PROPER SURGERY GROUPS FOR NON-COMPACT
MANIFOLDS OF FINITE DIMENSION

by Serge Maumary¥*

Introduction

This work first appeared in preprint form in 1972, with
the goal of "computing” the formal open surgery obstruction
groups (cf. Taylor [10]) in terms of the projective Wall groups
introduced by Novikov [5]. The theory turned out to be quite
complicated, both algebraically and geometrically. Despite its
complexity the theory plays a role in at least two beautiful
classical processes:

i) The transfer process, going from a surgery problem on
a manifold M to one on a covering M of M. A typical case arises
in the study of the L-groups of infinite groups. For a normal
map (f,b):M———»X from a compact n-manifold M to a finite
n-dimensional Poincare complex X with ﬂl(X) = T x Z the transfer

map t : Lﬁ(ﬂx Y > LE_ (1) sends the finite surgery obstruction

1
cz(f,b)e Li(ﬂx 7Z) in the finite Wall group of Shaneson [13] to the

proper surgery obstruction Og(f,B)EELg_l(ﬂ) of the covering map

(f,b):M—w——+i, with X the infinite cyclic covering of X such
that wl(i) = 1. Note that M is not compact and X is not finite,
and that there is a dimension shift in the proper surgery
obstruction.

ii) The deleting (or removing) process, going from a
problem on a compact pair (M,K) to one on M-K with "“conditions

at «" or "boundary conditions". Typical cases arise in the
study of knots and singularities, especially in dimension 4

(cf. the work of Cappell-Shaneson, Casson, Freedman etc.).
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These notes may serve as a general framework for
particular cases.

On the algebraic side, the projective L-groups LE(N)
appear in the analogue of the splitting theorem of Shaneson [13]

5 _ .5 h
Ln(ﬂx Z) = Ln(n)@Ln_l(n)

obtained by Novikov [5] and Ranicki {[14]

Mo xzy = tPmer? L (r) .
n n n—

l(
Work of Bak, Carlsson, Hambleton, Kolster, Milgram and Pardon
(in various combinations) has shown that the computation of the
projective L-groups Lf(ﬂ) for finite groups m is easier than the
computation of the finite L-groups LE(N) and of the original
simple L-groups Lf(ﬂ) of Wall [11], reducing to class group
theory.

Pedersen and Ranicki [15] give a different geometric
interpretation of the projective L-groups LE(n), in terms of
normal maps (f,b):M——>X from compact n—dimensipnal manifolids
M to finitely dominated n-dimensional Poincaré complexes X
with ﬂl(x) = T,

A brief account of the main results of this paper may

be found in Maumary [12].



Summary .

We consider non-compact connected manifolds M of finite
dimension, which are countable union of compact subsets, and proper
maps f of such manifolds (f_l (compact) = compact). Given a
proper normal map of open manifolds f: M » X, we look for the
obstruction to having a proper normal cobordism from f to some
proper homotopy equivalence at w £': M + X (see [9] for
definition). We shall need extensively mapping cylinder con-
structions, which change X intoc a properly homotopy equivalent
CW-complex. So we have to study the proper homotopy invariant
properties of the classical Poincare duality in a non-compact
manifold: +this is taken care in Chapter I. Then we make f
as connected as possible at » , by doing a sequence of ordinary
surgeries -+ ® and carving out a sequence of properly embedded
g-spheres piped to « as in Chapter II. Then, when m = 2gq+1,
we show (Th. III, 9) that for some sequence of cocompact submani-
folds Mn > @ the intersection pairing on the boundary, induces

a non-singular quadratic form S € L, (n,X_ ) on a projective

2" ' 1'n
quotient of a submodule of Kq(BMP)# (coefficients ﬂan, r > nj,
and that the extension c# of o to w.X is canonically
n n 1"n-1

equivalent to ¢ 1" This is obtained by finding adequate cocompact
subcomplexes X + in X (up to mapping cylindér constructions)
and an extensive use of Poincaré duality. The case m = 2q+2.

can be divided in two cobordisms with common boundary U2q+l,
such that for some sequence of cocompact submanifolds Un > ®

in U, the intersection form on Kq(aUP)# is canonically free

hyperbolic and contains a distinguished projective Lagrangian



plane ln €L (r.X ) (see notations and Th. IV. 4). Moreover,

2g+l” 1'n
#

there is an essentially canonical equivalence between L and

ln—l' More precisely, we get in this way an exact sequence

1g':ml

Lm(ﬂlxn) -+ Lm(EX) + lim Lm

-

1('rrlxn) where Lm(EX) is the

proper surgery obstruction group at <« and 1im1 is as usual
-+

the cokernel of the map 1l-s: ng Lm(wlxn) ¥D given by

(l—s)(al,az,ag,...) = (a1 - aﬁ, a, - ag,...). This can be

globalized to the whole propef surgery group Lm(X) (see e.g

[101) as an exact sequence

l-s
——+7Tm-——* Lm(ﬂlX) ) TTm —— Lm(X)«—+7Tm_I-¢ Lm(le) ®7Im

- T - | = (-at,a, -af
where 7Tm n>1 Lm(ann) and (1 s)(al,az,as...) ( asa;=a,

a2 - aﬁ,...). Observe that although the map 1l-s 1is in terms
of 'ﬂlxn for all n, nevertheless, Ker(l-s) and Coker(l-s)

only depend on the equivalence class of the system
nlxl <+ w1X2 “ ﬂlX3 < ... . This exact sequence is the hermitian
analog of a 5-terms exact sequence for K-theory obtained in [2]
énd [9]. Our method is geometric and uses a minimum of algebra
(concentrated in Chapter V).

Let me thank W. Browder who encouraged me when I started
this work at the I.A.S. (1969-71), Princeton. Let me thank also
J. Wagoner for his helpful suggestions when I achieved this

paper at U.C., Berkeley (1972). I also owe to R. Lee some

useful conversations.

Berkeley
March, 1972.



Notations and conventions.

1) For connected CW-complexes, all chain and cochain

complexes, homology and cohomology modules are with universal

coefficients. For non-connected CW-complexes, they are direct
sum over the components. # means with some understood extended
coefficients.

2) Our main geometrical situation will be the mapping

cylinder of a map f: M + X, with some understood subcomplexes
- - ] .

X and X C€X . If M_ =X NM, M = X MNM, we write

n n n n n n n

[ ] . -
U )
Kk(Mn) for Hk+l(Xn,Mn), Kk(Mm’Mn) for Hk+1(Xm,Xn Mm"

[_]
Kk(Mn) for H

. ® .
k+l(xn’Mn) and similarly for cohomology:

/// area mod WK  area

t
One should always remember what the XV1 are, as we shall have

1

various X, intersecting M along the same M .

3) For cocompact subcomplex (with relatively compact

complement) a square ® Wwill mean a compact subcomplex containing




the frontier.

4) All L-groups are Wall-Novikov's groups (see [5]).
Namely, given a group G , qu
classes of quadratic finitely generated projective AZG-modules
(with the properties of the intersection pairing in a closed
2qg-manifold). The nul element is represented by a quadratic
module <P ® X> such that <{P,P> = 0, <X,X> = 0 the induced
composite isomorphism P = X* = P**, X = P* = X** being (-1)4
the evaluation map. Note that the dual is taken w.r.t. the
involution g & uu(g)g-1 of 726 for some homomorphism w:G » 1.
This is also called a projective (-4 -hyperbolic module, and
if P is free, a free (~1)~hyperbolic module. The opposite of
a quadratic module <Q> is represented by Q with the opposite
form (x,y>' = ={x,¥» . Now, L2q+l(G) denotes the group of
equivalence classes of projective Lagrangian planes £ in the
standard free (-1)%-hyperbolic module <P ® X> (& is defined
as a maximal direct summand of P ® X such that <£,£> = 0).

The null element is represented by a Lagrangian plane £ which

takes the trivial form QP ® bx (QP,LX = direct summand of P,X

respectively) after some Lagrangian transformation of {p o S

(G) denotes the group of equivalence



The latter is defined as follows: let ¢t ® H> be a hyperbolic

% %
module (H= t , t= H ), where t is projective, and X % H,

b
t, ¢ becomes a

1?

t$ H be linear maps, such that wvia H
(—l)q+l—symmetric bilinear form on t (similar to the intersection
pairing on a 2q+2-manifold with boundary). A Lagrangian trans-
formation of {P @ X> is the quadratic automorphism of

(PP X + {t@H defined by (p,x,t,h) » (p#y *t,x,t,h- x-¢t)
where tY3 P is the dual of Y, and DE P, x€ X, tE€ t,

h € H. Note that the Lagrangian plane %, = P @H={(p,0,0,h)}

is left fixed, while the image of the Lagrangian plane

X® t = {(0,x,t,0)} is 21 = {(tY*t,x,t, «x - ¢t)} . These

planes f&,,%, are considered as new "trivial" Lagrangian planes

in <P @ x> ® {t @® HY and the Lagrangian plane £ in <P @ x>
represents 0 is & @ t takes a trivial form w.r.t. L, and

L The opposite of a Lagrangian plane & in <P & X)» 1is

l .
* ' o N
represented by & in (PO X , where {2 @ 2> ={P @ XD
' & .
and {p,x> = -{p,xXy . When 2 is free, then % and ¢ in
<P &> X) are equivalent, hence in this case (Wall groups) the

1
inverse of & in <P @ X) is also represented by £ in (P @ X> .

5) We shall often agree to reorder a sequence of integers

T by replacing v by n.

n
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CHAPTER I. POINCARE DUALITY AT w

1. We work with the category of connected CW-complex X of
finite dimension admitting a countable sequence Xy ) X, 2 ... of

subcomplexes, which is a fundamental system of ngbd of m(irig

is compact and nglxn = ¢). By choosing a base point in each
connected component of Xn, we let gn be the union of the univer-
-sai covering of each pointed component. Then the ﬂan—chain

complex C(Xn) of cellular chains of %ﬁ is determined. Note

that Xn has finitely many components.

] ..
Let Xn denote any finite subcomplex of Xn containing the
.
frontier of Xn in X. We have a relative chain complex C(Xn’xn)
~ [ ] .
by taking Xn mod the induced covering of X - Similarly we

]
have relative chain complexes C(Xn,Xn U Xr) for r #2 n, and



% ] % o
we define C (X_,X ) by 1lim C (X ,X_ U X ), where the dual
c " n’"n iy n’“n r

00
is taken w.r.t. the anti-automorphism g & w(g)g_l of Zm X
1
for some fixed homomorphism nlx + 1. By joining the base points
in Xn+l to the base points in Xrl (forming a tree growing in

each non-compact component of Xl), we get by excision canonical
inverse systems of chain complexes {C(Xn)} and {CZ(Xn,ﬁn)}
well-defined up to an cbvious notion of conjugate equivalence

(see Chapter V). Gi§en an element [X] € lim Hm(X,XP;Z) (coeffi-

r
cients extended by mw.X ¥ 72), we find by excision

1
="
[Xn r] € Hm(Xn,Xn U X5 Z). The cap products by these latter

2
]
homology classes induce a morphism of inverse systems {HE(xn,Xn)} >
> {H _, (X )} (see Chap. V and {1]1). We shall say that [X] is a

m-fundamental class for- X at infinity if N [X] 1is an equivalence

of inverse systems (see Chapter V). Observe that by taking a
subsequence of (Xn) one can assume to have commutative diagrams

N
(X X ) —> H (X )

NT

n+l’ n+l

2. Lemma. Let f: X » X' be a proper homotopy equivalence.
If [X] 4is a m-fundamental class at =, then so is [X'] = f,.[X].

For instance, if X has the proper homotopy type of a
m-manifold, then X has a m-fundamental class at «. The proof
of the lemma 1s clear.

3. If M, X are provided with m-fundamental classes at
[M], [X], then we say that a proper map f: M + X 1is of degree 1

if £,IM} = [X]. As f is proper we can find convergent sequences



of ngbd of =, M_, X, such that £(M) € X and choose ",

n n

" [ ] .
X such that f(M_) CX_. Then we have the modules K (M )

n n n k''n

a KoLty = BN X um tations), which also f

an MWLM = Hy n>%n n see notations), which also rorm
inverse systems, well-defined up to conjugate equivalence. When M
is a manifold, we can choose the M, to be cocompact submanifolds
with boundary BMn = closed bicollared submanifold. By enlarging

]

[
Xn’ we can assume that f(BMn) C Xn' Now we identify X with

f -
the mapping cylinder of M -+ X, so Xn NnNM = Mn and X NM= aMn.

4., Lemma. Let M be an open manifold and f:M + X be a
n
proper map of degree 1. Assume that Xn NnM = BMn. Then the compos-
- 3 ok &k, ® . . .
ition Km_k(Mn) - Hm_k(Mn) = HC(Mn, aMn) > Kc(Mn,Mn) is a canonical

. . k
equivalence of inverse systems, say  {: {Km_k(Mn)} > {K (M BMn)}-

. k a
Proof. Choose an equivalence y_: Ho o (Xpsp? = H (X X))
%* . .
inverse to N[X], and let o be the composition of morphisms

- NLM] £

s *n+l

* e X ,X_)
HC(M H*(Xn"'l)_-_}HC( n’'n’"

Then the square

% o -
Hc(Mn+1’ 3Mn+1) > Hc(XnaXn)
~ | NI[M]
NnLx]
H*(Mnll) )
*.n
Hy (M) : > Hu (X))

. . . . N
is commutative, hence provides an equivalence Ker aﬁ——+Ker I, n’
b

]

* . .
Moreover, the composition o of is just the canonical map 1.



