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Stable algebraic topology is one of the most theoretically deep and calculation-
ally powerful branches of mathematics. It is very largely a creation of the second
half of the twentieth century. Roughly speaking, a phenomenon in algebraic topol-
ogy is said to be “stable” if it occurs, at least for large dimensions, in a manner
independent of dimension. While there are important precursors of the understand-
ing of stable phenomena, for example in Hopf’s introduction of the Hopf invariant
[Hopf35, FS], Hurewicz’s introduction of homotopy groups [Hur35], and Borsuk’s
introduction of cohomotopy groups [Bor36], the first manifestation of stability in
algebraic topology appeared in Freudenthal’s extraordinarily prescient 1937 paper
[Fr37, Est], in which he proved that the homotopy groups of spheres are stable in
a range of dimensions.

Probably more should be said about precursors, but I will skip ahead and begin
with the foundational work that started during World War II but first reached print
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in 1945. Aside from the gradual development of homology theory, which of course
dates back at least to Poincaré, some of the fundamental precursors are treated
elsewhere in this volume [Ma, BG, Mc, We]. However, another reason for not
attempting such background is that I am not a historian of mathematics, not even
as a hobby. I am a working mathematician who is bemused by the extraordinarily
rapid, and perhaps therefore jagged, development of my branch of the subject. I
am less interested in who did what when than in how that correlated with the
progression of ideas.

My theme is the transition from classical algebraic topology to stable algebraic
topology, with emphasis on the emergence of cobordism, K-theory, generalized ho-
mology and cohomology, the stable homotopy category, and modern calculational
techniques. The history is surprising, not at all as I imagined it. For one example,
we shall see that the introduction of spectra was quite independent of the intro-
duction of generalized cohomology theories. While some key strands developed in
isolation, we shall see that there was a sudden coalescence around 1960: this was
when the subject as we know it today began to take shape, although in far from
its final form: I doubt that we are there yet even now.

Younger readers are urged to remember the difficulty of communication in those
days. Even in 1964, when I wrote my thesis, the only way to make copies was to
type using carbon paper: mimeographing was inconvenient and the xerox machine
had not been invented, let alone fax or e-mail. Moreover, English had not yet
become the lingua franca. Many relevant papers are in French or German (which I
read) and some are in Russian, Spanish, or Japanese (which I do not read); further,
the Iron Curtain hindered communication, and translation from the Russian was
spotty. On the other hand, the number of people working in topology was quite
small: most of them knew each other from conferences, and correspondence was
regular. Moreover, the time between submission and publication of papers was
shorter than it is today, usually no more than a year.

I have profited from a perusal of all of Steenrod’s very helpful compendium
[StMR] of Mathematical Reviews in algebraic and differential topology published
between 1940 and 1967. Relatively few papers before the mid 1950’s concern stable
algebraic topology, whereas an extraordinary stream of fundamental papers was
published in the succeeding decade. That stream has since become a torrent. I
will focus on the period covered in [StMR], especially the years 1950 through 1966,
which is an arbitrary but convenient cut-off date. For the later part of that period,
I have switched focus a little, trying to give a fairly complete indication of the
actual mathematical content of all of the most important relevant papers of the
period. I shall also point out various more recent directions that can be seen in
embryonic form during the period covered, but I shall not give references to the
modern literature except in cases of direct follow up and completion of earlier work.
I plan to try to bring the story up to date in a later paper, but lack of time has
prevented me from attempting that now.

References to mathematical contributions give the year of publication, the only
exception being that books based on lecture notes are dated by the year the lectures
were given. References to historical writings are given without dates.
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1. Setting up the foundations

A great deal of modern mathematics, by no means just algebraic topology, would
quite literally be unthinkable without the language of categories, functors, and
natural transformations introduced by Eilenberg and MacLane in their 1945 paper
[EM45b]. It was perhaps inevitable that some such language would have appeared
eventually. It was certainly not inevitable that such an early systematization would
have proven so remarkably durable and appropriate; it is hard to imagine that this
language will ever be supplanted.

With this language at hand, Eilenberg and Steenrod were able to formulate
their axiomatization of ordinary homology and cohomology theory. The axioms
were announced in 1945 [ES45], but their celebrated book “The foundations of
algebraic topology” did not appear until 1952 [ES52], by which time its essential
ideas were well-known to workers in the field. It should be recalled that Eilenberg
had set the stage with his fundamentally important 1940 paper [Eil40], in which he
defined singular homology and cohomology as we know them today.

I will say a little about the axioms shortly, but another aspect of their work
deserves immediate comment. They clearly and unambiguously separated the alge-
bra from the topology. This was part of the separation of homological algebra from
algebraic topology as distinct subjects. As discussed by Weibel [We], the subject
of homological algebra was set on firm foundations in the comparably fundamental
book “Homological algebra” of Cartan and Eilenberg [CE56].

Two things are conspicuously missing from Eilenberg-Steenrod. We think of
it today as an axiomatization of the homology and cohomology of finite CW com-
plexes, but in fact CW complexes are nowhere mentioned. The definitive treatment
of CW complexes had been published by J.H.C. Whitehead in 1948 [Whi48], but
they were not yet in regular use. Many later authors continued to refer to polyhe-
dra where we would refer to finite CW complexes, and I shall sometimes take the
liberty of describing their results in terms of finite CW complexes.

Even more surprisingly, Eilenberg-Mac Lane spaces are nowhere mentioned. These
spaces had been introduced in 1943 [EM43, EM45a], and the relation

H̃n(X;π) ∼= [X, K(π, n)](1.1)

was certainly known to Eilenberg and Steenrod. It seems that they did not believe
it to be important. Nowadays, the proof of this relation is seen as one the most
immediate and natural applications of the axiomatization.

However, there was something missing for the derivation of this relation. Despite
their elementary nature, the theory of cofiber sequences and the dual theory of fiber
sequences were surprisingly late to be formulated explicitly. They were implicit, at
least, in Barratt’s papers on “track groups” [Ba55], but they were not clearly ar-
ticulated until the papers of Puppe [Pu58] and Nomura [Nom60]. The concomitant
principle of Eckmann-Hilton duality also dates from the late 1950’s [Eck57, EH58]
(see also [Hil65]). The language of fiber and cofiber sequences pervades modern
homotopy theory, and its late development contrasts vividly with the earlier intro-
duction of categorical language. Probably not coincidentally, the key categorical
notion of an adjoint functor was also only introduced in the late 1950’s, by Kan
[Kan58].

Although a little peripheral to the present subject, a third fundamental text
of the early 1950’s, Steenrod’s “The topology of fiber bundles” [St51] nevertheless
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must be mentioned. In the first flowering of stable algebraic topology, with the
introduction of cobordism and K-theory, the solidly established theory of fiber
bundles was absolutely central to the translation of problems in geometric topology
to problems in stable algebraic topology.

2. The Eilenberg-Steenrod axioms

The functoriality, naturality of connecting homomorphism, exactness, and ho-
motopy axioms need no comment now, although their economy and clarity would
not have been predicted from earlier work in the subject. Remember that these are
axioms on the homology or cohomology of pairs of spaces. The crucial and subtle
axiom is excision. A triad (X; A,B) is excisive if X is the union of the interiors
of A and B. In homology, the excision map H∗(B,A ∩ B) −→ H∗(X,A) must be
an isomorphism. One subtlety is that I have stated the axiom in the form that
Eilenberg and Steenrod verify it for singular homology. With a view towards other
theories, they state the axiom under the stronger hypothesis that B is closed in X.

Conveniently for later developments, the dimension axiom was stated last. The
fundamental theorem is that homology and cohomology with a given coefficient
group is unique on triangulable pairs or, more generally, on finite CW pairs.

Several important extensions of the axioms came later. First, one wants an axiom
that characterizes ordinary homology and cohomology on general CW pairs. For
that Milnor [Mil62] added the additivity axiom. It asserts that homology converts
disjoint unions to direct sums and cohomology converts disjoint unions to direct
products. It implies that the homology of a CW complex X is the colimit of the
homologies of its skeleta Xn. In cohomology, it implies lim1 exact sequences

0 −→ lim1Hq−1(Xn) −→ Hq(X) −→ limHq(Xn) −→ 0.(2.1)

This allows the extension of the uniqueness theorem to infinite CW pairs.
One next wants an axiom that distinguishes singular theories from other theo-

ries on general pairs of spaces. I do not know who first formulated it; it appears
in [Swi75] and may be due to Adams. This is the weak equivalence axiom. It
asserts that a weak equivalence of pairs induces an isomorphism on homology and
cohomology. Any space is weakly equivalent to a CW complex, any pair of spaces
is weakly equivalent to a CW pair, and any excisive triad is weakly equivalent to a
triad that consists of a CW complex X and a pair of subcomplexes A and B. Here
B/A∩B ∼= X/A as CW complexes, which neatly explains the excision axiom. The
weak equivalence axiom reduces computation of the homology and cohomology of
general pairs to their computation on CW pairs. Thus it implies the uniqueness
theorem for homology and cohomology on general pairs.

Finally, one wants an axiom system for the reduced homology and cohomology
of based spaces. The earliest published account is in the 1958 paper [DT58] of Dold
and Thom, who ascribe it to Puppe. They use it to prove that the homotopy groups
of the infinite symmetric products SP∞X of based spaces X can be computed
as the reduced integral homology groups of X. There are several slightly later
papers [Ke59, BP60, Hu60] devoted to single space axioms for the homology and
cohomology of both based spaces and, curiously, unbased spaces.

For the reduced homology of nondegenerately based spaces, the axioms just
require functors k̃q together with natural suspension isomorphisms

Σ∗ : k̃q(X) ∼= k̃q+1(ΣX)(2.2)
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that satisfy the exactness, wedge, and weak equivalence axioms. Here the exactness
axiom requires the sequences

k̃q(X)
f∗−→k̃q(Y ) −→ k̃q(Cf)(2.3)

to be exact for a map f : X −→ Y with cofiber Cf = Y ∪f CX. The wedge axiom
requires the functors k̃q to carry wedges (1-point unions) to direct sums. The
weak equivalence axiom requires a weak equivalence to induce isomorphisms on all
homology groups. Given such a reduced homology theory, one obtains an unreduced
homology theory by setting kq(X) = k̃q(X+), where X+ is the union of X and a
disjoint basepoint, and kq(X,A) = k̃(Cf), where f : A −→ X is the inclusion.
For an unreduced homology theory k∗, one obtains a reduced homology theory
by setting k̃q(X) = kq(X, ∗). Thus reduced and unreduced homology theories are
equivalent notions. The same is true for cohomology theories. The summary in
this paragraph makes no reference to the dimension axiom and applies in general.

In view of (2.2), all of ordinary homology and cohomology theory is actually
part of stable algebraic topology. As an informal rule of thumb, when thinking in
terms of classical algebraic topology, one uses unreduced theories. When thinking in
terms of stable algebraic topology, one wants the suspension axiom to hold without
qualification in all degrees and one therefore works with reduced theories. In fact,
in a great deal of recent work, it is an accepted convention that k∗ means reduced
homology, and one writes k∗(X+) for unreduced homology. I shall not take that
point of view here, however.

This summary of the axioms is skewed towards singular homology and coho-
mology. The viewpoint of someone working in, say, algebraic geometry would be
quite different. However, there are two footnotes to the axioms that are not well-
known and may be worth mentioning. To characterize Čech cohomology on compact
Hausdorff spaces, Eilenberg and Steenrod add the continuity axiom. Keesee [Kee51]
observed that this axiom implies the homotopy axiom.

More substantively, let us go back to (1.1) above. If X has the homotopy type of
a CW complex, then the square brackets denote homotopy classes of based maps.
Huber [Hu61] proved that if X is a paracompact Hausdorff space, then the Čech
cohomology group Ȟn(X; π) is isomorphic to the set of homotopy classes of maps
X −→ K(π, n). In contrast, for the general representation of singular cohomology
in the form (1.1), we must understand [X, K(π, n)] to be the set of maps in the
category that is obtained from the homotopy category of based spaces by adjoining
formal inverses to the weak equivalences; equivalently, we must replace X by a CW
complex weakly equivalent to it before taking homotopy classes of maps.

3. Stable and unstable homotopy groups

Another important precursor of stable algebraic topology was a substantial in-
crease in the understanding of the relationship between stable and unstable homo-
topy groups and of certain fundamental exact sequences relating homotopy groups
in different dimensions. I am here thinking of what was achieved by bare hands
work, in the early to mid 1950’s, using CW complexes and homotopical methods
rather than the contemporaneous and overlapping progress that came with the
introduction of spectral sequences.

We have seen that the critical axiom for homology is excision. In the early
1950’s, Blakers and Massey [BM51, BM52, BM53] made a systematic study of
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excision in homotopy theory, proving that homotopy groups satisfy the excision
axiom in a range of dimensions. This gave a new proof of the Freudenthal suspension
theorem and considerably clarified the conceptual relationship between homology
and homotopy. The proofs were quite difficult, and it soon became fashionable to
prove versions of their results using homology and spectral sequences. However,
Boardman later came up with a quite accessible direct homotopical proof, which
is presented in [Swi75], for example. It is worth emphasizing that the homotopical
proof gives a stronger result than can be obtained by homological methods.

The Freudenthal suspension theorem establishes the stable range for homotopy
groups, roughly twice the connectivity of a space. It was shown by G.W. Whitehead
[Wh53] that there is a metastable range for the homotopy groups of spheres. The
suspension homomorphism E fits into the EHP exact sequence

· · · −→ πq(Sn) E−→πq+1(Sn+1) H−→πq+1(S2n+1) P−→πq−1(Sn) E−→πq(Sn+1) −→ · · ·
when q ≤ 3n − 2. Here H is a (generalized) Hopf invariant that Whitehead had
introduced earlier [Wh50] and P is the (J.H.C.) Whitehead product. There were
many extensions and refinements of these results. For example, Hilton [Hil51] gave
a definition of the Hopf invariant in the next range of dimensions, q < 4n, in the
sequence above. The extrapolation of calculations and understanding in stable
homotopy theory to calculations and understanding in the metastable range, and
further, has been a major theme ever since.

James [Ja55, Ja56a, Ja56b, Ja57] and Toda [To62a] went much further with this.
James proved that, on 2-primary components, there is an EHP exact sequence
that is valid for all values of q, and Toda proved an appropriate analogue for odd
primes. James introduced the James construction JX for the purpose. Here JX
is the free topological monoid generated by a based space X. For a connected
CW complex X, James proved that JX is homotopy equivalent to MΣX. The
space JX comes with a natural filtration, and its simple combinatorial structure
allows direct construction of suitable Hopf invariant maps. Milnor [Mil56b] proved
that ΣJX splits up to homotopy as the wedge of the suspensions of its filtration
quotients. These arguments were the prototypes for a great deal of later work in
which combinatorial approximations to the n-fold loop spaces MnΣnX have been
used to obtain stable decompositions of such spaces, leading to a great deal of new
calculational information in stable homotopy theory. However, this goes beyond
the present story.

The power and limitations of such direct homotopical methods of calculation are
well illustrated in Toda’s series of papers [To58a, To58b, To58c, To59] and mono-
graph [To62b]; while cohomology operations, spectral sequences, and the method
of killing homotopy groups are used extensively, most of the work in these calcu-
lations of the groups πn+k(Sn) for small k consists of direct elementwise inductive
arguments in the EHP sequence. Later work of this sort gave these groups for a few
more values of k, but it was apparent that this was not the route towards major
progress in the determination of the homotopy groups of spheres.

4. Spectral sequences and calculations in homology and homotopy

Although the credit for the invention of spectral sequences belongs to Leray
[Le49, Mc], for algebraic topology the decisive introduction of spectral sequences is
due to Serre [Se51]. For a fibration p : E −→ B with connected base space B and



STABLE ALGEBRAIC TOPOLOGY, 1945–1966 7

fiber F , the Serre spectral sequence in homology has E2
p,q = Hp(B; Hq(F ; π)), where

local coefficients are understood, and it converges in total degree p+ q to H∗(E; π).
The analogous cohomology spectral sequence with coefficients in a commutative ring
π is a spectral sequence of differential algebras, and it converges to the associated
graded algebra of H∗(E; π) with respect to a suitable filtration.

With the Serre spectral sequence, algebraic topology emerged as a subject in
which substantial calculations could be made. While its applications go far beyond
our purview, many of the calculations that it made possible and ideas to which it
led were essential prerequisites to the emergence of stable algebraic topology.

Work of Borel [Bo53a, Bo53b] and others gave a systematic understanding of the
homology and cohomology of the classical Lie groups and of their classifying spaces
and homogeneous spaces. The basic characteristic classes had all been defined
earlier, but the precise detailed analysis of the various cohomology algebras and
their induced maps was vital to future progress.

Serre’s introduction of class theory [Se53a], and his use of the spectral sequence
to prove the finiteness of the homotopy groups of spheres, save for πn(Sn) and
π4n−1(S2n), were to change the way people thought about algebraic topology. Ear-
lier calculations had generally had as their goal the understanding of homology
and cohomology with integer or with real coefficients. In the years since, calcula-
tions have largely focused on mod p homology and cohomology, especially in stable
algebraic topology where the rational theory is essentially trivial. Moreover, this
change in point of view led ultimately to the study of all of homotopy theory in
terms of localized and completed spaces.

The method of killing homotopy groups introduced by Cartan and Serre [CS52a,
CS52b] was also profoundly influential. It provided the first systematic route to
the computations of homotopy groups. The idea is easy enough. Let X be a simple
space. Inductively, by killing homotopy groups and passing to homotopy fibers, one
can construct a sequence of fibrations

pn : X[n + 1,∞) −→ X[n,∞)

with fibre K(πn(X), n − 1), where X[n,∞) is (n − 1)-connected and its higher
homotopy groups are those of X. The initial map p1 is just the universal covering
of X. Assuming that one knows the first n homotopy groups of X, one should have
enough inductive control on the space X[n,∞) to use the Serre spectral sequence
to compute Hn+1(X[n + 1,∞)), which by the Hurewicz isomorphism is πn+1(X).
This is closely related to Postnikov systems [Pos51a, Pos51b, Pos51c], which were
not yet available to Cartan and Serre and so were implicitly reinvented by them.
If in : X −→ Xn is the nth term of the Postnikov tower of X, then in induces
an isomorphism on πq for q ≤ n and the higher homotopy groups of Xn are zero;
X[n + 1,∞) is the homotopy fiber of in.

An interesting companion to this method was given in Moore’s study [Mo54] of
the homotopy groups of spaces with a single non-vanishing homology group, which
are now called Moore spaces. This work led later to the introduction of the mod p
homotopy groups of spaces. Cohomotopy groups with coefficients were introduced
and studied earlier, by Peterson [Pe56a, Pe56b]. Moore also gave a functorial, semi-
simplicial, construction of Postnikov systems, in [Ca54-55] and [Mo58], which are
sometimes called Moore-Postnikov systems as a result. This and related work of
Moore in [Ca54-55], Heller in [He55], and especially Kan in [Kan55] and many later
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papers (see [May67]), began the modern systematic use of simplicial methods in
algebraic topology.

