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   The purpose of this note is to make clear the relationship between two 
types of signatures defined for a non-singular real bilinear or complex sesqui-
linear form, and then, to get a result in the algebraic topology. 
   Let I : V x V-~C be a complex sesqui-linear form of finite dimension ; a 
matrix representation x*I'y is used and a symbol " * " stands for the transpose 
of the conjugate of the matrix or the vector. Let t be an indeterminant which 
may be thought either as an automorphism or as a variable ranging over the 
complex numbers. We call F(t)=F-F*t an Alexander matrix and det F(t) 
the Alexander polynomial. The first series of signatures consists of the signature 
z~, of the hermitian form l(,)=x*I'wy with F~,=(1/2){(1-w)E+(1-w)F*}. Since 
z=sign (1-Re e)z~, with w=-(1-)i(1-), the only interesting case is when 
w is on the unit circle, where I'~, reduces to I'~,=(1/2)(1-ii)F(w). 

   A hermitian form l+=x*Ay where A=(1/2)(I'+F*) and a skew-hermitian 
form l_=x*(-Q)y where Q=(1/2)(F*-F) are considered; then T=A-Q and 
of course 2A=F_1. If the form l is non-singular, then the matrix P=(F*)~1F 

gives an automorphism t of 1, i. e., P*FP=F, and hence of lu„ l+ and l_. The 
eigen-values a of the automorphism t associate another series of signatures 
6(a) which are defined by the hermitian form l+; where l+ is restricted to the 
a-root subspaces Va= {xE V ; (t-a)kx= 0 for some k}. Note that dim Va> 0 if 
and only if a is a root of the Alexander polynomial and we have a generalized 
Cayley transformation Q(I+P)=A(I-P). Moreover, we can remark that, if 
a~±1, a()= sign (Va; l+) is equal to sign (Im a) sign (Va; il_). (Cf. § 1, case 

(b).) We define oc_1±oi) by ±sign (V_1; it_). 
   THEOREM 1 (Complex case). For w=exp (icp) and a=exp (ie) with -r<cp 

<r and -r<<r, 

(*) z~- sign (Im w) { sign (cp-B)o(a)+6(-l+oj)} 

                                                 

lal =1,a$-1 

holds, provided either the automorphism t is semi-simple, or w is not a root of 

the Alexander polynomial. 

   REMARK. If w=-1, (*) is replaced by (*1) sign (l+)=~0(a)(lal=1, a*-1). 

The formula, (*) or (*'), does not always hold. The excluded cases will be
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studied in the § 3. 

   If l is a real non-singular bilinear form, then we shall deduce the following 

theorem with the more appropriate notation: a = o [) and for 0 < B < ~r, oe = 

6(a)+ Y() where a = exp (i8). 

   THEOREM 2 (Real case). For w=exp(±icp) with 0<~ 

(**) w = o                                           o<o<;~ 2 

holds, provided either the automorphism t is semi-simple, or w is not a root of 

the Alexander polynomial. 

   The study on the classification of sesqui-linear forms is summarized in [4]. 
And the reader can find a definition of 6B for a knot in [2], which can be seen 

to be equal to ag for the non-singular Seif ert matrix. The hermitian form 1, 

is defined and used by Levine [1] and Tristram [3] in the algebraic topology 

of knots and links. In the last section we are concerned with the calculation 

of ae for some algebraic links and we generalize the Brieskorn criterion [5]. 

Finally we mention a totally elementary proof of the result of Rokhlin [8] in 
an interesting special case.

   § 1. Proof of Theorem 1. 

  Since lw(f(t)x, y) = lw(x, f(t1)y) for any complex polynomial f (t), Va is 
orthogonal to Vp with respect to the hermitian form l~, unless a8=1. It follows 
that the only contributions to the signature arise from Va with I a ! =1. 
   On the other hand by the generalized Cayley transformation Q(I+P) 
=A(I-P) , we know that if det (I+P)*0 then F =A(1-w)(P-w)(I+P)-1 and 
if det (I- P) * 0 then I'~,=Q(1-w)(P-w)(I-P)-1. 

