On the signature invariants of a non-singular complex sesqui-linear form

By Takao MATUMOTO

(Received Dec. 15, 1975)

The purpose of this note is to make clear the relationship between two types of signatures defined for a non-singular real bilinear or complex sesquilinear form, and then, to get a result in the algebraic topology.

Let $l: V \times V \to C$ be a complex sesqui-linear form of finite dimension; a matrix representation $x^* \Gamma y$ is used and a symbol "*" stands for the transpose of the conjugate of the matrix or the vector. Let t be an indeterminant which may be thought either as an automorphism or as a variable ranging over the complex numbers. We call $\Gamma(t) = \Gamma - \Gamma^* t$ an Alexander matrix and det $\Gamma(t)$ the Alexander polynomial. The first series of signatures consists of the signature τ_{ω} of the hermitian form $l_{\omega} = x^* \Gamma_{\omega} y$ with $\Gamma_{\omega} = (1/2) \{(1-\bar{\omega})\Gamma + (1-\omega)\Gamma^*\}$. Since $\tau_{\xi} = \text{sign} (1 - \text{Re } \xi) \tau_{\omega}$ with $\omega = -(1-\xi)/(1-\bar{\xi})$, the only interesting case is when ω is on the unit circle, where Γ_{ω} reduces to $\Gamma_{\omega} = (1/2)(1-\bar{\omega})\Gamma(\omega)$.

A hermitian form $l_{+}=x^*Ay$ where $A=(1/2)(\Gamma+\Gamma^*)$ and a skew-hermitian form $l_{-}=x^*(-Q)y$ where $Q=(1/2)(\Gamma^*-\Gamma)$ are considered; then $\Gamma=A-Q$ and of course $2A=\Gamma_{-1}$. If the form l is non-singular, then the matrix $P=(\Gamma^*)^{-1}\Gamma$ gives an automorphism t of l, i.e., $P^*\Gamma P=\Gamma$, and hence of l_{α} , l_{+} and l_{-} . The eigen-values α of the automorphism t associate another series of signatures $\sigma_{(\alpha)}$ which are defined by the hermitian form l_{+} ; where l_{+} is restricted to the α -root subspaces $V_{\alpha} = \{x \in V; (t-\alpha)^k x = 0 \text{ for some } k\}$. Note that dim $V_{\alpha} > 0$ if and only if α is a root of the Alexander polynomial and we have a generalized Cayley transformation Q(I+P)=A(I-P). Moreover, we can remark that, if $\alpha \neq \pm 1$, $\sigma_{(\alpha)} = \operatorname{sign}(V_{\alpha}; l_{+})$ is equal to $\operatorname{sign}(\operatorname{Im} \alpha) \operatorname{sign}(V_{\alpha}; il_{-})$. (Cf. § 1, case (b).) We define $\sigma_{(-1 \pm 0i)}$ by $\pm \operatorname{sign}(V_{-1}; il_{-})$.

THEOREM 1 (Complex case). For $\omega = \exp(i\varphi)$ and $\alpha = \exp(i\theta)$ with $-\pi < \varphi < \pi$ and $-\pi < \theta < \pi$,

(*)
$$\tau_{\omega} = \operatorname{sign} (\operatorname{Im} \omega) \{ \sum_{|\alpha|=1, \alpha \neq -1} \operatorname{sign} (\varphi - \theta) \sigma_{(\alpha)} + \sigma_{(-1+0i)} \}$$

holds, provided either the automorphism t is semi-simple, or ω is not a root of the Alexander polynomial.

REMARK. If $\omega = -1$, (*) is replaced by (*') sign $(l_+) = \sum \sigma_{(\alpha)}(|\alpha| = 1, \alpha \neq -1)$. The formula, (*) or (*'), does not always hold. The excluded cases will be studied in the §3.

If *l* is a real non-singular bilinear form, then we shall deduce the following theorem with the more appropriate notation: $\sigma_0 = \sigma_{(1)}$ and for $0 < \theta < \pi$, $\sigma_{\theta} = \sigma_{(\alpha)} + \sigma_{(\bar{\alpha})}$ where $\alpha = \exp(i\theta)$.

THEOREM 2 (Real case). For $\omega = \exp(\pm i\varphi)$ with $0 < \varphi \leq \pi$,

(**)
$$\tau_{\omega} = \sum_{0 \leq \theta < \varphi} \sigma_{\theta} + \frac{1}{2} \sigma_{\varphi}$$

holds, provided either the automorphism t is semi-simple, or ω is not a root of the Alexander polynomial.