5. Steenrod operations, K(π, n)’s, and characteristic classes

For the method of killing homotopy groups to be useful, one must know some-
thing about the cohomology of Eilenberg-Mac Lane spaces. The problem of calculat-
ing these cohomology groups was intensively studied by Eilenberg and Mac Lane,
notably in [EM50], and was solved a few years later by Cartan [Ca54-55], using
methods of homological algebra. However, Cartan’s original answer was not in the
form we know it today. In fact, in mod p cohomology for odd primes p, it is still
not obvious how to correlate Cartan’s calculations with the definitive calculations
in terms of Steenrod operations.

I will not say anything about the invention and development of the basic proper-
ties of the Steenrod operations [St47, St52, St53a, St53b, St57, ST57] since that is
interestingly discussed in [Ma] and [Wh1]. Steenrod and Epstein [SE62] published
a systematic account of the results. Epstein [Ep66] later showed how to construct
Steenrod operations in a general context of homological algebra. In fact, simply
by separating the algebra from the topology, Steenrod’s original definition can be
adapted to a variety of situations in both topology and algebra [May70].

An essential point is that the Steenrod operations are stable, in the sense that
the following diagrams commute, where Z2 is the field Z/2Z.

H̃q(X,Z2) //Sqi

²²
Σ∗

H̃q+i(X;Z2)

²²
Σ∗

H̃q+1(ΣX;Z2) //
Sqi

H̃q+1+i(ΣX;Z2).

(5.1)

The analogous diagram commutes for odd primes, where P i has degree 2i(p− 1).
Serre [Se53b] computed H∗(K(π2, n);Z2), where π2 is cyclic of order 2, in mod-

ern terms: it is the free commutative algebra on suitable composites of Steenrod
operations acting on the fundamental class ιn ∈ Hn(K(π2, n);Z2). The analogue
for odd primes was worked out by Cartan in [Ca54-55], in later exposés that are in
fact independent of his original calculations published in the same place.

Formulas for the iteration of the Steenrod operations were first proven by Adem
[Adem52] at the prime 2 and by Adem and Cartan [Adem53, Adem57, Ca55], in-
dependently, at odd primes. However, it was Cartan who first defined the Steenrod
algebra Ap and determined its basis of admissible monomials.

In the paper [Se53b], Serre also formulated the modern viewpoint on cohomol-
ogy operations. A cohomology operation φ of degree i is a natural transforma-
tion kq −→ `q+i for some fixed q, where k∗ and `∗ are any cohomology theo-
ries. When k∗ is ordinary cohomology with coefficients in π and `∗ is ordinary
cohomology with coefficients in ρ, φ is determined by naturality by the element
φ(ιq) ∈ Hq+i(K(π, q); ρ). Observe that, by (1.1), this element may be viewed as a
homotopy class of maps K(π, q) −→ K(ρ, q + i).

A crucial point quickly understood was the calculation of the Steenrod operations
in the cohomologies of Lie groups and their classifying spaces and homogeneous
spaces. In particular, already in 1950 [Wu50a, Wu53], Wu proved his basic formula
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for the calculation of the Steenrod operations on the Stiefel-Whitney classes:

Sqr(ws) =
∑

t

(
s− r + t− 1

t

)
wr−tws+t for s > r ≥ 0.(5.2)

Borel and Serre made a systematic study shortly afterwards [BS51, BS53].
Also in 1950 [Wu50b], Wu proved his formula giving an algorithm for the cal-

culation of the Stiefel-Whitney classes of the tangent bundle of a manifold di-
rectly in terms of its cup products; see Section 12. Wu was a close collaborator of
Thom, and his work was dependent on work of Thom, announced in part in 1950
[Thom50a, Thom50b] and published in 1952 [Thom52]. In that paper, Thom proved
the Thom isomorphism theorem and used it to give the now familiar description of
Stiefel-Whitney classes in terms of Steenrod operations. Since [Thom52] was later
overshadowed by Thom’s great work on cobordism, it is well worth describing some
of its original contributions.

Thom considered locally trivial fiber bundles p : E −→ B with fiber Sk−1, with
no assumptions about the group of the bundle. Working sheaf theoretically and
resolutely avoiding the use of spectral sequences, which were available to him, Thom
proved the Thom isomorphism

φ : Hq(B) −→ Hq+k(Mp, E),(5.3)

where Mp is the mapping cylinder of p. He worked with twisted integer coefficients,
thus allowing for non-oriented fibrations, before studying the mod 2 case. Observe
that, in the motivating example of the unit sphere bundle E = S(E′) of a k-
dimensional vector bundle p′ : E′ −→ B with a Riemannian metric, the quotient
space Mp/E is homeomorphic to the quotient space D(E′)/S(E′), where D(E′) is
the unit disk bundle of E′. This quotient space is called the Thom space of p′ and
now usually denoted Tp′ or T (E′).

Using mod 2 coefficients in the Thom isomorphism, Thom defined the Stiefel-
Whitney classes of E by

wi = φ−1Sqiφ(1),(5.4)

and he proved that, in the case of vector bundles, these are the classical Stiefel-
Whitney classes of E. He rederived the properties of Stiefel-Whitney classes, in
particular the Whitney duality theorem, from the new definition. This gave an
elegant new proof of Whitney’s result [Whit41] that the Stiefel-Whitney classes of
the normal bundle of an immersion f are invariants of the induced map f∗ on mod
2 cohomology. In particular, they are independent of the choice of the differentiable
structures on the manifolds in question. It is worth emphasizing that Whitney’s
foundational work in [Whit41] and other papers, for example on embeddings and
immersions of smooth manifolds, was an essential prerequisite to virtually all of the
later applications of algebraic topology to geometric topology.

Thom then generalized to obtain results of this form for purely topological im-
mersions, with no hypothesis of differentiability. It should be remembered that this
paper appeared four years before Milnor’s discovery of exotic differential structures
on spheres [Mil56a]. For an embedding f , he went further and showed that the
homotopy type of a tubular neighborhood of f is independent of the differentiable
structure on the ambient manifold. He then introduced the notion of fiber homo-
topy equivalence and proved that the fiber homotopy type of the tangent bundle
of a manifold is independent of its differentiable structure. He observed that the



10 J. P. MAY

Stiefel-Whitney classes are invariant under fiber homotopy equivalence, and asked
what other such classes there might be. The determination of all characteristic
classes for spherical fibrations evolved over the following two decades. That is a
long story, intertwined with the theory of iterated loop spaces, and is well beyond
our present scope.

6. The introduction of cobordism

In the last chapter of [Thom52], Thom set up the modern theory of Poincaré
duality for manifolds with boundary and explained the now familiar necessary Euler
characteristic and index conditions for a differentiable manifold to be the boundary
of a compact differentiable manifold. The emphasis he placed on the index was a
precursor of things to come. He also recalled Pontryagin’s fundamental observation
[Pon42, Pon47] that, for M to be such a boundary, it is necessary that all of
its characteristic numbers be zero. He went on to observe that the vanishing of
Stiefel-Whitney numbers is still a necessary condition when M is not assumed to
be differentiable. He observed that “la recherche de conditions suffisantes est un
problème beaucoup plus difficile”.

Two years later, as announced in [Thom53a, Thom53b, Thom53c] and published
in his wonderful 1954 paper [Thom54], he had solved this problem for smooth com-
pact manifolds. The importance to modern topology, both geometric and algebraic,
of his introduction and calculation of cobordism cannot be exaggerated. For ex-
ample, Milnor’s construction of exotic differentiable structures on S7 begins with
Thom’s theory and in particular with Thom’s result that every smooth compact
7-manifold is a boundary.

Cobordism theory was not wholly unprecedented. In 1950, Pontryagin [Pon50]
showed that the stable homotopy groups of spheres, in low dimension at least, are
isomorphic to the framed cobordism groups of smooth manifolds. His motivation
was to obtain methods for the computation of stable homotopy groups, and he used
this technique to prove that πn+2(Sn) ∼= Z/2Z, thus correcting an earlier mistake
of his. While that motivation seems misguided in retrospect, it was an imaginative
attack on the problem. Pontryagin’s paper was in Russian, never translated, and
it is not quoted by Thom. However, Thom does quote earlier papers of Pontryagin
[Pon42, Pon47] in which the idea of pulling back the zero-section in Grassmannians
along a smooth approximation to a classifying map plays a prominent role.

Thom’s paper [Thom54] reads a little surprisingly today. Its main focus is not
cobordism, which does not appear until the last chapter, but rather the realization
of homology classes of manifolds by submanifolds. It seems that it was this that
first motivated Thom to a detailed analysis of the cohomology and homotopy of
Thom complexes, not just in the stable range relevant to corbordism but also in
the unstable range. Moreover, the existence of a stable range for the homotopy
groups of TSO(k) and TO(k) is proven by direct methods of algebraic topology,
rather than as a consequence of the isomorphism between homotopy groups and
cobordism groups.

For a closed subgroup G of O(k), Thom lets T (G) be the Thom space of the
universal bundle EG −→ BG with fiber Sk−1. He considers a compact oriented
manifold V n and asks when a homology class x ∈ Hn−k(V ) is realizable as the
image of the fundamental class of submanifold Wn−k of codimension k. He dualizes
the question as follows. For any space X, say that a class y ∈ Hk(X) is G-realizable
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if there is a map f : X −→ T (G) such that f∗(µ) = y, where µ ∈ Hk(T (G)) is the
Thom class. Let y ∈ Hk(V ) be Poincaré dual to x. Then “le théorème fondamental”
asserts that x is realizable by a submanifold W such that the structure group of
the normal bundle of W in V can be reduced to G if and only if y is G-realizable.
Of course, the analogue with mod 2 coefficients does not need orientability. As we
shall see in Section 16, Atiyah explained this result conceptually almost a decade
later.

Taking G to be the trivial group, it follows from a result of Serre [Se53a] that
x is realizable if k is odd or if n < 2k and that Nx is realizable for some integer
N that depends only on k and n. However, the main focus is on G = O(k) and
G = SO(k). Here Thom shows directly that πk+i(TO(k)) is independent of k
when i < k, and similarly for TSO(k). Moreover, crucially, he proves that TO(k)
has the same 2k-type as a precisely specified product of Eilenberg-Mac Lane spaces
K(Z2, k + i). The Wu formula (5.2) is the key to the calculation. He goes on to
study H∗(TO(k);Z2) in low dimensions beyond the stable range for k ≤ 3. For the
realizability problem, he deduces that x ∈ Hi(V n;Z2) is realizable for i < [n/2],
with further information in low codegrees n− i.

The problem for TSO(k) is much harder, and πk+i(TSO(k)) is only determined
completely for i ≤ 7; more detailed information is obtained for k ≤ 4. However,
Thom shows that TSO(k) has the rational cohomology type of an explicitly speci-
fied product of Eilenberg-Mac Lane spaces K(Z, k+i). For the realizability problem,
he deduces that some integer multiple of any x ∈ Hi(V n;Z) is realizable, and that
any x is realizable if i ≤ 5 or n ≤ 8.

Before turning to cobordism, Thom studies the problem posed by Steenrod of
determining which homology classes x ∈ Hr(K) of a finite polyhedron K are real-
izable as f∗(z), where z is the fundamental class of a compact manifold Mr and
f : Mr −→ K is a map. By embedding K as a retract of a manifold with boundary
M and taking the double V of M to obtain a manifold without boundary, Thom re-
duces this question to the realizability question already studied. He thereby proves
that, in mod 2 homology, every class x is realizable. In retrospect, of course, this
presages unoriented bordism and its relationship to ordinary mod 2 homology. Sim-
ilarly, he proves that, in integral homology, some integer multiple of every class x
is realizable. Remarkably, he then proves that every class x is realizable if r ≤ 6,
but that there are unrealizable classes in all dimensions r ≥ 7.

Only after all of this does he prove the cobordism theorems. Let Nn be the set
of cobordism classes of smooth compact n-manifolds, where two n-manifolds are
cobordant if their disjoint union is the boundary of a smooth compact (n + 1)-
manifold with boundary. Define megan similarly for oriented n-manifolds. Under
disjoint union,Nn is a Z2-vector space andMn is an Abelian group; any boundary is
the zero element. Under cartesian product, N∗ andM∗ are graded rings. Moreover,
the index defines a ring homomorphism I : M∗ −→ Z. The fundamental geometric
theorem is the Thom isomorphism: Nn is isomorphic to the stable homotopy group
πk+n(TO(k)) and Mn is isomorphic to the stable homotopy group πk+n(TSO(k)).

While modern proofs are easier reading than Thom’s, the basic ideas are the
same. In slightly modernized terms, an isomorphism φ : Nn −→ πk+n(TO(k)) is
constructed as follows. Embed a given n-manifold M in Rk+n for k large, let ν be
the normal bundle of the embedding, and construct a tubular neighborhood V of
M in Rk+n. Define a map f from Sk+n to the Thom space T (ν) by identifying V
with the total space of ν and mapping points not in V to the basepoint. This is the
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Pontryagin-Thom construction. Classify ν and compose f with the induced map of
Thom spaces T (ν) −→ TO(k) to obtain φ(M), checking that the homotopy class
of the composite is independent of the choice of M in its cobordism class and of
the embedding. To construct an inverse isomorphism ψ to φ, view the classifying
space BO(k) as a Grassmannian manifold of sufficiently high dimension. Up to
homotopy, any map g : Sk+n −→ TO(k) can be smoothly approximated by a map
that is transverse to the zero section. Define ψ(g) to be the cobordism class of
the inverse image of the zero section, checking that this class is independent of the
homotopy class of g. Transversality is the crux of the proof, and Thom was the
first to develop this notion.

From here, the earlier calculations in the paper immediately identify the groups
Nn. Using this identification, Thom proves that two manifolds are cobordant if and
only if they have the same Stiefel-Whitney numbers. By calculating the Stiefel-
Whitney numbers of products, this allows him to determine the ring structure of
N∗: it is a polynomial algebra on one generator of dimension n for each n ≥ 2
not of the form 2j − 1. The even dimensional generators can be chosen to be the
cobordism classes of the real projective spaces RP2n.

Similarly, the groups Mn are identified modulo torsion by the earlier calcu-
lations. Using this, Thom proves that if all Pontryagin numbers of an oriented
manifold are zero, then the disjoint union of some number of copies of that mani-
fold is a boundary. This allows determination of the ringM∗⊗Q: it is a polynomial
algebra on generators of dimension 4n for n ≥ 1. The generators can be chosen to
be the cobordism classes of the complex projective spaces CP 2n.

Dold [Dold56a] soon after identified odd dimensional generators of N∗. The Wu
formula for the computation of Stiefel-Whitney classes of manifolds give restric-
tions on which collections of Steifel-Whitney numbers actually correspond to the
cobordism class of a manifold, and Dold [Dold56b] proved that these relations are
complete: a collection of Stiefel-Whitney numbers that satisfies the Wu relations
corresponds to a manifold. In modern invariant terms, the Stiefel-Whitney num-
bers of manifolds define a monomomorphism N∗ −→ Hom(H∗(BO;Z2),Z2), and
its image consists of those homomorphisms that annihilate the subgroup generated
by the Wu relations.

7. The route from cobordism towards K-theory

Hirzebruch [Hirz53] had already introduced multiplicative sequences of charac-
teristic classes before Thom’s paper. However, cobordism theory provided exactly
the right framework for their study and allowed him to prove the index theorem
[Hirz56]: the index of a smooth oriented 4n-manifold M is the characteristic num-
ber 〈L(τ), [M ]〉, where L is the L-genus and τ is the tangent bundle of M . Here
L(τ) is a polynomial in the Pontryagin classes of M determined in Hirzebruch’s
formalism by the power series L(x) = x/tanh(x). Using Thom’s observation that
the index defines a ring homomorphism M∗ −→ Z, Hirzebruch’s formalism shows
that the index formula must hold for some power series L, and L(x) is the only
power series that gives the correct answer on complex projective spaces.

The purpose of Hirzebruch’s monograph [Hirz56] was to prove the Riemann-
Roch theorem for algebraic varieties of arbitrary dimension. It would take us too
far afield to say much about this, and a quite detailed summary may be found in
Dieudonné [Dieu, pp. 580-595]. Suffice it to say that Hirzebruch’s essential strategy
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was to reduce the Riemann-Roch theorem to the index theorem. One key ingredient
in the reduction should be mentioned, namely a method for splitting vector bundles
that led later to the splitting principle in K-theory.

Another nice discussion of [Hirz56] may be found in Bott’s review [Bott61] of the
second part of Borel and Hirzebruch’s deeply influential work [BH58, BH59, BH60].
The Riemann-Roch theorem showed that the characteristic number 〈T (τc), [M ]〉 of
any projective non-singular variety M is an integer, namely the arithmetic genus
of M ; here τc is the complex tangent bundle of M and T is the Todd genus, which
is determined by the power series T (x) = x/1− e−x. Borel and Hirzebruch sought
and proved an analogous integrality theorem for arbitrary differentiable manifolds.
The Â-genus is related to the Todd genus by the formula T (x) = ex/2Â(x), and it
satisfies Â(x) = Â(−x). As Bott explains clearly, this makes it plausible that the Â
genus should satisfy a similar integrality relation on arbitrary compact manifolds,
as Borel and Hirzebruch prove. More precisely, they prove it up to a factor of 2 that
was later eliminated by Milnor’s proof (implicit in [Mil60]) that the Todd genus of
an almost complex manifold is an integer.

Milnor and Kervaire [Mil58b, KM60] gave an important application of the in-
tegrality of the Â-genus. In 1943, G.W. Whitehead introduced the stable J-
homomorphism J : πq(SO(n)) −→ πq+n(Sn), n large. Writing πs

q = πq+n(Sn)
for the qth stable homotopy group of spheres and letting n go to infinity, this can
be written J : πq(SO) −→ πs

q . Milnor and Kervaire used the integrality theorem
to prove that, when q = 4k − 1, the order jn of the image of J is divisible by the
denominator of Bk/4k, where Bk is the kth Bernoulli number. This result gave the
first sign of regularity in the stable homotopy groups of spheres, and their proof
showed that the J-homomorphism is of considerable relevance to geometric topol-
ogy. In fact, although this is a result in stable homotopy theory, they derive it
from a generalization of a theorem of Rohlin in differential topology. Rohlin’s the-
orem [Ro51, Ro52] states that the Pontrjagin number p1(M) of a compact oriented
smooth 4-manifold M with w2(M) = 0 is divisible by 48. Milnor and Kervaire
mimic his arguments to prove that the Pontrjagin number pn(M) of an almost par-
allelizable smooth 4n-manifold is divisible by (2n − 1)!jnan, where an is 2 if n is
even and 1 if n is odd, with equality for at least one such manifold M .

