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The 1lifting of a surgery problem of closed manifolds to a covering
leads usually to a proper surgery problem on open locally compact
manifolds, and this proceedure gives by the present work new in-
formations about the original problem. This is the motivation of
proper surgery. In [ﬂ , proper surgery groups are constructed
formally as in BL §@ and our goal has been to "compute” these
groups in terms of Wall-Novikov groups (both Dﬂ and the present
werk have been done sinultaneously and ignoring each otherl]. I

am indebted to W,Browder, J.Wagoner, R.Lee, A.Ranicki for useful

and friendly conversations, and to L.Taylor who pointed out a gap.

1. Notations and conventions

We consider exclusively locally compact manifolds M and CW-com-
plexes X of finite dimension, and proper maps ¥ between them
(i.e. fqtcompact] is compact).

If X 1is connected, we can choose a fondamental sequence of ngbd

of ~:Xl )X2 )XBD »as. formed by subcomplexes Xn with only non

compact components (in finite number). We denote by X-Xn any fi-

nite subcomplex of X such that X-Xn\/xn =X, and let i;=x-xnrwxn
which is a finite subcomplex containing the frontier of Xn

in X, For any pointed connected CW-complex A, with associated
universal covering X, cne wusually denotes by C{A)} the chain
complex of cellular chains on ; with integer coefficients (and 1if
BCA, then C(A) mod C(A,B) is denoted by C(A,B)) We denote by
C(Xn] the family C(Xi] obtained by choosing implicitely one base

point in each connected component Xlof Xn.
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Similarly, we denote by 21r1Xn the family of rings anx; and by

a ZIw Xn-module M, we mean a family of Zw Xi - modules Mi. The

1 1

homolaogy of C(Xn) is denoted by Hk(Xn)’ while the homology of its

dual C*(Xn), the family of HomTr i[C[X:], Zn X:], is denoted

X 1
K i tn
by H [XHB. where C{Xn) is given the right structure via the anti-
automorphism « +w(a]a-1 of anxi , W being given by some fixed

homomorphism =#_ X = +1,

The U-groups of B] or E] will be denoted by Lﬁ {(G) while Lm(G)

denotes the ordinary Wall groups (or V-groups). As an innsr auto-

morphism of G induces *+ identity on Li {(Gl, Lﬁ (WIX;J is well de-

fined and we write LP (w_X 1= @ P o
m I'n m

Xi]. Similarly X X
1 n n

1 +1 0
induces a unique homomorphism on Lﬁ v In particular.lim Lg[nlxn)
n
only depends on X, as well as l%m 1 Li(wlxn}. Ag for the latter
n

it maybe useful to recall Milnor's definition of 1im ! of an in-

verse system of abelian groups Al bd AZ :rAa 3;.. : this is the
Cdker of T A —&;§+ T A ,where (1-S)la,,a.,a8_ ,sss) =
n 17273
n>1 n>1
= [al—a;.az-ag....). Observe that a subseguence of {An} gives the
, 1 . ! .
same result : e.g. lim A2n+1 = lim An by mapping (31’32’53"')

54 #
+ +
to (a 38,,85%a

1 4...) in the range of 1-S.

2. Homology and cohomology inverse systems

Having implicitely choosen one base point for each connected

compenent of Xn. we join the base points of Xn to those of Xn

+1

by paths in Xn (in this usy, a tree grows in each connected
N N

component of XlJ. The latter determine maps Xi+l - Xi and so

pseudo-linear homomorphisms C[Xi+1) > C[X:].
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This gives rise to an inverse system {C(Xn]}.Note that

@zr.xt ® cxd
1 n+
3 n

)| {one summand for each j such that X‘j CXll
1 n+l” "'n

Zw XJ
n+

1 1

"
i i
is isomorphic to the subcomplex of C[Xi} determined by an Xn+l
Two choices of base points and paths give two inverse systems

related by a diagram of subsequences

C(X ) -—— C(X Jew—— C(X ]+
T r
l\ 12\ 8\
C{X } i C{ X ) w—— C{X | R S—
S S 8

1 2 3

which commutes up to the action of le; on itself by inner

automorphiems, Such a diagram is called a conjugate eguivalence.

