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HODGE-THEORETIC ATIYAH-MEYER FORMULAE

AND THE STRATIFIED MULTIPLICATIVE PROPERTY

LAURENTIU MAXIM AND JÖRG SCHÜRMANN

Dedicated to Lê Dũng Tráng on His 60th Birthday

Abstract. In this note we survey Hodge-theoretic formulae of Atiyah-Meyer
type for genera and characteristic classes of complex algebraic varieties, and
derive some new and interesting applications. We also present various exten-
sions to the singular setting of the Chern-Hirzebruch-Serre signature formula.

1. Introduction

In the mid 1950’s, Chern, Hirzebruch and Serre [CHS] showed that if F →֒ E
π
→

B is a fiber bundle of closed, coherently oriented, topological manifolds such that
the fundamental group of the base B acts trivially on the cohomology of the fiber
F , then the signatures of the spaces involved are related by a simple multiplicative
relation:

(1.1) σ(E) = σ(F ) · σ(B).

A decade later, Kodaira [Ko], Atiyah [At], and respectively Hirzebruch [H69]
observed that without the assumption on the (monodromy) action of π1(B) the
multiplicativity relation fails. In the case when π is a differentiable fiber bundle
of compact oriented manifolds so that both B and F are even-dimensional, Atiyah
obtained a formula for σ(E) involving a contribution from the monodromy action.
Let k = 1

2dimRF . Then the flat bundle V over B with fibers Hk(Fx; R) (x ∈ B)
has a K-theory signature, [V]K ∈ KO(B) for k even (resp. in KU(B) for k odd),
and the Atiyah signature theorem [At] asserts that

(1.2) σ(E) = 〈ch∗
(2)([V]K) ∪ L∗(B), [B]〉,

where ch∗
(2) is a modified Chern character (obtained by precomposing with the sec-

ond Adams operation), and L∗(B) is the total Hirzebruch L-polynomial of B.

Meyer [Me] extended Atiyah’s formula to the case of twisted signatures of closed
manifolds endowed with Poincaré local systems (that is, local systems with duality)
not necessarily arising from a fibre bundle projection. If B is a closed, oriented,
smooth manifold of even dimension, and L is a local system equipped with a nonde-
generate (anti-)symmetric bilinear pairing L⊗L → RB, then the twisted signature
σ(B; L) is defined to be the signature of the nondegenerate form on the sheaf
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2 LAURENTIU MAXIM AND JÖRG SCHÜRMANN

cohomology group Hdim(B)/2(B; L), and can be computed by Meyer’s signature
formula:

(1.3) σ(B; L) = 〈ch∗
(2)([L]K) ∪ L∗(B), [B]〉,

where [L]K is the K-theory signature of L defined as follows. For k even (resp. for
k odd) the nondegenerate pairing induces a splitting of the associated flat bundle
L = L+ ⊕ L− into a positive and negative definite part (resp. induces a complex
structure on the associated flat bundle L with L∗ the complex conjugate bundle).
Then

[L]K :=

{
L+ − L− ∈ KO(B) if k is even,

L∗ − L ∈ KU(B) if k is odd.

Geometric mapping situations that involve singular spaces generally lead to
Poincaré local systems that are only defined on the top stratum of a stratified
space. For example, Cappell and Shaneson [CS91] proved that if f : Y → X is
a stratified map of even relative dimension between oriented, compact, Whitney
stratified spaces with only strata of even codimension, then:

(1.4) σ(Y ) = σ(X ; Lf
X−Σ) +

∑

pure strata Z⊂X

σ(Z̄; Lf
Z),

where Σ ⊂ X is the singular set of f and, for an open stratum Z in X , L
f
Z is a

certain Poincaré local system defined on it. In particular, if all strata Z ⊂ X of f
are simply-connected then, as an extension of the Chern-Hirzebruch-Serre formula
(1.1) to the stratified case, we obtain from (1.4) that

(1.5) σ(Y ) =
∑

strata Z⊂X

σ(Z̄) · σ(NZ),

where for a pure stratum Z of real codimension at least two and with link LZ in
X ,

NZ := f−1(cone LZ) ∪f−1(LZ) cone f−1(LZ)

is the topological completion of the preimage under f of the normal slice to Z in
X ; if Z is a component of the top stratum X \Σ, then NZ is the fiber of f over Z.

More generally, similar formulae hold for the push-forward of the Goresky-
MacPherson L-classes Lk(Y ) ∈ Hk(Y ; Q), k ≥ 0. On a space X with only even-
codimensional strata and singular set Σ, the twisted homology L-classes Lk(X ; L)
and the twisted signature σ(X ; L) for a Poincaré local system L on X − Σ can
be defined by noting that the duality of the local system extends to a self-duality
of the corresponding middle-perversity intersection chain sheaf ICX(L) on X (for
complete details on the construction, the reader is advised to consult the book [Ba]
and the references therein).

It is therefore natural at this point to ask for extensions of Meyer’s signature
formula to the singular setting. In [BCS], Banagl, Cappell and Shaneson proved
the following. Suppose X is a closed oriented Whitney stratified normal Witt space
(that is, a space on which the middle-perversity intersection chain sheaf ICX is self-
dual, cf. [Si]) of even dimension with singular set Σ, and let L be a Poincaré local
system defined on X−Σ such that L is strongly transverse to Σ. On normal spaces,
this technical assumption is equivalent to saying that L has a unique extension as
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a Poincaré local system to all of X . Such a local system possesses a K-theory
signature [L]K in the K-theory of X (cf. [BCS], Corollary 2), and ICX(L) is again
self-dual. Then the twisted L-classes are well-defined, and they can be computed
by the formula (cf. [BCS], Theorems 1 and 3)

(1.6) L∗(X ; L) = ch∗
(2) ([L]K) ∩ L∗(X)

(here L∗ stands for the total homology L-classes respectively); in particular, the
twisted signature is given by

(1.7) σ(X ; L) = 〈ch∗
(2) ([L]K) , L∗(X)〉.

In this note, we survey Hodge theoretic Atiyah-Meyer type formulae for genera
and characteristic classes of complex algebraic varieties. In fact, these are Hodge
theoretic analogues of the above formulae (see [CLMSa, CLMSb]), and various
extensions to the singular setting (see [CMSS]). We also present the main ideas and
constructions that lead to the stratified multiplicative property for Hodge genera
and the Hirzebruch characteristic classes of complex algebraic varieties; for more
details on part of this work, see [CMSa, CMSb]. Some of the results in this note
were announced in the present form in the paper [CLMSb].

The first author is grateful to his mentors and collaborators Sylvain Cappell,
Anatoly Libgober and Julius Shaneson for their contribution to the work summa-
rized in this report, and for constant guidance and support.

2. Hirzebruch characteristic classes.

In this section we first define the Hirzebruch class of a smooth complex projective
algebraic variety, then, following [BSY, SY], we describe its recent generalization
to the singular setting. The construction in the singular case yields characteristic
classes in (Borel-Moore) homology, and makes use of Saito’s theory of algebraic
mixed Hodge modules. In this section, we only survey formal properties of this
deep theory which will be needed in the sequel.