For the historical story, one striking feature of the work of Borel and Hirzebruch is
its systematic use of multiplicative functions FC(X) −→ H∗∗(X;R) and FR(X) −→
H∗∗(X;R), where FR(X) and FC(X) are the semi-groups of equivalence classes of
complex and real vector bundles over X and H∗∗(X;R) is the direct product of
the real cohomology groups of X. A multiplicative function is one that converts
sums to products. The authors are tantalizingly close to K-theory. Two things are
missing: the Grothendieck construction and Bott periodicity.

The first was introduced by Grothendieck [BS58], who needed it to formulate his
generalized, relative, version of the Riemann-Roch theorem in algebraic geometry.
Grothendieck is the inventor of the general subject of K-theory, and his ideas played
a centrally important role in the introduction of topological K-theory.

As to the second, as Bott notes in his review, the work of Borel and Hirzebruch
led them to an exact sequence

0 −→ Zn! −→ π2n(U(n)) −→ π2n(U(n + 1)) −→ 0.(7.1)
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More precisely, they proved the sequence to be exact modulo 2-torsion. As Bott
writes: “The exact sequence conflicted, at the time of its discovery, with compu-
tations of homotopy theorists and led to a spirited controversy. At present it is
known the sequence is exact even with regard to the prime 2.” What he neglects
to say is that the sequence also follows from Bott periodicity, and the conflict for
some time held up publication of that result.

8. Bott periodicity and K-theory

One version of the Bott periodicity theorem asserts that there is a homotopy
equivalence BU −→MSU . The periodicity is clearer in the equivalent reformula-
tion BU × Z ' M2(BU × Z). The real analogue gives BO × Z ' M8(BO × Z).
Bott’s original proof of these beautiful results is based on the use of Morse theory.
Before proving the periodicity theorem, Bott had clearly demonstrated the power of
Morse theory by using it to prove that there is no torsion in the integral homology
of MG for any simply connected compact Lie group G [Bott56]. Bott announced
the periodicity theorem in [Bott57], and he gave two somewhat different proofs,
both based on Morse theory, in [Bott58, Bott59a].

It immediately became a challenge to reprove the periodicity theorems using
the standard methods of algebraic topology. In the complex case, a proof was
given by Toda [To62b], together with a rederivation of the Borel-Hirzebruch exact
sequence (7.1), but his proof did not show that BU and MSU have the same
homotopy type. The space BU is an H-space under Whitney sum, and Bott’s
proofs led to simple and explicit H-maps that give the equivalences. In the real
case, there are actually six maps that must be proven to be equivalences. These
explicit maps were exploited by Dyer and Lashof [DL61] and Moore (written up by
Cartan [Ca54-55]) to give direct calculational proofs. Actually, there is a curious
simplification to be made: comparison of the proofs in [DL61] and [Ca54-55] shows
that each finds particular difficulty in proving one of the required equivalences, but
they find difficulty with different maps: combining the best of both proofs gives a
quite tractable argument.

Finally, in their announcement [AH59], submitted in May, 1959, Atiyah and
Hirzebruch introduce the functor K(X) for a finite CW complex X: it is the
Grothendieck construction on the semi-group FC(X), and it is a ring with mul-
tiplication induced by the tensor product of vector bundles. They define KO(X)
similarly. They noticed a striking reinterpretation of Bott periodicity: tensor prod-
uct of bundles induces a natural isomorphism β that fits into the commutative
diagram

K(X)⊗K(S0) //β

²²
ch

K(X × S2)

²²
ch

H∗∗(X;Q)⊗H∗∗(S2);Q) //
α H∗∗(X × S2;Q),

where ch is the Chern character and α is the cup product isomorphism.
They observe that, for connected X, the kernel K̃(X) of the dimension map

ε : K(X) −→ Z can be identified with the set of homotopy classes of maps
X −→ BU . In principle, modulo a lim1 argument not yet available, this leads
to a homotopy equivalence from BU to the basepoint component of M2BU . How-
ever, their reinterpretation of Bott periodicity was by no means an obvious one. In
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[Bott58], Bott related his explicit maps to tensor products of bundles and so proved
that his original version of the periodicity theorem really did imply the version no-
ticed by Atiyah and Hirzebruch. Moreover, he gave the analogous reinterpretation
in the real case, where a direct proof of the new version was less simple.

Jumping ahead to 1963 for a moment, Atiyah and Bott together [AB64] then
found a direct and elementary analytic proof of the complex case of the periodicity
isomorphism in its tensor product formulation, using clutching functions to describe
bundles over X × S2 explicitly. Their proof actually gives a more general result,
namely a Thom isomorphism, and important refinements and generalizations are
given in their lecture notes [At64] and [Bott63]. The analytic proof is relevant to
the Atiyah-Singer index theorem, which was already announced in 1963 [AS63] and
which generalizes Hirzebruch’s index theorem. The first published proof appeared
in 1965 [Pa65], based on seminars in 1963-64.

In their 1959 announcement [AH59] and also in [Hirz59], Atiyah and Hirzebruch
give a Riemann-Roch theorem relative to a suitable map f : M −→ N of differential
manifolds; see Section 12 for the statement. They observe that their theorem can
be rewritten for holomorphic maps between complex manifolds in the same form
as Grothendieck’s version of the Reimann-Roch theorem. Their results imply a
new proof of the integrality of the Â-genus, together with a sharpening in the case
of Spin-manifolds of dimension congruent to 4 mod 8 that had been conjectured
by Borel and Hirzebruch. They also rederive and give a conceptual sharpening of
Milnor’s result on the J-homomorphism.

In [AH59], nothing is said about K(X) being part of a generalized cohomology
theory. Moreover, it is clear that the authors as yet have no hint of K-homology
and Poincaré duality: their statement of the Riemann-Roch theorem involves a
pushforward map f!, as it must, but that map was not well understood. They re-
mark that “It is probable that f! is actually induced by a functorial homomorphism
K(Y ) −→ K(X)”.

Rather than proceed directly to 1960 and the first published account of K-theory
as a generalized cohomology theory, I shall interpolate a discussion of several quite
different lines of work that were going on in the late 1950’s.

As preamble, Milnor [BM58, Mil58c] saw immediately, in February, 1958, that
Bott’s results led to the solution of two longstanding problems; [BM58] is a pair
of letters between Milnor and Bott on this subject, and [Mil58c] fills in the de-
tails. The relevant result of Bott is that the image of the Hurewicz homomorphism
π2n(BU) −→ H2n(BU) is divisible by exactly (n − 1)!. This is closely related to
the exact sequence (7.1). What Milnor deduces from this is:

1. The vector space Rn possesses a bilinear product without zero divisors only
for n equal to 1, 2, 4, or 8.

2. The sphere Sn−1 is parallelizable only for n− 1 equal to 1, 3, or 7.

The latter result was also proven at about the same time by Kervaire [Ker58].

9. The Adams spectral sequence and Hopf invariant one

Milnor’s results just cited are also among the many implications of Adams’ cel-
ebrated theorem that π2n−1(Sn) contains an element of Hopf invariant one if and
only if n is 1, 2, 4, or 8 [Ad60]. This result was announced in [Ad58b], which
was submitted in April, 1958. This work was a sequel to and completion of work
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begun in [Ad58a], submitted in June, 1957, in which Adams first attacked the Hopf
invariant one problem and introduced the Adams spectral sequence.

Fix a prime p, let A be the mod p Steenrod algebra, and let X be a space. In
its original form in [Ad58a], the Adams spectral sequence satisfies

Es,t
2 = Exts,t

A (H∗(X),Zp),

where s is the homological degree, t is the internal degree, and t − s is the total
degree, so that Es,t

2 = 0 if s < 0 or t < s. The differentials are of the form

dr : Es,t
r −→ Es+r,t+r−1

r .

There is a filtration of the stable homotopy groups πs
n(X) such that

Es,n+s
∞ = F sπs

n(X)/F s+1,n+s+1πs
n(X).

The intersection of the filtrations consists of the elements of πs
n(X) that are of

finite order prime to p. When X = S0, {E∗,∗
r } is a spectral sequence of differential

Zp-algebras and converges as an algebra to the associated graded algebra of the
ring of stable homotopy groups of spheres under the composition product.

The Adams spectral sequence can be thought of in several ways: it is a so-
phisticated reformulation and generalization of the Cartan-Serre method of killing
homotopy groups, and it is an extension and systematization of the method of
studying homotopy groups by considering higher order cohomology operations.

The idea of higher order operations first appeared with Steenrod’s introduction
of functional cohomology operations [St49]. Let f : Y −→ X be a map. Steenrod
showed how to construct an element x∪f x′ in H∗(Y ) from a pair of elements x, x′

in H∗(X) such that x∪ x′ = 0 and f∗(x′) = 0. He defined functional mod 2 Steen-
rod operations similarly. These operations are defined on a subspace of H∗(X),
and they are well-defined up to indeterminacy. Adem [Adem56] made a system-
atic study of functional cohomology operations associated to stable cohomology
operations, and Peterson [Pe57] gave a presentation in terms of Postnikov systems
with stable k-invariants. Although a few low dimensional examples had appeared
earlier, Adem [Adem58] gave the first systematic study of secondary cohomology
operations, building on his earlier proof of the Adem relations for the iterated
Steenrod operations. He related secondary and functional cohomology operations
in [Adem59]. Peterson and Stein [PS59] then gave a treatment of secondary and
functional operations in terms of two-stage Postnikov systems.

It was this kind of treatment that Adams had in mind. Secondary and higher
operations come from relations between relations, and homological algebra is the
natural tool for the study of relations between relations. The essential idea of
the construction of the Adams spectral sequence is to construct a realization of a
free resolution of the A-module H∗(X) (in a range of dimensions) by means of a
resolution of the space X. This gives a kind of exact couple of spaces that leads
to an exact couple giving the desired spectral sequence on passage to homotopy
groups. Implicitly, as became much clearer with a later reformulation in terms of the
homology of spectra rather than the cohomology of spaces, the fundamental points
are the representation (1.1) of cohomology and the calculation of the cohomology
of Eilenberg-MacLane spaces in terms of Steenrod operations.

The relationship to the Hopf invariant one problem comes about as follows.
There is an element of Hopf invariant one in π2n−1(Sn) if and only if there is
a (stable) two-cell complex such that the Steenrod operation Sqn connects the
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bottom cell to the top cell in mod 2 cohomology. If n is not a power of two,
then Sqn is decomposable as a linear combination of iterated Steenrod operations,
by the Adem relations, and no such two-cell complex is possible. Now, for any
connected Zp-algebra A, Ext1,t

A (Zp,Zp) is isomorphic to the dual of the vector
space of degree t indecomposable elements of A. Take A to be the mod 2 Steenrod
algebra and consider the Adams spectral sequence for X = S0. Then we have
elements hi ∈ E1,2i

2 dual to the Steenrod operations Sq2i

. It is direct from the
construction of the spectral sequence that there is an element of Hopf invariant one
detected by Sq2i

if and only if hi is a permanent cycle in the spectral sequence.
The element h0 corresponds to the Bockstein Sq1 = β, and multiplication by h0

in the spectral sequence detects multiplication by 2 in the stable homotopy groups
of spheres. Adams computes enough of Es,∗

2 , s = 2 and s = 3, to see that the
elements h0h

2
i are non-zero in E2 for i ≥ 3. The only way that h0h

2
i can be a

boundary is if d2(hi+1) = h0h
2
i . If i ≥ 3 and both hi and hi+1 are permanent

cycles, we conclude that hi represents an odd dimensional homotopy class xi such
that 2x2

i is non-zero. This is impossible since πs
∗ is a graded commutative ring. This

implies the main theorem of [Ad58a]: if both π2n−1(Sn) and π4n−1(S2n) contain
elements of Hopf invariant one, then n ≤ 4, which was tantalizingly close to the
expected answer.

This line of argument doesn’t work to solve the problem. However, the method
of proof implies that Sq16, although indecomposable in A, admits a decomposition
in terms of composites of primary and secondary operations, taking into account
the relevant domains of definition and indeterminacy. In [Ad60], Adams constructs
such a decomposition of Sq2i

for all i ≥ 4. While the argument makes no use of
the Adams spectral sequence, it implies the differential d2(hi+1) = h0h

2
i for i ≥ 3.

The arguments in [Ad60] are very long, and I won’t attempt a complete summary.
They require a more thorough exposition of the foundations of graded homological
algebra than was needed in [Ad58a], and this work has been used ever since. They
also require an axiomatization and construction of secondary cohomology opera-
tions in terms of universal examples, together with a detailed study of how to relate
the homological algebra to the analysis of the operations. Finally, particular oper-
ations relevant to the problem at hand are constructed, a putative decomposition
formula for Sq2n

is proven formally by means of the general theory, and the coeffi-
cient of Sq2n

in the decomposition is proven to be non-zero by explicit calculation
in a specific example.

There are two crucially important ingredients in the work that must be singled
out. First, the work of Milnor and Moore [MM65] on graded Hopf algebras plays
a key role in the relevant homological algebra. Although [MM65] was not pub-
lished until 1965, a mimeographed version was distributed much earlier and was
an essential prerequisite to the higher level of algebraic sophistication that Adams
introduced into algebraic topology.

Second, Adams needed to make some calculations of E2 beyond those of [Ad58a],
and for this purpose he made substantial use of Milnor’s remarkable analysis of the
structure of the Steenrod algebra [Mil58a]. This analysis has played a central role in
a great many later calculations in stable algebraic topology. The Steenrod algebra
A is a Hopf algebra. Its coproduct is determined by the Cartan formula and is
cocommutative. Therefore the dual Hopf algebra, denoted A∗, is commutative as
an algebra. Milnor proved that it is a free commutative algebra in the graded sense.
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Explicitly, for an odd prime p, it can be written as a tensor product

A∗ = E{τi|i ≥ 0} ⊗ P{ξi|i ≥ 1}(9.1)

of an exterior algebra on odd degree generators τi and a polynomial algebra on
even degree generators ξi. Moreover, the coproduct on the generators admits a
simple explicit formula, in principle equivalent to the Adem relations but far more
algebraically tractable. The dual B of P{ξi|i ≥ 1} can be identified both with the
subalgebra of A generated by the Steenrod operations P i and with the quotient
of A by the two-sided ideal generated by the Bockstein β. Note that, in quotient
form, B also makes sense when p = 2. We shall come back to it later.

Shortly after Adams’ work, the techniques he developed were adapted to solve
the analogue of the Hopf invariant one problem at odd primes p, showing that there
can be a two-cell complex with Pn connecting the bottom cell to the top cell in
mod p cohomology if and only if n = 1. This work was done independently by
Liulevicius [Liu62a] and by Shimada and Yamanoshita [SY61].

Using the structure theory for mod p Hopf algebras of Milnor and Moore and
Milnor’s analysis of the Steenrod algebra, I later developed tools in homological
algebra that allowed the use of the Adams spectral sequence for explicit computa-
tion of the stable homotopy groups of spheres in a range of dimensions considerably
greater than had been known previously [May65, May65, May66]. Correspondence
initiated in the course of this work led Adams and myself to a long friendship, and
I have given a brief account of all of Adams’ work in [May2] and a eulogy and
personal reminiscences in [May1].

10. S-duality and the introduction of spectra

Setting up the Adams spectral sequence as Adams did it originally is a tedious
business, the reason being that one is trying to do stable work with unstable objects:
one should be using “spectra” rather than spaces. Similarly, the representability of
ordinary cohomology and the introduction of cobordism and K-theory must even-
tually have forced the introduction of spectra, which appear naturally as sequences
of Eilenberg-Mac Lane spaces, as sequences of Thom spaces, and as sequences of
spaces featuring in the Bott periodicity theorem.

Nevertheless, the fact is that the introduction of spectra had nothing whatever
to do with these lines of work. Rather, it grew out of the work on S-duality of
Spanier and Whitehead. I will be brief about this since it is also treated in [BG] in
this volume.

In 1949, Spanier [Sp50] reconsidered Borsuk’s cohomotopy groups [Bor36]. For a
(nice) compact pair (X, A), where dim X < 2n− 1, Spanier defined πn(X, A) to be
the set of homotopy classes of maps (X, A) −→ (Sn, ∗). As in Borsuk [Bor36], these
are abelian groups, and Spanier showed that these cohomotopy groups satisfy all of
the Eilenberg-Steenrod axioms for a cohomology theory, except that they are only
defined in a range of non-negative degrees depending on the dimension of X. He also
showed that the cohomotopy groups map naturally to the integral Čech cohomology
groups and that, for a CW complex X with subcomplex A, πn(Xm∪A,Xm−1∪A)
is isomorphic to the cellular cochain group Cm(X,A; πm(Sn)). These were puz-
zling results. The real explanation, that these cohomotopy groups are the terms in
a positive range of dimensions of a cohomology theory whose coefficients are non-
zero in negative dimensions, would come later. With hindsight, the cellular cochain
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isomorphism just mentioned is the first hint of the Atiyah-Hirzebruch spectral se-
quence for stable cohomotopy theory. Spanier also observed that the Hurewicz
isomorphism theorem for [Sn, X] and the Hopf classification theorem for [X, Sn]
are dual to one another.

To make a home for such duality phenomena in all dimensions, Spanier and
Whitehead devised the S-category in [SW53, SW57]. Its objects are based spaces,
and the set {X, Y } of S-maps X −→ Y is

{X, Y } = colimn≥0[ΣnX, ΣnY ].

That is, homotopy classes of based maps f : ΣnX −→ ΣnY and g : ΣqX −→ ΣqY
define the same S-map if Σkf and Σn−q+kg are homotopic for some k ≥ 0. The
S-category is additive, and Σ : {X,Y } −→ {ΣX, ΣY } is a bijection.

Although obscured by their language of “carriers”, in retrospect a most unfortu-
nate choice of technical details, Spanier and Whitehead introduce graded morphisms
by setting {X, Y }q = {ΣqX,Y } if q ≥ 0 and {X, Σ−qY } if q < 0. They prove that,
for CW complexes X and Y with X finite, the abelian groups {X, Y }q satisfy
all except the dimension axiom of the Eilenberg-Steenrod axioms for a homology
theory in Y when X is fixed and for a cohomology theory in X when Y is fixed.
They even set up the Atiyah-Hirzebruch spectral sequences for stable homotopy
and stable cohomotopy.

However, they do not take the step of describing their results in a language of
homology and cohomology theories, and none of their later papers return to this
point of view. With their definitions, the wedge axiom would not be satisfied in
cohomology for infinite X, and only homology and cohomology theories represented
by suspension spectra of spaces would be obtained. Thus this would not have been
the right way to set up generalized homology and cohomology theories, and that
was far from their intention. The useful version of the Spanier-Whitehead category
is its full subcategory of finite CW complexes. This category is far too small to
form a satisfactory foundation for stable homotopy theory, but it is appropriate for
the study of duality between finite CW complexes, which is the main point of the
papers [SW55, SW58] and the expository notes [Whi56, Sp56, Sp58].

