primitive. Any primitive mth root of 1 is then similar to a matrix of 
the form (16)) and convirsely. 

8.05 The equation ym =. X ;  algebraic functions. Let XI, Az, ..., A, be 
the distinct roots of x and pi = A:'" a particular determination of the mth root 
of X i  for i = 1, 2, ., s; then, if ym = x, the roots of y are all of the form 
rfipc where e is a primitive scalar mth root of 1. Suppose that the roots of y are 

and let a particular choice of the par>tial idempotent and nilpotent elements 
corresponding to Pij be f i i k  and hijk (k = 1, 2, a ) ;  also let the index of hiik 
be nijk. Then 

and hence 

where gi,k is the nilpotent matrix 

(20) gijk = (~ijfiik + hijdm - @Y2.fiik. 

Further, if X i  # 0, (20) can be solved for hijk as a polynomial in gijk; for we 
can write (20) in the form 

and, since a1 = mp7-' # 0, the ordinary process for inverting a power series 
shows that we can satisfy (21) by a series of the form 
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there being here no question of convergence since any power series in a nilpotent 
matrix terminates., It follows from (21) and (22) that the indices of giik and 
hijk are the same. 

We shall now show that the matrices fijk and gijk h1 .m  a set of partial idern- 
potent and nilpotent elements of x provided always that x is not singular. If 
this were not so, then fijk must be the sum of two or more partial idempotent 
elements; for the sake of brevity we shall assume that it is the sum of two 
since the proof proceeds in exactly the same way if more components are taken. 
Let fiik = dl + d2 where dl and dz are partial idempotent elements of x and 
let cl, cz be the corresponding nilpotent elements; then 

Hence also hijk = b1 + bz, blb2 .= 0 = bzbl where b,  1s obtained by putting c, 
for gijk in (22 ) ;  and this is impossible since we assumed that fijk and hijk were 
partial idempotent and nilpotent elements of y. We have therefore the fol- 
lowing theorem. 

THEOREM 1. I f  x zs a non-singular matrix, any  determination of y = X I / "  

can be obtained by expressing x i n  terms of partial idempotent and nilpotent ele- 
ments, say x = Z(Xifi + gi) and putting 

Here the binomial series terminates and A:/" i s  a detemination of the mth root of 
X i  which may  be different jor diflerent terms of the summation if this root occurs 
with more than one partial element. 

There is thus a two-sided multiplicity of mth roots of x ;  the Xi1" have m 
possible determinations in each term and also there is in certain cases an infinity 
of ways of cnoosing the set of partial elements. Since the canonical form is 
independent of the actual choice of the set of partial elements out of the possible 
sets, any choice of such a set can be derived from any other such set by trans- 
forming it by a matrix u ;  and since x itself is the same no matter what set of 
partial elements is chosen, we have uxu-I = x ,  that is, u is commutative with x. 
I t  follows from the development given in §§7.01,.7.02 and 7.04 that a matrix u 
which is commutative with every partial idempotent element is a polynomial in.x. 

8.06 We must now consider the case in which x is singular and in doing so it 
is sufficient to discuss mth roots of a nilpotent matrix; for the principal idem- 
potent element of x which corresponds to a root p is the sum of those principal 
idempotent elements of y which correspond to those roots whose mth power 
is p,  so that the principal idempotent element corresponding to the root 0 is 
the same for both x and y. Let the elementary divisors of y be Xm1, X"1, . ., Amp; 
then 



[ 7.06 ] ALGEBRAIC FUNCTIONS 121 

where y i  is a nilpotent matrix of index mi, and we may suppose the fundamental 
basis so chosen that the significant part of y i  is 

. . 
(23) . . . . (mi rows and columns). 

0 1 
0 

To simplify the notation we shall consider for the moment only one part yi 
and replace it by y  and m, by n so that yn = 0 and 

If we now form the mth power of 11. then ym = 0 if m 2 n and if m < n 
n - m  

ym = eisei + .. 
1 

If we define r and k by 

then r > 2 and 

giving k chains of order r of invariant vectors, and similarly for i = k + 1, 
k + 2, . . . , m, we have m - k chains whose order is r - 1 since for these values 
of i the last equation in (25) is'missing. If we sei u and v for blocks of terms 
like (23) only with r and r - 1 rows and columns, respectively, then we can 
find a non-singular matrix P which permutes the rows and columns in ym so that 

We are now in a position to consider the solution of ym = x where x is a 
nilpotent matrix of index r .  In the elementary divisors of x suppose pl expo- 
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nents equal r, pq equal r - 1, and in general pi equal r - j + 1 ( j  = 1, 2, ., r);  
here the p's are integers equal to or greater than 0 such that 

The maximum possible exponent for any elementary divisor of y is rm; let 
q j .  (i = 1, 2, . . ., m; j = 1, 2, . . ., r) be the number of exponents w h i d  equal 

Forming ym and using (24) and the results of (25) we then see that 

These relations form a set of Diophantine equations for the y's. When a set . 
of q's have been found, we can find the matrix P (cf. (26)) for each part of ym 
and then set y = ZR-'yiR where R has the form SPiQi, Qi being commutative 
with P i lyyPi  and so chosen that R is not singular. 

8.07 The exponential and logarithmic functions. The function exp y - e u  
has already been defined in $5.02 by the series 

or in $8.03 in terms of the partial units of y. Let the distinct roots of y be 
pl, p2, . a ', p, and let a choice of the partial idempotent and nilpotent elements 
corresponding to pi be f i j l  hi j  (j = 1, 2, . ., k i )  so ihat 

are the principal iclempotent and nilpotent elements of y. If we set x = eu,  

we have 

where vii is the index of hij and 
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The index of gii is clearly vij. Solving (30) for hii, we have the formal solution 
hij = log (1 f gii) and on using this or inverting the power series in (30) we get 

As in $8.05 it follows that j i i l  gii form a set of partial elements for z and, when x 
is given so that y = log x, the method there used gives the following theorem. 

THEOREM 2. If x is a non-singular matrix whose distinct roots are XI, Xz, 
., A,, and if log XI,  log Xz, . . ., log A, are particular determinations of the 

logarithms of these roots, then the general determination of log x is found as follows. 
Take any set of partial elements ofx, say fiil  gij (i = 1, 2, . , r ;  j = 1, 2, . . a ,  ki) 
where jii, gii correspond to X i  and the index of gij is vij ,  let hii be the nilpotent 
matrix defined by (31), and let kii be any integers, then 

The discussion of the relation between different determinations of log x is 
practically the same as for xl'" and need not be repeated. 

If j; and hi are defined by (28), a particular determination of log x is given by 

Thie form of log x has the same principal elements as x provided log Xi  + ki 
# log X j  + R j  for any i # j, and even when this condition is not satisfied, i t  is 
convenient to refer to (33) as a principal determination of log x. This deter- 
mination is the one given by the series (cf. $8.02 (8)) 

(34) logx = (x - 1) - $(x - 112 + Hz - 113 - ...  
provided each k; is 0 and the principal determination of log X i  is used. The 
series converges only when the roots of x - 1 are all less than 1 in absolute value. 

8.08 The canonical form of a matrix in a given field. If the coefficients of a 
matrix are restricted to lie in a given field of rationality, the canonical form 
used in the preceding sections requires some modification. The definition of 
the invariant factors is rational as are also the theorems regarding similar 
matrices which were derived from them in Chapter 3; and hence if X and x 
are rational matrices which have the same invariant factors there exists a rational 
matrix P for which P-lxP = X. The definition of elementary divisors requires 
only the natural alteration of substituting powers of irreducible polynomials 
for (X - Xi) " i i .  

Let 
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be a scalar polynomial in a field F which is irreducible in F; then the matrix 
of order m defined by 

has a(X) as its characteristic function; since a(X) is irreducible in F ,  it follows 
immediately that x, is an irreducible matrix in F and that a(X) is also the 
reduced characteristic function. I t  is easily seen that the invariant factors of 
X - x are given by m - 1 units followed by a@).  

Again, if we consider 

x', = 
(T rows and columns) . . 

which is a matrix of order rm, we see as in $8.03 (14) that, if g ( X )  is a scalar 
polynomial in A ,  

g(x,) g ' f ~ ~ )  . . g(?  - l)(x,)/(r - 1) ! 

I t  follows that, if g(x,) = 0, we must have g ( .  - l)(x,) = 0 and therefore a(X) 
is a factor of gCr - l ) ( X )  so that [a(X)IT is a factor of g ( X ) .  But if we put g ( X )  
= [a(h)lr the first (r - Q derivatives of g ( X )  have a(X) as a factor and so 
vanish when X is replaced by x,; hence g(x,) = 0. I t  follows that the reduced 
characteristic function of x, is [a(A)lr and, since the degree of this polynomial 
equals the order rm of xu, it is also the characteristic function so that the 
invariant factors of x, are given by 1 repeated rm - 1 times followed by [a(X)lr. 
The argument used in $3.06 then gives the following theorem. 

THEOREM 3. Let al(X), a?(X), ., w ( X )  be polynomials, not necessarily dis- 
tinct, which are rational and irreducible i l l  a Jield F and whose degrees uye ml ,  

mz, . -,  mk respectively; nrld let 1.1, r2, . ., 1.k be any positive integers such that 
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k x rimi F n; then, if xai i s  the matrix of order rim; formed from a&) i n  the same 
1 

Gy as xu i n  (36) i s  formed from a(X), the matrix of order n definticl by  

has al(X), a2(X), - , m ( X )  as its elementary divisors in F. 

If X is any matrix with the same elementary divisors as x,  i t  follows from 
$3.04 Theorem 5 that we can find et rational nonsingular matrix P such that 
PXP-1 = x . We may therefore take (37) as a canonical form for a matrix 
in the given field F. 

8.09 The absolute value of a matrix. The absolute value of a matrix a = 1 1  a,, I I 
is most conveniently defined as 

where the heavy bars are used to distinguish between the absolute value and 
the determinant I a 1. I t  must be carefully noted that the absolute value of a 
scalar matrix X is not the same as the ordinary absolute value or modulus of A, 
the relation between them being 

I t  follows immediately from (37) that 

and from 

we have 

Since the trace of ad' is Za,,d,,, the absolute value of a might also have 
been defined by 

(42) I a l 2  = t r  ad' = t r  d 'a .  
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From this we see immediately that, if a is unitary, that is, ad' = 1, then 

(43) 1.1 = n', lab1 = Ibl 

where b is any matrix. 
No matter what matrix a is, ad' is a positive hermitian matrix, semi-definite 

or definite accord- a is or is not singular; the roots gl, g,, ., g, of aa' 
are therefore real and not negative. If we set 

p, = Zg1g2 g,, p = pn = (mod I a s = pl = 1 a l2 = Zgi, 

then 

If CT(a) is the rth supplementary compound of a (cf. $5.03)) and a = pi 
is put for mod I a 1, then p, = I Cr(a) I 2  and we may write for (44) 

provided I a I Z 0. This inequality enables us to deal with expressions involving 
negative powers of a. 

