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Abstract. We show how the formal Wirthmüller isomorphism theorem proven
in [2] simplifies the proof of the Wirthmüller isomorphism in equivariant stable
homotopy theory. Other examples from equivariant stable homotopy theory
show that the hypotheses of the formal Wirthmüller and formal Grothendieck
isomorphism theorems in [2] cannot be weakened.
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We illustrate the force of the formal Wirthmüller isomorphism theorem of [2] by
giving a worked example of an interesting theorem whose proof it simplifies, namely
the Wirthmüller isomorphism theorem in equivariant stable homotopy theory. It
relates categories of G-spectra and H-spectra for H ⊂ G. We also say just a little
about the analogous Adams isomorphism that relates categories of G-spectra and
J-spectra for a quotient group J of G. That context gives an interesting situation
where the formal hypotheses of the formal Wirthmüller isomorphism theorem hold
but the conclusion fails, showing that the more substantive hypothesis is essential.

In their general form, the Wirthmüller and Adams isomorphisms are due to
Gaunce Lewis and myself [7]. It is a pleasure to thank Lewis for ongoing discus-
sions and his longstanding quest for simplifications and generalizations of these
theorems. The analogy between these isomorphisms in topology and Verdier du-
ality was first explored by Po Hu [5], who carried out an idea of Lewis that these
isomorphisms could be obtained using parametrized equivariant spectra. She ob-
tained a significant generalization of the Wirthmüller isomorphism, but at the price
of greatly increased complexity. As in our proof here, the theory of [2] allows a con-
siderable simplification of her work, and that is part of our motivation. The theory
of [2] should also simplify the proof of the Wirthmüller isomorphism in A1 stable
homotopy theory that Hu proved in [4]. Still another example recently studied by
Hu deals with change of universe. We show that it gives an interesting naturally oc-
curring situation in which all but one of the hypotheses of the formal Grothendieck
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isomorphism of [2] hold, but the conclusion fails because the relevant left adjoint
fails to preserve compact objects.

1. The Wirthmüller isomorphism

Let H be a (closed) subgroup of a compact Lie group G and let f : H −→ G
be the inclusion. Let L be the tangent H-representation at the coset eH ∈ G/H.
Thus, if G is finite or, more generally, if H has finite index in G, then L = 0.

Let D and C be the stable homotopy categories of G-spectra and of H-spectra, as
constructed in [7] or, in more modern form, [8]. The category D depends on a choice
of a “G-universe” V on which to index G-spectra. In this paper, we understand a G-
universe to mean a collection {V } of G-representations V that contains the trivial
representation and is closed under direct sums. The most important example is
the complete G-universe obtained by allowing all representations of G. We think
of representations as finite dimensional G-inner product spaces, and we let SV

denote the one-point compactification of V . The point of the choice of G-universe
is that, when constructing D , we force suspension by some representations V to be
equivalences D −→ D , and we must choose which representations to invert in this
sense; that is, the choice of universe determines the Picard group of D [3, 9].

We insist that G/H embed in a representation V in our G-universe V , which
is otherwise unrestricted. We index H-spectra on the H-universe f∗V = {f∗V },
where f∗V denotes the G-representation V viewed as an H-representation by pull-
back along f . Similarly, a G-spectrum Y gives an H-spectrum f∗Y by pullback
along f . The functor f∗ has a left adjoint f! and a right adjoint f∗. The former is
usually written as either G+ ∧H X or GnH X, and the latter is usually written as
either FH(G+, X) or FH [G,X). The Wirthmüller isomorphism reads as follows.

Theorem 1.1 (Wirthmüller isomorphism). There is a natural isomorphism

ω : f∗X −→ f]X, where f]X = f!(X ∧ S−L).

That is, for an H-spectrum X, FH(G+, X) ∼= G+ ∧H (Σ−LX).

Here the suspension H-spectrum Σ∞SL of the H-sphere SL is invertible with
inverse S−L, allowing the definition Σ−LX = X ∧ S−L. Indeed, an embedding of
G/H in V ∈ V induces an inclusion L ⊂ V of H-representions with orthogonal
complement W . Since the suspension H-spectrum of SL ∧SW ∼= Sf∗V is invertible
in C , so is Σ∞SL.

