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ON THE PONTRJAGIN CLASSES OF 
HOMOLOGY MANIFOLDS 

C. R. F. MAUXDER 

(Received 2 7 April 1970) 

$1. INTRODUCTION 

IN [3], MILNOR has given a definition of the Pontrjagin classes of orientable @oly- 

hedral) homology manifolds. It is the object of this paper to extend the definition of Pontrja- 

gin classes to orientable homology cobordism bundles, in the sense of [2], in such a way 

that the familiar properties for vector bundles are preserved, and that the Pontrjagin 

classes of a homology manifold coincide with those of its tangent bundle. We give two 

applications, the first to cobordism of homology manifolds, the second being an example of a 

Poincart complex that is not homotopy-equivalent to a homology manifold. 

Since much of the detailed work will involve Whitney sums of homology cobordism 

bundles, these are described first in Section 2. Pontrjagin classes of bundles are the subject 

of Section 3, and the applications follow in Section 4. 

Throughout the rest of this paper, “manifold” will mean “polyhedral homology 

manifold ” (possibly with boundary) unless otherwise stated. 

$2. WHITNEY SUMS OF HOMOLOGY COBORDISM BUNDLES 

Let K be an ordered simplicial complex, taken to be the homology cell complex with the 

individual simplexes as cells, and let E, F be homology cobordism bundles over K with 

fibres D”, D” respectively (see [2] for definitions). 

Definition 2.1. The Whitney sum E @ F is defined as follows. Write E x F for the 

D”+“-bundle over the cell complex K x K, defined by 

(E x F)(c x r) = E(G) x F(s). 

Now by Theorem 4.5 of [2], there exists a bundle G over (K x K)‘, unique up to isomor- 

phism, such that the amalgamation &al(G) is isomorphic to E x F (where (K x K)’ denotes 

the “ simplicial subdivision ” of the cell complex K x K, into its individual simplexes). 

The diagonal map A : K-t (K x K)’ is a simplicial embedding; define E @ F = A*(G), a 

D “+“-bundle over K. 

THEOREM 2.2. The Whitney SLIM is invariant under isomorphism, commutative natural 

and associative. 
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Prooj That @ is invariant under isomorphism is obvious: if E, 2 E, and F, 2 F2, then 

E, x Fl z E, x F, . 

To show that @ is commutative, let t : (K x K)’ -+ (K x K)’ be the simplicial homeo- 

morphism that exchanges the tH’o factors. Now t*G is the bundle defined by t*G(a) = 

G(to), so that dt*G g F x E. Hence F@ E = A*t*G z (At)*G = A*G = E@ F. 

To show that @I is natural, letf, g : L -+ K be continuous maps, which we may as well 

assume to be simplicial (it is easy to see that @ is invariant under amalgamation and hence 

subdivision). Now a representative for f *E, for example, may be constructed by extending 

E, as in the proof of Theorem 3.5 of [2], over the mapping cylinder iMJ off and restricting 

this extension to L: this is because the inclusion of K in M is a homotopy equivalence. Thus 

if we extend E and F over M,-, Mg respectively, we obtain an extension of E x F over 

IV/ x Mg; and if we subdivide over (M/ x M,)‘, we get a bundle whose restriction to 

(L x L)’ is (f x g)*G: hence &(f x g)*G 2 f *E x g*F. It follows in particular that 

f *(E @ F) z (fA)*G 

z A*(f x f)*G 

=f*E@f*F. 

Finally, to show that 0 is associative, observe first that if co denotes the trivial Do- 

bundle over K, we have 

E $ co = A*H, where d(H) z E x E’ 

z’ A*(1 xf)*H, where f: K+ K is the constant map to a point 

z i*H, where i : K-+ K x K is the inclusion as K x point 

z E. 

Hence 

E@(FQG)zA*H@A*M,where&‘(l(M)zzFxG 

E A*(H@ M) 

g A*A* (N), where d(N) zz H x M over (K x K)’ x (K x K)‘. 

But, over K x K x K x K, d’(N) g E x co x F x G. By symmetry, therefore, E @ (F @ G) g 

(EOF)@G. 

As a consequence of Theorem 2.2, the set KH(X) of stable isomorphism classes of disc 

bundles over a polyhedron X defines a contravariant functor from the category of poly- 

hedra and continuous maps to the category of monoids and homomorphisms. It is easy to 

see (using Section 4 of [2]), that KH is a homotopy functor in the sense of [I J, so that there 

exists a classifying space B, such that 

KH(X) g [X, B]. 

It follows from [6], therefore, that K,,(X) is actually an abelian group, and so in particular 

every disc bundle has a stable inverse. 