2.1. The non-singular case. If Z is a smooth projective complex algebraic vari-
ety, the signature and the L-classes of Z are special cases of more general Hodge
theoretic invariants encoded by the Hirzebruch characteristic class (also called “the
generalized Todd class”) T ∗

y (TZ) of the tangent bundle of Z (cf. [H66]). This is
defined by the normalized power series

(2.1) Qy(α) =
α(1 + y)

1 − e−α(1+y)
− αy ∈ Q[y][[α]],

that is,

(2.2) T ∗
y (TZ) =

dim(Z)∏

i=1

Qy(αi),

where {αi} are the Chern roots of the tangent bundle TZ . Note that Qy(α) is equal
to 1 + α for y = −1, to α

1−e−α for y = 0, and it equals α
tanh α if y = 1. Therefore,

the Hirzebruch class T ∗
y (TZ) coincides with the total Chern class c∗(TZ) if y = −1,

with the total Todd class td∗(TZ) if y = 0, and with the total Thom-Hirzebruch
L-class L∗(TZ) if y = 1.
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The Hirzebruch class appears in the generalized Hirzebruch-Riemann-Roch the-
orem (cf. [H66], §21.3), which asserts that if Ξ is a holomorphic vector bundle on
a smooth complex projective variety Z, then the χy-characteristic of Ξ, which is
defined by
(2.3)

χy(Z, Ξ) :=
∑

p≥0

χ(Z, Ξ⊗ΛpT ∗
Z) ·yp =

∑

p≥0




∑

i≥0

(−1)idimHi(Z, Ω(Ξ) ⊗ ΛpT ∗
Z)



 ·yp,

with T ∗
Z the holomorphic cotangent bundle of Z and Ω(Ξ) the coherent sheaf of

germs of sections of Ξ, can in fact be expressed in terms of the Chern classes of Ξ
and the tangent bundle of Z, or more precisely,

(2.4) χy(Z, Ξ) = 〈ch∗
(1+y)(Ξ) ∪ T ∗

y (TZ), [Z]〉,

where ch∗
(1+y)(Ξ) =

∑rk(Ξ)
j=1 eβj(1+y), for {βj}j the Chern roots of Ξ. In particular,

if Ξ = OZ , the Hirzebruch genus χy(Z) := χy(Z, OZ) can be computed by

(2.5) χy(Z) = 〈T ∗
y (TZ), [Z]〉.

2.2. Mixed Hodge modules. Before discussing extensions of the Hirzebruch class
to the singular setting, we need to briefly recall some aspects of Saito’s theory of
algebraic mixed Hodge modules. Generic references for this theory are Saito’s pa-
pers [Sa88, Sa89, Sa90].

To each complex algebraic variety Z, M. Saito associated an abelian category
MHM(Z) of algebraic mixed Hodge modules on Z (cf. [Sa88, Sa90]). If Z is
smooth, an object of this category consists of a bifiltered regular holonomic D-
module (M, W, F ) together with a filtered perverse sheaf (K, W ) that corresponds,
after tensoring with C, to (M, W ) under the Riemann-Hilbert correspondence. In
general, for a singular variety Z one works with suitable local embeddings into
manifolds and corresponding filtered D-modules supported on Z. In addition, these
objects are required to satisfy a long list of complicated properties.

The forgetful functor from MHM(Z) to the category of perverse sheaves ex-
tends to a functor rat : DbMHM(Z) → Db

c(Z) to the derived category of com-
plexes of Q-sheaves with constructible cohomology. The usual truncation τ≤ on
DbMHM(Z) corresponds to the perverse truncation pτ≤ on Db

c(Z). Saito also
constructed a t-structure τ ′

≤ on DbMHM(Z) which is compatible with the usual

t-structure on Db
c(Z) ([Sa90], Remark 4.6(2)). There are functors f∗, f!, f∗, f !,

⊗, ⊠ on DbMHM(Z) which are “lifts” via rat of the similar functors defined on
Db

c(Z). If f is a proper algebraic morphism then f∗ = f!.

It follows from the definition that every M ∈ MHM(Z) has an increasing weight
filtration W so that the functor M → GrW

k M is exact. We say that M ∈ MHM(Z)
is pure of weight k if GrW

i M = 0 for all i 6= k. The weight filtration is extended to
the derived category DbMHM(Z) by requiring that a shift M 7→ M [1] increases the
weights by one. So M ∈ DbMHM(Z) is pure of weight k if Hi(M) is pure of weight
i+k for all i ∈ Z. If f is a map of algebraic varieties, then f! and f∗ preserve weight
≤ k, and f∗ and f ! preserve weight ≥ k. In particular, if M ∈ DbMHM(X) is pure
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and f : X → Y is proper, then f∗M ∈ DbMHM(Y ) is pure of the same weight as M .

We say that M ∈ MHM(Z) is supported on S if and only if rat(M) is supported
on S. There are abelian subcategories MH(Z, k)p ⊂ MHM(Z) of pure polarizable
Hodge modules of weight k. For each k ∈ Z, the abelian category MH(Z, k)p is semi-
simple, in the sense that every polarizable Hodge module on Z can be uniquely writ-
ten as a direct sum of polarizable Hodge modules with strict support in irreducible
closed subvarieties of Z. Let MHS(Z, k)p denote the subcategory of polarizable
Hodge modules of weight k with strict support in S. Then every M ∈ MHS(Z, k)p

is generically a polarizable variation of Hodge structures VU on a Zariski dense
open subset U ⊂ S, with quasi-unipotent monodromy at infinity. Conversely, ev-
ery such polarizable variation of Hodge structures can be extended in an unique
way to a pure Hodge module. Under this correspondence, for M ∈ MHS(Z, k)p we
have that rat(M) = ICS(V), for V the corresponding variation of Hodge structures.

Saito showed that the category of mixed Hodge modules supported on a point,
MHM(pt), coincides with the category mHsp of (graded) polarizable rational mixed
Hodge structures. Here one has to switch the increasing D-module filtration F∗ of
the mixed Hodge module to the decreasing Hodge filtration of the mixed Hodge
structure by F ∗ := F−∗, so that grp

F ≃ grF
−p. In this case, the functor rat associates

to a mixed Hodge structure the underlying rational vector space. There exists a
unique object QH ∈ MHM(pt) such that rat(QH) = Q and QH is of type (0, 0). In
fact, QH = ((C, F ), Q, W ), with grF

i = 0 = grW
i for all i 6= 0. For a complex variety

Z, define QH
Z := a∗

ZQH ∈ DbMHM(Z), with rat(QH
Z ) = QZ , for aZ : Z → pt the

map to a point. If Z is smooth of complex dimension n then QZ [n] is perverse on
Z, and QH

Z [n] ∈ MHM(Z) is a single mixed Hodge module (in degree 0), explicitly
described by QH

Z [n] = ((OZ , F ), QZ [n], W ), where F and W are trivial filtrations
so that grF

i = 0 = grW
i+n for all i 6= 0. So if Z is smooth of dimension n, then

QH
Z [n] is a pure mixed Hodge module of weight n. Next, note that if j : U →֒ Z is

a Zariski-open dense subset in Z, then the intermediate extension j!∗ (cf. [BBD])
preserves the weights. This shows that if Z is a complex algebraic variety of pure
dimension n and j : U →֒ Z is the inclusion of a smooth Zariski-open dense subset
then the intersection cohomology module ICH

Z := j!∗(QH
U [n]) is pure of weight n,

with underlying perverse sheaf rat(ICH
Z ) = ICZ .

