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AN ELEMENTARY PROOF OF ROCHLIN'S SIGNATURE THEOREM
AND ITS EXTENSION BY GUILLOU AND MARIN

*
by Yukio Matsumoto

This paper stems from a lecture delivered in the I.A.S. geometric
topology seminar (1976-77) and is expository in nature, In §§l1-3
we will give an elementary proof of Rochlin's theorem on the signature
of closed spin 4-manifolds, Our proof does not réquire any hard
homotopy theory and is based on the Arf invariant of characteristic
surfaces and the 4-dimensional cobordism group Qa. So it is similar,
in spirit, to the recent geometric proof due to Freedman and Kirby [ 3 ],
but we think, simpler than theirs, The subsequent sections extend
these considerations to non-orientable characteristic surfaces of
closed 4-manifolds and obtain Guillou and Marin's congruence
(modulo 16) [ 4] which involves the signature of the &4-manifolds,
the normal Euler number (= the self-intersection number) of the character-
istic surfaces and the 2Z/8 Arf iavariant of E. H, Brown {1 ].
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many valuable comments on the earlier drafts,

After finishing the second draft of this paper, the author was
shown A. Casson's lecture notes { 2] by C. Gordon., In the notes he gave a

proof of Rochlin's theorem based on the Arf invariant of torus links,
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The details of his proof are considerably different from ours,

§l. The Arf invariant,

Let V be a finite dimensional vector space over Z/2 which
is given a non-singular symmetric bilinear form (x, y) > x - y €2/2,
A functio; q: V—>2/2 1is said to be quadratic (with respect to
".") if it satisfies q(x +y) = q(x) + q(y) + x - y for all x, y €V,
Such a guadratic space (V, ., q) admits a symplectic basis
esey Br € V satisfying ai . cx,j = Bi . Bj = 0,

L Bj = 6ij (Kronecker's delta). As is well known, the Arf in-

variant Arf(q) €Z/2 is defined to be 2;_;1 q(ai)q(ai)'

0.1, es ey ar’ Bl’

a

In this section we will recall the definition of the Arf
invariant of a characteristic surface of an orientable 4-manifold.

To deal with the Robertello-Arf invariant of knots simultaneously, we
will not exclude 4-manifolds with non-empty boundary.

Let Mﬁ be a (compact) connected, smooth and orientable 4-
manifold., Let Fz be an orientable surface properly embedded in MA.
The boundary BFZ is assumed to be ¥ ¢ or = Sl. F2 is called a
characteristic surface if the homology class [F%, 3F] € HZ(M4, aM; 2/2)
is dual to the 2-nd Stiefel-Whitney class wz(M). An equivalent
condition is that the intersection number (mod 2) F - x 1is equal to
the self-intersection number x - x for every x € Hz(Ma; z/2).

From now on we will assume that HI(M4; z) = {0}. Suppose that
we are given a characteristic surface F2, then we can define a
quadratic function q : HI(FZ; z/2) —> 2/2 as follows [10], [ 3]:

Let C be a (generically) immersed circle in Fz. Since

Hl(Ma; Z )= {0}, C bounds a connected orientable surface D immersed
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in MA. D may be assumed not to be tangent to Fz at any point .,
The normal bundle V, of D is orientable and so trivial, because
D~ s1 YV osee ¥ sl. Note that any trivialization T : \b‘g D x 2

2

induces a unique trivialization volao ¥ 3D x R on the boundary.

In fact, the "difference” of any two trivializations T,, T, of vy
corresponds to a continuous map g : D —> SO0(2). Since 3D is
homologous to zero in D, the induced map g|3D : 3D —> SO(2) is
homotopic to zero (because S0(2) ¥ K(Z, 1)). Thus the induced
trivializations coincide.

The normal line bundle V qf C in F2 determines an orientable

C
sub=line bundle in \JDIBD. Let (& (D) be the number (modulo 2) of the full
twists of VC in VDIBD with respect to the unique trivialization above.
Let D.F be the number of the intersection points of Int(D) and F.

