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f, g:Sm-2 s 

which are topologically equivalent but not combinatorially so. See the recent 
work of Stallings [13] related to this question, also. 

A weaker question may be asked, which, in the light of Theorem 6. 1, is relevant. 
Are there two combinatorial imbeddings f,g:S,-2_Sm such that these 

bounded complements M, Mg c S'" have the same homotopy type but distinct 
simple homotopy type? 

Finally, let me point out a relation between the main construction of this paper 
and the very strong piecewise linear approximation theorems of Moise and 
Bing in three dimensions. 

Let us consider the following homeomorphism approximation statement for 
n-dimensional euclidean space: 

(AppO) Let U c Rn be an open set and K c U a closed piecewise linear sub- 
complex. Let f: U -+ R" be a topological homeomorphism which is piecewise 
linear on K. Let s(x) > 0 be a continuous function on U. 

Then there is a piecewise linear homeomorphism g: U -+ R" which agrees 
with f on the subcomplex K, and such that 

If (x) -g(x) I < E,(X) 

for all x E U. 
This approximation statement would imply the triangulation theorem and 

the Hauptvermutung for n dimensions. In fact, Moise and Bing prove exactly 
this theorem in dimension three, from which their classical results follow 
[10, IV; 0, Theorem 4, p. 149]. Actually, the triangulation theorem and 
Hauptvermutung is also implied by a significantly weaker theorem than Appn. 
(See Theorem 3 of [0].) 

The absolute version of Appn (i.e., where K is empty) has recently been proven 
by Connell under the additional hypotheses that the map f be stable, and n > 7. 
See [18]. 

From the main construction of this paper, one may show: 

PROPOSITION. There is an integer n for which Appn is false. 

In fact, we may take n = 23. Also, Appn is false in the following way: There is 
a closed subcomplex K c Rn and a homeomorphism which is piecewise linear 
on K such that there just is no piecewise linear homeomorphism g, on R , which 
agrees with f on K. 

0. Terminology and conventions. Rn is euclidean n-space with usual linear 
norm, Dnc Ris given by 

D n_={Xe6 Rn ||xlIIx< 1}. Sn= I8Dn = {XERn l |xii = 1}. 

The word "combinatorial" means simplicial after some subdivision. Thus a 
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map f : K -- L is combinatorial if it is simplicial for some subdivisions K',L' 
of K, L, respectively. Two complexes K, L are combinatorially equivalent (de- 
noted K t L) if they have rectilinear subdivisions K', L' which are isomorphic 
(simplicially, of course). 

If X is a finite complex, Yc X a subcomplex, then X/Y is the quotient topo- 
logical space of X, with the set Yidentified to a point. The set X/Y may be again 
considered as a finite complex (unique up to combinatorial equivalence) in a 
natural way. 

Namely, let X' be the first barycentric derived complex of X, X c X' the 
simplicial neighborhood of Y' in X', F c X, the frontier of X (i.e., the subcomplex 
of Y consisting in all simplices which do not touch Y'c c). 

Define the quotient simplicial complex: X/Y= {X' - E} uCF. 
In the above construction, CF denotes the cone over F. This gives an explicit 

triangulation of the topological space X/Y. It should be remarked, however, 
that the quotient map 

:X -+ X/Y 

is not necessarily combinatorial! 
One does have the following naturality property: 

LEMMA 0.1. If Z c Yc X are inclusions of simplicial complexes, then Y/Z 
may be regarded as a subcomplex of X/Z, in a natural way, and 

(X/Z)/ (Y/Z) 

is combinatorially eqtivalent to X/Y. 

Proof. Let X(A, B) (and F (A, B)) denote the simplicial neighborhood (and its 
frontier) of B c A. Then we may write: 

A/B = {A' - I(A',B')} uCF(A,B). 

Lemma (0.1) follows from the following two formulas: 

(i) F(X/Z, Y/Z) = F(X', Y'), 
(ii) X/Z - X(X/Z, Y/Z) = X' - X(X', Y'). 
The symbol (z) will denote isomorphism, either topological, combinatorial, 

or differentiable. The context will always make clear which of the three genres 
is meant. Iff, g are maps, then f g means thatf is isotopic to g(again the context 
will make the nature of the isotopy clear). 

