
FINITE SPACES AND SIMPLICIAL COMPLEXES

NOTES FOR REU BY J.P. MAY

1. Statements of results

Finite simplicial complexes provide a general class of spaces that is sufficient
for most purposes of basic algebraic topology. There are more general classes of
spaces, in particular the finite CW complexes, that are more central to the modern
development of the subject, but they give exactly the same collection of homotopy
types. The relevant background on simplicial complexes will be recalled as we go
along and can be found in most textbooks in algebraic topology (but not in my
own book [6]). We write |K| for the geometric realization of K.

We recall the definition of the homotopy groups πn(X,x) of a space X at x ∈ X.
When n = 0, this is just the set of path components of X, with the component
of x taken as a basepoint (and there is no group structure). When n = 1 it is
the fundamental group of X at the point x. For all n ≥ 0, it can be described
most simply by considering the standard sphere Sn with a chosen basepoint ∗.
One considers all maps α : Sn −→ X such that f(∗) = x. One says that two such
maps α and β are based homotopic if there is a based homotopy h : α ' β. Here a
homotopy h is based if h(∗, t) = x for all t ∈ I. If n = 1, the map α is a loop at
x, and we can compose loops to obtain a product which makes π1(X,x) a group.
The homotopy class of the constant loop at x gives the identity element, and the
loop α−1(t) = α(1− t) represents the inverse of the homotopy class of α. There is a
similar product on the higher homotopy groups, but, in contrast to the fundamental
group, the higher homotopy groups are Abelian.

A map f : X −→ Y induces a function f∗ : πn(X,x) −→ πn(Y, f(x)). One just
composes maps α and homotopies h as above with the map f . If n ≥ 1, f∗ is a
homomorphism.

Definition 1.1. A map f : X −→ Y is a weak homotopy equivalence if

f∗ : πn(X,x) −→ πn(Y, f(x))

is an isomorphism for all n ≥ 0. If n = 0, this means that components are mapped
bijectively. Two spaces X and Y are weakly homotopy equivalent if there is a
finite chain of weak homotopy equivalences Zi −→ Zi+1 or Zi+1 −→ Zi starting at
X = Z1 and ending at Zq = Y .

The definition may seem strange at first sight, but it has gradually become
apparent that the notion of a weak homotopy equivalence is even more important
in algebraic topology than the notion of a homotopy equivalence. The notions
are related. We state some theorems that the reader can take as reference points.
Proofs can be found in [6].
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Theorem 1.2. A homotopy equivalence is a weak homotopy equivalence. Con-
versely, a weak homotopy equivalence between CW complexes (for example, between
simplicial complexes) is a homotopy equivalence.

Theorem 1.3. Spaces X and Y are weakly homotopy equivalent if and only if there
is a space Z (in fact a CW complex Z) and weak homotopy equivalences Z −→ X
and Z −→ Y .

That is, the chains that appear in the definition need only have length two. For
those who know about homology and cohomology, we record the following result.

Theorem 1.4. A weak homotopy equivalence induces isomorphisms of all singular
homology and cohomology groups.

Following McCord [7], we are going to relate finite spaces with finite simplicial
complexes, explaining the following two theorems. Since any finite space is homo-
topy equivalent to a T0-space, there is no loss of generality if we restrict attention
to finite T0-spaces. McCord actually deals more generally with A-spaces, but the
arguments are no different.

Theorem 1.5. For a finite T0-space X, there is a finite simplicial complex K (X)
with vertex set X, and there is a weak homotopy equivalence

ψ = ψX : |K (X)| −→ X.

A map f : X −→ Y of finite spaces defines a simplicial map

K (f) : K (X) −→ K (Y )

such that f ◦ ψX = ψY ◦ |f |.

The essential point in the proof, which we will take for granted, is that weak
homotopy equivalence is a local notion in the sense of the following theorem. Mc-
Cord [7] relies on point-by-point comparison with arguments in the early paper [1],
which doesn’t prove the result but comes close. More modern references are [5, 11].

Theorem 1.6. Let p : E −→ B be a continuous map. Suppose that B has an open
cover O with the following two properties.

(i) If b is in the intersection of sets U and V in O, then there is some W ∈ O
with x ∈ W ⊂ U ∩ V ; that is, O is a basis for a possibly smaller topology
than that originally given on B.

(ii) For each U ∈ O, the restriction p : p−1U −→ U is a weak homotopy equiv-
alence.

Then p is a weak homotopy equivalence.

Theorem 1.5 is itself used to obtain the following complementary result.

