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COMBINATORIAL EQUIVALENCE VERSUS
TOPOLOGICAL EQUIVALENCE

BY
BARRY MAZUR

In [8], Milnor exhibited an example of two finite complexes X,,X, which
are homeomorphic, but combinatorially distinct. That was the first example of
the disparity between combinatorial notions versus topological ones on finite
complexes. Previously the only results were positive in nature. Papakyriakopoulos
had proved the Hauptvermutung for 2-dimensional complexes [11], and Moise
[10] (and later Bing) had proved the Hauptvermutung for 3-dimensional mani-
folds. The object of this paper is to provide an example (see §5) of a finite complex
K and two simplicial imbeddings, «,f:K — S™ which are combinatorially in-
equivalent, yet topologically equivalent. The nature of the argument is such
that the minimum m it yields is m = 23.

The construction of this example uses relative forms of the strong and weak
stability theorem (see [6]). It also uses recent results of Haefliger, Bott, and
Milnor. To show that the two imbeddings o,f:K — S™ are not combina-
torially equivalent, I notice that

S"/u(K) ~ X,
S"/B(K) ~ X,

(the isomorphisms being combinatorial). Since X; is combinatorially distinct
from X,, the result follows that there is no combinatorial homeomorphism
k:S™J S™ such that ko o= f.

In the course of the construction, a general theorem is proved (§6) which
provides the possibility of producing many pairs of (combinatorially distinct)
combinatorial imbeddings which are topologically equivalent.

An unsettled question is the following :

Are there combinatorial imbeddings f, g :S*— S™ which are combinatorially
distinct yet topologically equivalent?

By recent results of Zeeman [17], all combinatorial imbeddings of S* in
S™(m = k + 3) are equivalent combinatorially. By the results of Smale [12], all
combinatorial imbeddings of S™~' in S™ which are combinatorially locally
trivial are combinatorially equivalent (for m sufficiently large). It is yet possible,
however, for there to be two combinatorial imbeddings
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frg:S" % > 5"

which are topologically equivalent but not combinatorially so. See the recent
work of Stallings [13] related to this question, also.

A weaker question may be asked, which, in the light of Theorem 6.1, is relevant.

Are there two combinatorial imbeddings f,g:S™ %— S™ such that these
bounded complements M, M, = S™ have the same homotopy type but distinct
simple homotopy type?

Finally, let me point out a relation between the main construction of this paper
and the very strong piecewise linear approximation theorems of Moise and
Bing in three dimensions.

Let us consider the following homeomorphism approximation statement for
n-dimensional euclidean space:

(App,) Let U = R” be an open set and K = U a closed piecewise linear sub-
complex. Let f:U — R" be a topological homeomorphism which is piecewise
linear on K. Let &(x) > 0 be a continuous function on U.

Then there is a piecewise linear homeomorphism g:U — R" which agrees
with f on the subcomplex K, and such that

[f(x) — g(x)| < &x)
for all xeU.

This approximation statement would imply the triangulation theorem and
the Hauptvermutung for n dimensions. In fact, Moise and Bing prove exactly
this theorem in dimension three, from which their classical results follow
[10, TV; 0, Theorem 4, p. 149]. Actually, the triangulation theorem and
Hauptvermutung is also implied by a significantly weaker theorem than App,.
(See Theorem 3 of [0].)

The absolute version of App, (i.e., where K is empty) has recently been proven
by Connell under the additional hypotheses that the map f be stable, and n = 7.
See [18].

From the main construction of this paper, one may show:

PROPOSITION. There is an integer n for which App, is false.

In fact, we may take n = 23. Also, App, is false in the following way: There is
a closed subcomplex K < R" and a homeomorphism which is piecewise linear
on K such that there just is no piecewise linear homeomorphism g, on R", which
agrees with f on K.

0. Terminology and conventions. R” is euclidean n-space with usual linear
norm, D"c R"is given by

D'={xeR’|[x|=1}. §"=0D""" ={yeR™!||x] =1}.

The word ‘‘combinatorial’’ means simplicial after some subdivision. Thus a
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map f:K — L is combinatorial if it is simplicial for some subdivisions K’, L’
of K, L, respectively. Two complexes K, L are combinatorially equivalent (de-
noted K ~ L) if they have rectilinear subdivisions K’, L’ which are isomorphic
(simplicially, of course).

If X is a finite complex, Y < X a subcomplex, then X/Y is the quotient topo-
logical space of X, with the set Yidentified to a point. The set X/Y may be again
considered as a finite complex (unique up to combinatorial equivalence) in a
natural way.

Namely, let X’ be the first barycentric derived complex of X, £ < X’ the
simplicial neighborhood of Y'in X', F < X, the frontier of Z (i.e., the subcomplex
of X consisting in all simplices which do not touch Y'< X).

Define the quotient simplicial complex: X/Y={X'— X} UCF.

In the above construction, CF denotes the cone over F. This gives an explicit
triangulation of the topological space X/Y. It should be remarked, however,
that the quotient map

£:X > X/Y

is not necessarily combinatorial!
One does have the following naturality property:

LEMMA 0.1. If Z « Yc< X are inclusions of simplicial complexes, then Y/Z
may be regarded as a subcomplex of X/Z, in a natural way, and

(X/2)/(Y/2)
is combinatorially equivalent to X/Y.

Proof. Let X(4,B) (and F (4, B)) denote the simplicial neighborhood (and its
frontier) of B = A. Then we may write:

A/B = {4’ —£(4’,B")} UCF(A4,B).

Lemma (0.1) follows from the following two formulas:

(i) F(X/Z,Y/Z) = F(X',Y’),

() X/z-2(X/2,Y/Z) = X' -Z(X',Y").

The symbol (~) will denote isomorphism, either topological, combinatorial,
or differentiable. The context will always make clear which of the three genres
is meant. If f, g are maps, then f~ g means that f is isotopic to g(again the context
will make the nature of the isotopy clear).

The symbol (~) will denote homotopy equivalence. For maps f,g, f~g
means that f is homotopic to g.