10

% % % ®
Hence the map 8= 1 - f co HC(M 3Mn+2) > HC(Mn+1,aM )

n+2’ n+l
*
induces a morphism Coker fn+2 iSKer a;, which turns out to be

%
n+l °?

hence is an equivalence. The composition @Ry, (we skip some

. .
inverse to the morphism Ker a; -+ Hc(Mn+l’aMn+l) + Coker f

obvious map) reduces to 1oy , Dbecause f*ouﬁn_loa = f*owxofizﬂ_ .
0

Hence NoBoy : K*(Mﬁ) + Ker f*,n is the canonical map. But

the latter turns out to be an equivalence, by introducing the

composition of morphisms
%
f NLM]

) X % . n_, % ~
Oy p! H*(Xn+l)—————+ﬂc(xn,xn)—————+Hc(Mn,Mn)~w—~—+H*(Mn)

which satisfies f,oa, = canonical map (use Chapter V). Similarly

* * * -
Coker fn > Kc(Mn,BMn) is an equivalence.

*
Addendum: ¥ has an inverse equivalence KC(Mn,aMn) *'K*—k(Mn)

%
Proof. By using o, and o , check that the maps in the
kernel systems of K*(Mn) + Ker f, n and the cokernel system
2

* %
of Coker f + K (M_,3M_) vanish.
n c''n n

5. The above Poincar€ duality has its dual counterpart.

Namely, for a proper map f:M »+ X of degree 1, we have also

the module Kk(M ) = Hk+1(X ,M_) (see notations). If now # means
c ' n c n’ n

with coefficients X n fixed, then for r =2n {K];(MP)#}n

T1%n?

a
and {Kk(Mr’Mr)#}n are canonical direct systems (the latter by

excision). Then the following holds.

6. Lemma. (Dual to lemma 4) With the above setting,

. =
if M
n

[ ]
Xn NM= BMn, then the composition
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) 8 . .
Km—k(Mr’aMr)# - Hm_k(Mr,BMr)# S HE(MP)# - KE(MP)# is a canonical

. . - # k #
equivalence of direct systems, say U: {Km_k(Mr,aMr) }n -> {KC(MP) }n'

Proof. Tirst we show that [X] induces by cap products an
. . k # o\
equivalence of direct systems {KC(XP) }n > {Km—k(xr’xr) }n' The
) % m ) .
dual of the cochain complex Cc(Xr’Xr)# is the chain complex

_— a »
C(Xr,Xr)E 1im C(Xr’xr v XS)# of locally finite

Xn—cellular chains.
S

1

Now [X] comes from Eﬁ(x; Z), because so does [M]. Then we get
% — [
two morphisms {C (Xr)#}n -> {C(Xr’xr)#}n’ either by taking induced
chain cap products 1, or by dualizing the induced former chain
% ® oy N
cap products {CC(XP,XP) }n - {C(Xr)#}n’ OE homology level, they
. % # n _ o .
are the same up to sign, hence {H (Xr) }n > {H*(XP,XP) }n is an
equivalence of direct systems (See V, 12 ). In particular, 1lim
T
* # L = o ; ;
H (Xr) = 1im H*(Xr’xr) . The first member is the end cohomology
->

r

% %
He(Xn), determined by the chain complex 1lim C (Xr)#’ and the
P
r

second member is say the end homology H:GXn), determined by the chain

- [ .
complex Ce(Xn) lim C(Xr’xr)# which is nothing but the quotient
>

_ - ] . ] .
C(Xn,X )//é(xn,xn) {take lim lim of 0 ~» C(Xn—Xr,Xn) -+

r S

] PR .
- C(Xn,Xn ) XS) > C(Xn,Xn-Xr U Xs) + 0 where Xn-—Xr is the

. -
subcomplex (Xn—Xr) U Xr)' Then we have an exact *commutative

ladder (see [1])
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S k.. # K, o# K 8
—— B x ) —— @) —— ) —

NCX] nix] = | nlX]

a - _ \L a
—H _ (X X )——H

We have seen that the middle rung is an equivalence of direct
systems, hence so is the 1leéft rung by V. 8. Now, we can dualize

the proof of lemma 4 to get the assertion.

7. By taking a subsequence of (Xn)’ we can assume to

* .
have simultaneous equivalences 1y : Hy(X ,,) - H (X ,X ) and

n+l

— . . 4 * ¥ ) &
N H*(Xr,xr) - Hc(xr+l) . ‘Then  y: K*(Mn) - Kc(Mn,BMn) and

— # * 4 . %
P K*(MP,BMP) + Kc(Mr) have inverses Kc(Mn,aMn) > Kp(M )

¥,

n-u4

* # . .
and Kc(Mr) > K*(Mr+u’aMr+u Hence, by taking again a subsequence

of (Xn), we can assume that y and y have inverses
* % 4 4
Kc(Mn,aMn) -> K*(Mn_l) and Kc(Mr) > K*(Mr+1’3Mr+1) .  Another

important observation is that the square

L # sk m ot
Kc(Mr,aMr) Kc(Mr)
¥ v
# N #
K*(MI‘) - K*(MrbaMr)

is commutative. Now, let E(Xr’Mr)# be the chain complex dual

o —
to C;(Xr’Mr)#’ and Kk(Mr)# its k+l-homology. We have a canonical
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— *
map Kk(Mr)# + (KE(M )#) s hence, by composition with the dual

r

— —% -
of ¢y, amap ¢ : Kk(Mr)#—+ K™ k(MP,BMP)#, which is a morphism

of inverse systems. Similarly, the dual of ¢ provides a morphism
. ® = # -k # . .
of direct systems ¢ : Kk(Mr’aMr) + (Mr) . By taking the direct

. —k
limit of the latter for r + ® , we get Ki(MP,aMP)# + K07

The exact ladders

m-k+1

— Km-k(Mr)#——-——) Kz_k(Mr)# — K

#
M )" —>
. & —
P lim ¢ Y

e # e # #

and
m-Xx # m-k # m~-k+1 #
—3 K (MP,BMP) -—>Ke (Mr,aMr) ———;KC (MP,BMP)___>
% 11 w*
v n ¥

e # e
—— R s ) ———— K )

e # m-k # _ .m-k #
Kk(Mr’aMr) and Ke (Mr) = (MP,BMP)

e #
where Kk(Mr)

% .
by definition of H_ and Hi, are * commutative. In general

it -—
one knows nothing about and ¢ .
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CHAPTER II. PROPER SURGERY AT =

The data is a proper normal map F: M > X of degree 1, where

M is a smooth open (oriented) m-manifold and X a complex with
fundamental class [Xx] = f,[M1 at . 0f course, "normal"
means as in [1] that for some stable vector bundle ¢ over X,

f is covered by a map V > &, where v is the stable normal
bundle of M in euclidian space. A cobordism of such a data 1is
the obvious thing (see III, 8 and IV, 3), and we look for the

' '

obstruction for £ to be cobordant to a proper map F: M + X

such that

1
i)y f induces a bijection of ends spaces

] t
ii) the morphism f,: {Wan} > {wlxn} of inverse systems of
groups 1s an equivalence
]
1ii) all inverse systems {Kk(Mn)} are equivalent to O.

'

Geometrically, this means that f is a proper homotopy equivalence

at o« (see [9D).

Recall first (see [111) that, if f£: M + X maps a bicollared

. u
closed submanifold M1 of M into a finite subcomplex Xl of
f
L J ]
X, then the restriction Ml -+ Xl is normal, and every surgery

on it extends to a surgery of f:

/leI

N

Q>
=
=
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f

° =

By doing this on a divergent sequence M+ X, we get obviously
) o I m ° f w.

a cobordism of f: M + X. If Mn + X, and Mn+l - Xn+1 bound

— f—

a restriction Mn—Mn+1 -+ Xn-Xn+1 then every surgery on the latter

rel. aMn J BMn extends also to a surgery of f.

N

S
BMn n aMn+l

+1

& 4
= 3

By doing this for each n, we get also a cobordism of f.

We consider still another particular kind of surgery . Suppose
we have a proper embedding ¢: RY +» M and a proper extension
w:F&+l + X of fod , where IR3+1E RY x [1,2). Then, if E is
a tubular ngbd of ¢(Rg) in M, we have a trivialization
E =R? x p™ 9 (by contracting RY into 0). Similarly, we have a
trivialization of ¢*v which extends to a trivialization of w*C
Hence we can make a cobordism on f by gluing IR%+1 x DP9 o

Mx I along E:

t
| f—R3"H x D7 -
|
L e @®D
— 'b“( . 1 11
E M
M 0

and mapping the resulting (m+l)-manifold W to X x I by

f xid. on M x T

__. broj. v
rI*L x pPme S RIFL

—X on IRE+1 x pmd
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W 1is a cobordism from M to M' =M - ¢(Rg), and both inclusions
M~ W<« M' U D™  are homotopy eguivalences (0™ 9 = a fiber of E).
Observe that W is constructed from M' by attaching first a
(m-q)-handle along a framed sphere transverse to 6R%?) and then
carving out ¢'(R™ ) in the result, i.e., attaching

(6 ® Y x pY) x K,

¢'GRm q)
|
AN Jol L
LA -
et / k: —
RN, | A
| 2 k__, .

(m-q)- handle

If M, 2 M2 D ... is a fundamental system of ngbd of o« in M,

then W = (Mn x T) U(IRS;Hl - nDil+l x Dm—q) is such a system in

. . . . +
W, where nD%+l is the half disc of radius n 1n RE l. If

ECM but E € M

" it is more convenient to replace above

k+1’°

qt+l qt+l

nD by (n-k)D} Then

Mn—¢GRq) for n <k

M, U g-handle) - ¢0Rq) for n > k.




This implies that for

M and M

nan = LY

T

are the same.

q =2

IRRIRER RLRN

Moreover, for

and m - q = 2

q = 3

17

¢CRq) carved out

the ends spaces of

and m=-q = 3,

We shall only use this kind of surgery in the case where

]
(¢,¢) comes from an embedding s9 %5 M and an extension

1 1
Dq+l v, X of fo¢ , Dby piping ¢(Sq)

embedding

[0,0) » M:

to

(=]

along a proper
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In this case, M= ner'1 already for g 22, m—-q >3

W= [Orl]an U [l:m)xchDn_q U i[n,W)ngan—q
GCqun_q [n,w) quan—q
n n
W= [0, 1]xM U -‘[1,'n]><f)§xD“'q U nxD?lan_q

le)qun—q nxquDn_q
n n



CHAPTER III. THE OPEN ODD DIMENSIONAL CASE

1. Let M be an open manifold of dimension 2gq+l1 » 7, and
f: M » X be a proper normal map of degree 1. We assume that X
- is connected, and choose a sequence of cocompact subcomplexes
Xn + o in X, such that Xn has only non-compact components.
[

Moreover, we can choose finite subcomplexes Xn of X containing

"
the frontier such that X, N (component of Xn) is connected.
- »
If Y = (X-Xn) U X, then by replacing X Dby (Xn x I) U (Yrl x 1)

as follows:

[ ]
P~ x I x T
n

a .
we can assume that each X, is bicollared in X. Putting f

) - .
transverse on each Xn’ we get submanifolds Mn z f l(Xn) with
-1.® .
boundary aMn = f 1(Xn), such that Mn + o ., After surgering
£ m N
each map aMn - Xn and Mn_Mn+l - Xn'xn+l Wwe can assume that

they are q-connected. In particular, f is bijective on ends
spaces, by interpreting an end of X as a function {Xn}-§{ﬂoxn}

such that e(X ) C E(Xn) and similarly for M. By van Kampen

n+l
£

and Mayer-Vietoris, each map M_ = Xn is gq-connected. Now, in

the homotopy exact sequence

a1 R Xpea 1M My 10270 KKy 2 X

. -
X UM k+l)+ﬂ (Xk+lUMk?Mk+l’Mk—Mk+l

)
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the lasgt term vanishes by Hurewicz isomorphism and excision. The

middle term is finitely generated because by the Hurewicz isomorphism

it is the lowest homology of a finite complex. Hence each generator

is represented by a map (Dq+l,Sq) +(x -X WM. =M and more-

k “k+1’k k+l)’
over, s can be embedded by general position. We can pipe the

image of s¢ to = by a proper embedded pipe line

to get a proper map GR3+1, rY) - (Xk,Mk) which is an embedding
on RY. Let us do surgery on this map, as in Chapter III. In

the diagramm

BMn
f
. a . .
W F X (W = frontier)
n > n n
U

we have

®
W= M x T if n < k
n n

® '
(M_v s ~ W~ (oM U pd*tly

V
=

if n
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(we can assume that ¢(Rq) meets aMn along the sphere of radius
'

® F a t f
n-k, when n > k). Hence the maps Wn > Xn and aMn + §n are

also q-connected, for any n. In the diagram

M
n
f
incl
Y
W P T x
4\1'1 > n
1
ingcl f
1
M
n

' +
Wn has the homotopy type of Mn and Mn u p< 1 for n < k, and

1
of M v Sq and M_U Dq+l for n 2 k. Hence F and f are
n n n n

1 t 1
alsc g-connected. Now, if we write Kq(Mk,Mk+l) = Hq+l(Xk,Xk+1 U Mk)

1
in the mapping cylinder of f , we have

1 ' 0 for n =k
K (M_,M ) =

q n’ n+l

Kq(Mn’Mn+l) for n # k,

as easily verified. By induction on k, we can assume that

K (M_,M )y = 0 for each n. An immediate consequence is that
q n’ ' ntl

. # . .
0, hence the direct system {Kq+l(Mr’aMr) } 1is equivalent

q
KC(Mn)

to {0}, by duality. Another consequence 1s that

-~
~~
=
~r
1"

M) = Hq+l(xn’Mn) vanishes: because Kk(Mn) =0 for k < q,
each n, one can eliminate by Whitehead's trick (see [61) all
cells of dimension <q in X =M and this by a proper (simple)
homotopy equivalence of X rel. M. Moreoever, for each (n,r),

separately, one can also eliminate the q+l-cells in

- U = 0. .
Xn (Mn Xr)’ because Kq(Mn’Mr) 0 Hence each chain complex
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C(Xn’Mn U Xr) has the chain homotopy type of one chain complex
C(n,r) which vanishes in dimensions <q+l. Moreover, we can get

commutative squares

h.e.

v

C(Xn,Mn U Xr) C(n,r)

h.e.
C(Xn’Mn U Xr+’1) 5 C(n,r+l)

!
as follows: having eliminated in Xn - (Mn U Xr)’ getting X s we

choose the elimination in X - (M UX ..) Dby first eliminating

r+l

in Xr - (Mr U Xr+l) getting X;, and then extending this formal
1

" .
deformation to Xs getting X This provides the required

commutative diagram

t
C(Xn,Mn U Xr).____m-ﬂ§ C(Xn,Mn U Xr) = C{n,r)
1] t
can. C(Xn,Mn U Xr)
T can.
1"
COX_LM_ U X ) ———> CX LM UK ) = Cln,rdl),

Now, the chain mapping cone of each homotopy equivalence

C(Xn,Mn v Xr) > C(n,r) is free acyclic, and for n fixed,
variable, they form an induced inverse system. Because each cone
splits completely, their inverse limit is an acyclic chain
complex, which is nothing but the chain mapping cone of

l%m C(Xn,Mn U Xr) > l}m C(n,r), hence the latter map is a homo-

logy isomorphism. This proves that the (q+l)-dimensional homology
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of 1im C(Xn,Mn U Xr) vanishes, i.e. Kq(Mn) = 0. By duality,
r

this implies that the inverse system {Kq+l(Mn,aMn)} is equivalent

to {0} .