It is also sometimes convenient to note as a consequence of (41) with b = a-1 
that 

1 If T = n, (44) gives Hadamard's expression for t he  maximum value of mod I a I. 



[8 .11 ] ABSOLUTE VALUE OF A TENSOR 127 

8.10 Infinite products. As an illustration of the use of the preceding section 
we shall now investigate briefly the convergence of an infinite product. Let 

then, if c is an arbitrary matrix, 

For on expanding Pm we have 

therefore 

The proof of (52)  follows in the same manner. 
Hence P, converges when Q, does, for which it is sufficient that Zai is abso- 

lutely convergent in the sense that 2 I ai I converges. 

8.11 The absolute value of a tensor. If w is a tensor of grade T ,  we define the 
absolute value of w by2 

(53) mod w = (T!SBW)+. 

We shall for the most part consider only vectors of grade 1 as the extension to 
tensors of higher grade is usually immediate. 

If x and y are any vectors, we derive from (53)  

(54) mod ( x  + y )  I mod x + mod y, mod S x y  5 mod x mod y. 

If A is a matrix, 

(mod  AX)^ = S ~ Z A X  = SLPAX. 

The r! enters here only because of the numerical factor introduced in defining Suv 
(cf. $5.16). 
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where the g's are real and not negative, and S&ai = 6 i j  so that mod ai = 1; 
hence 

SLQAX = ZgiSf&Saix = Zyi (mod S a i ~ ) ~  
5 2gi (mod ai mod x ) ~  = (Zg;)(mod x ) ~  
= I A l 2  (mod x ) ~ ,  

or 

(55) mod Ax 5 I A 1 mod x. 

From (54) we then have 

(56) mod SyAx 5 I A I mod x mod y. 

8.12 Matric functions of a scalar variable. If the coordinates of a matrix 
a(t) = ] I  a,,(t) 1 1  are functions of a scalar variable t, the matrix itself is called 
a matric function of t. The derivative, when it  exists, is defined as 

h being a scalar. The fundamental rules of differentiation are 

dt dt 

to which we may add, 

(58) 

Other examples are 

when 1 a 1 # 0, 

and in general, if m is any positive integer, 

Under the usual conditions each of the coordinates of a(t) is expansible as a 
Taylor series and this is therefore also true of a(t). If f(t) is a scalar function, 
j(a) may or may not have a meaning. For instance, if j(t) can be expanded in 
a power series which converges for mod t < a, then the same power series3 in 

If g( l )  = Su,tm1 u n  scalar, t he  series intended here is Zu,an. Other definitions are 
possible, e.g., if we set 

" ( a ,  = C "" C c y ;  ac::' a c s  . . . ~ ( 2 ' .  - 

2 c 2  c~ . c(;i = I ,  we still ha re  G ( L )  = g ( t ) .  
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a converges when I a I < a ;  but if j ( t )  is defined by a Fourier series which is 
not differentiable, j ( a )  will not have a meaning when the elementary divisors 
of a are not simple, as is seen immediately on referring to the form of $8.03 (14) .  
If j ( a )  and j ' (a )  have a meaning and if da/dt  is commutative with a,  we have 
dj (a) /d t  = f ' (a)da/dt .  For instance, if x is a constant matrix and a = t  - x, 
then 

d log ( t  - x )  - 1 -- 
dt t - x  

as is also easily proved directly. 
The integral of a( t )  is defined as follows. If C is a regular contour in the 

t-plane, we shall set 

or if t l ,  t2, . . . is a series of points on C and t i  a point on the arc (ti, t i  + and 
if the number of points is increased indefinitely in such a way that mod 
( t i  + 1 - t i )  approaches 0 for every interval, then 

The conditions for the existence of this limit are exactly the same as in the 
scalar theory. 

If M is the least upper bound of I a I on C and L is the length of C, it follows 
in the usual manner that 

a(t)dt  _< I a( t )  I mod dt 5 ML. II I I  
As an illustration of these definitions we shall now employ contour integration 

to prove some of our earlier results. If x is an arbitrary constant matrix and 
C a circle with center t  = 0 and radius greater than / x I, then all the roots of x 
lie inside C and on C the series 

is uniformly convergent. Hence 
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a result which may also be derived from the definition of log ( t  - x )  

Y e  then have 

1 
tdt - l / (1 + ex) dt = x G l i 7 - 2 Z  c 

and in general, if g(t) is a scalar function of t  which is analytic 
enclosing C, 

[ VIII ] 

in $8.07 and 

in a region 

j dl. 9 ( x )  = gi ? j j X  

Suppose now that I t  - x I = O(t)cp(t), adj ( t  - x )  = 8(t)a(t)  where O(t) is 
the highest common factor of I t  - x I and the coordinates of adj (t - x ) .  We 
then have 

(66) g(x)  

and under the given conditions this vanishes if, and only if, g(t)/cp(t) has no 
eingularities inside C, that is, if cp is a factor of g. We have therefore the theorem 
of i2.05 that cp(t)  is the reduced characteristic function of x and that g(x )  = 0 
only when cp(t) is a factor of g(t).  

Since a( t )  = cp(t)/(t - x )  is a polynomial in x with scalar coefficients and with 
degree 1 less than the degree of ~ ( t ) ,  say 

equation (66)  shows that g(x)  can be expressed as a polynomial in x, namely, 

We may also note that (66)  leads to the interpolation formula $8.01 (4) if 
the integral is expanded in terms of the residues a t  the zeros of d t ) .  

All of these results can be extended to unilateral serie.3 in x with matric 
coefficients if care is taken to use g(t) ( t  - x)-I or ( t  - x)-I g(t)  according as 
dextro- or laevo-lateral series are desired. 

8.13 Functions of a variable vector. Before considering functions of a 
variable matrix, we shall consider briefly those of a variable vector; for more 
extended and systematic treatments the reader is referred to treatises on vector 
nnd tensor analysis. 

The differential of a function of a variable in any non-commutative algebra 



[8 .13 ] FUNCTIONS OF A VARIABLE VECTOR 131 

was defined by Hamilton as follows. Let f(x) be a function of a variable z, 
dx a variable independent of z and t a scalar variable: then 

@(z) = lim f b  + tdx) - f (XI 
t t -0  

We shall assume tacitly hereafter that this limit exists for all the functions we 
shall consider. 

An immediate consequence of (68) is that df(x) is linear and homogeneous in 
d ~ .  Hence, if x = Ztiei, d~ = Zdtiei, then 

This leads to 

(69) 

Hamilton's differential operator 

in terms of which we may write (68) in the form 

(70) d f ( z ) ,  - (SdxV),f(z) . 
In  using this operator it is frequently convenient to place it after its operand 
and, when this is done, some artifice is necessary to indicate the connection 
between them. This is done by attaching the same subscript to both;. the 
method of doing this will be clear from the following examples in which a = 
Zaiei, b = ZPiei are vectors and A = / I  aij I I is a matrix. 

We can now consider the effect of a change of variable from x to4 2. Let 
Z = 2E,e,, V = 2 e i a / a & ;  then 

' Here 3 denotes a new variable and not the  conjugate imaginary. I n ~ t e a d  of con- 
sidering a change of variable, we may regard as a vector function of z. 
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where 

is the Jacobian matrix of the transformation. Similarly 

dx = ~,sV,dz = Jdz. 

Hence 

(73) JS = 1. 

Again, since SdxV = SdZV = SdxJ'V, hence 

From (70) and (72) we see that the differentials of J and J' are given by 

(75) 
dJ = SdxV,. J,, and d J  = dz,SV, = JQdxSVQ 

dJ1 = s~xv,.J;, dJ '  = V,SJ,dx = v,S~XJ;. 

This leads to the notion of contravariant and covariant vectors. If u is a 
vector function of x and zi the corresponding5 function after the change of 
variable, u is called contravariant if 

(76) zi = J u ,  

and covariant when 

If dl, dz denote two independent variations so that dl(&x) = d2(d1x), then 

Hence second differentials are neither contra- nor co-variant. 
If A is a matrix whose coordinates are functions of z, the bilinear differential 

form SdlxA&x when transformed becomes 

so that, if this form is invariant, that is, sd1eAdzz = SdlxAd,x, we must have 

(79) A = J'AJ, A '  = J W J ,  A ~ X  = ~ ' A d f .  

As will be seen below, this does not necessarily mean merely the  result of substituting 
Z for z in the  coordinates of u. 
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Hence when A is defined in this manner, Adz is a covariant vector. If by 
analogy with (78) we form a second differential of this vector and of Atdx, we 
get, using dZ = Jdx, 

d z ( ~ d l z )  = & ~ ' A d ~ z  + ~ ' & ( A d ~ z )  

d l ( ~ ' & ~ )  = d 1 ~ W & z  + ~ ~ d ~ ( A ' d ~ z ) .  

From (75) &Jt = V,SJ,d2z, dlJt = 7,Sd,xJ:; hence after.a simple reduction 

&(Adlz) + dl(A1&z) = v , s ~ ~ x ( J ' A ~ J ,  + J:A'J)&x + Jt(&(Adl5) + dl(At&@) 

= v , s ~ ~ x ( A :  - J~A:J)&z + ~ ~ ( & ( A d ~ z )  + dl (At&q)  

which may be written 

a = &(Adlz) + dl(At&x) - ~ , S d ~ x A ~ d ~ z  

(80) = J ' ( ~ ~ ( A ~ ~ z )  + d1(At&z) - vasdl~A:&z)  

= Jt,j 

so that a is a covariant vector. This vector may also be written 

a = dzAd1~ + dlAt&z - ~,SdlzA:&x + ( A  + At)dl&x. 

Using a notation suggested by the Christoffel symbols we now write 

[A ;  dlz, 4x1 = +(&Adlx + dlA'd2~ - v,SdlzA&) 

(82) { d l ~ d z x }  = ( A  + A')-l(d2Ad1r + d1Af&x - ~,Sd~zA:&z) 

= 2(A + At)-' [A  ; dlx, &XI 

provided that I A + At I # 0. If we now set 

and use the relation ( A  + A')-lJt = J-'(A + At)-', we have from (80) 

(83) ii = Jb 

so that b is contravariant. 
IfwesetA = $(A + At )  + +(A - At)  = B + C,  wegetfrom (81) and (80) 

[ A ;  dlx, &XI = [ B ;  dlx, &XI + [C; dlx, 4x1 

(84) [B;  dlx, dzx] + Bdl&x = J ' ([B;  d l z ,  d2z]  + Bdldz~) 
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We shall require two transverses of the Christoffel matrices; these are defined 
by 

whence 

2[A; a, b]' = v,SaA:b + A,bSaV, - A,aSbV, 

A l1 = (A; a, ( A  + A')-%]'. 
{a) b, 

To illustrate partial differentiation we shall consider functions which depend 
not only on x but also on a contravariant variable vector u = Zwie;. Since 
a = J u  and J = 1 1  agi/a& I I is independent of u, we have 

Hence, if V' = ze,a/aw,, 7' = ze,a/a&,, then 
' ,  

($6) V' = J 'V' ,  V = J'B + d,J'.V1 

where d,J' I Suva. JL. Here V' is covariant but V is neither covariant nor 
contravariant, which means that formulae dependent on it will not usually be 
invariant in form under a change of variable. This difficulty is avoided as 
follows. If we combine (83) with (78) and replace dlx, dzx by contravariant 
vectors a, b, then 

Hence 

dd 'b  = ( A }' - J1 
a, J ' b  

and therefore 

whence 

D is therefore a covariant differential operator. 
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Let v be any contravariant vector and set d,v = SuVa.v,; then, if j is any 
function of z and u, 

where 6,v is the contravariant vector defined by 

The tensor corresponding to the matrix V is known as the covariant deriva- 
tive of v.  