By a pair (X,Y) is meant a space X and a subspace Y< X. A map
f:X,Y)>(X',Y') is a map ~:X - X' such that f(Y)=Y'. To say that
fi~fs (or fy =f,) as mapping
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fof 1 (X, 1) ->(X",Y)
it is meant that there is a homotopy (an isotopy)
[i: (X, Y) - (X", Y')

for 15t£2.

The notation (X,Y) x Z will be used for the pair (X x Z, Y x Z).

Manifold means C* differentiable manifold. By a manifold pair (M, W), 1
shall always mean the pair consisting of a manifold M and the submanifold
W< M, W=0M (the boundary of M).

If ¢:(M,W)—>(M',W’) is a map of manifold pairs, the map dp: W—-W
will denote the restriction

09 = ¢|W.
The identity map of X will be denoted
1: X - X.

Given a compact manifold M, there is a (smooth) C!-triangulation of M,
endowing M with the structure of a finite simplicial complex K (see [15]). The
combinatorial structure of K is uniquely determined by the manifold M, and
will be called the underlying combinatorial structure of M. If M is a manifold,
without any special notice I will apply combinatorial notions to M, in which
case it should be immediately assumed that I am referring to the unique com-
binatorial structure of M. (For example, we may talk of the simple homotopy
type of M.)

For the definition and theory of simple homotopy type, see [14] and also [8].
For the foundations of differential topology, see [16; 9].

In particular, I shall assume known the Tubular Neighborhood Lemma (due
to Thom) in [9], and the general position techniques, the Whitney imbedding
theorem, etc., originating in [16]. There are many modern treatments of this
theory to be found. (For example, [9].)

For classical homotopy-theoretic concepts (i.e., Serre fibre spaces, calcula-
tions of the first few stable homotopy groups of spheres, etc.) refer to Hu, Homo-
topy theory, Academic Press, 1960.

CX will denote the cone of X, QX will denote the loopspace of X.

1. The functor K*. Let (4,B) be a pair of spaces. Then one may define
K™'(4,B) = [(4,B);(Q'S0,¢)]

where ¢; is the unit element of the H-space Q'SO. By virtue of the Bott periodicity
results [1], K’(4,B) is defined for both positive and negative exponents, i, and
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“periodic>” of order 8. If ac 4 is a base point, abbreviate K'(4,a) by KY(A).
Since the QSO are homotopy abelian groups, each K'(4, B) may be given the
structure of an abelian group(?).

If f:(4,,B;)—>(4,,B,) is a map, there is induced a homomorphism
Ki(f):K'(4,,B,) = K'(A4,,B,) in an obvious way. Thus K* may be regarded as
a contravariant functor of the category of pairs of topological spaces into the
category of abelian groups.

The functor K* is a cohomological functor. Explicitly, it obeys the excision
axiom for cohomology, and if (4,B) is a topological pair, there are natural
maps

8" :K(B)—» K'*'(4,B)
giving rise to long exact sequences:

- K{(4) > K* (B) K'“(A B)-» K'*Y(A4) - -

for all i.

For our later purposes, we shall need notation for a group, fairly unnatural
to this setting. If (4, B) is a pair, let k(4,B) be the quotient group of K°(B)
modulo the image of K°(A4). That is:

K°4) - K°(B)— k(4,B)—0
is exact.

ProOPOSITION 1.1. Let n = 3,5,6,7(mod8). Let A, B be bounded submanifolds
of S" such that

i) AuB=S5",

(ii)) ANB=W
where W is the common boundary of A and B,

W = 0A = 0B.
Let the following diagram be composed of the natural maps:

K°(4) » K°(W) = k(A, W) - 0.

\ />

K°(B)

Then y is surjective.

(1) At this point it should be remarked that the group structures on K94, B) coming from:
(i) the group structure on SO, (ii) the group structure on Q8S0, coincide.
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Proof. Consider the diagram:

K°(W) ——— K'(4,W) — K'(4)
KAW) | s
e
K°(B) ———5——>K1(S",B) — K'(S").

The middle vertical arrow is an isomorphism by excision. The conditions on n
required by (1.1) are exactly such as to insure that K'(S")= 0 after the work
of Bott [1].

Consequently § is surjective and the proposition follows.

2. Stability for pairs. The section is devoted to restating results of [6]
in relativized versions particularly suited for their eventual applications.

Strong and weak stable equivalence for pairs is defined in analogy with the
absolute case. If (A4,;,B;) are manifold pairs (i =1,2), then a diffeomorphism

f:(4;,B)) x D*>(4,,B,) x D

is called a strong k-equivalence between (4,,B;), i = 1,2; it is denoted
f:(Al,Bl) %(A23B2)°
i

A diffeomorphism
f:(A,By) % R*—(A4,,B,) x R*
is called a weak k-equivalence and is denoted

f:(Al,Bl)(l";) (4,,B,).

A k-equivalence
f:(41,By) (;)’ (4,,B,)

is said to be homotopic to a continuous map f :(4,, B;)—(4,,B,) if the follow-
ing diagram is homotopy commutative:

(A4, By) x rR-%, (4,,B,) x R*
= J=
(A1,B) —7— (4,,B,).

Let ©(M) denote the stable vector bundle class of the tangent bundle of M,
when M is a manifold. Then 7(M) may be considered to be an element

(M) e K*{(M).
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If f: M — M’ is a continuous map, then I will denote the map
K+1(f) :K+1(M’)_’K+1(M)

by the symbol f* = K *!(f).

Letf:(A,,B;)— (A,,B,) be a simple homotopy equivalence between manifold
pairs. Then f is called a simple tangential equivalence if

() f*u(4z) = (4,

(ii) f*t(By) = 1(B,).

STRONG STABILITY THEOREM FOR PAIRS. If f:(A,B{) = (A,,B,) is a simple
tangential equivalence between compact n-dimensional manifold pairs, then
for any k= n + 1, there exists a strong k-equivalence

¢:(4y, By (;; (4,,B,)

[

such that ¢ is homotopic to f as a mapping of the pair (A, B,) onto (A4,,B,).
Since ¢ is a diffeomorphism, from the above it follows that ¢ induces a map
of pairs:

¢ :(4; x DY, 4y x 0D*)> (A, x D, 4, x oD").

The diffeomorphism ¢ may also be chosen so that ¢ ~f x 1, where the maps
¢, f x 1, are taken on the pair (A; x D, A, x oD").