The unit objects in C and D are the sphere spectra SH and SG. Both C and D
are closed symmetric monoidal categories under their smash product and function
spectrum functors ∧ and F . It is immediate from the definitions that f∗ is strong
symmetric monoidal and commutes with F , as required in the Wirthmüller context
discussed in [2, §§4, 6]. These statements already hold in the underlying categories
of spectra and are inherited in the derived stable categories C and D .

Remark 1.2. In this context, the projection formula would assert that

Y ∧ FH(G+, X) ∼= FH(G+, f∗Y ∧X).

There is no such isomorphism in the category of G-spectra. However, after passage
to the stable category D , there is an isomorphism of this form as a consequence
of the Wirthmüller isomorphism. Note that there is an isomorphism of spectra
FH(G+, X)G ∼= XH , by a comparison of adjunctions.
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The isomorphism [2, 6.3] required in the Wirthmüller context can be written

(1.3) D(G+ ∧H SH) ∼= G+ ∧H S−L.

It is a special case of equivariant Atiyah duality for smooth G-manifolds, which is
proven by standard space level techniques (e.g. [7, III§5]) and is independent of the
Wirthmüller isomorphism. By the tubular neighborhood theorem, we can extend
an embedding i : G/H −→ V to an embedding

(1.4) ĩ : G×H W −→ V

of the normal bundle G ×H W . Atiyah duality asserts that the G-space G/H+ is
Spanier-Whitehead V -dual to the Thom complex G+ ∧H SW of the normal bundle
of the embedding. Desuspending by SV in D gives the required isomorphism (1.3).

The category D is triangulated, with distinguished triangles isomorphic to canon-
ical cofiber sequences of G-spectra. The triangulation is compatible with the closed
symmetric monoidal structure in the sense discussed in [10]. Moreover, D is com-
pactly detected and is generated by a detecting set of compact objects. Indeed,
writing Sn for the n-sphere G-spectrum, we can choose the detecting objects to be
the G-spectra G/J+ ∧ Sn, where J ranges over the (closed) subgroups of G and n
runs over the integers, and D is itself the localizing subcategory generated by this
set of compact objects.

The same statements apply to C , and the functor f∗ is exact since it commutes
with cofiber sequences on the level of spectra. Moreover, f∗ takes detecting objects
to compact objects. Indeed, this depends only on the fact that the H-spaces G/J
are compact and of the homotopy types of H-CW complexes, although it is easier
to verify using the stronger fact that the G/J can be decomposed as finite H-CW
complexes.

Remark 1.5. Observe that the suspension spectra Σ∞H/K+ in C and Σ∞G/J+ in
D , other than Σ∞G/H+, need not be dualizable if the universe is incomplete. In
fact, Lewis [6, 7.1] has proven that Σ∞G/J+ is dualizable if and only if G/J embeds
in a representation in V . Conceptually, it is compactness rather than dualizability
of the generating objects that is relevant.

Remark 1.6. As a digression, there is an interesting conceptual point to be made
about the choice of generating objects for D . There are (at least) three different,
but Quillen equivalent, model categories of G-spectra with homotopy categories
equivalent to D . We can take “G-spectra” to mean G-spectra as originally defined
[7], SG-modules as defined in [1], or orthogonal G-spectra as defined in [8], where the
cited Quillen equivalences are proven. These three model categories are compactly
generated in the model theoretic sense. In the first two cases, the generators in
the model theoretic sense can be taken to be the generators in the triangulated
category sense that we specified above. As explained in [8], we can alternatively
take all G/J+ ∧ SV−V ′ for V, V ′ ∈ V as generators in the model theoretic sense.
However, in the model category of orthogonal G-spectra, we not only can but must
take this larger collection as generators in the model theoretic sense. Nevertheless,
the smaller collection suffices to generate the associated triangulated homotopy
category, since that is triangulated equivalent to the homotopy category obtained
from the other two model categories.

By the formal Wirthmüller isomorphism theorem [2, 8.1], to prove Theorem
1.1, it remains to prove that the map ω : f∗X −→ f]X specified in [2, 6.7] is an
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isomorphism when X is a generating object H/K+ ∧ Sn of C . Since it is obvious
that ω commutes with suspension and desuspension, we need only consider the case
n = 0, where the generators in question are the suspension H-spectra Σ∞H/K+.

