Proper surgery groups and Wall-Novikov groups
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The lifting of a surgery problem of closed manifolds to a covering
leads usually to a proper surgery problem on open locally compact
manifolds, and this proceedure gives by the present work new in-
formations about the original problem. This is the motivation of
proper surgery. In [ﬂ , proper surgery groups are constructed
formally as in Eh §ﬂ and our goal has been to "compute” these
groups in terms of Wall-Novikov groups (both Dﬂ and the present
work have been done sinultaneously and ignoring each otherl). I

am indebted to W.Browder, J.Wagoner, R.Lee, A.Ranicki for useful

and friendly conversations, and to L.Taylor who pointed out a gap.

1. Notations and conventions

We consider exclusively locally compact manifolds M and CW-com-
plexes X of finite dimension, and proper maps f between them
(i.e. fq(compactl is compact].

If X 1s connected, we can choose a fondamental sequence of ngbd

of -:Xl )X2 )Xa) vas. formed by subcomplexes Xn with only non

compact components (in finite number). We denote by X-Xn any fi-

nite subcomplex of X such that X-Xn\/Xn =X, and let i;=X—anWXn
which is a finite subcomplex containing the frontier of Xn

in X, For any pointed connected CW-complex A, with associated
universal covering X, one usually denotes by C(A)] the chain
complex of cellular chains on A with integer coefficients (and if
BCA, then C(A) mod C(A,B) is denoted by C(A,B)) We denote by
C(Xn3 the family C(Xi) obtained by choosing implicitely one base

point in each connected component xtof Xn'
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Similarly, we denote by anXn the family of rings anXi and by

a anXn-module M, we mean a family of Zw Xi -~ modules Mi. The

1
homology of C(Xn3 is denoted by HK(XHJ, while the homology of its

dual C*(X_J, the family of Hom_ 1(C(x;3, anx;J, is denoted

K i %
by H [an. where C(Xn3 is given the right structure via the anti-
automorphism o *w[a]a‘l of anxi , W being given by some fixed

hoemomorphism le + +1.

The U-groups of B] or E] will be denoted by Li (G) while Lm(GJ

denotes the ordinary Wall groups (or V-groupsl. As an inner auto-

morphism of G induces + identity on LP (G1, LP (n le is well de-
- m m 1'n

fined and we write Lr‘: (n X )= @ L‘; Cr xi). Similarly X _—X

1 1 1 n+l n

induces a unique homomorphism on Lﬁ v In particular.lim Li(nlxnl
n

only depends on X, as well as lim ! Lﬁ(wlxnl. As for the latter

n

it maybe useful to recall Milnor's definition of lim ! of an in-

verse system of abelian groups Al b A2 4’A3 <f... t this is the

Coker of T A -5, T A ,where (1-5)(a 28,8, 0 a0 =

n 17723
n>1 n>1
= (al—az,az—ag,...l. Observe that a subseguence of {An} gives the
1 .1
same result : e.g. lim A2n+l = lim An by mapping (al,az,aa...J
*
to (al+a2,a3+az...3 in the range of 1-S.

2. Homology and cohomology inverse systems

Having implicitely choosen one base point for each connected

component of Xn' we join the base points of Xn

to those of X
+1 n

by paths in Xn (in this usy, a tree grows in each connected
N N

component of Xll. The latter determine maps Xi+l - Xi and so

pseudo-linear homomorphisms C(Xi+13 -+ C(Xi).
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This gives rise to an inverse system {C(an}.Note that

®|zr_ x* ® cx?
1 n+

i
J] (one summand for each j such that Xi+ffxn3
J n

1
J
Zm X ha
A v ry
1
is isomorphic to the subcomplex of C(X;) determined by Xn Xn+l
Two choices of base points and paths give two inverse systems

related by a diagram of subsegquences

C(X ) <e——> C(X )w——0TZC(X_ ]+

l\ l \ 3\
C(X )] e C(X ) oo C(X ] e——
S S S

1 2 3

which commutes up to the action of nlxi on itself by inner

automorphisms. Such a diagram is called a conjugate egquivalence.