ReEMARK. The ‘‘natural’’ stable range for this last statement to be true is:
k =n + 2. A further argument shows that it holds for k = n + 1 as well.

The above theorem, in absolute version, is stated in [6]. A proof of it is given
in [7], and also, independently, it has been proved by Hirsch in an unpublished
paper. It is quite elementary to deduce the relative version above from the ab-
solute result, by employing standard (stable) differential-topological arguments.

WEAK STABILITY THEOREM FOR PAIRS. If f:(A,B,) is a tangential equivalence
between compact n-dimensional manifold pairs, then for any k = n + 1, there
exists a weak k-equivalence

¢ :(Ay, Bl)(;; (42,B,)

~

such that ¢ is homotopic to f.

This is not as easily obtainable from the statement of its absolute counterpart.
In absolute version it was reported in [6]; also, a sketch of the proof was given
there. The Bourbaki report [5] of Serge Lang’s contains a more detailed account
of the proof.

This theorem will be proved in a subsequent paper, its proof being quite ana-
logous to the absolute version.
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The point of the above two theorems is that simple tangential equivalences
and tangential equivalence are homotopy conditions. That is, they are essentially
algebraic prescriptions on the manifold pairs, whereas weak and strong k-equiv-
alence are differential-topological concepts. Thus in both of the above theorems,
algebraic hypotheses imply differential-topological conclusions. For purposes of
application, I must rephrase the weak stability theorem somewhat. The re-
mainder of this section is devoted to paraphrasing the theorem so as to make
it more suitable for our uses.

If (A,B,) is a pair, denote by B:(4,,B;)— (4;,B,) x R* the zero-section
map, and by

n :(AI’BI) X Rk_)(AlsBl)

the natural projection.
If f:(A,,B,) x R*> (4,,B,) x R* is a continuous map, then

f' =mofoB:(4y,B,)— (4,,B))

is also continuous. Notice that f is a (simple) tangential equivalence between
the (4;,B,) x R* (i =1,2) if and only if f’ is a (simple) tangential equivalence
between the (4;, B)).

Consider the following conditions (0) one may place on a continuous map

f:(41,B;) x R? > (4,,B,) x RP:
(0,) f is a tangential equivalence,
(9,) if of =f| By x R, then of is a diffeomorphism,
df :B; X RP - B, X RP.
Given a continuous map
f:(A1,By) x R?—>(4,,B,) x R?

satisfying (0), I should like to find (in the spirit of the weak stability theorem
a weak p-equivalence
¢ :(AlaBl)(;; (42,B;)

such that if d¢ = ¢|B; x R,

@) of = oo,

(ii) f is homotopic to ¢.

This is not always possible, but there is a fairly obvious ‘‘obstruction”’ to its
possibility.

Let, then, f satisfy (0). I shall define a unique element

k(f) € k(4;,B,).
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Let O, € R” denote the zero-element. Since p is assumed sufficiently large with
respect to dim 4, (p > dim A4,), there is an imbedding ¢, = 4; x 0, > 4, x R”
such that

(@) ¢o|By x 0, =f|B; x 0,

(b) ¢o(Ay x 0p) NB, X RP = ¢o(By x 0p)
and the intersection is transversal,

(c) the normal bundle to 4, x O, as embedded by ¢, in A4, x R? is trivial.

Moreover, ¢, is unique up to isotopy.

Choose, trivializations of the normal bundles v,v, of 4; x 0, as imbedded
(respectively) in A; x RP by the identity imbedding, and in A4, x R? by ¢,.
With respect to these two trivializations, df, restricted to v, |B1 x 0,, induces a
linear bundle map:

af(V)
(By x 0,) x R® —— f(By x 0,) x R?
f
(By x0,) ——> f(B; x 0)).
Such a bundle map yields, naturally, a homotopy class of maps
[of ] e[B, x 0,; SO,] ~ K%B)).
(This may be seen because
of™ :(B; x 0,) x R” - f(B; x 0,) x R?
may be given by
oAb, p) = (f(b), 4(p))

with 4,€ GL,.)
Thus of ™ determines a map of ™ : B, — GL, given by

FONb) = A,

Since [B,,S0,] ~[B;,GL,] we take [9f®’] to be the homotopy class in
[B,,S0,] determined by the homotopy class of Jf™ in [B;,GL,]. The element
[6f™] clearly depends on the trivialization of v,, chosen, and so the homotopy
class [0f] may vary by elements in the image of K°A,) as one varies the
choice of trivialization. Thus [df"] defines a unique element

k(f)e k(4,,B)) = KO(B1)/im KO(A1)-

WEAK EXTENSION THEOREM. Let f:(A;,B;) x R*—(A4,,B;) x R? be a con-
tinuous map satisfying (0); i.e., it is a tangential equivalence, and of = f| B, x R?
is a diffeomorphism.,

of :B; x R® > B, x RP.
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Then there is a diffeomorphism
¢ :(41,B;) x R? = (Az,B3) x R?

such that
(a) ¢ is homotopic to f,
(b) if 0¢ = ¢|By x R?, then

¢ = of

if and only if
(03) k(f) = Oek(Ay,By).

Proof. k(f) = O is precisely the condition necessary to be able to extend
the diffefomorphism

¢o:A4; x {0,} = A; xRP
to some tubular neighborhood,
A; x D? of Ay x {0,} in A4; x R”.

Once this extension is made, the proof of the weak stability theorem allows
one to find a p-equivalence between the (4;,B;) X RF extending the p-equivalence
already given between the boundaries B; x R? (i =1,2).

3. Reduced suspension. The various brands of suspension which are only
technically distinct in algebraic topology are crucially differentin terms of com-
binatorial structures and therefore the reader is cautioned not to confuse them.

The kind of suspension which we will study is called reduced suspension.