Similarly, the families of cochailn complexes Cg(xn,x ] def .

L
= l%m C*[Xn,Xn\JXr) form an inverse system by excision and is
r

alsop well defined up to conjugate eguivalence. Now, any element

B}Gl%m Hm(X,Xr;Z](homology with coefficients extended by w
r

Zm X> Z) gives by cap products (see [1] ) a commutative diagram

cc*[xl,>'< ) e € (X, X ) e

1 C 2’2

] ~lx]

C(Xll *+—— C(X,) — s

2

i.e. by definition a morphism of inverse systems. The latter is
called an squivalence if there is an "inverse” morphism {C(Xn)}—+
3 T ————
> {CC [Xn,Xn)}, i.e. a commutative diagram of subsequences
* . * L]
CC[Xr Xr ]<—————-CC(XP X )
1, 11 2, 52
~X] ¥y Al Y5

C[Xr]ﬁ C(X ] « CI(X ) < C(XS]«
1 % Ty 2

where is ps -1i R <P _<5_<,...,
¥y pseudo-linear, and r1<s1 rz 52
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Observe that in this case, we can assume rn=sn_l=n without loss

of generality. When afx] is an eguivalence, we say that [X is a

m-fundamental class at =, and that X is properly Poincaré at = .

This turns out to be an invariant of the proper homotopy type of X.
Now, a proper map f: M - X of properly Poincaré complexes is said
of degree 1 if f* [M] =[X]. By confusing X with the mapping cylinder
* -
f £, i - , . SX UM
of f, and denoting the k+l-homology of C(Xn Mn], resp CC[Xn v n)

K L .
by KK[Mn),resp.KC(Mn,Mn}, where Mnﬂxnh M, Mn—XH\M we get again

.
inverse systems {Kk(Nn)} and {KZIMH,MH}} well defined up to con-
jugate eguivalence. If Mn=3Mn, then the composition

5 Poincaré K K .
Vv K (M) -+ H (M) = H (M ,5M ) > K (M ,M ) turns out
m-kK ' n m=k " ''n c n n c n o n
to be a canonicel equivalence of inverse systems with an inverse
shifting n by 4 (and so shifting n by 1 on a subsequence). Of

course in the above, H,I{M_ } and H*{M ;oM ) are with #.X -coef-
n c n n n

1
ficients.

3. Homology and cohomology direct systems

For r<n<s , let C*({X ,X ) be the femily @ Hom i
n s r . Zm_ X

3 1r
2% ® C[Xj,x 1, Z7 xt and let C*(X ) be the family
1l r J n's l'r c n'r
Zm_ X
1n

lim €Y (X _,X ) . For r fixed, the restriction maps

z n""s’r
et ix ) > crix ) determine a direct system {C*{X ) _} .

c 'n'r c n+l'r B c ‘'n'r

. ’ . i J 3
S 1 ly, if P
imilarly C(Xn,xn]r denotes the family @(%nlxr Z@ _C(Xn Xni

J
J nlxn

(chains of %1|x mod %1|X -X J,then the guotient maps
r'’'n r''r 'n

L ]
s X ] form a direct system, for r fixed and
+1° " n+l°r

»
C(X _,X J_ = C(X
n"‘n'r n
n > r. Now, given a proper map f: M+>X of degree 1, if we write
» ® s
» M
K*[Nn,ﬂn)r, resp Kc{Mn}r, for the homology of E(Xn Xnu n)r ’

* -
resp Cc{xn’mn)r , we find again an eguivalencs y

(K tm LBy 1 s k%o 3.
m-k n’" n'r c nr
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0f course, these direct systems are well defined only up to con-
jugate equivalence, the latter notion being the same as for inverse

systems,

4, End homology and cohomology

. S . , . . ) * _notat._
The dual of CC[Xn,Xn) is canonigcally isomorphic to C (xn,xn)= =