The 1956 note [Sp56] of Spanier, reviewed by Hilton, gives a nice description
of dual theorems in algebraic topology and seems to have been a forerunner of
Eckmann-Hilton duality. The 1956 survey of Whitehead [Whi56] looks more to-
wards the past, based as it was on Whitehead’s presidential address to the London
Mathematical Society. Prior to this point, it had been common practice to discuss
duality in ordinary homology and cohomology in terms of Pontryagin duality of
groups. Whitehead gives an interesting exposition of this point of view on duality,
the role of colimits in understanding singular homology and Čech cohomology, and
various other aspects of duality theory in algebraic topology. At that stage in our
story, it is not very surprising that Whitehead understands the Eilenberg-Steenrod
axioms solely in terms of ordinary homology and cohomology theories.

In retrospect, it is more surprising that Spanier in his 1959 paper [Sp59b] still
understands the axioms this way. In a footnote, he refers to the Eilenberg-Steenrod
axioms to specify what he means by homology and cohomology, and of course he
means all of the axioms. There is no hint of generalized homology and cohomol-
ogy theories in the paper, although one of its main points is the convenience and
importance of spectra in the study of duality theory. Nevertheless, the work of
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Spanier and Whitehead, especially the work in [Sp59b], was soon to lead to duality
theorems in generalized homology and cohomology.

Before saying more about [Sp59b], I should mention the interesting paper [Sp59a]
that Spanier wrote a year earlier. In it, he returns to the Dold-Thom description
[DT58] of integral homology as the homotopy groups of the infinite symmetric
product, and he shows how this can be related to the S-category and Spanier-
Whitehead duality. Function spaces are used heavily in the comparison, and it
seems that their use may have led to the idea of spectra.

In any case, Spanier’s student Lima introduced spectra in his 1958 thesis, pub-
lished in [Lima59]. In Lima’s work, a spectrum is a sequence of based finite CW
complexes Li and S-maps λi : ΣLi −→ Li+1. Lima also considers inverse spec-
tra, with structure maps reversed. He uses spectra to give an extension of the
S-category and an extension of Spanier-Whitehead duality from polyhedra embed-
ded in spheres to general compact subspaces of spheres. In a sequel, Lima [Lima60]
develops Postnikov systems in his category of spectra. He also gives a curious dual
theory whose dual Postnikov invariants lie in homology groups with coefficients in
cohomotopy groups.

In Spanier’s paper [Sp59a], he redefines spectra X to be sequences of based spaces
Ti and based maps, not S-maps, σi : ΣTi −→ Ti+1 that satisfy certain connectivity
and convergence conditions. These conditions have the effect of giving his spectra
a stable range analogous to the one implied for the suspension spectrum

{
ΣiX

}
of a based space X by the generalized Freudenthal suspension theorem, which was
first proven in [SW57]. His intent is to recast Spanier-Whitehead duality in terms
of smash products X ∧ Y and function spectra F(X, Y ), where X and Y are based
spaces and F(X, Y ) has ith space the function space F (X, ΣiY ). Curiously, he does
not define general function spectra F(X,T ). He writes F(X) for F(X,S0) and calls
it the functional dual of X, and he observes that H−q(X) ∼= Hq(F(X)). He defines
stable maps {X,T} from a space to a spectrum and shows that there are canonical
duality isomorphisms

{X,F(Y, Sn)} ∼= {X ∧ Y, Sn} ∼= {Y,F(X, Sn)}.
(Actually, his statement of this has F(−, Sn) replaced with the n-fold suspension
of the functional dual, but his definition of suspension disagrees with the modern
one.) While the asymmetry between spaces and spectra is clearly unsatisfactory,
this was a step from the S-category towards the true stable homotopy category.

He then redefines what it means for spaces X and Y to be n-dual to one another.
Let in ∈ H̃n(Sn) be the fundamental class. A map ε : Y ∧ X −→ Sn is said to
be an n-duality map if the homomorphism fε : H̃q(Y ) −→ H̃n−q(X) defined by
fε(y) = ε∗(in)/y is an isomorphism, where / is the slant product. He proves
that ε determines and is determined by a weak equivalence ξ from the suspension
spectrum of Y to F(X, Sn) such that the following diagram of spaces commutes in
the S-category:

Y ∧X //ξ0∧id

##
ε GGGGGGGGG F (X, Sn) ∧X

xx
ε

qqqqqqqqqq

Sn.

This gives an intrinsic characterization of the n-dual of X that leads to all of the
properties proven in the earlier work of Spanier and Whitehead [SW55]. The earlier
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work shows that if X is embedded in Sn+1 and Y is embedded in the complement of
X in such a way that the inclusion Y −→ Sn+1 −X induces an isomorphism of all
homology groups, then there is a duality map ε : Y ∧X −→ Sn. This unfortunately
means that Spanier’s new notion of an n-duality is what in the earlier work was
called an (n+1)-duality. The new notion relegates the role of the embeddings to the
verification of a more conceptual defining property and makes it much simpler to
determine when spaces X and Y are n-dual to one another. It is equivalent to the
modern homotopical definition of a duality map in the stable homotopy category.

All of this work of Spanier and Whitehead was independent of the work on
cobordism, integrality theorems, and K-theory that was going on at the same time.
In [MS60], submitted a month after [Sp59a], Milnor and Spanier show that if a
smooth compact n-manifold M is embedded in the pair Rn+k with normal bundle
ν, then the Thom space T (ν) is (n + k)-dual (new style) to M+. Moreover, they
show that if k is sufficiently large, then ν is fiber homotopy trivial if and only if
there is an S-map Sn −→ M of degree one. They also make the nice observation
that Adams’ solution to the Hopf invariant one problem implies that the tangent
bundle of a homotopy n-sphere is fiber homotopy trivial if and only if n is 1, 3, or
7.

A year later, in [At61c], Atiyah made a systematic study of the relationship
between Thom complexes and S-duality. In particular, he proved the Atiyah duality
theorem, which identifies the (n+k)-dual of the cofibration sequence ∂M+ → M+ →
M/∂M of a smooth compact n-manifold M with boundary ∂M as the cofibration
sequence

T (ν(∂M)) −→ T (ν(M)) → T (ν(M))/T (ν(∂M))
associated to the normal bundles of a proper embedding of the pair (M, ∂M) in
(Rn+k−1 × [0,∞),Rn+k−1 × {0}). He also proved that, for any bundle ξ over a
smooth compact manifold M without boundary, the Thom complex T (ξ) is S-dual
to the Thom complex T (ν√lusξ⊥), where ξ√lusξ⊥ is trivial. We will return to

this paper when we discuss the J-homomorphism.

11. Oriented cobordism and complex cobordism

With the aid of the Adams spectral sequence, the work of Thom on the oriented
cobordism ring could be completed. Although slightly ahistorical, the language of
spectra will clarify how this came about. Using the structural maps σ : ΣTn −→
Tn+1, the homotopy, homology, and cohomology of a spectrum T = {Tn} can be
defined as follows:

πq(T ) = colim πn+q(Tn)(11.1)

Hq(T ) = colim H̃n+q(Tn)(11.2)

and

Hq(T ) = lim H̃n+q(Tn),(11.3)

where the last definition is only correct when lim1H̃n+q−1(Tn) = 0. As Adams
noted in 1959 [Ad59], the Adams spectral sequence generalizes readily to a spectral
sequence for the computation of π∗(T ) in terms of the mod p cohomology H∗(T ),
regarded as a module over the Steenrod algebra A. The E2-term is given by

Es,t
2 = Exts,t

A (H∗(T ),Zp),
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and everything said earlier applies, with simpler proofs, in this more general setting.
For each of the familiar sequences of classical groups G(n), namely G = O, SO,

U , SU , Sp, and Spin, the Thom spaces TG(n) of the universal bundles give a
Thom spectrum MG. A uniform method of attack on the problem of computing
π∗(MG) is to first compute the mod p cohomology of MG for each prime p and
then compute the mod p Adams spectral sequence.

A key reason that Thom was able to compute N∗ completely was that the mod 2
cohomology H∗(MO) is a free module over the mod 2 Steenrod algebra A. A quick
direct proof of this fact, using Hopf algebra techniques, was given by Liulevicius
[Liu62b] in 1962.

For an abelian group π, the sequence of spaces K(π, n) gives a spectrum Hπ
such that π0(Hπ) = π and the remaining homotopy groups of Hπ are zero. The
mod p cohomology of HZp is the mod p Steenrod algebra, as Cartan had implic-
itly shown [Ca55]. The representation of cohomology (1.1) generalizes to spectra.
Representing generators of H∗(MO) as maps from MO to suspensions of HZ2,
one obtains a map from MO to a product of suspensions of HZ2 that induces an
isomorphism on mod 2 cohomology. Since one knows that π∗(MO) is a Z2-vector
space, one readily deduces that this map is an equivalence of spectra, allowing one
to read off π∗(MO). However, a good homotopy category of spectra in which to
make such a deduction only appeared later.

Using spectra and the Adams spectral sequence, Milnor [Mil60] in 1959 proved
that M∗ = π∗(MSO) has no odd torsion. This was proven independently by
Averbuh [Av59] and, a little later, Novikov [Nov60]. These are announcements.
Averbuh’s proofs never appeared and Novikov’s proofs [Nov62] seem never to have
been translated from the Russian.

Also in 1959 [Wall60], but without using spectra or the Adams spectral sequence,
Wall determined the 2-torsion in M∗. In particular, he proved that M∗ has no
elements of order 4 and that two oriented manifolds are cobordant if and only if
they have the same Stiefel-Whitney and Pontryagin numbers. These results were
both conjectured by Thom [Thom54]. A nice deduction from the explicit form of
the generators Wall found is that the square of any manifold is cobordant to an
oriented manifold, and he remarked the desirability of a direct geometric proof; we
shall return to this in Sections 16 and 17.

After calculating the 2-torsion in M∗ by other means, Wall used this calculation
to prove that the mod 2 cohomology H∗(MSO) is the direct sum of suspensions of
copies of A and of A/ASq1. He remarks “It seems that a direct proof ... would be
extremely difficult”, but he found such a direct proof not long afterwards [Wall62].
That allows a more direct calculation of M∗. In fact, the mod 2 cohomology of
HZ is A/ASq1. As Browder, Liulevicius, and Peterson observed later [BLP66], it
follows that there is a map f from the spectrum MSO to a product of suspensions
of copies of HZ and HZ2 that induces an isomorphism on mod 2 cohomology.
In a good homotopy category of spectra, one readily deduces that f is a 2-local
equivalence. Of course, the foundations for such an argument only came later, but
the calculation of homotopy groups is easily made by use of the Adams spectral
sequence.

Milnor [Mil60] and Novikov [Nov60, Nov62] also introduced and calculated com-
plex cobordism π∗(MU). Although the geometric interpretation was not included
in Milnor [Mil60], this is the cobordism theory of weakly almost complex manifolds,
namely manifolds with a complex structure on their stable normal bundles. The
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explicit calculation, carried out one prime at a time and then collated algebraically,
showed that π∗(MU) is a polynomial ring on one generator of degree 2i for each
i ≥ 1. Interestingly, there is no known geometric reason why the complex cobor-
dism ring should be concentrated in even degrees. The analogue for symplectic
cobordism is false. The cited papers of Milnor and Novikov raise the question of
determining π∗(MG) for other classical groups G and give some information. We
will return to this in Sections 16 and 17.

12. K-theory, cohomology, and characteristic classes

In their 1960 paper [AH61a], Atiyah and Hirzebruch explicitly introduce K-
theory as a generalized cohomology theory. Whether or not the idea of taking a
generalized cohomology theory seriously occurred to anyone before, this paper is
the first published account. They restrict attention to finite CW complexes X for
convenience, but they are fully aware of both represented K-theory and inverse
limit K-theory, namely the inverse limit of K∗(Xn) as Xn runs over the skeleta
of X. Using Bott periodicity, they prove that Z-graded K-theory satisfies all of
the Eilenberg-Steenrod axioms except the dimension axiom and they introduce Z2-
graded K-theory. Regarding ordinary rational cohomology as Z2-graded by sums
of even and odd degree elements, they prove that the Chern character extends to
a multiplicative map of cohomology theories ch : K∗(X) −→ H∗∗(X;Q) which
becomes an isomorphism when the domain is tensored with Q.

They also introduce what is now called the Atiyah-Hirzebruch spectral sequence.
It satisfies

Ep,q
2 = Hp(X;Kq(pt)),

and it converges to K∗(X). Since it is compatible with Bott periodicity, it may
be regraded so as to eliminate the grading q. It collapses, E2 = E∞, if H∗(X;Z)
is concentrated in even degrees or, using the Chern character, if H∗(X;Z) has
no torsion. They state without proof that d3 can be identified with the integral
operation Sq3, and they give partial information about the product structure. They
also state without proof that the spectral sequence generalizes to a Serre type
spectral sequence for the K-theory of fibre bundles.

The Riemann-Roch theorem of their earlier paper [AH59] is generalized to the
cohomology theory K∗, but still with no hint of K-homology and a genuine push-
forward map in K-theory. The theorem states that if f : M −→ N is a continuous
map betweeen compact oriented differentiable manifolds and if there is a given el-
ement c1(f) ∈ H2(M ;Z) such that c1(f) ≡ w2(M) − f∗w2(N) mod 2, then, for
x ∈ K∗(M),

f!(ch(x)ec1(f)/2 · Â(M)) = ch(f!(x)) · Â(N)(12.1)

in H∗(N ;Q). On the left f! is the pushforward in rational cohomology determined
by Poincaré duality and f∗; a posteriori, f! is defined similarly in K-theory.

Using both the Riemann-Roch theorem and the spectral sequence, they study the
K-theory of certain differentiable fiber bundles and compute K∗(G/H) explicitly
when H is a closed connected subgroup of maximal rank in a compact connected Lie
group G. Moreover, when H∗(G;Z) has no torsion, they prove that the natural map
R(H) −→ K(G/H) is surjective. Calculations with the maximal rank condition
dropped came much later.
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Taking K(BG) to be the inverse limit K-theory of BG, they define a homomor-
phism α : R(G)∧I −→ K(BG) and prove that it is an isomorphism when G is a
compact connected Lie group. They also prove that K1(BG) = 0 for such G. The
proof is by direct calculation when T is a torus and by comparison with the result
for a maximal torus in general. They conjecture that this result remains true for
any compact Lie group G.

In [At61b], which appeared in 1961, Atiyah proves the same result for finite
groups G. The proof is by direct calculation when G is cyclic, by induction
up a composition series when G is solvable, and by application of the Brauer
induction theorem to pass from solvable groups to general finite groups. The
second step depends on a Hochschild-Serre type spectral sequence that satisfies
Ep,q

2 = Hp(G/N ;Kq(BN)) and converges to K∗(BG), where N is a normal sub-
group of G. The last step depends on the transfer homomorphisms in K-theory
associated to finite covers. Atiyah claims in a footnote that the result does remain
true for general compact Lie groups. However, a proof did not appear until the
1969 paper [AS69] of Atiyah and Segal, which is based on the use of equivariant
K-theory. This was developed in lectures at Harvard and Oxford in 1965, but the
first published accounts appeared later [At66a, Seg68].

In 1961 [AH61c], Atiyah and Hirzebruch make use of real K-theory KO to
obtain a number of interesting results on characteristic classes in ordinary mod p
cohomology. These are less well-known than they ought to be, perhaps because
[AH61c] is written in German; some of its results were later reworked by Dyer
[Dyer69]. Atiyah and Hirzebruch greatly extend and clarify observations Hirzebruch
had already made in 1953 [Hirz53], and they improve results in the expository paper
[AH61c], also in German, which was written a bit earlier and contains a nice general
overview of the authors’ results on K-theory, including some that I will not discuss
here.

In [AH61c], using Milnor’s analysis of the Steenrod algebra, Atiyah and Hirze-
bruch first determine the group of natural ring isomorphisms λ : H∗∗(X) −→
H∗∗(X). The obvious examples are λ = Sq ≡ ∑

Sqr if p = 2 and λ = P ≡ ∑
P r

if p > 2. For a Zp-oriented vector bundle ξ with Thom isomorphism φ, they define
λ(ξ) = φ−1λφ(1). Thus Sq is the total Stiefel-Whitney class and P is the total
Wu class. They observe that, for a finite CW complex X, λ extends to a natural
homomorphism from KO(X) to the group G∗∗(X) of elements of H∗∗(X) with
zeroth component 1 and, if p > 2, odd components zero, where the multiplication
in G∗∗(X) is given by the cup product. Write Wu(λ, ξ) = λ−1λ(ξ). Then, when
p = 2,

Wu(Sq, ξ) =
∑

i≥0

2iTi(w1(ξ), · · · , wi(ξ)),

where the Ti are the Todd polynomials. Here the right side makes sense since 2iTi

is a rational polynomial with denominator prime to 2. When p > 2, let f = p1/p−1

and let Pi be the ith Pontryagin class. Then

Wu(P, ξ) =
∑

i≥0

f2iLi(P1(ξ), · · · , Pi(ξ)) =
∑

i≥0

f2iÂi(P1(ξ), · · · , Pi(ξ)).

In both cases, there is an implied analogue for complex bundles, with Chern classes
appearing on the right-hand sides of the equations.

These formulas suggest a relationship between the differential Riemann-Roch
theorem and Wu’s formulas for the characteristic classes of manifolds. Let f :
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M −→ N be a continuous map between differentiable manifolds M and N . Atiyah
and Hirzebruch prove that, for any x ∈ H∗(M),

f!(λ(x) ·Wu(λ−1, τM )) = λ(f!(x)) ·Wu(λ−1, τN ),(12.2)

where f! is the pushforward map determined by Poincaré duality and f∗. When N
is a point, this reduces to

〈λ(y), [M ]〉 = 〈(y · (Wu(λ, τM ), [M ]〉.

Taking λ = Sq if p = 2 or λ = P if p > 2, this is Wu’s formula for the determination
of the Stiefel-Whitney or L-classes of M in terms of Steenrod operations and cup
products in H∗(M).

It should be remarked at this point that Adams [Ad61b] proved the Wu relations
for not necessarily differentiable manifolds in 1961. In 1960 [Ad61a], he proved
an integrality theorem for the Chern character. Atiyah and Hirzebruch [AH61c]
observe that (12.2) is an analogue of the differentiable Riemann-Roch theorem
(12.1), and they show that this is more than just an analogy by using Adams’
integrality theorem to derive important cases of (12.2) from (12.1). In a noteworthy
remark, they point out that one can ask for such a Riemann-Roch type theorem
whenever one has a natural transformation from one generalized cohomology theory
to another, provided that both theories satisfy an analogue of Poincaré duality that
allows pushforwards to be defined. This still precedes Poincaré duality in K-theory.

Even without K-homology, Atiyah in 1962 [At62] found an ingenious and influ-
ential proof of a Künneth theorem for K-theory, obtaining a short exact sequence
of the expected form

0 −→ K∗(X)⊗K∗Y ) α−→K∗(X × Y )
β−→Tor(K∗(X),K∗(Y )) −→ 0.