Similarly, the families of cochain complexes C;(XH,XHJ def

= lim C*(Xn,Xn\JXrJ form an inverse system by excision and is
r

also well defined up to conjugate eguivalence. Now, any element

D}Glim Hm(X,Xr;ZJ(homology with coefficients extended by w :
r

Zm X+ Z) gives by cap products (see [1] 7 a commutative diagram

(X ,X.) e— CC*(XZ.R | —

c 1771 2

*

c

g nlx]

C(XIJ - C(X,) —m

2

i.e. by definition a morphism of inverse systems. The latter is

called an equivalence if there is an "inverse" morphism {C(an}—+
Yy

* EJ
- {CC (Xn.an}. i.e. a commutative diagram of subsequences
* - * L]
C (X X Je—=0C (X ) D S ——
c 'r r c r
1, 1 2, 2

~fx] ¥ 1 A 2
C (Xr ]« CclX_ 1« C(Xr ) « C(Xs ]«
1 51 2 2

he ~1i e
W re : is pseudo-linear, and rl<sl<r2<52<



Observe that in this case, we can assume rn=sn_l=n without loss

of generality. When A[x] is an equivalence, we say that [X is a

m-fundamental class at %, and that X is properly Poincaré at = .

This turns out to be an invariant of the proper homotopy type of X.
Now, a proper map f: M - X of properly Poincaré complexes is said
of degree 1 if f* [M]=[X] . By confusing X with the mapping cylinder
of f, and denoting the k+l-homology of C(X_,M 1, resp.C*(X S X UM ]
n’' n c n''n 'n
[ ] n

k Y .
by KK(Mnl.resp.Kc(Mn,Mnl, where Mn Xnn M, Mn XnnM we get again

.
inverse systems {KK(MHJ} and {KE(MH,MHJ} well defined up to con-
jugate equivalence. If Mn=3Mn, then the composition

Poincaré

Hoo(m) = WM Lam ) > kMM LM ) turns out
m=-k n c n n c n n

vk S
m-k n

to be a canonical equivalence of inverse systems with an inverse

shifting n by 4 (and so shifting n by 1 on a subseguencel. OFf

course in the above, H,(M_ 1 and H*(M ,oM 1 are with #_.X -coef-
n c n n n

1
ficients.

3. Homology and cohomology direct systems

For r<n<s , let C*(X ,X ] be the family ® Hom i
n s r Zn_ X
| l'r
Zw Xi ® C(XJ,X l, Zmw X1 and let C*(X ) be the family
1l r J n’’'s l'r c n'r
Zm_X
1n
1im C*(X ,X ) _ . For r fixed, the restriction maps
z n"“s'r
chix 1+ crx ) determine a direct system {C*(X_ 1 } .
c 'n'r c n+l'r e D c 'n'r

Similarly, 1f C(X ,X ) denotes the family @(zﬂ X @ c(xJ.xJJ}
n nr " lr n - n
3 Z'ann

(chains of %ilx mod %ilx -X ),then the gquotient maps
r'’n r'%r "n

L ]
X ] form a direct system, for r fixed and

»
C(X_,X_ 1 =+ C(X s
n""n'r n+l” " n+l°r

n > r. Now, given a proper map f: M>X of degree 1, if we write
= * .
R M
K*(Mn'MnJr’ resp KC(Mnlr, for the homology of C(Xn Xnu nJr N

-
re sp CZ(Xn,Mnlr , we find again an equilvalence ¥

. K
TSN CIPLI N S GG IR TR
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O0f course, these direct systems are well defined only up to con-
jugate egquivalence, the latter notion being the same as for inverse

systems,

4, End homology and cohomology

* ¥ ; s , ' ¢ .notat._
The dual of CC[Xn.Xn3 is canonically isomorphic to C (Xn.Xn3= =