L
= lim C(Xn,XnL>XS] , which is nothing but the chain complex of
5

L]
locally finite chain on Xn mod Xn, with Zwlxn-coeFficients. The
A .
quotient complex C’[Xn,Xn)/C[Xn,Xn) yields the end hemology Hf(xnl

*
by definition. As usually, the cochain complex lgm C (Xsln yields
s

*
the end cohomology Ha[xn] by definition. Now, one can prove [see 3]
that, 1f [X] is a m-fundamental class at = coming from C;[X;Z],

€ (% ). All

then a[X] gives rise to an isomorphism Hx ) = n .
e n m-k ' n

this applies to a proper map f : M+X of degree 1, to yield an

& (M ) . Our end homology can be viewed as

isomorphism KK(M } = K
g n m-k ' n

an e-construction (see [8 or [d ) with nlxn-coefficients as

follows : consider the diagram of famllies of pointed subcomplexes

[Xn.xn] (Xn’xn+l] [Xn,xn+2) P
Y v
{xn+l'xn+l) (Xn+1’xn+2) oo
o
(Xn+2,xn+2] PN

Then let uC(X_ )} be the gquotient complex I C{X ,x ) / 9 C{X _,x_1
s’ n r>s s’ r’'n r>s s""r

and eC(X J}=1im uC(X_} . An isomorphism c®(X ) = eC(X_) arises
ntoE, s'n n n

L ¥ L}
by decomposing zc¢C [Xn] into zne z', € C[Xn'xn+l)® C'(Xx )

1 n+l'n!'

than zé+ into z Dz and so forth.

¥
1 n+l n+2*
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5. The category of (inverse or direct) systems

If one considers systems of families of modules {An}over {Z~= Xn} as

1
abstract objects and takes their eguivalence classes by the re-
lation of (conjugate) equivalence, and if one does the same thing

for the morphisms {An } - {Bn}. then it is routine to verify that

one gets an abelian category (see{ﬂ. compare{7]). A more specific
result is the following.

Proposition (see [3]) let {C(n)} be a system of chain complexes.

each of the form 0 =+ Cz(n] 3 . - Cl(n] - g {(n) - O

where & > 0 is fixed independant of n and Ck[n] is free of
countable rank. Suppose that the associated homology systems
{Hk(n)} are equivalent to 0 for all kK < 2. Then there is an esqui-

valence {HZ[nJ} - {Pn} , where each Pn is a projective countably
generated module and each homomorphism Hz(n)+ Pn is injective.

Moreover, in the system {Pn}, one can assume that the image of

P Pn a dirsct summand, in particular alsoc projective.

>
n+l
These two results essentlally allow us to elaborate an algebraic

Whitehead torsion for proper homotopy equivalence (compare [d).

6. Proper surgery

It is well known that any surgsry rel, boundary on a compact
m-submanifold of M™ extends to M, and similarly for a closed
bicollared submanifold Vn_l . By definition, a proper surgery
on M is the result of a diverging sequence of disjoint such sur-
geriaes. We distinguish the following particular case of carving
out ]QQC M. Let f: M>X be a proper normal map (relative to £
proper on X}, IR 95 Mbe a proper embedding, V¥
R 3+1 -+ X a proper map such that V¥ | ® - fo? (R %= 3 F5+1 ).
Now the normal bundle of ¥ 1is trivial (because Fg is contrac-

tible) and we form W™l by gluing MxI and ]Rf” x om ¢

along R 4 X Dm_qc Mx1 .
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+1
As (MxI)uR\f is a proper deformation retract of W, we can

extend f to F : W>XxI by using v . The stable trivialisstion of
HW@f*E on M extends to a stable trivialisation of TW@ F*é on W