Theorem 1.7. For a finite simplicial complex K, there is a finite T0-space X (K)
whose points are the barycenters of the simplices of K, and there is a weak homotopy
equivalence

φ = φK : |K| −→ X (K).
For a simplicial map g : K −→ L, there is a map

X (g) : X (K) −→ X (L)

such that X (g) ◦ φK ' φL ◦ |g|.
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Remark 1.8. Writing K ′ for the barycentric subdivision of K, so that |K| = |K ′|,
we will have K X (K) = K ′. The map φK will be ψX (K), and Theorem 1.5 will
apply to show that it is a weak homotopy equivalence.

As a warm-up exercise, we will consider suspensions of spaces and give a finite
model for the n-sphere before turning to the proofs of these general results.

2. Problems

Also before turning to the proofs, we list a few problems that spring immediately
to mind. To the best of my knowledge, none of them have been studied.

Problem 2.1. For small n, determine all homotopy types and weak homotopy types
of spaces with at most n elements.

Addendum 2.2. This has been done in class or by students in the cases n ≤ 6.
Nearly all finite spaces with so few points are disjoint unions of (weakly) contractible
spaces.

Problem 2.3. Is there an effective algorithm for computing the homotopy groups
of X in low degrees in terms of the increasing chains in X?

Remark 2.4. The dimension of the simplicial complex K (X) is the maximal length
of a sequence x0 < · · · < xn in X. A map g : K −→ L of simplicial complexes
of dimension less than n is a homotopy equivalence if and only if it induces an
isomorphism of homotopy groups in dimension less than n and an epimorphism of
homotopy groups in dimension n.

Problem 2.5. Let X be a minimal finite space. Give a descriptive interpretation
of what this says about |K (X)|.

Addendum 2.6. There is a nice paper of Osaki [9] that interprets Stong’s process of
passing from a finite T0-spaceX to its core Y . He shows that K (Y ) is obtained from
K (X) by a sequence of elementary simplicial collapses, so that |K (X)| and |K (Y )|
have the same simple homotopy type. It follows that if X and Y are homotopy
equivalent finite T0-spaces, then K (X) and K (Y ) have the same simple homotopy
type. If K is not collapsible, then X (K) is a minimal finite space. He displays
non-collapsible triangulations K1 and K2 of S1 such that X (K1) and X (K2) are
not homeomorphic and therefore, being minimal, not homotopy equivalent. This
provides a simple example of weak homotopy equivalent finite spaces that are not
homotopy equivalent.

Problem 2.7. Let f : X −→ Y be a weak homotopy equivalence between minimal
finite spaces. Is f necessarily a homotopy equivalence and hence a homeomorphism?

Problem 2.8. Suppose that two finite spaces X and Y are weakly homotopy equiv-
alent. Are they weakly homotopy equivalent via a chain in which all of the Zi are
again finite spaces?

Addendum 2.9. The answer is yes, as an application of the simplicial approximation
theorem for finite spaces of Hardie and Vermeulen [2]. It is discussed below.

Problem 2.10. Are there computationally effective algorithms for enumerating the
homotopy types and, presumably much harder, the weak homotopy types of finite
spaces?
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Addendum 2.11. Osaki [9] has given two theorems that describe when one can shrink
a finite T0-space, possibly minimal, to a smaller weakly homotopy equivalent space.
He asks whether all weak homotopy equivalences are generated by the simple kinds
that he describes.

Problem 2.12. Is there a combinatorial way of determining when a weak homotopy
equivalence of finite spaces is a homotopy equivalence?

Problem 2.13. Rather than restricting to finite simplicial complexes, can we model
the world of finite CW complexes in the world of finite spaces. The discussion of
spheres and cones in the next section gives a starting point.

3. The non-Hausdorff suspension

The suspension is one of the most basic constructions in all of topology. Following
McCord [7], we show that it comes in two weakly equivalent versions, the classical
one and a non-Hausdorff analogue that preserves finite spaces. For the purposes of
these notes, we shall use the following unbased variant of the classical suspension.

Definition 3.1. The suspension SX of a space X is the quotient space obtained
from X×[−1, 1] by identifying X×{−1} to a single point − and identifying X×{1}
to a single point +. Thus SX can be thought of as obtained by gluing together
the bases of two cones on X. For a map f : X −→ Y , define Sf : SX −→ SY by
(Sf)(x, t) = (f(x), t).

We defined the non-Hausdorff cone CX by adjoining a new cone point ∗ and
letting the proper open subsets of CX be all of the open subsets of X, and we saw
that CX is contractible. We now change notation and call the added point +.

Definition 3.2. Define the non-Hausdorff suspension SX by adjoining two new
points, denoted + and −, and letting the proper open subsets be the open sets in
X and the sets X ∪ + and X ∪ −. Again, SX can be thought of as obtained by
gluing together two copies of CX. If f : X −→ Y is a map, define maps Cf and Sf
by using f on X and sending + to + and − to −.