13. Generalized homology and cohomology theories

The work of G.W. Whitehead [Wh60, Wh62a] and Brown [Br63, Br65] defined
and characterized represented generalized homology and cohomology theories in
close to their modern forms. We have seen that K-homology is nowhere men-
tioned in the work of Atiyah and Hirzebruch. However, Whitehead’s announce-
ment [Wh60] of his definition of represented homology was already submitted in
February, 1960, and appeared that year, although the full paper [Wh62a] was not
submitted until May, 1961, and appeared in 1962. More surprisingly, [Wh62a]
makes no mention of either K-theory or bordism and contains no references to
Atiyah and Hirzebruch, although the Bott spectrum is mentioned briefly. There
seems to have been little mutual influence.

It seems that the main influence on Whitehead was his own earlier work on the
homotopy groups of smash products of spaces [Wh56] and the work on duality
of Spanier and J.H.C. Whitehead [SW55] and its further development by Spanier
[Sp59b]. Whitehead defines a spectrum E to be a sequence of spaces Ei and maps
σi : ΣEi −→ Ei+1, dropping the convergence conditions that Spanier imposed. He
says that E is an M-spectrum if the adjoint maps σ̃ : Ei −→MEi+1 are homotopy
equivalences. Actually, he insists on spaces Ei for all integers i, rather than for
i ≥ 0 as is now more usual. He defines a map f : E −→ E′ to be a sequence of



26 J. P. MAY

maps fi : Ei −→ E′
i such that the diagrams

ΣEi
//σi

²²
Σfi

Ei+1

²²
fi+1

ΣE′
i

//σ′i
E′

i+1

(13.1)

commute up to homotopy, and he says that two maps f and g are homotopic if
fi ' gi for all i.

Taking the obvious steps beyond Spanier [Sp59b], Whitehead defines the function
spectrum F(X,E) and the smash products E∧X ∼= X∧E between a based space X
and a spectrum E. As an unfortunate choice, he restricts X to be compact in these
definitions, and his homology and cohomology theories are only defined on finite
CW complexes. Remember that the additivity axiom came a bit later. In particular,
these definitions give ME = F(S1, E) and ΣE = E ∧S1 (except that he writes the
suspension coordinate on the left). Defining the homotopy groups of spectra as in
(11.1), he proves that suspension gives an isomorphism Σ∗ : πq(E) −→ πq+1(ΣE).

For finite based CW complexes X and a spectrum E, Whitehead defines

H̃q(X;E) = πq(E ∧X).(13.2)

This is suggested by the more obvious cohomological analogue

H̃q(X;E) = π−q(F (X, E)).(13.3)

In retrospect, this definition of homology is correct for general CW complexes X,
but this definition of cohomology is only correct for general CW complexes X when
E is an M-spectrum.

Much of [Wh62a] is concerned with products in generalized homology and coho-
mology theories. These are induced by pairings (D, E) −→ F of spectra, which are
specified by maps

Dm ∧ En −→ Fm+n

that are suitably compatible up to homotopy with the structure maps σ of D, E,
and F . Starting from such pairings of spectra, Whitehead defines and studies the
properties of external products

H̃m(X;D)⊗ H̃n(Y ; E) −→ H̃m+n(X ∧ Y ;F )

H̃m(X; D)⊗ H̃n(Y ;E) −→ H̃m+n(X ∧ Y ; F )
and slant products

\ : H̃n(X ∧ Y ; D)⊗ H̃m(X; E) −→ H̃n−m(Y ;F )

/ : H̃n(X ∧ Y ; D)⊗ H̃m(Y ; E) −→ H̃n−m(X; F ).
He obtains cup and cap products by pulling back along diagonal maps. By now,
all of this is familiar standard practice.

Similarly, the familiar duality theorems are proven. Whitehead defines a ring
spectrum E in terms of a product (E, E) −→ E and unit S −→ E, where S is
the sphere spectrum, namely the suspension spectrum of S0. He defines an E-
orientation of a compact connected n-manifold M in terms of a fundamental class
in H̃n(M ; E), and he proves a version of Alexander duality for dual pairs embedded
in M . This specializes to give Poincaré duality for M . Taking M = Sn+1, which
is E-oriented for any E, it specializes to give Spanier-Whitehead duality in any
theory.
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When [Wh62a] was written, Brown [Br63] had already proven his celebrated
representation theorem. That paper also gave an incorrect first approximation
to Milnor’s additivity axiom [Mil62]. In fact, James and Whitehead [JW58] had
exhibited homology theories that fail to satisfy the additivity axiom and whose
existence contradicted one of Brown’s results. The correction of [Br63] noted this
and pointed out simpler axioms for the representability theorem. Brown later
published the improved version in a general categorical setting [Br65]. That version
is one of the foundation stones of modern abstract homotopy theory.

Let k be a contravariant set-valued homotopy functor defined on based CW
complexes. The functor k is said to satisfy the Mayer-Vietoris axiom if, for a pair
of subcomplexes A and B of a CW complex X with union X and intersection C,
the natural map from k(X) to the pullback of the pair of maps k(A) −→ k(C) and
K(B) −→ k(C) is surjective; k is said to satisfy the wedge axiom if it converts
wedges to products. Brown in [Br65] proves that k(X) is then naturally isomorphic
to [X, Y ] for some CW complex Y . If k is only defined on finite CW complexes,
Brown reaches the same conclusion but with a countability assumption on the k(Sq).
Adams [Ad71a] later showed that the countability assumption can be removed when
the functor k is group-valued.

Applied to the term k̃n(−) of a (reduced) generalized cohomology theory k̃∗,
Brown’s theorem gives a CW complex En such that k̃n(X) ∼= [X,En] for all CW
complexes X. The suspension axiom on the theory leads to homotopy equivalences
En −→ MEn+1. Thus a cohomology theory k̃∗ gives rise to an M-spectrum E.
Whitehead [Wh62a] followed up by using Spanier’s version [Sp59b] of duality theory
to show that a homology theory gives rise to a cohomology theory on finite CW
complexes. Applying Brown’s theorem for finite CW complexes (and using Adams’
variant to avoid countability hypotheses), it follows that a homology theory on
finite CW complexes is also representable by a spectrum.

Since the Brown representation is natural, a map of cohomology theories gives
rise to a map of M-spectra. Defining the category of cohomology theories on spaces
in the evident way, we see that it is equivalent to the homotopy category of M-
spectra E whose spaces En are homotopy equivalent to CW complexes. We call
this the Whitehead category of M-spectra. Milnor’s basic result [Mil59] that the
loop space of a space of the homotopy type of a CW complex has the homotopy
type of a CW complex is relevant here.

Via the suspension spectrum functor and a functor that converts spectra to
M-spectra, one can check that the S-category of finite CW complexes embeds as
a full subcategory of the Whitehead category. Thus the Whitehead category is
an approximation to stable homotopy theory that substantially improves on the S-
category by providing the proper home for cohomology theories on spaces. However,
as we shall see in Section 21, this is not yet the genuine stable homotopy category.

In the summer of 1962, there was an International Congress in Stockholm, pre-
ceded by a colloquium on algebraic topology at Aarhus. The proceedings of the
latter contain brief expositions of generalized cohomology by Dold [Dold62], Dyer
[Dyer62], and Whitehead [Wh62b]. Dold was the first to make the important ob-
servation that rational cohomology theories are products of ordinary cohomology
theories, and he gave the first general exposition of the Atiyah-Hirzebruch spectral
sequence. Making systematic use of Brown’s representability theorem, his later
book [Dold66], in German, gave a complete treatment of these matters and much
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else. Dyer was the first to write down a general treatment of the Riemann-Roch
theorem, although already in 1962 he described the result as a folk theorem known
to Adams, Atiyah, Hirzebruch and others. His later book [Dyer69] gave a complete
treatment, along with an exposition of much of the work of Atiyah and Hirzebruch
described in the previous section. He still avoids use of K∗, but this appears im-
plicitly in the form of Atiyah duality, which allows an appropriate definition of
pushforward maps.

Not everything in cohomology theory was to be done using its represented form.
For example, working directly from the axioms, Araki and Toda [AT65] made a sys-
tematic study of products in mod q cohomology theories and of Bockstein spectral
sequences in generalized cohomology. Nevertheless, most work was to be simplified
and clarified by working with represented theories.

14. Vector fields on spheres and J(X)

In the proceedings of the 1962 Aarhus and Stockholm conferences, Adams [Ad62d]
described his solution of the vector fields on spheres problem [Ad62b, Ad62c] and
outlined his work on the groups J(X), which appeared gradually in [Ad63, Ad65a,
Ad65b, Ad66a]. I summarized these papers in [May2], emphasizing their impact
on later work and the reformulations that became possible with later technology.
These applications of K-theory have been of central importance to the development
of stable algebraic topology.

The key new idea was the introduction of the Adams operations ψk in real and
complex K-theory. These play a role in K-theory that is of comparable importance
to the role played by Steenrod operations in ordinary mod p cohomology. It was
clear from Grothendieck’s work [Gro57] how to extend the exterior power operations
λk from vector bundles to K-theory. The “Newton polynomials” Qk that express
the power operations xk

1 +· · ·+xk
n in a polynomial ring Z[x1, . . . , xn] as polynomials

in the elementary symmetric polynomials σk were familiar to topologists from their
role in the study of characteristic classes. Adams’ ingenious idea was to define

ψk(x) = Qk(λ1(x), . . . , λn(x)).

Here X is a finite CW complex, x ∈ K(X), and n is large.
Either by a representation theoretical argument, as in [Ad62c], or by use of the

splitting principle and reduction to the case of line bundles, one finds that the ψk

are natural ring homomorphisms that commute with each other. They are easily
evaluated on line bundles and on the K-theory of spheres, and their relationship to
the Chern character and the Bott isomorphism are easily determined. They greatly
enhance the calculational power of K-theory.

Adams discovered these operations after first trying to solve the vector fields on
spheres problem by use of secondary and higher operations in ordinary cohomology
in [Ad62a], a paper that was obsolete by the time it appeared. The idea that a
problem that required higher order operations in ordinary cohomology could be
solved using primary operations in K-theory had a strong impact on the directions
taken by stable algebraic topology.

The vector fields on spheres problem asks how many linearly independent vector
fields there are on Sn−1. The answer is ρ(n) − 1. Here ρ(n) = 2c + 8d, where
n = (2a + 1)2b and b = c + 4d, 0 ≤ c ≤ 3. It had long been known [Eck42] that
there exist ρ(n) − 1 such fields. Adams proved that there are no more. Work
of James [Ja58a, Ja58b, Ja59] had reduced the problem to a question about the
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reducibility of a certain complex. Up to suspension, Atiyah [At61c] identified the
S-dual of that complex with a stunted projective space. This reduced the problem
to the question of the coreducibility of X = RPm+ρ(n)/RPm−1 for a suitable m.
Here coreducibility means that there is a map f : X −→ Sm that has degree 1 when
restricted to the bottom cell Sm of X. Adams proves that X is not coreducible,
thus solving the problem.

For the proof, Adams starts with the calculation of K(CPn) and K(CPn/CPm),
which was first carried out by Atiyah and Todd [AT60]. He next calculates K(RPn)
and K(RPn/RPm). Finally he calculates KO(RPn) and KO(RPn/RPm). In each
case, he obtains complete information on the ring structure and the Adams op-
erations. The main tools are just the Atiyah-Hirzebruch spectral sequence and
the Chern character. For X as above, the existence of a coreduction f and the
naturality relation f∗ψk = ψkf∗ lead to a contradiction.

For a connected finite CW complex X, define J(X) to be Z√lusJ̃(X), where

J̃(X) is the quotient of K̃(X) obtained by identifying two stable equivalence classes
of vector bundles if they are stably fiber homotopy equivalent. Let J : K(X) −→
J(X) be the evident quotient map. Atiyah in [At61b] (where J(X) means what we
and Adams call J̃(X)) proved that the bundle O(n)/O(n − k) −→ Sn−1, n ≥ 2k,
admits a section if and only if n is a multiple of the order of J(1−ξ), where ξ is the
canonical line bundle over RPk−1. Thus the vector fields problem can be viewed as
a special case of the problem of determining J(X). In fact, as Bott first observed
[Bott62, Bott63], Adams’ calculations in [Ad62c] imply that KO(RPn) ∼= J(RPn).
While Adams was aware of the relationship between the vector fields problem and
the study of J , he chose not to discuss this in [Ad62c]; he published a proof of the
cited isomorphism in [Ad65a].

The results just discussed have complex analogues, using U(n)/U(n − k) and
CPk−1. The bundle πn,k : U(n)/U(n− k) −→ S2n−1 admits a section if and only if
n is divisible by a certain number Mk. The necessity was proven first, by Atiyah and
Todd [AT60], and the sufficiency was then proven by Adams and Walker [AW64].
For the proof, they compute KO(CPn) and KO(CPn/CPm), use the methods and
results of [Ad63, Ad65a] to study J : KO(CPn) −→ J(CPn), and deduce that the
order of J(1− ξ) is Mk, where ξ is the canonical line bundle over CPk−1.

Many of the results of Atiyah [At61b] and Adams [Ad62c] on stunted projective
spaces have analogues for stunted lens spaces, and these were worked out by Kambe,
Matsunaga, and Toda [Ka66, KMT66].

The papers [Ad63, Ad65a, Ad65b, Ad66a] carry out the general study of J(X)
for a connected finite CW complex X. The overall plan is to define two further,
more computable, quotients J ′(X) and J ′′(X) of K(X) such that the quotient
homomorphisms from K(X) factor to give epimorphisms J ′′(X) −→ J(X) −→
J ′(X) and then to prove that J ′(X) = J ′′(X). Thus J ′(X) is a lower bound and
J ′′(X) an upper bound for J(X), and these two bounds coincide.

That J ′′(X) really is an upper bound depends on the Adams conjecture: “If k
is an integer, X is a finite CW complex and y ∈ KO(X), then there exists a non-
negative integer e = e(k, y) such that ke(ψk − 1)y maps to zero in J(X).” Adams
[Ad63] proved this when y is a linear combination of O(1) or O(2) bundles and
when X = S2n and y is a complex bundle. His proof is based on the “Dold theorem
mod k”, which asserts that if f : η −→ ξ is a fiberwise map of sphere bundles of
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degree ±k on each fiber, then keη and keξ are fiber homotopy equivalent for some
e > 0. For k = 1, this is a result of Dold [Dold63].

The groups J ′(X) and J ′′(X) are defined and calculated in favorable cases in
[Ad65a]. In particular, the image of J in πs

4k−1 is shown to be either the denom-
inator of Bk/4k, as expected, or twice it; the expected answer would follow from
the Adams conjecture. The group J ′′(X) is KO(X)/W (X), where W (X) is the
subgroup generated by all elements ke(k)(ψk − 1)y for a suitable function e. The
content of the Adams conjecture is that J ′′(X) is indeed an upper bound for J(X).

To define J ′(X), Adams needs certain operations ρk which he calls “cannibalistic
classes”. They are related to the ψk as the Stiefel-Whitney classes are related to
the Steenrod operations. That is, ρk = φ−1ψkφ(1) where φ is the KO-theory Thom
isomorphism. This definition and calculations based on it require good control on
KO-orientations of vector bundles. While Adams developed some of this himself,
the published version of [Ad65a] relies on the paper [ABS64] of Atiyah, Bott, and
Shapiro, and I shall say more about that in the next section. This definition only
works for Spin(8n)-bundles, in which case the operations ρk were introduced by
Atiyah (unpublished) and Bott [Bott62, Bott63], who denoted them θk. Adams
shows that the operations can be extended to all of KO(X) if one localizes the
target groups away from k. If sphere bundles η and ξ are fiber homotopy equivalent,
then ρk(ξ) = ρk(η)[ψk(1 + y)/(1 + y)] for some y ∈ K̃O(X), independent of k. The
group J ′(X) is KO(X)/V (X), where V (X) is the subgroup of these elements x
such that ρk(x) = ψk(1 + y)/(1 + y) in KO(X) ⊗ Z[1/k] for all k 6= 0 and some
y ∈ K̃O(X).

Adams gives the proof that J ′(X) = J ′′(X) in [Ad65b]. This entails a good
deal of representation theory, some of it involving the extension to the real case of
arguments used by Atiyah and Hirzebruch [AH61a] in their comparison between
R(G)∧I and K(BG) for a compact connected Lie group G. This is used to construct
a certain diagram between K-groups, the motivation for which is the heuristic idea
that 1 + y = ρkx is a solution of the equation ρ`(ψk − 1)x = ψ`(1 + y)/(1 + y).
This diagram is then proven to be a weak pullback by calculational analysis. To
get a more precise hold on J ′(X), Adams proves that the ψk are periodic in the
sense that, for any positive integer m, there is an exponent e, depending only on
X, such that, for any x ∈ KO(X), ψk(x) ≡ ψ`(x) mod m if k ≡ ` mod me. He
uses this to characterize which elements (νk) ∈ ∏

k 6=0(1 + K̃O(X)[1/k]) are of the
form νk = ρk(x)ψk[(1 + y)/(1 + y)] for some x ∈ K̃Spin(X) and y ∈ K̃O(X).

Modulo the Adams conjecture, Adams proves in [Ad66a] that J(Sn) is a direct
summand of πs

n. He does this by studying invariants d and e that are associated to
maps f : Sq+r −→ Sq; there are two variants, real and complex. The real invariant
dR(f) is just the induced homomorphism f∗ on K̃O, and it is zero unless r ≡ 1
or 2 mod 8, when it detects certain well-known direct summands Z2 of πS

∗ . When
dR(f) = 0 and dR(Σf) = 0, the cofiber sequence Sq −→ Cf −→ Sq+r+1 gives a
short exact sequence on application of K̃O, and eR(f) is the resulting element of
the appropriate Ext1 group of extensions. Here Ext1 is taken with respect to an
abelian category of abelian groups with Adams operations that commute with each
other and satisfy the periodicity relations. Building in that much structure allows
direct computation of the relevant Ext1 group, which in the cases of interest is an
explicitly determined subgroup of Q/Z. Adams’ algebraic formalism leads to an
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analysis of how eR relates Toda brackets in homotopy theory to Massey products in
Ext groups, and these relations are the key to many of Adams’ detailed calculations.

The real e-invariant is essential to the proof of the splitting of πs
∗. The complex

e-invariant eC admits a more elementary description in terms of the Chern character
and was introduced and studied independently by Dyer [Dyer63] and Toda [To63].
Adams, Dyer, and Toda all show that eC can be used to reprove the Hopf invariant
one theorem, at all primes p. Adams [Ad66a] also uses eC to prove that if Y is the
mod pf Moore space, p odd, with bottom cell in a suitable odd dimension, and if
r = 2(p− 1)pf−1, then there is a map A : ΣrY −→ Y that induces an isomorphism
on K̃. Iterating A s times, by use of suspensions, and first including the bottom cell
and then projecting on the top cell, there result elements αs ∈ πs

rs−1, and Adams
uses eC to prove that these maps are all essential. This generalized and clarified a
construction of Toda [To58a] and was a forerunner of a great deal of recent work
on periodicity phenomena in stable homotopy theory. When f = 1, Toda himself
[To63] showed how to use eC to detect these elements as Toda brackets.