8.14 Functions of a variable matrix. The general theory of analytic func- 
tions of a variable matrix x = I /  tij 1 1  is co-extensive with that of n2 scalar 
variables and hence is so general as to be void of properties peculiar to matrices. 
This follows immediately from the obvious relation 

which expresses the (i, j) coordinate as a linear function of x. 
The differential operator6 corresponding to x is 

(91) 

I t  is often convenient 
this is so we shall set 

(92) 

These operators may 

to have a special notation for the transverse A' and when 

stand after their operands and the same convention as 
was used for subscripts attached to V kill also be used for A and a when 
necessary. 

The fundamental property of A is 

where j is any function of x and tr(A) stands for the trace of the matrix A.  
This result follows immediately from 

This operator first occurs in a paper by Taber (1890, (84)) who however did not make 
any systematic use of it. Macaulay in a tract published in 1893 (110) but written in 
1887 used A consistently in applying quaternions to physical problems; he used the nota- 
tion a for A. Later Born (335) used the same operator to great effect in his theory of 
quantum matrices. Turnbull (436) uses 0 for A'. 
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8.15 Differentiation formulae. We collect here the principal formulae of 
differentiation; in each case the operand is x or x' and the dummy subscript is 
omitted except when the meaning is ambiguous without it. To simplify the 
expressions we set a and /3 for the traces of the matrices a and b, and FT for the 
trace of xr.  

Aaxb = a'b = a'xblA, Aax'b = ab = bxlaA 
(94)  

A'axb = ab = bxaA1, A'ax'b = a'b = a'x'bfA' 

A t r  (axb) = A t r  (bax) = arb' 

atr(axb) = ba 

The proofs of these formulae are all very similar and we shall consider here 
only the most important leaving the remainder to the reader. If a = 1 1  aij 11 ,  
b = 1 1  bij 11 ,  then 

hence also 

a'x1b'A' = (Abxa)' = (b'a)' = a%. 

The remaining parts of (94) follow in the same way. I t  follows also from 
(94) that 

and so on; t.he remaining parts of (95) follow from (94) in the same way. 
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To prove (96) we notice first that t r  (ab) = t r  (ba) and hence in t r  (al% . . . a,) 
the factors may be permuted cyclically. Then, if c = I I c;j j 1 ,  

Formula (97) follows by repeated application of (96); thus 

A t r  (xr) = A, t r  (x,xr - 1) + A, t r  (xi - '2) 

= (XI), - + A, t r  (xaxr - 1) + A, t r  (x: - 'x2) 

= (x')r-l  + (xl) '-l  + ... 
= r(xl)' - 1. 

The remaining formulae are proved in the same way. 
If Za,Xr is a scalar power series and j(x) = 2arxr, then from (97) and (98) 

a t r  (f(x)) = Zra,xr - = jl(x) = t r  (a)f(x) 

so that the operators a t r  ( ) and t r  (a) have the same effect on such functions. 

Similarly, if F(x) = Za, {: :), it follows from (99) that 

a t r  (F) = t r  (a)F = z ( r  + s,) 
{ r  " 

8.16 As an illustration of the application of the formulae of the preceding 
section we shall give some parts of the theory of quantum matrices which are 
applicable to matrices of finite order. 

Let ql, 42, . ., qf; pl, . ., p, be the coordinates of a dynamical system and 
@ the Hamiltonian function; these coordinates satisfy the system of ordinary 
partial differential equations 

We may suppose that f = n2, a perfect square; for, if (n - 1)2 < f < n2, we 
can introduce 2(n2 - j )  additional coordinates qj + l, p, + . ., q,,, p,, which 
do not occur in @ so that these variables equated to constants are solutions of 
the extended system. When this is done, we can order the q's and p.'s in square 
arrays ) I  q i j  1 1 ,  1 )  pii I /  in such a way that pij corresponds to qii for all i and j. 
Equation (102) then becomes 

or, if the matrices 1 1  qij 1 1  and I /  p,, I I are denoted by q and p and the corre- 
sponding transverse differential operators by a ,  and a,, 
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If we transform (103) by the substitution 

where w is a constant matrix, we get 

Q = twt(Q + WQ - Q w ) E - ~ ~ ,  p- = ewl(P + WP - Pw)e-wt. 

Also, if t is kept constant, 

t r  (dqa,) = t r  ( E " ~ ~ Q C - " ~ ~ , )  = t r  

with a similar relation for p. Hence 

a q  = € w t a Q ~ - w l l  a, = cwlape-wt. 

Using these results in (103) we get 

(104) (Q + WQ - QW) = ap@, (P  + WP - PW) = -a,@, 

@ being expressed in terms of P and Q and, if necessary, also t. Now from (96) 

Qw - wQ = a,tr [w(PQ - QP)] - (Pw - wP) = a,tr [w(PQ - QP)] 

and hence, if 

(105) R = 4 +, tWPQ - &PI1 = 4 + t r M p q  - qpll, 

we have in place of (103) 

(106) Q = apft, P = -a& 
so that the transformation is canonical. 

If Q = 0 = P in (104), then 

or on restoring the exponential factor 

When 4 is given, these are algebraic equations which can be solved for p and q; 
the solution will of course generally contain arbitrary parameters. 

Under the same assumptions (106) becomes 

and if P, Q are independent variables, the only solution is R = constant and 
the only solution for 4 in (107) then has the form 

apart from an additive constant. Equation (108) may then be written 
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Now, if rl ,  rz, . . ., r, are the parameters in the solution of (107) we have 

which vanishes in virtue of (109). Hence, if @ is expressed in terms of rl ,  
rz, . . . , r, by  using the solutions of ( lo?) ,  i t  will differ by an additive constant 
at  most from - t r  [w(pq - qp)] .  



CHAPTER IX 

THE AUTOMORPHIC TRANSFORMATION O F  A BILINEAR FORM 

9.01 If the variables of a bilinear form whose matrix is u are transformed 
cog'rediently by a matrix x, the matrix of the new bilinear form is x'ax; when 
this new form is identical with the old, the transformation is said to be 
aufomorphic. The problem of finding all automorphic transformations of a is 
therefore equivalent to solving the equation 

We shall assume for the present that I a I # 0 in which case also 1 x 1 # 0. 
I t  follows from (1) that x'a = ax-'. Hence, if f(h) is a scalar polynomial 

In particular, if f(h) = (1 - X ) / ( l  + A) and y = j(x-I), then 

provided I x + 1 I # 0. Hence from (1') y'a = -ay so that 

Conversely, if y satisfies (3) and I 1 - y I # 0, then x = (1 + y)/(l  - y) is a 
solution of (1) such that I x + 1 I # 0. Fbr from (3) j(y')a = aj(- y) so that 

Similarly, if I x - 1 I # 0, we may set x = (1 - y)/(l + y) and then y is a 
solution of (3) such that 1 1 + y I # 0, and conversely. The effect of the trans- 
formation (2) is therefore to  reduce the solution of (I),  which is quadratic in x, 
to that of (3), which is linear in y, except when both 1 and - 1 are roots of x. 
I t  is because (3) is linear that it is more convenient than (1); in particular if we 
regard 

as a system of n2 linear homogeneous equations in the q's, then the rank of the 
system gives the number of parameters which enter into the solution when those 
values of y (or of x) are excluded for which both 1 and - 1 are roots. 

Since the main problem is thus reduced to the solution of linear equations, it 
may be regarded as solved; the solution, however, can be given a somewhat more 
definite form as we shall now show. 

140 
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9.02 The equation y' = aya-I. We shall consider in place of (3) the more 
general equation 

Forming the transverse we get y = Gar-'y'a' or y' = Gafya'-', whence 

so that y is commutative with a-'a'. Now from (4) we have y = Ga-Iy'a and 
hence 

2 y  = y + Ga-'y'a. 

But if b is any matrix commutative with a-la', then 

is a solution of (4) ; for on substituting this value of y we get 

since, as in ( 5 ) ,  afba'-I = aba-'. I t  was noted above that y has this form and it 
therefore follows that the general solution of (3) is odtained by setting 

I t  should be noted, however, that two different values of b may give rise to the 
same value of y. 

9.03 We are now able to give a solution of (1) under the restriction that either 
I x + 1 I # 0 or I x - 1 I # 0. Since the first condition is transformed into the 
second if x is changed into -x, it is sufficient for the present to assume that 
I x + 1 I # 0, and in this case the value of y given by ( 2 )  is finite. In terms of y 
we have 

1 + y 1 + b - a-%'a x = - =  = (a - ab + bfa)-' ( a  + ab - b'a) 
1 - y 1 - b + a-%'a 

or, ir 

then 

(9) 
x = ( a - c ) - ' ( a + c ) ,  1 x + l I # O ,  
x = (c - a)-' ( a  + c ) ,  Ix - 1 I # 0. 

I t  follows as in $9.01 that, if x has this form, i t  is a solution of (1 
In place of (8) we may define c by 

For from (7) and (8) 
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and, if c is given by (10) and x by (9), then 

x' = (a' + c') (a' - c')-I = (a' - ca-'a') (a' + ca-la')-l 
= (I. - ca-l) (1 + ca-')-I = (1 + ca-')-I (1 - ca-l) = a(a + c)-I ( a  - c)a-I 
= ax-10-4. 

If a is symmetric, (8) or (10) gives c' = -c, and c is otherwise arbitrary except 
that I a - c I # 0; in particular if a = 1, (9) reduces to the form of an orthogonal 
matrix already given in 6.03. Similarly if a is skew, (10) shows that c is an 
arbitrary symmetric matrix subject to the condition that 1 a - c I # 0. 

The case in which a is symmetric can also be handled as follo~vs. We can set 
a = b2 where b is symmetric and, if 

equation (1) gives yy' = 1 so that y is orthogonal. Conversely, if y is any 
orthogonal matrix x = byb-I is a solution of (1). 

9.04 Principal idempotent and nilpotent elements. Since x is similar to 
(x')-l, the elementary divisors which correspond to roots other than f 1 occur in 
pairs with reciprocal rodts. If we arrange these roots in pairs g,, g ~ '  and denote 
the corresponding principal idempotent elements by e, and e-,, respectively, we 
may set 

where the ['s are nilpotent, el, e-' are the principal idempotent elements cor- 
responding to 1 and -1, if present as roots, and &,02 are either 0 or 1. The 
form of x-I is then 

and (11) gives 

We require also the form of x + x-I and x - x-l; if 
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we have 

where the elements grouped together are principal elements. 
The principal idempotent elements of x - x-I are also principal idempotent 

elements of x except that roots 1 and -1 of x both give the same root 0 of 
x - x'-l; no root of x other than f 1 leads to the coalescing of roots in x - x-l. 
If we put 

then u is a solution of (4 )  with 6 = 1 and v is a solution with 6 = - 1 ; also 

which has the formal solution 

Here v2 + 1 = u 2  SO that (v2 + 1)i exists whenever x is a solution of ( I ) .  Con- 
versely, if vl is any solution of ( 4 )  with 6 = - 1 and if ul is a determination of 
(v: + l ) i  such that 

then x is n solution of ( 1 ) ;  for 
I 

X'U = v1a + u i a  = -avl + aul = ax-' 

since 

(u1 + v1) (u1 - v1) = u :  - v:  = 1. 