2. Proposition: The inverse system {Kq(Mn)} and the

. ) # . .
direct system {Kq(Mr’aMr) }n (in the latter # means with wan-
coefficients, for n fixed) are equivalent to systems of projective

countably generated modules.

Proof. By using the duality equivalence, one has to prove
the same assertion for {Kq+l(M ,oM )} and {Kq+l(M )#} . As
c n n ¢ r
above, we can assume that Xn - Mn contains no cells of dimension <q,
for each n. Moreover, for each (n,r) separately, one can
"
eliminate the (g+l)-cells in X, - (Xn u Mn U Xr)’ because
[
K (M ,3M UM ) = H (X , X UM UX ) =0 in virtue of the
g n n r gtl "n’'n n r ]
#
homology exact sequence Kq(Mn’Mr) -+ Kq(Mn,aMn U Mr) -+ Kq_l(aMn) .
Nreien— pso——— Nt —  ———

0 0
]
Hence each chain complex C(Xn,Xn U Mn V) Xr) has the chain

homotopy type of one chain complex C(n,r) say, which vanishes

in dimension <g+l. Moreover, we can get commutative diagram

s h.e.
C(X ,X UM UK ) —> C(n,r)
n n n r
cx LY UM UX ) h.e. > C(n,r+l)
n’ n n r+l 7 ?

. |
as follows: having eliminated in X - (Xn UM UV Xr) getting

' . - - . . -
X choose the elimination in X - (Xn U Mn U Xr+l) by first

t
eliminating 1in Xr - (Mr U Xr+1) getting Xr’ and then extending
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1 "
this formal deformation to X > getting X+ This provides the

required commutative diagram

a L |
C(Xn’xn U Mn U xr)_____,». c(xn,xn U M U xr) = C(n,r)

h

=~

N A 1
can. C(Xn,Xn U Mn U Xr)

cdn.

a a _
C(X ,X UM UX )——CX, X UM UX ) = Cln,rtl)

% % .
If C (n) = lim C (n,r), we then have a chain map
r

% " % . .
C.(X»X, UMD > C (n) which is a homology isomorphism. But the

above maps C(n,r+l) + C{n,r) are such that C*(n) is free of
countable rank (up to isomorphism of C(n,r), they are cellular
embeddings), and Q:(Xn,§n U Mn) is also free. So actually the

map Cz(Xn,§n UM > C*(n) is a chain homotopy equivalence. Using
homotopy inverse maps, we get an inverse system C*(n+l) - C*(n)
whose associated homology systems are isomorphic to {KZ(Mn,aMn)}

(although the diagram

*x X U c* )
Cc(Xn’Xn Mn) > | n
l 3

% %
U +
CC(Xn+l’Xn+l Mn+1)__ﬂ_¢ C (nt+l)

is only chain homotopy commutative). Hence Prop. V, 9 applies
%
to {C (n)} , proving the assertion for {Kq(Mn)} . For the

other system, the proof is similar.
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3. We are now at the point where we cannot do further
a
surgeries, but we can still work on the subcomplexes (Xn,Xn)

to improve the canonical square

qtl # q+l #
kI, oM )T s KT

P v
Kk (M) sk et
q r g 'r r

that we have so far.

4. Lemma. Ker ¢ and Xer ¥ are finitely generated.

Proof. In the proof of Proposition 2 above, we have shown
+1 # . .
that {K% (Mr,aMr) }n is the top homology system associated
to some system of free chain complexes {C(r)} (this is not so
for Ch(x_,%x LM cd*1(x ,X UM # 0). Then V. 10
or c v r as c r*r r : en :
. . . +
applies to {C(r)} , giving an equivalence {KE l(MP,BMP)#} > {Pr}
which is injective for each r, where each Pr is projective,

as well as the image Pr of PP+2 -+ Pr' Hence the compositlon

+
K (M )# 2 K4 l(M s oM )# + P has kernel equal to Ker .
qQ r c r’r r
t
Moreover, its image is Pr , because ¢ and the injection into

Pr are both equivalences, hence we have the commutative diagram

d

q # N
K (Mr) >

surj.

Ky Mpe
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t
Then the exact sequence 0 > Ker wr - Kq(Mr)# + Pr + 0 splits,
In particular, ker V¥, is a retract of Kq(Mr)#' But the

commutative triangle

# b #
K (M) > K (M)
P
q+1 #
K37 L8 )

shows that ker wr C ker 1 = aKq+1(Mr—l’Mr)#' As

(M Mr)# is a finitely generated module, so is Ker 1.

Kq+1 r-1°
But ker ¢, becomes a vetract of Ker 1, hence is also finite-

ly generated. The same argument applies to ker V.

Remarks 10. If above we knew that ¢ was already injective,

1
then Kq(Mr)# is isomorphic to Pr hence is projective. Moreover,

]
by V. 10, one can assume that Pr is a direct summand of PP,

hence ¢ splits. Similarly for .

20. We have shown that for each n, there is some

r > n such that K (M )# L Kq+l(M ;M )#
q r c r v

and
n
n n n

# 9 qtl # _ . . .
Kq(Mr > M JAER O e M, )T (X coefficients) have finitely gener-
n n n
ated kernels. Up to taking a subsequence, oné can assume that

r =.n + 1.
n



5. Main Lemma. By enlarging X

a+l inside Xn’ and

. - - A — -
Xn+1 inside Xn—Xn+2, one can get commutative squares

q+l SN qtl
KG (M M )—————> KT

S|
=8
t
99 |
i
=
13
=
]
=

Y

)
Kq(Mn) > K (M ,M )

[ ]
where Kq(Mn) "and Kq(Mn,Mn) are projective (countably generated)

and Y 1s bijective.

Proof. Our starting situation is as in §3

X NM = aMn, a square

v

qt+l qt+l
Kc (Mn,aMn) K (Mn)

C

P v

v

Kq(Mn) Kq(Mn,BMn)
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. qt+l
and inverses Kc (Mn,aMn) > Kq(Mn_l), for ¢ , and
— t mt

Kg+1(Mh) +-Kq(Mn+l,aMn+l)# for . Choose new Xn’ Xn as

follows

7 ‘ | r/.. /_ ] o ” p .
eeecmadt /ST LS LSS S LS

Mn Mn+1 Mn+2
LU ar a
Xn = Xn+l U Mn Xn = Xn+l U Mn—Mn+l

Then we get a new square

qt+l a ! g+l
Kc (Mn,Mn) _H_*““>Kc (Mn)

by taking the old square for n+l, with ﬂan—coefficients. By
-
§4, ker y is finitely generated. Each generator can be
atl qqy % ' B '
represented by a map (D ’ S )—---~->(Xn,Xn U Mn), by Hurewicz.

But the inverse of ¢ shows that o represents 0 in
n 1 ——
n+l’Mn+l) , 1.e. o can be deformed into Xn+l—xn+2 U Mn'

By mapping cylinder constructions, one can assume that o 1is the

K (M
q

. R + . E———————
characteristic map of a cell e9 1 in Xn+l" Xn+2’ attached

" —
to X UV Mn_Mr for some r large enough (good for a finite



1
set of generators of Ker y ). Choose new Xn, X as follows

1 1 an

1
By passing to the quotient, ¢ induces now injections

n "

— - + n .. . . .
T Kq(Mn,Mn) > Kg 1(Mn) . This 1s still an equivalence with

1"
M ) #. Consider the diagram of

. q+l "
inverse K3 “(M ) - Kq(Mn+l’ n+1

exact sequences

0—> kM M ) ———>1<q(M M )—->1<Q+1(Mn,r'4n)

<|

%
lim ¢
e

1My )’ ——————“é K 1 (M ) ~—->K (M )~—————9 0

where KI(M M ) = k3 © )" 2 M M) b finition
= [~
ere K_( n’ n) e M) Kq+1(Mn q+l M y definiti

* : *
of K: and K (see I.7). Claim: y and ¢ are equivalences.
In fact, by using the proof of V.6, the canonical map

q+l(M ,BM ) (Kq l(M ,BM )) is an equivalence, and by V. 9,
x
the dual of ¢ 1is an equivalence hence so is the camposed map w,.
* LY
This implies that 1lim w, is an isomorphism. Similarly,
- .
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is an equivalence. We get an induced equivalence

" "

" + (] .
v o Kq(Mn) > Kg l(Mn,Mn) (apply V.5) and a commutative square

1" 1"
K3 M M) ——— k3l
C n C n
W" $" (injective)
4] | } 4]
Ko (M) > K (MM

Observe that K )

+ . " + [
loy M) —Xestre @*ley M) - k(M )Y = K (M
c n’ n c n’n q mn-1 q n-

"
is an inverse for ¢ , because the square

KITPMM M ) ———— K3 M)
1" 1
¥ 15
1t L
Kq(Mn) Kq(Mn)

"
is commutative. Now, by §u4, ker ¢ is finitely generated.

_n
As is injective, it is certainly contained in the image of

#

. " 3 - - ]
Kq(Mn) » but also in the image of Kq+l(Mn—1’Mn) in virtue of

. g+l ™ " oon n .
the inverse K3 (Mn,Mn) + Kq(Mn_l) for Y . By Hurewmcz
and mapping cylinder construction each generator of ker (" can

qtl . LAY . .
e in Xn attached to M, which 1s

q+2 . 1] LI B
in Xn—l . Choose new Xn’xn

be represented by a cell
the boundary mod M of a ceil e

as follows
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AR RNNY
T ) rn tt
i} qQ+2 min @ T q+2 .
Xn Xn+l U Mn U e . Xn = Xn+l U Mn—Mr Ue . By passing
"
to quotient, induces an injective equivalence

1 n tn q+1 n tn . .
LT Kq(Mn) + K3 (Mn,Mn) . Then again the duality argument

used in the previous step provides an equivalence

_m. K (M 1\.{ )rn Kq+1(M )rn ] (M )III ( s (R
T ¢ Moot + K2 0 . Claim: Kq n and Kq Mn,Mn)
_n L1

are projective. In fact, as ¥ and v are injective,

1 a 1" ' S .
Kq(Mn) and Kq(Mn,Mn) are projective, by §4. But

] tn o~ = "y Lo
Kq(Mn,Mn) = Kq(Mn+1’Mn+l) by excision. Then the exact
sequence

a )rn# M )in I*./[ )ll!
Kq(Mn > Kq( n + Kq(Mn, n + 0

implies that the image of the first map is projective, hence its

n trn . . .
kernel is a retract of Kq(Mn) #, in particular, finitely

generated. By Hurewicz and mapping cylinder constructions, each

+ .
generator of this kernel can be represented by a cell &% . in
"R RL
Xn attached to M, ‘which is the boundary mod M of a cell

q+2 t rn
e in X (meeting X 41 only along M). Choose new

1y [

X Xnv as follows
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Mn Mn+l Mn+2 Mr
1v tn [ WAV m'n q+2
Xn = Xn ’ Xn = Xn U e . We get the same K-groups as before,

except that we have an injective restriction

- rv " T

+ + L A .
Kg l(Mn,Mn) > Kg l(Mn’Mn) . But ¢y factors through this

A

. . . e 2 a T
injection, because so does Kq(MS) #—§5215K2+1(MS,M5) —£E§E£+Kg+l(Mn,ﬁn)'

for large s. So we get a final sguare
q+l [ ] " q+1 tv
—>
Kc (Mn,Mn) Kc (Mn)
1R v
L] [
1y s tv
—
Kq(Mn) > Kq(Mn,Mn)
tv . tv . . .
where Y is injective. Claim: is also surjective. As

¥ 1s an equivalence, it suffices to show that the maps

] tv ] v
Kg+l(Mn+l,Mn+l)~—~*>K2+1(MD,MH) are surjective. In the exact

sequence

d
v - v lv# in' 1v [ t
Kaaq (M) = Ky (M50 ——k (B P 2BK Dk ()

v

v

M > 1

the first map vanishes, because the inverse system {Kq+l

is equivalent to 0, and we have commutative sguares
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v

] w
Kq+l(Mk) -3 Kq+l(Mk’Mk)
0 k << n
1Y) ] v
Kqa1 ) > K oq (M M)

This implies X ,.(M_,M ) =0, h 1so k¥l M"Y =
is implies q+1 Moty = 0, ence also n® n) =0
n v
because Kq(Mn’Mn) is projective. Then we have the exact

sequence

8

q ] v q a LAV} q+l a tv
0— K (Mn,Mn) ————>Ke(Mn,Mn) ————}Kc (Mn,Mn) —> 0 .

. q+1l . v § qQ+l,, = . .
This implies that K3 (Mn+l’Mn+l) — K (Mn,Mn) is

r
surjective, because Kg(M ) vi

. ) q. Ly v > 3 > q
n+l’Mn+1 = Ke(Mn,Mn) by definition of Kg-

6. Lemma. If in the squares
q+l Ly q+l
KC (Mn,Mn) _— KC (Mn)

P [

2
S’

Kq(Mn) > Kq(M R

¢ is bijective, then ¢ is injective.

