
























































































2.2. How does a spectral sequence arise? 31 

Under the best possible conditions, the computation ends at some finite 
stage; recall that a spectral sequence collapses at the Nth term if the differen­
tials dr = 0 for r ~ N. From the short exact sequence, 

the condition dr = 0 forces Zr = Zr-l and Br = B r- 1 . The tower of 
submodules becomes 

B2 C B3 C ... C B N- 1 

= BN = ... = Boo C Zoo = ... = ZN 

= ZN-l C ... C Z3 C Z2 C E2 

and so Eoo = EN. The reader should try his or her hand at generating some 
examples of collapse analogous to those in § 1.2. 

2.2 How does a spectral sequence arise? 

Now that we can describe a spectral sequence, how do we build one? In 
this section we present two general settings in which spectral sequences arise 
naturally: when one has a filtered differential module and when one has an 
exact couple. These approaches layout the blueprints followed in the rest of 
the book. 

Filtered differential modules 

Definition 2.3. A filtration F* on an R-module A is a family of submodules 
{FP A} for pin 2.:: so that 

... C FP+lA C FP A C Fp- 1A c··· c A (decreasing filtration) 

or ... C FP-l A c FP A C FP+l A c ... c A (increasing filtration). 

An example of a filtered 2.::-module is given by the integers, 2.::, together with the 
decreasing filtration 

FP2.:: = { 2.::, if p ~ 0, 
2P2.::, ifp > O . 

... C 162.:: C 82.:: C 42.:: C 22.:: C 2.:: C 2.:: C ... C 2.::. 

We can collapse a filtered module to its associated graded module, Eo (A) 
given by 

P { FP AI FP+l A, when F is decreasing, 
E (A) = .. . 

o FP AI FP-l A, when F IS mcreasmg. 

In the example above, Eg (2.::) = {O} if p < 0 and Eg (2.::) ~ 2.::/22.:: if p ~ O. 
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The 2-adic integers, Z2 = lim Z / 28Z has a decreasing filtration given by 
+-8 

FPZ2 = ker(Z2 ---+ Z /2PZ) 

for p > 0 and FPZ2 = Z2 for p ~ O. The projections ¢p: Z2 ---+ Z / 2PZ give 
rise to short exact sequences 

, x2P , <pp Z 
o ---+ Z2 ----+ Z2 ---+ / 2P Z ---+ 0 

and so we obtain the same associated graded module, Eg(Z2) = {O} if p < 0 

and Eg(Z2) ~ 2PZ2/2p+lZ2 ~ Z/2Zifp;::: O. 
Reconstruction of a filtered module from an associated graded module may 

be difficult. In Chapter 1, in the case of field coefficients and a first quadrant 
spectral sequence, dimension arguments allow the recovery of an isomorphic 
vector space from the associated graded one. For an arbitrary commutative ring 
R, however, extension problems may arise: Suppose A is a filtered R-module 
and the (decreasing) filtration is bounded above and below, that is, Fk A = {O} 
if k > n. Further suppose that Fk A = A for k < 0; we present the filtration 

{O} C FnA C Fn-1A c··· c FIA c FaA C F-1A = A. 

The associated graded module Eo (A) is nontrivial only in degrees -1 ~ k ~ n, 
and we obtain the series of short exact sequences 

o ----+ F n A ----+ Eo (A) ----+ 0 

0--+ Fn A --+ F n- 1 A --+ EO-1 (A) ---+ 0 

o --+FkA --+Fk-1A --+E~-l(A)---+O 

o --+ Fl A ------+ Fa A ----+ Eg (A) ----+ 0 

0--+ Fa A ----+A ----+EOl(A) ---+ O. 

If one knows that the filtration satisfies such boundedness conditions, then 
Eo(A) determines FnA. However, Fn- 1 A is only determined up to choice 
of extension of Fn A by EO-1 (A). Working downward, each F k- 1 A is deter­
mined by a choice of extension by Fk A by E~-l (A) down to A itself, which 
is known only up to a series of choices. In general, we are left with some 
ambiguity about A unless some further structure guides our choices. 