If Z is smooth of dimension n, an object M ∈ MHM(Z) is called smooth if and
only if rat(M)[−n] is a local system on Z. Smooth mixed Hodge modules are (up to
a shift) admissible (at infinity) variations of mixed Hodge structures (in the sense of
Steenbrink-Zucker [SZ] and Kashiwara [Ka]). Conversely, an admissible variation
of mixed Hodge structures L (e.g., a geometric variation, or a pure polarizable
variation) on a smooth variety Z of pure dimension n gives rise to a smooth mixed
Hodge module (cf. [Sa90]), i.e., to an element LH [n] ∈ MHM(Z) with rat(LH [n]) =
L[n]. A pure polarizable variation of weight k yields an element of MH(Z, k + n)p.
By the stability by the intermediate extension functor it follows that if Z is an
algebraic variety of pure dimension n and L is an admissible variation of (pure)
Hodge structures (of weight k) on a smooth Zariski-open dense subset U ⊂ Z,
then ICH

Z (L) is an algebraic mixed Hodge module (pure of weight k + n), so that
rat(ICH

Z (L)|U ) = L[n].
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2.3. Grothendieck groups of algebraic mixed Hodge modules. In this sec-
tion, we describe the functorial calculus of Grothendieck groups of algebraic mixed
Hodge modules. Let Z be a complex algebraic variety. By associating to (the class
of) a complex the alternating sum of (the classes of) its cohomology objects, we
obtain the following identification (e.g. compare [[KS], p. 77], [[Sc], Lemma 3.3.1])

(2.6) K0(D
bMHM(Z)) = K0(MHM(Z)).

In particular, if Z is a point, then

(2.7) K0(D
bMHM(pt)) = K0(mHsp),

and the latter is a commutative ring with respect to the tensor product, with unit
[QH

pt]. Let τ≤ be the natural truncation on DbMHM(Z) with associated cohomology

H∗. Then for any complex M• ∈ DbMHM(Z) we have the identification

(2.8) [M•] =
∑

i∈Z

(−1)i[Hi(M•)] ∈ K0(D
bMHM(Z)) ∼= K0(MHM(Z)).

In particular, if for any M ∈ MHM(Z) and k ∈ Z we regard M [−k] as a complex
concentrated in degree k, then

(2.9) [M [−k]] = (−1)k[M ] ∈ K0(MHM(Z)).

All functors f∗, f!, f∗, f !, ⊗, ⊠ induce corresponding functors on K0(MHM(·)).
Moreover, K0(MHM(Z)) becomes a K0(MHM(pt))-module, with the multiplication
induced by the exact exterior product

⊠ : MHM(Z) × MHM(pt) → MHM(Z × {pt}) ≃ MHM(Z).

Also note that

M ⊗ QH
Z ≃ M ⊠ QH

pt ≃ M

for all M ∈ MHM(Z). Therefore, K0(MHM(Z)) is a unitary K0(MHM(pt))-
module. The functors f∗, f!, f∗, f ! commute with exterior products (and f∗

also commutes with the tensor product ⊗), so that the induced maps at the level
of Grothendieck groups K0(MHM(·)) are K0(MHM(pt))-linear. Moreover, by the
functor

rat : K0(MHM(Z)) → K0(D
b
c(Z)) ≃ K0(Perv(QZ)),

these transformations lift the corresponding ones from the (topological) level of
Grothendieck groups of constructible (or perverse) sheaves.

2.4. Hirzebruch classes in the singular setting. For any complex variety Z,
and for any p ∈ Z, Saito constructed a functor of triangulated categories

(2.10) grF
p DR : DbMHM(Z) → Db

coh(Z)

commuting with proper push-down, with grF
p DR(M) = 0 for almost all p and M

fixed, where Db
coh(Z) is the bounded derived category of sheaves of OZ -modules with

coherent cohomology sheaves. If QH
Z ∈ DbMHM(Z) denotes the constant Hodge

module on Z, and if Z is smooth and pure dimensional, then grF
−pDR(QH

Z ) ≃

Ωp
Z [−p]. The transformations grF

p DR induce functors on the level of Grothendieck

groups. Therefore, if G0(Z) ≃ K0(D
b
coh(Z)) denotes the Grothendieck group of

coherent sheaves on Z, we get a group homomorphism (the motivic Chern class
transformation)

(2.11) MHC∗ : K0(MHM(Z)) → G0(Z) ⊗ Z[y, y−1] ;
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[M ] 7→
∑

i,p

(−1)i[Hi(grF
−pDR(M))] · (−y)p .

We let td(1+y) be the natural transformation (cf. [Y, BSY])

(2.12) td(1+y) : G0(Z) ⊗ Z[y, y−1] → HBM
2∗ (Z) ⊗ Q[y, y−1, (1 + y)−1] ;

[F] 7→
∑

k≥0

tdk([F]) · (1 + y)−k ,

where HBM
∗ stands for Borel-Moore homology, and tdk is the degree k component

(i.e., in HBM
2k (Z)) of the Todd class transformation td∗ : G0(Z) → HBM

2∗ (Z)⊗Q of
Baum-Fulton-MacPherson [BFM], which is linearly extended over Z[y, y−1].

Definition 2.1. The motivic Hirzebruch class transformation MHTy is defined by
the composition (cf. [BSY])
(2.13)

MHTy := td(1+y) ◦ MHC∗ : K0(MHM(Z)) → HBM
2∗ (Z) ⊗ Q[y, y−1, (1 + y)−1] .

The motivic Hirzebruch class Ty∗(Z) of a complex algebraic variety Z is defined by

(2.14) Ty∗(Z) := MHTy([Q
H
Z ]).

Similarly, if Z is an n-dimensional complex algebraic manifold, and L is a local
system on Z underlying an admissible variation of mixed Hodge structures, we
define twisted Hirzebruch characteristic classes by

(2.15) Ty∗(Z; L) = MHTy([L
H ]),

where L
H [n] is the smooth mixed Hodge module on Z with underlying perverse

sheaf L[n].

Example 2.2. Let V = ((VC, F ), VQ, K) ∈ MHM(pt) = mHsp. Then:
(2.16)

MHTy([V]) =
∑

p

td0([grp
F VC]) · (−y)p =

∑

p

dimC(grp
F VC) · (−y)p = χy([V]),

so over a point the transformation MHTy coincides with the χy-genus ring homo-
morphism χy : K0(mHsp) → Z[y, y−1].

By definition, the transformations MHC∗ and MHTy commute with proper
push-forward. The following normalization property holds (cf. [BSY]): If Z is
smooth and pure dimensional, then

Ty∗(Z) = T ∗
y (TZ) ∩ [Z] ,

where T ∗
y (TZ) is the cohomology Hirzebruch class of Z defined in §2.1. So, if Z is

smooth and projective, then T ∗
1 (TZ) is the total Hirzebruch L-polynomial of Z and

χ1(Z) = σ(Z).
For a complete (possibly singular) variety Z with k : Z → pt the constant map

to a point, the pushdown k∗Ty∗(Z) is the Hodge genus

(2.17) χy(Z) := χy([H∗(Z; Q)]) =
∑

i,p

(−1)idimC(grp
F Hi(Z; C)) · (−y)p,
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with χ−1(Z) := χ([H∗(Z; Q)]) the topological Euler characteristic of Z. For Z
smooth k∗Ty∗(Z; L) is the twisted χy-genus χy(Z; L) defined in a similar manner

([CLMSa]) 1.
It was shown in [BSY] that for any variety Z the limits Ty∗(Z) for y = −1, 0

exist, with

T−1∗(Z) = c∗(Z) ⊗ Q

the total (rational) Chern class of MacPherson (for a construction of the latter
see [M]). Moreover, for a variety Z with at most Du Bois singularities (e.g., toric
varieties), we have that

T0∗(Z) = td∗(Z) := td∗([OZ ]) ,

for td∗ the Baum-Fulton-MacPherson transformation [BFM]. It is still a conjecture
that for a rational homology manifold T1∗(Z) coincides with the total Goresky-
MacPherson homology L-class of Z (see [BSY], p.4 and Remark 5.4). As will be
shown elsewhere, this conjecture is true at least for Z = M/G the quotient of a
complex projective manifold M by the algebraic action of a finite group.

