Proper surgery groups and Wall-Novikov groups

Serge Maumary *
IAS Princeton
and UC Berkeley

The lifting of a surgery problem of closed manifolds to a covering leads usually to a proper surgery problem on open locally compact manifolds, and this proceedure gives by the present work new informations about the original problem. This is the motivation of proper surgery. In [8], proper surgery groups are constructed formally as in [9,\$9] and our goal has been to "compute" these groups in terms of Wall-Novikov groups (both [8] and the present work have been done sinultaneously and ignoring each other). I am indebted to W.Browder, J.Wagoner, R.Lee, A.Ranicki for useful and friendly conversations, and to L.Taylor who pointed out a gap.

1. Notations and conventions

We consider exclusively locally compact manifolds $\,M\,$ and $\,CW-$ complexes $\,X\,$ of finite dimension, and proper maps f between them (i.e. $f^{-1}($ compact) is compact).

If X is connected, we can choose a fondamental sequence of ngbd of $\bullet: X_1 \supset X_2 \supset X_3 \supset \dots$ formed by subcomplexes X_n with only non compact components (in finite number). We denote by $X-X_n$ any finite subcomplex of X such that $X-X_n \supset X_n = X$, and let $X = X-X_n \cap X_n$ which is a finite subcomplex containing the frontier of X_n in X. For any pointed connected CW-complex A, with associated universal covering \widetilde{A} , one usually denotes by C(A) the chain complex of cellular chains on \widetilde{A} with integer coefficients (and if BCA, then C(A) mod C(A,B) is denoted by C(A,B)) We denote by $C(X_n)$ the $\operatorname{family} C(X_n^i)$ obtained by choosing implicitely one base point in each connected component X^i of X_n .

^{*} Supported by grant of Fonds National Suisse, SG 58

Similarly, we denote by $Z\pi_1^X_n$ the family of rings $Z\pi_1^X_n^i$ and by a $Z\pi_1X_n$ -module M, we mean a family of $Z\pi_1X_n^1$ - modules M^1 . The homology of $C(X_n)$ is denoted by $H_k(X_n)$, while the homology of its dual $C^*(X_n)$, the family of $Hom_{\pi,X_n}i(C(X_n^i),Z\pi_1X_n^i)$, is denoted by $H^{k}(X_{n})$, where $C(X_{n}^{i})$ is given the right structure via the antiautomorphism $\alpha \rightarrow w(\alpha)\alpha^{-1}$ of $Z\pi_1 X_n^1$, w being given by some fixed homomorphism $\pi_1 X \rightarrow +1$. The U-groups of [4] or [5] will be denoted by L_m^p (G) while $L_m(G)$ denotes the ordinary Wall groups (or V-groups). As an inner automorphism of G induces \pm identity on L_m^p (G), L_m^p ($\pi_1 X_n^i$) is well defined and we write $L_m^p(\pi_1X_n) = \bigoplus_{i=1}^p L_m^p(\pi_1X_n^i)$. Similarly $X_{n+1} \longrightarrow X_n$ induces a unique homomorphism on L_m^p . In particular, $\lim_{\leftarrow} L_m^p(\pi_1 X_n)$ only depends on X, as well as $\lim_{n \to \infty} \frac{1}{n} L_m^p(\pi_1 X_n)$. As for the latter it maybe useful to recall Milnor's definition of \lim_{\leftarrow} 1 of an inverse system of abelian groups $A_1 \stackrel{\#}{\leftarrow} A_2 \stackrel{\#}{\leftarrow} A_3 \stackrel{\#}{\leftarrow} \dots$ this is the Coker of $\prod_{n>1}^{n} \prod_{n>1}^{n} A_n$, where $(1-S)(a_1,a_2,a_3,...) =$ = $(a_1 - a_2^{\#}, a_2 - a_3^{\#}, ...)$. Observe that a subsequence of $\{A_n\}$ gives the same result : e.g. $\lim_{n \to \infty} A_{2n+1} \simeq \lim_{n \to \infty} A_n$ by mapping $(a_1, a_2, a_3, ...)$ to $(a_1 + a_2, a_3 + a_4, ...)$ in the range of 1-S.

Homology and cohomology inverse systems

Having implicitely choosen one base point for each connected component of X_n , we join the base points of X_{n+1} to those of X_n by paths in X_n (in this usy, a tree grows in each connected component of X_1). The latter determine maps $X_{n+1}^j \to X_n^i$ and so pseudo-linear homomorphisms $C(X_{n+1}^j) \to C(X_n^i)$.