The symbol ('.s) will denote homotopy equivalence. For maps f, g, f g 
means that f is homotopic to g. 

By a pair (X, Y) is meant a space X and a subspace Yc X. A map 
f:X,Y)-*(X',Y') is a map '<: X X' such that f(Y) c Y'. To say that 

fl -f2 (orf1 ;f2) as mapping 
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The point of the above two theorems is that simple tangential equivalences 
and tangential equivalence are homotopy conditions. That is, they are essentially 
algebraic prescriptions on the manifold pairs, whereas weak and strong k-equiv- 
alence are differential-topological concepts. Thus in both of the above theorems, 
algebraic hypotheses imply differential-topological conclusions. For purposes of 
application, I must rephrase the weak stability theorem somewhat. The re- 
mainder of this section is devoted to paraphrasing the theorem so as to make 
it more suitable for our uses. 

If (A1, B1) is a pair, denote by ,B: (A1, B1) -+(A1, B1) x Rk the zero-section 
map, and by 

X :(A,,B,) x Rk-(Al.Bl) 

the natural projection. 
If f:(Al,B1) x Rk_+(A2,B2) x Rk is a continuous map, then 

fI = rofofl :(A1,B1)-+(A2,B2) 

is also continuous. Notice that f is a (simple) tangential equivalence between 
the (Ai, Bi) x Rk (i = 1,2) if and only if f' is a (simple) tangential equivalence 
between the (Ai, Bi). 

Consider the following conditions (0) one may place on a continuous map 

f : (Al, B,) x RP -+(A2,B2) x RP: 

(O1) f is a tangential equivalence, 
(a2) if Of =f B1 x RP, then Of is a diffeomorphism, 

Of:B1 x RP -B2 x RP. 

Given a continuous map 

f :(Al,Bl) x RP -+(A2,B2) x RP 

satisfying (0), I should like to find (in the spirit of the weak stability theorem 
a weak p-equivalence 

0: (A1,,B,)-+ (A2,B2) 
(p) 

such that if Oq = P|B1 x R 
(i) Of= O0, 
(ii) f is homotopic to q. 
This is not always possible, but there is a fairly obvious "obstruction" to its 

possibility. 
Let, then, f satisfy (0). I shall define a unique element 

k(f) E k(A1, B1). 
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Then there is a diffeomorphism 

0 :(A,,B,) x RP -+ (A2,B2) x RP 

such that 
(a) 4 is homotopic to f, 
(b) if 4)= ) 1 Bi x RP, then 

J4 = Of 

if and only if 

(03) k(f) = Ock(Aj,B1). 

Proof. k(f) = 0 is precisely the condition necessary to be able to extend 
the diffeomorphism 

40 :A1 x {Op} -+ A2 x Rp 

to some tubular neighborhood, 

A1 x DP of A1 x {0p} in A1 x RP. 

Once this extension is made, the proof of the weak stability theorem allows 
one to find a p-equivalence between the (Ai,Bi) x RP extending the p-equivalence 
already given between the boundaries Bi x RP (i = 1,2). 

3. Reduced suspension. The various brands of suspension which are only 
technically distinct in algebraic topology are crucially differentin terms of com- 
binatorial structures and therefore the reader is cautioned not to confuse them. 

The kind of suspension which we will study is called reduced suspension. 
DEFINITION 3.1. Let X be a finite complex, Xo E X a vertex. Then the kth 

reduced suspension of (X,Xo), denoted Ek(X, Xo), will be the topological space 

X x DkIX x ODk U Xo x Dk 

endowed with the quotient combinatorial structure. The point to which the set 
X x ODk U Xo x Dk has been identified will be denoted XkCeEk(X,x) (the base 
point of Ek(X,Xo)). 