Proof. By considering the diagram



3y

q 4 qtl
KA ) ———— KM ) K (M)

J

* . * -
¥ lim ¢ ¥

>

—_ n [l a
Ko (MM ——— K OULM ) 5 K (M M) —5 0

- d ) * . L3 » L] *
it suffices to show that y 1s a surjective equivalence, i.e.

that the canonical map K

qtl . . .
q+l(Mn,ﬁn) > (Kc (Mn,Mn)) is onto. This

is an equivalence by V.9 and V.12, and it is surjective, because

. . . + s ! .
(with notations as in V.7) KE l(Mn,Mn) o Pn is a retract of

. . q+1 oy -
Pn, which is a retract of Eg(n), hence Kc (Mn,Mn) is a

retract of Cl(n) C Eg(n). In particular, all linear forms on

q+l [ . . * . . ;

Kc (Mn,Mn) extend. The middle map 1lim is an isomorphism
-+

L ) ] - .
(because 1s an equivalence of direct systems), hence ¢ 1is

injective.

7. Proposition. Let us come back to the initial situation

of lemma 5, obtained after preliminary surgery: in nM= BMn.
For each n, and sufficiently large r > n there is a certain
non=-trivial submodule A C Kq(aMr)# (ﬁlxn—coefficients) such
that the restriction to A of the intersection pairing

i: Kq(BMP)# 3 Hq(aMP)# = Hq(BMP)# f Kq(BMP)# induces a non-
singular quadratic form on a projective finitely generated

gquotient of A.

Proof. By the two preceeding lemma, we can assume that in

the square
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gtl by q+l
Kc (Mn,Mn). KC (Mn)

¥ v
Kq(Mn) 3 Kq(Mn,Mn)

. . . —_ . . - ]
¢ is an isomorphism, ¢ injective, Kq(Mn) and Kq(Mn,Mn)
- - . I3
are projective, and Kq+1(Mn’Mn) = 0. The horizontal maps are

a
part of the exact sequences of (Mn,Mn):

hence we get an induced isomorphism ﬁ of Kq(ﬁn) with its
dual, i.e. a non-singular bilinear form on Kq(ﬁn)#. The lower
exact sequence shows that Kq(ﬁn)# is projective (finitely
generated). One should remember that all the above K-groups
refer to the last choice X;ﬁ i:, in the proof of 5. But we
are interested in the initial choice Xn’in' Choose r so large
that ﬁr meet §:’ only along M, or not at all. Then by
excision we have a canonical map

l(Xr,?{r U Mr)#. In the exact sequence

vew
(Xn,Xn U Mn) + H

Hq+1 gt

# 1

n w va
Hq+1(xr’3Mr) __>Hq+1(xn,Mn)H¢Hq+l(Xn,Xr UM ) — 0

S— — ee—— p——

#
Kq(aMr) Kq(Mn)
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. u # . .
the last term is Hq+l(xr’xr U Mr) by Mayer-Vietoris, because
v =
q+l(Xn Xr Mn) 0. Hence the second map factors through

s # . . .

q(Mn ﬁn) hence Kq(Mn) is contained in the image of
# . -l a - #

(aMr) . Let A be the preimage 1 (Kq(Mn)) in Kq(aMr) s

and consider the diagram

q #

K9(an_)
E3

)

kI )7 5 k3o & k¥
T A

Ky M ) —— ko Lh )-——+Kq+ M

* ‘A
v T = 11m w v
q+l(M ) — Kq+l(M )———9 K M) —— 0

It

A n" n

]
K_ (M >#”—H‘\*Kq(am y#

‘ q #
The fact that the two maps A/ﬂ \SA

N e . q %/ﬂ
kM v xdo

are equal is a result of diagram chasing A——»Kq(Mn)--~>Kq(Mn)——9A .
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8. Trivial surgery. Let us come back again to the situation

obtained after preliminary surgery. Choose a proper embedding

¢k:RE+l—a-M and let us do surgery on (f0¢k,¢kJRg) as in

Chapter II. From the picture
e
““““‘ VUV T T \

T
[ 11 /[

Kq(Mn) @® [e]l] for n<k

-

1
we see that K (Mn) =
4 Kq(Mn) @ [el] @ [f] for n > k

where [el, [f] denote free modules of rank 1 generated by e,f.

1
+1) -+ Kq(Mn) sends e to e, for all n,

t
Moreover, the map Kq(Mn
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and f to f for n> k, and f to 0 for n = k. Similarly,

Kq(Mn,aMn) #®» [e] for n<k

t 1
we see that Kq(Mn’aMn) = Kq(Mn,aMn) for n > k.

Hence, if we do this operation for k + =« , we get

1 1 ]
Kq(Mn) = Kq(Mn) @LE® Fn’ Kq(Mn,aMn) = Kq(Mn,aMn) ® En’ where

E 1is a free module of countable rank, En the free module generated

by all but a finite number say s, of basis elements of E, Pn
1

t
a free module of finite rank s_. The map Kq(Mn+l) -+ Kq(Mn)
sends E to E identically Fn+l onto Fn with a basis element
t 1 t ?
mapped to itself or to 0. The map Kq(Mn,aMn) > Kq(Mn+1’3Mn+l)

is onto, a basis element being mapped to itself or to 0. Now,
each e x (I,3I) dintroduces a new basis element in

K2+1(Mn,aMn) for n > k, and each f x (I,3I) alsco, for all

q+l,,,' t _ atl T %
n, hence Kc (Mn,aMn) Kc (Mn,aMn) @ (E/En) ® Fc, where

® %
Fc = lim FS is a free module of countable rank. Similarly we
>
s
a*ley'y = Qtl * % .
have K2 “(M_) Ke ~(M) ® (FC/Fn). The canonical map

! ! q+l,,' ' . . .
v o Kq(Mn) + K2 (Mn,BMn) induces an isomorphism

1 % #*
E & Fn (E/En) ® FC. Hence, on the kernel of

1 t t
Kq(Mn) -+ Kq(Mn,aMn) we have added  the free hyperbolic module

)
(E/En) ® Fn. The reciprocal trivial surgery consists in the

following: do surgery on a trivial (q-1)-sphere in 3M getting

k)
1
M by extending it to M, then carve out the core s (piped

1 "
to =) of the g-handle in M, , getting M :
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7

s

"

k+1

If e is the transverse g-sphere to the core s® and f the
q-sphere parallel to this core; we have the same situation as above,

with e and f exchanged (note that e bounds a transverse
"

gqtl-disc in Mk—l)'

9. Ccbordism invariance. Suppose we have a proper normal

29%2 | ¥ petween et 5 %t and £ M~ s X7

cobordism F: W
(Y has a 2q+2-fundamental class mod X U X~ at « and the
inclusion x* €Y are simple homotopy equivalences). Choose
(Xi, ii) arbitrarily in X* . By using a collar along x* s wWe

s

can find ngbd of Y, in Y, and finite subcomplexes Yn
. . t . oyt 8 - %t
containing the frontier, such that Yn n X+ = Xn, Yn n X = Xn .
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7///

Now, by a standard construction (see beginning of §1) we can assume

- ™
that Xi is bicollared in Xi and Yn is bicollared in Y. We

+
can put then f~ and T transverse on these subcomplexes. Then

F-l(Yn) is a submanifold W, (ngbd of «) with boundary
aw_ = MY UW UM
n_ n n n

=

[ )
where the frontier wn is a compact bicollared submanifold with

aw_ = oMt U aM” a M = #2775, The relativi
boundary n - n q * an n - n’: e relativiza-

tion of Chapter I is clear and we get canonical squares

- - - - [ ] -
K22 Koy aw oy > kK2R vt umTy K2Ry Ry - kPTP2ky
C n n C n n n C n n C n
v b, v Ve
K, ( S K (W) K (W_,M° U M) > K (W_,3W.)
k wn) Kk wn’ n k''n>n n k n’a n

where ¢, Y_ are equivalences of inverse system and wl, V-~ equiva-

lences of direct systems (all with inverse shifting the indice by t1).
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We can assume that the preliminary surgery on £ Mt o> XT

F
) n
(see §1), are already done. Then by doing surgery on W, - Yn
- -> .
n W41 Yn Yn+l rel M M , one can assume that wn > Yn

F L]
is g-connected and wn-wn+l -+ Yn—Yn+l gtl-connected. Now, by

)
handles substraction in W (see [11]) extended to W, and
carving out construction (see §7) one divides the cobordism

invariance problem in two cases:

L carved out

4 . R e J—

. . .. +
1 case: invariance by trivial surgery and X = X

an case: invariance by cobordism satisfying the additional

. b + - . .
condition Kq(wn,aMn U aMn) = 0. Schematically:

subtraction
M_? }(/// . l trivial surgery
arving out

W 2nd case
st
M+o 1 case
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Let us concentrate on the 2nd case. Claim: the construction
F
in the proof of lemma 5 extend to W + Y. We have to follow the

whole proof of lemma 5, and we use the same notations, with an

.. . . . - t
additional #*. The first operation Xn = Xn+1 U Mn,
mi'  mi L. vo_

X = X 41 U Mn_Mn+l is induced by Y = Yn+l U Wn,
. ® U T
Yn - Yn+l n n+l

¥
We get the K -squares by taking the above K-square for n+l with

len—coeff1c1ents.

+1 ' +1 + ot +
K3 Low L aw ) s k¥ ot v K% l(w ,w ) Kq+l(wn)
4
v ™ V. Ve
1
SRICA )y s Kqey (W) Kopy (W MEuaC 2 = K yq (W)

_ - gt — -
where awn = (Xn U Yn U Xn Y NW = Mn U Wn wn+l U Mn
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. . " EL EA E 3 +
The second operaticn is X =X, X = X° UM M. Uel 1,
n n n n n r

s 1 1
where eq+1 describes generators of ker (Kq(Mi,Mi) - Kg+l(Mi) )

tained in XX UM -M_: B tivity of f, e3*%
contained in X ,;-X ., M. By connectivity o , e
qt+2 . e — U T L U —
in X 1 7Xpyp Y W W, mod Y., VW W,
113 1

(up to mapping cylinder constructions). Then take Y, = Yn,
an

|
¥ =¥ uwTw U %2 U 4tE
n n n r

bounds a cell e

an

| e | " a
As Yn collapses onto Yn U wn-wr, we have Kq+l(wn,wn> = Kq+1(wn,wn)
1 . ] 1 +1 + F |
. q
So the map wl : Kq+l(wn,wn) > KC (wn’Mn U Mn) becomes a
"y b o k3w Mt UMY, We get ¥ by duality:
map wl. Kq+l(wn,wn) + Kc noMn ' - e ge /. y duality:

"

q+l [ ] " q+1 n n q+l ]
0+ KJ (wn,wn) — K (wn,wn) ——> K (wn,wn)

| " ny . *
y_ ¢| lim y
|- -
i + - - + =" e + -
Ky oMy U MDY — Ky (WM, U M) 7 K Moty U MDD

"

q+



L]

"
Then w= induces a V¥

4y

q+l " q+l ] ® q+1 "
0~ Kc ¢(wn,awn) ~—~u>KC (Wn,Wn) ——~——>i Kc (Mn,Mn)
l 1" f "y
v v_ ¥
! YU M) @
q+l(wn) — Kgaq (MM UMD —@ K (M)

1
and then we get Yy, by duality

convenient K -squares. Before

we need some preparation inside

direct system {K (W ,w ) #}

q+l

we can apply the argument of &4

generated.
+
e? 2

As in the operation

an

Y

: "
to n to get v (split

. + - 11}
anything on X U X ., When wl

in virtue of the diagram

g+l + - q+l
0 > KE (W M U M) — K

Yz

q

Then the duality diagram

+l(W W ) —— > Kq+l(wn’

again. This provides the

extending the third operation,

+
rel X Observe that the

Y,

is composed of surjections. Then

1"
to see that ker wl is finitely

" of lemma 5, we can add cells

) injective, without altering
"
is (split) injective, so is VY
n + + it
y —e k&)
+ n
"y .. .
15 (injective)
" ® + Bt M
Dwn)«+ Kq(Mn,Mn) .
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q+1 " +l "
0 » KSTT(W LW ) —» x4 (W, ) (W, W )"
v PRICBN lim (¢ )
surj. = im
- in 4]

" - " tt

e
Kipp W) ———y K (W) s KO, ()

shows that ¢ is surjective. Now, we are ready to extend the

. . 21U ! + q+2 BT _ Aan q+2
third operation Xn = Xn+l U Mn Uep ™y Xn = Xn+l U M -M Ue;
where eg+2 is a null homotopy of a generator eq+l of ker

"4 + " .+ "
* + q+l q+l . .
Kq(Mn+1) > K (Mn+1’Mn+l) . Actually e lies in
- "y ] . g+l . "
Kq(Mn+1) and we look at its image e in chwn+l) . The
™ n [ ] "y
exact sequence q+l(wn+l’wn+l) -+ Kq(wn+1) + 0, shows that
q+l q+2 g o "
e comes from some e Kq+1(wn+1,wn+l> . Under the

. . " )" l Kq+l(w M+ U M— )"
———— +
composition Kq+1(wn+l’wn+l n+1°Mn+1 n+l

q+l + - "# q+1 = e - __ H# q+2 .
- Kc (3Wn+l,Mn+l V) Mn+l) = K (wn+l’Mn+1 U Mn+l) sy € is
1
mapped to 0 (so does gg+l), hence wl(eq+2) lies in
q+1 "
Kc (wn+l,awn+l) (see top exact sequence below). But we have
by the above preparation the diagram
0> k¥ w0 s k¥ oot uM, " s k@@ M Ul
¢ n+tl’" "n+l o} n+l’ n+l n+l n+l’ nt+l
w"(surjective) w;(injective)
" ] 1" a "y
Kq+l(wn+l) ———y q+l(wn+1,wn+l) R Kq(wn+1)



46

1"
from which cne deduces that eq+2 comes from K (Wn+l) , l1.e.