Finally let Self(C) be the number of the self-intersection points of C on

Define q(C) (€Z/2) by

q(C) = O°(D) + D-F + Self(C) (mod 2) .

Lemma 1,1, The above definition gives a well defined function

q: Bl(Fz; Z/2) —> Z/2 which is quadratic with respect to the inter-

section pairing: l-ll(Fz; 2/2) ®H1(F2; z/2) —> Z/2.

This lemma will be proved in §5 in a more general setting. (Cf.

Lemma 5.1.)

Let Arf(Fz) be the Arf invariant of q.

Lemma 1,2, Arf(FZ) depends only on the relative integral homology

class [F2, 3F] and the concordance class of the embedding an —> 2 4.

F

2
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In particular, if SM4 =@, Arf(Fz) is determined by the integral

class [F2] and we can speak of the Arf invariant of an integral

characteristic homology class £(i.e. the class whose mod 2 reduction is

dual to wz(M)). * We will denote it by Arf(g) .

Another specific tase is the case of knots in which M4 = D4 and
3F2 = S1 . In this case [FZ,BF] =0, and Arf(FZ) is determined by the
knot K = {3F » 9M} . This is nothing but the Robertello-Arf invariant of

the knot K [8] . We will denote it by Arf(K)

Proof of 1.2. For simplicity assume that OF = @ . (The other case will be

dealt with similarly.) Let FO and F1 be cloged characteristic surfaces
satisfying [FO] = [F1] € Hz(Ma;Z ) . Since K(Z ,2) = MSO0(2) , F, and

are L-equivalent in Thom's sense. In other words, there is an orientable

3

F,

3-manifold V- in (Int M4) x [0,1] such that v3 nMx{i} = F. ,

1

i =0, 1. Perturbing V3 slightly, if necessary, we can assume that the

projection p M4 x [0,1] = [0,1] gives a Morse function p' : v - fo,1]

on V3 . Then F, 1is obtained from Fo by successively attaching

1
0, 1, 2 and 3-handles within M4 .

It is easy to see that attaching O-handles or 1-handles to different
connected components does not change the Arf invariant. Consider the effect
of attaching a 1-handle to the saﬁe component of F0 - The resulting
quadratic function q' 1is the orthogonal sum of q : H1(F2;Z /2) ~ Z /2
and s : Z /2(m) & Z /2(R) » Z /2 with m and £ corresponding to the

co-~core and core of the attached 1-handle. Since m.m = £.2 =0 ,

.m=1 and s(m) =0, Arf(s) is =zero. Thus

Any integral characteristic homology class is represented by a charac-
teristic surface.
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Arf(q') = Arf(q).

Therefore attaching 0 and l-handles does not change the

Arf 1invariant, By duality attaching 2 and 3~handles does not

change it either. [

§2. The proof of Rochlin's theorem.

We wish to prove Rochlin's theorem in the form he gave in [10]:

Theorem 2.1 (Rochlin). Let M& be a closed oriented 4-manifold

with HI(M4; z) = {0}, € an integral characteristic homology class.

Then we have

At£(3) = (O - £:2)/8  (mod 2)

where O(‘Ma) is the signature of u* and €. 4is the self-intersection

number,

Note that c(M“) - 8.8 is divisible by 8, (Cf. [7].)

if M4 is spin (i.e., wz(M4) = 0), we can take O (zero) as
a characteristic homology class., Then by the theorem, O(M) 1is divisible
by 16. This is the classical Rochlin's theorem [ 9 ].

For the proof, we need two facts.

Facts: 1) Let K(p, q) be the classical torus knot of type (p, q)

with p odd, q even., Then Arf(p, q)) = (1 -pz)/s (mod 2).