This gives rise to an inverse system $\{C(X_n)\}$. Note that $\bigoplus_{j=1}^{n} Z_{\pi_j} X_{n+1}^j \otimes C(X_{n+1}^j)$ (one summand for each j such that $X_{n+1}^j C(X_n^j)$

is isomorphic to the subcomplex of $C(X_n^i)$ determined by $X_n^i \mid X_{n+1}$. Two choices of base points and paths give two inverse systems related by a diagram of subsequences

which commutes up to the action of $\pi_1 X_n^i$ on itself by inner automorphisms. Such a diagram is called a <u>conjugate equivalence</u>. Similarly, the families of cochain complexes $C_c^*(X_n, \overset{\bullet}{X}_n) \stackrel{def}{=} .$ = $\lim_{r \to \infty} C^*(X_n, \overset{\bullet}{X}_n) \stackrel{\vee}{=} .$ form an inverse system by excision and is also well defined up to conjugate equivalence. Now, any element $[X] \in \varinjlim_{r \to \infty} H_m(X, X_r; Z)$ (homology with coefficients extended by w:

i.e. by definition a <u>morphism</u> of inverse systems. The latter is called an equivalence if there is an "inverse" morphism $\{C(X_n)\} \rightarrow \{C_c^*(X_n,X_n)\}$, i.e. a commutative diagram of subsequences

where Ψ is pseudo-linear, and $r_1 < s_1 < r_2 < s_2 < \dots$

Observe that in this case, we can assume $r_n = s_{n-1} = n$ without loss of generality. When n[x] is an equivalence, we say that [X] is a m-fundamental class at m, and that X is properly Poincaré at m. This turns out to be an invariant of the proper homotopy type of X. Now, a proper map $f \colon M \to X$ of properly Poincaré complexes is said of degree 1 if f^* [M] = [X]. By confusing X with the mapping cylinder of f, and denoting the k+1-homology of $C(X_n, M_n)$, resp. $C_c^*(X_n, X_n M_n)$

by $K_K(M_n)$, resp. $K_c^k(M_n, M_n)$, where $M_n = X_n \cap M$, $M_n = X_n \cap M$ we get again inverse systems $\{K_k(M_n)\}$ and $\{K_c^k(M_n, M_n)\}$ well defined up to conjugate equivalence. If $M_n = \partial M_n$, then the composition :

Poincaré $\Psi: \mathsf{K}_{\mathsf{m-k}}(\mathsf{M}_{\mathsf{n}}) \overset{\mathfrak{d}}{\to} \mathsf{H}_{\mathsf{m-k}}(\mathsf{M}_{\mathsf{n}}) \overset{\mathfrak{d}}{\to} \mathsf{H}_{\mathsf{c}}(\mathsf{M}_{\mathsf{n}}, \mathfrak{d} \mathsf{M}_{\mathsf{n}}) \to \mathsf{K}_{\mathsf{c}}(\mathsf{M}_{\mathsf{n}}, \mathsf{M}_{\mathsf{n}}) \text{ turns out}$ to be a canonical equivalence of inverse systems with an inverse shifting n by 4 (and so shifting n by 1 on a subsequence). Of course in the above, $\mathsf{H}_{\mathsf{s}}(\mathsf{M}_{\mathsf{n}})$ and $\mathsf{H}_{\mathsf{c}}^{\mathsf{c}}(\mathsf{M}_{\mathsf{n}}, \mathfrak{d} \mathsf{M}_{\mathsf{n}})$ are with $\pi_1 \mathsf{X}_{\mathsf{n}}$ -coefficients.

3. Homology and cohomology direct systems

For r<n<s, let $C^*(X_n, X_s)_r$ be the family $\bigoplus_{j=1}^{n} \operatorname{Hom}_{Z_{\pi_1} X_r^j}$ $\left(Z_{\pi_1} X_r^i \otimes_{Z_{\pi_1} X_n^j} C(X_n^j, X_s), Z_{\pi_1} X_r^i \right)$ and let $C^*_c(X_n)_r$ be the family