Observe that if X is a T0-space, then so are CX and SX.

Definition 3.3. Define a comparison map

γ = γX : SX −→ SX
by γ(x, t) = x if −1 < t < 1, γ(+) = + and γ(−) = −. Observe that, for a
map f : X −→ Y , γY ◦ Sf = Sf ◦ γX . Inductively, define SnX = SSn−1X and
SnX = SSn−1X and let γn : SnX −→ SnX be the common composite displayed in
the commutative diagram

SnX
Sγn−1

//

γ

��

γn

&&MMMMMMMMMMM SSn−1X

γ

��
SSn−1X

Sγn−1
// SnX

Theorem 3.4. For any space X, the map γ : SX −→ SX is a weak homotopy equiv-
alence. For any weak homotopy equivalence f : X −→ Y , the maps Sf : SX −→ SY
and Sf : SX −→ SY are weak homotopy equivalences. Therefore γn : SnX −→ SnX
is a weak homotopy equivalence for any space X.
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Proof. This is an application, or rather several applications, of Theorem 1.6. Take
the three subspaces X, X ∪{+}, and X ∪{−} as our open cover of SX and observe
that the latter two subspaces are copies of CX and are therefore contractible.
The respective inverse images under γ of these three subsets are the images in
SX of X × (−1, 1), X × (−1, 1], and X × [−1, 1). The restrictions of γ on these
three subspaces are homotopy equivalences, hence weak homotopy equivalences.
Similarly, taking the three subspaces Y , Y ∪{+}, and Y ∪{−} as our open cover of
SY , their inverse images under Sf are X, X∪{+}, and X∪{−}, and the restrictions
of Sf on these three subspaces are weak homotopy equivalences. Finally, take the
images in SY of Y ×(−1/2, 1/2), Y × [−1, 1/2), and Y ×(−1/2, 1] as our open cover
of SY . Their inverse images under Sf are the corresponding subspaces of SX, and
the restrictions of Sf to these subspaces are weak homotopy equivalences. �

Example 3.5. Let X = S0, a two-point discrete space. Then SnX is homeomor-
phic to the n-sphere Sn, while SnX is a T0-space with 2n+2 points. Thus we have
a weak homotopy equivalence γn from Sn to a finite space with 2n+ 2 points.

Proposition 3.6. Each SnS0 is a minimal finite space.

Proof. Certainly SnS0 is T0, and it has no upbeat or downbeat points since each
point has incomparable points above or below it in the partial ordering. �

Problem 3.7. Is SnS0 the finite space with the smallest number of points that
is weakly homotopy equivalent to an n-sphere? The answer is probably yes and
probably known, but I don’t know how to prove it and can’t find it in the literature.

4. Recollections about simplicial complexes

Definition 4.1. An abstract simplicial complex K is a set V = V (K), whose
elements are called vertices, together with a set K of (non-empty) finite subsets
of V , whose elements are called simplices, such that every vertex is an element of
some simplex and every subset of a simplex is a simplex; such a subset is called a
face of the given simplex. We say that K is finite if V is a finite set. The dimension
of a simplex is one less than the number of vertices in it. A map g : K −→ L of
abstract simplicial complexes is a function g : V (K) −→ V (L) that takes simplices
to simplices. We sat that K is a subcomplex of L if the vertices and simplices of K
are some of the vertices and simplices of L. We say that K is a full subcomplex of
L if, further, every simplex of L whose vertices are in K is a simplex of K.

Definition 4.2. A set {v0, · · · , vn} of points of RN is geometrically independent if
the equations

∑
tivi = 0 and

∑
ti = 0 for real numbers ti imply t1 = · · · = tn = 0.

It is equivalent that the vectors vi − v0, 1 ≤ i ≤ n, are linearly independent. The
n-simplex σ spanned by {v0, · · · , vn} is then the set of all points x =

∑
tivi, where∑

ti = 1. The ti are called the barycentric coordinates of the point x. When each
ti = 1/n+1, the point x is called the barycenter of σ. The points vi are the vertices
of σ. A simplex spanned by a subset of the vertices is a face of σ; it is a proper
face if the subset is proper. The standard n-simplex ∆n is the n-simplex spanned
by the standard basis of Rn+1.

Definition 4.3. A simplicial complex, or geometric simplicial complex, K is a set
of simplices in some RN such that every face of a simplex in K is a simplex in K
and the intersection of two simplices in K is a simplex in K. The set of vertices of
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K is the union of the sets of vertices of its simplexes. The notions of subcomplex
and full subcomplex are evident.