If v2 + 1 has no zero root, determinations of (v2 + I ) +  always exist which are 
polynomials in v2 and therefore satisfy (21) ;  but even in this case this does not 
give all solutions. The situation is as follows. The general form of v is given 
by (17) if we replace g, - 9;' by, say, 2kr and 816~ - 826-1 by 60.  When k ,  is 
given, then g ,  is determined; from (13) and (14) we have ( 6 :  + 61,)~ = a(6, + 
6-,) and therefore, if k: + 1 + 0 ,  the part of (vZ + l ) i  corresponding to e ,  + e - ,  
exists and satisfies (21) ;  we therefore get all valid expressions for this part of 
( v 2  + 1)h by using the forrn of the square root given in $8.05 with the restriction 
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that the oqly sets of partial units that may be used are those that satisfy (21). 
However, since (v2 + I)+ = U,  (16) and (17) show that we need only use the 
idempotent elements e, + e-,, which are determined by v, in those parts of the 
square root which do not depend on the zero root of v;  el and e +  however, are 
not defined by v so that it is necessary in any particular case to consider how eo 
and 6 0  can be broken up into parts which have the required property. 

If v has a zero root with the principal idempotent and nilpotent parts eo, 60,  

then eZ = e shows that, although bia = -a&, we have 

We therefore seek to divide eo intodwo idempotent parts, el and e-l, which are 
commutative with v and therefore with 60. In  forming the square root we then 
attach the value + 1 to el and - 1 to e-l. 

If k:  -k 1 = 0, then g, = i and the corresponding part of (v2 + 1)) is 2i(6, + 
6-,) + 62, + 6;) and i t  is readily shown from (15) that this has a square root. 
The details are left to the reader. 

If b is a solution of b'a = -ab, then so are also t = tan b and v = tan 2b. A 
short calculation then gives x = (1 + t)/(l  - t) subject to the restrictions 
already given; this shows the relations between the rational and irrational 
solutions. 

9.05 The exponential solution. Some of the difficulties of the solution in 
$9.04 can be avoided by setting 

(22) x = exp(z) = ez, z = Log x 

where a principal determination of log x is to be used. Since this determination 
of log x is a polynomial in x and x'ax = a, we have 

(23) Z' = Log x' = Log ax-la-' = a(Log x-')a-1 

and therefore 

From (1 1) 

e: = ae-,a-l, = - aq-8 a-I (s = T, -T), 
(26) 

e : = ae, a-l, q: = -aqna-' (s = 1, -1). 
Hence 
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and therefore, if we set 

we have 

and 

The general value of x  can therefore be expressed in terms of the solution of the 
equation discussed in i9.02.  

If we now start with w as a solution of (28) and define x  by x = c w ,  then 

and therefore x  is a solution of ( I ) ;  to  obtain every solution, however, we must 
add the terms ail to w. 

If eo is the principal idempotent element corresponding to the root 0, then 
(29) shows that the presence of the (-term depends on the division of eo into two 
parts el and e-l which satisfy the second set of equations in (26) ; and correspond- 
ing to these we have nilpotent parts ql and q-I which give rise to 1 and - 1 ,  
respectively, as roots of x ,  or 0, Ti as roots of z .  

A form which gives rational parameters is obtained from the exponential 
solution as follows. Let 

(30) 
e Z - 1  x - 1  -- t = tanh ( z / 2 )  = - - 
c z + l  x + l  

then 

and 

so that (31) gives a solution of ( I ) .  If, however, I x  + 1 I = 0, then t becomes 
infinite so that (31) cannot give directly any x  which has - 1  as a root. This 
difficulty arises from t'he fact that tanh(O/2) + when 6 --) Ti; but, since (t + 1 j 
(t - 1 )  = c 2  for a11 values of t  which do not have an infinite root', that  is, one 
corresponding to a root (2k  + 1 ) ~ i  of z ,  hence x will be a solution of ( 1 )  so long 
as the coordinates of z are cont,inuous functions of the parameters involved 
and the limiting value of x  is finite and determinate. 

9.06 Matrices which admit a given transformation. In ( 1 )  we may regard x  
as given and a as unknown; the problem then is to find all matrices a  such that 

(32)  x l a x  = a .  
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If we associate with a = I I aii I I the corresponding tensor of grade 2, 

we see immediately that (23) corresponds to setting (cf. $5.10) 

Hence there is a solution if, and only if, x has a t  least one pair of reciprocal roots; 
in this case I12(x) has one or more roots equal to 1 and the various invariant 
elements corresponding to this root give a linearly independent set of determina- 
tions of a. 

When i t  is required that I a I Z 0, another form of solution is preferable. In 
this case x' = az-la-'; but, since x and x' are similar, we also have x' = pxp-l, 
where, if pl is one determination of p, the general form is 

Hence it is necessary that z-' be similar to x, say 

which gives immediately 

Conversely, if pl, b, and ql satisfy the given conditions, i t  follows immediately 
that (36) gives a solution of (32). 



CHAPTER X 

LINEAR ASSOCIATIVE ALGEBRAS 

10.01 Fields and algebras. A set of elements which are subject to the laws 
of ordinary rational algebra is called a field. We may make this idea more 
precise as follows. Let a ,  b, . - be a set of entities, F, which are subject to two 
operations, addition and multiplication; this set is called a field if it satisfies the 
following p~s tu l a t e s :~  

Al .  a + b is a uniquely determined element of F. 
A2. a + b =  b + a .  
A3: ( a +  b) + c  = a +  ( b + c ) .  
A4. There is a unique element 0 in F such that a + 0 = a for every element a 

in 8'. 
A5. For every element a in F there exists a unique element b in F such 

that a + b = 0. 
M1. ab is a unique element of F. 
M2. ab = ba. 
M3. ab.c = a.bc. 
M4. There is a unique element 1 in F such that a,l = a for every a in F. 
M5.  For every element a # 0 in F there exists a unique element b in F such 

that ab = 1. 
AM. a(b  + c )  = ab + ac, (b  + c)a  = ba + ca. 
R. If m is a whole number and m a  denotes the element which results from 

adding together m a's, then m a  # 0 for any m > 0 provided that a # 0. 
If M2 is omitted the resulting set is said to be a division algebra. This does not 

imply that M2 does not hold, only that i t  is not presupposed: if it does hold, 
the algebra is said t,o be commutative. If M2, 4, 5 are all omitted, the cor- 
responding set is called an associative algebra. If the algebra contains an identity, 
that is, an element si~tisfying the condition laid down in M4 for 1, this element is 
called the principal unit  of the algebra. Postulate R is included merely as a 
matter of convenience; its effect is to exclude modular fields. In consequence 
of R every field which we shall consider contains2 the field of rational numbers 
as a subset. 

As an example of a field we may take the field of rational numbers extended 
by a cube root of unity, w = (- 1 + 4 - 3 ) / 2 .  Every number of this field can 
be put in the form 

a = a + B w  = d + B w  

These postulates are not independent; they are formed so as to show the principal 
properties of the set. In place of M5 it  is often convenient to take: M5' If a f 0, az = 0 
implies z = 0. 

2 Strictly speaking, we should say that  the field contains a subset simply isomorphic with 
the field R of rational numbers. This subset is then used in place of R in the same way as 
scalars are replaced by scalar matrices in $1.04. 

147 
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where a and j9 are rational numbers; the form of a is unique since a + f i  = 
y + 60 gives (B - 6) w = y - a and, since w is not rational, this is impossible 
unless j9 - 6 = 0 = y - a. We say that 1, w is a basis of F relative to the field 
R of rational numbers, and F is said to be a field of order 2 over R. 

As an example of an associative algebra we may take the algebra of matrices 
with rational coordinates. Here any element a of the algebra can be put 
uniquely in the form a = Z;aiieii, where the aii are rational numbers; and 
eij(i, j = 1, 2, . . . , n) form a basis of the algebra, which is of order n2. We 
also have an algebra if the coordinates aii are taken to be any elements of the 
field F = (1, w) described above. This algebra is one of order n2 over F. 
Instead of regarding it as an algebra over F we may clearly look on it as an 
algebra of order 2n2 over R the basis being eii, weii(i, j = 1, 2, . . . , n). 

10.02 Algebras which have a Gnite basis. Let A be a set of element6 which 
form an associative algebra and G a subset which is also an algebra. We shall 
say that all a,, . . , a, form a basis of A relatively to G if (i) each ai lies in A, 
(ii) if every element of A can be put uniquely in the form 

where the y's belong to G. Though it is not altogether necessary to do so, we 
shall restrict ourselves to the case in which G is a field which contains the rational 
field, that is, we assume as a postulate: 

BR. For every algebra A under consideration there exists a non-modular 
field F and a subset of elements al, al, . . , a, such that (i) every element of A 
can be put uniquely in the form 

and (ii) every element of this form belongs to A ;  and further the elements ~f F 
are commutative with alp a2, - . . a,. 

Since the product of any two elements of A is also an element of A and can 
therefore be expressed in the form (I), we have 

where yijk are elements of F. Since the law of combination of the elements of F 
is supposed known, (2) defines the product of any two elements of A ;  for 

If the values of the y's are assigned arbitrarily in F, it is readily shown that the 
only postulate which is possibly violated is M3 which states that ab.c = a .  bc; 
and in order that this condition shall be satisfied it is necessary and sufficient 
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that aimaiak = a,aj.ak for all the elements of the basis. This gives immediately 
the 'associativity' condition 

(4 )  Y+aYial = x YiiaTak~ (i, j, k ,  1 = 1, 2,  . . a  , n). 
a a 

10.03 The matric representation of an algebra. If we set 

the law of multiplication for matrices gives 

and therefore from (4) 

Hence the set of matrices of the form ZaiA i is isomorphic with the given algebra 
in regard to both addition and multiplication. Further, if the algebra contains 
the identity, the isomorphism is simple; for, if there exist elements ai of the field 
such that ZaiAi  = 0, it follows that 

for every element x of the algebra, and putting x = 1 we get Zrviai = 0. 
If the algebra does not have a principal unit, all that is necessary is to replace 

(5)  by 

where Ti, j ,  n+l = 0 (i, j 2 n) and vn+l,i, j = 6 i j  = ~ i ,  n+l, j for all i and j. 
The importance of this representation is that it enables us to carry over the 

theory of the characteristic and reduced equations from the theory of matrices. 
The main theorem is as follows. 

THEOREM 1. The general element x = Z&ai satisfies a n  equation ojthe f o m  

where bp i s  a rational homogeneous polynomial in the ['s of degree p; and i f  the 
variable coordinates [, are given particuhr values in F,  there exists a rational 
polynomial 

such that (i) p(x)  = 0, (ii) i f+@) i s  any polynomial with coeficients i n  F such that 
#(x) = 0, then cp(A) i s  a factor of+@). . 
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This theorem follows immediately from the theory of the reduced equation 
as given in $2.05 and from the fact that the equation which is satisfied by the 
general element must clearly be homogcneous in the coordinates of that element. 

As in the theory of matrices, -bl  is called the trace of z and is written tr(z). 
The trace is linear and homogeneous in the coordinates and hence tr(x + y) = 
tr(z> + tr(y). 