Once the Adams conjecture was proven, various classifying spaces not available
to Adams were constructed, and the theories of localization and completion were
developed, the proof that J ′(X) = J ′′(X) could later be carried out in a more
conceptual homotopy theoretic way. The speculative last section of [Ad65b] an-
ticipated much of this. Adams showed that, once appropriate foundations were in
place, one would be able to deduce that, for any KO-oriented spherical fibration ξ
of dimension 8n, the sequence ρk(ξ) = φ−1ψkφ(1) would be of the form cited above.
This would imply that, for any x in the group K̃(F ;KO)(X) of KO-oriented stable
spherical fibrations, there is an element x′ ∈ K̃Spin(X) such that ρk(x) = ρk(x′)
for all k. In retrospect, this was headed towards localized splittings of the classi-
fying space for KO-oriented spherical fibrations, with one factor being BSpin and
the other a space BCokerJ whose homotopy groups are essentially the cokernel of
J : π∗(BSpin) −→ πs

∗.
Adams asked, among other things, whether or not the J(X) specify a natural

direct summand of some other functor of X, and he observed that, since the J(X)
do not give a term in a cohomology theory on X, they cannot be direct summands
of a term of a cohomology theory. We now fully understand the answers to his
questions. The process of reaching that understanding was to have major impact
on geometric topology and algebraic K-theory, as well as on many topics within
algebraic topology.

15. Further applications and refinements of K-theory

The need for K and KO orientations of suitable vector bundles was apparent
from the moment K-theory was introduced. Such orientations were essential to
the work of Adams just discussed and were first studied in detail by Bott [Bott62,
Bott63]. However, the definitive treatment was given in the beautiful paper [ABS64]
of Atiyah, Bott, and Shapiro, which was written by the first two authors after
Shapiro’s untimely death.

The authors first give a comprehensive algebraic treatment of Clifford algebras
and their relationship to spinor groups. Let Ck be the Clifford algebra of the
standard negative definite quadratic form −∑

x2
i on Rk and let M(Ck) be the free

abelian group generated by the irreducible Z2-graded Ck-modules. The inclusion of
Ck in Ck+1 induces a homomorphism M(Ck+1) −→ M(Ck). Let Ak be its cokernel.
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Then the groups Ak are periodic of period 8 and are isomorphic to the homotopy
groups πk(BO). Their complex analogues Ac

k are isomorphic to the homotopy
groups of BU . Under tensor product, the Ak and Ac

k form graded rings isomorphic
to the positive dimensional homotopy groups of KO and KU . These facts are far
too striking to be mere coincidences.

They next give an account of relative K-theory in bundle theoretic terms, proving
that, for any n, a suitably defined set Ln(X, Y ) of equivalence classes of sequences
of vector bundles over X, exact over Y and of length any fixed n ≥ 1, maps
isomorphically to K(X,Y ) under an Euler characteristic they construct. The proof
depends on a difference bundle construction that is important in many applications.

Combining ideas, they view the algebraic theory as a theory of bundles over
a point and generalize it to a theory of bundles over X. Starting from a fixed
Euclidean vector bundle V over X, they construct an associated Clifford bundle
C(V ) over X whose fiber over x is the Clifford algebra C(Vx). They define M(V )
to be the Grothendieck group of Z2-graded C(V )-modules over X and define A(V )
to be the cokernel of the homomorphism M(V√lus1) −→ M(V ). Using their

explicit description of relative K-theory, an elementary construction gives a natural
homomorphism

χV : A(V ) −→ K̃O(B(V ), S(V )) ∼= K̃O(TV ).

It is multiplicative on external sums of bundles in the sense that

χV (E) · χW (F ) = χV√lusW (E ⊗ F ).

If V is the associated bundle V = P ×Spin(k) Rk of a principal Spin(k)-bundle
P and M is a Ck-module, then E = P ×Spin(k) M is a C(V )-module. This gives
a homomorphism βP : Ak −→ A(V ) and thus a composite homomorphism αP =
ξV βP : Ak −→ K̃O(TV ). Taking X to be a point and P to be trivial, there results
a homomorphism of rings

α : A∗ −→
∑

k≥0

KO−k(pt).

The beautiful theorem now is that α and its complex analogue are isomorphisms
of rings. This suggests that a proof of Bott periodicity based on the use of Clifford
algebras should be possible. Using Banach algebras, Wood [Wood65] and Karoubi
[Kar66, Kar68] later found such proofs..

Now consider a Spin-bundle V ∼= P ×Spin(n) Rn, where n = 8k. Define µV =
αP (λk) ∈ K̃O(TV ). Then µV restricts on fibers to the canonical generator of
the free KO∗(pt)-module KO∗(Sn). That is, it is an orientation of V , and so
it induces a Thom isomorphism φ : KO∗(X) −→ K̃O∗(TV ). It follows that a
Spin(8k)-bundle V is KO-orientable if and only w1(V ) = 0 and w2(V ) = 0. The
orientation is multiplicative in the sense that µV√lusW = µV · µW . The authors

prove that the orientation they construct coincides with that constructed earlier
by Bott [Bott62, Bott63]. Similarly, they obtain an orientation µc

V ∈ K̃U(TV )
for a Spinc-bundle of dimension n = 2k. They state that the agreement of their
orientations with Bott’s gives additional good properties, but they do not say what
these properties are.

In [Ad65a], Adams explained some of these properties, since he needed them for
computation. Note first that, since U(k) −→ SO(2k) lifts canonically to Spinc(2k),
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the orientations of Spinc-bundles give orientations of complex bundles. The com-
plexification of the orientation of a Spin-bundle V is the orientation of V ⊗ C.
According to Adams, the Todd and Â classes are given in terms of the K-theory
and rational cohomology Thom isomorphisms by the formulas

ec1(V )T−1(ξ) = φ−1chµc
V

for a complex bundle V and

Â−1(V ) = φ−1chµc
V⊗C

for a Spin-bundle V . According to Adams “It is well known that this is the way Â
enters the theory of characteristic classes”. That is, Â(M) ≡ Â(τ) = φ−1chµc

ν⊗C,
where τ is the tangent bundle of a manifold M with normal bundle ν.

We have noted the analogy between Adams operations and Steenrod operations.
In the 1966 paper [At66a], Atiyah went further and showed that this analogy could
be made into a precise mathematical relationship, at least for complex K-theory.
He redefined the Adams operations by constructing a homomorphism of rings

j : R∗ =
∑

k

HomZ(R(Σk),Z) −→ Op(K).

Here Σk is the kth symmetric group, R(Σk) its character ring, and Op(K) is the ring
of natural transformations from the functor K to itself. This makes essential use
of equivariant K-theory and the isomorphism KG(X) ∼= K(X)⊗ R(G) for a finite
group G and a space X regarded as a G-space with trivial action. The kth tensor
power of a vector bundle over X is a Σk-bundle over X, and this gives a kth power
map K(X) −→ K(X) ⊗ R(Σk); composing with homomorphisms R(Σk) −→ Z,
we obtain the kth component of j. As a matter of algebra, there is a copy of the
polynomial algebra generated by certain elements that deserve to be denoted ψk

sitting inside R∗, and the images of the ψk under j are the Adams operations.
Making essential use of the construction of relative K-theory in [ABS64], this

allows Atiyah to relate the Adams operations to Steenrod operations by a di-
rect comparison of definitions. The K-theory of a CW complex X is filtered by
Kq(X) = Ker(K(X) −→ K(Xq)) with associated graded group E∗

0K(X). Sup-
pose that H∗(X) has no torsion and let p be a prime. The Atiyah-Hirzebruch
spectral sequence implies an isomorphism H2q(X;Zp) ∼= E2q

0 K(X) ⊗ Zp. Atiyah
proves that, for x ∈ K2q(X), there are elements xi ∈ K2q+2i(p−1)(X) such that
ψp(x) =

∑q
i=0 pq−ixi. Writing x̄ for the mod p reduction of x and letting P i = Sq2i

when p = 2, he then proves the remarkable formula P i(x̄) = x̄i. The idea of intro-
ducing Steenrod operations into generalized homology theories along the lines that
Atiyah worked out in the case of K-theory has had many subsequent applications.

In another influential 1966 paper, Atiyah [At66b] introduced Real K-theory KR,
which must not be confused with real K-theory KO. In the paper, real vector
bundles mean one thing over “real spaces” and another thing over “spaces”, which
has bedeviled readers ever since: we distinguish Real from real, never starting a
sentence with either. A Real space is just a space with a Z2-action, or involution,
denoted x → x̄. A Real vector bundle p : E −→ X is a complex vector bundle
E with involution such that verlinecy = verlinecverliney and verlinep(y) =
p(verliney) for c ∈ C and y ∈ E. There is a Grothendieck ring KR(X) of Real
vector bundles over a compact Real space X.
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Atiyah shows that the elementary proof of the periodicity theorem in complex
K-theory that he and Bott gave in [AB64] transcribes directly to give a periodicity
theorem in KR-theory. The wonderful thing is that this general theorem specializes
and combines with information on coefficient groups deduced from Clifford algebras
to give a new proof of the periodicity theorem for real K-theory. An essential point
is to introduce a bigraded version of KR-theory, as was first done by Karoubi
[Kar66] in a more general context. In more modern terms, KR is a theory graded
on the real representation ring RO(Z2), and it is the first example of an RO(G)-
graded cohomology theory. Such theories now play a central role in equivariant
algebraic topology.

In Atiyah’s notation, define groups

KRp,q(X,A) = KR(X ×Bp,q, X × Sp,q ∪A×Bp,q),

where Bp,q and Sp,q are the unit disk and sphere in Rq√lusiRp. In the abso-

lute case, these are the components of a bigraded ring. There is a Bott ele-
ment β ∈ KR1,1(B1,1, S1,1), and multiplication by β is an isomorphism. Setting
KRp(X, A) = KRp,0(X, A), it follows that KRp,q(X, A) ∼= KRp−q(X,A), and it
turns out that this is periodic of period 8. When the involution on X is trivial,
KR(X) ∼= KO(X), and this gives real Bott periodicity. Complex K-theory K and
self-conjugate K-theory KSC, which is defined in terms of complex bundles E with
an isomorphism from E to its conjugate, are also obtained from KR-theory by suit-
able specialization. This leads to long exact sequences relating real, complex, and
self-conjugate K-theory that have been of considerable use ever since. The self-
conjugate theory had been introduced by Green [Gr64] and Anderson [An64], who
first discovered these exact sequences. The ideas in [At66b] have found a variety of
recent applications. This is the paper of which Adams wrote in his review: “This
is a paper of 19 pages that cannot adequately be summarized in less than 20”.

In contrast, we come now to the definitive proof by K-theory of the Hopf invari-
ant one theorem, for all primes p, that was given in the paper [AA66] of Adams and
Atiyah. They give a complete proof of the Hopf invariant one theorem for p = 2
in just over a page (see also [May1]). The essential idea is to apply the relation
ψ2ψ3 = ψ3ψ2 in the K-theory of a two-cell complex Sn ∪f e2n, n even. If the Hopf
invariant of f is one, then a simple calculation shows that this relation leads to a
contradiction unless n is 2, 4, or 8. The proof at odd primes takes only a little
longer.

16. Bordism and cobordism theories

We now back up and return to the story of cobordism. Immediately after the
introduction of K-theory, in 1960, Atiyah [At61a] introduced the oriented bordism
and cobordism theories, denoted MSO∗(X) and MSO∗(X), for finite CW com-
plexes X. Just as K∗ was the first explicitly specified generalized cohomology
theory, MSO∗ was the first explicitly specified generalized homology theory.

For a finite CW pair (X, A) and any integer q, Atiyah defines

MSOq(X, A) = colim[Σn−qX/A, TSO(n)](16.1)

and verifies that these groups satisfy all of the Eilenberg-Steenrod axioms except
the dimension axiom. This is the theory represented by the spectrum MSO, but
Atiyah’s work precedes Whitehead’s paper [Wh62a], and that language was not yet
available.
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He defines oriented bordism groups geometrically. He proceeds a little more
generally than is currently fashionable, but with good motivation. He considers
the category B of pairs (X, α), where X is a finite CW complex (say) and α is
a principal Z2-bundle over X, that is, a not necessarily connected double cover.
Maps and homotopies of maps in B are bundle maps and bundle homotopies. For
a smooth manifold M (with boundary), let γ denote the orientation bundle of
M . Then MSOq(X,α) is defined to be the set of “bordism classes” of maps f :
(M, γ) −→ (X, α), where M is a q-dimensional closed manifold. Here f is bordant
to f ′ : (M ′, γ) −→ (X, α) if there is a manifold W such that ∂W = MqM ′ together
with a map g : (W,γ) −→ (X, α) that restricts to f on M and to f ′ on M ′. When
α is trivial, f is just a map M −→ X, where M is an oriented q-manifold, and
Atiyah writes MSOq(X) for the resulting oriented bordism group. He observes
that MGq(X) can be defined similarly for the other classical groups G.

One virtue of the more general definition is the observation that, for large n,

MSOq(RPn, ξ) ∼= Nq,(16.2)

where ξ : Sn −→ RPn is the canonical double cover. More deeply, Atiyah proves
that, for an n-manifold M without boundary MSOq(M, γ) is isomorphic in the
stable range 2q < n to a certain group Lq(M) introduced by Thom[Thom54] and
used in the proof of his “théorème fondamental”. This allows Atiyah to show that
Thom’s theorem directly implies Poincaré duality: for a finite CW pair (X, A) such
that X −A is a closed oriented n-manifold

MSOq(X, A) ∼= MSOn−q(X − Y, γ).(16.3)

Taking Y to be empty and X to be oriented, this specializes to

MSOq(X) ∼= MSOn−q(X).

Although he doesn’t go into detail, Atiyah was aware of the expected interpretation
in terms of cup and cap products induced from the maps

TSO(m) ∧ TSO(n) −→ TSO(m + n).

For n large and even, so that γ = ξ, (16.2) and (16.3) imply that

Nq
∼= MSO2n−q(RP2n).(16.4)

One of Atiyah’s main motivations was to understand certain exact sequences
relating oriented and unoriented cobordism groups, in particular the exact sequence

Mn
2−→Mn −→ Nn,(16.5)

due originally to Rohlin [Ro53, Ro58] and also proven by Dold [Dold60]. These
exact sequences play a central role in Wall’s computation of M∗. Using (16.4),
Atiyah shows that they are just long exact sequences obtained by applying the
theory MSO∗ to pairs of projective spaces.

Conner and Floyd [CF64a] followed up Atiyah’s work with a thorough exposition
and many interesting applications of the theories MO∗ and MSO∗. Atiyah did not
give a geometric definition of the relative groups MSO∗(X, A). Conner and Floyd
do so carefully, and they prove that MSO∗(X, A) so defined satisfies

MSOq(X, A) ∼= πn+q(X/A ∧ TSO(n)) if n ≥ q + 2.
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This shows that the geometrically defined theory agrees with the theory given by
Whitehead’s prescription. They construct the bordism Atiyah-Hirzebruch spec-
tral sequence converging from H∗(X, A;M∗) to MSO∗(X, A). For the unoriented
theory, they show that

MO∗(X, A) ∼= H∗(X, A;Z2)⊗N∗,(16.6)

as we see from the splitting of MO as a product of Eilenberg-MacLane spectra.
Similarly, they show that, modulo the Serre class of odd order abelian groups,

MSO∗(X,A) ∼= H∗(X,A;M∗).

Using this, they reinterpret and generalize Thom’s work on the Steenrod represen-
tation problem. For example, they show that the natural map MSO∗(X, A) −→
H∗(X, A;Z) is an epimorphism if and only if the oriented bordism spectral sequence
for (X, A) collapses and that this holds if H∗(X, A;Z) has no odd torsion. They
also generalize (16.5) to an exact sequence

MSOn(X, A) 2−→MSOn(X,A) −→ MOn(X,A).

However, the main point of Conner and Floyd’s monograph [CF64a] was the use
of cobordism for the study of transformation groups of manifolds. The cohomologi-
cal study of group actions was initiated in the remarkable early work of P.A. Smith
[Sm38]. The use of cohomological methods in the study of transformation groups
was systematized in the seminar [Bo60] of Borel and others, including Floyd. In its
introduction, Borel had pointed out the desirability of making more effective use of
differentiability assumptions than had been possible previously. Conner and Floyd
introduced equivariant cobordism as a follow up, and they found many very inter-
esting applications of it to the study of fixed point spaces of differentiable group
actions. I shall only indicate a little of what they do.

They define oriented and unoriented geometric equivariant cobordism groups
for any finite group G with respect to group actions on manifolds with isotropy
groups constrained to lie in any set of subgroups of G closed under conjugacy.
Write NG

∗ and MG
∗ for these groups when all subgroups are allowed as isotropy

groups. Conner and Floyd focus on the case of free actions (trivial isotropy group).
Here the geometric description of bordism theory directly implies that the cobor-
dism groups of smooth compact manifolds with free G-actions are isomorphic to
the bordism groups MO∗(BG). Restricting to oriented manifolds and orientation
preserving actions, the resulting cobordism groups are isomorphic to the bordism
groups MSO∗(BG). This opens the way to calculations. As in Atiyah’s work on
K∗(BG), transfer homomorphisms play a significant role.

In the unoriented case, MO∗(BG) is calculated in terms of H∗(G;Z2) by (16.6).
As an elementary application, Conner and Floyd give a geometric proof of Wall’s
observation that the square of a manifold is cobordant to an oriented manifold.
However, the main applications concern the fixed point space F of a non-trivial
smooth involution on a closed n-manifold M , which for clarity we assume to be
connected. Let Fm be the union of the components of F of dimension m. If the
Stiefel-Whitney classes of the normal bundle of Fm in M are trivial for 0 ≤ m < n,
then Fm is a boundary for 0 ≤ m < n. This is a substantial generalization of the
fact that F cannot have exactly one fixed point, a fact that, with its odd primary
analogue, motivated their entire study.
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Remarkably, although they did not have a description of N Z2∗ as the homotopy
groups of a space, Conner and Floyd were able to compute these cobordism groups
in terms of bordism groups; precisely, they obtained a split short exact sequence

0 −→ N Z2
n −→

n∑
m=0

MOm(BO(n−m)) −→ MOn−1(BZ2) −→ 0.

For an odd prime p, Conner and Floyd calculate the bordism groups MSO∗(BZp)
completely and give partial information on MSO∗(BZpk) for k > 1. They also
study MSO∗((B(Zp)k)), ending with a conjecture on annihilator ideals that was
only proven much later. In this connection, they obtained partial information on
a Künneth theorem for the computation of MSO∗(X × Y ). Landweber [Lan66]
later gave the complete result, along with the easier analogue for MU∗. Conner
and Floyd went on to study the equivariant complex bordism groups MU∗(BG) for
free G-actions in [CF64b]. This work has been very influential in the development
of both equivariant geometric topology and equivariant stable algebraic topology,
which recently has become a major subject in its own right.

