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The purpose of this note is to make clear the relationship between two
types of signatures defined for a non-singular real bilinear or complex sesqui-
linear form, and then, to get a result in the algebraic topology.

Let [: VX V—C be a complex sesqui-linear form of finite dimension; a
matrix representation x*I'v is used and a symbol “*” stands for the transpose
of the conjugate of the matrix or the vector. Let f be an indeterminant which
may be thought either as an automorphism or as a variable ranging over the
complex numbers. We call I'({)=I"—I"*t an Alexander matrix and det I'()
the Alexander polynomial. The first series of signatures consists of the signature
7, of the hermitian form [,=x*I",y with I',=(1/2){(1—&)[+(1—w)I™*}. Since
re=sign (1—Re &)7,, with w=—(1—&)/(1—E&), the only interesting case is when
® is on the unit circle, where I',, reduces to I',=(1/2)(1—&)] (w).

A hermitian form [,=x*Ay where A=(1/2)(I"+I'*) and a skew-hermitian
form [_=x*(—Q)y where Q=(1/2)(I'*—1I") are considered; then I'=A—Q and
of course 2A=1I"_,. If the form [ is non-singular, then the matrix P=(I"*)"'I"
gives an automorphism ¢ of [, i.e., P*I"P=1I", and hence of [,, [, and [.. The
eigen-values a of the automorphism ¢ associate another series of signatures
0.» which are defined by the hermitian form [, ; where [, is restricted to the
a-root subspaces V,={xeV; (t—a)*x=0 for some k}. Note that dimV,>0 if
and only if a is a root of the Alexander polynomial and we have a generalized
Cayley transformation Q(/+P)=A(I—P). Moreover, we can remark that, if
a#=+1, o,y=sign(V,;!l,) is equal to sign(Im a)sign(V,;il.). (Cf. §1, case
(b).) We define o(_;.osp by *sign(V_;;1l.).

THEOREM 1 (Complex case). For w=exp (i¢) and a=exp (i) with —n<¢
<rm and —w<0<m,

* 7,=sign (Im a’){1 l 12:# 1Sign (0—0)0cy 01400}
holds, provided either the automorphism t is semi-simple, or @ is not a root of
the Alexander polynomial.

REMARK. If w=-—1, (¥)is replaced by (*/) sign([,)=20w(la|=1, a#=—1).
The formula, (*) or (*/), does not always hold. The excluded cases will be
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studied in the §3.

If [ is a real non-singular bilinear form, then we shall deduce the following
theorem with the more appropriate notation: g,=o0, and for 0<0<r, gp=
Ocy+0, where a=exp (i6).

THEOREM 2 (Real case). For w=exp (ip) with 0<¢p =,

(**) To=— Z 0‘0+%0‘¢

holds, provided either the automorphism t is semi-simple, or @ is not a root of
the Alexander polynomial.

The study on the classification of sesqui-linear forms is summarized in [4].
And the reader can find a definition of g4 for a knot in [2], which can be seen
to be equal to g, for the non-singular Seifert matrix. The hermitian form /[,
is defined and used by Levine [1] and Tristram [3] in the algebraic topology
of knots and links. In the last section we are concerned with the calculation
of oy for some algebraic links and we generalize the Brieskorn criterion [5].
Finally we mention a totally elementary proof of the result of Rokhlin [8] in
an interesting special case.

§1. Proof of Theorem 1.

Since [,(f(t)x, y)=l,(x, f(tDy) for any complex polynomial f(f), V, is
orthogonal to Vz with respect to the hermitian form /,, unless &8=1. It follows
that the only contributions to the signature arise from V, with |a|=1.

On the other hand by the generalized Cayley transformation Q(I+P)
=A(I—P), we know that if det (/+P)+#0 then I',=A(1l—&)(P—w)(I+P)™* and
if det [—P)+0 then I',=Q(1—&)(P—w)(I—P).

(a) The case when t is semi-simple, that is, Vo,={xeV; (t—a)x=0}: If x,y
eV_,, then [, (x, V)=(0—d)!_(x,y). Hence sign(V_,; l,)=sign (Im ») sign (V_,;
).

If |a|]=1 and a#—1, we have [,(x,y9)=(01—&)(1—aw)(1+a&) . (x, ),
provided x, yeV,. Noting that (1+&)(1+a)=2+(a+a)>0, we have only to
study the sign of the following function f.

F=(1—-&)(1—aw)(14+a)=—8sin (—¢/2) sin ((p—0)/2) cos (6/2) .

We get sign f=sign (Im w) sign (¢—@), provided —z <8, p<x.

(b) The case when (x,y) is a general non-singular sesqui-linear form: We
restrict I" to V, with |a]|=1, and then perturb it. Assuming a#+—1, we have
Q=A(I—P)(I4P) ' and another skew-hermitian matrix @ =A(1—a)(1+a)™"
A family of skew-hermitian matrices ;Q=sQ+(1—s),Q, 0=s=<1, is considered
and we get a family of sesqui-linear forms /=x*I"y, 0=<s=<1 by defining
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JI=A—,Q. It follows that J'=2A((1—s)a+(s+a)P)I+P)*(14+a)! is non-
singular and ;P—a={U+sa+(1—s)P) 's(14+a)(P—a) is nilpotent for the auto-
morphism P=(A+,Q)*(A—,Q). Hence, for any s with 0<s<1, the Alexander
polynomial ;I'(¢) associated to ;1" does not vanish except t=a, that is, the
hermitian form ,/,=x*,y is non-degenerate unless w=a. Therefore, if
la|=1, a#+—1 and w+e«, then sign (V,; ol,)=sign (V,; l,). This follows from
the perturbation invariance of the signature of non-degenerate hermitian forms.
Note also that ,/,=![,. As a consequence, if w=exp (i) and a=exp (i) with
—n<p+0<m, then sign (V,; l,)—sign (Im ) sign (¢—0) sign (V,; [,)=sign (V;
olw)—sign (Im ) sign (¢p—0) sign (V,; o/,); the latter vanishes, because P=al.
If w is not a root of the Alexander polynomial, then V,=0 and this completes
the proof for a#—1. Remark also that @ are non-degenerate for 0<s<l,
then we get sign(V,; [,)=sign(Im a)sign(V,; i(—,Q))=sign(Im a)sign(V,; —iQ).