   (a) The case when t is semi-simple, that is, Va= {x~ V ; (t-a)x=0} : If x, y 
E V_1, then l(,(x, y)=(w-w)l_(x, y). Hence sign (V_1; 4,)= sign (Im w) sign (V_1; 
il_). 

   If a =1 and a * -1, we have l~, (x, y) = (1-w) (1-acv) (1+a)-1l+(x, y), 

provided x, yE Va. Noting that (1+a)(1+a)=2+(a+a)>0, we have only to 
study the sign of the following function f. 

     f = (1-w)(1-aw)(1+a) = -8 sin (-c /2) sin ((cp-e)/2) cos (0/2). 

We get sign f =sign (Im w) sign (co-B), provided -2r<0, cp <7r. 

   (b) The case when l(x, y) is a general non-singular sesqui-lin ear form : We 
restrict F to Va with a I, =1, and then perturb it. Assuming a* -1, we have 

Q =A(I-P)(14P)-1 and another skew-hermitian matrix oQ =A(1-a)(1+a)-1. 
A family of skew-hermitian matrices SQ = sQ+(1-s) 0Q, 0s1, <- is considered 
and we get a family of sesqui-linear forms Sl=x*j'y, 0<s<1 by defining
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3F=A-3Q. It follows that SI'=2A((1-s)a+(s+a)P)(I-}-P)-1(l+a)-1 is non-
singular and SP-a=(I+sa+(1-s)P)-1s(l+a)(P-a) is nilpotent for the auto-
morphism SP=(A+SQ)-1(A-8Q). Hence, for any s with 0<s<_1, the Alexander 

polynomial ST(t) associated to S1, does not vanish except t=a, that is, the 
hermitian form sL= xSI'~, y is non-degenerate unless cv = a. Therefore, if 
a l =1, a: -1 and cv ~ a, then sign (V a ; 0Iw)=sign (V a ;1(,,). This follows from 

the perturbation invariance of the signature of non-degenerate hermitian forms. 
Note also that of+= l+. As a consequence, if cv= exp (icp) and a=exp (i6) with 
-7r<co~O<7r , then sign (Va;10)-sign (Im cv) sign (~o-O) sign (Va;1+)=sign (Va; 

01(J,)-sign (Im cv) sign (co-8) sign (Va ; 1+); the latter vanishes, because oP=al. 
If cv is not a root of the Alexander polynomial, then Va=O and this completes 
the proof for a * -1. Remark also that SQ are non-degenerate for 0s1, 
then we get sign(Va; l+)=sign(Im a)sign(Va; i(-0Q))=sign(Im a)sign(Va; -iQ). 

   If a=-1, we use the inverse Cayley transformation A=Q(I+P)(I-P)-1 
and put SA=sA. Then, 3I'=SA-Q, O s1, are non-singular and so are 
Note that o L(x, y) = sign (Im w) iL(x, y). Therefore, we get sign (V_1, 1(5)= 
sign (Im w) sign (V_1, iL_).

   § 2. Proof of Theorem 2. 

   In view of the theorem 1 and the remark, it is sufficient to prove (a)=° a) 
for any real bilinear form with a==exp (i8), 0<O<7r and a(-1+o)1=0. But this 
is also deduced from the theorem 1 as follows. Because F is a real matrix, 
the transpose of F is equal to F; and hence v= sign (transpose of F)=vW. 
Let at denote exp (i(8±s)) for a small positive number s. Then, from the 
theorem 1, we get 

               a(a) = z a+-Za- = = 6(a) , where jSt = ai . 

Therefore, zw=~cie+(1/2)a~+sign (Im w)cr(_1+01). But z~=z~, implies 6(_1+o1,-O 
from that.