because W retracts by deformation on M x O, Now, W is & cobordism
between M and M'=M- ¢ (R 7). The inclusions MCWOM'wD"Y are

homotopy equivalences
q 91 g™ a

e(r 9

One can observe that M also results form M’ by first a (m-g)-

surgery and then carving out R m-q. To each cocompact submanifold

MnC M corresponds a cocompact submanifold Mé( M' of the following

- ¥
shape : Nn = (Mnu g-handle) - R 4

7. Preliminary surgeries

Let M be an open m-manifold, X a proper Poincaré complex at = and
f 1 M»X & proper normal map of degree 1. We assume that X 1is
connected and so0 we can choose cocaompact subcomplexes Xn in X
which have only non compact connected components. We can assume

.
that sach Xn is bicollared, and that f is transversal on esach

of them (see D]). Then F_l[xn) is a cocompact submanifolds MnC M,
{-l

LY m———
such that 9M_= (X ) and M_-M
n n n

-l E——
= - . ly,
nel f [Xn % ) Clearly, if

n+l

m=2q , resp. 2g+l , g » 3, we can assume that each mep

£ : Iy i
i nel -> Xn Xn+l is g-connected, while amn - Xn is g-1l,resp.

g-connected. In particular, f is bijective on ends spaces.
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When m= 2g+l, we can improve still the connectivity of + as follows.

Each module of the family K (M .8 ) 9% 4 (x ,m ux_ ) is
g n°n+l g+l "n’'n n+l

finitely generated, and sech generator can be represented by an

embedded g-sphere Sq;nl"ln-l"ln provided with & nulhomotopy Dq+1xn

+1°

R A q - ; g q

*n Xn+1' We pipe 57 to =, getting R prééer Mn and extend D
q+1 PTOPET

into R ——— X
+ 0

D

Then the process of carving out Biq( Mn allows to kill each
K (M ,M J. An immediate consequence is k%M )= 0, hence the
g n  n+l c n

direct system {Kq+1[Mn,8Mn3r} is eguivalent to G by duality.

A more involved argument (see B])shows that K' (M ]geFH' (x .M
g n g+l "n n

also vanishes hence the inverse system {Kq+1(Nn,8Nn)}is equivalent
to 0 by duality. Moreover, the inverse system {Kq(Mn]}and the
direct system {Kq(Mn,BMn)r} are both eguivalent to systems of

projective countably generated modules ( ibid).

8. The case m=2g+l, M open

Assuming the prelimininary surgery already done the starting

situation is described by a commutative sguare

K9 e ) kT My r o< n.
[ n nr (s} nor

+oy t ¥
K M) ——— K (M ,3M ]
g n'r g n n'r
where Y, resp. W, are eguivalences of inverse, resp. direct,
systems {(r being fixed, n variable > r}, with inverse equiva-

lences shifting n by +1.
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The fundamentsl duality property of this square is the following +

commutative diagrams of exact ssguences
0 > kI oM ) - kFm 3 >k 9w Lam )
n n'r e n'r c n n'r

4yt +y® by

' e
q+1(Mn]r -+ q*l[Mﬂ]r - Kq[Mn]r -+ 0

0 > k%m ) + k%M ) s kI m
nr e n r Cc n r

tyt + y® + ¥

Ko .(M LM ) -k (M )+ K (M ,3M ) > O
g+l n n"r g+l n'r g n n'r

can,
K9+t
c

where ¥  is the composition K' oM ) > dusl

q+l[mn'

*
(M_,3M ) dgel wdual K tm 3y = «x%m 3y, and similarly for V¥ ,
n n g n'r n'r

r
and ¥° = 1im v ods actually an isomorphism (see D] J. One sees
n

that both ¥ and ¥ are induced by We. Our aim is to improve the

.
initial arbitrary choice of xn,xn in the mapping cylinder

X of M i X so as to get ¥ bijective. One cannot do this for X
itself but one can replace X by any complex simply homotopy

equivalent to X rel. M. The first step is the following.