10.04 The calculus of complexes. If xl, zz, . - - , x, are any elements of an 
algebra A in a field F, the set B of all elements of the form Z t a i  (ti in F) is 
called a complez? or linear set. Any subset B of A which has the property that, 
when s, y are any two of its elements, then Ex + +y is also an element of the set 
is a complex. This follows readily from the theory of linear dependence and the 
existence of a finite basis for A; it is also easily shown that any subcomplex of A 
has a finite basis; the order of this basis is called the order of the complex. 

We shall write B = (XI, 22,  . . . , z,); this does not imply that the x's are 
necessarily linearly independent. If C = (yl, yz, . . . , y,) is a second complex, 
the sum of B and C is d e h e d  by 

B + C = (~1,  XZ, . . . , ~ r ,  YIP YZ, ' ' . , pa), 

that is, B + C is the set of all elements of the form z + y where z lies in B and 
y in C. Similarly the product is defined by 

BC = (ziyi:i = 1, 2, , r ; j  = 1, 2, ... , s). 
The set of elements common to B and C forms a complex called the intersection 
of B and C; it is denoted by B n C. If B and dhave no4 common element, we 
write B C = 0. If every element of C lies in B but not every element of 
B in C, we shall write C < B; in this case B + C = B. A complex of order 1 is 
defined by a single element, say zl, and for most purposes it is convenient to 
denote the complex (zl) simply by XI; zl < B then means that XI is an element 
of B. 

If a complex B is an algebra, the product of any two of its elements lies in B 
and hence BZ < B; conversely, if this condition is satisfied, the definition of the 
product BB = B2 shows that B is an algebra. 

We add a summary of the properties of the symbols introduced in this section. 

B + C = C + B ,  ( B + C ) + D = B + ( C + D ) ,  B C - D = B . C D ,  
B n C = C n B ,  ( B , C ) n  D =  B n  ( C A D ) ,  
B(C + D) = BC + BD, (C + D) B = CB + DB, 
B + ( C n D ) S ( B + C ) n ( B + D ) ,  B ( C n D ) S B C * B D .  

The term 'complex,' which war, introduced by Frobenius in the theory of groups, ia 
more convenient than 'linear set' and no confusion is likely to arise between this meaning 
of the term and the one used in geometry. 

4 To avoid circumlocution we say the complexes have 'no element in common' in place 
of the more correct phrase 'no element in common except 0.' 
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If B I C, then B + C = C, and conversely. 
If B < C, there exists D < C such that C = B + D, B D = 0. 
If B = C + D and C n D = 0, we shall say that B is congruent to C modulo 

D, or 
B = C (mod D);  

and if b, c, d are elements of B, C, D, respectively, such that b = c + dl then 

b = c (mod D), c = b (mod D). 

10.05 The direct sum and product. If A = (al, an, . . . , a,) and B = (b,, 
bz, . . . , bs) are associative algebras of orders a, /3, respectively, over the same 
field F ,  we can define a new algebra in terms of lhem as follows. Let C be the 
set of all pairs of elements (a, b) where a < A and b < B and two pairs (a, b), 
(a', b') are regarded as equal if, and only if, a = a', b = b'. If we define addition 
and multiplication by 

(0, b) + (a', b') = (a + a', b + b') 
(9) (a, 6) (a', b') = (aa', bb') 

[(a, b )  = ([a, fb) (5 in F ) ,  

it is readily shown that the set C forms an associative algebra. ?;his algebra 
is called the direct sum of A and B and is denoted by A O B;  its order is a + 8. 

The set B of all elements of the form (a, 0) forms an algebra which is simply 
isomorphic with A, and the set 23 of elements (0, 6) forms an algebra which is 
simply isomorphic with B;  also 

In consequence of this it is generally convenient to say that C is the direct sum 
of B and 9. 

If we replace (9) by 

(9') [(a, b) = ([a, b) = (a1 5b) (5 in F )  
(a, b) (a', b') = (aa', bb'), 

we get another type of algebra of order afi which is called the direct product 
of A and B and is denoted by A @ B or by A X B when there is no chance of 
confusion. If both A and B contain the identity, the set B of elements of the 
form (a, 1) forms an algebra simply isomorphic with A and the set 23 of elements 
(1, b) is an algebra simply isomorphic with B; also6 

and the order of C is the product of the orders of B and 23. As in the case of 
the direct sum it is convenient to say that A is the direct product of B and 23 
and to indicate this by writing C = U X 23. 

Strictly speaking we should use different symbols here for the identity elements of the 
separate algebras. 
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The following theorem gives an instance of the direct product which we shall 
require later. 

THEOREM 2. I f  an algebra A, which contains the identity, contains also the matric 
algebra M (ei j ;  i, j = 1 ,2 ,  . . . , n), the identity being the same for A and M ,  then A 
can be ezpressed as the direct product of M and another algebra B. 

Let B be the set of elements of A which are commutative with every element 
of M ;  these elements form an algebra since, if biep9 = eP& ( i  = 1 ,2 ,  . . - ), then 
also 

Further B ,-, M is the field F, since scalars are the only elements of M which are 
commutative with every element of M. 

If x is any element of A and 

then 

so that xpq  belongs to B. Also 

so that A = B M ,  which proves the theorem. 

10.06 Invariant subalgebras. If B is a subalgebra of A such that 

then B is called an invariant subalgebra of A. If we set 

the product of any two elements ci, ci  of C lies in A and hence 

If we now introduce a new operation X defined by 

then the operations + and X, when used to combine elements of C ,  satisfy all the 
postulates for an associative algebra. To prove this we need only consider the 
associativity postulate M3 since the proofs of the others are immediate. If 
C I ,  c2, c3 are any elements of C ,  then both C I  X (c2 X c3) and (CI X c2) X ca differ 
by an element of B from c1c2c3; their difference is therefore an element of both B 
and C and hence is 0 

The elements of C therefore form an associative algebra relatively to the 
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operations + and X. When this algebra is considered abstractly, the operation 
X may be called multiplication; the resulting algebra is called the diference 
algebra of A and B and is denoted by (A - B). 

The difference algebra may also be defined as follows. Let bl, bz, . . , bs 
be a basis of B and cl, c2, . . , c, a basis of C, so that bl, b2, . , bs, cl, - . . , c, 
is a basis of A. Since A is an algebra, the product c,cj can be expressed in terms 
of this basis and we may therefore set 

The argument used above then shows that 

defines an associative algebra when B is invariant. 
I t  is readily seen that the form of the difference algebra is independent of the 

particular complex C which is used to supplement B in A. For if A = B + P, 
B , P = 0, it follows that to an element p of P there corresponds an element c 
of C such that p - c < B; and we may therefore choose a basis for P for which 

and the algebra derived from this in the same way as (13) is from (12) is ab- 
stractly the same as before. 

If the algebra A does not contain the identity, i,t may happen that A2 < A, 
Aa < A2, and so on. Since the basis of A is finite, we must however have a t  
some stage 

the integer m is then called the index of A. The motit interesting case is when 
Am = 0; the algebra is then said to be nilpotent. 

When N1 and Nz are nilpotent subalgebras of A which are also invariant, , 

then N1 + Nz is a nilpotent invariant subalgebra of A.  This is shown as 
follows. Let ml, mz be the indices of N1 and Nz respectively; N3 = N1 - Nz 
is nilpotent and, since N T  I N;"I = 0, its index m, is not greater than ml. Now 

since it follows from the invariance of N1 and N2 that NINz and N2Nl are con- 
tained in both N1 and N2 and therefore in N3. Similarly 
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so that, if m is the greater of ml and mz, 

and hence N1 + Nz is a nilpotent subalgebra. Further 

so that N1 + N2 is invariant. It follows that the totality of all nilpotent 
invariant subalgebras is itself a nilpotent invariant subalgebra; this algebra is 
called the maximal nilpotent invariant subalgebra or radical of A. 

An algebra A which is not nilpotent and which has no radical is said to be 
semi-simple; if in addition it  has no invariant subalgebra, it is said to be simple.6 
We have then the following theorem whose proof we leave to the reader. 

THEOREM 3. If N is the radical of a non-nilpotent algebra A*, then (A - N) is 
semi-simple. 

10.07 Idempotent elements. In the preceding section we defined a nilpotent 
algebra of index m as one for which Am = 0, Am+ # 0. An immediate con- 
sequence of this definition is that every element of a nilpotent algebra is nil- 
potent; we shall now prove the converse by showing that, if A is not nilpotent, 
it contains an idempotent element. 

THEORFM 4. Every algebra which is not nilpotent contains an idempotent element. 

Let A = (al, az, , a,) be an algebra of order a. If aA = A for some 
element a in A, then ax = 0 only when x = 0; for aA = A implies that aal, 
ma, . . , aa, is a basis, which means that there is no relation of the form 

except when every ti = 0. Also, if aA = A, there must be an element e in A 
such that ae = a;  this gives aeg = ae or a(e2 - e) = 0 and hence e2 = e. 

The theorem is true of algebras of order 1 ; assume it true for algebras of order 
less than a. If a,A = A for some ail the theorem has just been shown to hold. 
If a,A < A for every ai in the basis of A, then, since (U,:A)~ = aiAa,A 5 a,A, 
either aiA contains an idempotent element or, being of order less than a, it is 
nilpotent. Now (Aa,A)r 5 A(a,A)? and therefore Aa,A is also nilpotent; but 

so that Aa,A is invariant and being nilpotent is contained in the radical N of A. 
Hence 

8 Simple algebras are usually excluded from the class of semi-simple algebras; it seems 
more convenient however to include them. 

The statement that A is not nilpotent is made in order to exclude the algebra of order 1 
defined by a single element whose square is 0. 
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so that A3, and therefore also A, is nilpotent, contrary to the hypothesis of the 
theorem. I t  follows that some aiA is not nilpotent and being of lower order 
than A contains an idempotent element by assumption. The theorem is there- 
fore proved. 

The following lemma is an  immediate consequence of Theorem 4. 

LEMMA 1. A non-nilpotent algebra cannot have a basis every element of which is 
nilpotent, nor a basis for which the trace of every element is 0. 

For, if every element of the basis is nilpotent, t,he trace of every element of the 
algebra is 0 whereas the trace of an idempotent elenlent is not 0 since the only 
roots of its characteristic equation are 0 and 1. 

If e is the only idempotent element in eAe, it is said to be primitive. An 
algebra which ie  not nupotent contains a t  least one primitive idempotent 
element. For, if eAe contains an idempotent element el # e, then el(e - el) = 0 
so that eleAeel does not contain e - el and is therefore of lower order than eAe; 
since the order of eAe 1s finite, a succession of such steps must lead to a primitive 
idempotent element. 

THEOREM 4.5. A simple algebra has a principal unit. 

If A is not nilpotent, it contaiqs an idempotent element e. If a is any element 
of A, we may set a = al + a2 where 

al = ea + ae - eae < eil + Ae, az = a - al, eaz = 0 = aze. 

We can therefore find a complex Al such that 

If A l  1s not nilpotent, it contains an idempotent element e' and e + e' is also 
idempotent since ee' = 0 = e'e. We can therefore take e + e' in place of e so re- 
ducing the order of A1, and after a finite number of such steps we arrive a t  a 
stage a t  which A1 contains no idempotent element and is therefore nilpotent; 
we shall now assume that e was chosen a t  the strlrt so that Al is nilpotent; we 
shall also assume that e is not an identit,y for A and there is no real loss of 
generality in assuming in addition that it is not a left-hand identity. 