DEerINITION 3.1. Let X be a finite complex, y,€ X a vertex. Then the kth
reduced suspension of (X,7o), denoted E(X,yx,), will be the topological space

X x D*/X x aD* U g, x D*

endowed with the quotient combinatorial structure. The point to which the set
X x 0D¥ Uy, x D* has been identified will be denoted y, € EX(X, ) (the base
point of EX(X, xo))-

If X is a connected combinatorial manifold, its base point y € X will always
be chosen interior to X and clearly E*(X,y) is independent of the choice of
xeint X. It will be denoted E*(X). Notice that EX(X,x) — {x} ~ (X —{x}) x int D¥,
is naturally a differentiable manifold, when X is a differentiable manifold.

A relative differentiable manifold (A, B) will denote a pair of simplicial com-
plexes (4, B) such that the space A — B is endowed with the structure of a dif-
ferentiable manifold with respect to which the decomposition induced by the
simplicial structure of A4 is a smooth (C') open triangulation. Thus,
(EX(X, %), 1) is a relative differentiable manifold pair.
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A differentiable map
fi(4,B) » (4',B")

of relative differentiable manifold pairs is a piecewise differentiable map
f:(4,B) - (4',B’) such that f|A — B is differentiable.

The notions of homotopy, isomorphism, isotopy, etc., for differentiable mani-
fold pairs are defined in the obvious way.

If f:(X,x)—(Y,y) is a combinatorial map, there is a natural map
EX(f) :E¥X,y) - EXY,y) induced by the above construction of reduced sus-
pension.

(X,x) x D f—x? (Y,y) x D*

XD gy B0

If f:(X,x0)—(Y,y) is a differentiable map of differentiable manifolds, then
E ) {E"%. 0, 1 = {EXY:9). 03

is a differentiable map of relative differentiable manifold pairs.

The assignation E* for maps and objects is clearly a covariant functor.

For compactness of notation, I shall introduce the term isotopy-action to
describe actions of groups on spaces unique up to isotopy.

DerINITION 3.2. Let (X,Y) be a simplicial complex pair, a manifold pair,
or a relative differentiable manifold pair. Let

n:Aut(X,Y)—Is. Aut(X,Y)

be the natural map of the group of automorphisms of (X, Y) onto the group
of isotopy classes of automorphisms of (X, Y). Let ®:G — Aut(X,Y) be a map
of an abstract group G into Aut(X, Y). Then ® will be called an isotopy-action
of Gon (X,Y) if n®:G —Is. Aut(X,Y) is a homomorphism of groups.

Let X be a differentiable manifold, k > dim X, and E*(X, x) the reduced sus-
pension of (X, x).

Since k is large enough, there is an isomorphism pu: K"(X)—» [X,S0;]. (See
§1 for definition of K°(X).)

For each Ae K°(X), let

fi: X - S0,

be a differentiable map such that [f,] = u(4) (i.e., f; is a differentiable represen-
tative for the homotopy class A).
Define ¢,:X x D*— X x D* by:

&0 d) = 0L - d)
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where ye X, deD* and if ge SO,, reR", g-re R* denotes the element of R*
obtained by applying the orthogonal transformation g on the element re R*.
Notice that ¢, induces an automorphism of the pair,

(X x D% {x} x D*U X x aD").
Hence ¢, induces an automorphism, ®,, of

(Ek(X’ X), Xk),

after identification.
It is clear that if another choice, f; were made as a representative of the homo-
topy class 4, f; ~ f;, the automorphism ®; constructed would be isotopic to @;.

LemMA 3.3. The map
®: K°(X) > Aut {EXX, 1), 1}
is a differentiable isotopy-action of K°(X) on the relative differentiable mani-
fold pair,
{EX, 0, 0 -

Proof. Immediate, granted the footnote to §1.
If (A4, B) is a differentiable manifold pair, B = 04, denote by JE*(A) the natural
image of B x D* in EXA).
Ax D¥——— EXA)
Ul ul
B x D* —— JEX4).

The crucial theorem concerning reduced suspension (for our purposes) is the
following:

THEOREM 3.4. Let
f:(4,,B,) = (4,,B,)

be a simple tangential equivalence between the two n-dimensional differentiable
manifold pairs (4;,B;) (for i =1,2).
Assume that (A,,B,) (and hence: (A,,B,)) is 3-connected. Let k=n + 1.
There is a differentiable isomorphism of relative manifold pairs,
BUACHE AR RACHYY

which induces a map

n:{E%(4,),0E%(4)} = {E"(4,),0E%(4,)}.
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The isomorphism n may also be chosen so as to satisfy the following require-
ment:

n ~ E*f:{EX(4,),0E"(4,)} = {E"(4,),0E*(4,)}.
ReMARK. For the duration of this paper, set:
k=n+1.

The result holds as well for k = n + 1 as will be pointed out in the course of
the proof.

Proof of Theorem 3.4. Applying the strong stability theorem (§2) one
obtains a diffeomorphism

¢:(A;,By) x D* 2 (4,,B,) x D,

The mapping (—1): D*—D¥ is given by the formula:
( - 1) (dla""dk) = (dl"",dk—l’ _dk)

for d = (dy,--,dy) € D*. By the symbol (+ 1) I mean one of the two mappings,
(=1):D*- D* or the identity mapping, (+1):D*—D* 1In general, if
f:(D*,0D%) > (X,Y) is a map, —f will denote the composite,

=f=fo(=1).

Let a;eint A; be the base points of 4;, i =1,2.
Consider the imbeddings:

+ ¢p,0,:(D",0D%) - (4, x D*, A, x 0D

given by:
(1) ()@ = (a5,(£ D(d)),deD",
() ¢:1(d) = ¢(as,d), deD"

LemMA 3.5. + ¢, ~¢@,. That is, for 1 £t <2 there is a homotopy
Y,: (D%, 8D% — (A, x D* A,,x aD%)
such that
Vo= 3 ¥y = ¢4
Proof. The natural imbedding
¢;:(D*,0D%) - {a;} x (D ,0D") < 4, x (D*,aD")
induces isomorphisms,
Z ~ myD* aD" —(%)b m(A; x D*, A, x dD%)
for i=1,2.
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Let [¢,], [¢:]em(4, x D*, 4, x dD*) ~ Z be the relative homotopy classes
represented by ¢,,¢d,, respectively.

To prove Lemma (3.5) it suffices to show that + [¢,] = [¢,].