qtl
eq+l

= 0. As a result, eq+1 = Beq+2 with

+ [ .y »_ n
ed 2 e Kq+l(wn+l’Mn+l v Mn+l) #, because of the exact sequence

n a4 8 _ n a I+ "# | "#
U ® x
Kq+l(wn+l’Mn+1 Mn+l) ——+i Kq(Mn+l) ____?Kq(wn+1) > 0 .
n " n_ "y ‘P- q "y qt+2
U
Now, Kq+l(wn+l’Mn+l Mn+l) —3 K (W n+l ) maps e to O
in virtue of the following diagram
q " n# inj. N .i n# ® q+l l+
K (wn+l) . ? Mn “—j*i K (Mn+l’Mn+l)
o T
] IS ] # - n
) @ K >®
Kq+1(wn+l’Mn+l Mn+l)"' >i q Mn+l + Kq(Mn'l-l)'

g+2 . U
1n Kq+l(wn+l’Mn+l ntl

is mapped to 0 by ¥_, and by using an inverse

In particular, the image of e

"# + - "#
n+19 n+l) - Kq"'l(wn,Mn U Mn) we See that e

q+2

=n

K3
C

_
vanishes in K (W ,M+ UM ) . This means that the cell eq+2
g+l n’''n n

. an q+3 . "o,
in Yn+ can be deformed over a cell e in Yn into a

1
q+2 "4
by

in Xn_, that we can assume to coincide with the

cell e

initial ones.
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eq+2
eq+l
eq+2
e n" 1 "‘ an rpp—
= q+2 qt3  §'" _ - q+2 q+3
Take Yn = Yn+l U Wn v e; Ue ) Yn = Yn+l U Wn wr U ey U e .
Tt 11 Tt n
As Y collapses on Yn+l ) W > we have Kq+1(wn) S Kq+l(wn+1)
. . ( [ tn [ } Il#
and by excision Kq+1 wn,wn) = Kq+l(wn+l,wn+l) s
LR _ "# " " mn
Kq+l(wn,awn) = Kq+l(wn+l’3wn+l) .+ Then ¢ ,y_ become ¢y ,
" " rn
Ve » and ¢_ passes to the quotient by eq+2, to give y_ .
L]
We get by duality. To extend the last operation 'V, we
. q+2 mrn [N RV .
Just add the same cells e to Yn as to form X : this

*
doesn't change the K, and K -modules of W (W W ),

+ - v .
(Wn,Mn U Mn), and we get wl from the diagram

5 A+l ORI s 1V qt+l LA qQtl, 4 TV
0 K3 (WD,MI1 Mn) —_— KC (Wn) ———xia K3 (Mn)
A +
| ty +1v
[ Ve v
!
)




us

Now that we have proved that the operations of lemma 5 extend,
a
we can assume that the subcomplexes Yn, Yn of Y intersect
+ a4 . . I
XT alog Xi,X; , which satisfy the conditions of lemma 5, and

moreover, that we have the squares

g+l ' q+l + - g+l n q+l
KC (wn'j ﬂwn) — KC (Wn,Mn U Mn) KC (wngwn) —_> KC (Wn)
Y v v, : v
+ -
Kq+l(wn) —_— Kq+l(wn’wn) Kq+l(wn’Mn U Mn)——>Kq+l(Wn,3Wn)
with inverse for VsYpsosy shifting the indice by 1.

Claim: By changing the Yoo §n rel. X' U X~ one can assume that
Y,Y_ are isomorphisms and Yps ¥ o injective. We proceed as

in lemma 5, but skip quite a bit through it. The direct system
{Kq_'_l(ws,;ds)}n is composed of surjections, hence by the argument
of §4, ker vy, is finitely generated and we can kill it by
enlarging §n (Keeping the squares as above). Once ¥y is
injective (split by §4), so is ¢_ Dby a previous argument,

and moreover, by duality, ¢ and Y_ are (split) surjective.

In particular, ker y_ 1is a retract. But it is contained in the

. . sy N F . . .
image of Kq+1(wn’Mn U Mn) ,» 1in virtue of the diagram
q+l 0 . x3+1
K3 (wn,wn) Ko (Wn)
U/ b (injective)

. ey . _ 4 + -
Kq+l(wn’Mn U Mn) "~"’Kq+1(wn’Mn U Mn)'*"""""’Kq+l(wn’awn)'_§0
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hence is finitely generated. Actually, ker ¢_ comes from

B# . .
Kq+l(wn) in virtue of the diagram
Qe ; qQ pEy
K (wn> ;—? K (Mn)
LI [ I - # .+ #
- U
Kq+1(wn) > Kq+l(wn’Mn Mn)——7f Kq(Mn) .
Hence, as in the operation '" of lemma 5, we can add cells

+ » ‘s .
e 3 to both Y = and Yn to get Y_ Dbijective

-

The same argument also applies to ker Y it is a retract, and

contained in the image of e Kq+l(M§) in virtue of the

t

diagram
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3
q+l(w AW — KQ+1(wn,wn)
v ~ | v,
+
& Kgup () ————> Kgyy (W) > K yq (WM U M)

+ By + . .
But, because Kq+l(M;,Mn) = 0, Kq+1(M;) is a quotient of

m
Kq+l(Mi)#, and the latter is finitely generated because
]
Kq(Mi)# is projective (if in a finite chain complex the lowest

homology Hk is projective then Hk+l is finitely generated
because the k+l-cycles are direct summand). Now that we have
shown how to prove the second claim, we can assume to have the

following diagram,

o s> k3o, ) - k3t U 3L LR Ul
¥ T(isom.) w|T(inj.) T
w ot K (W W W ¥
Kq+l(wn) _— q+1(wn) —_ q+1Mne n).__>Kq Wn) —3 0
xa+l

C

T w;T(lsom.) g| (inj.) T
n +

[ R S
l<q+1 WMy n

q+l o #
W) — KT K (W)
Ky (WML U MY 5K G530 ) 0

Observe that the exact sequence

7. # 8. # '_ # [ ] #
q+l(W ) q+l(Wn UMD +f Kq(M;) -+ Kq(Wn) > 0

"
remains exact is one replaces Kq+l(wn)# by its image 0 in

|_ . . .
Kq+l(wn), and Kq+l(wn Mn Mn)# by its image E 1in
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+ - . . .
X +1(wn’Mn U Mn), in virtue of the diagram

a
But the former diagrams provides isomorphisms E & Kq(wn)# and

] %* ]
Kq(Wn) = E ., Hence, putting K (W )# F, the above exact

#

sequence reduces to 0 » E » @ K (M ) + F >~ 0 where the

+
quadratic form on the middle module induces isomorphism

%*
E=F, F=E . Claim: this sequence splits. To construct

a
a section T & Kq(Mi)#, consider the diagram of exact sequences
s

ot sk, @B UMD ek of
q+l q+l > n n . q n
Ol
+ - +
U +
Kq+l(wn) _———>Kq+1(%p’Mn Mn) ——9? Kq(Mn) —s 0

v v,/ A
. + B4
0 + K l(wn’wn) _»,.Kq+l(wn,3wn) —> ? Kq(Mn,Mn) —_— 0

v f

#
K W)y 0 0

!

0
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It contains a commutative triangle

W _,M" UM
n n n

g+l > Kq+l

(3

n -

Jeotiv
€)

X +1(wn,awn).

In particular, Kq+l(wn) is a submodule of K a+1

: : T TR
which meets the image E of Kq+l(wn’Mn U Mn) only at 0.

(w M U M )

+ . .
But, as Kq+l(Wn,3Wn) and Kq(ME) are projective, E and

. + -
Kq(wn) are direct summands of Kq+l(wn,Mn U Mn). Hence, the

preimage of K (Wn) by the map

qtl
+ - .
Kq+l(wn,Mn U Mn) > Kq+l(w ,aW ) is E ® Kq(Wn). We construct

a ]
a map K (w )# - ® K (M‘)# by representing x € K (W )# into
. a n q 'n

. . .
q+l(w W ) taking the image x into Kq+l(Wn,3Wn), then
s
. ., - .
a section Kq+1(wn,awn)~———>Kq+l(wn,Mn U Mn), and taking the
image of x" = s(x') in @ Kq(Mi), which actually lies in

. —
? Kq(Mﬁ)#. This does not depend on the way of representing x,

'  comes from Kq+l(w ), then on one side

s(x') EE @ Kq(wn), but on the other side the E-component of

because if x

s(x') 1s 0, hence s(x') comes from Kq(wn), i.e., vanishes
in ? Kq(Mﬁ)f This achieves the proof that, in the second

case of cobordism, the quadratic module (Kq(M;$> ® <Kq(M;) is
isomorphic to a projective hyperbolic module <E & P> , i.e.,
Kq(ﬁ;)# and Kq(ﬁ;)# are equivalent. As for the first case of
cobordism, i.e., a trivial surgery from f+: M+ + X to

f: M » X, observe that the same operations on X can be
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-+
used to satisfy lemma 5 for both f , and then one readily

sees the equivalence.

10. Theorem. Let M be an open manifold of dim 2g+l = 7
~and f: M > X a proper normal map of degree 1. Then, to the
cobordism class [f]l] of f are assoclated canonically a
sequence ﬁ%n) € 1im qu(ﬂlxn) and, if all CZn vanish, an
element (Zn) € l*;i_.ml L2q+l(ﬂlxn), such that [f] contains a
proper homotopy equivalence at « iff a11‘111= 0 and (zn) = 0.

By definition, if {An} is an inverse system of abelian groups,

-l . 1"'8 [

;:m An is the cokernel of the map Z;lAn‘_“";IllAn sending
# # # oo
(al,az,aa,....) to (al az,az-aa,aa-au,....), where a  is
the image of a. in An—l' A subsequence gives the same
.1 I | .

result, e.g. ;&m A2n+1 = lim An by sending (al,a2,a3,....)
to (al+a§,a3+aﬁ....) in the range product. Note that the

choice of base points and paths has no influence on the inverse
system {L*(ﬂlxn)} because an inner automorphism of a group G

induces * identity on L,(G), according to whether wim X > %l is trivial
or not.

[ ]
Proof. Define ‘7n by the quadratic module Kq(Mn)#
obtained in Propoesition 7. A canonical equivalence between
¥ . X
é{n+1 and Cln is given by the exact sequence
»

- -
Kq+l(Mn Mn+l’Mn Mn+l) Kq n) Kq(Mn

nme— #
+1) e Kq(Mn_Mn+l) > 0.

)# is projective in virtue of the exact

Actually, Kq(Mn—Mn+1

sequence



S5u4

Koaq Mgty o K BEH 0Tk ) Kq(Mn+l,ﬁn+l) —5 0.
| N —
0
A reciprocal duality between F = Kq(Mann+l)# and the image
. - " 4 .
E of Kq+l(Mn_Mn+l’Mn v Mn+l) comes from the diagram

q —— # q ) # q n # q+l - L) [
0 —=K (Mn Mn+l) _— K (Mn) @ K (Mn+l) — K (Mn Hn*'l’Mn U Mn+1)

2
2

. U.
n+l’Mn Mn+l)

#

k (m)tex vt
% 0’ Thg  n+

S #
Koo (0 P e K AT )T 0

| [ ]
and its dual. This exhibits Kq(Mn)# P Kq(Mn )# as the

+1
hyperbolic module E @ F, i.e. C2i+1 =‘1n. By §8, ‘the element

@%n) € lim_qu(ﬂan) is independent of all choices and invariant

by cobordism. If all ﬂzn = 0, ‘then by choosing a trivializa-
. - . # L - #
@ -M.
tion E_ F for Kq(Mn) , the plane Kq(Mn Mn+1) becomes
a Lagrangian plane Ln in the standard module
(E. ® E
n n

@
L) @ OF

n+l)’ i.e. Ln € L2q+l(“lxn)' Another
choice of trivializationsmodify the sequence (Ln) by a sequence
in the image of 1-S. The same is true if one alters f by a
cobordism, and we sketch the proof as follows. Let oMt . 1
be cobordant by F: W+ Y, in the final setting of §8. Then
we have quadratic modules Kq(ﬁ;)#, trivial by assumption,

t
a -
and Lagrangian planes Kq(wn)# in <kq(ﬁ;)£> @ <kq(ﬁn)#> ,
t
o+ H B #N & (T .
and Kq(Mn—Mn+l ) in (kq(Mn) >>® <kq(Mn+1) > . By choosing

} a
a trivialization <§i & Fi> of <kq(Mi)#>, the planes
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N + #
- c
Kq(wn) and Kq(Mn M;+l) become elements 0 zn L2q+l(wlxn)'
+ - # . .
We have to show that En - Rn = wn+l- mn, l.e., that the Lagrangian

= woy LRV - & "
plane &, = K (W )T & K (M -M )" @ K (-1 )" @ KqWna1?

t
in () ® ) is equivalent to 0 where

@ = D e & dmh e Gdit, vD e G B b s
equivalent to a trivial one. We consider this problem as the
bounded case of Chapter 1. For this, we need to choose the
very initial Xi, Xi, §§ , Y, Yn’ §n as follows. By infinite

+
simple homotopy type theory, X  is simply homotopy equivalent

+ + - +
to a CW-complex of the form x0* U , where H 1is a
' +
oH™

locally finite 2q+l-handlebody of 0 and 1l-handles, which is a
thickened tree (see [10]). Moreover, Y is simply homotopy equivalent

rel X' UX  to a CW-complex of the form v? v H, where H
oH

is a locally finite 2q+2-handlebody of 0 and 1l-handles, such

- + +
that HN X" = H' , and o8 = HY Un~ U TH, Y% n x* = x0* .
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As ngbd of = 1in H, we take subhandlebodies Hn with

relative frontier a disjoint union of p?e x 1 (see figure).

n
Choose ngbd of « Yg in YO, and finite subcomplexes Yg
+ +

containing the frontier. The Xg'f Yﬁ N X~ are ngbd of =
. O+ sg+_ 8 + . .
in X, and let Xn = Yn N X°. By the construction in 8§81,