Here is the punchline. Suppose that G is finite or, more generally, that H has
finite index in G. Then, as an H-space, H/K+ is a retract of the G-space G/K+.
The retraction sends cosets of G/K+ not in the image of H/K+ to the disjoint
basepoint of H/K+. By [2, 6.13], it follows formally that ω is an isomorphism when
X = Σ∞H/K+. This simple argument already completes the proof of Theorem 1.1
in this case, yielding a far simpler proof than that of [7].

To prove Theorem 1.1 in general, we apply [2, 6.14], which allows us to work
one generating object at a time. This reduces all of our work to consideration of
suspension spectra and thus of spaces. The argument is essentially the same as part
of the argument in [7, III§§5, 6], but we shall run through the space-level details
in §4 in order to have a readable and self-contained account that corrects some
mistakes in [7] and is perhaps less obscure than the account given there.

2. The Adams isomorphism

Let N be a normal subgroup of a compact Lie group G and let f : G −→ J ,
J = G/N , be the quotient homomorphism. Fix a G-universe V = {V } and index
J-spectra on the N -fixed J-universe V N = {V N}. Regarding J-representations as
G-representations via f , we obtain a second G-universe f∗V N = {f∗V N}, and we
insist that f∗V N be contained in the original G-universe V . Let D be the stable
homotopy category of J-spectra indexed on V N and let C be the stable homotopy
category of G-spectra indexed on f∗V N .

Regarding J-spectra as G-spectra via f , we obtain a functor f∗ : D −→ C . Its
left adjoint f! is just the orbit spectrum functor that sends a G-spectrum X indexed
on f∗V N to X/N . Its right adjoint f∗ is just the fixed point spectrum functor that
sends X to XN . The functor f∗ is strong symmetric monoidal, the isomorphism [2,
4.8] holds in the form (f∗Y ∧X)/N ∼= Y ∧ (X/N), and f∗ takes detecting objects
to compact objects. Since G-spectra in C are indexed on an N -trivial universe,
SG/N ∼= SJ and [2, 6.3] holds in the trivial form D(SJ) ∼= SG/N . Thus all of
the formal hypotheses of the formal Wirthmüller isomorphism theorem, [2, 8.1],
are satisfied. However, the conclusion fails, because ω is an isomorphism on some
but not all generators. Let C /N be the thick subcategory of C generated by all
ΣnΣ∞G G/H+ such that N ⊂ H.

Proposition 2.1. For X ∈ C /N , the natural map

ω : XN −→ X/N

is an isomorphism of J-spectra.

Proof. The map τ : ID −→ f!C of [2, §6] is here just the isomorphism SJ
∼= SG/N ,

and the map ω of [2, 6.7] is just the composite of the isomorphism XN ∼= f∗XN/N
and ε/N : f∗XN/N −→ X/N . When X = ΣnΣ∞G G/H+ with N ⊂ H, the latter
map is also an isomorphism, but it is not an isomorphism in general. ¤

The Adams isomorphism is more subtle. Let B be the stable homotopy category
of G-spectra indexed on V . We have the adjoint pair (i∗, i∗) of change of universe
functors i∗ : C −→ B and i∗ : B −→ C induced by the inclusion i : f∗V N −→ V .
We are most interested in the composite adjunction (i∗f∗, f∗i∗). Thinking of the
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case when V is a complete G-universe, it is usual to regard the composite f∗i∗ :
B −→ D as the N -fixed point spectrum functor from G-spectra indexed on V to
J-spectra indexed on V N .

The conjugation action of G on N gives rise to an action of G on the tangent
space A = A(N ; G) of N at e. We call A the adjoint representation of G at N . Of
course, A = 0 if N is finite. The Adams isomorphism reads as follows. Let Cf be
the full subcategory of N -free G-spectra in C .

Theorem 2.2 (Adams isomorphism). For X ∈ Cf , there is a natural isomorphism

ω : f∗i∗i∗X −→ f]X, where f](X) = f!(X ∧ SA).

That is, for an N -free G-spectrum X indexed on f∗V N , (i∗i∗X)N ∼= ΣAX/N .

It is usual to write this in the equivalent form (i∗Σ−Ai∗X)N ∼= X/N , but the
present form is more convenient for applications and more sensible from the cate-
gorical point of view. This looks enough like the formal Wirthmüller isomorphism
to expect a similar proof. However, I do not have a helpful formal analysis.