L]
= lim C(Xn.XnL)XSJ , which is nothing but the chain complex of
s

]
locally finite chain on Xn mod Xn’ with Zw Xn-coefficients. The

1
. »
guotient complex C'(Xn,an/C[Xn,an yields the end homology Hg[an

*
by definition. As usually, the cochain complex lim c (XSJn yields
s

*
the end cohomology Ha(an by definition. Now, one can prove [see 3]
that, if [X] is a m-fundamental class at = coming from C%(X;ZJ,

€ (x 1., ALl

then ~{X] gives rise to an isomorphism Hx ) = H .
e n m=k n

this applies to a proper map f : M+X of degree 1, to yield an

e (M 1 . Our end homology can be viewed as

isomorphism KK(M ] =2 K
e n m=k n

an e-construction (see [q or [ﬂ } with ann-coefficients as

follows : consider the diagram of families of pointed subcomplexes

(Xn.xn3 (Xn'xn+13 (Xn'xn+23 e
Y v

(Xn+l’xn+13 [Xn+l’xn+23 e
o

(X ) IR

x
n+2’ " n+2

Then let uC(X ] be the guotient complex I C(X ,x 1 / @ C(X _,x ]
s'n r>s s’"'r'n rss s'"r

]
and eC[Xn3 l1im uC(Xsln. An isomorphism C (an = sC(Xn3 arises

s>n
b i c’ ! !
y decomposing z ¢ (Xn3 into zn® z! 1 € C(Xn.Xn+13® C (Xn+13n’
h ! ¥ .
then Zn+l into Zn+l$z ne2t and so forth
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5, The category of (inverse or directl] systems

If one considers systems of families of modules {An}over {Zﬂan} as

abstract objects and takes their equivalence classes by the re-
lation of (conjugatel] equivalence, and 1f one does the same thing

for the morphisms {An } - {Bn}, then it is routine to verify that

one gets an abelian category (see{ﬂ. compare{?]). A more specific

result is the following.

Proposition (see [3]1 let {C(nl}} be a system of chain complexes.
each of the form 0 - Cl(nl 3 s - Cl(nJ - g (nl - 0O

where & > 0 is fixed independant of n and Ck(nl igs free of
countable rank. Suppose that the associated homology systems
{Hk(nl} are equivalent to 0O for all k < &. Then there is an equi-

valence {Hl(nl} > {Pn} , where each Pn is a projective countably
generated module and each homomorphism Hl(n3+ Pn is injective.

Moreover, in the system {Pn}, one can assume that the image of

Pn+l» Pn a direct summand, in particular also projective.

These two results essentially allow us to elaborate an algebrailc

Whitehead torsion for proper homotopy equivalence (compare [d).

6. Proper surgery

It is well known that any surgery rel, boundary on a compact
m-submanifold of mm extends to M, and similarly for a closed
bicollared submanifold Vn.l . By definition, a proper surgery
on M is the result of a diverging sequence of disjoint such sur-
geries, We distinguish the following particular case of carving
out R qC M. Let f: M+X be a proper normal map (relative to &
proper on X}, IR 9 > M be a proper embedding, VY :
R S+l + X a proper map such that V¥ | R = fo? (R 9= 3 Fg*l 1.
Now the normal bundle of ¥ 1is trivial (because Ig is contrac-
m+1 ® §+l m-q

tiblel and we form W by gluing MxI and 8]

along R g x Dm-qc Mx1l .
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As (MxIJUR f+l is a proper deformation retract of W, we can

extend f to F : W»aXxI by using y . The stable trivialisation of
1M<9¥*g on M extends to a stable trivialisation of Tw@ F*é on W

because W retracts by deformation on M x 0. Now, W is a cobordism
between M and M'=M- ¢ (R 91, The inclusions MCWDOM' u D" are