If H* is a graded R-module and H* is filtered, then we can examine the 
filtration on each degree by letting FP Hn = FP H* n Hn. Thus the associated 
graded module is bigraded when we define 

{ 

FP Hp+q / FP+l Hp+q, if F* is decreasing, 
EP,q(H*,F) = 

a FPHp+q/ FP-l Hp+q , if F* is increasing. 
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We next combine the associated graded module with the definition of a spectral 
sequence. 

Definition 2.4. A spectral sequence {E;'*, dr } is said to converge to H*, a 
graded R-module, if there is afiltration F on H* such that 

where E~* is the limit term of the spectral sequence. 

Determination of a graded module H* is generally the goal of a compu­
tation. If there is a spectral sequence converging to H* and if it converges 
uniquely to H* and if all of the extension problems can be settled, then H* is 
determined (a lot of ifs). 

With the fundamental definitions in place, we begin to describe a general 
setting in which spectral sequences arise. 

Definition 2.5. An R-module is a filtered differential graded module if 
00 

(1) A is a direct sum of submodules, A = EB An. 
n=O 

(2) There is an R-linearmapping, d: A ---+ A, ofdegree 1 (d: An ---+ AMI) 
or degree -1 (d: An ---+ A n-I ) satisfYing dod = O. 

(3) A has afiltration F and the differential d respects the filtration, that is, 
d: FP A ---+ FP A. 

Since the differential respects the filtration, H (A, d) = ker d/ im d inherits 
a filtration 

H(inclusion) 
FPH(A,d) = image (H(FP A,d) : H(A,d)). 

It's time for the main theorem. For convenience, suppose that A is a filtered 
differential graded module with differential of degree + 1 and a descending 
filtration. (This is often the case in cohomological examples. The case of a 
spectral sequence of homological type is treated in the exercises.) 

Theorem 2.6. Eachfiltered differential graded module (A, d, F*) determines a 
spectral sequence, {E;'*, dr }, r = 1, 2, ... with dr of bidegree (r,1 - r) and 

Suppose further that the filtration is bounded, that is, for each dimension n, 
there are values s = s( n) and t = t( n), so that 































































































































































































































































160 5. The Leray-Serre Spectral Sequence I 

a connected, locally simply-connected space has a universal cover. To prove 
that universal covers exist for each of the spaces Xi, [SerreS l] introduces the 
point set condition ULC (uniformement localement contractile): A space Y is 
ULC if there is a neighborhood U of the diagonal in Y x Y and a homotopy 
F: U x I -+ Y such that F(x,x,t) = x for all x E Y and tEl; and 
F(x,y,O) = x, F(x,y, 1) = Y for all (x,y) E U. The relevant result is 
that if Y is ULC, then Y exists, Y is ULC and OY is ULC. Spaces that are 
ANRs (absolute neighborhood retracts, [Whitehead, GW7S]) are ULC, and this 
includes spaces of the homotopy type of locally finite CW-complexes. 

Proposition 5.17. If X is ULC, offinite type, connected and simply-connected, 
then 7ri(X) isfinitely-generatedfor all i. 

PROOF: To study the relationship between Yand Y, we do not have the Leray­
Serre spectral sequence as a tool-the fibre is not connected. The tool of choice 
is the Cartan-Leray spectral sequence (see [Cartan4S] and Theorem Sbis .9), 
converging to H*(Xi A) for A, an abelian group, and for which 

where we are using the homology of the group 7r1 (X) with coefficients in the 
7r1 (X)-module H*(Xi A). (See Chapter Sbis for definitions.) 