3. Change of universe

Let i : V −→ U be a map of G-universes, say for definiteness an inclusion. We
have the adjoint pair (i∗, i∗) relating the stable homotopy categories C and D of
G-spectra indexed on V and G-spectra indexed on U . The left adjoint i∗ preserves
compact objects, hence the right adjoint i∗ preserves coproducts [2, 7.4]. Since D
is compactly detected, the right adjoint i∗ has a right adjoint i! by the triangulated
adjoint functor theorem [2, 8.3]. It occurred to Po Hu to study the structure of
such functors i!, and the natural question to ask is whether or not the formal
Grothendieck isomorphism theorem [2, 8.4] applies. The functors (i∗, i∗, i!) here
play the roles of the functors (f∗, f∗, f !) there, and the projection formula takes
the form of a natural isomorphism

Y ∧ i∗X ∼= i∗(i∗Y ∧X).

This holds when Y is a suspension G-spectrum because the suspension G-spectrum
functors on the two universes satisfy i∗Σ∞ ∼= Σ∞ and i∗ commutes with smash
products. It therefore holds in general [2, 7.6].

There is a natural map

φ : i∗Y ∧ i!Z −→ i!(Y ∧ Z)

which is an isomorphism for all dualizable Y [2, 5.9]. We ask whether or not it is an
isomorphism for all Y , and the answer is no. Indeed, the necessary hypothesis that i!
preserves coproducts in [2, 8.4] is satisfied if and only if i∗ takes detecting objects to
compact objects [2, 7.4], and this fails in general. To see this, let U be a complete G-
universe and V = U G be the G-fixed subuniverse {UG}, U ∈ U . The G-fixed point
functor from D to the stable homotopy category of spectra is the composite of i∗ and
the G-fixed point spectrum functor from C to spectra. The latter functor preserves
compact objects by inspection. For example, it commutes with the suspension
spectrum functor and therefore takes suspension spectra of compact G-spaces to
suspension spectra of compact spaces. However, for a based G-space Y , the G-
spectrum Σ∞Y indexed on U has G-fixed point spectrum the wedge over conjugacy
classes (H) of the suspension spectra of the spaces EWH+ ∧WH ΣAd(WH)Y H [7,
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V.11.1]. Even when Y = S0, this spectrum is not compact. Therefore i∗Σ∞Y
cannot be a compact G-spectrum indexed on U G.

4. Completion of the proof of the Wirthmüller isomorphism

We must verify the hypotheses of [2, 6.14] for X = Σ∞H/K+. This means
that, with f]X = G+ ∧H (X ∧ S−L), we must construct a map ξ : f∗f]X −→ X
such that certain diagrams commute. We need some space level constructions from
[7] to do this. The tubular neighborhood (1.4) gives a Pontryagin-Thom G-map
t : SV −→ G+∧H SW . It is V -dual to the counit G-map σ : f!f

∗S0 = G/H+ −→ S0

[7, III.5.2]. The following construction, which is [7, II.5.5], specializes to give the
V -dual u : G+ ∧H SW −→ SV to the unit H-map ζ : S0 −→ f∗f!S

0 = G/H+. We
omit f∗ from notations, instead stating the equivariance explicitly.

Construction 4.1. Let H ×H act on G by (h1, h2)g = h1gh−1
2 and act on L×H

by (h1, h2)(λ, h) = (h1λ, h1hh−1
2 ). We think of the first factor H as acting from the

left, the second as acting from the right. Using the exponential map, construct an
embedding j : L −→ G of L as a slice at e such that

(4.2) j(hλ) = hj(λ)h−1 and j(−λ) = j(λ)−1.

Define j̃ : L×H −→ G by j̃(λ, h) = j(λ)h. Then j̃ is an (H×H)-map that embeds
L×H onto an open neighborhood of e. Collapsing the complement to a point, we
obtain an (H ×H)-map u : G+ −→ SL ∧H+. For a based H-space X, we obtain
an induced (left) H-map

u : G+ ∧H X −→ (SL ∧H+) ∧H X ∼= SL ∧X.

Setting X = SW and identifying SV with SL∧SW , we obtain the promised V -dual
u : G+ ∧H SW −→ SV of ζ : S0 −→ G/H+.