 $\begin{array}{l} \lim\limits_{\stackrel{\longrightarrow}{c}} \mathbb{C}^*(X_n,X_s)_{\mathbf{r}} \text{ . For } \mathbf{r} \text{ fixed, the restriction maps} \\ \mathbb{C}^*_{\mathbf{c}}(X_n)_{\mathbf{r}} \rightarrow \mathbb{C}^*_{\mathbf{c}}(X_{n+1})_{\mathbf{r}} \text{ determine a } \underline{\text{direct system}} \quad \{\mathbb{C}^*_{\mathbf{c}}(X_n)_{\mathbf{r}}\} \end{array} .$

Similarly, if $C(X_n, X_n)_r$ denotes the family $\bigoplus_{j} \left(Z_{\pi_1} X_r^j \otimes_{Z_{\pi_1} X_n^j} C(X_n^j, X_n^j) \right)$

resp $C_c^*(X_n, M_n)_r$, we find again an equivalence $\psi: \{K_{m-k}(M_n, M_n)_r\} \to \{K_n^k(M_n)_r\}$.

Of course, these direct systems are well defined only up to conjugate equivalence, the latter notion being the same as for inverse systems.

4. End homology and cohomology

The dual of $C_c^*(X_n, X_n)$ is canonically isomorphic to $C'(X_n, X_n)^{n-1}$ = $\lim_{x \to \infty} C(X_n, X_n \cup X_s)$, which is nothing but the chain complex of locally finite chain on X_n mod X_n , with $Z\pi_1X_n$ -coefficients. The quotient complex $C'(X_n, X_n)/C(X_n, X_n)$ yields the end homology $H^*_{\bullet}(X_n)$ by definition. As usually, the cochain complex $\lim_{x \to \infty} C^*(X_s)_n$ yields the end cohomology $H^*_{\bullet}(X_n)$ by definition. Now, one can prove [see 3] that, if [X] is a m-fundamental class at ∞ coming from $C_m'(X;Z)$, then $\Lambda[X]$ gives rise to an isomorphism $H^k_{\bullet}(X_n) \cong H^{\bullet}_{m-k}(X_n)$. All this applies to a proper map $f: M \to X$ of degree 1, to yield an isomorphism $K^k_{\bullet}(M_n) \cong K^{\bullet}_{m-k}(M_n)$. Our end homology can be viewed as an ϵ -construction (see $[\delta]$ or [Z]) with π_1X_n -coefficients as follows: consider the diagram of families of pointed subcomplexes

$$(X_{n}, x_{n})$$
 (X_{n}, x_{n+1}) (X_{n}, x_{n+2}) ...

 (X_{n+1}, x_{n+1}) (X_{n+1}, x_{n+2}) ...

 (X_{n+2}, x_{n+2}) ...

Then let $\mu C(X_s)_n$ be the quotient complex $\prod_{r>s} C(X_s, x_r)_n / \bigoplus_{r>s} C(X_s, x_r)$ and $\varepsilon C(X_n) = \lim_{s \to n} \mu C(X_s)_n$. An isomorphism $C^e(X_n) \simeq \varepsilon C(X_n)$ arises by decomposing $z \in C'(X_n)$ into $z \oplus z'_{n+1} \in C(X_n, X_{n+1}) \oplus C'(X_{n+1})_n$, then z'_{n+1} into $z_{n+1} \oplus z'_{n+2}$, and so forth.

5. The category of (inverse or direct) systems

If one considers systems of familiæ of modules $\{A_n\}$ over $\{Z\pi_1X_n\}$ as abstract objects and takes their equivalence classes by the relation of (conjugate) equivalence, and if one does the same thing for the morphisms $\{A_n\} \rightarrow \{B_n\}$, then it is routine to verify that one gets an abelian category (see [3], compare [7]). A more specific result is the following.

Proposition (see [3]) let {C(n)} be a system of chain complexes. each of the form $0 \to C_{\ell}(n) \xrightarrow{\partial} \ldots \to C_{\ell}(n) \to C_{\ell}(n) \to 0$ where $\ell > 0$ is fixed independent of n and $C_{\ell}(n)$ is free of countable rank. Suppose that the associated homology systems {H_k(n)} are equivalent to 0 for all k < ℓ . Then there is an equivalence {H_{\ell}(n)} $\to \{P_n\}$, where each P_n is a projective countably generated module and each homomorphism $H_{\ell}(n) \to P_n$ is injective. Moreover, in the system {P_n}, one can assume that the image of $P_{n+1} \to P_n$ a direct summand, in particular also projective. These two results essentially allow us to elaborate an algebraic

Whitehead torsion for proper homotopy equivalence (compare [8]).