17. Further work on cobordism and its relation to K-theory

We have seen that Milnor [Mil60, Mil62] and Novikov [Nov60, Nov65] raised the
problem of determining the cobordism groups MG

∗ ∼= π∗(MG) of G-manifolds for
G = SU , Sp and Spin. They were aware that only the question of 2-torsion was at
issue. Liulevicius [Liu64] described H∗(MG,Z2) as a coalgebra over the Steenrod
algebra for various G and began the study of the relevant mod 2 Adams spectral
sequences. In particular, he calculated E2 and showed that E2 6= E∞ for MSU
and MSp. He also computed π∗(MSp) in low dimensions. The calculation of the
2-torsion in π∗(MSp) has been studied extensively over the last 30 years, and a
complete answer is still out of sight. I shall say no more about that here. However,
the remaining cases were all completely understood by the end of 1966. The litera-
ture in this area burgeoned in the mid 1960’s, and I will mention only some of the
main developments. Stong [Sto68], unfortunately out of print, gives an excellent
and thorough survey of results through 1967, with a complete bibliography. Foun-
dationally, he starts from the systematic treatment of the geometric interpretation
of π∗(MG) that was given by Lashof in 1963 [Las63].

As a preamble to explicit calculations, Milnor [Mil65] and others gave some at-
tractive conceptual results concerning the squares of manifolds. As a consequence
of their work on fixed points of involutions in [CF64b], Conner and Floyd had ob-
served that if VR is the real form of a complex algebraic variety VC and both are
non-singular, then VC is unoriented cobordant to VR × VR. Milnor [Mil65] showed
that this implies that an unoriented cobordism class contains a complex manifold if
and only if it contains a square. He also explained in terms of Stiefel-Whitney num-
bers when a manifold is unoriented cobordant to a complex manifold. Further, he
conjectured and proved in low dimensions that the square of an orientable manifold
is unoriented cobordant to a Spin-manifold. P.G. Anderson [And66] proved that
the square of a torsion element of M∗ is unoriented cobordant to an SU -manifold,
and he deduced Milnor’s conjecture from that. Stong [Sto66b] later gave a simpler
proof.

In their monograph [CF66a], Conner and Floyd worked out the analogue of their
development of geometric and represented oriented cobordism theory in the complex
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case, together with its SU variant. Although the details are a good deal more
complicated, they follow the methods used by Wall [Wall60] and Atiyah [At61a]
in the case of oriented cobordism to determine the additive structure of the SU -
cobordism ring MSU

∗ . The essential point is to determine the torsion, and they
prove that the torsion subgroup of MSU

q is zero unless q = 8n + 1 or q = 8n + 2,
in which cases it is a Z2-vector space whose dimension is the number of partions of
n. Wall [Wall66] later completed the determination of the multiplicative structure
of MSU

∗ .
In concurrent work, Anderson, Brown, and Peterson [ABP66a] calculated the

mod 2 Adams spectral sequence for π∗(MSU). They use a result of Conner and
Floyd [CF66a] to determine the differential d2, and they deduce that E3 = E∞.
This is a more sophisticated application of the Adams spectral sequence than had
appeared in earlier work, and it was the first significant example in which the
Adams spectral sequence was determined completely despite the presence of non-
trivial differentials. Morever, they prove that an SU -manifold is a boundary if
and only if all of its Chern numbers and certain of its (normal) KO-characteristic
numbers are zero.

To define KO-characteristic numbers, they make one of the first explicit uses
of Poincaré duality in KO-theory, relying on the Atiyah-Bott-Shapiro orientation
to obtain canonical KO-fundamental classes of SU -manifolds. Another interesting
feature of their work is the complete determination of the image of the framed
cobordism groups Mfr

∗ , that is the stable homotopy groups of spheres, in MSU
∗ .

This allows them to connect up their calculations with the Kervaire surgery invari-
ant and the realization of Poincaré duality spaces as SU -manifolds up to homotopy
equivalence.

Soon afterwards, Anderson, Brown, and Peterson [ABP66b] followed up their
work on MSU

∗ with a calculation of MSpin
∗ , which is a good deal harder. Let bo〈n〉

denote the spectrum obtained from the real Bott spectrum by killing its homotopy
groups in dimensions less than n. They construct a map f from MSpin to an
appropriate product of copies of spectra bo〈2n〉 and suspensions of HZ2 and prove
that f induces an isomorphism on mod 2 cohomology. A posteriori, f is a 2-local
equivalence.

The essential input that makes this calculation possible is Stong’s calculation
[Sto63] of the mod 2 cohomology of the bo〈2n〉 as modules over the Steenrod al-
gebra. These modules are of the form A/A(Sq1, Sq2) or A/ASq3, and this allows
calculation of the relevant Adams spectral sequences. However, a good deal of
work, most of it dealing with the algebra of modules over the Steenrod algebra, is
needed to go from this input to the final conclusion. Incidentally, working on the
space level, Adams had earlier calculated the mod p cohomologies of the bu〈2n〉 for
all primes p [Ad61a].

Similarly to the case of MSU
∗ , a Spin-manifold is a boundary if and only if all

of its Stiefel-Whitney numbers and certain of its KO-characteristic numbers are
zero. Moreover, a manifold is cobordant to a Spin-manifold if and only all of its
Stiefel-Whitney numbers involving w1 or w2 are zero. The image of Mfr

∗ in MSpin
∗

is determined by comparison with the case of MSU
∗ . A result of Stong [Sto66a]

determines the ring structure on the torsion free part of MSpin
∗ .

In their monograph [CF66b], Conner and Floyd give a general exposition of
the relationship between K-theory and cobordism, starting from a variant of the
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orientation theory of Atiyah, Bott, and Shapiro. They construct compatible natural
transformations of multiplicative cohomology theories

µc : M̃U∗(X) −→ K̃∗(X)

and
µr : M̃SU∗(X) −→ K̃O∗(X)

on finite CW complexes X. Thinking of an element of M̃Un(X) as a homotopy
class of maps f : S2k−n ∧X −→ TU(k), k large, they obtain µc(f) by transporting
the Thom class along the composite

K̃(TU(k))
f∗−→K̃(S2k−n ∧X) ∼= K̃n(X).

Up to sign, µc : MU
∗ −→ Z gives the Todd genus T [M ] of U -manifolds. Since µc is

a ring homomorphism, it gives Z a structure of MU∗-module, where MUn = MU
−n.

Conner and Floyd prove the remarkable facts that complex cobordism determines
complex K-theory and symplectic cobordism determines real K-theory. Precisely,
the maps µc and µr induce isomorphisms

MU∗(X, A)⊗MU∗ K∗(pt) ∼= K∗(X, A)

and
MSp∗(X, A)⊗MSp∗ KO∗(pt) ∼= KO∗(X, A)

on finite CW pairs (X,A). The reason that MSp comes in is clear from the proof,
which makes heavy use of the Atiyah-Hirzebruch spectral sequence and relies on
the fact that H∗(BSp) is concentrated in even degrees. Along the way, considerable
information about characteristic classes in cobordism theories is obtained.

There is a last part of [CF66b] that deserves to be better known than it is. In
slightly modernized terms, Conner and Floyd consider the cofiber MU/S of the
unit S −→ MU . They give a cobordism interpretation of π∗(MU/S) in terms
of U -manifolds with stably framed boundary, or (U, fr)-manifolds. The cofiber
sequence gives rise to a short exact sequence

0 −→MU
2n −→MU,fr

2n −→Mfr
2n−1 −→ 0

for each n > 0. The Todd genus defines a homomorphism T : MU,fr
∗ −→ Q, and

it turns out that there is a closed U -manifold with the same Chern numbers as a
given (U, fr)-manifold M if and only if T (M) is an integer. Therefore T induces
a homomorphism π2n−1(S) ∼= Mfr

2n−1 −→ Q/Z. Conner and Floyd show that
this homomorphism coincides with Adams’ complex e-invariant. This allows the
use of Adams’ complete determination of the behavior of eC to obtain geometric
information. Using SU in place of U , they obtain a similar interpretation of Adams’
real e-invariant π8n+3(S) −→ Q/Z, and they use explicit manifold constructions
modelled on Toda brackets appearing in Adams’ work to reprove the result of
Anderson, Brown, and Peterson on the image of Mfr

∗ in MSU
∗ .

The work of Conner and Floyd uses a basic theorem of Hattori [Ha66] and Stong
[Sto66b]. The tangential characteristic numbers of a U -manifold M2n determine
a homomorphism H2n(BU ;Q) −→ Q. Let I2n be the subgroup of H2n(BU ;Q)
consisting of all elements that are mapped into Z by all such homomorphisms. The
Riemann-Roch theorem of Atiyah and Hirzebruch shows that the 2n component of
ch(x)T is in I2n for all x ∈ K(BU), where T is the universal Todd class. Atiyah
and Hirzebruch [AH61c] conjectured that these Riemann-Roch integrality relations
are complete, in the sense that every element of I2n is of this form.
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This is the theorem of Hattori and Stong. It can be rephrased in several ways.
Stong uses methods of cobordism to show that all homomorphisms MU

n −→ Z are
integral linear combinations of certain homomorphisms given by K-theory charac-
teristic numbers. Hattori shows that the conjecture is equivalent to the assertion
that, for large k, the homomorphism

α : K̃(TU(k)) −→ Hom(π2n+2k(TU(k)), K̃(S2n+2k))

given by α(y)(x) = x∗(y) is an epimorphism. He proves that the K-theory Hurewicz
homomorphism

π2n+2k(TU(k)) −→ K̃2n+2k(TU(k)),

which is induced by the unit S −→ K of the K-theory spectrum, is a split monomor-
phism. He then deduces the required epimorphism property by use of Poincaré
duality in K-theory. Adams and Liulevicius [AL72] later gave a spectrum level
reinterpretation and proof of Hattori’s theorem, viewing it as a result about the
connective K-theory Hurewicz homomorphism of MU .

18. High dimensional geometric topology

The period that I have been discussing was of course also a period of great de-
velopments in high dimensional geometric topology. There was a closer interaction
between algebraic and geometric topology throughout the period than there is to-
day, and some of the most important work in both fields was done by the same
people. Cobordism itself is intrinsically one such area of interaction. It would be
out of place to discuss such related topics as h-cobordism and s-cobordism here.
However, some geometric work was so closely intertwined with the main story or
was to be so important to later developments that it really must be mentioned, if
only very briefly.

First, there is the work of Kervaire and Milnor [KM63] on groups of homotopy
spheres. This gives one of the most striking reductions of a problem in geomet-
ric topology to a problem in stable homotopy theory, albeit in this case to the
essentially unsolvable one of computing the cokernel of the J-homomorphism.

As we have already mentioned, the starting point of modern differential topology
was Milnor’s discovery [Mil56b] of exotic differentiable structures on S7. Kervaire
and Milnor classify the differentiable structures on spheres in terms of the stable
homotopy groups of spheres and the J-homomorphism. Let Θn be the group of
h-cobordism classes of homotopy n-spheres under connected sum. By Smale’s h-
cobordism theorem [Sm62], Θn is the set of diffeomorphism classes of differentiable
structures on Sn when n 6= 3 or 4. Kervaire and Milnor show that every homotopy
sphere is stably parallelizable. The proof uses Adams’ result [Ad65a] that J :
π∗(SO) −→ πs

∗ maps the torsion classes monomorphically. They then show that
the homotopy spheres that bound a parallelizable manifold form a subgroup bPn+1

of Θn such that Θn/bPn+1 embeds as a subgroup of πs
n/J(πn(SO)). This embedding

is an isomorphism if n = 4k + 1.
In the 1960’s, geometric topologists began to take seriously the classification of

piecewise linear and topological manifolds, and the appropriate theories of bundles
and classifying spaces were developed. A few of the important relevant papers
are those of Hirsch [Hir61], Milnor [Mil64], Kister [Ki64], Lashof and Rothenberg
[LR65], and Haefliger and Wall [HW65]. We point out one conclusion that is
particularly relevant to our theme, namely a theorem of Hirsch and Mazur that
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is explained in [LR65] and that is closely related to the work of Kervaire and
Milnor just discussed. If M is a smoothable combinatorial manifold, then the
set of concordance classes of smoothings of M is in bijective correspondence with
the set of homotopy classes of maps M −→ PL/O. Part of the explanation is
that PL(n)/O(n) −→ PL/O induces an isomorphism of homotopy groups through
dimension n, which converts an unstable problem into a stable one. Williamson
[Wi66] proved the analogue of Thom’s theorem for PL-manifolds, showing that the
cobordism ring MPL

∗ of oriented PL-manifolds is isomorphic to π∗(MSPL), and
similarly in the unoriented case.

These results raised the question of computing characteristic classes for PL and
topological bundles and of computing the PL-cobordism groups. These calcula-
tional questions, which turn out to be closely related to the questions raised by
Adams in [Ad65b], would later motivate a substantial amount of work in stable
algebraic topology. A 1965 paper of Hsiang and Wall [HsW65] discussed the ori-
entability of non-smooth manifolds with respect to generalized cohomology theories.
A year or two later, Sullivan discovered [Sull70] that PL-bundles admit canonical
KO-orientations (away from 2). That fact has played an important role in answer-
ing such questions.

Although almost nothing was known about these questions in 1966, a useful
conceptual guide to later calculations was published that year by Browder, Li-
ulevicius, and Peterson [BLP66]. By then, classifying spaces BF (n) for spherical
fibrations were also on hand, by work of Stasheff [Sta63c] and later Dold [Dold66].
The authors consider a system of spaces BG(n), where G(n) may have no a priori
meaning, and maps BO(n) −→ BG(n) −→ BF (n), BG(n) −→ BG(n + 1) and
BG(m)×BG(n) −→ BG(m + n) satisfying some evident compatibility conditions.
They define the Thom space TG(n) by use of the pullback of the universal spher-
ical fibration over BF (n) and have a Thom spectrum MG. They have a Thom
isomorphism H∗(BG) −→ H∗(MG) in mod 2 cohomology, and they define Stiefel-
Whitney classes as usual.

With this set up, they observe that theorems of Milnor and Moore [MM65] imply
that H∗(MG) is a free A-module and there is a Hopf algebra C(G) over A such
that

H∗(BG) ∼= H∗(BO)⊗ C(G)
as Hopf algebras over A and

π∗(MG) ∼= π∗(MO)⊗ C(G)∗

as algebras. Letting BSG be the 2-fold cover of BG determined by w1, they
also observe that H∗(MSG) is the direct sum of a free A-module and suspensions
of copies of A/ASq1, so that, a posteriori, MSG splits 2-locally as a product of
corresponding Eilenberg-Mac Lane spectra, just as MSO does. Moreover

H∗(BSG) ∼= H∗(BSO)⊗ C(G)

as Hopf algebras over A, and at least the additive structure of π∗(MSO), mod-
ulo odd torsion, is determined by C(G) and the Bockstein spectral sequence of
H∗(BSG).

Intuitively, this means that the mod 2 characteristic classes for “G-bundles”
completely determine the unoriented G-cobordism ring and the 2-local part of the
oriented G-cobordism ring. The proofs require no geometry, but when one has a
manifold interpretation of π∗(MG), for example when G = PL, it follows directly
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that a G-manifold is a boundary if and only if all characteristic numbers defined in
terms of H∗(BG) are zero.

For an odd prime p, they prove that H∗(BSG;Zp) is a free B-module, where B
is the sub Hopf algebra of A generated by the P i, but the calculation of the odd
torsion in π∗(MG) requires use of the Adams spectral sequence and is thus of a
quite different character than the determination of the 2-torsion.

19. Iterated loop space theory

So far I have focused on the mainstream of developments through 1966, but there
are some other directions of work that were later to become important to stable
algebraic topology. This section describes one stream of work that was later to
merge with the mainstream. Although the connection was not yet visible in 1966
and won’t be made visible here, the relevant later work was to provide key tools
for the calculations called for in the previous section.

Let X be an H-space. One can ask whether or not X has a classifying space
Y , so that X ' MY . If so, one can ask whether Y is an H-space. If so, one
can ask whether Y has a classifying space. Iterating, one can ask whether X is an
n-fold loop space, or even an infinite loop space. One wants the answers to be in
terms of internal structure on the space X. The answers are closely related to an
understanding of the spaces MnΣnX, which play a role roughly dual to the role of
Eilenberg-Mac Lane spaces in ordinary homotopy theory. Such questions were later
to be a major part of stable algebraic topology, but some important precursors were
on hand by 1966.

Recall that a topological monoid X, that is an associative H-space with unit,
has a classifying space BX and X 'MBX if π0(X) is a group under the induced
multiplication. This result has a fairly long history, which would be out of place
here.

In 1957, Sugawara [Su57a] gave a fibration-theoretic necessary and sufficient
condition for a space X to be an H-space, or to be a homotopy associative H-
space. In the same year [Su57b], he followed up by giving necessary and sufficient
conditions for X to have a classifying space. Obviously, X must be homotopy
associative, but that is not sufficient. Sugawara described an infinite sequence
of higher homotopies that must be present on loop spaces and showed that the
existence of such homotopies is sufficient. Three years later, he took the next step
and displayed an infinite sequence of higher commutativity homotopies such that
a loop space MY has such homotopies if and only if Y is an H-space. Stasheff
[Sta63a, Sta63b] later reformulated Sugawara’s higher associativity homotopies in
a much more accessible fashion, introducing An and A∞-spaces. The latter are
Sugawara’s H-spaces with all higher associativity homotopies, and Stasheff reproved
the result that such an H-space has a classifying space.

Systematic computations of H∗(MnΣnX;Zp) began in 1956 with the work of
Kudo and Araki [AK56]. Using higher commutativity homotopies, they mimic
Steenrod’s original construction of the Steenrod squares in mod 2 cohomology
in terms of ∪i-products to obtain mod 2 homology operations for n-fold loop
spaces. They use these operations to compute H∗(MnSn+k;Z2). To compute
H∗(MnΣnX;Z2) for general spaces X, bracket operations of two variables are
needed. These were introduced by Browder [Br60]. He reproved the results of
Kudo and Araki by mimicking Steenrod’s construction of Steenrod operations in
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terms of the homology of the cyclic group Z2, and he computed H∗(MnΣnX;Z2)
as a functor of H∗(X;Z2). The functoriality is a calculational fact, not something
true for general theories. For example, K(MnΣnX) is not a functor of K(X). It is
related to Dold’s earlier, but non-calculational, result [Dold58b] that the homologies
of the symmetric products of X are determined by the homology of X.