We proceed by induction. For Xo = X, since X is simply-connected, X = 

X = TI and so Xl = OTI is of finite type by the argument of Example S.A. 
By induction we suppose that X n- l is of finite type and consider Tn = X n- l . 
[SerreSl] showed that the abelian group 7r1(Xn-d acts trivially on H*(Tn) 
(since X n - l is an H-space-Corollary Sbis .3). The E2-term of the Cartan­
Leray spectral sequence for the covering Tn ---+ X n- l simplifies for a trivial 
action: 

E;,q Hp(7rI(Xn-d,Hq(Tn)) 

Hp(7r1 (Xn-d) ® Hq(Tn) EEl Torr (Hp-l (7r1 (Xn-d), Hq(Tn)). 

By induction, 7r1(Xn-d HI(Xn-d is finitely generated, from which it 
follows that the homology groups of the group 7r1 (Xn - l ) with coefficients in the 
trivial module Z, Hi (7r1 (Xn - l )), are finitely generated (they are subquotients 
of the bar construction). Since the target groups Hp+q(Xn- l ) are finitely 
generated for all p + q and the Tor terms are finitely generated, the argument 
of Example S.A applies to prove that Tn is of finite type, and hence, so is 
Xn = OTn. 

U sing the Cartan-Leray spectral sequence establishes the necessary details 
for our naive argument, and so we have proved that 7r n (X) is finitely generated 
for all n, since 7rn(X) 7r1 (Xn-d HI (Xn-d. D 











































































































































































































































































8.1. Homogeneous spaces 293 

(13 (r), d- + 8) is a differential coalgebra where d- is the internal differential 
(and 1 = (_l)l+deg l'l"), 

8 is the external differential, 

and the cornultiplication is given by 

If f: A ---+ r is a mapping of differential graded algebras, then f induces 
a mapping of differential coalgebras, 13(f): 13(A) ---+ 13(r). The central obser­
vation that makes the extension of Tor possible is that maps, 13(A) ---+ 13 (r), of 
differential coalgebras carry the chain homotopy information we need. Further­
more, not every map of differential graded coalgebras, 13(A) ---+ 13(r), is 13(f) 
for some algebra mapping, f: A ---+ r. These observations are made precise in 
the following result of [Stasheff-Halperin70]. 

Theorem 8.18. Suppose A and r are connected differential graded algebras 
over afield k. Let DCoalg(13(A) , 13(r)) denote the set ofmorphisms of differ­
ential coalgebras, 13(A) ---+ 13 (r). Then DCoalg(13(A) , 13(r)) is in one-to-one 
correspondence with the set of sequences of k-linear mappings, (fl, f2, ... ) 
where n times 

(1) r: A ® ... ® A ---+ r has degree 1 - n, 
(2) for all n, 

df3(r)r(al ® ... ® an) - L:1r(ih ® ... ® ai-l ® dA(ai) ® ... ® an) 
n-l 

= Li=l r-1(al ® ... ® ai . aHl ® ... ® an) 

- ",n-l p(al ® ... ® ai-I) . r-i(ai+l ® ... ® an). 
L....,,=l 

PROOF: If F: 13(A) ---+ 13(r) is a morphism of differential coalgebras, then 
the result follows by direct calculation. Given such a sequence of mappings as 
described above, define the mapping 13r: 13(A) ---+ 13(r) by 

n 

= L L [fiI(al ® ... ® ail) I ... I fik(an_idl ® ... ® an)] 
k=l S(n,k) 
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where S( n, k) is the set {( iI, ... ,ik) I I:~ i j = n}. Another direct calculation 
shows that this is a mapping of differential coalgebras. (See the papers of 
[Clark65] or [Wolt77] for more details.) D 

To see how this theorem relates to 'algebras up to homotopy,' observe that, 
for n = 2, the formulas above give 

that is, F induces an algebra mapping on homology. In order for F to induce 
an associative multiplication, f3 is needed to fill in the appropriate chain ho­
motopies. To quote from [Wolt77], " . .. f2 is a chain homotopy measuring 
how far F deviates from being multiplicative. Thus, in a sense, P atones for 
the sins of F-but adds a few of its own. f3, in tum, is a chain homotopy of 
chain homotopies, and atones for the sins of F and f2-but ... and so on." 