Definition 4.4. The geometric realization |K| is the the union of the simplices of
K, each regarded as a subspace of RN , with the topology whose closed sets are the
sets that intersect each simplex in a closed subset. If K is finite, but not in general
otherwise, this is the same as the topology of |K| as a subspace of RN . The open
simplices of |K| are the interiors of its simplices (where a vertex is an interior point
of its 0-simplex), and every point of |K| is an interior point of a unique simplex.
The boundary ∂σ of a simplex σ is the subcomplex given by the union of its proper
faces. The closure of a simplex is the union of its interior and its boundary.

Definition 4.5. A map g : K −→ L of simplicial complexes is a function from
the vertex set V (K) to the vertex set V (L) such that, for each subset S of V (K)
that spans a simplex, the set g(S) is the set of vertices of a simplex of L. Then
g determines the continuous map |g| : |K| −→ |L| that sends

∑
tivi to

∑
tig(vi).

Note that we do not require g to be one–to–one on vertices, but |g| is nevertheless
well-defined and continous. If g is a bijection on vertices and simplices, we say that
it is an isomorphism, and then |g| is a homeomorphism.

It is usual to abbreviate |g| to g and to refer to it as a simplicial map.

Definition 4.6. The abstract simplicial complex aK determined by a geometric
simplicial complexK has vertex set the union of the vertex sets of the simplices ofK.
Its simplices are the subsets that span a simplex of K. An abstract finite simplicial
complex K determines a geometric finite simplicial complex gK by choosing any
bijection between the vertices of K and a geometrically independent subset of some
RN . For specificity, we can take the standard basis elements of RN where N is the
number of points in the vertex set V (K). The geometric simplices are spanned by
the images under this bijection of the simplices of K. For an abstract simplicial
complex K, agK is isomorphic to K, the isomorphism being given by the chosen
bijection. Similarly, for a finite geometric simplicial complex K, gaK is isomorphic
to K.

We could remove the word finite from the previous definition by defining geomet-
ric simplicial complexes more generally, without reference to a finite dimensional
ambient space RN , but there is no point in going into that here. We also note
that we do not have to realize in such a high dimensional Euclidean space. The
following result holds no matter how many vertices there are. It is rarely used, but
is conceptually attractive. A proof can be found in [4, 1.9.6]

Theorem 4.7. Any simplicial complex K of dimension n can be geometrically
realized in R2n+1.

In view of the discussion above, abstract and geometric finite simplicial com-
plexes can be used interchangeably. In particular, the geometric realization of an
abstract simplicial complex is K is understood to mean the geometric realization
of any gK.

We need a criterion for when the geometric realizations of two simplicial maps
are homotopic.

Proposition 4.8. Let f and g be maps from a topological space X to |K| ⊂ RN .
Say that f and g are simplicially close if, for each x ∈ X, both f(x) and g(x) are
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in the closure of some simplex σ(x) of L. If f and g are simplicially close, then
they are homotopic.

Proof. Define h : X × I −→ RN by

h(x, t) = (1− t)f(x) + tg(x).

Since h(x, t) is in the closure of σ(x) and therefore in |K|, it specifies a homotopy
as required. �

5. Cones and subdivisions of simplicial complexes

Let K be a finite geometric simplicial complex in RN .

Definition 5.1. Define the cone CT of a topological space T to be the quotient
space T × I/T × {1}.

Definition 5.2. Let x be a point of RN − K such that each ray starting at x
intersects |K| in a single point. Observe that the union of {x} and the set of
vertices of a simplex of K is a geometrically independent set. Define the cone K ∗x
on K with vertex x to be the geometric simplicial complex whose simplices are all
of the faces of the simplices spanned by such unions. Then K is a subcomplex of
K ∗ x, x is the only vertex not in K, and |K ∗ x| is homeomorphic to C|K|.

Example 5.3. A simplex is the cone of any one of its vertices with the subcomplex
spanned by the remaining vertices (the opposite face).

Definition 5.4. A subdivision ofK is a simplicial complex L such that each simplex
of L is contained in a simplex of K and each simplex of K is the union of finitely
many simplices of L.

Lemma 5.5. If L is a subdivision of K, then |L| = |K| (as spaces).

The n-skeleton Kn of K is the union of the simplices of K of dimension at most
n. It is a subcomplex.