homotopy egquivalences
R« o™

e(rR O

M’_’ SR 2
Mx I

Dne can observe that M also results form M' by first a (m-gl-

surgery and then carving out R m-q- To each cocompact submanifold

MnC M corresponds a cocompact submanifold MAC M' of the following

- ¥
shape : Mn = (Mnu g-handle) - R d

7. Preliminary surgeries

Let M be an open m-manifold, X a proper Poincaré complex at = and
f : M»X a proper normal map of degree 1. We assume that X is
connected and so we can choose cocompact subcomplexes Xn in X
which have only non compact connected components. We can assume

[ ]
that each Xn is bicollared, and that f is transversal on each

of them (see D]). Then ¥—1(Xn3 is a cocompact submanifolds MnC M,
f—l

LY nt—— - ——————
such that ©B8M_= (X_1 and M_-M = f l(X -X ] . Clearly, 1f
n n n n+l n

n+l

m=2gq , resp. 29+l , g » 3, we can assume that each map

£ f =
n+l - Xn Xn+l is g-connected, while aMn - Xn is g-1,resp.

g-connected. In particular, f is bijective on ends spaces.

532



hen m= 2g+1, we can improve still the connectivity of f as follows.

def
Each 1 h i ’ = ’ '
ach module of the family Kq(Mn Mn+13 Hq+1(xn Mnuxn“rl3 s

finitely generated, and each generator can be represented by an

embedded g-sphere Sq;nMn—Mn provided with a nulhomotopy Dq+lin

+1°
- : q e q q
X "X .1+ We pipe ST to =, getting R~ G M and extend D
proper

into ]qu—-——— X
+ n

?22;%?////

Then the process of carving out BQqC Mn allows to kill each

K (M ,M }J. An immediate consegquence is 'SIUIBE: 0, hence the
g n n+l c n

direct system {Kq+l(Mn’aMn3r} is eguivalent to 0 by duality.
A more involved argument (see D])shows that k' (M JgefH' (X ,M 1]

g n g+l "n n
also vanishes hence the inverse system {Kq+l(Mn.3Mn3}is equivalent
to 0 by duality. Moreover, the inverse system {Kq(Mnl}and the
direct system {Kq(Mn,aMnlr} are both eguivalent to systems of

projective countably generated modules ( ibid].

8. The case m=2g+1, M open

Assuming the prelimininary surgery already done the starting
situation is described by a commutative sqguare
K3 hem L om ) —=kI w1 r < on

c n n'r c n‘r

oy +
K (M )] ———— K (M_,3M ]

q nr g n n‘r
where Y, resp. W, are equivalences of inverse, resp. direct,
systems (r being fixed, n variable > r)}, with inverse equiva-

lences shifting n by +1.
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The fundamental duality property of this sguare is the following +

commutative diagrams of exact sequences

0> kIm oM 3 > kT -k I M Lem )
n nr e nr [ n n

r
+ ¥ + y® +y
K" ooy o+ kS M) >k M) > 0
g+l n'r g+l n'r g n'r
0 -+ «k9m) > k9 ) > k9 (m
n e n [ nr
ry + v + ¥

Ko, (M ,3mM ) »k® (M )+ K (M_,3Mm ) =+ 0
g+*l n n‘r g+l n'r g n n'r

* A , can. g+l
where V¥ is the compositien K (M_,8M 1] -> dual K
g+l n nr c
(M3 ) dyal ¥

*
dual K _(m 3 = k9m 1 , and similarly for VY ,
n'r g n'r n'r
1

and v = im v®ois actually an isomorphism (see D] 1. One sees
n

that both ¥ and V are induced by v® . Our aim is to improve the

initial arbitrary choice of Xn'in in the mapping cylinder
X of M 3 X so as to get ¥ bijective. One cannot do this for X
itself but one can replace X by any complex simply homotopy

equivalent to X rel. M. The first step is the following.