Lemma : Ker ¥ and Ker V¥ are finitely generated. Proof (sketched]:
using the results of §5, one finds an equivalence

ind.
>

N
(k9 l(M LM )} {P_}, Where each P_ is projective, the imags
c n n'r n n

of P - Pn being & direct summand P; . By composition with V¥

we get an equivalence a:{Kq[MnJ} > {P__,} such that ker o =ker V¥
and im o = P;. which is projective. Hence ker o is a direct

summand. But ker Y is contained in the kernel of

K (M ]+ K (M ) , which is finitely generated, hence so is
g n+l'r g n'r

ker y , as direct summand. The same argument applies to ¥ . This

shows actually that, for a subsequsnce, the kernel of

is finitely generated, and similarly

¥
K (M) + k9w Lm0
g n'n-1 c n nn-1

for y .
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The first improvement is to replace Xn by Xn+1
* ——————

X ) Mn where Mn=Mn~Nn
//<::/j:

n+l
[ )
K9P m o m ) — k9
[ M n o] 1]

L]
v M and X by
n n

+1

Then, in the square

¥ o4 4

e €

)
n

K M) —— K (M,
g n g n
ker yand ker y are finitely generated. The second improvement

is to enlarge X inside X -X with M _~M veld™, to kill
n n n+1 n n+2

(] e?ﬁ/
/

By taking the guotient map, we find Kq(Mn,Mn] > K§+1(Mn) injective,

ker v

and by the fundamental duality property we can restablish ¢y and

the initial square (see [3] ). Assuming y injective, we can enlarge

2
M ar

R P
both Xn and Xn inside Xn -X with M v e to kill ker y.

-1 "n n-1 n+2
By taking the guotient map, we find K (M ) %»K2+1[Mn,mn1 injective,
and we restablish ; and the square by the fundamentel duality

property again., By using the proof of the above lemma, both

»
K (M) and K_(M ,M ) are seen to be projective (ibid). Then
qg n g n'n
4
one can still kill the kernel of the map Kq(anﬁ > Kq(Mn} where #

means with nlxn—coeFficients, and this will make vy bijective

(ibid). Then the fundamental duality property implies that y 1is

injective. Now, the commutative diagram of exact sequence

» .. a
o+ kIm > k3w ,m oy o kT
n c T n’"'n Tc n
. 3% -
0K (M 17> K (M1 »>K (M,M]) >0
g n g n g n’ ' n
shows that y induces an isomorphism Kq(M 7= Kq(Mn] , .. a non
degenerated quadratic projective finitely generated anx

module < K (M ) >
g n

n
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Proposition : the guadratic form on < Kq(MnJ > 80 obtained
satisfies the following properties :
i} it is induced by the {degenerated) intersection form on

Kq[aMr)# for some r > n, hence determine an element of

P

qu [nlxn) .

ii) it is defined stably, and the operation of carving out a
1
trivial proper embedded R 9% n (bounding R ?+ C M3

adds a trivial free hyperbolic module proper

iii) there is & canonical equivalence between the quadratic

-
Zm, X _-modules <K (M }> and the Z7n_ X -extension of
l'n g n 1'n

" .
4K (M )> .In other words the sequence <K (M )> is
g n+l g n
an element of 1im LP  (n.x )
< 2 1°n
n
iv] the latter is well defined by the normal map f: M - X, and is
a cobordism invariant. For the proof of this proposition, we

refer to [3] . As a result, we get a homomorphism o :

(nlxn] for m odd.Here, Lm[ex] is the group

L (eX) - lim LP
m ; m-1

of proper "surgery data over X at =", (same definition as in
[8] . but use only proper h.e. at = in defining 0) and sa-
tisfies actually an sxact seguence

LP (r. %) 3L (X3 > L (eX)] » 0, where L (X} is the proper
m 1 m m m

surgery group (see [8] for its construction’.