If ¢, em(A; x D*, A, x 0D*)~ Z are generators, i = 1,2, clearly

[¢2] = % CZ’
[6:1] = £ du(CD)

where
by (A, x DX, A, x 0D%) = A, X D* A, x oD%
is the isomorphism induced by the diffeomorphism ¢. Since ¢, is an isomorphism,
$4() & + {5, and Lemma (3.5) follows.
LEMMA 3.6. The differentiable imbeddings
¢,:(D",0D*) - 4, x (D*,oD"),

+ ¢,:(D*,dD%) — A, x (D*,aD%)

are isotopic. That is, for 1 £t <2, there is a global isotopy,

H,:(4, x D*, 4, x 8D*) > (4, x D", 4, x oD")

such that H, =1, and
A, x (D*,0D") ——ZZ—> A, x (D*,0D%
AN ErS
(D*, oD%
is commutative. (By (£ ¢,) I mean either (+ ¢,) or (— ¢,).)
Lemma (3.6) comes from the following general result due to Haefliger.

ProroSITION 3.7 (HAEFLIGER). Let M™ be a differentiable manifold,
Q™ ! < OM™ a submanifold of OM™. Let both Q™' and M™ be r-connected,
and assume k is a positive integer so that m =2k —r +2,2r <k.

Then any two differentiable imbeddings

lIllz(Dk’ aDk) - (Mm9Qm—l)’
l»bzz(Dk’aDk) - (Mm’Qm—l)

which are homotopic, as continuous maps of pairs, are differentiably isotopic
(L.e., there is a global automorphism H:(M,Q)—(M,Q) which is isotopic to
the identity automorphisms such that Hoy, =,.)
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Proof. A generalization of the absolute version of the above appears reported
in [2]; a proof (of a much more general theorem) is given in [3]. In [3], it is
mentioned that a relative version is forthcoming in later papers, and an analysis
of his techniques shows that they would succeed in proving Proposition (3.7)
above.

To apply Proposition (3.7) in our case, we see that for M = A, x D,
Q=A,xdD" m=2n+1,k=n+1,r=3,n=8.

According to Lemma (3.6),

¢~ ¢,
and therefore Proposition (3.7) applies, concluding the proof of Lemma (3.6).
LEMMA 3.8. There is a diffeomorphism
Y:(4, x D*, 4, x oD% = (4, x D*, 4, x oD%
such that
Y(a; x D¥) = a, x D*
and  is homotopic to f.

Proof. Take yy = H, 0 ¢ where H, is the automorphism produced by Lemma
(3.6). Thisis true for all k = n + 1 as follows: It has been proven that there is a
diffeomorphism,

Yps1:(Ay x D" A, x 0D = (d; x D"*' 4, x oD"*Y)
such that
Ynrr(ag x D"*Y) = a; x D"

For k=n+1, let p=k—n—1, and define

Uiy x D* s (Ay x D"y x pp Vet XL bty Do 4, x D

Clearly ¥, has the desired properties. To study the homotopy properties of
Y =, recall that  induces a map

Y:(A4; x DX, A, x oD* = (4, x D*, A, x aD%)
homotopic to f x 1, (where ¥, f x 1, are regarded as mappings of the above
couple). This was guaranteed originally by the strong stability theorem. Our

isotopies have not changed this.
To conclude the proof of Theorem (3.4) notice that y induces a mapping

n:(E*4,,0E*4,) > (E*A,,0E*4,)

which is a difffomorphism of the relative differentiable manifold. pairs,
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{E¥4),(t:)), i=1, 2. Clearly 5~ EXf) since y ~fx 1, on the pair
(4, x D*, 4, x aD").

4. A result concerning simple homotopy types. I shall make use of a fact
concerning the calculation of torsion invariants of simple homotopy theory.
If X is a finite complex, for A€ K°(X), I shall define a map, denoted:

A X xS?T > X xS

for g sufficiently large (i.e., ¢ > dim X). The continuous map A will be unique
up to homotopy class.
Let b,: X - SO, be a representative of 1; then

Ax:8) = (100 - 9)
where s€S?=0D?*' = R?*!,ye X and b,(x) - s refers to the image of se R?*!

under the linear transformation b,(x) € SO, . Of course, b,(y) - seS%

PROPOSITION 4.1 (MILNOR). Let X —»7Y be a homotopy equivalence be-
tween finite complexes. Let q be an odd integer. Then the map

Ao(fx1):Xx8"—> YxS§?
is a simple homotopy equivalence for any ie K°(Y).

I shall not give the proof of Proposition (4.1) here.
Note, however, that it suffices to prove that

fx1,: Xx8 - Yx§!

is a simple homotopy equivalence since A is a combinatorial isomorphism. A
strictly weaker result is proved in [8] and it makes use only of the following
property of S%: its Euler characteristic, X(S?), is zero. In a manner similar to
[8], the Whitehead torsion of f x 1, may be computed and shown to be zero.

5. Lens spaces. For arbitrary pairs (p,q) of relatively prime positive in-
tegers, p > g, one defines a complex linear representation of the cyclic group Z,
on C? = {(z;,2,) | z;e C} as follows:

Let @ be the complex number, w = exp(2ni/p). If {€ Z, is a generator of Z,,
define:

o(z4,2;) = (0z,02,).

This induces a linear action of Z,on C2, which is fixed-point free when restricted to
§? = {zuz0eC?| |zt + |5 = 1.

The quotient manifold S3/Z, is called the lens space L(p,q). It is a well-known
result of J. H. C. Whitehead that the two lens spaces L, = L(7,1), L, = L(7,2)
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are of the same homotopy type, but of distinct simple homotopy type. (See
[14]. For a historical survey of the classification theory of lens spaces, see [8].)

These manifolds L;,L, are parallelizable (as are all orientable 3-manifolds)
and they are imbeddable differentiably (and uniquely up to isotopy class) in S*
for n = 7. Their normal bundles with respect to these imbeddings are trivial
and therefore L, x S" possesses a tubular neighborhood

L;xD" 3cs"

for i =1,2. Actually, by a recent result of Hirsch [4], the L; (more generally:
all orientable 3-manifolds) are imbeddable in S° with trivial normal bundle.