Lemma : Ker ¥ and Ker Y are finitely generated. Proof (sketchedl:
using the results of §5, one finds an equivalence

inj.
{K2+1(M RLRIN o

n {Pn}, Where each P_ is projective, the image

of P - Pn being a direct summand P; . By composition with V¥

we get an eguivalence a:{Kq(Mnl} - {Pn_l} such that ker o =ker V¥
and im o = P;, which is projective. Hence ker o is a direct
summand. But ker Y is contained in the kernel of

K (M 1> K (M ) , which is finitely generated, hence so is
g n+l'r g n'r

ker y , as direct summand. The same argument applies to Q . This

shows actually that, for a subseguence, the kernel of
Y
K (M) > k3w Lm0
g n'n- c n n'n

1 is finitely generated, and similarly

-1
for y .
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The first improvement is to replace Xn by Xn+l
* ——————

X v M where M =M -M
n n n n

e ///::///

/

L]
v M and X by
n n

n+1l +1

Then, in the sguare

[ ]
K3 m m ) — kI om0
[ n n [o] n
v o4 by
K (M) —— K (M M
g n g n’n

ker yand ker y are finitely generated. The second improvement

is to enlarge Xn inside Xn—X with M _ -M (V) eq+l to kill

n+l n n+2 ’

(] e?ﬁ/
/

By taking the guotient map, we find Kq(Mn,Mnl - K2+1(Mn3 injective,

ker

and by the fundamental duality property we can restablish y and

the initial square (see [3] J. Assuming y injective, we can enlarge

] ——————— b ————
both X and X_ inside X -X with M ~M v eq+2 to kill ker y .
n n n-1 'n n-1 n+2

By taking the guotient map, we find Kq(Mn3 %>K2+1(MH.MHJ injective,

and we restablish ; and the square by the fundamental duality
property again. By using the proof of the above lemma, both

L]
K (M 1 and K (M_,M )} are seen to be projective (ibidl. Then
g n g n°n

[ ]
one can still kill the kernel of the map Kq(P’Infit > Kq(Mnl where #

means with ann—coefficients, and this will make y bijective

(ibidl). Then the fundamental duality property implies that y is

injective. Now, the commutative diagram of exact segquence

x| s
g KIm T kS m My > k9T
n [ n n TC n
L 4 ” T E ]
g+~K M 1> K (M) >K (M,Mm1 >0
g n g n g n’'n
[ 4 w

L ]
shows that y induces an isomorphism Kq(MnJ = Kq(Mn3 » i.e. a@ non

degenerated quadratic projective finitely generated anXn

L]
module < K (M )} »>
g n
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Proposition : the gquadratic form on < Kq(Mn3 > so obtained
satisfies the following properties :
i} it is induced by the (degenerated] intersection form on
Kq(aMrJ# for some r > n, hence determine an element of
P
L2q (ann3 .
ii) it is defined stably, and the operation of carving out a
trivial proper embedded B{qc M {bounding R S+l C M1l

adds a trivial free hyperbolic module proper

iii} there is a canonical equivalence between the guadratic

»
Zmn_ X_-modules <K (M 1> and the Zm
n g n

X -extension of
1 n

1
L] . .
Z K_(M }J> .In other words the sequence <K (M }> is
g n+l q n
an element of 1lim LP  (m_x )
« 2q 17n
n
iv}) the latter is well defined by the normal map f: M » X, and is
a cobordism invariant. For the proof of this proposition, we

refer to [3] . As a result, we get a homomorphism o

L (eXx) - 1im LP (n.X_ ) for m odd.Here, L (eX] is the group
m ; m-1 1'n m

of proper "surgery data over X at =", (same definition as in
[ﬂ , but use only proper h.e. at = in defining 0] and sa-

tisfies actually an exact seguence
LPtroxy 3L (x) » L (ex) » 0, where L (X] 1is the proper
m 1 m m m

surgery group (see [8] for its constructionl.