2) let M4 be a connected l-connected, closed and oriented

4-manifold., Then there exist integers £, m, n > 0 such that

Ma#(£+1)P#ngmP#nQ, where P and Q are the complex pro-

jective plane and the one with the opposite orientation, respectively,
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Fact 1) is the '"germ” of Rochlin's theorem. Using Fact 2),
we can globalize it to obtain the Rochlin congruence,

These two facts are more or less standard. However, we will

give some explanations in the next section.

2 be a characteristic surface representing

€. By doing framed surgery on M4 - Fz, we can (and will) make M4

connected and l-connected without affecting the fact that F2 is

Proof of Theorem 2.1. Let F

characteristic or altering the value of Arf(Fz).

The both sides of the formula we want to prove are additive with
respect to the connected sum of the manifolds and the direct sum of the
characteristic homology classes., Thus if the congruence holds for any
two of three pairs (Ml’ §1), (Mz, §2) and (M1 # MZ’ §1® §2) then
it also holds for the remaining pair,

Let N € HZ(P; Z) and T € HZ(Q; Z) be the generators represented
by projective lines. They are characteristic, and the formula is easily
checked for the pairs (P, M) and (Q, 7). Thus the above remark implies
that we have only to prove the formula for the pair (M4 # (L + 1)P ¥ £,
E®MD...0n,, @8N &... 9T with some £3> 0. But by Fact 2),
M4 # (L+ 1)P # LQ 1is diffeomorphic to a connected sum mP # nQ if 4
is sufficiently large.

Note that every characteristic homology class of the connected
sum mP # nQ 1is written as lnl@ cee D smﬂmg tlﬁl@ eee D tnf-\n with
8y tj odd. Then by the additivity of the formula again, the proof is
reduced to that for pairs (P, sn) and (Q, tn) with odd s, t. As is

easily seen, the orientations of the manifold M4 and the characteristic

surface are irrelevant to the proof. Therefore we have only to consider



125

the case of (P, sn) with odd s > 0.

To compute Arf(sm) we will take the algebraic curve C of

degree s> 0 : C= {(x:y: 2); x° + ys'lz = 0}, C is homeomorphic

to $2 and is smoothly embedded in P except at the point (0 : 0 : 1),

1*0. Let 34 be a

small ball whose center is the singular point. Then C N 334

At this point C has a cusp of type x° + y°

is a

torus knot of type (s, s-1), Taking a smooth surface G2 in B[‘

bounded by the knot, we get a smooth surface Fz = 62 U (€ ~-C N Int B")
representing sN. Now Arf(sm) is equal to Arf (I-‘z) = Arf (Gz)
= Arf(K(s, s-1)). By Fact 1) this is equal to (1 - sz)ls (mod 2)

which is nothing but (O(P) = (sM)+(sn))/8 (mod 2) as required. [J

§3. Explanation of Facts 1) and 2).

Fact 1): The following convenient way to get Fact 1) was suggested
by Siebenmann, Recall that the Alexander polynomial of K(p, q),
AK(, Q); t), iseqalto (1 -t - tPh/a - PHa - D,
(Cf. [11, p. 178].) Then assuming p to be odd and q even we have
A(K(p, q); ~1) = p. Levine's result [ 6] says that Arf(K(p, q@)) = 0
or 1 according as A(K(p, q); ~1) = t1 or %3 (mod 8). However,
this is reformulated as Arf(K(p, q)) = (1 - p>)/8 (mod 2).

There is an alternative and more elementary way. This method
applies most neatly to the case of K(s, s-1) (s > 0) which is the

only relevant case to our proof, We need a lemma,

Lemma 3.1, Let p be a double point of a regular projection of an

oriented knot K. t ¢ d C, be the two components of the link

2
which is obtained by the surgery at p along the twisted rectangle
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shown in the figure below, L(p; K) the linking number of C1 and

c

gr 1f K' is the knot obtained from K by interchanging over and

under crossing paths at p, then

Arf(K) = Arf(K') + L(p; K) (mod 2) .