Let M} = S" be the bounded complement of L; x D"~ ? as imbedded in S”
(i=1,2). Then M| is parallelizable (since it is obtainable as the closure of an
open submanifold of euclidean space), and M} = L, x S"~* = (L; x D" ).
For simplicity, let us choose a base point meint M, nintM, = S", common to
M, and M,.

If n is chosen so that n =8, M7 is 3-connected.

If n =7, the imbedding

LixD"? ——S"
6}

(for i = 1,2) may be regarded as coming from

Li % Dn—4 _T_’_’; Sn-l
B(i)

by “‘suspension’’:

"L x D" 3 =L xD"*x] — S" 1 x] cS"
@ pr-1 x 1

LemMA 5.1. Let n =1(2), n > 8. There exists a continuous map p:S"— S"
such that p:(S",L; x D""3,L, x 4D""3)—»(S",L, x D" 3,L, x D" %) is a
homotopy equivalence of the triples (S",L,x D""3 L,x dD"™%) (i = 1,2),
and p:L; x dD""* - L, x 0D"" 2 is a simple homotopy equivalence.

Proof. Let p:S"— S” be the continuous map,
p:(S",Ly x D""3 Ly x 0D"" %) — (8", L, x D""3 L, x 0D""3)

obtained in this manner:
Since n is large enough, it is possible to alter B,:L, x D" - 35"
by isotopy so that these inclusions hold:

B.(L, x D{7;3) < int By(Ly x D"™3),

Bi(Ly x D"

In

int B,(L, x D"
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and furthermore, the inclusion
Bi(Ly x D"7%) = By(L, x D"7?)

is ““homotopic’’ to the original homotopy equivalence f:L, — L,.

Let p:S"— S" be the continuous map possessing these properties:

(p)1: The map p| M} is the identity map.

(p),: The map p|B2(L2 X D{'l',zs)) is scalar-multiplication by 2 in the trivial
linear disc-bundle, L, x D"~3. (Le., p = f,020 5", where

2:L, x D{;3,> L, x D"3
is defined by 2(x,d) = (y,2d).)
(p)s: If x€Po(L, x D"™3) — B(L, x D{i73), then
(0 = B2(B5 1/ B3 x])-
(The map p simply ‘‘squeezes”
Ba(Ly x D"7%) — By(L, X D?f/g))
onto B,(L, x 6D""3).)
LemMA 5.2. The mapping
p:(Ly x D""3, Ly x D""3) - (L, x D"73,L, x D" %)
is homotopic to Ao(f x 1,_3), for some Ae K°(L,).
(Recall that for any complex X, for each Ae K°(X) there is a mapping, denoted
A:X x (D%, 0D% - X x (D%4D?),

uniquely given (up to homotopy) by: A(x,d) = b,(x)-d (xe€ X,de D% where
b,:X - S0, is a representative of the class A for g sufficiently large.)

Since L, ~ L,, and this question is entirely a homotopy-theoretic matter,
suppress the index i, and let L=L, ~ L,. Let g =n — 3, and assume given

p:Lx (D% 0D%) - Lx (D%0dDY),
a homotopy equivalence such that
Lx (D%8D% 5 Lx (D%,8D%
(5.3) l n’ l n’
L—— L

is homotopy commutative.
Let us prove that there is a A€ K°(L) such that p ~ 1o (f x 1).
Letting
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Lx (D%,8D% s (D%,aD7)

’

T

L

be the natural projections, it suffices to prove that the projections p’=n'p, p” = n"p
are homotopic to the projections of a = Ao(f x 1,). Homotopy commutativity
of (5.3) insures that p’ ~ a'. It suffices to show p” ~ a”.
Let A, be the function-space of all continuous maps
s: (D% 0D — (D% oD%

which are homotopic to the identity (endowed with the C-O topology.)

Let dyedD?< D? be a base point, and m,:A,— dD? the evaluation map,
n,(s) = s(do). If Q, = {seA,;5(do) =do}, then the triple Q, »A,—0dD? is a
Serre fibre space. If A€ SO, is a linear rotation of R?, 1 restricts to a map,
A:(D%,0D% — (D%, 8DY).

Let SO,_, = SO, be the subgroup leaving d, fixed. Then SO,_; may be re-
garded as a subspace of Q,.

S0,_4 —]-3 Q,.
It is easily seen that Q, ~ Q?” 1(0D?) (where QFX is the p-fold loop space of X).

The map

p" :Lx (D% 0D — (D% oD%
induces a mapping
g:L-A,

where g(1)(d) = p"(1,d).
To prove (5.2), it suffices to show the existence of a map

8,:L-S0,_,
(g, a representative for some i€ K°(L)) such that
L —> S0, <Q,
8a
n

4
A

q

is homotopy commutative.
Since dimL=3, g—1=n—4 =4, so dD? is 3-connected. Therefore the map
n, © g:L— 0D is homotopic to zero. Since
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Q,—A,—oD*
is a Serre fibre space, there is a g’: L— Q, such that
L-% Q,
\ ni
g A
is homotopy commutative.

Notice that L may be given, up to homotopy type, by the following CW de-
scription [8]:

549 L~Stu,D*UD?3,
Thus g’ :L— Q, restricts to a mapping
g,:Stu,D* > Q,.

Since

m,(Q) = m(STY) & Z,,

n(Q,) = nq+1(sq—1) ~ Z,
and

HY(S'V,D*Z,) =0, i>o0,
it follows by obstruction theory that any mapping

g5:8'VU,D* » Q,
is homotopic to zero. Since L/S! U ,D?=S3, the mapping g’: L— Q, factors

(up to homotopy):
g

L——— Q,

¢ &3
L/Stv,D* = §3
It is a classical computation (see Milnor-Kervaire, Bernoulli numbers, homotopy
groups and a theorem of Rohlin, Proc. Internat. Congress of Math., Edinburgh,

1958) that
jq : 7z3(S0q - 1)—_-> nS(Qq)

~ I~

Z—L—alu

is surjective (for g = 5).
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Therefore, there is a mapping &;:S3 — SO,_, such that