. L . , 1
Proposition 1 ker ¢ 1is isomorphic to lim L2q+1[ﬂlxn]'
The idea of the proof is to construct a map lim 1 L (m_x )
« 2g+1 '1'n
T Ker o and an injective left inverse [see i3] 1.
Thesrem (partial exact sequence) : for m odd, one has an exact

sequence I 138 Ltrxy®n 30 (xy $1P 1;5 PootroxyenP
m mo1 m m-1 m=-1""1 m-1

where NI is the product @I L (w.X ), and S is the shifting map.
m . m- ' 1ln

. # # ]
M -8 28,8, 000 )= ,a, - ya, - P
ore precisely, (1 ][a1 a,.a, ) Eal a,-a, a,-ag )
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for anE Lm(ﬂlxn). # denoting the homomorphisms

Lm[ﬂ1X] <+ Lm(ﬂlx ] - Lm[ﬂlX o« ..

1 2

Proof : observe that ker {(1-8) is the subgroup of lim Lg_l(wlxn)
n

vanishing in Lz_l[nlxl. The range of & is in ker (1-S) by the
.
proof of iii in prop.above, replacing <« Kq(Mn]> by ¢ and

. L]
LK (M 1> by the #.X~extension of LK (M 1> . The exac-
g n+l 1 g n

tness Imo=ker {(1-8) is seen by constructing a cobordism between
N i N and a proper h.e. N’'+ N, where N is an open 2g-manifold

provided with a 1l-equivalence N - X. The various map T are also
constructed by cobordiam on a 2g-manifold, and 10(1—83 vanishes.
Hence we get induced maps 1 satisfying the commutetive diagram

of exact seqguences

to
Iim L (m X ) =+ L (7. X) » L _(X) > L (eX) » O
; m 1l'n m 1 m m
4T +T

Iim L {w. X )} > L (7.X) » Coker(1-8) =+ lim L {w.X )} =0
; m 1 n m 1 < m 1n

By the latter proposition, the right T is injective, hence so is
the middle one, This proves the exactness Ker 1 = Im (1-S}.

We also know that UOT=0. The exactness Ker o= Im tv is a result

of the above diagram

9. The case m=2g+2, M open

Assuming the preliminary surgery already dane, we are left (as in)

the case m odd) with only one inverse system {Kq l[M]n]r}and ane

+

direct system {Kq {Mn,8Mn3r} not eguivalent to 0, Following Wall's

+1
idea for the compact case, we want to consider the surgery data

M ﬁ X as the union of two surgery cobordisms

M°u»v -> XDg/H along their common boundary U - 3H.
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Lemma [(see @ chap.II th.3]) : X has the simple homotopy type of

a CW-complex X;H\JH, where H 1s a locally finite m-handlebody of

0 and l-handles. Actually, H is a regular ngbd of a tree in R m ,
with l-handles attached.

Proposition : assuming X of the above form, one can find a codi-
mension O-submanifold V of M such that, 1if MD = ﬁTV, f[MO)C XO

and f(VICH up to a proper homotopy of f. Actually, V is a locally
finite handlebody of 1, g and g+l-handles, formed by a regular nghbd
of the union of immersed spheres Sq+1+ M piped to = .

The proof reliss on the same geometrical arguments than [6].

We refer to this as a Mayer-Vietoris decomposition of M ﬁ X.

Actually, the ngbd of = in 3H, resp 3V, can be chosen such that

»

: . y 2q g
their frontier aHn, resp avn, is S , resp S

xsH , and
[ ] [ [
F[BVnJC aHn. This implies that Kq(aan is a free hyperbolic module

(with the intersection forml). Then we can modify the choices of

»
the ngbd of w=: x:’] in X%, and the choice of XE' as in the procof of

]
iv in the first prop. of §8 to get Kq[MS] as a projective
]
Lagrangian plane in Kq[BVn) . This determines an element of
LP (n.X ) and we have results similar to those in §8, with m
2g+1 1'n
replacsd by m+1l.
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