Construction 5.6. We construct the (first) barycentric subdivision K ′ of K. We
subdivide the skeleta of K inductively. Let L0 = K0. Suppose that a subdivision
Ln−1 of Kn−1 has been constructed. Let bσ be the barycenter of an n-simplex σ of
K. The space |∂σ| coincides with |Lσ| for a subcomplex Lσ of Ln−1, and we can
define the cone Lσ ∗ bσ. Clearly |Lσ ∗ bσ| = |σ| and |Lσ ∗ bσ| ∩ |Ln−1| = |Lσ| = |∂σ|.
If τ is another n-simplex, then |Lσ ∗ bσ| ∩ |Lτ ∗ bτ | = |σ∩ τ |, which is the realization
of a subcomplex of Ln−1 and therefore of both Lσ and Lτ . Define Ln to be the
union of Ln−1 and the complexes Lσ ∗ bσ, where σ runs over all n-simplices of K.
Our observations about intersections show that Ln is a simplicial complex which
contains Ln−1 as a subcomplex. The union of the Ln is denoted K ′ and called the
barycentric subdivision of K.

The second barycentric subdivision ofK is the barycentric subdivision of the first
barycentric subdivision, and so on inductively. We can enumerate the simplices of
K ′ explicitly rather than inductively.

Proposition 5.7. Define σ < τ if σ is a proper face of τ . Then K ′ is the sim-
plicial complex whose simplices σ′ are the spans of the geometrically independent
sets {bσ1 , · · · , bσn}, where σ1 > · · · > σn. In particular, the barycenters bσ are the
vertices of K ′. The vertex bσ1 is called the leading vertex of the simplex σ′.
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Proof. We show this inductively for the subcomplexes Ln. Since L0 = K0, this is
clear for L0. Assume that it holds for Ln−1. If τ is a simplex of Ln such that |τ | is
contained in |Kn| but not contained in Kn−1, then τ is a simplex in Lσ ∗bσ for some
n-simplex σ. By the induction hypothesis and the definition of Lσ, each simplex of
Lσ is the span of a set {bσ1 , · · · , bσm

}, where σ > σ1 > · · · > σm. Therefore τ is
the span of a set {bσ, bσ1 , · · · , bσm}. �

Proposition 5.8. There is a simplicial map ξ = ξK : K ′ −→ K whose realization
is simplicially close to the identity map and hence homotopic to the identity map.

Proof. Let ξ map each vertex bσ of K ′ to any chosen vertex of σ. If σ′ is a simplex
of K ′ with leading vertex bσ1 , then all other vertices of σ′ are barycenters of faces
of σ1, hence are mapped under ξ to vertices of σ1. Therefore the images under ξ of
the vertices of σ′ span a face of σ1, so that ξ is a simplicial map. If x ∈ |K ′| is an
interior point of the simplex σ′, then it is mapped under ξ to a point of σ1 ⊃ σ′,
and we let σ(x) = σ1. Since ξ maps every vertex of σ′ to a vertex of σ1, x and ξ(x)
are both in the closure of σ1. �

Remark 5.9. In the cases of interest to us, there is a partial order on the simplices
of K that restricts to a total order on each simplex of K. In that case, we have
the standard simplicial map ξ : K ′ −→ K specified by letting ξ(bσ) be the maximal
vertex xn of the simplex σ = {x0, · · · , xn}.

Proposition 5.10. A simplicial map g : K −→ L induces a subdivided simplicial
map g′ : K ′ −→ L′ whose realization is simplicially close to |g| and hence homtopic
to |g|.

Proof. The images under g of the vertices of a simplex σ of K span a simplex g(σ),
of possibly lower dimension than σ, and we define g′(bσ) = bg(σ) on vertices. If bσ1

is the leading vertex of a simplex σ′ of K ′, then all other vertices of σ′ are barcenters
of faces of σ1. Their images under g′ are barycenters of vertices of g(σ1). If x is an
interior point of σ′, then both g(x) and g′(x) are in the closure of g(σ1). �

6. The definition and properties of K (X) and X (K)

Let X be a finite T0-space.

Definition 6.1. Define K (X) to be the abstract simplicial complex whose vertex
set is X and whose simplices are the finite totally ordered subsets of the poset X.
Since a map f : X −→ Y is an order–preserving function, it may be regarded as a
simplicial map K (f) : K (X) −→ K (Y ).

Lemma 6.2. If V is a subspace of X, then K (V ) is a full subcomplex of K (X).

Proof. the ordering ≤ on V is the restriction of the ordering ≤ on X. Every totally
ordered subset of X whose points are in V is a totally ordered subset of V . �

Definition 6.3. Define ψ : |K (X)| −→ X as follows. Each point u ∈ |K (X)|
is an interior point of a simplex σ spanned by some strictly increasing sequence
x0 < x1 < · · · < xn of points of X. Define ψ(u) = x0.

It is convenient to start with the proof of the last statement of Theorem 1.5.