Let r be the index of A1. If r > 1 and x # 0 is any element of A;-' then 
xAl = 0 = Alx, ex = 0; if r = I ,  then A1 = 0 and since e is not a left-hand 
identity, e 5 eA < A so that there is an x # 0 such that ex = 0; we have there- 
fore in both cases 

We now have Ax = eAx, AxA = eAxA; hence Ax < A, AXA ( A and AxA is 
therefore an invariant subalgebra of A;  if AxA = 0, then Ax is invariant and 
not equal to A;  if Ax = 0, then XA is a proper invariant subalgebra unless it is 0 
in which case X = {x]  is a non-zero invariant subalgebra of A. In the case of a 
simple algebra it follows that e is an identity. 
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Corollary. An algebra without a principal unit is not semi-simple. For 
 AX)^ = AxAx = AxeAx = 0 if Al # 0. 

10.08 Matric subalgebras. Let A be an algebra which contains the identity 
and let el be a primitive idempotent element; then e, = 1 - el is also idempotent 
and, if e,Aei is denoted by Aii, then 

A = (el + e,)A(el + e,) = A11 + A1, + A,1 + A,,. 

Suppose in the first place that AalA1, is not nilpotent; there is then some alz < 
Al, such that AQlecl~, which is an algebra, is not nilpotent since otherwise AQ1AI, 
would have a basis of nilpotent elements, which is imppssible by Lemma 1 ; hence 
some such Aalalz contains an idempotent element, say ez = azla12. If ez is not 
primitive in A, say ez = e' + b", e'e" = 0 = eve', where e' is primitive in A, 
then alze' f 0 since otherwise 

also e' < A,, since 0 = elen = ele' + eleV so that eleV = -elef and therefore 

and similarly efel = 0; we m.ay therefore take a:, = alzef and a:, = elazl in place 
of alz and azl, which gives e' in place of ez. We can therefore assume alz so chosen 
that ez is primitive in A;  also, since ezazlalzez = ei = ez, then, replacing an1 by 
ezazl, if necessary, we may assume ezazl = azl and similarly alzez = a12. 

The element a12azl is not 0 since 

and i t  is idempotent since 

But alzazl 5 A1,AQ1 5 All and, since el is primitive, it follows that alzazl = el. 
For the sake of symmetry we now put all = el, az2 = ez, and we then have a 
matric subalgebra of A, namely all, alz, anl, a22. 

Since Aal(AlaA,l)rA1, = (A,lAla)r+ll it follows that A1,A,l and A,lAl, are 
either both nilpotent or both not nilpotent. Suppose that both are nilpotent; 
then, since their product in either order is 0, their sum is nilpotent and, because 
(Al, + A,J2 = A1,A,1 + AalA1,, it follows that 

N1 = A], + Aa1 + AlaAal + Aa1A1a 
is nilpotent. Now 

since AijA,, = 0 (p # j), AiiAiq 5 Aiq. Similarly NIA < NI. Hence N1 lies 
in the radical of A. 
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Suppose that we have found a matric subalgebra a i j  (i, j = 1, 2, . . , r - 1) 
such that ei = aii (i = 1,2,  . , r - 1 )  are primitive idempotent elements of A ;  

r-1 

let e. = 1 - C ei and set A i i  = e,Aei as before. Suppose further that A d i a  
1 

is not nilpotent for some i; we may then take i = 1 without loss of generality. 
By the argument used above there then exists a primitive idempot,ent element 
e, = a,, < A.IAI, and elements a,, < A.1, alr < A l a  such that 

a,lal, = a,,, al,a,l = all, 
a,,arl = a,l, al,arr = al,. 

If we set 

then air # 0 since ali air = al,, and aii (i, j = 1,2, . . , r )  form a matric algebra 
of higher order than before. 

Again, if every A,iAi, is nilpotent, it follows as above that each Ai,Aai is also 
nilpotent and hence 

having a nilpotent basis, is itself nilpotent; and it is readily seen as before that 
it is invariant and therefore belongs to the radical of A .  

We can now treat A ,, in the same way as A ,  and by doing so we derive a set of 
matric algebras Mp(aPi; i, j = 1, 2, . . , r,) with the identity elements 

such that Zap = 1;  also 

is contained in the radical N of A.  We have therefore the following Lemma. 

LEMMA 2. If A is  an algebra with an identity, there exists a set of matric sub- 
algebras M p  = (upj;  i, j = 1, 2, . . . , r,) with the principal units 

such that apa, = 0 ( p  # q )  ar;d Zap = 1, and such that 

lies zn the  radical N ojA. Further each a f i  i s  a primitive idempotent element of A. 
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Corollary. Bk = akAak + N' i s  a n  invariant subalgebra of A. For 

10.09 We shall now aonsider the properties of the algebras a J a ,  where a, 
( p  = 1,2,  , k) are the idempotent elements defined in Lemma 2. 

LEMMA 3. a J a ,  i s  the dzrect product of M ,  and a n  algebra B ,  zn which the 
principal uni t  i s  the only idempotent element. 

The first part of this lemma is merely a particular case of Theorem 2. That 
B, contains only one idempotent element is seen as follows. If e is a primitive 
idempotent element of B,, then af le  and a f , (a ,  - e) are distinct and, if not zero, 
are idempotent and lie in a y l A a f l ;  but this algebra contains only one idempotent 
element since a:, is primitive; hence ay,(a, - e)  = 0, and therefore e = a ,  is 
the only idempotent element in B,. 

LEMMA 4. I f  B i s  a n  algebra whose principal unit  1 i s  i ts  only idempotent element, 
any  element of B which i s  singular7 i s  nilpotent; and the totality of such elements 
forms the rpdical of B .  

The proof of the first statement is immediate; for, if a is singular, the algebra 
{a ]  generated by a does not contain the principal unit and, since B contains no 
other idempotent element, a is nilpotent by Theorem 4. To prove the second 
part, let x and y be nilpotent but z = x + y non-singular; then 1 = z-lx + 
z-'y = xl + yl. Here 21 and yl are singular and therefore nilpotent. If m is the 
index of xl ,  then 

and this is impossible since yl = 1 - xl is nilpotent. Hence z is also nilpotent 
and the totality of nilpotent elements forms an algebra; and this algebra is 
invariant since the product of any element of B into a nilpotent element is 
singular and therefore nilpotent. I t  follows that B is a division algebra whenever 
i t  has no radical, that is, when it is semi-simple. 

10.10 The classification of algebras. We shall now prove the main theorem 
regarding the classification of algebras in a given field F. 

THEOREM 5. (i) A n y  algebra which contains a n  identity can. be expressed in the 
form 

(14) A = S + N  

An element of B is singular in  B if it does not have an inverse relatively to the principal 
idempotent element of B. 
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where N is the radical of A and S is a semi-simple subalgebra;-S is not necessarily 
unique but any two determ.inations of it are simply isomorphic. 

(ii) A semi-simple algebra can be expressed uniquely as the direct sum of simple 
algebras. 

(iii) A simple algebra ca:h be expressed as the direct product of a division algebra 
D and a simple matric algebra M; these are not necessarily unique but, if Dl, MI, 
D2, Ma  are any two determinations of D and M, then Dl N 0 2 ,  M1 N M2. 

We have seen in Lemma 2 that A = ZaJa, + N', where N' _< N, and also in 
Lemmas 3 , 4  that aJa, = M, X B,, where M, is a.simple matri'c algebra. The 
first part of the theorem therefore follows for A when it is proved for any algebra 
like B, and when it is shown that the direct product of M, by a division algebra 
is simple; for, if B, = D, + N,, then D, is a division algebra and 

a&a, = Mp X Dp + M p  X N,, MpNp 5 N. 

If the field F is one in which every equation has a root, the field itself is 
clearly the only division algebra and hence M a ,  = M,; in this case part (i) is 
already proved. Further, the theorem is trivial for algebras of order 1; we may, 
therefore, as  a basis for a proof by induction assume it is true for algebras of 
order less than the order a of A .  

If the field F is extended to F(E) by the adjunction of an algebraic irrationality 
of degree p + 1, we get in place of A an algebra A' = A(E) which has the same 

basis as A but which contains elements whose coordinates lie in F(5) but not 
necessarily in F ;  all elements of A are also elements of A'. Regarding A' we 
have the following important lemma. 

LEMMA 5. If N is the radical of A, the radical of A' = A(E) is N' = N([). 

Let A = C + N ,  C N = 0, and let the radical of A' be N";  then clearly 
N 2 N'. If N1' > N', there is an element of N"  of the form 

Since c" is nilpotent, 

and since tr(co), tr(cl), . . are rational in F, each is separately 0. But, if a,, a2 
are arbitrary elements in A, 

lies in N "  and, since each alciaz is rational in F, the trace of each is 0 as above. 
Hence the trace of every element in AcoA is 0 from which it follows by Lemma 1 
that AcoA is nilpotent and being invariant and also rational it must lie in N (cf. 
510.06). But AcoA contains co since A contains I whereas C - N = 0; hence no 
elements of N "  such as c" exist and the lemma is therefore true. 

We may also note that, if B, C are complexes for which B n C = 0, and B', C' 
the corresponding complexes in A', then also B' n C' = 0. 
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Suppose now that the identity is the only idempotent element of A and that 
the first part of the theorem is true for algebras of order less than a. Let a # 1 
be an element of A corresponding to an element d of (A - N) and let j(X) be 
the reduced characteristic function of a; f(X) is irreducible in F since (A - N) 
is a division algebra. Since j(d) = 0, it follows that j(a) < N and hence, if r 
is the index of j(a), the reduced characteristic function of a is [j(A)Ir. If we 
adjoin to F a root [ of f(X), this polynomial becomes reducible so that in A' = 
A([) the difference algebra (A' - N') is no longer a division algebra though by 
Lemma 5 it is still semi-simple. If we now carry out in F ( [ )  the reduction given 
in Lemma 2, say 

A' = ZepAtep + N*, 

either the algebras ed'e, are all of lower order than a, or, if A' = elAtel, then it 
contains a matric algebra M' of order n2 (n > 1) and, if we. set A' = M'B', as 
previously, B' is of lower order than a. In all cases, therefore, part (i) of the 
theorem follows for algebras in F ( [ )  of order a when it is true for algebras of 
order less than a, and its truth in that case is assumed under the hypothesis of 
the induction. 

We may now assume 

A = C + N ,  C n N  = 0 ,  
A' = S' + N', S' N' = 0, 

where St is an algebra simply isomorphic with (A' - N'); N' has a rational 
basis, namely that of N (cf. Lemma 5). 

If cl, c2, . . - is a basis of C then, since A is contained in A' we have 

and, since C fi  N = 0 implies C' n N' = 0, i t  follows that s:, s:, - .  form a 
baeis of St, that is, we may choose a basis for St in which the elements have the 
form 

where cc nio, . . . are rational in F. Moreover, since C Is only determined 
modulo N, we may suppose it modified so that na is absorbed in c i ;  we then 
have a basis for St 

When the basis is so chosen, the law of multiplication in St, say 

has constants oiik which are rational in F; for s :  = ci mod N' and c, is rational. 
If we now replace s: in (16) by its value from (15) and expand, we have 
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bu,t n : n ]  < (N ' )2  and therefore 

a relation which is only possible if the coefficients of corresponding powers of [ 
are also equivalent modulo (N ' )2  and in particular 

cici = 20. .  ,,kck mod (N' )2 .  