Definition 8.19. A sequence of mappings, (F, p, ... ), that arises from a 
differential coalgebra morphism B(A) -+ B(r) is called an shm (strongly 
homotopy multiplicative) map, denoted A===} r. We also say that a mapping 
of differential graded modules over k, f: A -+ r is an shm map, if there is a 
sequence as above (F, p, ... ) with F = f. 

The terminology of 'strongly homotopy multiplicative' mappings and the sys­
tems of higher homotopies that express the relations implied by associativity 
were first codified in [Sugawara57] and [Stasheff63]. 

Extend the category DGAIgk of differential graded algebras over k to a 
new category DASHk with the same objects as DGAIgk but with the sets of 
morphisms given by 

DASHk(A, r) = DCoalg(B(A) , .8(r)). 

The category DGAIgk embeds in DASHk by sending an algebra homomorphism 
f: A -+ r to the sequence (j, 0, 0, ... ). We denote a morphism in DASHk by 
f:A===}r. 

To prove Theorem 8.1, we develop the notions of algebras and mod­
ules over algebras having sh-structure maps and extend the functor Tor to 
accept sh-objects and shm maps as variables. This extension was carried out in 
[Gugenheim-Munkholm74]. [Stasheff-Halperin70] observed that, for the dif­
ferential graded algebra C* (BG; k), satisfying the assumptions of Theorem 8.1, 
there is an shm map, H*(BG; k) ===} C*(BG; k), inducing the identity map­
ping on homology. By getting the sh-module structure correct, the desired 
isomorphism on Tor follows. 

The following series of remarks and results, stated without proofs, gives 
the steps in this program leading to the proof of the powerful collapse theorem 
of [Munkholm74]. The interested reader can find details in the references cited 
along the way. 

















































































































350 Nontrivial fundamental groups 

Corollary If ¢: M ----+ M' is a 7r-module homomorphism, M and M' are 
nilpotent, and ¢ induces an isomorphism Ho(¢) and an epimorphism HI (¢), 
then M and M' are isomorphic. 

The next lemma provides another step in proving the generalized White­
head Theorem. 

'----+ PnX----+ 
Pn-IX is the nth fibration in the Postnikov tower for X. Then there is an exact 
sequence, functorial in X, given by 

Hn+2(PnX) -----+ Hn+2(Pn- IX) -----+ HI(7rI(X),7rn(X)) -----+ Hn+l(PnX) 

-----+ Hn+I(Pn-IX) -----+ (7rn(X))1r -----+ Hn(X) -----+ Hn(Pn-IX) ----+ 0 

PROOF: The Leray-Serre spectral sequence for this fibration has E2 -term given 
by E;,q Hp(Pn-IX; Hq(K(7rn(X), n)), where the action of 7r = 7rI (X) on 
7rn(X) determines the local coefficients. Since Hn+l (K(7rn(X), n)) = {O} (a 
consequence of Lemma 6.2) and K( 7rn(X), n) is (n - 1)-connected, we get a 
lacunary E 2-term in bidegrees (*, i) for i n + 1-there are only two nonzero 
stripes in bidegrees (*, 0) and ( *, n). As in the derivation of the Gysin sequence 
(Example 1.D) we get short exact sequences 

dn +1 

o ----+ E oo -----+ E2 ------+ E2 -----+ E oo ----+ 0 
n+I,O n+I,O dn +1 O,n O,n 

0----+ E:::"+2 0 -----+ E;'+2 0 ------+ Ei n -----+ E'fn ----+ 0 
) ) ) ) 

Splicing these together we get 

Hn+2(PnX) -----+ Hn+2(Pn- IX) -----+ HI(Pn-IX, Hn(K(7rn(X), n))) 

-----+ Hn+I(PnX) -----+ Hn+l(Pn-IX) -----+ HO(Pn-IX;Hn(K(7rn(X),n))) 

-----+ Hn(PnX) -----+ Hn(Pn-IX) ----+ 0 

However, from Proposition Sbis.4 and Theorem Sbis. lO we know that 

i = 0, 

i = 1. 