L . . . .4 .
we can assume that Yg 1s bilcollared in YO (and Xn0 bicollared
. + + * . t . t
in X+). Now, X;O U (Hn N X"} is a ngbd of = Xn in X7,

.y @04 c s _ 0 .

and we choose X = X Similarly, Y = Y U H is a ngbd

+
of ® in Y such that Yn N X~ = X', and by using a collar

0+

[} [ -
along 9H, we can assume that Y = Yg v H is bicollared in

Y. Then we do all the necessary preliminary surgery (as in §1)

. + £ s F + -
first on M—s X , then on W——>Y rel. M U M . Then one

- o
meets the modules Kq(Mn—Mn+l) and Kq(wn). Represent each

generator by an embedded q-sphere, and extend them into immersed

q+tl-discs in wn—wn+l (see IV. 1). Then pipe the left discs and

upper and lower discs to « as in the figure
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pipe

(~——path

l
1

ntl

pipe pipe

We also connect up by path all the g-spheres so obtained in

[ J
a connected component of W Then take a regular ngbhd V

N+l

of this connected union of images of immersions. Let Vn = VN Wn,

x + _ L r _ : + -
Un = Vn n M, Un = Vn N wn, 9 Vn = 3V N Wn - Un U Un >
7ut = aul i , M%® =wfou*, Ww® = WV, Then, as in Iv. 1,
; E
Vn—Vn+l 1s a handlebody on Uni U Un—Un+l U Un+1 composed of 1

and g+l-handles. This allows (by standard geometrical arguments

like in [7]) to arrange F and f* so that they induce maps

0zt D r

+Y0, VvV + H, BPV+3

(now, H may be smaller). Apply §5 to MDi - Xo"t

rel 3% = 3U* and §9 to W' » ¥' rel 3w®. Then, by Iv. 2,

MOE 4 %0 Ut . omE, AUt o aHE, W H
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-
we get a projective Lagrangian plane Kq(wg) in Kq(aUn). By
the argument of [1l, lemma 7.2], the Lagrangian plane
L) L 11 % ! . .
Kq(wn) ® Kq<wn+l) in (Kq(aUn)) ®<(q( aUn+l)> is equivalent
1
to L, in. < ® &> . But the former is equivalent to 0 Dy

1

IV. 4. Hence & € 1lim™ L (r.X ) associated to [f]l] in a
n - 1'n

2gq+l
well-defined way. If all 9 =0 and (%) = 0, then by
[11] (realizing Lagrangian transformation) one can arrange so
that actually the plane Kq(Mn—Mn+l)# is actually "trivial”,
»/_’__’___igj'\

. . L Ly # PR #
for all n. This means that the map: Kq(Mn) ® (Mn+l)-+ Kq(Mn Mn+l)

Neeeri.

is nothing but the canonical projection (En ® Fn) ® (En+l ® Fn+l) +

+~ & b L

EneEn+1 En+lEEn (see notations). . Then, the map

Kq(ﬁr)# - Kq(Mn) injects Er onto a direct summand and projects
F, onto Fn’ for r » =. But these image generated Kq(Mn)
hence Kq(Mn) =L & Fn, as in §8. Once we know that, we can
do surgery as follows: 1°) make E free by trivial surgery,
2°) each basis element e, € E is in Er for r - o, but
moreover, we saw at the end of §6, that Kq(ﬁn) is in the
image of Kq(aMr)# for large r, hence e can be represented
by a sequence of maps (Dq+l,Sq)—:i£+ (axr’aMr) for v + .
Now, we know that the intersection form between elements of E
vanishes with nan—coefficients. Hence it already vanishes
with some "1(H;:Hg) = nlﬁn—coefficients, because the group
functor L, commutes with direct limits.

By modifying oM, inside Mn with 1 and 2-handles we

a
can assume that BMP = Mn (see [8]). Now, the interestion

1 =T
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between the e's vanish with nlaMr coefficients, so we can do

a sequence of surgeries on a, .

L

To each e, is substituted in Kq(Mn) a free module generated

L]

by the e: n and a corresponding free module over fi , Aappears
> 3
as Kq+l(Mn). So the new K-systems look like
1] tB t Mt Fl
Kq(Mn) = Fn En Kq+l( n) = F
surj. inj. inj.
LA ® K o, oF = F
Kq(Mn+1) - Fre1 En+l g+l nt+l T “n+l

st
where the injection of free modules are of the form Al__SQEPA ¢ B,

t
with B free of finite rank. Hence Kq(Mn) is free, and the

#

1 1
cokernel of Kq(Mn ——5Kq(Mn) is free of finite rank.

+l)
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t
In other words, one can write K (M ) = @& A where each A is
e n k>n o n
1 t

a!
free of finite rank. Observe that XK (M ) =X (M ,M ) now.
qQ  n q n’n

39) represent each basis element of An by an element in
F
1
Kq(Mn), and do surgery on it. This gives a cobordism W —— X

1 1
1 f " og ' ) 1
from M—sX to M ——— X, such that Kq+1(wn,Mn)—uuﬂ,Kq(Mn

]
is an isomorphism for each n, and Kk(wn’Mn) = 0 for k # g+l.

The exact sequence

3 '

U 1
0 > Ky (M) Kgpy () > Koy (M) > K () > Ko (W) 0

r

0, and Kq+l(wn) = Kq+l(Mn)' On the

other side, we get the exact sequence

1

shows that K (W )
g n

"
0+ K (M )+ K

or1 My gr1(My) > K

" "
qr1 (M) > K (M) 0.

Claim: The middle map is an equivalence of inverse systems. We

[ ] [ W) 1" [} 1
can take Wn = Mn x I, hence Kq+l(wn’Mn) o= Kq+l(wn,wn v Mn).
] ' mt
o o .
As Kq+1(wn) = Kq+1(Mn) Kq+l(Mn’Mn)’ we have the commutative
square

1t

equiv. | ¥ v | equiv.
Uy’ ° q+l '
KM ) > K2 W M)
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. NI I . .
By construction, Kq+l(wr’Mr) -———>Kq(Mr) is an isomorphism,
Vr, so is its dual, hence we get by direct limit over r ah
. . Q' 8. q+l ' :
isomorphism Ke(Mn) K (wn’Mn)' Then the diagram

0skdm'y) —— 5 ¥y — 5 KIm) — 5>k
e n C n n e n

&
o
X

+ ! ! 1
0— k3w ) —s k3 ) —— k3w M) —>0

' t %
where K2+1(Mn) = 1im Fr = 0 shows that the middle map & 1is
+
v

an isomorphism, and this implies the assertion. Hence the

1"
l(Mn)} are equivalent to

"
inverse systems {Kq(Mn)} and {Kq+

1"
1"
0, which implies that M-—Ea.x is a proper homotopy equivalence
at . This achieves the proof of the theorem. A more refined

formulation of Theorem 9 is given by the following result.

11. Corollary. Let L2q+l(€X) be the obstruction group for
our problem, i.e., to each surgery data (M,2q+l,’aM)f + {X,3X) rel.
boundary (f|3aM is already a proper homotopy equivalence at o)

is associated o (f) € L2q+l(ex) which vanishes iff f 1is

cobordant rel @8M to a proper homotopy equivalence at «, and
t
each element of L (eX) 1is equal to o(f ) for some surgery
2q+1
t ' f‘ L] L] 1 .
data rel. boundary (M,5M ) ——(X,3X )}, where {nlxn} is
conjugate equivalent to e€X in a specific way. Then we have

an exact sequence
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.1 .
Qg -+ lim L2 +l(ﬂ X ) -+ L 2q+ l(eX) > lim L, (v X_) » qu(le).

2 ' 1'n

Sketch of proof: For the first map, take an open 2g-manifold N
such that {wl } is conjugate equivalent to {ﬂlx }o.

Then, following [11], do surgery on N._£§_> N to kill enough

trivial (q-1)-spheres in each Nn—Nn+l (rn say, if the Lagrangian

plane En is in the free hyperbolic module of rank rn). Let
Vg . ——
N—>-—s N be the result of this surgery. Then K (Nn—Nn+l) is
.. L ' # .
free of finite rank, and Kq(Nn) = rf];qu(N ‘- n+r+1) is free

of countable rank. By definition, Rn is a Lagrangian plane
1

T ' f ey s
in Kq(Nn—N ), so we can do surgery on N-——> N killing a
"

1"
finite set of generators of Qn' The result N'_EL_?IQ of

n+l

this surgery is a proper homotopy equivalence (see end of IV.4).

2q+1 £ id.

If M N x I 1is the cobordism so obtained between N-—-=N

" f" f ‘
an N_——3N, M-—N x I provides the surgery data (M,sM) » ,5X)
we are looking for in L2q+l(sX). For the second map: if

r t t 1
(M ,3M ) » (X ,3X ) 1is a surgery data, we take the sequence of
1
quadratic forms ‘1n € lim qu(ﬂlxn) = 1lim qu(len). Observe

that in this case with boundary, where the map on the boundary
is already a proper homotopy equivalence, everything looks like
t
if M were open. The composition of the two first maps 1is
0 by construction. The compoesition of the two last maps is 0,
. # - y -
by the argument proving that C¢n+1 —‘7n(case Mn = ¢, see proof
of Theorem 10). For the exactness at 1lim qu(nlxn), note that
<
any element of this limit can be represented by a free (singular)

quadratic module. Take N as above, and by [11] again, do surgery
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on each identity map BNn -+ BNn to some map (which would be
a lomotopy equivalence iff the quadratic form on the free
module were nonsingular) so that the cobordism map 3Mn—*4_*aNnx 1

has obstruction %h

The condition %i+l = 9 and ‘%1 = 0 in qu(ﬂlx) allows to

n

t
do surgery by strips on the other side N , rel BNn to get a
n
proper homotopy equivalence N = N. This construction provides
a cobordism M » X between N_EgsN and some proper homotopy

"
equivalence N - N

" __/—_\.____/-\ —'/p'h.e:
N —— > >

This shows that (%n) comes from a surgery data (M,3M) + (X,3X).

For the exactness at L2q+1(sX) Theorem 10 gives an injective

* - l 0
retraction of the map lim L2q+l("lxn) Ker J, hence the latter

is an isomorphism.
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12. Gleobalization. If {X) denotes the formal

L2q+l

obstruction group for surgering maps to proper homotopy

equivalences then we have an exact seduence

L;m L2q+l(ﬂlxn)—————+L2q+l(ﬂlx)————>L2q+l(X)———»L2q+l(SX)-m-e-o
where L2q+l(nlx)~———§L2q+l(X) is the usual realization map, and

the composition of the first two maps is O by the "alternated

sequence" trick. Moreover, if one takes care of XO = X 1in

constructing the sequence of Corollary 11, then one gets the

sequence

1-8 1-5
Moge1 7 Loqer (MB) 8y 4 —> Do (K) —— Ty =7 Ly (M X) &l
where [, = 1T L*(ﬂlx ) and

n
nzl
_ P : __# _#
(1 S)(al,az,a3,...) = al,al a2,a2 a3,...)

This sequence is exact by virtue of the previous exact sequence

and 11.



CHAPTER IV. THE OPEN EVEN DIMENSIONAL CASE

1. If in the data of Chapter III,.1 one lets m = 2q+2 = 6,

B
then one can also do preliminary surgery to make aMﬂ——£—>xn

E———— f—
g-connected and Mn~Mn;i——>Xn-Xn+1

bijective on ends. spaces, and each map Mn > Xn is (q+l)-

(q+l)~connected. Then f is

connected: Kk(M ) 0 for k < q. This implies K, (M ,3M ) = 0
n k''n n
for k < g (because Kk(BMn) = 0 for k < g-l1l), and
k
= = =
Kk(Mn,BMn v Mr) 6 for k < gq. Hence Kc(Mn,BMn) 0 for k € q,

and the duality equivalence shows that {Kq (Mn)} is the only

+1
. . . #
inverse system not equivalent to 0. Similarly, {Kq+1(Mr’aMr) }n
is the only direct system not equivalent to 0. Now, the data
M—Eax can be decomposed into two cobordisms with common boundary.

By infinite simple homotopy type theory, X is simply homotopy

equivalent to a CW-complex of the form XO U H, where H
oH

is a locally finite m-handlebody of 0 and l-handles (see [10]):
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(0H 1is collared in XO). As ngbd of « in H, we can take
[ )
subhandlebodies H » with relative frontier Hn a disjoint

union of 2q+l-discs. Denote X0 U H by X again, and choose

dH
0 . 0 . .. *0
ngbd of 00 Xn in X , with finite subcomplexes Xn con-
taining the frontier. Then Xg U H is a ngbd of = X in
o [ "

X, and Xn U Hn a finite subcomplex X containing the
frontier of Xn' By using a collar, we can assume that Xn

] )
resp. Xn’ meets X0 and H along Xg and Hn resp. Xg and
) n )
Hn and that Xg is bicollared in XO, X bicollared in X.

After preliminary surgery on M_ﬁax as above, we meet Kq(BMn).
Represent each generator by an embedded g-sphere s? C EMn

]
(nulhomotopic in Xn)’ By the argument of [1ll, lemma 8.1],

these spheres bound immersed'(right) q+l-discs in Mn_l-Mn,

that one can assume to generate Kq+1(Mn_laMn,aMn). Similarly,

they bound immersed (left) g+l-discs in Mn—Mn+l’

The immersed left and

that one can

Irrr————

assume to generate Kq+1(Mn_Mn+l’

right discs which coincide along their boundary s® form an

BMn).