6. Proper surgery

It is well known that any surgery rel, boundary on a compact m-submanifold of M^m extends to M, and similarly for a closed bicollared submanifold Vⁿ⁻¹. By definition, a proper surgery on M is the result of a diverging sequence of disjoint such surgeries. We distinguish the following particular case of carving out R^qC M. Let f: M+X be a proper normal map (relative to ξ proper on X), $\varphi\colon \mathbb{R}^q\to M$ be a proper embedding, $\Psi\colon \mathbb{R}^{q+1}\to X$ a proper map such that $\Psi\mid \mathbb{R}^q=f_{\mathfrak{p}}$ (R $^q=\mathfrak{d}$ R $^{q+1}$). Now the normal bundle of φ is trivial (because \mathbb{R}^q is contractible) and we form \mathbb{W}^{m+1} by gluing MxI and $\mathbb{R}^{q+1}_+\times \mathbb{D}^{m-q}$ along $\mathbb{R}^q\times \mathbb{D}^{m-q} C$ Mxl .

As $(M\times I)_{\mathcal{O}}\mathbb{R}^{q+1}_+$ is a proper deformation retract of W, we can extend f to F: W+X×I by using Ψ . The stable trivialisation of $\tau_{\mathsf{M}} \oplus \mathsf{f}^*\xi$ on M extends to a stable trivialisation of $\tau_{\mathsf{W}} \oplus \mathsf{F}^*\xi$ on W because W retracts by deformation on M × O. Now, W is a cobordism between M and M' \simeq M- $\varphi(\mathbb{R}^q)$. The inclusions M(W)M' \cup D^{mq} are homotopy equivalences

Dne can observe that M also results form M' by first a (m-q)-surgery and then carving out \mathbb{R}^{m-q} . To each cocompact submanifold $M_n \subset M$ corresponds a cocompact submanifold $M'_n \subset M'$ of the following shape : $M'_n = (M_n \cup q\text{-handle}) - \mathbb{R}^q$

Preliminary surgeries

Let M be an open m-manifold, X a proper Poincaré complex at \bullet and f: M+X a proper normal map of degree 1. We assume that X is connected and so we can choose cocompact subcomplexes X_n in X which have only non compact connected components. We can assume that each $\overset{\bullet}{X}_n$ is bicollared, and that f is transversal on each of them $\left(\text{see [1]}\right)$. Then $f^{-1}(\overset{\bullet}{X}_n)$ is a cocompact submanifolds $\overset{\bullet}{M}_n C$ M, such that $\partial \overset{\bullet}{M}_n = f^{-1}(\overset{\bullet}{X}_n)$ and $\overline{\overset{\bullet}{M}_n - \overset{\bullet}{M}_{n+1}} = f^{-1}(\overline{\overset{\bullet}{X}_n - \overset{\bullet}{X}_{n+1}})$. Clearly, if m=2q, resp. 2q+1, $q \geqslant 3$, we can assume that each map

 $M - M_{n+1}$ $f \times_{n-X_{n+1}}$ is q-connected, while $\partial M_n \xrightarrow{f \times_{n}}$ is q-l,resp. q-connected. In particular, f is bijective on ends spaces.

When m= 2q+1, we can improve still the connectivity of f as follows. Each module of the family $K_q(M_n,M_{n+1}) \stackrel{\text{def}}{=} H_{q+1}(X_n,M_n \cup X_{n+1})$ is finitely generated, and each generator can be represented by an embedded q-sphere S^q in $M_n - M_{n+1}$, provided with a nulhomotopy D^{q+1} in $\overline{X_n - X_{n+1}}$. We pipe S^q to ∞ , getting \mathbb{R}^q proper M_n and extend D^q into $\mathbb{R}^q + 1$ proper

Then the process of carving out \mathbb{R}^q (\mathbb{R}^q (\mathbb{R}^q) allows to kill each $\mathbb{K}_q(\mathbb{M}_n,\mathbb{M}_{n+1})$. An immediate consequence is $\mathbb{K}_q^q(\mathbb{M}_n)=0$, hence the direct system $\{\mathbb{K}_{q+1}(\mathbb{M}_n,\partial\mathbb{M}_n)_r\}$ is equivalent to 0 by duality. A more involved argument (see [3]) shows that $\mathbb{K}_q'(\mathbb{M}_n)^{\mathop{def}}\mathbb{H}_{q+1}'(\mathbb{X}_n,\mathbb{M}_n)$ also vanishes hence the inverse system $\{\mathbb{K}^{q+1}(\mathbb{M}_n,\partial\mathbb{M}_n)\}$ is equivalent to 0 by duality. Moreover, the inverse system $\{\mathbb{K}_q(\mathbb{M}_n)\}$ and the direct system $\{\mathbb{K}_q(\mathbb{M}_n,\partial\mathbb{M}_n)_r\}$ are both equivalent to systems of projective countably generated modules (ibid).