The study on the classification of sesqui-linear forms is summarized in [4]. And the reader can find a definition of σ_{θ} for a knot in [2], which can be seen to be equal to σ_{θ} for the non-singular Seifert matrix. The hermitian form l_{ω} is defined and used by Levine [1] and Tristram [3] in the algebraic topology of knots and links. In the last section we are concerned with the calculation of σ_{θ} for some algebraic links and we generalize the Brieskorn criterion [5]. Finally we mention a totally elementary proof of the result of Rokhlin [8] in an interesting special case.

§1. Proof of Theorem 1.

Since $l_{\omega}(f(t)x, y) = l_{\omega}(x, \overline{f(t^{-1})}y)$ for any complex polynomial $f(t), V_{\alpha}$ is orthogonal to V_{β} with respect to the hermitian form l_{ω} unless $\bar{\alpha}\beta=1$. It follows that the only contributions to the signature arise from V_{α} with $|\alpha|=1$.

On the other hand by the generalized Cayley transformation Q(I+P) = A(I-P), we know that if det $(I+P) \neq 0$ then $\Gamma_{\omega} = A(1-\bar{\omega})(P-\omega)(I+P)^{-1}$ and if det $(I-P) \neq 0$ then $\Gamma_{\omega} = Q(1-\bar{\omega})(P-\omega)(I-P)^{-1}$.

(a) The case when t is semi-simple, that is, $V_{\alpha} = \{x \in V; (t-\alpha)x=0\}$: If x, y $\in V_{-1}$, then $l_{\omega}(x, y) = (\omega - \overline{\omega})l_{-}(x, y)$. Hence sign $(V_{-1}; l_{\omega}) = \text{sign}(\text{Im } \omega) \text{ sign}(V_{-1}; il_{-})$.

If $|\alpha|=1$ and $\alpha \neq -1$, we have $l_{\omega}(x, y) = (1-\overline{\omega})(1-\overline{\alpha}\omega)(1+\overline{\alpha})^{-1}l_{+}(x, y)$, provided $x, y \in V_{\alpha}$. Noting that $(1+\overline{\alpha})(1+\alpha)=2+(\alpha+\overline{\alpha})>0$, we have only to study the sign of the following function f.

$$f = (1 - \bar{\omega})(1 - \bar{\alpha}\omega)(1 + \alpha) = -8\sin\left(-\varphi/2\right)\sin\left((\varphi - \theta)/2\right)\cos\left(\theta/2\right).$$

We get sign $f = \text{sign}(\text{Im } \omega) \text{ sign}(\varphi - \theta)$, provided $-\pi < \theta$, $\varphi < \pi$.

(b) The case when l(x, y) is a general non-singular sesqui-linear form: We restrict Γ to V_{α} with $|\alpha|=1$, and then perturb it. Assuming $\alpha \neq -1$, we have $Q=A(I-P)(I+P)^{-1}$ and another skew-hermitian matrix ${}_{0}Q=A(1-\alpha)(1+\alpha)^{-1}$. A family of skew-hermitian matrices ${}_{s}Q=sQ+(1-s){}_{0}Q$, $0\leq s\leq 1$, is considered and we get a family of sesqui-linear forms ${}_{s}l=x^{*}{}_{s}\Gamma y$, $0\leq s\leq 1$ by defining

 ${}_{s}\Gamma = A_{-s}Q$. It follows that ${}_{s}\Gamma = 2A((1-s)\alpha + (s+\alpha)P)(I+P)^{-1}(1+\alpha)^{-1}$ is nonsingular and ${}_{s}P - \alpha = (I+s\alpha + (1-s)P)^{-1}s(1+\alpha)(P-\alpha)$ is nilpotent for the automorphism ${}_{s}P = (A+{}_{s}Q)^{-1}(A-{}_{s}Q)$. Hence, for any s with $0 \le s \le 1$, the Alexander polynomial ${}_{s}\Gamma(t)$ associated to ${}_{s}\Gamma$ does not vanish except $t=\alpha$, that is, the hermitian form ${}_{s}l_{\omega} = x^{*}{}_{s}\Gamma_{\omega}y$ is non-degenerate unless $\omega = \alpha$. Therefore, if $|\alpha|=1, \alpha \ne -1$ and $\omega \ne \alpha$, then $\operatorname{sign}(V_{\alpha}; {}_{o}l_{\omega}) = \operatorname{sign}(V_{\alpha}; l_{\omega})$. This follows from the perturbation invariance of the signature of non-degenerate hermitian forms. Note also that ${}_{o}l_{+}=l_{+}$. As a consequence, if $\omega = \exp(i\varphi)$ and $\alpha = \exp(i\theta)$ with $-\pi < \varphi \ne \theta < \pi$, then $\operatorname{sign}(V_{\alpha}; {}_{\omega}) - \operatorname{sign}(\operatorname{Im} \omega) \operatorname{sign}(\varphi - \theta) \operatorname{sign}(V_{\alpha}; {}_{+}) = \operatorname{sign}(V_{\alpha}; {}_{o}l_{+})$; the latter vanishes, because ${}_{o}P = \alpha I$. If ω is not a root of the Alexander polynomial, then $V_{\alpha}=0$ and this completes the proof for $\alpha \ne -1$. Remark also that ${}_{s}Q$ are non-degenerate for $0 \le s \le 1$, then we get $\operatorname{sign}(V_{\alpha}; {}_{a}) + \operatorname{sign}(\operatorname{Im} \alpha) \operatorname{sign}(V_{\alpha}; {}_{a}(-Q)) = \operatorname{sign}(\operatorname{Im} \alpha) \operatorname{sign}(V_{\alpha}; {}_{a}(-Q))$