. . +1 ——r .
immersion 8% + Mﬂ:an+1 that we pipe to <,
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. . . +
getting an lmmersion RY 1, Mn—l' We also connect by paths all

the S contained in a connected component of BMn. Let V

be a regular ngbd of this connected union of images of immersions,

Hi

and 1let M° = H=V. The ngbd of « in V are V v N M_ s

n

with frontier Un v n BMn (connected union of 39 x Dq+1 and

those in aV are aF

Vn = v N Mn' Observe that the regular
ngbd of the left and right g+l-discs is a handlebody on BMn,
with only 1 and g+l-handles. One sees that by taking the

. . + . . .
preimage x' U x" in pd 1 of a self intersection point x,
disj.

joining each of them to s4 by a path and taking a regular ngbd

1] "n

N, N of ,

"
N t
each path. In the image in M, a regular ngbd of N matches

* "
with a regular ngbd of N around x, to form a 1l-handle.
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T [1]
as pifly uw is an embedded disc, its regular ngbd forms

a q+l-handle attached to BMn U l-handle. As a result, by using

standard geometrical arguments like in [7], one can arrange f

to induce proper maps of degree 1 V-£§H, BV-£98H, Mq—iéxo
(H may be smaller now). We want to apply III. 9 +to Mq~f,x0,

by considering it as a cobordism. But first of all, what is the

connectivity of the maps oV_133H, V-5 H and M’-I3x%2  The

f e . .
map Uﬂ——aHn is obviously g-connected. The map Vn-Vn;Ifﬁ Hn-Hn+l
is only q-connected, but-it satisfies at least Kq(vn’vn+1) = 0.
The map 8U5—£53Hn is q=-connected, because BUn is a union

of 89 x Sq, and 8H_  a union of 524, The map

5. . £f —
V -3%V_ = 3"H mB gb:!

. T -
3 N nt1 is g-connected (3 Hn = 3H N Xn),

because by general position, the connectivity in this range is

the same as for Vn—V —£>H -H

n+l a+l” ) =0

T r
But moreover Kq(a Vn,B Vn+l

because, on one hand, a transverse g-sphere to sq ¢ aMn can
be translated across the left disc and along the pipe to o,
and one the other hand, the eguatorial s ¢ aMn itself is
homotop over the left disc to a "slice" of the pipe, which can
be translated to «. So the map aV~ﬁaaH, has the required

connectivity (see III. 1). Now as for the connectivity of
0 £ 0

M—=sX", note that ﬂl(BUn) = ﬁl(Un) = {e} and

nl(EFV;:§?§n+l) = “l(v;:vn+l)’ hence by van Kampen, we have
wl(ﬁg) = nl(BMn) and “l(gg:ﬁg+l) = Wl(M;:Mn+l)' Similarly,
"1(§2) = wl(ﬁn), and "1‘§gj;g+1) > (X_—¥n+l Hence the maps
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f iO 0 0 £..,0 .0

N n and Mn-Mn+i——+Xn—Xn+l are nl-isomorphisms. The exact
sequence
surj.
K (U) = K QM) > K (BM .U > Ko qU) > .
0

.
shows, together with excision, that Kk(Mg,aUn) = 0 for k < q,

®
hence also Kk(Mg) = 0 for k < g-1. Next, the exact sequence

0 .0 .. 0,0 _
of (Mn—Mn+l’ Mn‘Mn+l) shows similarly that Kk(Mn-Mn+l) = 0
but only for k < g-1, while for k = q we get
K  (M=M_,.) + K, (T.=V STy 8TV ) 9 K (HO-MD. ) —s0
q+tl  n nt+l gtl ' n ‘n+l’ n n+l g 'n “ntl

where the first map is non-trivial in general, for intersection
o ,,0

reason. We can do surgery in the interior of Mn_Mn+l to kill

0 .0 . . . e
Kq(Mn—Mn+l) without altering anything on Mn.

2. Proposition. If mou v £ X0 U H is a Mayer-Vietoris

U oH
decomposition of M—Eax as above, and if MQ—£+X is made
a [ -

g-connected, then for some convenient Xg, Kq(Mg)# is a projectilve

Lagrangian plane in Kq(aUn)#.

Proof. First note that, as 8V and 3H are both manifolds,
. . ] r q+l,.r
the canonical equivalences y: Kq(a Vn) + K2 (3 Vn,aUn) and
-, r qtl,.r . .
' Kq(a Vn,aUn) + K2 (3 Vn) are actually isomorphisms. The
induced quadratic module Kq(aUn) is clearly free hyperbolic,

because of the exact sequence
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0 > Kqaq{UpsUp) + K (U > K (U) > 0

and the duality isdmorphisms between the extreme terms. We apply

»
g, Xg rel. 9H, and get a split exact sequence

0 - E -+ K (3U )# + K (ﬁo) + 0 exhibiting X (&0)# as a
q “"n q  n Q' 'n

ITI. 9 to modify X

Lagrangian plane in a standard hyperbolic module (E is the image

L X0 4
of Kq+1(Mn,8Un) ).

2q+3

3. Cobordism invariance. Let F: W + Y be a cobordism

between f': M' + X' and f: M" > X~ (Y has a 2q+3-fundamental

+ - . . + .
class mod X U ¥ at «, and the inclusions X C Y are simple
homotopy equivalences). Claim: the Mayer-Vietoris decompositions

+ * :
of f~ (see §1) extends to F. One can assume that X is

0% Y HE. By infinite simple homotopy
oH™

already decomposed into ¥

. . ' + -
type theory, Y 1is simply homotopy equivalent to rel X U X

0

to a CW-complex of the form Y~ U H, where H is a locally

oH

. + -
finite 2q+3-handlebody on H U H composed of 1 and 2-handles.
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. . + - .
Moreoever, H 1s a cobordism on H uUH resulting by surgery

e+ o_
on (trivial) O-spheres in Hn U Hn and then by surgery on
) + _+ S
l-spheres in Hn—Hn+l U Hn_Hn+l (see Chapter II.). Let
3¥H = pH-H' U H™ .
l-handles
[ |
+ -
H UH 2-handles

. . + - . .
Denote by Hn the cobordism so obtained on H U Hn’ which 1s

®
a ngbd of «, with frontier H_ = cobordism obtained on

® 4 »_
H U H - Choose subcomplexes Y in YV (ngbd of =) and

S o3

a
finite subcomplexes Yg containing the frontier of Yg . By

using a collar along BPH,
v0 u v = YUt 1 H d
a n Hn’ n n Hn meet H actually along n &n
o a n
H . Moreoever, that Yg is bicollared in YO (hence also Yrl

we can assume that the subcomplexes

24
Hi

and Y). At this stage, we do all the necessary preliminary

+

surgeries, first on £ - Xi, then on F: W4 Y

e x ok
q+l(wn—wn+1’Mn_Mn+l

by representing each generator by an embedded q+l-sphere inside

. 0 O+
+1 piped to M - M

+ - . .
rel M UM . In particular, one can kill K )

W

W, and subtracting them. This

n ntl
0+
n+l
ITI. 1, we can kill Kq+l(wn,wn+l
Oiy Vtm-——)XOi Ui Ht. To extend this, consider the
u- aH

preserves Kq(Mgi—M ) = 0, and V* is unaltered. Also, as in
) rel M; U M;. Then we decompose

fi into M



772

L
g~spheres st ¢ oM_. They bound immersed g+l-discs in W,

. *
which bound, together with the left and right g+l-discs in M7,

immersed q+2-discs in wn-wn+l’ because Kq+l(wn_wn+1’M;_M;+l) = 0
and Kq+l(wn,wn+l) = 0.
w2q+3

. [ ]
Moreoever, one can assume that the gt+l-discs in wn generate

. + -

U . . i
Kq+l(wn,aMn oM ) (see lemma 8.1 of [11] Next we pipe the
lower g+2-discs to M* (see figure), connect the $%'s contained
in BME and take a regular ngbd V of +this connected union of

. . qt+2 : o
immersions D > W, Let V =VAW,U =vyvnNw,
n n n n

= [ ] p
oYV = 3v-3v U 3V™ and YU = 3TV o o = 5U -3u” U au” .
n n n n n



T N
Now, V -V is a handlebody on An =U_ YV -V Uu

n+l

formed by 1, 2 and q+2-handles as follows. The self intersections

n*t n ntl n+l

of Dq+2 are arcs with both ends in An and circles. One can
exchange the circles into arcs by joining a point of the circle
to An by one path in each of the two branches crossing through
the point, getting an arc with ends in An, and then isotoping

everything along a 2-disc bounded by the arc mod An

. . + . C e s .
The preimage of an arc a 1n pd 2 1s the disjoint union of two

arcs a', o" in Dq+2, with both ends in aD%"2,
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T
Llet N , N be regular ngbd of o', a" respectively. Then

. ' - - .
in W, a regular ngbd of N colncldes with a regular ngbd

"
of N to form a l-handle with core a

Next, a', o" bound 2-dises A', A" mod 8Dq+2, the image

of A' Dbeing in one of the two branches through o and the
image of A", 1in the other. Let A', A" be regular ngbd of
A', A™ in Dq+2, embedded in W. Then a reguiar ngbd of A‘
and a vregular ngbd of A" in W matches along the l-handle
with core a, and form a 2-handle attached to V U %n u v,
Observe that A' U N' 1s a g+2-ball attached to aDq+2 along

" "
a hemisphere, and similarly for A U N . Hence

gtz ' m ' T : . :
D ~-A UA UN UN 1s a q+t*2-disc, which embeds in W,

forming the core of a q+t2-handle of V. This handlebody structure

+ - . .
of V allows us to arrange F, rel. M UM sc that it induces

proper maps of degree 1 V + H, 23"V » BPH, WD + YU, where

wo = W-V (H may be smaller). This is the required Mayer-

Vietoris decomposition of F. Claim: The operations III. 9

v

n
which provide the Lagrangian planes Kq(Mgi) extend to Y,



rel. V. The problem is to see if the square
+ -
k32040 a0y 5«3 20, M0 v Ml
n’ 'n c n’’n n
¥ v
0 0 =0
Kga1 (W) r Kopp (WHW0)
survives. For the first operation, which enlarge th and
=0+ . 0 . . 0 %0
Xn by a piece of M ™, it suffices to enlarge Y©,Y by a

corresponding piece of wo.

We still get a square

1 _ ot
k32w, au?) s k3720t v M)
c n’> 'n
' 1
v v
0,' 0 ®=0,'
Kq+l(wn) > Kq+l(wn,wn)
by taking the old one with extended coefficients. The second
i ; =t Ot ' qtl, 0z, r "
operation kills the kernel of ¢ q+l(M ) KC (Mn,a Vn)
n 0 U
by adding cells eq+2 to Xgi u Mni—Mri ingide th. If we
u .t
enlarge Y correspondingly (with eq+2) then passes to
the quotient, because of the commutative diagram
q+l, 0% @+l ' q+2,.,0 0% 0-
K (Mn d V ) t a (M ) Kc (wn’Mn U Mn )
, Ot 'Oi ' 0 =0
P K q+l MOTSMT) > Kq+1(wn,wn) .
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Then the diagram

+1, 0+ " q+2,..0 O+ 0-\" qt2,..0."

0 = QKE (Mn ) ———> Kc (Wn,Mn v Mn ) ——*KC (Wn)

0
ni n

¥ ¥ l
|
i

+ M0+ 0 =0." 0

f Kq+l(M N Mn ) » Kq+l(w ,Wn) —_— Kq+1(wn,3w ) —— 0

provides an induced dotted map, which by duality gives a u".

[
For the last operation, which enlarges both XO“ and XO‘ by

the same cells ed*? representing generators of the kernel of
1t (O_
Yo q+1M )
L]

Y~ correspondingly. The verification that the above square

0+ I0+

Kq+l(M ) » 1t suffices to enlarge Yn

survives runs as above. Now, we can do the operations IIT.S

on wo i3 YO rel. awo. This will provide the diagram

g+l = ¥ qt2 . q+?2
0+ K (Wn) — K7 (Wn,Wn)——F—**éKC (Wn)

2
[WH
(o}

(SR

+ ._ # + -
My UMDY > Ko MU MO K (W, 9W)

which implies that the image t of the left bottom map is

]
dual to K (wn). The dual diagram gives a reciprocal duality

q+l(W )# . Claim: Via the Lagrangian transformation
n
associated to the canonical maps ¢: Kq+l(wn)# + t and
. + # 13 ] .i . - .i"
Y: qu(Un) 1 > $Kq+1(wn’Mn) + t, where 1 is ? Kq+l(wn’Mn) +
® ajp .+ ®_ . exc

Kq+l(w ZJW. U Mn U Mn) = Kq+l(Un,aUn) the Lagrangian plane



r # . + “w I
Kq(¥7U )" in (<1<q(aun)>_ w Q(Q(BU » )" is trivial. The

% .
dual vy is such that the composition

13
T s # Y . + + .\ #
qu+1(Mn) **“*‘Kq+1(wn) —_—— qu+l(Un,aUn)

is, via excision,the first map of the exact sequence

q+l<pr)# > Ky (M‘,M0+)# > K (MO*)# > Kq(ﬁi). Note that ¢

]
(Wn). The

. Wy #
vanishes on the image of ? q+l(Mn) > K

q+l
‘o r + - # t # + Hy
compesition Kq+l(8 U saU_ U aUn) —_— qu(aUn)'—ﬂ>? Kq(Un) 2t
vanishes because of the exact sequence
surj.
=0 # # r + - # . e
Kq+2(wn,a) B Kq+2(Un,a) > Kq+1(3 U »9U, U sl D" » Kq+1(wn’Mn UM,

; . T + -\ # )
We consider the Lagrangian plane Kq+1(a Un,aUn U aUn) © t in

(Q(q(BU;D G~)<Kq(aU;)>')# ®g ® 1‘>* . Let us parametrize

)# 13

+ | # * +
PK (UDT by x, @ Kq+l(Un,aU; by p, t by t, and t

by h. Our Lagrangian plane becomes {(x(u),p(u), t, 0)} ,

. r + -\ # .
where u describes Kq+l(a U »3U_ U aUn) . It projects along

. .
21 = {(X,fyit,t,— YX -pt)} to a plane which projects along

{(x,0,0,0)} isomorphically to {(0,p,0,h)} by diagram

20 =
chasing as follows. If u =0 and t comes form Kq (M’)#

#

%
then ¢t = 0 and we hit (0,y (K +lM') 0,0). By the latter

exact sequence, the obstruction to hit all values of (0,p,0,0)