If X is a connected combinatorial manifold, its base point X E X will always 
be chosen interior to X and clearly Ek(X,X) is independent of the choice of 
X E int X. It will be denoted Ek(X). Notice that Ek(X,X) - {Xk} t (X- {X}) x int Dk, 

is naturally a differentiable manifold, when X is a differentiable manifold. 
A relative differentiable manifold (A,B) will denote a pair of simplicial com- 

plexes (A, B) such that the space A - B is endowed with the structure of a dif- 
ferentiable manifold with respect to which the decomposition induced by the 
simplicial structure of A is a smooth (C') open triangulation. Thus, 
(Ek(X, X), Xk) is a relative differentiable manifold pair. 
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are of the same homotopy type, but of distinct simple homotopy type. (See 
[14]. For a historical survey of the classification theory of lens spaces, see [8].) 

These manifolds L1,L2 are parallelizable (as are all orientable 3-manifolds) 
and they are imbeddable differentiably (and uniquely up to isotopy class) in S' 
for n > 7. Their normal bundles with respect to these imbeddings are trivial 
and therefore Li x S' possesses a tubular neighborhood 

Li x D cfl 

for i = 1,2. Actually, by a recent result of Hirsch [4], the Li (more generally: 
all orientable 3-manifolds) are imbeddable in 55 with trivial normal bundle. 

Let Mn c sn be the bounded complement of Li x Dn-3 as imbedded in Sn 
(i = 1,2). Then Mi is parallelizable (since it is obtainable as the closure of an 
open submanifold of euclidean space), and aM7 = Li x sn-4 = a(L, x D- 3) 
For simplicity, let us choose a base point m e int M1 r int M2 c Sn, common to 
M1 and M2. 

If n is chosen so that n > 8, M! is 3-connected. 
If n > 7, the imbedding 

Li x Dn 3 --nS) 
fi) 

(for i = 1,2) may be regarded as coming from 

Li x D nf4 l n-1 

by "suspension:' 

p(n ):Li x Dn-3 = Li x Dn-4x J S -n IX I Sn. fln-1 x I 

LEMMA 5.1. Let n _ 1(2), n > 8. There exists a continuous map p: Sn Sn 

such that p:(Sn Ll x Dn-3,L x aD-3)+ (Sn L2 x Dn-3L2 x aD-3) is a 
homotopy equivalence of the triples (Sn,L, x Dn-3,LL x aDn-3) (i = 1,2), 
and p:Ll x ODn-3-L2 x nD"-3 is a simple homotopy equivalence. 

Proof. Let p: S"n_+Sn be the continuous map, 

p:(Sn ,L x D 3,L1 x aD 3) _+ (Sn,L2 x Dn-,L2 x aD3) 

obtained in this manner: 
Since n is large enough, it is possible to alter fl: L, x D"-3 Sn 

by isotopy so that these inclusions hold: 

fi2(L2 x D(/)) n int fil(Ll x Dn-3) 

fl3(Ll x D"-3) int 92(L2 x D"- 3) 
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existence of h, one must check compatibility of the two definitions of h on 

el(L, x aDn 3). This follows from the commutativity of (5.10). 
One may check continuity of h easily. The map h is a topological homeo- 

morphism because h may be constructed similarly from the diagram 
-I 

Kj< -iA -K2 2 

EkSn h- EkS n 

(5.16)-' 82 

L, xD xR < L2 x D 3xRk. 

Thus, applying Lemma (5.15) to our situation, we may conclude that there 
exists a topological homeomorphism h: Sn+k _ Sn+k such that 

K, - - K2 

(5.17) 07l2l 

sn+k h sn+k 

topological 
is commutative. 

Now let K be the finite complex Kl, and let 

a: K -+S 

be the combinatorial imbedding of K in Sn+k given by 

K - Sn+k 

K, - 4 EkSn. 

Let 3: K _+ Sn+k be the combinatorial imbedding obtained as follows: 

K - osin+k K--- 

K, - K2-, EkSn 
Illo 2 U 

THEOREM. If n >7, the combinatorial imbeddings a,fl:K-+ S 2n+1 (can be 
defined and) are combinatorially inequivalent. 

If, further, 

n 3 3, 5, 7 (mod 8), 
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Then: 
There exists a topological homeomorphism 

h: EkSn E kS 

such that h induces a map 

h: (E kM, aEkMn) (EkMn, OEkMn) 

which is a combinatorial isomorphism. (Actually h is a "diffeomorphism- 
except-at-one-point. ") 
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