The Hirzebruch class of Section 2.1 also admits another extension to the singular
setting, which is defined by means of intersection homology. Let ICH

Z ∈ MHM(Z)
be the intersection homology (pure) Hodge module on a pure-dimensional variety
Z, so rat(ICH

Z ) = ICZ . Similarly, for an admissible variation of mixed Hodge
structures L defined on a smooth Zariski dense open subset of Z, let ICH

Z (L) be
the corresponding mixed Hodge module with underlying perverse sheaf ICZ(L). In
order to simplify the notations in the following definition, we set

IC′H
Z := ICH

Z [−dimCZ] and IC′H
Z (L) := ICH

Z (L)[−dimCZ].

Definition 2.3. We define intersection characteristic classes by

(2.18) ITy∗(Z) := MHTy(
[
IC′H

Z

]
) ∈ HBM

2∗ (Z) ⊗ Q[y, y−1, (1 + y)−1],

and similarly,

(2.19) ITy∗(Z; L) := MHTy(
[
IC′H

Z (L)
]
),

for L an admissible variation of mixed Hodge structures defined on a smooth Zariski
dense open subset of Z.

As we will see later on, the limit ITy∗(Z; L) for y = −1 always exists (as well as
ITy∗(Z; L) for y = 0, if L is of non-negative weight, e.g. L = QZ). If Z is complete,
then by pushing ITy∗(Z) down to a point we recover the intersection homology χy-
genus, Iχy(Z), which is a polynomial in the Hodge numbers of IH∗(Z; Q) defined
by

Iχy(Z) := χy([IH∗(Z; Q)])

Similarly, in the above notations and if Z is complete, one has that

Iχy(Z; L) = k∗ITy∗(Z; L) ,

for k : Z → pt the constant map. Note that Iχ−1(Z) = χ([IH∗(Z; Q)] for Z
complete is the intersection (co)homology Euler characteristic of Z, whereas for Z

1Note that by Deligne’s theory, if Z is smooth and projective then χy(Z) defined in (2.17)

yields the same invariant as χy(Z; OZ) defined by the equation (2.3).
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projective, Iχ1(Z) is the intersection (co)homology signature of Z due to Goresky-
MacPherson. If Z is a Q-homology manifold, then

QH
Z ≃ IC′H

Z ∈ DbMHM(Z) ,

so we get that Ty∗(Z) = ITy∗(Z). It is conjectured that for a compact variety Z,
IT1∗(Z) is the Goresky-MacPherson homology L-class L∗(Z) ([BSY], Remark 5.4).

3. The stratified multiplicative property.

In this section we give a brief survey of the main ideas and results concerning
the behavior of the singular Hirzebruch classes under proper algebraic morphisms.
The main references are the papers [CMSa, CMSb]. Similar results were origi-
nally predicted by Cappell and Shaneson (cf. [CS94, Sh]), and were referred to
as “the stratified multiplicative property for χy-genera and Hirzebruch character-
istic classes”. The results surveyed in this section are motivated by the attempt of
adapting the Cappell-Shaneson formulae (1.4) and (1.5) for the (topological) sig-
nature and L-classes to the setting of complex algebraic (analytic) geometry.

Let Y be an irreducible complex algebraic variety endowed with a complex al-
gebraic Whitney stratification V so that the intersection cohomology complexes

IC′
W̄ := ICW̄ [−dimC(W )]

are V-constructible for all strata W ∈ V. (All these complexes are regarded as
complexes on all of Y .) Define a partial order on V by “V ≤ W if and only if
V ⊂ W̄”. Denote by S the top-dimensional stratum, so S is Zariski open and
dense, and V ≤ S for all V ∈ V. Let us fix for each W ∈ V a point w ∈ W with
inclusion iw : {w} →֒ Y . Then

(3.1) i∗w[IC′H
W̄ ] = [i∗wIC′H

W̄ ] = [QH
pt] ∈ K0(MHM(w)) = K0(MHM(pt)),

and i∗w[IC′H
V̄

] 6= [0] ∈ K0(MHM(pt)) only if W ≤ V . Moreover, for any j ∈ Z, we
have

(3.2) H
j(i∗wIC′

V̄ ) ≃ IHj(c◦LW,V ),

with c◦LW,V the open cone on the link LW,V of W in V̄ for W ≤ V (cf. [Bo], p.30,
Prop. 4.2). So

i∗w[IC′H
V̄ ] = [IH∗(c◦LW,V )] ∈ K0(MHM(pt)),

with the mixed Hodge structures on the right hand side defined by the isomorphism
(3.2).

The main technical result of this section is the following

Theorem 3.1. ([CMSb], Thm. 3.2) For each stratum V ∈ V \ {S} define induc-
tively

(3.3) ÎCH(V̄ ) := [IC′H
V̄ ] −

∑

W<V

ÎCH(W̄ ) · i∗w[IC′H
V̄ ] ∈ K0(D

bMHM(Y )).

Assume [M ] ∈ K0(D
bMHM(Y )) is an element of the K0(MHM(pt))-submodule

〈[IC′H
V̄

]〉 of K0(D
bMHM(Y )) generated by the elements [IC′H

V̄
], V ∈ V. Then we

have the following equality in K0(D
bMHM(Y )):

(3.4) [M ] = [IC′H
Y ] · i∗s[M ] +

∑

V <S

ÎCH(V̄ ) ·
(
i∗v[M ] − i∗s[M ] · i∗v[IC′H

Y ]
)
.
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Before stating immediate consequences of the above theorem, let us recall from
[CMSb] some cases when the technical hypothesis [M ] ∈ 〈[IC′H

V̄
]〉 is satisfied for a

fixed M ∈ Db(MHM(Y )). Assume that all sheaf complexes IC′
V̄

, V ∈ V, are not
only V-constructible, but satisfy the stronger property that they are “cohomologi-
cally V-constant”, i.e., all cohomology sheaves Hj(IC′

V̄
)|W (j ∈ Z) are constant for

all V, W ∈ V (e.g., this is the case if Y is a toric variety with its natural Whitney
stratification by orbits, cf. [BL]). Moreover, assume that either

(1) rat(M) is also cohomologically V-constant, or
(2) all perverse cohomology sheaves rat(Hj(M)) (j ∈ Z) are cohomologically

V-constant, e.g., each Hj(M) is a pure Hodge module with the property
that H−dim(V )(rat(Hj(M))|V ) is constant for all V ∈ V.

Then [M ] ∈ 〈[IC′H
V̄

]〉. In particular, if all strata V ∈ V are simply-connected,

then we have that [M ] ∈ 〈[IC′H
V̄

]〉 for all M ∈ DbMHM(X) so that rat(M) is
V-constructible.

In the following, we specialize to the relative context of a proper algebraic map
f : X → Y of complex algebraic varieties, with Y irreducible. For a given M ∈
DbMHM(X), assume that Rf∗rat(M) is constructible with respect to the given
complex algebraic Whitney stratification V of Y , with open dense stratum S. By
proper base change, we get

i∗vf∗[M ] = [H∗({f = v}, rat(M))] ∈ K0(MHM(pt)).

So under the assumption f∗[M ] ∈ 〈[IC′H
V̄

]〉, Theorem 3.1 yields the following iden-
tity in K0(MHM(Y )):

Corollary 3.2.

f∗[M ] = [IC′H
Y ] · [H∗(F ; rat(M))]

+
∑

V <S

ÎCH(V̄ ) · ([H∗(FV ; rat(M))] − [H∗(F ; rat(M))] · [IH∗(c◦LV,Y )]) ,

where F is the (generic) fiber over the top-dimensional stratum S, and FV is the
fiber over a stratum V ∈ V \ {S}.