Sometimes it is convenient to have a rather different definition of the Whitney sum, 

along the lines of Milnor’s “composite” construction (see 143). 
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Definition 2.3. Let K be a homology cell complex, and let E be a D”-bundle over K, 

that contains K as a zero cross-section (see the note after Proposition 3.3 of [2]). Let F be a 

D”-bundle over a triangulation of E: the composite E 0 F is defined by 

(E 0 F)(C) = W(C)), 

where C is a cell of K. 

Observe that, since each E(C) is contractible, we have 

F(E(C)) s E(C) x D”, 

g C x D” x D”, 

so that E 0 F is a D”‘“-bundle over K. 

Let i : K -+ E be the inclusion map of K as the zero cross-section of E; we shall see that 

E 0 F z E @ i*F over K, if K is an (ordered) simplicial complex. In order to prove this, a 

lemma is necessary. 

LEMMA 2.4. With the notation of Definition 2.3, let K’ be the ” simplicial subditiision ” of 

K, and let P be a bundle ouer K’ sttch that d(P) z E, and P contains K’ as a zero cross- 

section. Then there exists a bundle Q orer P, such that &(P 0 Q) z E 0 F. 

Proof. Let G : d(P) g E be the isomorphism, regarded as a bundle with zero cross- 

section over K x I. Now the inclusion of E in G is the same, up to homotopy equivalence, as 

the inclusion of K x 1 in K x I, and so is a homotopy equivalence. Let p : G -+E be a 

simplicial deformation retraction, obtained without subdividing E, and let H be p*F, which 

may be assumed to extend F over E, since it is easy to see that M, \ E x I. 

Finally, set Q = H 1 G(K x 0) (subdivided if necessary) : then G 0 H provides an isomor- 

phism between &‘(P 0 Q) and E 0 F. 

THEOREM 2.5. Let K be an ordered simplicial complex, and let E and F be as in Definition 

2.3; let i : K -+ E be the inclusion map. Then E 0 F g E Q i*F otter K. 

Proof. Over K x E, E x F is the composite (E x E) 0 (E x F) (we regard E and F as 

DO-bundles over themselves). By Lemma 2.4, this is isomorphic to the amalgamation of 

P 0 Q, where P over (K x E)’ satisfies d(P) z E x E, and Q is a bundle over P. Now 

restrict this composite to the image of the diagonal map A : K -+ (K x E)‘: we have 

E@i*F= A*(Po Q) 

E A*P 0 Q 1 (A*P). 

By the proof of Theorem 2.2, we have G : A*P r E. Hence, as in Lemma 2.4, E 0 i*F g 

E 0 R, where R = j*p*( Q 1 A*P), and j : E 4 G, p : G -+ A*P are the inclusion and deforma- 

tion retraction, respectively. 

However, R is the pull-back of E x F over E x E, by a map that covers (up to homo- 

topy) A : K-+ K x E, and so is homotopic to the diagonal map A: E + E x E. Hence 

RgF,sothatEQi*FrEoF. 
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COROLLARY 2.6. Let r : E--t K be a homotopy incerse to i : K + E, and let F be another 

bundle over K. Then E 8 F E E 0 r*F. 

and 

Proof E@Fg E@i*r*Fg Ear*F. 

93. PONTRJAGIN CLASSES 

(Throughout this section, we shall assume unless otherwise stated that all manifolds 

bundles are oriented.) 

We start by defining the total Pontrjagin class of a disc bundle over a manifold. 

Definition 3.1. Let t; be an (oriented) D”-bundle over an (oriented) manifold M (pos- 

sibly with boundary). Then E, the total space of 5, is an oriented (nl + n)-manifold, and we 

can define the total Pontrjagin class of 5, p(t) E H*(M; Q), by 

i*p(E) = P(M) *p(5), 

where p(M), for example, is the total Pontrjagin class of M, and i : M-+ E is the inclusion 

map (since p(M) and p(E) are polynomials with constant term 1, this defines a unique poly- 

nomial p(i)). 

Observe that, by the Milnor compatibility theorem [3], this definition of p(t) coincides 

with the usual one if < is a vector bundle and M is a differentiable manifold. 

We check now that p(t) has the expected properties, and the first is invariance under 

isomorphism. This follows from 

THEOREM 3.2. Let W be an orientation-preserving H-cobordism between n-nranifoids M, 

N, where i : M + W, j : N + W are the inclusion maps. 
Then 

p(M) = i*( j*)- *p(N). 

Proof. Let W, be the “ sub-cobordism ” between dM and dN. Consider the diagram 

(M, aM> 

li 
(W,+w,) -i (S-, *) 

wherefis a P&map and n 2 8i + 2. For almost all I E .SnmJi, f-‘(x) is a cobordism (in 
W - W,,) between ($)-lx and ($)-lx: hence I@) = I(8) in the notation of [3]. It follows 

that there is a commutative diagram 

rt*( rv, TV,) 0 Q 
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which is sufficient to prove that (i*)-‘p(M) = (j*)-‘p(N) (if n < 8i + 2, replace W by 

W x S”, where m is large). 