By the definition of a Postnikov tower, we have that Hn(PnX) = Hn(X). Fur­
thermore, Hn(X) --++ Hn(Pn-IX) because Hn(Pn-IX) = E;, 0 = E:::"o. 
The lemma follows after we make these substitutions in the exact ' D 
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We now complete the proof of Theorem Sbis.23 . Suppose that our map 
f: X -+ Y satisfies the conditions Sn- Then f induces a map of Postnikov 
towers and by naturality of the short exact sequence of Lemma Sbis .27 we get 
a morphism of exact sequences 

The leftmost horizontal map is seen to be an epimorphism by considering the 
next stage of the Postnikov tower where we have Hn+1 (X) -- Hn+l (PnX), 
and similarly for Y. Since Hn+l (f) is an epimorphism by 2n, we get the 
first vertical epimorphism. By the Five-lemma, (7rn(X))1r -+ (7rn(Y))1r is an 
isomorphism. Next consider the other end of the exact sequence: 

The Five-lemma implies that HI (7r1 (X), 7rn(X)) -+ HI (7r1 (Y), 7rn(Y)) is an 
epimorphism. By Lemma Sbis.25 we have that 7rn (f) induces an isomorphism 
between 7rn(X)/r~7rn(X) and 7rn(Y)/r~7rn(Y) for all r and hence induces 

an isomorphism 7rn(f). Finally we use the remaining conditions of Sn. 
There are exact sequences of functors given by 

The Five-lemma and conditions 3n, 4n, and 5n for 7rn(f) imply that 7rn(f) is 
an epimorphism. 

To prove that 7rn (f) is a monomorphism, we use 5n , that is, r7rn (f) is a 
monomorphism. We only need to show that 7r nX Ir7r n (X) -+ 7r n (Y) Ir7rn (Y) 
is a monomorphism. The lower central series has the property that r~M c 
r~-I M is always strictly decreasing until it becomes stable. This is because 
r~M = r;'(r~-I M). We also know that r M c r~M for all r. In fact, 
this inclusion extends to r, any transfinite ordinal, as follows: If 0 = f3 + 1 
are ordinals, then let r~M = r;'(r~M); if 0 is a limit ordinal, let r~M = 

n;3<a r~M. It still follows that r M c r~M for all ordinals o. But the lower 
central series always decreases so r M = r;;:M for some ordinal 'Y. We have 
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shown already that 7rn(X)jr~7rn(X) ----+ 7rn(Y)jr~7rn(Y) is an isomorphism 
for finite r. Introducing the limit ordinals, we get an isomorphism for r = w 
and the argument of Lemma Sbis.25 works for the higher ordinals. Thus, 7r n (f) 
induces an isomorphism 7rn (X)jr7rn (X) ----+ 7rn(Y)jr7rn(Y) and so, by the 
Five-lemma, 7rn(f) is a monomorphism. D 

A characterization of nilpotent spaces 

In Chapter 4 (Theorem 4.35) we constructed the Postnikov tower of a space 
and stated that, for simply-connected spaces, the fibrations in the tower could 
be taken to be principal, that is, eachpn: PnX -----+ Pn-1X is a pullback of the 
path-loop fibration over the Eilenberg-Mac Lane space K( 7rn(X), n + 1) via a 
k-invariant, kn : Pn-1X -----+ K(7rn(X), n + 1): 

K(7rn(X), n) = K(7rn(X), n) 

1 1 
PnX ----+ PK(7rn(X), n + 1) 

pnl 1 

We next give a proof of this property of simply-connected spaces and generalize 
it to nilpotent spaces. 

Lemma li'i~28. Let A be afinitely generated abelian group and let E and B be 
p 

spaces of finite type. A fibration K (A, n) '----+ E -----+ B is principal if and only 
if it is simple, that is, the action of 7rl (B) on K (A, n) is trivial. 