We only need the following definition and lemmas for the H-spaces X = H/K+,
but it is simpler notationally to proceed more generally. We write suspension
coordinates on the right, ΣV Y = Y ∧ SV . This is important to remember for
control of signs, which are units in Burnside rings. Recall that, for a G-space Y
and an H-space Z, the natural isomorphism of G-spaces

π̄ : G+ ∧H (Y ∧ Z) −→ Y ∧ (G+ ∧H Z)

is given by the formulas

(4.3) π̄(g ∧ y ∧ z) = gy ∧ g ∧ z and π̄−1(y ∧ g ∧ z) = g ∧ g−1y ∧ z.

Definition 4.4. For a based H-CW complex X, define an H-map

ξ : f∗f]Σ∞H X −→ Σ∞H X

as follows. Observe that we have natural isomorphisms of H-spectra

ΣV f∗f]Σ∞H X ∼= SV ∧ (G+ ∧H (X ∧ S−L))

π̄−1

−−→ G+ ∧H (SV ∧X ∧ S−L) ∼= Σ∞H (G+ ∧H (X ∧ SW ))
and

ΣV Σ∞H X ∼= Σ∞H (X ∧ SV ).
Let ΣV ξ correspond under these isomorphisms to Σ∞H u, where

u : G+ ∧H (X ∧ SW ) −→ SL ∧X ∧ SW ∼= X ∧ SV .
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The following observation is taken from [7, II.5.8].

Lemma 4.5. For a G-space Y and an H-space Z, the H-map

G+ ∧H (Y ∧ Z) ∼= Y ∧ (G+ ∧H Z) id∧u //Y ∧ SL ∧ Z

is canonically H-homotopic to the H-map

G+ ∧H (Y ∧ Z) u //SL ∧ Y ∧ Z ∼= Y ∧ SL ∧ Z.

Therefore, for any H-map θ : Y −→ X from a G-space Y to an H-space X, the
following diagram is canonically H-homotopy commutative.

G+ ∧H (Y ∧ Z)

id∧(θ∧id)

²²

∼= Y ∧ (G+ ∧H Z) id∧u // Y ∧ SL ∧ Z

θ∧id

²²
G+ ∧H (X ∧ Z)

u
// SL ∧X ∧ Z ∼= X ∧ SL ∧ Z

Proof. Both maps send all points of G not in j̃(L×H) to the basepoint. The first
takes j̃(λ, h)∧y∧z to j(λ)hy∧λ∧hz and the second takes it to hy∧λ∧hz. Applying
j to a contracting homotopy of L, we obtain an H-homotopy from j : L −→ G to
the constant map at e, giving the required homotopy. The last statement follows
since the diagram commutes by naturality if its top arrow is replaced by u. ¤

This leads to the following naturality statement. The partial naturality diagram
[2, 6.16] is the case in which Y = f∗X and θ is the counit of the (f∗, f∗) adjunction.

Lemma 4.6. Let Y be a G-spectrum and X be a based H-space. For any map
θ : Y −→ Σ∞H X of H-spectra, the following diagram of H-spectra commutes in C .

G+ ∧H (Y ∧ S−L)
ξ //

id∧(θ∧id)

²²

Y

θ

²²
G+ ∧H (Σ∞H X ∧ S−L)

ξ
// Σ∞H X

Proof. The upper map ξ in the diagram is defined formally in [2, 6.9]. It suffices
to prove that the diagram commutes after suspension by V . This has the effect of
replacing S−L by SW on the left and suspending by V on the right. Comparing [2,
6.9] with Definition 4.4 and taking Z = SW , the conclusion reduces to application of
the spacewise diagram of the previous lemma to the spaces that comprise the given
spectra. Technically, this is most easily seen using prespectra or orthogonal spectra
rather than actual spectra, but the essential point is just that the homotopy in the
previous lemma is sufficiently natural to commute with the structure maps. ¤

To complete the proof of Theorem 1.1, it suffices to show that the following
specialization of the diagram [2, 6.17] commutes.

(4.7) Σ∞H X ∧ S−L
ζ //

ζ

²²

f∗f!(Σ∞H X ∧ S−L)

f∗f!(Σ∞H X ∧ S−L)
f∗τ

// f∗f!(f∗f!(Σ∞H X ∧ S−L) ∧ S−L)

f∗f!(ξ∧id)

OO
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Here f!(−) = G+ ∧H (−), f∗ is the forgetful functor, ζ is the unit of the (f!, f
∗)

adjunction, and τ is the map defined in [2, 6.6] with Y = f!(Σ∞H X∧S−L). We shall
see that this reduces to the following space level observations from [7, II§5].