If $\alpha = -1$, we use the inverse Cayley transformation $A = Q(I+P)(I-P)^{-1}$ and put ${}_{s}A = sA$. Then, ${}_{s}\Gamma = {}_{s}A - Q$, $0 \le s \le 1$, are non-singular and so are ${}_{s}l_{\omega}(x, y)$. Note that ${}_{0}l_{\omega}(x, y) = \text{sign}(\text{Im }\omega)il_{-}(x, y)$. Therefore, we get sign $(V_{-1}, l_{\omega}) = \text{sign}(\text{Im }\omega) \text{ sign}(V_{-1}, il_{-})$.

§2. Proof of Theorem 2.

In view of the theorem 1 and the remark, it is sufficient to prove $\sigma_{(\alpha)} = \sigma_{(\alpha)}$ for any real bilinear form with $\alpha = \exp(i\theta)$, $0 < \theta < \pi$ and $\sigma_{(-1+0)i} = 0$. But this is also deduced from the theorem 1 as follows. Because Γ is a real matrix, the transpose of Γ_{ω} is equal to $\Gamma_{\overline{\omega}}$ and hence $\tau_{\omega} = \text{sign}(\text{transpose of } \Gamma_{\omega}) = \tau_{\overline{\omega}}$. Let α_{\pm} denote $\exp(i(\theta \pm \varepsilon))$ for a small positive number ε . Then, from the theorem 1, we get

$$\sigma_{(\alpha)} = \tau_{\alpha+} - \tau_{\alpha-} = \tau_{\beta+} - \tau_{\beta-} = \sigma_{(\bar{\alpha})}, \quad \text{where} \quad \beta_{\pm} = \bar{\alpha}_{\pm}.$$

Therefore, $\tau_{\omega} = \sum \sigma_{\theta} + (1/2)\sigma_{\varphi} + \text{sign} (\text{Im } \omega)\sigma_{(-1+0i)}$. But $\tau_{\omega} = \tau_{\overline{\omega}}$ implies $\sigma_{(-1+0i)} = 0$ from that.

§ 3. Excluded cases.

We use the notation of the §1. By decomposing V_{α} into *t*-invariant subspaces, we may assume *P* is the triangular matrix of rank $r: P_{i,i} = \alpha$, $P_{i,i+1} = 1$ and otherwise $P_{i,j} = 0$. Then, the fact that $P^*AP = A$ and $\alpha \bar{\alpha} = 1$ implies that *A* is the triangular matrix: $A_{i,j} = 0$ if $i+j \leq r$. We investigate the case $\omega = \alpha$ and $\alpha \neq -1$. (The case $\alpha = -1$ is treated in the same way by using *Q* instead of *A*). Remember the matrix Γ_{α} is *AX* with $X = (1-\alpha)(I - \bar{\alpha}P)(I+P)^{-1}$. The matrices *X* and hence *AX* are the strongly triangular matrices: $X_{i,j} = 0$ if $i \geq j$ and $(AX)_{i,j} = 0$ if $i+j \leq r+1$. The non-degeneracy of $\Gamma = A - Q = 2AP(I+P)^{-1}$

Τ. ΜΑΤUΜΟΤΟ

implies that rank A=r and rank AX=r-1. If r=odd, we have sign(AX)=0 and (*). (Note: |sign A|=1 in the case $r \ge 3$). If r=even, we have |sign(AX)|=1. So in this case (*) does not hold.

If we note that $\Gamma \oplus \overline{\Gamma}$ may be transformed to a real matrix, we understand that (**) has also counterexamples.

§4. Signatures of algebraic links.