Consequently the algebra A ,  generated by ci (i = 1, 2, . . . , u )  contains no 
element of N whioh is not also in N 2  and hence, except in the tri,vial case in which 
N = 0 ,  the order of A l  is less than a. By hypothesis we can therefore choose C 
rationally in such a way that c,cj = Zuijkck, that is, such that C is an algebra; 
part (i) of the theorem therefore follows by induction. 

10.11 For the proof of part (ii) we require the following lemmas. 

LEMMA 6.  If A contains the identity 1 and i j  B i s  an invariant subalgebra which 
has a principal unit el then 

A = B $ (1  - e ) A ( l  - e). 

Since e is the principal unit of B, which is invariant, eAe = B; also e A ( l  - e) 
and ( 1  - e)Ae are both 0 since Ae and e A  lie in B and, if b is any element of B, 
then(1 - e)b = b - b = O,b(l  - e) = b -b = 0;hence 

(17) A = eAe + (1  - e)  A ( l  -- e) ,  e A e ,  (1  - e) A ( l  - e) = 0. 

Further eAe.  ( 1  - e) A ( l  - e) = 0 = (1  - 6 )  A ( l  - e) .eAe, so that the sum in 
(17) is a direct sum. 

LEMMA 7 .  Every invariant subalgebra B of a semi-simple algebra A i s  semi- 
simple and therefore contains a principal unit. 

Suppose that B has a radical N ; then 

A N  I B, ( A N ) 2  = A N A - N  5 B N  5 N 
so that A N  is nilpotent. But, since A 2  = A ,  we have ( A N A ) I  = ( A N ) ? A ;  
hence A N A  is a nilpotent invariant subalgebra of A which, since A contains an 
identity, is not 0 unless N is 0. But -4 has no radical; hence N = 0 and B also 
has no radical. 

In consequence of these lemmas a simple algebra is irreducible and a semi- 
simple algebra which is not also simple can be expressed as the direct sum of 
simple algebras. Let 

A = B 1 @  B o @  @ B p =  C 1 @ C 2 @  " -  @ C p -  

be two expressions of A as the direct sum of simple algebras and let the principal 
units of Bi and Ci be bi and ci respectively; then 1 = Zbi = Zci. We then 
have Ck I Zb;Ckbj 5 Ck and therefore 

Ck = ZbiCkbi = ZbsCkbi 



162 LINEAR ASSOCIATIVE ALGEBRAS [ X I  

since when i # j then biCkb 5 Bi n B = 0 and b iC~b i .  biCkb = 0. If b;Ckbi # 
0, it is an invariant subalgebra of Ck and, since the ,latter is simple, we ,have 
biCibi = Ck for this value of i and all other bjCkbj equal 0, and therefore Ck = 
biAbi = B;. The second part of the theorem is t'herefore proved. 

10.12 We shall now prove part (iii) of Theorem 5 in two stages. 

LEMMA 8. Ij D i s  a division algebra and M the matric algebra (e,,; i, j = 1,  2, 
. . . , m),  and i f  D X M = DM, then DM i s  simple. 

Let B be a proper invariant subalgebra of A = DM. If x is an element of B, 
then there exists an element y of A such that r y  = 0, since otherwise we should 
have B 2 X A  = A, in other words, every element of B is singular in A and 
hence B , D = 0. But 

x = B d , , e , , ,  d , , < D  

and d i ,  = 2 e,ixejp and is therefore contained in B as well as in D. Since 

B , D = 0, every d i j  = 0, that is, x = 0 so that B = 0. I t  follows immediately 
from Lemma 2 that a simple algebra always has the form D X M, and also that 

LEMMA 9. I n  a simple algebra all primitive idempotent elements are similar. 

Let e and a be primitive idempotent elements of a simple algebra A .  We can 
then find a matric algebra M = (e i j )  for which ell = e and such that A = D X M, 
where D is a division algebra. If ea = 0 = ae, we can a t  the same time choose 
ez2 = a ;  and ezz = uellu-1 where 

so that the, lemma is true in this case, and we may therefore assume that, say, 
ea # 0. 

Suppose now that eae -# 0. Since A = D X M, we can express a in the form 
Zai  jei j (a; < D), where all Z O since eae = allel l .  We have then 

and hence b = a,:ea is idempotent. We then have 

also ab = aba = abab and, since a is primitive, either aba - a or aba = 0;  but 

eabe = eae # 0, 

hence ab = a. We then have 

and hence a and e are similar in this case also. 
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If eae = 0 but aea # 0, interchanging the r8les of e and a leads to results 
similar to those just obtained; ws can therefore assume eae = 0 = aea. If 

u = 1 + e - ea + ae = 2(2 - e + ea - ae)-l, 

then uau-I = a - ae; we can therefore assume ae = 0. If 

v = (1 + e - 2ea) = 2(2 - e + 2ea)-I, 

then vav-I = a - ea; we can therefore also assume ea = 0, which brings us back 
to the first case which we considered. The lemma is therefore proved. 

Part (iii) of the theorem follows immediately. For, if e and a are primitive 
idempotent elements of M1 and M2 respectively, we can now find w such that 
a = wew-l; but Dl- eAe and D ~ N  aAa = weAew-l, which is similar to eAe and 
therefore t o  Dl. 

10.13 Semi-invariant subalgebras. If B is a subalgebra of A which is such that 
AB < B (BA < B), it is called a right (left) semi-invariant subalgebra. We 
shall treat only the case in which A is semi-simple; i t  has then an identity and if 
we restrict ourselves, as  we shall, to the case of right semi-invariant subalgebras, 
we may assume A B = B. 

I t  is clear that, if A = Al @ A2, then also B = B1 @ B2, wbere AiBi = 
Bi, A iBi  = 0 (i # j). I t  is sufficient then a t  first to  consider only simple algebras, 
and in this case we have the added condition that ABA = A; that is, we have 
simultaneously 

(18) A B =  B, ABA = A .  

If we call B minimal when i t  contains no other semi-invariant subalgebra, we 
have 

LEMMA 10. A minimal right semi-invariant subalgebra of a simple algebra A has 
the form Au, where u is a primitive idempotent element of A. Conversely, if u2 = u 
is primitive, Au is a minimal right semi-invariant subalgebra. 

Let AC = C; if cl Z' 0 is any element of C, and C1 = Acl < C, then AC1 = 

C1. Suppose C1 < C; then in the same way if c2 is any element of C1, we have 
Cz = Ac2 I C1. If C2 < C1, we may continue this process and after a finite 
number of steps we ehall arrive a t  an algebra B Z 0 such that Ab = B for every 
element b of B which is not 0. Since A is simple, AbA = A and B2 = B, SO that 
B contains a primitive idempotent element u and Au = B. If u is not also 
primitive in A, let u = ul' + up, uiui = 0 (i # j) ,  U: = ui # 0. Then ulu = ul 
so that ul is in B;  hence u must be primitive in A, if it is so in B. 

Since B = Au, every x in B'has the form au and hence xu = x. But also B = 
Ax and, from the manner in which B was chosen, either Bx = 0 or BX = B. 
If Bx = 0, then ux = 0 and therefore 
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Also, if s is nilpotent, then x2 = 0 = us; for uAu = uBu is simple since, by the 
proof of Lamma 4, it is a division algebra, and us  = uxu < uBu. If Bx = B, 
then there is a unique b such that b s  = x and, since b is then idempotent, we 
have ux = x, that is, x lies in uAu. If B = Au, then AB = A2u 2 B so that B 
is a right semi-invariant subalgebra of A. If C is minimal, then B = C as 
desired. 

Conversely, let B = Au, u primitive; then the only idempotent quantity of B 
has been shown above to be u and, if B were not primitive, we should have 
B > C = Av, v primitive, which is impossible. 

Suppose now that B is not minimal and let el, es, . . , e, be a complete set of 
primitive supplementary idempotent elements in B. Then B, = Ael + Aet + 
- . + Ae, is semi-invariant in A. k t  b be an element of B which is not in 
B,; since b # Zbei, we may replace b by b - Zbei and so assume every be; = 0 in 
which case clearly Ab r, B, = 0. But, if b # 0, then Ab contains an idempotent 
element e such that eie = 0 (i = 1,2, . , r) and e,+~ = e - Zeie is an idempotent 
element supplementary to the given complete set, which is impossible. We 
therefo~e have the following theorem. 

THEOREM 6. If A is simple and AB = B is a semi-invariant subalgebra, then 

B = Ael + Aez + . . . + Ae, 

where el, e,, . . - , e, is a cmnplete supplementary set of primitive idempotent elements 
of B; and these idempotent elements are also primitive in A. 

We shall assume that A is semi-simple, say 

when each Si is simple and 

As previously (cf. Lemma 2) we may set Mi = (e:,), p, q = 1,2,  . . , ni, where 
ejp form a set of supplementary primitive idempotent elements and e;, = 1. 

i, P 

If B is any invariant subalgebra, then B = 2 Be:, and Be:, is a right semi- 
i ,  P 

invariant subalgebra; if B is minimal, we have already seen that it has the form 
Bu where u is a primitive idempotent element, and therefore we have B = 
Be:, = Siej, for some i and p. If set B,, = Siejp, then 

We have therefore the following tbeorem. 

THEOREM 7. Ij A is semi-simple and is given by (19), and if eip form a conzplete 
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ni 

set of supplementary primitive idempotent elements such that e:, = ui is the 
P =  1 

identity of Si, then every minimal right semi-invariant subalgebra has the form 

Moreover, there is a n u ~ b e r  e i q  in Si such that 

10.14 The representation of a semi-simple algebra. Let A be a linear as- 
sociative algebra over F with the identity 1, and designate elements of A by a. 
A representation of A is a set, U(a), of matrices of order n such that a -+ U(a) 
is a correspondence between the elements of A and the matrices of the set in 
which the following conditions are satisfied 

for every a and b of A and every scalar a in F. 
We can now, as in chapter I, associate with the matrices U(a) a vector space R 

with a given fundamental basis, and a change of basis corresponds to replacing 
U(a) by PU(a)P-1, an equival\ent representation (cf. 1.08). A subspace R1 of R 
is invariant under A (cf. 5.16) if every matrix U(a) carries each vector of R1 
into a vector of R1. If R1 # 0, we may set R = R1 + Rz (R1 A Rz = 0); and 
since we are only interested in the equivalence of representations, we may 
suppose the basis R so chosen that 

The representation is said to be reducible in this case, and it is evident that both 
Ul(a) and Uz(a) give representations of A. 

If R has no proper invariant subspace, then U(A) and R are said to be irre- 
ducible. I t  is now clear that we may write 

where Rt = R1 + - - + Rt is the invariant subspace of least order which con- 
tains Rt+ (Ro = O), and in this case 

and the representations Ul(a), , U,(a) are irreducible. If in addition Rz, 
. . , Rt are themselves invariant for some t, then Uij(a) = 0 (i # j; i, j = 1, 2, 

. . . , t) ,  and we say that U(a) is decomposable. 
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A particular case of fundamental importance arises when we take R to be A 
itself, that is, if x is a variable element of A, then x' = ax corresponds to a linear 
transformation in the basis of R (or A), say 

and U(a) has the property given in (23) and so is a representation of A. I t  is 
obviously theerepresentation of (6) and is one-to-one; i t  is called the regular 
representation. 