If a=—1, we use the inverse Cayley transformation A=Q(+P)([—P)*
and put ;A=sA. Then, J'=;A—Q, 0=s<1, are non-singular and so are /,(x, y).
Note that ol,(x, y)=sign(Im w)il_(x, y). Therefore, we get sign(V_, ()=
sign (Im w) sign (V_,, il_).

§2. Proof of Theorem 2.

In view of the theorem 1 and the remark, it is sufficient to prove o.,,=0,
for any real bilinear form with a=exp (i), 0<6<rm and 0. ;+0;=0. But this
is also deduced from the theorem 1 as follows. Because I' is a real matrix,
the transpose of I, is equal to I’z and hence 7,=sign (transpose of I',)=1g.
Let a. denote exp (i(f+¢)) for a small positive number e. Then, from the
theorem 1, we get

Oy = Ta+— Ta-—=T3+—T8-=0a) where ‘Bx:at .

Therefore, 7,=X0s+(1/2)0,+sign (Im ©)0_1405. But 7,=75 implies o 49;,=0
from that.

§ 3. Excluded cases.

We use the notation of the § 1. By decomposing V., into f-invariant sub-
spaces, we may assume P is the triangular matrix of rank r: P, ;=a, P, ;=1
and otherwise P;;=0. Then, the fact that P*AP=A and ad@=1 implies that
A is the triangular matrix: A, ;=0 if i+j=r. We investigate the case w=a
and a#—1. (The case a=—1 is treated in the same way by using Q instead
of A). Remember the matrix I', is AX with X=(1—a)(I—aP)(I+P)™*. The
matrices X and hence AX are the strongly triangular matrices: X, ;=0 if i=j
and (AX);;=0 if i+-j<r+1. The non-degeneracy of I'=A—Q=2AP(I+P)!
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implies that rank A=r and rank AX=r—1. If r=o0dd, we have sign(AX)=0
and (*). (Note: |sign A|=1 in the case r=3). If r=even, we have |sign (AX)]|
=1. So in this case (*) does not hold.

If we note that I'@I" may be transformed to a real matrix, we understand
that (**) has also counterexamples.

§4. Signatures of algebraic links.

We shall give a criterion to calculate o, for the algebraic links of Fermat-
Pham-Brieskorn type:
{z{14 - Fzin=0} N S*",

The Seifert matrix with integral coefficients is described as I'=(—1)""*"*["(a,)
@ ---Dl'(a,), where ['(a,) denotes a triangular matrix of rank a,—1 with
I'(a,);,;=0;,;—0;44,5 1=1, j=a,—1 (cf. [7]). The intersection matrix and the
monodromy matrix of the Milnor fiber are

—(L+ (=D ™*) and ()"
respectively. They have the same real bases (cf. [6]). It is enough to know

the case when n=odd, because I" becomes either I or —I after we add the
term z2,;. Now, for 0=0=r, A, denotes the finite set of integers,

A(i:{(jh R yjn); 1_S_jv§av_l and 7r+2ﬂ2(jv/au)50 or —0m0d 277"} .

PROPOSITION 3. Suppose n is odd. The partial signatures oo=o045—o0yz and
the nullity n of I'+1'* are given as follows: If 0=0<m, then

o5 =number of (ApN{0<X(j,/a,)<1mod2}),

oy =number of (ApN{1<2(j,/a,)<2mod 2})
and
n=rank of V_,=number of A..

The signatures 7, are given by the sum formula in the theorem 2, because
the monodromy is semi-simple. We shall give an outline of the proof of the
proposition 3.

Let T(a) be the transformation matrix with 7(a);;=1—¢&% and &=
exp (2r+~/—1/a). (The bases must be written as x,=(1—&)3 &% (0<i<a—1)
in the notation of [7] and changes to x,=—&">&%w® in that of [5].) Then,
T*(a)['(a)T(a) is a diagonal matrix (a(1—&7%d;;). Therefore, the transformed
matrix T*I'T and the transformed automorphism T *(I™*)'I'T by T=T(a,)D
-+ PT(a,) are

(=) ™02 a, TT(1—&; ") 11ds,,;,) and (—1)"TI&X110s,,;.)

respectively. Since these are diagonal matrices, it is easy to deduce the



Signature invariants of a sesqui-linear form 71

proposition by the same technique of the calculation of sign of the function
f in the proof of the theorem 1 (cf. p. 12 of [5]).

As a final remark it is noticed that the result of Rokhlin [8] in the case

M=CP?® has an elementary proof: Apply the direct calculation in this note
for the algebraic link {z¢+2z¢=0}S*® to the inequality of Tristram [3] with
respect to 7,; w=—1 if d=even and w=exp (mx~/—1/2m-+1) if 2m-+1 is an
odd prime power which divides d.
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