COROLLARY 3.3. If < z r~ ocer M, rhen p(t) = p(q). 

Proof. The total spaces of < and rl are H-cobordant. 

Since it is clear that p(B) =p(&(<)), the Pontrjagin classes are uniquely defined for 

isomorphism classes of disc (or sphere) bundles over the polyhedron M. 

The next property to check is that, if 4, v are bundles over manifolds M, N respectively, 

then p(< x q) = p(C) x p(q). Once again we first establish a similar property for the Pontrja- 

gin classes of a product of two manifolds. 

THEOREM 3.4. if M and N are manifolds of dimensions m, n respective/y, p(M x N) = 

p(M) x p(N) E H*(M x N; Q). 

Proof: Given PL-maps f: (M, dM) -+ (Sm-4i, *), g : (N, aN) -+ (Sne4j, *) (where 

nz 2 Si + 2, n 2 8j + 2), consider the composite 

(M x N, d(~ x N))-?_!_+ (sm-4’ x Sn--dj, sm-4’ V s”-4i)-.J+ (Sm+n-J(i+j), *), 

where q is the standard identification map onto the reduced product. For almost all 
,YE Sm+n-4(ifj), q-‘(_x) is a point (y, -) in Srn-Oi x sne4i _ Sme4’ v Sne4j, and ~0 

[q(fxg)]_‘x=f-‘yxg-‘2. Hence I(q(f x g)) = Z(f) x I(g), and there is a commutative 

diagram 

~rr*(hf, dM) @J Q @ n*(N, c?N) 0 Q : n*(M x N, 2(M x N)) @ Q 

I@YQ,/ 

where RI is the “cup-product”. It follows that p(M x N) =p(M) x p(N) (if the restriction 

111 2 8i + 2, n 2 8j + 2 is not satisfied, we just take the products of M and N with spheres of 

large dimensions). 

COROLLARY 3.5. /f 5 is a trivial D”-bundle over a manifold M, then p(t) = 1. 

Proof. The total space E of c is H-cobordant to M x D”, SO that 

P(E) = P(M x D”) = p(M) x p(D”) = p(M)* 

COROLLARY 3.6. Gicen bundles Lj, 9 ocer manifolds M, N respectively, p(< x q) = 

~(5) x P(V) E H*(M x N; Q>. 

COROLLARY 3.7. If < is a bundle over a manifold M, p(t) depends only on the stable 

isomorphism class of 5. 

Proof. Let .z’ denote the trivial D’-bundle over M. By Corollary 2.6, the total space of 

< @ 6’ may be taken to be E x I, where E is the total space of 5: hence p(< @ E’) =p(l). 

The proof that the Pontrjagin classes are natural (for induced bundles) is a little more 

complicated, and proceeds via a number of steps. 
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THEOREM 3.8. Let M be a manifold, and N be a submantfold of codimension zero, Inhere 

c?M n dN is a submanifold of dM of codimension zero. Then if i : N -+ M is the inclusion map, 

i*p(M) = p(N). 

Proof. Let P = cl[M - N]. There is a commutative diagram 

/ ’ 
x*(N, aN> 0 Q 

I 
-h-y- 

where i* is an excision isomorphism. By duality, therefore, i*p(lV) = p(N). 

COROLLARY 3.9. if 5 is a bundle oCer M, i*p(Sy) = p(i*Q. 

COROLLARY 3.10. Let 5 be the tangent bundle of M. Then p(r) = p(M). 

Proof. Let T be the total space of T. We have inclusions 

M~T~MxM, 

and by definition i*p(T) = p(M) . p(s). But by Theorem 3.8 we havep(T) =j*p(ill x M) = 

j*Cp(M) x PGWI. S. mce ji is the diagonal map A, it follows that i*p(T) = p(M) * p(M), SO 

that P(T) = p(M). 

COROLLARY 3.11. If M is stably parallelizable, p(M) = 1. 

PROPOXTION 3.12. GiGen bundles 5, f, 8, ij ocer a manifold M, such that 5 0 n g 5 @ ii, 

then 145) . 1411 = ~(0 . p(rj). 

Proof. Consider the diagram 

F----+ EIT-2 E 

T / T I LM-TL (M x MY, I j 
where F is the total space of 5 $9, and d(E) z t x q. Since i is a homotopy equivalence, 

and5O?~~5Oii,wehaveEIT~EIT,whered(E)~’xx:hencef*g*p(E)=f*8*p(E) 

since E [ T is a submanifold of E of codimension zero. It follows that A*p({ x s) = 

A*fG x 9, or ~(5) * p(v) = ~(0 - pW. 