~

ss —£, s0,_,
™ i
gs\

Qq
is homotopy commutative. Define §:L—S0O,_; by §= g;0: and the diagram
L—=2550,_,
~ ni
g A,

is homotopy commutative. Therefore g ~ § ~ g, for Ae K°(L) as was to be proved.
By Lemma (5.2),

dp ~Ao(f x d1,_3):Ly x D" >~ L, x aD" >,
Since n — 4 = 1(2), Proposition (4.1) applies, giving us that
dp:Ly x 8D""3 —» L, x oD""?

is a simple homotopy equivalence. This proves (5.1).
Notice that p induces a map

p:(M1},0M7) - (M3,0M3)

which is a homotopy equivalence of the pairs (M;,0M;) and a simple homotopy
equivalence between dM,. Since the M, are 3-connected (simply connected will
do), any homotopy equivalence is a simple homotopy equivalence (J. H. C.
Whitehead [14]). Therefore

p:(M,0M,) - (M,,0M>)

is a simple homotopy equivalence between the manifold pairs (M;,0M,). Since
the M are parallelizable, the map
p:(My,0My) - (M;,0M))
is a simple tangential equivalence. The map p:S"— S"also restricts to a homo-
topy equivalence,
p:(Ly x D"™3,8(Ly x D"™%) = (L, x D"73,8(L, x D"™%))
which is a tangential equivalence because the L; x D"~> are parallelizable.
Consider the inclusion maps,

o E*M! = E*sS"~ S™** (i=12).
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The E*M?" and E*S™ are taken with respect to the common base point m. The
imbeddings o,: E*M" —» S"**are relative diffeomorphisms.

LeMMA 5.5. There are differentiable imbeddings
g :(L; x D""%) x R¥ - S"**
for i=1,2 such that:

1) o, {E*M!} U g{(L; x D""%) x R*} = S"*,
(@) o {E"M]} ne{(L; x D"™%) x R*} = &{a(L; x D"™%) x R¥}.

Proof. There is an obvious diffeomorphism &:R* ~int D*. Define
& :(L; x D"7%) x R¥—» EXS", m)) ~ S"**
to be the composite

Ly x D" ¥ x R* ——> S"x D* ——> EXS",m)~ S"**
By xe q;
where
q:S"x D¥ — (8" x D*/{m;} x D*U S" x aD*) = EXS", m,)

is the natural identification. Properties (1) and (2) are evident.

Recall that n is subject to the conditions: n = 1(mod2),n > 8. Set k=n+ 1.
Let K; = E*M?, i =1,2.

Since the M} are 3-connected, and p:S"— S" induces a simple tangential
equivalence,

p :(M7,0MY) > (M3,0M3),

Theorem (3.4) applies, giving us a ‘‘difftomorphism”’

n:K; 2 K,
such that the diagram

K, ——> K,

I I
(5.6) E'M}  E'M)

ni ni

k
EkSn E P 3 Eksn
is homotopy commutative.
It is standard that one can find a continuous mapping
po:(E*S"K,) - (EkS",Kz)

possessing properties analogous to the properties of p listed in (5.1) such that
the diagram
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Kl __'11‘—) K2
I
(5.7 E'M} E'M?
ni ni

Etsm Po, prem

is actually commutative.
We may also insist of p, (thanks to a similar property of p given in (5.1))
that there be a tangential homotopy equivalence

o :(Ly x D"73,0(L; x D""3)) x R*— (L, x D""3,8(L, x D"~?)) x R*

such that

EkS n Po > Ek Su

(5.8) ]\ & Taz

(Ly x D"™3) x R* 2% (L, x D""%)x R*

is commutative.
According to Lemma (5.5),

oK) Nne((L; x D"%) x R¥) = {a(L; x D""%) x R*}.
The following diagram, then, makes sense, and is commutative:

d,(Ky) —‘%——"‘) 0y(K3)

(5.9) 3% T 173 T

a(L, x D"3) x R* -5 (L, x D"~?) x RF.
0w,

This shows that w,, restricted to d(L; x D"~%) x R¥, is a diffeomorphism be-

tween d(L; x D"~3) x R* and d(L, x D"~3) x R*.

Now recall the ‘‘action’ ®, previously defined in §3, representing K°(M3)
as a group of ‘‘differentiable’’ automorphisms (unique up to isotopy class) of
E*M?%. For each A€ K°(M}) one has an automorphism ¢,:K, - K,.

Define (for each i€ K°(M?)) ~

m!Kngz

to be the composite,

¢

m Ky —'*','\, K, % K,.
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Define dw, :d(L; x D""3) x R*—» (L, x D"~*) x R* to be the map such that

01(K;) ——2— 5y(K))
(5.10) & T €
(70)4,

8(Ly x D" *)x R* —=» &(L, x D""%) x R*

is commutative (i.e., 0w, = &; ' $,6,0w,); one has the following lemma:

LEMMA 5.11. The map 0w, (for any ie K°(M3)) extends to a tangential
homotopy equivalence

w;:(Ly x D"73,8(Ly x D""%)) x R* » (L, x D""3,8(L, x D"~%)) x R*.
Proof. The map dw, is homotopic to dw,. Since dw, extends to a tangential
homotopy equivalence
wo:(Ly X D"™3,8(Ly x D""3)) x R¥ —» (L, x D"",8(L, x D"~ %)) x R¥,
so does dw;.
Remark. The tangential homotopy equivalence,
w;:(Ly x D"73,8(Ly x D""*)) x R¥ = (L, x D"™3,8(L, x D""%)) x R

satisfies properties (9,) and (d,) of §2. Therefore w, satisfies all the hypotheses
of the weak extension theorem (§2) except for (é;) which requires that the ob-
struction k(w;) € k(L x D"~ 3,8(L, x D"~?)) vanish.

I now revert to the terminology of Proposition (1.1) of §1. Set:
A=L, x D" % B=M}W=0dL, x D"*) = a(M?).

Define a map

g:K°(B)— k(4, W)

by g(A) = k(w,) € k(4, W), for Ae K°(B).

LeMMA 5.12. The map

(g = 7):K°(B) - k(A, W)

is a constant. (The v is defined in Proposition 1.1.)

Proof. Straightforward.

Notice that our particular 4, B, W satisfy the hypotheses of Proposition (1.1)
if n=3,5,7(mod8) (ie., ANB=W, AUB=S").