KX e
/\&

Proof. Let Ba(r) be the standard 4-ball in 14 of radius r > 0,
Let 83(r) = 3B“(r). Let us construct a surface G2 in

Ba(l) - Int 84(1/2) by the following movie {(plus smoothing):

Kl

—_
/ cbr \~<:2 ‘%1/2
(rs 1) (l>r> 1/2) (r= 1/2)

The boundary aG2 consists of K in 83(1) and K' in S3(1/2).
Let A and B be the two circles in 62 defined by

A=pq Ufq; 1/25rg 1} v q3/9P12 Y {ps1/25r<1}, B=g¢
(in 83(3/4), say). Take a surface F2 in 34(1/2) such that

an = K', Then G2 v F2 is a surface in 84(1) bounded by K. Since
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2; z/2) = HI(FZ; Z/2) $Z/2(A) $2/2(B), the difference

Hl ((;2 JF
Arf(K) - Arf(K') is equal to the Arf invariant of the quadratic
function q on Z/2(A) @ Z/2(B). By the figure above, q is
computed as follows: . q(A) = Or@) =1 (A being a surface in
B*(1) - Int 3*(1/2) bounded by A), q(B) = V-G = Link(C, C,)
(V being a Seifert surface of Cl in 83(3/4)), A*A = BB =0 and

A‘B = 1. Thus Arf(q) = q(A):q(B) = Link(C;, C,) (mod 2). 0

To compute Arf(K(s, s-1)) consider the regular projection

of K(s, s-1):
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Let K(i) be the knot obtained from K(s, s-1) by interchanging
over and under crossing paths at the points Pys pz, eees Py in the
projection, Then K(s-Z) = K(s-1l, s=2), This allows us an inductive
calculation, Inspecting the figure above, we see that

L(Pi; K(i-l)) = {e(s~1l-1), 1 < i< s=2, Thus by applying Lemma 3.1
inductively,

Atf(R(s, s-1)) = Arf(K(s-1, 3-2)) + Tpoo i+(s-1-1) .
An elementary consideration shows

-2 0 (mod 2), s-2% 1 (mod &) ,
Z;l 1e(s=1l=1i) =
1 (mod 2), s=-2%¥ 1 (mod 4) .

Therefore, starting from Arf(K(l, 0)) = 0 we have

0O, s*0, 1, 2, 7 (mod 8) |,
Arf(K(s, s~1)) =

1, s= 3, 4,5, 6 (mod 8) .
Confining ourself to odd s > 0, we get the desired formula

Arf(K(s, s-1)) 5 (1 - s2)/8 (mod 2).

Fact 2): This is a consequence of Wall's theorem [ 14]. However, since
his theorem is far from being elementary we will give a direct proof
described to the author by Siebenmann., Cf. [5 ].

Suppose that connected, l-connected, closed and oriented 4-
manifolds Ma and N4 are cobordant to each other. Let WS be an

oriented cobordism between them., Decompose Ws into a handle-body

starting from M x [0, 1]:

vy 0 1 2 3 4
W= x (0, 11 UAES Ut Ut U et uae .
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()\i = the number of i-handles.) We can cancel 0 and S5-handles. A
l«handle is trivially attached to M4 X {0, 1] and can be considered

as a boundary connected sum of MA x {0, 1] and an embedded Sl X Dl‘.

We do surgery on w5 along the embedded Sl X D‘. Then Sl X Da is
replaced by a 3-handle trivially attached to M4 x [0, 1].

In the dual way we can surger out 4-handles and replace them by 2-
handles, Now we can assume that there are only 2 and 3-handles,

Since Ma and N" are l-connected, by looking at the middle

level we have

M4#p82x52#q82582384#r82XSZ#SSZ)SSZ )

where S2 X S2 is the twisted 82 bundle over 82. The fact

2 2

s>xs?#pus X s2épap# Q [13] implies the existence of

L m> 0 such that

M L+ DPEQINF @+ DPFmQ .