Lemma 4.8. The following composite is H-homotopic to the identity map.

SV t //G+ ∧H SW u //SV .

Proof. Composing the embeddings ĩ : G ×H W −→ V and j̃ : L × H −→ G, we
obtain an embedding V = L ×W = (L ×H) ×H W −→ G ×H V . The composite
u◦ t is k−1 on k(V ), and it collapses the complement of k(V ) to the basepoint. The
embedding k is isotopic to the identity, and application of the Pontryagin-Thom
construction to an isotopy gives a homotopy id ' u ◦ t. ¤

Lemma 4.9. For an H-space X, the following diagram is H-homotopy commuta-
tive. Here σ : SL −→ SL maps λ to −λ.

ΣV X
ΣV ζ //

ΣV ζ

²²

ΣV (G+ ∧H X) ∼= SV ∧ (G+ ∧H X) G+ ∧H (SV ∧X)
π̄−1oo

G+ ∧H ΣW (SL ∧X)

∼=

OO

ΣV (G+ ∧H X)
id∧t

// (G+ ∧H X) ∧ (G+ ∧H SW )
π̄−1

// G+ ∧H ΣW (G+ ∧H X)

id∧ΣW (σ∧id)u

OO

Proof. The composite around the bottom maps all points with V coordinate not in
ĩ(j(L)×W )) to the basepoint. It maps the point x∧ĩ(j(λ), w) to (j(λ, x)∧j(λ)(λ,w);
the sign map σ enters due to (4.2) and (4.3). The H-contractibility of L implies
that an H-homotopic map is obtained if we replace f(λ) by the identity element
e ∈ G. Thus the composite around the right is H-homotopic to ζ ∧ u ◦ t, which is
H-homotopic to the identify by Lemma 4.8. ¤

Proof of Theorem 1.1. We must show that the diagram (4.7) commutes. It suffices
to prove this after suspending by V and replacing X by ΣV X. This has the effect of
replacing the H-spectra S−L that appear in the diagram by the H-spaces SW . Since
the functors appearing in the diagram commute with the respective suspension
spectrum functors, this reduces the problem to the space level. Here a slightly
finicky diagram chase, which amounts to a check of signs coming from permutations
of suspension coordinates, shows that the resulting diagram commutes by Lemma
4.9. One point is that σ ∧ id : SL ∧ SL −→ SL ∧ SL is H-homotopic to the
transposition via the homotopy given by multiplying by the (2 × 2)-matrices with
rows (−t, 1− t) and (1− t, t) for t ∈ I. Another is that we must apply Lemma 4.9
with X replaced by X ∧ SW , which has the effect of introducing a permutation of
SL past SW . In more detail, after applying Σ∞H and replacing X by X ∧ SW , the
bottom composite in the diagram of the previous lemma agrees with

ΣV τ : ΣV (G+ ∧H (ΣV X ∧ S−L)) −→ ΣV (G+ ∧H (G+ ∧H (ΣV X ∧ S−L) ∧ S−L)

under the evident isomorphisms of its domain and target. The interpretation of the
right vertical composite is trickier, because of the specification of

ξ : G+ ∧H (ΣV X ∧ S−L) −→ ΣV X
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in Definition 4.4. A diagram chase after suspending by V shows that ξ agrees under
the evident isomorphism of its source with

(σ ∧ id) ◦ u : G+ ∧H (X ∧ SW ) −→ SL ∧X ∧ SW ∼= ΣV X.

Notice that we have evident isomorphisms

Σ∞H ΣV (G+ ∧H (X ∧SW )) ∼= ΣV (G+ ∧H (ΣV X ∧S−L)) ∼= Σ∞H G+ ∧H (ΣV X ∧SW ),

the first of which internally expands SW to SV ∧ S−L and the second of which
leaves ΣV X alone but uses π̄ to bring SV inside and contracts S−L ∧ SV to SW .
Their composite enters into the upper right corner of the required diagram chase;
the transpositions that appear cancel out others, resulting in a sign free conclusion.
With these indications, the rest is routine. ¤
Remark 4.10. Effectively, this proof uses the space level arguments of [7, II§5],
but eliminates the need for the spectrum level arguments of [7, II§6]. We warn
the reader that [7, II.5.2] and hence the first diagram of [7, II.6.12] are incorrect.
Fortunately, they are also irrelevant.
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