8. The case m=2q+1, M open

Assuming the prelimininary surgery already done the starting situation is described by a commutative square

where Ψ , resp. $\overline{\Psi}$, are equivalences of inverse, resp. direct, systems (r being fixed, n variable > r), with inverse equivalences shifting n by +1.

The fundamental duality property of this square is the following $\underline{\star}$ commutative diagrams of exact sequences

$$0 \to K^{q}(M_{n}, \partial M_{n})_{r} \to K_{e}^{q}(M_{n})_{r} \to K_{c}^{q+1}(M_{n}, \partial M_{n})_{r}$$

$$+ \overline{\psi}^{*} \qquad + \psi^{e} \qquad + \psi$$

$$K_{q+1}^{'}(M_{n})_{r} \to K_{q+1}^{e}(M_{n})_{r} \to K_{q}^{(M_{n})_{r}} \to 0$$

$$0 \to K^{q}(M_{n})_{r} \to K_{e}^{q}(M_{n})_{r} \to K_{c}^{q+1}(M_{n})_{r}$$

$$+ \psi^{*} \qquad + \psi^{e} \qquad + \overline{\psi}$$

 $K_{a+1}(M_n,\partial M_n)_{\mathbf{r}} \rightarrow K_{a+1}^{\mathbf{e}}(M_n)_{\mathbf{r}} \rightarrow K_a(M_n,\partial M_n)_{\mathbf{r}} \rightarrow 0$

where Ψ^* is the composition $K_{q+1}^{\prime}(M_n,\partial M_n)_{\mathbf{r}}^{\prime}$ dual $K_{\mathbf{c}}^{q+1}$ $(M_n,\partial M_n)_{\mathbf{r}}^{\prime}$ dual $K_{\mathbf{c}}^{\prime}(M_n)_{\mathbf{r}}^{\prime}$ and similarly for Ψ^* , and $\Psi^e = \lim_{\substack{n \\ n}} \Psi^*$ is actually an isomorphism (see [3]). One sees

that both Ψ and $\overline{\Psi}$ are induced by $\Psi^{\textbf{e}}$. Our aim is to improve the initial arbitrary choice of X_n , $\overset{\textbf{e}}{X}_n$ in the mapping cylinder X of $M \xrightarrow{f} X$ so as to get Ψ bijective. One cannot do this for X itself but one can replace X by any complex simply homotopy equivalent to X rel. M. The first step is the following.

Lemma : Ker Ψ and Ker Ψ are finitely generated. Proof (sketched):

using the results of §5, one finds an equivalence $\{K_c^{q+1}(M_n,\partial M_n)_r\} \xrightarrow{i n j} \{P_n\}, \text{ Where each } P_n \text{ is projective, the image }$ of $P_{n+2} \to P_n$ being a direct summand P_n' . By composition with Ψ we get an equivalence $\alpha: \{K_q(M_n)\} \to \{P_{n-1}\}$ such that $\ker \alpha = \ker \Psi$ and $\operatorname{im} \alpha = P_n'$, which is projective. Hence $\ker \alpha$ is a direct summand. But $\ker \Psi$ is contained in the kernel of $K_q(M_{n+1})_r \to K_q(M_n)_r, \text{ which is finitely generated, hence so is }$ ker Ψ , as direct summand. The same argument applies to $\overline{\Psi}$. This shows actually that, for a subsequence, the kernel of $K_q(M_n)_{n-1} \to K_q^{q+1}(M_n,\partial M_n)_{n-1} \text{ is finitely generated, and similarly }$

The first improvement is to replace X_n by $X_{n+1} \cup M_n$ and X_n by $X_{n+1} \cup M_n$ where $M_n = M_n - M_n + 1$

Then, in the square

ker $_{\Psi}$ and ker $_{\Psi}$ are finitely generated. The second improvement is to enlarge X inside $\stackrel{-}{X_{n}-X_{n+1}}$ with $\stackrel{M}{\underset{n-M_{n+2}}{\longrightarrow}} \cup e^{q+1}$, to kill ker $_{\Psi}$:

By taking the quotient map, we find $K_q(M_n,M_n) \to K_c^{q+1}(M_n)$ injective, and by the fundamental duality property we can restablish ψ and the initial square (see [3]). Assuming ψ injective, we can enlarge both X_n and X_n inside $X_{n-1} - X_n$ with $M_{n-1} - M_{n+2} \to q^{+2}$ to kill ker ψ . By taking the quotient map, we find $K_q(M_n) \overset{\psi}{\to} K_c^{q+1}(M_n,M_n)$ injective, and we restablish ψ and the square by the fundamental duality property again. By using the proof of the above lemma, both $K_q(M_n)$ and $K_q(M_n,M_n)$ are seen to be projective (ibid). Then one can still kill the kernel of the map $K_q(M_n)^{\#} \to K_q(M_n)$ where # means with $\#_1X_n$ -coefficients, and this will make # bijective (ibid). Then the fundamental duality property implies that # is injective. Now, the commutative diagram of exact sequence

$$0 \to K^{q}(M_{n})^{\#} \to K^{q+1}_{q}(M_{n}, M_{n}) \to K^{q+1}_{q}(M_{n})$$

$$0 \to K_{q}(M_{n})^{\#} \to K_{q}(M_{n}) \to K_{q}(M_{n}, M_{n}) \to 0$$

shows that ψ induces an isomorphism $K_q(\stackrel{\bullet}{n})^{\#} \simeq K^q(\stackrel{\bullet}{n})^{\#}$, i.e. a non degenerated quadratic projective finitely generated $Z\pi_1X_n$ module $< K_q(\stackrel{\bullet}{n}) >$

 $\frac{Proposition}{Proposition}: \quad \text{the quadratic form on < K}_q(M_n) > \text{so obtained satisfies the following properties:}$

- i) it is induced by the (degenerated) intersection form on $K_q(\partial^M r)^\# \quad \text{for some $r > n$, hence determine an element of}$ $L^p_{2\alpha} \ (\pi_1 X_n) \ .$
- ii) it is defined stably, and the operation of carving out a trivial proper embedded $\mathbb{R} \overset{q}{\subset} M$ (bounding $\mathbb{R} \overset{q+1}{\leftarrow} C$ M) adds a trivial free hyperbolic module
- iii) there is a canonical equivalence between the quadratic $Z\pi_1X_n\text{-modules} < K_q(\stackrel{\bullet}{\mathsf{M}}_n)> \text{ and the } Z\pi_1X_n\text{-extension of } \\ < K_q(\stackrel{\bullet}{\mathsf{M}}_{n+1})> \cdot \text{In other words the sequence} < K_q(\stackrel{\bullet}{\mathsf{M}}_n)> \text{ is } \\ \text{an element of } \lim_{\stackrel{\bullet}{\mathsf{M}}} L^p_{2q} \text{ } (\pi_1X_n)$
 - iv) the latter is well defined by the normal map f: M \rightarrow X, and is a cobordism invariant. For the proof of this proposition, we refer to [3] . As a result, we get a homomorphism σ : $L_{m}(eX) \rightarrow \lim_{m \to \infty} L_{m-1}^{p} (\pi_{1}X_{n}) \text{ for m odd.Here, } L_{m}(eX) \text{ is the group of proper "surgery data over X at <math>\infty$ ", (same definition as in [8], but use only proper h.e. at ∞ in defining 0) and satisfies actually an exact sequence

 $L_m^p(\pi_1X) \stackrel{\tau}{\to} L_m(X) \to L_m(eX) \to 0$, where $L_m(X)$ is the proper surgery group (see [8] for its construction).

Proposition: ker σ is isomorphic to $\lim_{t \to 2q+1} {\pi_1 \times_n}$.

The idea of the proof is to construct a map $\lim_{t \to 2q+1} {\pi_1 \times_n}$.