Dyer and Lashof [DL62] studied homology operations for n-fold loop spaces at
odd primes p, mimicking Steenrod’s definition of Steenrod operations in terms of
the homology of the symmetric group Σp. These operations are now generally
called Dyer-Lashof operations. This method of construction does not give enough
operations to compute H∗(MnΣnX;Zp). Dyer and Lashof define QX = ∪MnΣnX,
where the union is taken over the inclusions MnΣnX −→ Mn+1Σn+1X obtained
by suspending a map Sn −→ X∧Sn to a map Sn+1 −→ X∧Sn+1. They then prove
that their operations, plus the Bockstein, are sufficient to compute H∗(QX;Zp) as
a functor of H∗(X;Zp).

In 1966, Milgram [Mil66] generalized the James construction to obtain a com-
binatorial model JnX for MnΣnX, where X is a connected CW complex. The
spaces JnX are themselves CW complexes with cellular chain complexes identified
in terms of the cellular chains of X. This allows a computation of H∗(MnΣnX), but
Milgram’s work was not connected up with homology operations until much later.
This is analogous to Cartan’s original computation of the homology of Eilenberg-
MacLane spaces without use of Steenrod operations. The later theory of operads
led to a simpler, but equivalent, model for MnΣnX and allowed the specification
of sufficiently many homology operations to compute H∗(MnΣnX;Zp) as a functor
of H∗(X;Zp). It also made it clear that Milgram’s work and Stasheff’s work on
A∞-spaces are closely related, something that was not apparent at the time.

20. Algebraic K-theory and homotopical algebra

The cohomology of groups, homological algebra, algebraic K-theory, and cate-
gory theory are algebraic areas of mathematics that developed simultaneously with
stable algebraic topology and gradually evolved into separate subjects. All remain
closely connected to stable algebraic topology. I shall mention some directions that
seem to me to be of particular interest or to have been important forerunners of
later developments.

I will point to just a few relevant papers concerning the cohomology of groups.
Of course, with trivial coefficients, the homology of a discrete group G agrees with
the homology of its classifying space BG. At about the same time that Dyer
and Lashof were computing H∗(QX), Nakaoka [Na60, Na61] was computing the
homologies of the symmetric groups and in particular the homology of the infinite
symmetric group. With X = S0, it would later turn out that these were essentially
the same computation.

The equivariant homology and cohomology groups of spaces that were studied by
Borel and others in [Bo60] are HG

∗ (X) = H∗(EG×G X) and H∗
G(X) = H∗(EG×G

X). Swan [Sw60a] in 1960 introduced the Tate cohomology of spaces Ĥ∗
G(X). Just

as in group theory, he gave a long exact sequence relating HG
∗ (X), H∗

G(X) and
Ĥ∗

G(X). It has been shown recently that one can replace ordinary homology and
cohomology by the theories represented by any spectrum and still get such a long
exact sequence.
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Although a little off the subject, the early applications of algebraic K-theory to
algebraic topology deserve brief mention. Swan [Sw60b] used his study [Sw60c] of
projective modules over group rings to show that any finite group with periodic
cohomology acts freely on a homotopy sphere. This led to Wall’s K-theoretic
finiteness obstruction [Wall65] that determines whether or not a finitely dominated
CW complex is homotopy equivalent to a finite CW complex. Applications of
algebraic K-theory in surgery theory also began in the 1960’s, but are beyond our
scope.

There are several papers in algebraic K-theory and what later became known
as homotopical algebra that may be viewed as harbingers of things to come in
stable algebraic topology. The feature to emphasize is the evolution from analo-
gies between similarly defined objects in different subjects to direct mathematical
connections and fruitful common generalizations. These topics were to have much
direct contact with iterated loop space theory, but that could not have been visible
in 1966. Their connections with the mainstream of stable algebraic topology were
visible from the beginning, although the forms these connections would eventually
take could not have been anticipated.

Topological K-theory grew directly out of Grothendieck’s work, and the anal-
ogy with algebraic K-theory was thus visible from the outset. Swan [Sw62] gave
the analogy mathematical content by proving that, for a compact space X, K(X)
is naturally isomorphic to the Grothendieck group of finitely generated projective
modules over the ring C(X) of continuous real-valued functions on X. The isomor-
phism sends a vector space ξ to the C(X)-module Γ(ξ) of sections of ξ; Γ(ξ) is a
finitely generated projective C(X)-module since ξ is a summand of a trivial bundle.

As Adams wrote in his review of a paper of Bass [Bass64]: “This leads to the
following programme: take definitions, constructions and theorems from bundle-
theory; express them as particular cases of definitions, constructions, and state-
ments about finitely-generated projective modules over a general ring; and finally,
try to prove the statements under suitable assumptions.” With this analogy clearly
in mind, Bass defines and studies K0 (following Grothendieck) and K1 of rings
in the cited paper. Higher algebraic K-groups came later, and their study would
lead to substantial developments in stable algebraic topology that would be closely
related to both high dimensional geometric topology and infinite loop space theory.

There are many other areas where analogies between algebra and topology have
been explored. For example, starting with Eckmann-Hilton duality [Eck57, Hil58],
there was considerable work in the late 1950’s and early 1960’s exploring the idea of
a homotopy theory of modules, or, more generally, of objects in abelian categories,
by analogy with the homotopy theory of spaces. I shall say nothing about that
work.

Rather, I shall say a little about the analogy between stable homotopy theory
and differential homological algebra. Differential homological algebra studies such
objects as differential graded modules over differential graded algebras and is a
natural tool in both algebraic topology and algebraic geometry. The analogy be-
tween homotopies in topology and chain homotopies in homological algebra was
already clear by 1945. However, the structural analogy between stable homotopy
theory and differential homological algebra goes much deeper. It later led both to
an axiomatic understanding of homotopy theory in general categories and to con-
crete mathematical comparisons between such categories in topology and algebra,
beginning with the fundamental work of Quillen [Qu67].



STABLE ALGEBRAIC TOPOLOGY, 1945–1966 45

Dold and Puppe gave important precursors of this in the early 1960’s. The first
systematic exploration of the analogy was given by Dold [Dold60], in 1960. He
develops cofiber sequences of chain complexes of modules over a ring, a Whitehead
type theorem for such chain complexes, Postnikov systems of chain complexes, and
so forth. The next year [DP61], Dold and Puppe gave a remarkable and original
use of simplicial methods in algebra by defining and studying derived functors of
non-additive functors between abelian categories. Unlike the additive case, these
functors do not commute with suspension. This fact is analyzed by use of a bar
construction defined in terms of cross-effect functors that measure the deviation
from additivity.

In 1962, Puppe [Pu62], motivated by the need for a good stable homotopy cat-
egory, gave an axiomatic treatment of exact triangles. That paper precedes the
introduction of the derived category of chain complexes over a ring in Verdier’s
1963 thesis (which was published much later [Ver71]). Verdier’s axioms for exact
triangles give the notion of a “triangulated category”. Algebraic topologists and
algebraic geometers have developed several areas of differential homological algebra
independently, with different details, nomenclature, and, of course, assignment of
credit. The definition of triangulated categories is a case in point.

About the same time as Stasheff’s work on A∞ spaces, and with mutual influ-
ence, Mac Lane [Mac65] in 1963 introduced coherence theory in categorical algebra.
This explains what it means for a category to have a product that is associative,
commutative, and unital “up to coherent natural isomorphism”. The coherence
isomorphisms are analogues of higher homotopies in topology. In familiar exam-
ples, like cartesian products and tensor products, the isomorphisms are so obvious
that they hardly seem worth mentioning. In less obvious situations, they require
serious attention. The analogy between coherence isomorphisms and higher homo-
topies was later to be given mathematical content via infinite loop space theory,
with extensive applications to algebraic K-theory.

Also around the same time, Adams and Mac Lane collaborated in the develop-
ment and study of certain algebraic categories, the “PROPs” and “PACTs” dis-
cussed briefly in [Mac65]. Their goal was to understand coherence homotopies in
differential homological algebra. I have gone through a box full of correspondence
between Adams and Mac Lane and can attest that this was one of the largest scale
collaborations never to have reached print. When later translated into topological
terms, their work was to be very influential in infinite loop space theory; the original
algebraic motivation reached fruition much more recently.

21. The stable homotopy category

In our discussion of the Adams spectral sequence and of cobordism, we have
indicated the need for a good stable homotopy category of spectra, and we have
discussed the S-category of Spanier and J.H.C. Whitehead [SW57] and the category
of G.W. Whitehead [Wh62a] as important precursors. We begin this section by
discussing a very important 1966 paper for which such foundations are needed.

We have seen that the quotient B = A/(β) of the Steenrod algebra appears
naturally in the study of cobordism. For all classical groups G and for G = PL,
H∗(MG;Zp) is a free B-module for each odd prime p, where we think of B as
a sub-Hopf algebra of A. In the classical group case, but not in the case of PL,
H∗(MG;Z) is torsion free. For each prime p, Brown and Peterson [BP66] construct



46 J. P. MAY

a spectrum, now called BP , such that H∗(BP ;Zp) ∼= B as an A-module. They then
prove that any spectrum X whose mod p cohomology is a free B-module and whose
integral cohomology is torsion free admits a map f into a product of suspensions
of BP that induces an isomorphism on mod p cohomology. A posteriori, f is a
p-local equivalence. Since Brown and Peterson compute the homotopy groups of
BP , one can read off the homotopy groups of X, modulo torsion prime to p. The
method of proof is to use Milnor’s results on the structure of A to write down a
free resolution of A/(β) as an A-module and then to realize the resolution by an
inductive construction of a generalized Postnikov system whose inverse limit is BP .

This was the first time that a spectrum with desirable properties was tailor
made. The spectra studied earlier had been ones that occurred “in nature” as
sequences of spaces. For the foundations of their work, Brown and Peterson write
“We will make various constructions on spectra, for example, forming fibrations
and Postnikov systems, just as one does with topological spaces. For the details
of this see [–]”. The reference they give in [–] is Whitehead [Wh62a]. However,
the Whitehead category is not designed for this purpose and is not triangulated.
Intuitively, one needs a category that is equivalent to the category of cohomology
theories on spectra, not just spaces.

Moreover, it would later be seen that BP , like S, K, KO, and the MG is a
“commutative and associative ring spectrum”. To attach a satisfactory meaning to
this notion, one needs a smash product in the stable homotopy category of spectra
that is associative, commutative, and unital up to coherent natural isomorphism.
A ring spectrum R is then a spectrum with a product ∧ : R ∧ R −→ R and unit
S −→ R such that the appropriate diagrams commute in the stable homotopy
category.

The minimal requirements of a satisfactory stable homotopy category Sh include
the following very partial list.

1. It must have a suspension spectrum functor Σ∞ : Ch −→ Sh, where Ch is the
homotopy category of based CW complexes.

2. It must have a suspension functor Σ : Sh −→ Sh such that ΣΣ∞ ∼= Σ∞Σ.
3. Σ∞ must induce a full embedding of the S-category of finite CW complexes,

so that Spanier-Whitehead duality makes sense.
4. Sh must represent cohomology theories: isomorphism classes of objects E of
Sh must correspond bijectively to isomorphism classes of cohomology theories
Ẽ∗ in such a way that, Sh(Σ∞X, E) ∼= Ẽ0(X) for based CW complexes X.

5. Sh must be triangulated; in particular, Sh must be an additive category and
Σ : Sh −→ Sh must be an equivalence of categories.

6. Sh must be symmetric monoidal under a suitably defined smash product.

It is not an easy matter to construct such a category, and a rigorous development
of modern stable algebraic topology would not have been possible without one.

Adams made several attempts to construct such a category, first in a very brief
account in 1959 [Ad59] and then in more detail in his 1961 Berkeley notes [Ad61c].
There he gave an amusing discussion of the approaches a hare and a tortoise might
take. In retrospect, his decision to come down on the side of the tortoise was
misguided: a more inclusive and categorically sophisticated approach was needed.
In [Ad66b], Adams assumed the existence of a good stable category and sketched
the development of an Adams spectral sequence based on connective K-theory.
This was the first attempt at setting up an Adams spectral sequence based on
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a generalized cohomology theory. However, convergence was not proven and the
approach was still based on cohomology rather than homology.

More fruitful approaches would come a little later, with the development of the
Adams-Novikov spectral sequence [Nov67], namely the Adams spectral sequence
based on MU or, more usefully, BP . This, together with Quillen’s observation of
the relationship between complex cobordism and formal groups [Qu69], would lead
later to the realization that MU and spectra constructed from it are central to the
structural analysis of the stable homotopy category.

Adams’ version [Ad61c] of the stable homotopy category and the slightly later
version of Puppe [Pu67], following up [Pu62], were based on the use of spectra T
such that Tn is a CW complex and ΣTn is a subcomplex of Tn+1. Connectivity
and convergence conditions were imposed. In Adams, these had the effect that all
spectra were (−1)-connected. In Puppe, they had the effect that all spectra were
bounded below. The specification of maps was a little complicated. Roughly, the
basic diagrams (13.1) were required to commute on the point-set level rather than
only up to homotopy, as in Whitehead’s category, but maps were not required to be
defined on the whole spectrum, only on some cofinal part of it. Puppe’s category
was triangulated, and his discussion of exact triangles has been quite influential.

Kan [Kan63a, Kan63b] introduced simplicial spectra in 1963 and began the de-
velopment of the stable homotopy category in terms of them. Simplicial spectra are
not defined as sequences of simplicial sets and maps, but rather as generalized ana-
logues of simplicial sets that admit infinitely many face operators in each simplicial
degree.

Neither Adams nor Puppe addressed the crucial problem of constructing a smash
product. Kan’s original papers did not address that problem either, but Kan and
Whitehead [KW65a] constructed a smash product of simplicial spectra not much
later. They proved that their smash product is commutative, but they did not
address its associativity. In [KW65b], they used this product to discuss ring and
module spectra and to study degrees of orientability, defined in terms of higher order
cohomology operations, but still without addressing the question of associativity. In
particular, they defined the notion of a commutative ring spectrum without defining
the notion of an associative ring spectrum. Further study of simplicial spectra was
made in a series of papers by Burghelea and Deleanu [BD67, BD68, BD69]. While
they proved some additional properties of the smash product, they too failed to
address the question of its associativity. In fact, as far as I know, that question has
never been addressed in the literature.

Although simplicial spectra have not been studied much in recent years, the
simplicial approach does lend itself naturally to the study of algebraically defined
functors. This was exploited in the papers [KW65a, KW65b] of Kan and Whitehead
and in the paper [BCKQRS66] of Bousfield, Curtis, Kan, Quillen, Rector, and
Schlesinger. That paper gave a new construction of the Adams spectral sequence
in terms of the mod-p lower central series of free simplicial group spectra. For the
sphere spectrum, the E1-term given by their construction is the “Λ-algebra”, which
is a particularly nice differential graded algebra whose homology is the cohomology
of the Steenrod algebra. It would become apparent later that the Λ-algebra is
closely related to the Dyer-Lashof algebra of homology operations on infinite loop
spaces.
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The first satisfactory construction of the stable homotopy category was given
by Boardman in 1964 [Bo64]. Although mimeographed notes were made avail-
able [Bo65, Bo69], Boardman never published his construction. An exposition was
given by Vogt [Vogt70]. Boardman begins with the category F of based finite
CW complexes. He constructs from it the category Fs of finite CW spectra by a
categorical stabilization construction. Its homotopy category Fsh is equivalent to
the category obtained from the S-category by adjoining formal desuspensions. As
Boardman notes, this is the right category in which to study Spanier-Whitehead
duality since here the pesky dimension n in Spanier’s definition can be eliminated:
a duality between finite CW spectra X and Y is specified by a suitably behaved
map ε : Y ∧X −→ S.

Freyd [Fre66] studied the category Fsh categorically. He observed that any ad-
ditive category C with cofiber sequences, such as Fsh, embeds as a full subcategory
of an abelian category A, namely the evident category whose objects are the mor-
phisms of C. Moreover, A has enough injective and projective objects, its injective
and projective objects coincide, and the objects of C map to projective objects in
A. He observed further that idempotents induce splittings into wedge summands
in C for suitable C, such as Fsh, and deduced that C is then the full subcategory
of projective objects of A. Although he was not in possession of Sh, it satisfies the
hypotheses he makes on C. Focusing on Fsh, he posed a provocative question, “the
generating hypothesis”, which asserts that a map between finite CW spectra is null
homotopic if it induces the zero homomorphism of homotopy groups. Despite much
work, it is still unknown whether or not this is true.

Boardman next constructs a category S = Fsw of CW spectra by a categorical
adjunction of colimits construction. Thus his spectra are the colimits of directed
systems of inclusions of finite CW spectra. The homotopy category Sh is the
desired stable homotopy category. The most interesting feature of his work is
his construction of smash products. He constructs a category S(U) similarly for
each countably infinite dimensional real inner product space, and he constructs
an external smash product Z : S(V ) × S(V ) −→ S(U√lusV ). He shows that

any linear isometry f : U −→ U ′ induces a functor f∗ : S(U) −→ S(U ′), and he
proves that, up to canonical isomorphism, the induced functor Sh(U) −→ Sh(U ′) on
homotopy categories is independent of the choice of f . An internal smash product
on S = S(R∞) is a composite f∗ ◦ Z : S × S −→ S for any linear isometry f :
R∞ × R∞ −→ R∞. Any two such internal smash products become canonically
equivalent after passage to homotopy, and this allows the proof that Sh is symmetric
monoidal.

This was very much the hare’s approach and it has greatly influenced later
hares (such as myself), who have needed vastly more precise properties of a good
category of spectra than would have seemed possible in 1966. In particular, for much
current work of interest, it is essential to have an underlying symmetric monoidal
category of spectra, before passage to homotopy categories. However, perhaps for
the benefit of the tortoises, Boardman [Bo69] gave a precise comparison between
his construction of Sh and earlier approaches, and he explained how to modify the
approaches of Adams and Puppe to obtain a category equivalent to Sh. He wrote
“the complication will show why we do not adopt this as definition”. Nevertheless,
Adams soon after gave an exposition along these lines [Ad71b] which, in the absence
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of a published version of Boardman’s category, has served until recently as a stopgap
reference.

In other parts of our story, definitive foundations were in place by 1966. The
axioms for generalized homology and cohomology theories and the understanding
of the representation of homology and cohomology theories were firmly established.
So were the basics of K-theory and cobordism and much of the basic machinery
of computation. Of course, the calculations themselves, once in place, are fixed
forever: the answers will not change. The development of the stable category
seems now also to have reached such a level of full understanding, and I ask the
reader’s indulgence in offering the monograph [EKMM97] as evidence.

My arbitrary stopping point of 1966 has the effect both of allowing me to doc-
ument the invention of a marvelous new area of mathematics and of throwing into
high relief how very much has been done since. There are truly vast areas of stable
algebraic topology that were barely visible over the horizon or well beneath it in
1966. But that is a story for another occasion.
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[Dieu] J. Dieudonné. A history of algebraic and differential topology 1900–1960.
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230(1950), 918-920.
[Wu53] W.-T. Wu. On squares in Grassmannian manifolds. Acta Sci. Sinica 2(1953), 91-115.