Lemma 6.4. If f : X −→ Y is a map of finite T0-spaces, then f ◦ ψX = ψY ◦ |f |.
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Proof. With u as in the previous definition, f(u) is in the simplex spanned by
the f(xi), and f(x0) ≤ f(x1) ≤ · · · ≤ f(xn). Omitting repetitions, we see that
ψ(f(u)) = f(x0). �

Proposition 6.5. Let V be an open subset of X. Then

ψ−1(V ) = ∪{star(v)|v ∈ V },

where star(v) is the union of the open simplices of |K (X)| that have v as a vertex.
Therefore ψ is continuous.

Proof. If ψ(u) = v ∈ V , then u is an interior point of a simplex σ of which v is
the initial vertex x0. Thus u ∈ star(v). Conversely, suppose that u ∈ star(v) with
v ∈ V . Then u is an interior point of a simplex σ determined by an increasing
sequence x0 < x1 < · · · < xn such that some xi = v ∈ V . Since x0 ≤ v, x0 ∈ Uv.
Since V is open, Uv ⊂ V . Thus ψ(u) = x0 is in V . �

Corollary 6.6. |K (V )| is a deformation retract of ψ−1(V ).

Proof. By Lemma 6.2, K (V ) is a full subcomplex of K (X). It follows that |K (V )|
is a deformation retract of its open star in |K (X)|. This is a standard fact in the
theory of simplicial complexes, and a more detailed proof is given in [8, 70.1 and
p. 427]. Consider a simplex σ that is in the open star of V but is not contained in
V . Then σ has vertex set the disjoint union of a set of vertices in V and a set of
vertices in X − V . Each point u of σ that is neither in the span s of the vertices in
V nor in the span t of the vertices not in V is on a unique line segment joining a
point in t to a point in s. Define the required retraction r by sending u to the end
point in s ⊂ V of this line segment, letting r be the identity map on V and thus
on s. Deformation along such line segments gives the required homotopy showing
that i ◦ r is the identity, where i is the inclusion of |K (V )| in its open star. �

Recall that each open subset Ux of X is contractible.

Proposition 6.7. For x ∈ X, ψ−1(Ux) is contractible.

Proof. By the previous corollary, it suffices to show that |K (Ux)| is contractible.
Let Vx = Ux − x. We claim that |K (Ux)| is isomorphic to the cone K (Vx) ∗ x.
Indeed, a simplex of K (Vx) is given by an increasing sequence x0 < x1 < · · · < xn.
The increasing sequence x0 < x1 < · · · < xn < x gives a simplex of K (Ux), and
every simplex of K (Ux) not in K (Vx) is of this form. �

The proof that ψ is a weak homotopy equivalence. Theorem 1.6 applies to the min-
imal open cover of X. If x is in Uy∩Uz, then x is in Uy or Uz, so that Ux is contained
in Uy or Uz. This verifies the first hypothesis of the cited theorem, and the second
hypothesis holds by the previous result. �

Now let K be a finite geometric simplicial complex with first barycentric subdi-
vision K ′.

Definition 6.8. Define a finite T0-space X (K) as follows. The points of X (K)
are the barycenters bσ of the simplices of K, that is, the points of K ′. The required
partial order ≤ is defined by bσ ≤ bτ if σ ⊂ τ . The open subspace Ubσ

coincides
with X (σ), where σ (together with its faces) is regarded as a subcomplex of K.
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The proof of Theorem 1.7. Using the barycenters themselves to realize the vertices
geometrically, we find that K X (K) = K ′, by Proposition 5.7. Define

φK = ψX (K) : |K| = |K ′| = |K X (K)| −→ X (K).

Then φK is a weak homotopy equivalence by Theorem 1.5. For a simplicial map
g : K −→ L, define X (g) = g′ on barycenters and note that this function is order–
preserving and therefore continuous. Clearly |X (g)| = |g′| and therefore, by The-
orem 1.5 and Proposition 5.10, X (g) ◦ φK = φL ◦ |g′| ' φL ◦ |g|. �

7. Mapping spaces

For completeness, we record results of Stong [10] that were obtained about the
same time as the results of McCord recorded above and that give a quite different
approach to the relationship between finite simplicial complexes and finite spaces.
Since the proofs are fairly long and combinatorial in flavor, and since the statements
do not have quite the same immediate impact as those in McCord’s work, we shall
not work through the details here.

Rather than constructing finite models for finite simplicial complexes, Stong
studies all maps from simplicial complexes K into finite spaces X by studying the
properties of the function space XK . More generally, he fixes a subcomplex L of K
and a basepoint ∗ ∈ X and studies the subspace (X, ∗)(K,L) of maps f : K −→ L
such that f(L) = ∗. Homotopies relative to L between such maps are homotopies
h such that h(k, t) = ∗ for all k ∈ L.