The signature O : 04 —> Z gives the isomorphism so every Ma is

cobordant to 0(M4)P. Now Fact 2) follows from the above observation.

6§64, Brown's invariant.

We will recall Brown's Z/8 Arf invariant from [ 1]. Let V
be a finite dimensional vector space over Z/2 provided with a non-
singular symmetric bilinear form (x, y) V> x.y €Z/2. By a Z/4-~
quadratic function is meant a function @ : V —> Z/4 satisfying
p(x + y) = p(x) + o(y) + 2(x+y) for all x, y €V, where 2 : Z/2 —>Z/

is the homomorphism sending 1+> 2, Such a triple (V, ., @) 18 called

a 2Z/4-quadratic space,
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The orthogonal sum X & Y of two 2Z/4-quadratic spaces X, Y

is defined as usual, A quadratic s;;ace is indecomposable if it is not

isomorphic to the orthogonal sum of two non-trivial quadratic spaces.
Then there are only four indecomposable spaces.

Namely,

P_'_' @/2(a), *, ¥), aca=1, o@a)=1 .
P_= (z/2(a), *, @), a-a=1, oa)=-~-1 .

Ty = ¢/2(l:.v) D2/2(c), », ¥, beb=c.c =0,
bec =1, @) =¢)=0 .,

T, = @/2(b) @Z/2(c), +, ¥), beb = cec =0,
bec =1, @) =) =2 .,

Following ( 7, p. 112j we say that a Z/4-quadratic space
X=(V, -, ¥) is split if V contains a subspace H with () = {0},
H-H = {0} and dim H = (1/2)dim V. For instance, T, and B @ P_
are split, Two Z/4-quadratic spaces X and Y belong to the same

Witt class if X & 8, TYSP S, where the S, are split. The Witt

i
classes of Z/4-quadratic spaces form the Witt group W. We denote the
Witt class of X by ([X]. Then [10] = 0 and [3+] + [P ]=0 for
instance.

Note the two relations: P+® T, TP QP @GP and
P & T, ¥ P+® P+® P . (Under each isomorphism the standard generators
on the right are mapped to the elements a + b, a+c, a+ b+ ¢ of
the space on the left.) These relations are written in terms of Witt
classes as [T4] = 4[P_] and [T4] = 4{P+]. Thus W 1is gemerated b}
{P+] and 8[P+] = 2['1?4] = 4([1’_,_] + [P_]) = 0. 1In fact, W 1is shown to

be isomorphic to Z/8 by Brown's invariant as we see below.
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Let X be a Z/4-quadratic space (V, ., ¢). E, H. Brown [ 1]

considered the Monsky sum
N L

The complex number A(X) takes the form vZ3™® V(i + i)™ (m € 2).
For A 1is multiplicative: A(X DY) = A(X)A(Y) and it takes the

required form on each of the indecomposable spaces: X(P+) = 1+1

= J2(1 + i/V2), etc,
Since the complex number 1 + i/yZ is an 8-th root of unity,

the integer m modulo 8 1is well-defined. It is called Brown's invariant

of X and i{s denoted by B(X) € z/8.
Lemma 4,1, ({1, Thm. 1.20, ix]) If X 4is split, them B(X) = O,

By 4.1, B gives a homomorphism W —> Z/8, and since B(P+) = 1

it is an isomorphism,

Remarks. 1) ([1, Thm. 1.20, vii]) Let (V, *, q) be a quadratic
space in the sense of §1, Then (V, ¢, 2q) 1is a Z/4-quadratic space
and B(V, ¢, 2q) = 4 Arf(q), where 4 : Z/2 —> Z/8 1is the homomorphism
sending 1 > 4,

2) ((1, T™m, 1.20, vi]) For every Z/4-quadratic space

X=(V, o, ® we have B(X) *F dim V (mod 2).