   § 3. Excluded cases. 

   We use the notation of the § 1. By decomposing Va into t-invariant sub-
spaces, we may assume P is the triangular matrix of rank r : Pi,1=a, P1=1 
and otherwise Then, the fact that P*AP=A and as=1 implies that 
A is the triangular matrix: A1,;=O if i+j<-r, we investigate the case cv=a 
and a~-1. (The case a=-1 is treated in the same way by using Q instead 

of A). Remember the matrix l a is AX with X=(1-a)(1-aP)(I+P)-1. The 
matrices X and hence AX are the strongly triangular matrices: X=O if i>_ j 
and (AX)1,;=0 if i+j<r+1. The non-degeneracy of F=A-Q=2AP(I+P)-1
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implies that rank A=r and rank AX=r-1. If r=odd, we have sign (AX)=0 
and (*). (Note : sign A =1 in the case r>_3). If r=even, we have sign (AX) 
=1. So in this case (*) does not hold. 

   If we note that FBI' may be transformed to a real matrix, we understand 

that (**) has also counterexamples. 

   § 4. Signatures of algebraic links. 

   We shall give a criterion to calculate Q~ for the algebraic links of Fermat-

Pham-Brieskorn type: 

                          {zi 1+ ... ±znn = O} I 1 stn-1 

The Seifert matrix with integral coefficients is described as I'=(-1)ncn+1>/2I'(a1) 

    @['(a), where I'(aL) denotes a triangular matrix of rank ay-1 with 
F(av)i,j=vi,j-o1+1,j, 1<_i, j<ay-1 (cf. [7]). The intersection matrix and the 

monodromy matrix of the Milnor fiber are 

                  -(E+ (-1)n-1I'*) and (-1)n(1 *)-1 F 

respectively. They have the same real bases (cf. [6]). It is enough to know 

the case when n=odd, because I' becomes either I' or -I' after we add the 

term zn+1. Now, for 0<6<<-7r, Ae denotes the finite set of integers, 

    A0= {(j1, ... , in); 1 ay-1 and it+2ir (jjay) m 6 or -6 mod 27r}. 

   PROPOSITION 3. Suppose n is odd. The partial signatures u, =~e -ae and 

the nullity n of I'+I'* are given as follows: If 0<6<7r, then 

            Qe =number of (Aen{0<~(jv/av)<1 mod 2}), 

            6B = number of (A0 {1 < ~ (jy/av) <2 mod 2} ) 
and 

               n=rank of Y'_1=number of An. 

   The signatures r~ are given by the sum formula in the theorem 2, because 

the monodromy is semi-simple. We shall give an outline of the proof of the 

proposition 3. 
   Let T(a) be the transformation matrix with T(a)i,j =1-ei' and _ 

exp (22r ~/-1/a). (The bases must be written as xs=(1- S)L.i siwi (0<_i-<a-1) 

in the notation of [7] and changes to xs = -ssiwi in that of [5].) Then, 

T*(a)I'(a)T(a) is a diagonal matrix (a(1- )o ,1). Therefore, the transformed 

matrix T*I'T and the transformed automorphism T-1(I'*)-1I'T by T =T(a1)~ 

 QT(an) are 

       ((--1)n(n+1)/2 IT all (1- v ZV ) IT Uiv,jv) and ((-1)n [f [I 

respectively. Since these are diagonal matrices, it is easy to deduce the
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proposition by the same technique of the calculation of sign of the function 

f in the proof of the theorem 1 (cf. p. 12 of [5]). 
   As a final remark it is noticed that the result of Rokhlin [8] in the case 
M=CP2 has an elementary proof : Apply the direct calculation in this note 

for the algebraic link {4+z2 =0} n S 3 to the inequality of Tristram [3] with 

respect to zw ; w=-1 if d= even and w= exp (mi /-1/2m+ 1) if 2m+1 is an 

odd prime power which divides d. 
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