Theorem 7.1. Let L be a subcomplex of a finite simplicial complex K, let X be
a finite space with basepoint ∗, and let F = (X, ∗)(K,L) denote the subspace of XL

consisting of those maps f : K −→ X such that f(L) = ∗.
(i) For any f ∈ F , there is a map g ∈ F such that the set V = {h|h ≤ g} ⊂ F

is a neighborhood of f in F ; that is, there is an open subset U such that
f ∈ U ⊂ V .

(ii) If f ' f ′ relative to L, then there is a sequence of elements {g1, · · · , gs} in
F such that g1 = f , gs = h, and either gi ≤ gi+1 or gi+1 ≤ gi for 1 ≤ i < s.

The essential point of this analysis is the following consequence.

Corollary 7.2. The path components and components of F coincide. That is, the
homotopy classes of maps f : (K,L) −→ (X, ∗) are in bijective correspondence with
the components of F .

8. The simplicial approximation theorem

The classical point of barycentric subdivision is its use in the simplicial ap-
proximation theorem, which in its simplest form reads as follows. Starting with
K(0) = K, let K(n) = K ′K(n−1) be the nth barycentric subdivision of a sim-
plicial complex K. By iteration of ξ : K ′ −→ K, we obtain a simplicial map
ξ(n) : K(n) −→ K whose geometric realization is a homotopy equivalence.

Theorem 8.1. Let K be a finite simplicial complex and L be any simplicial com-
plex. Let f : |K| −→ |L| be any continuous map. Then, for some sufficiently large
n, there is a simplicial map g : K(n) −→ L such that f is homotopic to |g|.
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This means that, for the purposes of homotopy theory, general continuous maps
may be replaced by simplicial maps. We shall explain the proof shortly.

There are two papers, [2, 3], that start with the simplicial approximation theorem
and take up where McCord and Stong leave off. In view of the explicit constructions
of K (X) and X (K), the following definition is reasonable.

Definition 8.2. Define the (first) barycentric subdivision of a finite T0-space X to
be X ′ = X K (X). For a map f : X −→ Y , define f ′ : X ′ −→ Y ′ to be X K (f).
Iterating the construction, define X(n) = (X(n−1))′. where X(0) = X. Observe
inductively that K (X(n)) = (sK(X))(n) since K X (K) = K ′.

Proposition 8.3. There is a map ζ = ζX : X ′ −→ X that makes the following
diagram commute, and ζ is a weak homotopy equivlalence.

|K X K (X)|

ψX K (X)

��

|K (X)′|
|ξK (X)|// |K (X)|

ψX

��
X ′ = X K (X)

ζX

// X.

The simplicial map ξK (X) coincides with K (ζX) : K (X ′) −→ K (X). For any
map f : X −→ Y , ξY ◦ f ′ = f ◦ ξX .

Proof. The vertices of X K (X) are the barycenters of the simplices of K (X).
These simplices σ are spanned by increasing sequences x0 < · · · < xn of elements
of X. Let ζ(bσ) = xn. Since bσ ≤ bτ implies σ ⊂ τ and thus ζ(bσ) ≤ ζ(bτ ),
ζ is continuous. Inspection of definitions shows that ξK (X) = K (ζX), and the
commutativity of the diagram follows from the “naturality” of ψ with respect to
the map ζX . That ζX is a weak homotopy equivalence now follows from the diagram,
since all other maps in it are weak homotopy equivalences. The last statement is
clear by inspection of definitions. �

Theorem 8.4. Let X and Y be finite T0-spaces and let f : |K (X)| −→ |K (Y )| be
any continuous map. Then, for some sufficiently large n there is a continuous map
g : X(n) −→ Y such that f is homotopic to |K (g)|.

Proof. By the classical simplicial approximation theorem above, for a sufficiently
large n there is a simplicial approximation

j : K (X(n−1)) = (K (X))(n−1) −→ K (Y )

to f . Let g = ζY ◦X (j). Since K (g) = K (ζY ) ◦K X (j) = K (ζY ) ◦ j′ and since
|j′| ' |j| ' f and |K (ζY )| = |ξK (Y )| ' id, we have |K (g)| ' f , as required. �

The point is that finite models for spaces have far too few maps between them.
For example, πn(Sn, ∗) = Z, but there are only finitely many distinct maps from
any finite model for Sn to itself. The theorem says that, after subdividing the
domain sufficiently, we can realize any of these homotopy classes in terms of maps
between (different) finite models for Sn.