§5. Guillou and Marin's congruence,

Guillou and Marin [ 4 ] extended Rochlin's congruence 2.1 by
allowing non-orientable characteristic surfaces. In this section we

will formulate their congruence, A proof will be given in §6.
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Let M4 be an oriented, connected and closed 4-manifold with

2

Hl(Mh; Z) = {0]. Let F° be a closed characteristic surface of M4

(in the sense of §l) which is not necessarily orientable, Then we can

define a 2Z/4-quadratic function ¢ : Hl(Fz; Z2/2) —>» Z/4 as follows:

let C be an immersed circle in F2. Since Hl(Mé; z) = {0},

C bounds a connected orientable surface D immersed in Ma. We may
assume that D 1is not tangent to F2 at any point. As in §l1, the

normal bundle Vo is trivial and on vD|C is induced a unique trivial-

ization V |C TcC X'B?. The normal bundle of C in F defines a sub-

D

line bundle VC

we count the number n(D) of right-handed half twists of vc. The

of leC, and with the unique trivialization above

picture illustrates the right-handed twists,

Here [C] 1is a direction of C arbitrarily chosen, and {el, ez} is

the basis of the fiber (¥ R®) of Vv |C which satisfies
(*) fr.] x {C] xe, Xe, = [Mﬁ]
D 1% ’

[rD] being the outward ‘'radial' direction of D,

Now the required form & 1is defined by

(D) = n(D) + 2D-F + 2 Self(C) (mod 4) .
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Lemma 5.1. (D) € Z/4 depends only on the Z/2-homology class of

C = 2p. The function 3 : H (F’; 2/2) —>Z/4 is Z/4-guadratic.

Let B(FZ) be Brown's invariant of the 2Z/4-quadratic space

¢ z/), -, 9.

Theorem 5.2. (Guillou and Marin) With the notation above we have

o) = FoF + 28(FD)  (mod 16)

where F<F is the self-intersection number of F (cf. [15]) and

2 :2/8 —> 2/16 {is the homomorphism sending 1 F> 2,

Corollary., (Generalized Whitney's congruence [10]) We have

o(ul’) % F.F + 2x(F2) (mod 4) ,

where x(Fz) is the Euler characteristic of Fz.

The corollary follows from 5.2 by Remark 2) of the previous

section, Also by Remark 1) there we see that 5.2 reduces to 2.1 in

the case when Fz is orientable,

The rest of this section is devoted to the proof of Lemma 5.1.

Proof of 5.1. The proof is divided into four steps.

1) «(D) depends only on the immersion C.

Let us take another immersed surface D' with 3D' = C and show
that ®(D') = (D). By spinning D' around C (cf. [3, Fig., 1]) if
necessary, we may assume that the union D U D' is a smoothly immersed

closed surface X, (We are assuming that the outward 'radial' vectors
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of D and D' are exactly in opposite directions to each other at
their boundary points.) D and D' determine the trivializations

C=Vv |C, but they induce the opposite orientations

pl€ = Vps
on the fibers (¥ R?). Let d(-T, T') €2 = ﬂi(SO(Z)) be the difference

T and T' of V

between ~T and T', Then

) Z-Z=d(-T, T') = 2D:D' & d(-T, T') (mod 2) .

Since F% 1is characteristic, XL 3 Z-F (mod 2), but ZI‘F 1is equal to
(B) D°F + D'-F + w; (V) [C]  (mod 2) .

The explanation of wl(vc)[c] is this: If Vo 1s orientable
(wl(vc)[C] = 0) we can push ¥ off from F2 near C, but if \b

is not orientable (wl(vb)[C] = 1) to put & in general position

with respect to Fz we necessarily create an odd number of intersection
points of I-‘2 and ¥ near C,

From (A) and (B) we have

©) d(-T, T') = D-F + D'.F + wl(vc)[c] (mod 2) .
Finally
(D) a(D') ¥ n(D) + 24(-T, T') + 2w (V)[C]  (mod 4) .