Note that the corresponding classes [H∗(F ; rat(M))] and [H∗(FV ; rat(M))] may
depend on the choice of fibers of f , but the above formula holds for any such choice.
If all strata V ∈ V are simply connected, then these classes are independent of the
choices made. By pushing the identity in Corollary 3.2 down to a point via k′

∗, for
k′ : Y → pt the constant map, and using the fact that k′

∗ is K0(MHM(pt))-linear,
an application of the χy-genus (ring) homomorphism yields the following:

Proposition 3.3. Under the above notations and assumptions, the following iden-
tity holds in Z[y, y−1]:

χy([H∗(X ; rat(M)]) = Iχ(Y ) · χy([H∗(F ; rat(M))])

+
∑

V <S

Îχy(V̄ ) · (χy([H∗(FV ; rat(M))]) − χy([H∗(F ; rat(M))]) · Iχy(c◦LV,Y )) ,

where for V < S, Îχy(V̄ ) is defined inductively by

Îχy(V̄ ) = Iχy(V̄ ) −
∑

W<V

Îχy(W̄ ) · Iχy(c◦LW,V ).
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In particular, if in Proposition 3.3 we take M = QH
X , we obtain the following 2

Theorem 3.4. ([CMSb], Thm. 2.5) Let f : X → Y be a proper algebraic map of
complex algebraic varieties, with Y irreducible. Let V be the set of components of
strata of Y in an algebraic stratification of f , and assume π1(V ) = 0 for all V ∈ V.
For each V ∈ V with dim(V ) < dim(Y ), define inductively

Îχy(V̄ ) = Iχy(V̄ ) −
∑

W<V

Îχy(W̄ ) · Iχy(c◦LW,V ),

where c◦LW,V denotes the open cone on the link of W in V̄ . Then:

(3.5) χy(X) = Iχy(Y ) · χy(F ) +
∑

V <S

Îχy(V̄ ) · (χy(FV ) − χy(F ) · Iχy(c◦LV,Y )) ,

where F is the (generic) fiber over the top-dimensional stratum S, and FV is the
fiber of f above the stratum V ∈ V \ {S}.

Remark 3.5. Formula (3.5) yields calculations of classical topological and algebraic
invariants of the complex algebraic variety X , e.g. Euler characteristic, and if X
is smooth and projective, signature and arithmetic genus, in terms of singularities
of proper algebraic maps defined on X . In particular, if in Theorem 3.4 we take
f = id, then formula (3.5) yields an interesting relationship between the χy- and
respectively the Iχy-genus of an irreducible complex algebraic variety Y :

(3.6) χy(Y ) = Iχy(Y ) +
∑

V <S

Îχy(V̄ ) · (1 − Iχy(c◦LV,Y )) .

Similarly, for X pure dimensional, if we let M = IC′H
X then, in the above nota-

tions and assumptions on the monodromy along the strata, Proposition 3.3 yields
the following formula (cf. [CMSb] for complete details):

(3.7) Iχy(X) = Iχy(Y ) · Iχy(F )

+
∑

V <S

Îχy(V̄ ) ·
(
Iχy(f−1(c◦LV,Y )) − Iχy(F ) · Iχy(c◦LV,Y )

)
.

By applying the transformation MHTy to the identity of Corollary 3.2 for M =
QH

X , and resp. for M = IC′H
X , and by using the fact that MHTy commutes with

the exterior product, we obtain the following result:

Theorem 3.6. ([CMSb], Thm. 4.7) Let f : X → Y be a proper morphism of
complex algebraic varieties, with Y irreducible. Let V be the set of components of
strata of Y in a stratification of f , with S the top-dimensional stratum (which is
Zariski-open and dense in Y ), and assume π1(V ) = 0 for all V ∈ V. For each
V ∈ V \ {S}, define inductively

ÎT y∗(V̄ ) := ITy∗(V̄ ) −
∑

W<V

ÎT y∗(W̄ ) · Iχy(c◦LW,V ),

where c◦LW,V denotes the open cone on the link of W in V̄ , and all homology char-
acteristic classes are regarded in the Borel-Moore homology of the ambient variety

2Here we use the deep result due to Saito [Sa00] that Deligne’s and Saito’s mixed Hodge
structures on cohomology groups coincide.
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Y (with coefficients in Q[y, y−1, (1 + y)−1]). Then:
(3.8)

f∗Ty∗(X) = ITy∗(Y ) · χy(F ) +
∑

V <S

ÎT y∗(V̄ ) · (χy(FV ) − χy(F ) · Iχy(c◦LV,Y )) ,

where F is the generic fiber of f , and FV denotes the fiber over a stratum V ∈
V \ {S}.

If, moreover, X is pure-dimensional, then:

(3.9) f∗ITy∗(X) = ITy∗(Y ) · Iχy(F )

+
∑

V <S

ÎT y∗(V̄ ) ·
(
Iχy(f−1(c◦LV,Y )) − Iχy(F ) · Iχy(c◦LV,Y )

)
.

These formulae can be viewed as, on the one hand, yielding powerful methods
of inductively calculating (even parametrized families of) characteristic classes of
algebraic varieties (e.g., by applying them to resolutions of singularities). On the
other hand, they can be viewed as yielding topological and analytic constraints
on the singularities of any proper algebraic morphism (e.g., even between smooth
varieties), expressed in terms of (even parametrized families of) their characteristic
classes.

Remark 3.7. For the value y = −1 of the parameter, i.e., in the case of (intersection
(co)homology) Euler characteristics and MacPherson-Chern homology characteris-
tic classes, all formulae in this section hold (even in the compact complex analytic
case) without any assumption on the monodromy along the strata. This fact is
a consequence of a formula similar to (3.4), which holds in the abelian group of
V-constructible functions on Y (see [CMSa], Theorem 3.1(2)).

It is interesting to see how the results of this section simplify in the following
situation:

Proposition 3.8. If f : X → Y is a proper algebraic map between irreducible n-
dimensional complex algebraic varieties so that f is homologically small of degree
1 (in the sense of [GM], §6.2), then

(3.10) f∗ITy∗(X) = ITy∗(Y ) and Iχy(X) = Iχy(Y ).

In particular, if f : X → Y is a small resolution, that is a resolution of singularities
that is also small (in the sense of [GM]), then 3:

(3.11) f∗Ty∗(X) = ITy∗(Y ) and χy(X) = Iχy(Y ).

Proof. Indeed, for such a map we have that f∗ICX ∈ Perv(QY ), more precisely
there is a (canonical) isomorphism ([GM], Theorem 6.2):

(3.12) f∗ICX ≃ p
H

0(f∗ICX) ≃ ICY ∈ Db
c(Y ).

Moreover, as rat : MHM(Y ) → Perv(QY ) is a faithful functor, this isomorphism
can be lifted to the level of mixed Hodge modules. Then, since MHTy commutes
with proper push-downs and [IC′H

X ] = (−1)n[ICH
X ] in K0(MHM(X)), we obtain:

f∗ITy∗(X) = f∗MHTy([IC′H
X ]) = (−1)nMHTy(f∗[ICH

X ])

= (−1)nMHTy([ICH
Y ]) = MHTy([IC′H

Y ]) = ITy∗(Y ) .

3Finding numerical invariants of complex varieties, more precisely Chern numbers that are
invariant under small resolutions, was Totaro’s guiding principle in his paper [To].
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The claim about genera follows by noting that the isomorphism (3.12) (when re-
garded at the level of mixed Hodge modules) induces a (canonical) isomorphism of
mixed Hodge structures IH∗(X) ≃ IH∗(Y ).