Sketch proof of the simplicial approximation theorem. We are given f : |K| −→ |L|.
Give |K| the open cover by the sets f−1(star(w)), where v runs over the vertices
of L. Since |K| is a compact subspace of a metric space, the “Lebesque lemma”
ensures that there is a number δ such that any subset of |K| of diameter less than
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δ is contained in one of the open sets star(w). The diameter of a (closed) simplex
is easily seen to be the maximal length of a one-dimensional face. Each barycentric
subdivision therefore has the effect of cutting the maximal diameter of a simplex in
half, so that there is an n such that every simplex of K(n) has diameter less than
δ/2. Then each star(v) for a vertex v ofK has diameter less than δ, and we conclude
that f(star(v)) ⊂ star(w) for some vertex w of L. Define g : V (K) −→ V (L) by
letting g(v) = w for some w such f(star(v)) ⊂ star(g(v)). One checks that g maps
simplices to simplices and so specifies a map of simplicial complexes. If u is an
interior point of a simplex σ of K, then f(x) is an interior point of some simplex
τ of L. One can check that g maps each vertex of σ to a vertex of τ . This implies
that |g| is simplicially close to f and therefore homotopic to f . �

9. Really finite H-spaces

The circle is a topological group. If we regard it as a the subspace of the com-
plex plane consisting of points of norm one, then complex multiplication gives the
product S1 × S1 −→ S1. How can we model such a basic structure in terms of a
map of finite spaces?

Stong proved a rather amazing negative result about this problem. We will not go
into the combinatorial details of his proof, contenting ourselves with the statement.

Definition 9.1. Let (X, e) be a finite space with a basepoint e. Suppose given a
map φ : X × X −→ X. Say that X is an H-space of type I if multiplication by
e on either the right or the left is homotopic to the identity. That is, the maps
x → φ(e, x) and x → φ(x, e) are each homotopic to the identity. Say that X is an
H-space of type II if the em shearing maps X ×X −→ X ×X defined by sending
(x, y) to either (x, φ(x, y)) or (y, φ(x, y)) are homotopy equivalences.

A topological group is an H-space of both types, but it is much less restrictive for
a space to be an H-space than for a space to be a topological group. By definition,
the notion of H-space is homotopy invariant in the sense that if one defines an
H-space structure on (X, e) to be a homotopy class of products φ, then one has the
following result.

Proposition 9.2. If (X, e) an (Y, f) are homotopy equivalent, then H-space struc-
tures on (X, e) correspond bijectively to H-space structures on (Y, f).

This motivates Stong to study H-space structures on minimal finite spaces. Here
it is easy to see the followng result.

Proposition 9.3. Let (X, e) be a finite H-space of either type. Then the maps
X −→ X that send x to either φ(x, e) or φ(x, e) are homeomorphisms.

Examining the combinatorial relationship of general points of X to the point e,
Stong then arrives at the following striking conclusion.

Proposition 9.4. If (X, e) is an H-space of either type, then the point e is both
maximal and minimal under ≤.

This means that e is a component of X. Stong shows that this implies the
following conclusions for general finite H-spaces.

Theorem 9.5. Let X be a finite space and let e ∈ X. Then there is a product φ
making (X, e) an H-space of type I if and only if e is a deformation retract of its
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component in X. Therefore X is an H-space for some basepoint e if and only if
some component of X is contractible.

Theorem 9.6. Let X be a finite space. Then there is a product φ making X an
H-space of type II if and only if every component of X is contractible.

Corollary 9.7. A connected finite space X is an H-space of either type if and only
if X is contractible.

So there is no way that we can model the product on S1 by means of an H-
space structure on some finite space X. Our standard model T = SS0 of S1 can
be embedded in C as the four point subgroup {±1,±i}, but then the complex
multiplication is not continuous. However, the multiplication can be realized as a
map T×T)(n) −→ T for some finite n, by the simplicial approximation theorem for
finite spaces. It is natural to expect that some small n works here. The following
result is proven in [3].

Theorem 9.8. Choosing minimal points e in T and f ∈ T′ as basepoints, there is
a map

φ : T′ × T′ −→ T
such that φ(f, f) = e and the maps x −→ φ(x, f) and x −→ φ(f, x) from T′ to T
are weak homotopy equivalences.

That is, we can realize a kind of H-space structure after barycentric subdivi-
sion. The proof is horribly unilluminating. The space T′ has eight elements, the
space T has four elements. One writes down and 8 × 8 matrix with values in T,
choosing it most carefully so that when the 8 point and 4 point spaces are given
the appropriate partial order, and the 64 point product space the product order,
the function represented by the matrix is order preserving. Then one checks the
row and column corresponding to multiplication by the basepoint.

Several other interesting spaces and maps are modelled similarly in the cited
paper, for example RP 2 and CP 2.
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