LeMMA 5.13. Let n=3,5,7(mod8) (as well as the standard requirement:
n > 8).

Let A,B,W be as above. Then the map g:K°%B) = k(A, W) is surjective.

Since n = 3,5,7(mod 8), Proposition (1.1) applies, which yields surjectivity
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of y. Since (by 5.12) g—1y is a constant, it follows that the map g is surjective
as well. From now on I assume n = 3,5,7(mod 8), n > 8. By surjectivity of g,
there is a i, e K°(M%) such that

g(A) = 0€ek(L, x D""3,8(L, x D"™?)).

Thus, g(4o) = k(w;,) = 0. Since w,, now satisfies the hypotheses (0) of the weak
extension theorem, we may conclude that there exists a difffomorphism

w:(Ly x D"73,0(Ly x D" *)) x R* > (L, x D" *) x R
so that

Na
0,(K,) . »0,(K )

(5.14) & &
(L, x D" x R* 5 (L, x D""3) x R*

is commutative.
LEMMA 5.15. Let
w:(Ly x D"73,8(Ly x ") x R* = (L, x D""3,8(L, x D"") x R*

be a diffeomorphism of manifold pairs. As usual, denote:
0w = w|d(L; x D"~%) x R~

Assume that (5.14) is commutative for such an . Then there is a unique
continuous map

h:E'S" —» E*S"
satisfying the commutative diagram

n
K, fo > K,

(5.16) all - azl

E*s™ h y E*S™

ElT SZT
w k

Ly xD"*xR* ——— L, x D" x R".

The map h: E*S"— E*S™ is a topological homeomorphism.

Proof. Define h so as to make (5.16) commutative. According to the de-
composition of E*S"= S"** given in Lemma 5.5, uniqueness is obvious. For
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existence of h, one must check compatibility of the two definitions of h on
¢;(Ly x @D"3). This follows from the commutativity of (5.10).

One may check continuity of h easily. The map h is a topological homeo-
morphism because k! may be constructed similarly from the diagram

K¢ ~ K,
all azl
-1
E*S"— h E*s™®
(5.16)-1 elT ezT

-1
L, x D" 3x Rke—al:— L, x D"™3 x R¥,

Thus, applying Lemma (5.15) to our situation, we may conclude that there
exists a topological homeomorphism h:S"** — §"** such that

Kl ""—'2::,_—) K2
(5.17) all a’zl
Sn+k h ) Sn+k
topoTogical

is commutative.
Now let K be the finite complex K, and let

a0 K-> Sn+ln

be the combinatorial imbedding of K in S"** given by

Sn'H‘

I
K, -2, E*sm

K—j——)

Let B: K — S™"** be the combinatorial imbedding obtained as follows:

K ﬂ ; Sll +k
K" ~, K g"s"
1 7];'0 4 2 o, > .

THEOREM. If n >, the combinatorial imbeddings a,f:K — S **** (can be
defined and) are combinatorially inequivalent.
If, further,

n =3,5,7(mod 8),
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then there is a topological homeomorphism h:S8*"*! — S?"*1 which establishes
a topological equivalence between a and f. That is, the diagram

2n+
Snl

(5.18) k’ h
ﬁ SZn+ 1

is commutative.

ReMARK. The smallest dimension allowed by these restrictions on n is:
dimK = 23.

Proof. Let X; be the finite complexes (for i =1,2) obtained as follows:
X, = S""*/«(K) = E*S"/K,,
X, = S"*YB(K) = E*S"/K,
(cf. Lemma (0.1)). It is then obvious (by the definition of E*S™) that
(5.19) X, ~ Lix D" *xD*¥ U C{a(L; x D" 3 x D%} for i=1,2
where CX is the cone over X, and the union of the two spaces in (5.19) is made
by identifying
o(L; x D" x DY = C{a(L; x D"* x D"}

with
(L, x D" *xD" < L, x D""3 x D*

by the identity map.

Therefore it is clear that our spaces X, and X, are precisely Milnor’s spaces
X, and X, in [8] (see p. 575). Milnor’s Theorem 2 applies, giving us that X,
and X, are combinatorially inequivalent. Clearly a combinatorial equivalence
between a and g would induce a combinatorial equivalence between X, and X,.
The efore we may conclude that there does not exist a combinatorial auto
morphism

K: S2n+l - S2n+1
such that

SZn+l S2n+1

\/ﬁ



1964] COMBINATORIAL EQUIVALENCE 315

is commutative. (More is actually proved. There does not exist a combinatorial
automorphism x:S"*! - §2"*! such that x:«(K) = B(K).) However, for the
restriction on the dimension of n,

n = 3,5,7(mod8)
the topological homeomorphism

h,s2n+1 - SZII+1

has already been constructed such that (5.17) is commutative. It then follows
by the definitions of «,f that

S2n+l h 3 S2n+1
a’\ //3
K

is commutative. This concludes the proof of the theorem.

6. Topological equivalences of general combinatorial imbeddings. In this section
I shall abstract a more general situation in which one may say that two com-
binatorial imbeddings o, f: K — S™ are topologically equivalent. The proof of
the existence of the topological equivalence is quite clearly the same as the con-
struction of the topological equivalence 4 in §5.

THEOREM 6.1. Let n=3,5,6,7(mod 8),n= 8. Let M} = S? (i=1,2) be
bounded differentiable compact 3-connected n-dimensional submanifolds of
S; (differentiable manifolds without boundary).

Let N; be the bounded complement of M? in S?,

M} N N!= W' = oM} = ON} (i =1,2).

Let p:S7— S} be a continuous map such that
(a) p induces a map of couples

pi(ML W™ - (M5, W37

which is a simple homotopy equivalence.
(b) p induces a map of couples

pi(NL WY > (N3, W3

which is a homotopy equivalence.
Let k=n +1. (Then (of course)

E*M] c E*s? (i=1,2)

are finite subcomplexes.)
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Then:
There exists a topological homeomorphism

h:E*S? —» E*S%
such that h induces a map
h:(E*M{,0E*M?}) —» (E*M3,0E*M?3)

which is a combinatorial isomorphism. (Actually h is a ‘‘diffeomorphism-
except-at-one-point.’”)
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