The orem (partial exact sequence): for modd, one has an exact sequence $\lim_{t \to 2q+1} {\pi_1 \times_n} + \lim_{t \to 2q+1} {\pi_2 \times_n} + \lim_{t \to 2q+1} {\pi_1 \times_n} + \lim_{t \to 2q+1} {\pi_2 \times_n} + \lim_{t \to 2q+1}$

for a_n $\in L_m(\pi_1X_n)$, # denoting the homomorphisms $L_m(\pi_1X) \leftarrow L_m(\pi_1X_1) \leftarrow L_m(\pi_1X_2) \leftarrow \dots$

Proof: observe that ker (1-S) is the subgroup of $\lim_{n \to \infty} L_{m-1}^p(\pi_1 X_n)$ vanishing in $L_{m-1}^p(\pi_1 X)$. The range of σ is in ker (1-S) by the proof of iii in prop.above, replacing $\langle K_q(M_n) \rangle$ by ϕ and $\langle K_q(M_{n+1}) \rangle$ by the $\pi_1 X$ -extension of $\langle K_q(M_n) \rangle$. The exactness Ima=ker (1-S) is seen by constructing a cobordism between $N \to N$ and a proper h.e. $N' \to N$, where N is an open 2q-manifold provided with a 1-equivalence $N \to X$. The various map τ are also constructed by cobordiam on a 2q-manifold, and τ_0 (1-S) vanishes. Hence we get induced maps τ satisfying the commutative diagram of exact sequences

By the latter proposition, the right $\overline{\tau}$ is injective, hence so is the middle one. This proves the exactness Ker τ = Im (1-S). We also know that $\sigma_0 \tau$ =0. The exactness Ker σ = Im τ is a result of the above diagram

9. The case m=2q+2, M open

Assuming the preliminary surgery already done, we are left (as in) the case m odd) with only one inverse system $\{K_{q+1}(M)_n\}_r$ and one direct system $\{K_{q+1}(M_n,\partial M_n)_r\}$ not equivalent to 0. Following Wall's idea for the compact case, we want to consider the surgery data $M \stackrel{f}{\to} X$ as the union of two surgery cobordisms $M^0 \cup V \to X^0 \cup H$ along their common boundary $U \to \partial H$.

Lemma (see [8 chap.II th.3]): X has the simple homotopy type of a CW-complex $X_{\partial H}^{O} \cup H$, where H is a locally finite m-handlebody of 0 and 1-handles. Actually, H is a regular ngbd of a tree in R m , with 1-handles attached.

Proposition: assuming X of the above form, one can find a codimension 0-submanifold V of M such that, if $M^{\circ} = \overline{M-V}$, $f(M^{\circ}) \in X^{\circ}$ and $f(V) \in H$ up to a proper homotopy of f. Actually, V is a locally finite handlebody of 1, q and q+1-handles, formed by a regular ngbd of the union of immersed spheres $S^{q+1} \rightarrow M$ piped to •. The proof relies on the same geometrical arguments than [6]. We refer to this as a <u>Mayer-Vietoris decomposition</u> of M $\stackrel{f}{ o}$ X. Actually, the ngbd of ● in ∂H, resp ∂V, can be chosen such that their frontier $\partial \hat{H}_{n}$, resp $\partial \hat{V}_{n}$, is S^{2q} , resp $S^{q} \times S^{q}$, and $f(\partial V_n) \in \partial H_n$. This implies that $K_n(\partial V_n)$ is a free hyperbolic module (with the intersection form). Then we can modify the choices of the ngbd of \bullet : X_n^0 in X^0 , and the choice of X_n^0 , as in the proof of iv in the first prop. of §8 to get $K_{q} \stackrel{\bullet}{(M_{n}^{0})}$ as a projective Lagrangian plane in $K_{\alpha}(\vartheta V_{\alpha})$. This determines an element of $L^p_{2\alpha+1}(\pi_1 X_p)$ and we have results similar to those in §8, with m replaced by m+1.

REFERENCES

1. W.Browder : Surgery on simply connected manifolds. Springer 1971.

2. T.Farrell-J.Wagoner: Algebraic torsion for infinite simple

homotopy types. Infinite matrices in algebraic K-theory and topology

Comm. Math. Helv. 1972

3. S.Maumary : Proper surgery groups, Berkeley mimeo

notes 1972

4. S.P.Novikov : Algebraic construction and properties

of hermitian analogs of K-theory ... kv.Akad. Nauk SSR Ser.Mat.Tom 34 1970

Math, USSR kv vol.4,2, 1970

5. Ranicki : Algebraic L-theories, these Proceedings

6. R.Sharpe : thesis Yale 1970

7. L.Siebenmann : Infinite simple homotopy types

Indag. Math. 32, 5 1970

8. L. Taylor : thesis

Berkeley 1971

9. C.T.C. Wall: Surgery on compact manifolds

Acad. Press 1970