PROOF: Let's assume that p: E -----+ B is principal and it is pulled back over 
a classifying map e: B -----+ K (A, n + 1). The relevant part of the long exact 
sequence of homotopy groups may be written 

The action of 7rl (B) on A can be identified in the second row with the action 
of the fundamental group of the total space of the fibration e on the base space 
K (A, n + 1). But this factors through the action of the fundamental group of 
K(A, n + 1), which is trivial. Hence, the fibration is simple. 
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Suppose nextthat 7rl (B) acts trivially on A = Hn (K (A, n)). Consider the 
cohomology Leray-Serre spectral sequence for the fibration with coefficients in 
the abelian group A. Then, Eg,n ~ Hn (K (A, n); A) contains the fundamental 
class z corresponding to the identity map on K(A, n). Since K(A, n) is (n-l)­
connected, the first differential to arise on z is the transgression dn +1 , and this 
gives a class dn+1(z) = [B] E Hn+1(B; A); we can form the pullback over 
B: B --+ K (A, n + 1). This produces a space Eo together with a mapping 
g: E --+ Eo. Checking the long exact sequence of homotopy groups, g induces 
an isomorphism on homotopy, and so, in the category of spaces of the homotopy 
type of CW-complexes of finite type, g is a homotopy equivalence, and P is a 
principal fibration. D 

It follows immediately from the lemma that a simply-connected space X 
has a Postnikov tower of principal fibrations. For an arbitrary space X, let 
{PnX,Pn, in} denote its Postnikov tower. We say that Pn: PnX ---+ Pn-1X 
admits a principal refinement if there is a sequence of principal fibrations 

with Pn = q2 0 q3 0 ... 0 qc. With this extension of the notion of a principal 
fibration, we can now give a characterization of nilpotent spaces. 

Theorem 8bi~29. A space X is nilpotent if and only if every stage of its Postnikov 
tower admits a principal refinement. 

PROOF: Since each qj is a principal fibration, we can write its classifying 
map as Bn,j: Pn,jX ---+ K(An,j, n + 1). We proceed by induction. By the 
properties of a Postnikov tower, 7rn(Pn,lX) = 7rn(Pn- 1X) = {O} and so 
7rl(X) acts trivially (hence nilpotently) on 7rn (Pn ,lX). Suppose that 7rl(X) 
acts nilpotently on 7rn(Pn,j-1X) of nilpotency class ~ j - 1. View the k­
invariant Bn,j as a fibration (up to homotopy) and qj: Pn,jX --+ Pn,j-1X as 
the inclusion of the fibre. By Proposition Sbis .21, 7rl (X) acts nilpotently on 
7rn(Pn,jX) of class ~ j. By induction, 7rl (X) acts nilpotently on 7rn(Pn,cX) ~ 
7rn(PnX) ~ 7rn(X), 

Suppose that X is a nilpotent space and 7r = 7rl (B). The lower central 
series for 7rn(X) as a 7r-module has the form 

By construction each quotient r~7rn(X)/r~+l7rn(X) is a trivial 7r-module. 
Consider the fibrationpn: PnX --+ Pn-1X. The homology Leray-Serre spec­
tral sequence (Lemma Sbis .27) for this fibration gives the exact sequence 
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Consider the cohomology Leray-Serre spectral sequence with coefficients in 
(7rnX)1r = 7rn (X)jr;7rn (X) for which 

There is a class J E Hn(K(7rn(X),n); (7rn(X))1r) that represents the quo­
tient 7rn(X) ----+ (7rn(X))1r. This class transgresses to a class [l2] lying in 

dn +1 

Hn+l (Pn-1X; (7rn(X))1r) which represents Hn+1 (Pn-1X) ------+ (7rn(X))1r 
and for which we take a representative l2: Pn-1X ----+ K((7rn(X))1r' n + 1). 
Let q2: Pn,2X ----+ Pn-1X be the pullback of the path-loop fibration over l2 
and let U2: PnX ----+ Pn,2X be a lifting of Pn through Pn,2X. Such a lifting 
exists because l2 0 Pn c::: *. 