�

3.1. Lifts of characteristic classes to intersection homology. For a singular
space Y , the usual characteristic class theories are natural transformations taking
values in the (Borel-Moore) homology. If Y is a closed manifold, then by Poincaré
Duality these homology characteristic classes are in the image of the cap product
map

HdimR(Y )−∗(Y )
∩[Y ]
→ H∗(Y ),

so they lift to classes in cohomology. But the Poincaré Duality ceases to hold if the
space Y has singularities. However, if Y is a topological pseudomanifold which for
simplicity we assume to be compact, and for p̄ a fixed perversity, the cap product
map factors through the perversity p̄ intersection homology groups:

HdimR(Y )−∗(Y ) → IH p̄
∗ (Y ) → H∗(Y ).

It is therefore natural to ask what homology characteristic classes of Y admit lifts to
intersection homology. In the case of the topological L∗-classes this is not obvious,
and discussed in [CS91, (6.2)] based on their mapping theorem for these L∗-classes.

But for a complex algebraic variety Z, the MacPherson-Chern class transforma-
tion c∗ and the Baum-Fulton-MacPherson Todd class transformation td∗ factorize
through the (rationalized) Chow group CH∗(Z)Q of Z (cf. [Ke, F]). So the same
applies to the Hirzebruch class transformation MHTy (specialized at any value of
y, compare [BSY, SY]). And by a deep result from [BB, W] (compare also with
the more recent [HS]), the image of the fundamental class map:

cl : CHi(Z)Q → H2i(Z; Q)

can be lifted (in general non-uniquely) to the middle intersection homology, i.e.,

im(cl : CHi(Z)Q → H2i(Z; Q)) ⊂ im(IHm̄
2i (Z; Q) → H2i(Z; Q)) .

As a corollary, we obtain the following result

Theorem 3.9. Let Z be a complete complex algebraic variety. Then for any ratio-
nal value y = a ∈ Q of the parameter y the i-th piece of the Hirzebruch homology
class Ta∗(Z), and for Z pure-dimensional also of the homology class ITa∗(Z), is in
the image of the natural map

IHm̄
2i (Z; Q) → H2i(Z; Q).

Remark 3.10. The conjectured equality IT−1∗(Z) = L∗(Z) would imply that the
L-class L∗(Z) of the pure-dimensional compact complex algebraic variety Z has
a canonical lift to (rationalized) Chow groups CH∗(Z)Q, and therefore also (non-
canonically) to middle intersection homology IHm̄

2∗(Z; Q).

4. The contribution of monodromy. Atiyah-Meyer type formulae.

If we drop the assumption of trivial monodromy along the strata in a stratifica-
tion of a proper algebraic morphism, then the right hand side of the formulae in
the previous section should be written in terms of twisted intersection homology
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genera and respectively twisted Hirzebruch characteristic classes. Indeed, for any
complex algebraic variety Z we have the identification

(4.1) K0(MHM(Z)) = K0(MH(Z)p),

where MH(Z)p denotes the abelian category of pure polarizable Hodge modules.
And by the decomposition by strict support, it follows that K0(MH(Z)p) is gener-
ated by elements of the form [ICH

S (L)], for S an irreducible closed subvariety of Z
and L a polarizable variation of Hodge structures (admissible at infinity) defined
on a smooth Zariski open and dense subset of S. Thus the image of the natural
transformation MHTy is generated by twisted characteristic classes ITy∗(S; L), for
S and L as before. It is therefore natural to look for Atiyah-Meyer type formulae
for the twisted Hirzebruch classes.

The central result of this section is the following Meyer-type formula for twisted
Hirzebruch classes of algebraic manifolds (see [CLMSa] for complete details), whose
proof is included here for the sake of completeness:

Theorem 4.1. ([CLMSa]) Let Z be a complex algebraic manifold of pure dimension
n, and L an admissible variation of mixed Hodge structures on Z with associated
flat bundle with Hodge filtration (V, F•). Then

(4.2) Ty∗(Z; L) =
(
ch∗

(1+y)(χy(V)) ∪ T ∗
y (TZ)

)
∩ [Z] = ch∗

(1+y)(χy(V)) ∩ Ty∗(Z),

where

χy(V) :=
∑

p

[
Grp

F
V
]
· (−y)p ∈ K0(Z)[y, y−1]

is the K-theory χy-characteristic of V (with K0(Z) the Grothendieck group of al-
gebraic vector bundles on Z), and ch∗

(1+y) is the twisted Chern character defined in

Section 2.1.

Proof. Let V := L⊗Q OZ be the flat bundle with holomorphic connection ▽, whose
sheaf of horizontal sections is L⊗C. The bundle V comes equipped with its Hodge
(decreasing) filtration by holomorphic sub-bundles Fp, and these are required to
satisfy the Griffiths’ transversality condition

▽(Fp) ⊂ Ω1
Z ⊗ F

p−1.

The bundle V becomes a holonomic D-module bifiltered by

WkV := WkL ⊗Q OZ ,

FpV := F
−p

V.

This data constitutes the smooth mixed Hodge module LH [n]. It follows from
Saito’s work that there is a filtered quasi-isomorphism between (DR(LH), F−•)
and the usual filtered de Rham complex (Ω•

Z(V), F •) with the filtration induced by
Griffiths’ transversality, that is,

F pΩ•
Z(V) :=

[
F

p ▽
→ Ω1

Z ⊗ F
p−1 ▽

→ · · ·
▽
→ Ωi

Z ⊗ F
p−i ▽

→ · · ·
]
.

Therefore,

MHC∗([L
H ]) =

∑

p,i

(−1)i[Hi(grF
−pDR(LH))] · (−y)p
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=
∑

p,i

(−1)i[Hi(grp
F Ω•

Z(V))] · (−y)p

=
∑

p,i

(−1)i[Ωi
Z ⊗ Grp−i

F
V] · (−y)p

= χy(V) ⊗ λy(T ∗
Z) ∈ G0(Z) ⊗ Z[y, y−1],

where λy(T ∗
Z) :=

∑
p ΛpT ∗

Z · yp the total λ-class of Z. Since Z is an algebraic
manifold, the Todd class transformation of the classical Grothendieck-Riemann-
Roch theorem is explicitly described by 4

td∗(·) = ch∗(·)td∗(Z) ∩ [Z].

Therefore, by applying td∗ (which is linearly extended over Z[y, y−1]) to the above
equation, we have that

(4.3) td∗
(
MHC∗([L

H ])
)

=
(
ch∗(χy(V)) ∪ T̃ ∗

y (TZ)
)
∩ [Z],

where T̃ ∗
y (TZ) := ch∗(λy(T ∗

Z)) ∪ td∗(Z) is the un-normalized Hirzebruch class (in
cohomology). The claimed formula (4.2) follows now from the definition of td(1+y),
by noting that the identities

ch∗
(1+y)(·)2k = (1 + y)k · ch∗(·)2k, and T k

y (TZ) = (1 + y)k−n · T̃ k
y (TZ)

hold in H2k(Z) ⊗ Q[y]. Indeed, we have in HBM
2k (Z) ⊗ Q[y, y−1] the following

sequence of equalities

tdk

(
MHC∗([L

H ])
)

=
(
ch∗(χy(V)) ∪ T̃ ∗

y (TZ)
)2(n−k)

∩ [Z]

=




∑

i+j=n−k

ch∗(χy(V))2i ∪ T̃ j
y (TZ)



 ∩ [Z]

=




∑

i+j=n−k

(1 + y)−ich∗
(1+y)(χy(V))2i ∪ (1 + y)n−jT j

y (TZ)



 ∩ [Z]

= (1 + y)k
(
ch∗

(1+y)(χy(V)) ∪ T ∗
y (TZ)

)2(n−k)

∩ [Z].