For the numbef (mod 4) of the right-handed half twists of VC in
Vblc with respect to =T (instead of T) is equal to -n(D). But
~a(D) ¥ n(D) + Zwl(wb)fc] (mod 4). (Proof: If n(D) €1 or 3
mod 4, V. is non-orientable so wl(vb)[c] = 1 and

C
n(D) + 2w1(vb)[C] £3 or 1 md 4. If n(D) =0 or 2 mod 4, Ve
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is orientable and wl(vc)[c] = 0,) Therefore n(D') 3 -n(D) + 2d(-T, T')
= n(D) + 2w1(Vc)[C] + 2d(-T, T') as required.

(C) and (D) imply that n(D) + 2D-F ¥ n(D') + 2D'-F (mod 4),
This is what we wanted to prove.

By. 1) we can write ®@(C) in place of (D).

2) @(C) depends only on the homotopy class of C,
@ 1is clearly regular homotopy invariant of C, If C' is

homotopic to C, C' is regularly homotopic to a curve which is
obtained from C by introducing a certain number of Whitney's double
points (small figure eights), [12, § 7 ]. But for a small figure 8
on F2 we can take a small disk D with 3D = the figure 8 and
D.F= 0, It is seen that n(D) = 2, Obviously Self(a figure 8) = 1,
Thus @(a figure 8) = 2 + 2.0+ 2.1 % 0 (mod 4). This implies that

g(C') = p(C).
Now @ defines a map ﬂi(Fz) —> z/4,

3) ¢ : WI(FZ) —> Z/4 1is Z/4-quadratic.
In other words if C *C' denotes the composition of loops

then @(C*C') = ¢(C) + o(C') + 2(C-C'). The proof is straightforward

from the definition of .

4) ©:mE’) —>z/4 splits through H, (F%; 2/2).

By 3) @(Ce°C') = 9(C's C). Thus it splits through HI(FZ; z).
To prove 4) we have only to note that o(C + C) = 29p(C) + 2(C+C)
= 2(W1(VC)[C]) + ZCWI(‘C)[C]) = 0 (mod 4).

This completes the proof of 5.1.
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§6. Proof of Theorem 3.2.

We begin by checking the formula 5.2 on the key examples.

Let M, be the two Mybius strips in Rs.

m, m.

Cap off the boundaries of M, in a smooth way using disks 4; in

lf = {(x, y, 2z, W); w< 0}. Then we obtain the two embeddings of

wr? . npiczlf’ = s* - [=D.
2, . 2 .2 _ 4
Assertion. B(lPt) = 1, RP_t -RPi_ =32 and O(S') = 0, Thus Theorem

5.2 is true for the surfaces RP,jz:c Sa.

Proof. Let D be a disk in lf_= {(x, y, z, w); w> 0} which meets
l3 = al_‘:_ perpendicularly along 3D = C, the central circle of 7Y‘L+
or M_. The restriction \JDIC is identified with the normal bundle
of C in 13, which has an untwisted framing. Let {el, ez} be such
a normal framing that obeys the orientation rule (%) in §5:

[rD] x [C] X e, X e, = [34] (= {x] x[y] x (2] x [w]). In the present
case, [rD] = -[w] so [C] x e, X e, coincides with the usual right-
handed orientation [x] X [y] x [2] of 23, Observing this, we can
read the number n(D) from the picture of mi’ :n) = +1 or -1
according as C belongs to ‘m,+ or M _. Since D-RP§_= 0 and
Self(C) = 0, we have o(C) = t1 thus B(RP.E_) = *1 as asserted.

Next we will prove IP_%_ . RPE = 32, For convenience, consider
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lP_*z_. Lift 771+ to 33 x {e} = {(x, y, 2, w); w=1r> 0} and make
it slightly wider to obtain ', Let 3M' x [0, r] be the "vertical
annulus" in 2> x {0, r]. Here 3M' x {r}=3M', and am' x {o}
< R3) is a closed curve parallel to the boundary 37} +° Take a disk
4' in l’:. with 34' = 3M' x {0). We assume that A' {s isotopic in

lf to A+ (= IP_E

RP' = M' UM x [0, r] UA'.