PROPOSITION 3.13. Given a bundle 5 ocer M, with total space E, and a bundle n ocer E, 

we have i*p(n) = p(i*r]), where i : M -+ E is the inclusion map. 

Proof. Let F be the total space of P,-, and consider the commutative diagram 

F(M ---* F 

kT Tj 
M -+ E. 
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-Now j*p(f) = p(E) .p(rl) and X-*p(FI M) = p(M) .p(i*q). But consider the bundles 

\i*q 0 5) x &O, i*q X 5 over ,CI x M, which by Theorem 2.2 become isomorphic after 

applying A*. By Theorem 2.5, the total space of i*q @ < may be taken to be F, and so by 

Proposition 3.12 we have 

i*j*p(F) .p(M) = k*p(F/ M) . i*p(E). 

That is, i*p(E) . i*p(y) . p(M) = p(M) . p(i*q) * i*p(E), whence i*p(q) = p(i*q). 

COROLLARY 3.14. Let 5 be n hutdle ocer a manifold M, and let IV be n proper submanifold 
of IV. Then i*p(t) = p(i*<), it,here i : N -+ M is the inclusion map. 

Proof. Let E be the total space of the normal (disc) bundle, so that we have inclusions 

L 
N : E -+ M, 

where lij = i. Then 

i*p(<) = j*k*p(<) 

=j*p(k*<), by Corollary 3.9, 

= p(j*lc*<), by Proposition 3.13, 

= p(i*<). 

COROLLARY 3.15. Let M, N be mnnifolds, let < be a bundle orer N, and let f. M + N be 

any map. Thenf*p(<) = p(f*<). 

Proof. If M and N are both closed, this follows from Corollary 3.14 on replacingf by 

the embedding of M as the graph offin M x N. If M is closed and IV has a boundary, 

replace N by its double 2N( = N u dN x I u N), and use also Corollary 3.9. If M has a 

boundary and N is closed, let g : M --t I be a continuous map such that 

g(s)( = 0, X E dM 
\>O,x$aM; 

then (f,g) : M -+ N x [0, 21 is a proper map, and its graph is a proper submanifold. 

Finally, if both M and N have boundaries, first replace N by 2N and then proceed as if N 

were closed. 

Now let X be any compact polyhedron, and let 5 be an (oriented) bundle over X. Let 

f: X -+ M be a homotopy equivalence onto a manifold, and Iet TV be a bundie over M such 

that f*q z 5. Define the total Pontrjagin class of 5 by 

P(5) = f*Ptv) : 

by Corollary 3.15 this is unambiguous, and p(c) has all the properties one would expect, 

including naturality for induced bundles and ~(5 @ q) = p(t) . p(q). 

In particular, let ‘/ be the universal W-bundle over BSH(n) (see [2], Section 4). For any 

finite skeleton X of BSH(n), we have already defined p(i*-y) (where i : A’--$ BSH(n) is the 

inclusion map), and since H*(BSH(n); Q) = lim H*(X; Q), this defines 

P(Y) E ff*Wff(n); Q>, 

the uni~~ersal total Pontrjagin class. 
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$4. APPLICATIONS 

The first is to cobordism of homology manifolds. 

THEORESI 4.1. Let M be a closed orientable homology manifold. Then the Pontrjagin 

numberf of M are (oriented) cobordism incariants. 

Proof. Suppose that M is a boundary, say M = d W. By replacing M’ by W u 2 W x 1 if 

necessary, we may assume that M has a neighbourhood M x I in IV. Thus if i : M + W is 

the inclusion map, and r(W) is the tangent bundle of W, the total space of i*s(W) is 

t(M) x I. It follows that i*p(r(W)) =p(s(M)), or i*p( W) = p(M) by Corollary 3.10. As in 

[3], this is sufficient to show that the Pontrjagin numbers of M all vanish. 

COROLLARY 4.2. If QH* denotes oriented cobordism classes of homology manifolds, the 

“ inclusion ” R* -+ QH* is a monomorphism. 

Our other application is an example of a Poincare complex that is not homotopy- 

equivalent to a homology manifold. This needs 

THEOREM 4.3. Let M be an oriented homology 4k-manifold, and f: &f ---) M be an 

oriented n-fold covering. Then Z(a) = nZ(M), Ithere Z(M) is the index (signature) of M. 

Proof. This follows from the fact that f*r(M) = r(@), Corollary 3.10, and the fact 

that the Pontrjagin classes of homology manifolds are defined so that the Hirzebruch index 

theorem holds. 

COROLLARY 4.4. There exists a compact Poincare’ complex X, of dimension 4, such that X 

is not of the homotopy type of a homology manifold. 

Proof. Wall [5] has constructed a 4-dimensional Poincare complex X with Z(X) = 4, 

Z(x) = 0, where 2 is a double cover. If X were of the homotopy type of a homology mani- 

fold, this would contradict Theorem 4.3. 
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