�

Corollary 4.2. If the variety Z in Theorem 4.1 is also complete, then by pushing
down to a point, we obtain a Hodge theoretic Meyer-type formula for the twisted
χy-genus:

(4.4) χy(Z; L) = 〈ch∗
(1+y)(χy(V)) ∪ T ∗

y (TZ), [Z]〉.

Remark 4.3. Assume that the local system L underlies a polarizable variation of
pure Hodge structures of weight i on Z. Then the choice of such a polarization
defines after identifying the Tate twists QZ(i) ≃ QZ a suitable duality structure on

4This formula is the counterpart of the Atiyah-Meyer formula in the coherent context of the
Todd-class transformation of Baum-Fulton-MacPherson ([BFM]). More generally, the counterpart
of the Banagl-Cappell-Shaneson formula (1.6) in the coherent context is td∗(G) = ch∗([G])∩td∗(Z),
for a locally free coherent sheaf G on the singular algebraic variety Z.
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L, i.e. makes it a Poincaré local system. Then it is easy to see that the image of
χ1(V) under the natural map

can : K0(Z) → KU(Z) → KU(Z)[1/2] ⊃ KO(Z)[1/2]

agrees with the K-theory signature [L]K of this Poincaré local system. So this class

can(χ1(V)) ∈ KU(Z)[1/2]

does not depend on the choice of the polarization. In the same way one also gets
for Z projective the equality

χ1(Z; L) = σ(Z; L) ,

so that in this case the formula (4.4) exactly specializes for y = 1 to Meyer’s
signature formula (1.3). Recall that T ∗

1 (TZ) = L∗(TZ) for Z smooth.
Similarly, for any variation of mixed Hodge structures one gets by definition that

χ−1(V) = [V] ∈ K0(Z) and ch∗
(0)(χ−1(V)) = rk(V) = rk(L) ∈ H0(Z; Q) .

So the formula (4.4) specializes for y = −1 to the well-known formula for the Euler
characteristic of Z with coefficients in L:

χ(H∗(Z; L)) = rk(L) · χ(H∗(Z; Q)) = rk(L) · 〈c∗(TZ), [Z]〉 .

Remark 4.4. Without the compactness assumption on Z, we can obtain directly
a formula for χy(Z; L) by noting that the twisted logarithmic de Rham complex
Ω•

X(log D) ⊗ V̄ associated to the Deligne extension of L on a good compactifica-
tion (X, D) of Z (with X smooth and compact, and D a simple normal crossing
divisor), with its Hodge filtration induced by Griffiths’ transversality, is part of a
cohomological mixed Hodge complex that calculates H∗(Z; L ⊗ C). In the above
notation, we then obtain (cf. [CLMSa], Theorem 4.10):

(4.5) χy(Z; L) = 〈ch∗(χy(V̄)) ∪ ch∗
(
λy(Ω1

X(logD))
)
∪ td∗(X), [X ]〉.

Here 〈, 〉 denotes the Kronecker pairing on X , td∗(X) := td∗(TX) is the total Todd
class of X (in cohomology),

λy

(
Ω1

X(logD)
)

:=
∑

i

Ωi
X(logD) · yi, and χy(V̄) =

∑

p

[
Grp

F̄
V̄

]
· (−y)p ,

with (V̄, F̄•) the unique extension of (V, F•) to X corresponding to the Deligne
extension of L (cf. [De]).

For future reference, we mention here a different way of proving formula (4.5).
Under the above notations and for j : Z →֒ X the inclusion map, Saito’s work
implies that there is a filtered quasi-isomorphism between (DR(j∗L

H), F−•) and
the usual filtered logarithmic de Rham complex of (V̄, F̄•). Then, as in the proof
of Theorem 4.1, it follows that

(4.6) MHC∗([j∗L
H ]) = χy(V̄) ⊗ λy

(
Ω1

X(log D)
)

(Note that all coherent sheaves appearing in the above formula are locally free).
Therefore, by applying the transformation td∗ (which is linearly extended over
Z[y, y−1]) to the above equation, we have that

(4.7) td∗
(
MHC∗([j∗L

H ])
)

=
(
ch∗(χy(V̄)) ∪ ch∗

(
λy(Ω1

X(log D))
)
∪ td∗(X)

)
∩[X ].

Formula (4.5) can be now obtained by pushing (4.7) down to a point via the constant
map k : X → pt, and by using an argument similar to that of [[CLMSa], Proposition
5.4].
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In the relative setting, as an application of Theorem 4.1 we obtain the following
Atiyah-type result:

Theorem 4.5. ([CLMSa]) Let f : E → B be a projective morphism of complex
algebraic varieties, with B smooth and connected. Assume that the sheaves Rsf∗QE,
s ∈ Z, are locally constant on B, e.g., f is a locally trivial topological fibration. Then

(4.8) f∗Ty∗(E) = ch∗
(1+y) (χy(f)) ∩ Ty∗(B),

where

χy(f) :=
∑

i,p

(−1)i
[
Grp

F
Hi

]
· (−y)p ∈ K0(B)[y]

is the K-theory χy-characteristic of f , for Hi the flat bundle with connection ▽i :
Hi → Hi ⊗OB

Ω1
B, whose sheaf of horizontal sections is Rif∗CE.

If, moreover, B is complete, then by pushing down to a point, we obtain:

(4.9) χy(E) = 〈ch∗
(1+y) (χy(f)) ∪ T ∗

y (TB), [B]〉.

Proof. If in (2.8) we let M• = f∗QH
E , then by using (2.9) we obtain the following

identity in K0(MHM(B)):

(4.10)
[
f∗Q

H
E

]
=

∑

i∈Z

(−1)i[Hi(f∗Q
H
E )] =

∑

i∈Z

(−1)i
[
Hi+dimB(f∗QH

E )[−dimB]
]
.

Note that Hi+dimB(f∗Q
H
E ) ∈ MHM(B) is the smooth mixed Hodge module on B

whose underlying rational complex is (recall that B is smooth)

(4.11) rat(Hi+dimB(f∗Q
H
E )) = p

H
i+dimB(Rf∗QE) = (Rif∗QE)[dimB],

where pH denotes the perverse cohomology functor. In this case, each of the local
systems Li := Rif∗QE underlies a geometric (hence admissible) variation of Hodge
structures. By applying the natural transformation MHTy to the equation (4.10),
and using the fact that f is proper, we have that

f∗Ty∗(E) =
∑

i

(−1)iTy∗(B; Li).

In view of Theorem 4.1 this yields the formula in equation (4.8).
�

Remark 4.6. If the monodromy action of π1(B) on H∗(F ) is trivial (e.g., π1(B) =
0), i.e., if the local systems Rif∗QE (i ∈ Z) are constant on B, then by the “rigid-
ity theorem” (e.g., see the discussion in the last paragraph of [CMSb], §3.1) the
underlying variations of mixed Hodge structures are constant, so that

(4.12) ch∗
(1+y) (χy(f)) = χy(F ) ∈ H0(B; Q[y, y−1]).

In this case, formula (4.9) yields the multiplicative relation

χy(E) = χy(F ) · χy(B) ,

thus extending the Chern-Hirzebruch-Serre theorem (in the context of complex
algebraic varieties).