®Ox # .+
M 7" - qu(Mn

is then the kernel of §K . But we shall see

r + - » .0
that Kq+l(a Un,aUn ) aUn)# Projects onto %Kq(Mn )# hence we

Ly b s

can hit all (0,p,0,0). Next, a section of $K n -+ $Kq(Mn)

+

. L |
provides a map Kq+1(wn’Mn

Y-y# 2 o #
UMDIT ¥ qu(Un) such that h-y(ph)
is of the form 4¢t. So we hit all (ph,p,0,h), i.e. the graph
of (p,0,h)w ph. This projects along {(x,0,0,0} ismorphically
. + - 1
to 2,. Claim: In <Kq(8Un)£>® <kq(aUn)#> the Lagrangian

0
LIIES . -
plane Kq(Mg )# projects along Kq+l(arUn,3U; U aUn)# to O,

an- -
while the Lagrangian plane Kq+1(Mg,3Un)# projects injectively

onto a direct summand of Kq(arUn)#. First, the composition

»O+,#

(3 U, ,BU U ou )# > K (BU U au )# > K (M ) is surjective,

q
because in the exact sequence

r + -\ # 0+, # g0+, v -\ #
K4 (2705007 VU T -k (T ok aTU 8Ty e

the right term vanishes by Mayer-Vietoris argument:

# =o+ # r - #
— Kq(Mn )

K_(3u") ® K (3%u_,au) sk m%tu 3Tu_Lau)t — s 0
qQ ' n q n’""n g n n’““n

. + - # 8O+ # .
Hence a section of Kq(aUn U BU )7 > K (M ) can be obtained
®0+, #

by using a section of K (3" U, ,BU U BU ) -+ K (M )". Then

qt+l
# . #
K (M ) projects to 0 along Kq+l(a Un,BUnU ) Un) . Note
n-
that the same argument would apply to Kq(Mg )#.
#

Next, by

lacing K .- (M°7,ou)* by x_..M°" u 3tu_,3tur¥, th
replacing  Ra41%7n 29%%n Y Rg+1n n’ n’ °? ©

B0-
q+1(Mn

0- T # T r # r #
exact sequence Kq+l U 3 Un) + K Us"U_,3 U )" » Kq(a u.)
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starts with 0 by the Mayer-Vietoris argument

Kqer (D% @y bk 00Ty Fxc ouny b RACREN AL

inj

- + .
where Kq+1(8rUn,8Un)# = Kq(BrUn,aUn)# = 0 Dbecause of the pipes

- - . -
induced in wn. As a result, the Lagrangian plane
®0-

#
L Ht o K1 O

trivial (see former claim about Kq(BrUn)#). As

- # . + # - ' .
U " din KUY D ® <3q(aun) > s

- ma_ %
q+l(M ,BUn) = Kq(Mg ) , this means that K (M0+)# and

(M )# are equivalent.

4. Theorem. Let M be an open manifold of dim 2q+2 =2 6
and f: M > X be a proper normal map of degree 1. Then, to the
cobordism class [f] f are associated a sequence
(zn) € lim L2q+l(ﬂlxn)’ and , if all zn vanish, an element

1

Gﬂn) € lim L2 #p(m X ) such that [f] contains a proper

homotopy equivalence at « iff all £, = 0 and Gﬂn) = 0.

Proof. With the notations of Proposition 2, define L
by the Lagrangian plane Kq(M )# in Kq(BUn), considering the

latter as a standard free hyperbolic form by the exact sequence

0 > Koyy (Ups3U)) + K (BU) + K (U)) > 0.
#

n+l

similarly as in §3 above, as follows in two steps: first,

A "canonical" equivalence between & and L is obtained

. T r #oo. !
the Lagrangian plane Kq(a v, -8 Vn+l) in <Kq(8Un)#>® <kq(8Un+l) >
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is trivialized by a "canonical" Lagrangian transformation,

. .Q " * # .
secondly the Lagrangian plane (Kq(Mn) ® Kq(Mn+l) ) in the

above hyperbolic module projects along Kq(arvn-arv

*—
n+l) -

q+l(3 Ty _arvn+l’aUn U 3Un+l)# onto a direct summand of

r r # .
Kq(a v -8 vn+l) . From the diagram

q+l v # q+l - g+l
0+ K (Mn -M +1,M U M )T > KC (Mn,Mn) U KC (M

n+l )

n+l

~ inj.

(M

# .
K g M )7 e K (M) 3 K (MM ) 5 0

q+l n+l

and its dual, we get a reciprocal duality between

» L) )# &

t = (M -M and the image t of

%
Let ¢: t =+ t be the canonical map, and

y #

q+1 n+l
. # ‘o )
Y : Kq(Un) ® Kq(Un+l + t be a lifting of the canonical map

# #

# a # - . )
Kq(Un) ® Kq(Un+l) > Kq(Mn) & Kq(Mn+1) , which exists because

L s # . . .

t - Kq(Mn) ® Kq(Mn+l) is surjective. Now the whole argument
. . +

of §3 goes through, with aUn instead of aUn and aUn+1

instand of aU;. The above Lagrangian transformation is
canonical in the sense that ¢ is canonical. By §3, the

element (Qn)EE %%m L (an ) 1is independent of all choices

2q+1l

and invariant by cobordism. Suppose that all 2, 7 0 i.e.

for each n there is a Lagrangian transfoprmation % of

Kq(BUn)# which trivilizes K (M )# By superposition, we get
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. . . ~-1
a Lagrangian transformation ﬁo(an&aa n+l) of
# ! . .
<kq(6Un) > ea<kq(aun+l> > y where f 1is the above canonical
. ®0 . # =0 ok . .
transformation. As Kq(Mn) &9Kq(Mn+l) projects ontc a direct

summand of Kq(arVn—BrV )#, the above composite Lagrangian

nt+l
transformation carries the standard Lagrangian plane
# # .. . .
Kq(Un) QPKq(Un+1) to a trivial plane. According to [5], this

transformation determines a non-singular quadratic module

qn € L2q+2(wlxn)' In the case an=id this is nothing but the
non-singular part of ¢, a direct summand of t on which the
intersection pairing is non-singular. If one changes the choice
of the Lagrangian transformations « > ‘then the sequence @ﬁn)
is altered by a sequence in the image of S (see IIT.10 for
definition). The same is true if one replaces f:M = X by a
cobordant map. Actually, if F: w2q+3 -+ Y 1is a cobordism

between f¥: MT - Xi, then as in Chapter III one produces

a
singular quadratic modules Kq+l(wn)# whose non-singular part

determines an element W € L2q+2(wlxn)
+ +
Mn Mn+l
wn wn+l
Mn Mn+1

Then from the exact sequence

qt2 ' 'n "n+1’ 0

'tk wotex G-, ek w )tk L (Tow
qtl "'n” £ g+l n ntl’ ¥og+l' ' n+l q+l 'n "n+tl
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one deduces a trivialization of the non-singular part of the

+ - #

middle gquadratic module, i.e. ohl-qn = W -w In this way

we get a well-defined element @nn) € lg'._ml L (wlx ).  Note

2q+2
that by [11] one can arrange to get a_=id. Suppose then that

@ﬂ ) = 0. This means that the intersection pairing on
q+l(M -M +l) has the following property:
q+l(M - n+l) = ker ¢ © Hn’ where the form H_ = is hyperbolic.

By Mayer-Vietoris argument, the Hr for r 2 n do not match

up in Kq+l(Mn)’ so one sees that there is a subsystem

Q, © Pg; Hn C Kq+l(Mn), such that the inclusion is an equivalence

and Q. is a projective hyperbolic form which can be assumed
free of countable rank: Qn = Un L) (Un): (the second factor is
the dual with compact support). Now, each basis element u can
be represented by an embedded sphere Sq+l C Miq+2 {(because
<u,u> = 0). By piping each Sq+l to « and carving out the
result (as in Chapter II), one verifies easily that Qn is

killed, and the new inverse system {K (Mn)] becomes

q+l
equivalent to 0. In other words, we have found a cobordism to

a proper homotopy equivalence at .
5. Corollary (see III.11). We have an exact sequence

0 + limT L (n,X ) » L, ,(eX) » 1im L, , (m X ) > L
< n

2q+2¢™1%n 2q+2 im Lo +1 (7%

2q

The proof is analog to III. 11. This can also be globalized as

in III.12, to form an exact sequence



S 1-S P
Maqr2 =Laqe2(MX) O Thygyp * Logsp (X0 > Ty, LY 4 (130 ©T]

2q+l°

Together with III. 12, this provides a long exact sequence.
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CHAPTER V. THE ALGEBRA OF INVERSE AND DIRECT SYSTEMS

1. An inverse system of groups {Gn} is a sequence of

homomorphisms Gle——-Gzé—m-... and an inverse system of modules

{An}, where An is a Gn—module, is a sequence of pseudc-linear
maps Aje— Aje—— ... . A morphism {a} : {An}-—«w*+{A$} is a class

of compatible pseudo-linear maps Ar_—~—+ A;, for some subsequences
n n
r ,r;p where {a} ~ {B}if the diagram

A #—uaw—->A',

/ r rn\A"
n\A B / )

g A

e

n n

A

commutes for some subsequences un,ué. Two morphisms {An}___**{Aﬁ}'
{AA}—;——»{A;} may be composed in a well-defined class. In particular,
there are defined canonical isomorphisms {An}————é{Ai} and
{Ai+l}-—-—y{An}. By reversing all the arrows, we get the notion

of a direct system. The following progressive assertions are

easy to prove (for both direct and inverse systems).

2. A system {An} is equivalent to O iff, for some subsequence

r , the maps A —r A are O.
n r r
n+l n

3. Let g : {An}-——>{Bn} be an equivalence of systems
given by a, i A -—>B_. Then the systems {keran} and {cokeran}

are equivalent to {C}.

o
4. Let O -‘+{An}~m__?{Bn} {Cn} 0O be an exact
sequence of systems, i.e. for some subsequence rng,snsftn<:rn+l
% g Py
the sequences O Arn N BSn___*ﬁ_CtHﬁqﬂ_O are exact. Then a,




res. B , 1is an equivalence iff {Cn} » Tresp. {An}, is

equivalent to {0},

5. A morphism of systems a:{An} -+ {Bn} is an equivalence

iff the systems {ker a } and {coker un} are equivalent to {0}.
' a
6. Let {A} — {B}

¢ ¢!

' a' 1
(A} —%— {8}

be a commutative square of systems, i.e. for some subsequences

r ,s he s e
n’ n’tn’un’ t quares

# %n #
AI‘ —_— BS
n n
t
¢ ¢
t
!# Uan ]
A" Ty B
n “n
are commutative. If ¢ and ¢' are equivalences, then so are

1
the induced morphisms {ker an} + {ker an} and {coker a;} + {coker un}-

7. Let {0} > {A} > {B_} » {C} > {0}
o B Y
{0} » {Al} » {B]} » {c_} » {0}

be a commutative exact ladder of systems. Then, if two of the

morphisms a, B,y are equivalences so is the third.



8. The five lemma holds for systems.

9. Proposition. Let {C(n)} be a system of chain complexes.

Assume that each C(n) has the form

3 3 0
0 > CL(n) P e > Cl(n) > Co(n) + 0

where I, > 0 1is independent of n, each Ck(n) is free of
countable (resp. finite) rank, moreover, that the associated
homology system {Hk(n)} are equivalent to {0} for k < L.
Then {HL(n)} is equivalent by injections HL(n) + P toa
system of countably (resp. finitely) generated projective module

P L]
n

Proof. To fix the idea, suppose the system is inverse.
By induction on r < L, we can factorize C(n) =+ C(n-r) through
a free chain complex E(n) of the above form, such that
HkE(n) =0 for k <r. For r =0, take E(n) = C(n). Suppose
we are done for r-1. By the folding trick (see [6]1) . E(n) is
chain homotopy equivalent to a similar chain complex nul in
dimension < r-1. Hence Hr_lE(n) is countably (resp. finitely)
generated. Let (zi) be a countable (resp. finite) set of

(r-1)-cycles in Er—l(n) generating Hr—lE(n)’ and F the free

module on (z;). Define a chain complex E(n) by
F
3
® r

0 -+ EL(n) e > Er+l(n) > Er(n) > Er_l(n) F e Eo(n) > 0
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where aF(zi) =z We can assume that the chain map

C{n-r+l)—— C(n-r) induces O on homclcogy in dimensions <L,
hence s¢ does the composite map E{n)——>C(n-r+l) ——C(n-r).

3
This implies that the map F —— > E__,(n) —>C__;(n-r) has

its image in aCr(n*r), so can be lifted to Cr(n—r). This provides
a factorization C(n) ——E(n) incl. E(n) — 5 C{(n-r) where
Hkﬁ(n) = 0 for k< r. When we reach r = L, E(n) has homology only

in the top dimension L, hence H_ E(n) is a direct summand Pn of

L
EL(n) (ibid.) Finally, the injections C(n)-——>E(n} induce the

equivalence H_{(n) ——P

L n’

10. Addendum. There is a system of projective modules Pn'
such that the image of P gg—F, is a retract (in particular
projective), and an equivalence HL(n)—r——a-Pn which is injective
for all n.

Proof: We can replace {Pn} by the inverse system

which contains {Pn} as an equivalent retract. This can also

be done at chain level.

11. Addendum. If all {Hk(n)} are egquivalent to {0}, then
C(n) ———C(n-L-1i) is chain homotopic to O.
Proof: As in the proof of Proposition 9, we can factorize

this map through a projective acyclic chain complex.
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12. Corollary. Let a: {A(n)} -~ {B(n)} be a map of free
chain systems (each A(n), B{n) is free and of finite dimension < L
independent of n) inducing an equivalence on the associated

: * x
homology systems. Then so does the dual map a : (B (n)) + {A (m)}.

Proof. By applying the above addendum to the mapping
cyclinders M(n) of A(n) »+ B(n), we see that {M(n)} is
equivalent to a system of free acyclic chain complexes. Hence

*
so is the dual system {M (n)} .
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