2 2 v L mpl ', 4
RP+oIP+ is equal to RP RP+¢ 4 A+. If R_ were oriented

so that the orientation [R‘:] is consistent with [outward direction]

n l‘:) and intersects it in general position. Let

x [the orientation of Blf] = [w] x.[l3], then by the well-known

relation the number A'-3  would be equal to the linking number

+
Link (34°, 3A+). " But in the present case, l‘_’ is oriented contrarily:

(®*] 1s induced from (%) = (R3] x [w] = -[w] x (R%]. Thus
A'0A+ = -Link(34’, 36_,_) = ~Link (3T x [0}, am‘_) ® -2 as asserted,

The proof of le -le = 2 is similar.,

Now consider the general case. If F2 c M" is orientable,

Theorem 5.2 reduces to 2.1, Suppose Fz is not orientable, Then F2

is diffeomorphic to the connected sum le £ ... % an (say, m-~copies).
Let C1 be an embedded circle in the first copy which represents the
generator of Hl(le; Z/2). As in §5, take a disk D, satisfying

(i) BDI = Cl, (ii) Dl is not tangent to F2 and (iii) Int Dl n Cl = Q.
Since the normal bundle of C, in Fz is non-orientable,

cp(Cl) = “(Dl) + 201‘1-‘ is equal to *1 (mod 4). By spinning D,

around Cl, we can accomplish the condition that (iv) Dl-l-‘2 0 (mod 2)

and (v) n(Dl) = 1 €2 (without taking modulus 4),

For instance suppose n(Dl) = 1, There exists a diffeomorphism
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f : N, => N of a tubular neighbourhood Nl of Cl in M4 to a

1
tubular neighbourhood N of € (the central circle of ?n*) in Sa.
We can assume that f£(N; n Fz) = NN ﬂi+ and £(N, n D)) =N N p,
where D 1is the disk in the proof of the assertion,

Construct a new 4-manifold M' = (M - Int Nl) g (Sa -~ Int N)
and a new surface 'F' = (F - Int N1 N F) g Glzi - Int N N lPi). Then
H*(M'; z) = H (M 4 82 X Sz; Z). In particular,

HZ(M'; z/2) = Hz(M; z/2) @z/2(c) ©2/2(B), where a = [Dl Up] and
3= [a fiber S of the 2-sphere bundle associated to NJ.

F' is a characteristic surface of M'., In fact, since F 1is
characteristic, x+F' = x.F T x.x (mod 2) fo:l: every x € HZ(M; z/2).
a.F' {is equal to Dl-F2 2 0 (mod 2) (Condition (iv)). a-a {s also
%0 (mod 2), Finally B8-F'=S.M_ but S = 23 0 (mod 2).
Clearly BB =0 (mod 2). Thus B+F' = BB, Therefore, for every
y € Hz(M‘; Z/2) we have yF' % y.y (mod 2) as asserted.

Emphasizing the ambient 4-manifold, we will denote Brown's

invariant by B(Fz, M). Then B(F', M') = B(F, M) - 1. For we have

2

surgered out the first copy of le in IPZ #... # RP2 = F° for

which w(ql) = 1 as we assumed.

Give the orientation to M' which is consistent with [M] and
is opposite to [Sa]. Then F'+F' = F.F =~ IP+‘°RP; = FeF + 2 (cf.
Assertion), Thus we have F'+F' + 28(F', M') = F.F + 2B(F, M), (The

same equality is obtained also in the case n(DI) a -1,)

2 {m - 1 copies),

Obviously O(M') = O(M) and F' = RP> # ... # RP
Therefore, Guillou and Marin's congruence (5.2) is proved by induction

on m,
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