The invariant subspaces of A are evidently its right semi-invariant sub- 
algebras B. If el, ez, . . . , ec is a basis of B and 

then the matrices U(a) = I I aii I I give a representation of A on the subspace B. 
Suppose now that V(a) is a given representation, R the corresponding subspace, 
and B a right semi-invariant subalgebra of A. If y is any vector of R, then the 
set of vectors of the form V(b)(y) is an invariant subspace of R, since 

From (27) i t  is seen immediately that the set B' of elements b' in B for which 
V(bf)y = 0 forms a right semi-invariant subalgebra of B and hence, if B is 
minimal, either B' = 0 or B' = Y3. If B' = 0, then V(el)y, . , V(er)y is a 
basis of the set (V(b) y) and 

But then the vectors of the form V(b)y give a representation of A equivalent to 
that determined by B in (26). 

We shall now prove the following theorem. 

THEOREM 8. Ij the regular representation o j  an a.!qebra is decomposable, then 
every representation is decomposable and its irreducible components are contained 
in the regular representation. 

Suppose that the regular representation of A is decomposable; then A = 

B1 + BZ + . + B,, w h r e  the B j  are irreducible equivalent subspaces of A,  
that is, minimal semi-invariant subalgebras such that B j  /, Bk = 0 for j # k. 
Let y ~ ,  yz, . . . , yn be a basis of the space R of a representation of A .  Since A 
has an identity, we have 

As we have seen above, if Bkyj Z 0, it is a subspace of R which gives a representa- 
tion equivalent to that given by Bk; it follows that either Bkyi = 0 or it is an 
invariant subspace of R. 

The intersection of the invariant bubspaces is also invariant so that either 
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Bkyi - Bpyp = 0 or Bkyj = Bpyq; hence we may select from the spaces Bky, in 
(28) a set of independent irreducible invariant subspaces determining R. This 
proves Theorem 8. 

Consider now a semi-simple algebra 

where Si is a simple algebra. We may write 

1 = Zuii (i = 1, , r ;  j = 1, . - .  , nJ  
where the uij form a complete set of supplementary primitive idempotent ele- 
ments of A. Then 

A = ZAuij = ZBii 

where Bii = Auij is a minimal right invariant subalgebra of A .  We have then 
decomposed A into irreducible invariant subspaces and have proved the first 
part of the following theorem. 

THEOREM 9. The regular representation of a semi-simple algebra is decomposable, 
and its reducible components are those obtained by the use of the B, as representation 
spaces. The representations given by  any pair Bij, Bik are equivalent while Bij, 
Blk give inequivalent representations for j # k.  

For by Theorem 7 we have Bijejk = Ba so that the proof of Theorem 7 with 
y = ejk shows that the representation by Bii is equivalent to that by Bi,. In 
the representation by Bi we have 

where 1, is an identity matrix corresponding to the identity transformation on 
Bii since ei is the principal unit of Bij. But in the representation by Blk, we 
have ei -' 0. Evidently these representations cannot be similar. 

10.15 Group algebras. If (3 = (gl  = 1, gz,  . . . , g,) is a finite group, the 
group relation g i g j  = g i j  is a particular case of the associative product defined in 
(2) and, when it is used in conjunction with addition, we get an associative 
algebra G of which (g l ,  g z ,  . . , gm) is a basis and g~ the identity. 

The representation of (3 as a regular permutation group 

corresponds to the representation of G as a set of matrices, the mat'rix hi being 
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Since i, = p, that is, gig, = g,, only when g; is the identity, the matrix hi has no 
coordinate in the main diagonal except for i = 1 in which case hl  is the identity 
matrix; hence 

I t  follows from this that G is semi-simple. For if u = Zqihi is the matrix cor- 
responding to some element of the radical N ,  then tr(u) = 0 since u is nilpotent. 
If u # 0 ,  some coordinate, say q,, is not 0 and in h,'u, which also corresponds to 
some element of N ,  the coefficie~t of h ,  is not 0 ;  we may therefore assume 71 # 0 
provided N # 0. But using (18) we get 

hence the assumption that u # 0 leads to a contradiction and therefore N = 0, 
that is, G is semi-simple. This gives the following theorem. 

THEOREM 10. A group a ~ e o r a  i s  semi-simple.  I t  i s  therefore the direct R U ~  of 
s imple  algebras a n d ,  i f  the field of the c0egicien.t~ i s  suf lc ient ly  extended, i t  i s  the 
direct s u m  of s imple  matr ic  algebras. 

The whole of the representation theory developed in the previous section can 
now be applied to groups. 
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NOTES' 

The calculus of matrices was first used in 1853 by Hamilton (1, p. 559ff, 4808) under the 
name of "Linear and vector functions." Cayley used the term matrix in 1854, but merely 
for a scheme of coefficients, and not in connection with a cdculus. In 1858 (2) he developed 
the basic notions of the algebra of matrices without recognizing the relation of his work to 
that of Hamilton; in some cases (e.g., the theory of the characteristic equation) Cayley 
gave merely a verification, whereas Hamilton had already used methods in three and four 
dimensions which extend immediately to any number of dimensions. The algebra of 
matrices was rediscovered by Laguerre (9) in 1867, and by Frobenius (18) in 1878. 

1.03 Matric units seem to have been first used by B. Peirce (17); see also Grassmann (5, 
5381). 

1.10 For the history of'the notion of rank and nullity see Muir, Theory of ,Delerminants,  
London 1906-1930; the most important paper is by Frobenius (290). 

2.01-03 The principle of substitution given in 52.01 was understood by most of the early 
writers, but was first clearly stated by Frobenius, who was also the first to use the division 
transformation freely (20, p. 203). 

2.04 The remainder theorem is implicit i r  Hamilton's proof of the characteristic equation; 
see also Frobenius (280). 

2.05-12 The characteristic equation was proved by general methods for n = 3, 4 by Hamil- 
ton (1, p. 567; 8, p. 484ff; cf. also 4, 6). The first general statement was given by Cayley 
(2); the first general proof by Frobenius (18). See also the work of Frobenius cited below 
and 9, 10, 39, 41, 56, 59. 

Hamilton, Cayley and other writers were aware that  a matrix rpight sstisfy an equation 
of lower degree than n, but the theory of the reduced equation seems to be due entirely to  
Frobenius (18, 140). 

The theory of invariant vectors was foreshadowed by Hamilton, but the gweral case was 
first handled by Grassmann (5). 

, 2.10 See Sylvester (42, 44) and Taber (96); see also 252. 

2.13 The square root of a matrix was considered by Cayley (3, 12), Frobenius (139) and 
many others. 

3.01 The idea of an elementary transformation seems to be due in the main to  Grassmann 
(5). 

In these Notes, numbers refer to the Bibliography unless otherwise indicated. 
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3.0247 The theory of pairs of bilinear forms, which is equivalent to that  of linear poly- 
nomials, was first given in satisfactory form by Weierstrass (see Muth, 175) although the 
importance of some of the invariants had been previously recognized by Sylvester. The 
theory in its matrix form is principally due to Frobenius (18,20). 

The theory of matrices with integral elements was first investigated by Smith (see Muth, 
175) but was first given in satisfactory form by Frobenius (20). The form given in  the text 
is essentially that  of Kronecker (92). 

3.04 The proof of Theorem 3 is a slight modification of that  of Frobenius (20). 

3.08 Invariant vectors were discussed by Hamilton (1,8) and other writers on quaternions 
and vector analysis. The earliest satisfactory account seems to  be that  of Grassmann (5). 

The developments of this chapter are, in the main, a translation of KroneckerJs work 
(see Muth, 175, p. 93ff). See also de SBguier (259). 

5.03 From the point of view of matrix theory, the principal references are Schur (198), 
Rados (105, 106), Stephanos (185), and Hurwitz (117). See Loewy (284, p. 138) for addi- 
tional references; also Muir, Theory o j  Determinants, London 1906-1930. 

5.09 Non-commutative determinants were first considered by Cayley (Phil. Mag. 26 
(1845), 141-145); see also Joly (195) and Sylvester (43). 

5.10-11 See Loewy (284, p. 149); also 176, 178, 185, 198. 

5.12 The principal references are Schur (198) and Weyl ($40, chap. 5). 

For general references see Loewy (284, pp. 118-137), also Muth (175), Hilton (314, chap. 
6, 8) and Muir, Theory of Determinants, London 1906-1930. 

6.01 The method of proving that  the roots are real is essentially that  of Tait (10, chap. 5); 
see also 36, 60, 228, 399. 

6.03 See Loewy (284, pp. 130-137), Baker (215) and Frobenius (292). See also 7, 18, 99, 
113,114,115, 124,135, 139,210,221,273,302,307,320,371,400,414,466,476. 

6.04 See Dickson (392). 

6.05 See Loewy (284, pp. 128-135). 

6.07 For references see Muth (175, p. 125) and Frobenius (139). 

CHAPTER VII 

7.1042 See Cayley (2), Frobenius (18), Bucheim (59), Taber (98, 112), and Hilton (314, 
chap. 5); also 83,86,98, 137, 184, 197, 209, 223, 242, 250, 264,301, 382. 

7.03 See Frobenius (280). 

7.05 See Frobenius (140); also 350. 

7.06-07 See Sylvester (42, 44) and Taber (96); see also 252. 



NOTES 

CHAPTER VIII 

8.01-03 See Sylvester (36), Bucheim (59, 69); also 134, 371. 

8.02,07 See Hamilton (1, p. 545ff; 8, §316), Grassmann (5, 5454), Laguerre (9). Many 
writers define the exponential and trigonometric functions and consider the question of con- 
vergence, e.g., 79, 80, 103, 389, 449; also in connection with differential equations, 13, 133, 
258. 

8.0605 Roots of 0 and 1 have been considered by a large number of writers; see partic- 
ularly the suite of papers by Sylvester in 1882-84; also 18, 67, 76, 107,242, 255, 264, 277, 279, 
381, 41 1, 430, 474, 539. 

8.08 See 20, 94, 246,256, 257, 274, 303, 338, 399. 

8.09-11 The absolute value of a matrix was first considered by Peano (75) in a somewhat 
different form from that given here; see also 273, 348, 389, 472, 473, 494. For infinite prod- 
ucts see 133, 324,326, 389, 494. 

8.12 In addition to the references already given above, see 10, 16, 18, 187, 418, 419, and also 
many writers on differential equations. 

The problem of the automorphic transformation in matrices was first considered by Cay- 
ley (3, 7) who, following a method used by Hermite, gave the solution for symmetric and 
skew matrices; his solution was put in simpler form by Frobenius (18). Cayley failed to 
impose necessary conditions in the general case which was first solved by Voss (85, 108, 162, 
163). The properties of the principal elements were given by Taber (125, 134; see also 127, 
149, 156, 158, 231). Other references will be found in Loewy (284, pp. 130-137); see also 9, 19, 
153, 154, 161, 167, 168, 169, 187, 229, 371. 
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