We shall give a criterion to calculate σ_{θ} for the algebraic links of Fermat-Pham-Brieskorn type:

$$\{z_1^{a_1} + \cdots + z_n^{a_n} = 0\} \cap S^{2^{n-1}}.$$

The Seifert matrix with integral coefficients is described as $\Gamma = (-1)^{n(n+1)/2} \Gamma(a_1) \oplus \cdots \oplus \Gamma(a_n)$, where $\Gamma(a_{\nu})$ denotes a triangular matrix of rank $a_{\nu}-1$ with $\Gamma(a_{\nu})_{i,j} = \delta_{i,j} - \delta_{i+1,j}, 1 \leq i, j \leq a_{\nu}-1$ (cf. [7]). The intersection matrix and the monodromy matrix of the Milnor fiber are

$$-(\varGamma + (-1)^{n-1}\varGamma^*)$$
 and $(-1)^n(\varGamma^*)^{-1}\varGamma$

respectively. They have the same real bases (cf. [6]). It is enough to know the case when n= odd, because Γ becomes either Γ or $-\Gamma$ after we add the term z_{n+1}^2 . Now, for $0 \leq \theta \leq \pi$, A_{θ} denotes the finite set of integers,

 $A_{\theta} = \{(j_1, \cdots, j_n); 1 \leq j_{\nu} \leq a_{\nu} - 1 \text{ and } \pi + 2\pi \sum (j_{\nu}/a_{\nu}) \equiv \theta \text{ or } -\theta \mod 2\pi\}.$

PROPOSITION 3. Suppose n is odd. The partial signatures $\sigma_{\theta} = \sigma_{\theta}^+ - \sigma_{\theta}^-$ and the nullity n of $\Gamma + \Gamma^*$ are given as follows: If $0 \leq \theta < \pi$, then

$$\begin{split} &\sigma_{\theta}^{-} = number \ of \ (A_{\theta} \cap \{0 < \sum (j_{\nu}/a_{\nu}) < 1 \bmod 2\}), \\ &\sigma_{\theta}^{+} = number \ of \ (A_{\theta} \cap \{1 < \sum (j_{\nu}/a_{\nu}) < 2 \bmod 2\}) \\ &n = rank \ of \ V_{-1} = number \ of \ A_{\pi}. \end{split}$$

and

The signatures τ_{ω} are given by the sum formula in the theorem 2, because the monodromy is semi-simple. We shall give an outline of the proof of the proposition 3.

Let T(a) be the transformation matrix with $T(a)_{i,j}=1-\xi^{ij}$ and $\xi = \exp(2\pi\sqrt{-1}/a)$. (The bases must be written as $x_s=(1-\xi^s)\sum\xi^{si}\omega^i$ $(0\leq i\leq a-1)$ in the notation of [7] and changes to $x_s=-\xi^s\sum\xi^{si}\omega^i$ in that of [5].) Then, $T^*(a)\Gamma(a)T(a)$ is a diagonal matrix $(a(1-\xi^{-i})\delta_{i,j})$. Therefore, the transformed matrix $T^*\Gamma T$ and the transformed automorphism $T^{-1}(\Gamma^*)^{-1}\Gamma T$ by $T=T(a_1)\oplus \cdots \oplus T(a_n)$ are

$$((-1)^{n(n+1)/2} \prod a_{\nu} \prod (1-\xi_{\nu}^{-i_{\nu}}) \prod \delta_{i_{\nu},j_{\nu}})$$
 and $((-1)^{n} \prod \xi_{\nu}^{i_{\nu}} \prod \delta_{i_{\nu},j_{\nu}})$

respectively. Since these are diagonal matrices, it is easy to deduce the

70

proposition by the same technique of the calculation of sign of the function f in the proof of the theorem 1 (cf. p. 12 of [5]).

As a final remark it is noticed that the result of Rokhlin [8] in the case $M=CP^2$ has an elementary proof: Apply the direct calculation in this note for the algebraic link $\{z_1^d+z_2^d=0\} \cap S^3$ to the inequality of Tristram [3] with respect to τ_{ω} ; $\omega=-1$ if d= even and $\omega=\exp(m\pi\sqrt{-1}/2m+1)$ if 2m+1 is an odd prime power which divides d.

References

- J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv., 144 (1969), 229-244.
- [2] J. Milnor, Infinite cyclic coverings, Topology of manifolds edited by Hocking, Prindle, Weber and Schmidt, 1968, 115-133.
- [3] A.G. Tristram, Some cobordism invariants for links, Proc. Cambridge. Philos. Soc., 66 (1969), 251-264.
- [4] G.E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc., 3 (1963), 1-62.
- [5] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math., 2 (1966), 1-14.
- [6] M. Kato, A classification of simple spinnable structures on a l-connected Alexander manifold, J. Math. Soc. Japan, 26 (1974), 454-463.
- [7] K. Sakamoto, The Seifert matrices of Milnor fiberings defined by holomorphic functions, J. Math. Soc. Japan, 26 (1974), 714-721.
- [8] V.A. Rokhlin, Two-dimensional submanifolds of four-dimensional manifolds, Funkcional. Anal. i Priložen., 5 (1971), 48-60.

Такао Матимото

Department of Mathematics Faculty of Science Kyoto University Kitashirakawa, Sakyo-ku Kyoto, Japan