Proposition : ker o is isomorphic to lim ! L (m_ox_J.
« 2g+l "1'n
The idea of the proof is to construct a map 1lim 1 (m, x_ 1]
- 2g+1 1'n

T Ker o and an injective left inverse (see @} I,
Theorem (partial exact sequencel] : for m odd, one has an exact
sequence I l;s Lrxy®n L (x) $1P l;s P (roxrerf

m m 1 m m-1 m-1 "1 m=-1

where 1N is the product U L (w_ X 1, and S is the shifting map.
m n>1 m 1l'n

More precisely, (l—S)(al.a ,a ....3=Eaf ,a -a¥ ,a_-ar

2°°3 1 "2 23""3
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for anﬁ Lm(nljnl. # denoting the homomorphisms

Lm(anJ « Lm(anll « Lm(anZJ * o

Proof : observe that ker (1-S) is the subgroup of lim Lg_l(nlxnl
n

vanishing in Li_l(anJ. The range of ¢ is in ker (1-S] by the
L]
proof of iii in prop.above, replacing <« Kq(Mn3> by ¢ and

L] ]
LK (M 1> by the = X-extension of LK (M_ 17> . The exac-
g n+l 1 g n

tness Imo=ker (1-S] is seen by constructing a cobordism between
i N and a proper h.e. N'- N, where N is an open 2g-manifold

provided with a 1l-equivalence N - X. The various map 1 are also
constructed by cobordiam on a 2g-manifold, and 10(1—83 vanishes.
Hence we get induced maps 1 satisfying the commutative diagram

of exact seguences

+o
lim L (X )} »> L (m_X) > L (X) - L lex] - 0O
; m 1l'n mo1 m m
+T +7

lim L (v X ) » L (w_X] - Coker(l-S] - 1lim L (m X 1 >0
; m 1n m 1 < m 1ln

By the latter proposition, the right T is injective, hence so is
the middle one. This proves the exactness Ker ¢t = Im (1-S].

We also know that OOT=U. The exactness Ker o= Im 1 is a result

of the above diagram

9. The case m=2g+2, M open

Assuming the preliminary surgery already done, we are left (as in)

the case m odd] with only one inverse system {Kq+1(M3n3r}and one

direct system {Kq (Mn,aMnlr} not equivalent to 0. Following Wall's

+1
idea for the compact case, we want to consider the surgery data

f‘
M + X as the union of two surgery cobordisms

Mou)V - XOLIH along their common boundary U - 3H.
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Lemma (see [8 chap.II th.3]) : X has the simple homotopy type of
a CW~complex XgH\JH, where H is a locally finite m~handlebody of
0 and l-handles, Actually, H i1s a regular ngbd of a tree in R m R

with l-handles attached.

Proposition : assuming X of the above form, one can find a codi-
mension O0-submanifold V of M such that, if m° = m-v, £(n°)¢ x°

and f(VICH up to a proper homotopy of f. Actually, V is a locally
finite handlebody of 1, g and g+l-~handles, formed by a regular ngbd
of the union of immersed spheres Sq+l+ M piped to = .

The proof relies on the same geometrical arguments than @].

We refer to this as a Mayer-Vietoris decomposition of M i X

Actually, the ngbd of e« in 3H, resp 3V, can be chosen such that

»

Y 2g 9 .d
their frontier aHn, resp avn, is S , resp S 'xS° , and
» » »
f(aVHJC aHn. This implies that Kq(aVn3 is a free hyperbolic module

(with the intersection forml. Then we can modify the choices of

2
the ngbd of e Xs in XO, and the choice of X?, as in the proof of

-
iv in the first prop. of §8 to get Kq(Mg) as a projective

Lagrangian plane in Kq(BVn3 . This determines an element of
Lp (m.X_ 1 and we have results similar to those in 88, with m
2g+1 "1°n

replaced by m+1l.
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