Theorem 4.1 can also be used for computing invariants arising from intersection
homology (cf. Definition 2.3). In the above notations, we have the following
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Proposition 4.7. ([CLMSb]) Let f : E → B be a proper morphism of complex
algebraic varieties, with E pure-dimensional and B smooth and connected. Assume
that f is a locally trivial topological fibration with fiber F . Then

(4.13) f∗ITy∗(E) =
∑

i

(−1)dimF+i Ty∗(B; Li),

where Li is the admissible variation of mixed Hodge structures on B with stalk
IHdimF+i(F ; Q) and with associated smooth mixed Hodge module Hi(f∗ICH

E ) ∈
MHM(B).

Proof. The following equation in K0(MHM(B)) is a consequence of the identities
(2.8) and (2.9):
(4.14)

[f∗ICH
E ] =

∑

i

(−1)i
[
Hi(f∗ICH

E )
]

= (−1)dim(B)·
∑

i

(−1)i
[
Hi(f∗ICH

E )[−dim(B)]
]
.

Note that Hi(f∗ICH
E ) ∈ MHM(B) is the smooth mixed Hodge module on B whose

underlying rational complex is

(4.15) rat(Hi(f∗ICH
E )) = p

H
i(Rf∗ICE) = (Ri−dimBf∗ICE)[dimB],

where the second equality above follows since B is smooth (hence smooth perverse
sheaves are, up to a shift, just local systems on B). In particular, each of the local
systems Li := Ri−dimBf∗ICE (i ∈ Z) underlies an admissible variation of mixed
Hodge structures.

By applying the natural transformation MHTy to the equation (4.14), and using
the fact that MHTy commutes with f∗ (since f is proper), we obtain the formula
in equation (4.13).

It remains to identify the stalks of the local systems Li (i ∈ Z). Let b ∈ B
with ib : {b} →֒ B the inclusion map. Then {f = b} is the (general) fiber F of
f , so it is locally normally nonsingular embedded in E. It follows that we have a
quasi-isomorphism ICE |F ≃ ICF [codimF ] (e.g., see [GM], §5.4.1). Then by proper
base change we obtain that

(Li)b = (Ri−dimBf∗ICE)b = H
i−dimB(i∗bRf∗ICE)

= IHi−dimB+dimE(F ; Q) = IHi+dimF (F ; Q) .

�

Each term in the right hand side of equation (4.13) can be computed by formula
(4.2). Let Vi be the flat bundle with connection associated to the admissible varia-
tion of mixed Hodge structures Li := Ri−dimBf∗ICE , that is Vi := Li⊗QOB. Recall
that this comes equipped with a filtration by holomorphic sub-bundles satisfying
Griffiths’ transversality. Define the Iχy-characteristic of f by

(4.16) Iχy(f) :=
∑

i

(−1)i+dimF · χy(Vi).

Then as a consequence of (4.2), the above proposition yields the following

Corollary 4.8. Under the notations and assumptions of Propositions 4.7, we ob-
tain

(4.17) f∗ITy∗(E) = ch∗
(1+y)(Iχy(f)) ∩ Ty∗(B).

In particular, if π1(B) = 0, then f∗ITy∗(E) = Iχy(F ) · Ty∗(B).
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The last assertion of the corollary follows since, under the trivial monodromy
assumption, we have that

ch∗
(1+y)(Iχy(f)) = Iχy(F ) ∈ H0(B; Q[y, y−1]) .

Similar considerations apply to genera. This is a very special case of the stratified
multiplicative property studied in detail in [CMSb] and summarized in Section §3
above.

4.1. Atiyah-Meyer formulae in intersection homology. We conclude this re-
port with a result from work in progress ([CMSS]) on the computation of twisted
intersection homology genera. The following theorem can be regarded as a Hodge-
theoretic analogue of the Banagl-Cappell-Shaneson formula ([BCS]):

Theorem 4.9. ([CMSS]) Assume i : Z →֒ M is the closed inclusion of an irre-
ducible (or pure-dimensional) algebraic subvariety into the smooth algebraic man-
ifold M , with L a local system on M underlying an admissible variation of mixed
Hodge structures with associated flat bundle (V, F•). Then one has the formula:
(4.18)

ITy∗(Z; i∗L) = i∗(ch∗
(1+y)(χy(V))) ∩ ITy∗(Z) = ch∗

(1+y)(i
∗(χy(V))) ∩ ITy∗(Z).

Proof. One has for the underlying perverse sheaves the equality:

ICZ(L) = ICZ ⊗ i∗L and, after shifting, IC′
Z(L) = IC′

Z ⊗ i∗L .

And this implies on the level of (shifted) mixed Hodge modules that:

ICH
Z (L) = ICH

Z ⊗ i∗LH and resp. IC′H
Z (L) = IC′H

Z ⊗ i∗LH .

So the stated formula is a special case of the following more general result for any
M ∈ K0(MHM(Z)):

(4.19) MHTy([M ⊗ i∗LH ]) = ch∗
(1+y)(i

∗(χy(V))) ∩ MHTy([M ]) .

By resolution of singularities, we see that the Grothendieck group K0(MHM(Z))
is generated by elements of the form [p∗(j∗L

′H)] with p : X → Z a proper algebraic
map from a smooth algebraic manifold X , j : U = X \ D →֒ X the open inclusion
of the complement of a normal crossing divisor D with smooth irreducible compo-
nents, and L′ an admissible variation of mixed Hodge structures on U . But MHTy

commutes with proper pushdown, and ch∗
(1+y) commutes with pullbacks, so that

by the projection formula it is enough to show that:

(4.20) MHTy([j∗L
′H ⊗ p∗i∗LH ]) = ch∗

(1+y)(p
∗i∗(χy(V))) ∩ MHTy([j∗L

′H ]).

At this point we can use the identity of formula (4.7), already discussed in
Remark 4.4:

(4.21) td∗
(
MHC∗([j∗L

′H ])
)

= ch∗(χy(V̄′)) ∪ ch∗(λy(Ω1
X(log D))) ∩ td∗(X) ,

with td∗(X) = td∗(TX)∩ [X ], and V̄′ the Hodge bundle of the Deligne extension of
L′ to (X, D). Moreover, we also have that:

Rj∗(L
′) ⊗ p∗i∗L = Rj∗(L

′ ⊗ j∗p∗i∗L)

and similarly on the level of (shifted) mixed Hodge modules, so that

ch∗(χy(V̄′ ⊗ j∗p∗i∗V)) = ch∗(χy(V̄′)) ∪ ch∗(χy(p∗i∗V)).

From here the stated formula follows (as in Theorem 4.1) by the usual recalculation
in terms of ch∗

(1+y). �
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Remark 4.10. The formula (4.21) can be also be used for showing the following
important facts (cf. [CMSS]):

(1) The motivic Hirzebruch transformation MHTy commutes with exterior
products.

(2) The limit ITy∗(Z; L) for y = −1 always exists, as well as ITy∗(Z; L) for
y = 0, if L is of non-negative weight, e.g. L = QZ .

(3) More generally the limit MHTy([M ]) for y = −1 always exists for any
mixed Hodge module M on Z, with

MHT−1([M ]) = c∗([rat(M)]) ⊗ Q

the rationalized MacPherson-Chern class of the underlying perverse sheaf,
i.e. of the corresponding constructible function given by the Euler charac-
teristics of the stalks.
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algébriques et homomorphismes associés en homologie d’intersection. Ann. of Math. (2) 141

(1995), no. 1, 147–179.
[BFM] P. Baum, W. Fulton, R. MacPherson, Riemann-Roch for singular varieties, Publ. Math.

I.H.E.S. 45 (1975), 101–145.
[BBD] A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982).
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(Luminy, 1987), Astérisque No. 179–180 (1989), 10, 145–162.
[Sa90] M. Saito, Mixed Hodge Modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333.
[Sa00] M. Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), no. 2,

283–331.
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