We can modify U2 to be a fibration and consider a portion of the homotopy 
exact sequences 

0----+ 7rn(X) ----+7rn(PnX) ~7rn(Pn-lX) ------+ ... 

1 1 U2* 

0------+ (7rn(X))1r ~ 7rN(Pn,2X) ~ 7rn(Pn- 1X) ------+ .... 

From this diagram we see that the fibre of U2 is K(r;7rn(X), n). If we repeat 
this construction with U2 replacing Pn, then we get a space Pn,3X together 
with a principal fibration q3: Pn,3X ----+ Pn,2X. Continuing in this way, if X 
is nilpotent, we eventually get to r~+l7rn(X) = {O} and the process stops with 
U c = qc and Pn refined by principal fibrations. D 

The sequence of k-invariants that a tower of principal fibrations admits may 
be applied to many problems in classical homotopy theory. For example, the k­
invariants are the data for classical obstruction arguments. Another application 
was introduced by [Sullivan71] in his work on the Adams conjecture. [Serre53] 
showed, in his development of classes of abelian groups, that homotopy theory 
can become simpler when viewed one prime at a time. Making this notion 
topological rather than algebraic is the goal of localization at a prime. To 
localize a space X at a prime P, first consider the ring of integers localized at 
the prime P, denoted :-lp, and given by the subring of IQl of fractions ajb with 
b relatively prime to p. The functor on abelian groups, A f---+ A ® :-lp, is called 
localization at the prime P; it eliminates all torsion prime to P and so leaves 
only the p-primary data. This functor can be extended to spaces by modifying 
the refinement of the Postnikov tower by composing the classifying maps Bn,j 
with the mapping induced by the localization, K(An,j, n) ----+ K(An,j ®:-lp, n), 
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and then pulling back carefully. The resulting space Xp has homotopy groups 
7rn(Xp) ~ 7rn(X)®Zp and integral homology groups Hn(Xp) ~ Hn(X)®Zp­

Later in the chapter, we will present an alternate construction of the local­
ization of a space, due to [Bousfield-Kann] and carried out simplicially. 

Convergence of the Eilenberg-Moore spectral sequence ® 
Theorem Sbis.23, the generalized Whitehead theorem, illustrates how the 

nilpotence condition can control the effect of the fundamental group. The rela­
tions between the homotopy groups of a space and their nilpotent completions 
provide the data for measuring the departure from the simply-connected case of 
the Whitehead theorem. Another naive situation in which simple connectivity 
plays a role is the convergence of the Eilenberg-Moore spectral sequence. The 
goal of this section is to prove the following result of [Dwyer74] that shows 
how the nilpotence of a certain action of the fundamental group is decisive in 
generalizing the naive convergence criterion. 

b' p 
Theorem 8 '~30. Suppose F "--+ E ---+ B is afibration with all spaces connected, 
and A is an abelian group. Then the Eilenberg-Moore spectral sequencefor the 
fibre of p converges strongly to H* (F; A) if and only if 7rl (B) acts nilpotently 
on Hi(F;A) for all i ~ O. 

f p 
Following [Rector71] (§S.3) we associate to the pullback data X ---+ B +- E 
the cosimplicial space (the geometric cobar construction) Ce(X, B, E) where 
Cn(X, B, E) = X x Bxn x E for n ~ 0 and with coface and codegeneracy 
maps given by 

d'(x,b" ... , bn, e) ~ { 

(x,j(x),b1 , ... ,bn,e) 

(x, b1 , ... ,bi , bi , ... ,bn, e) 
(x,b1 , ... ,bn,p(e),e) 

i = 0, 

1 ~ i ~ n, 

i=n+1. 

O~i~n-1. 

In this discussion we take all spaces involved to be simplicial sets. Thus 
Ce(X, B, E) is a cosimplicial simplicial set. We explore the combinatorial 
structure of such an object in what follows. 

Let A denote an abelian group and X, a simplicial set (§4.2). Then we 
define the simplicial abelian group A ® X by (A ® X)n = EBXEx

n 
A, for 

n ~ 0, with face and degeneracy maps induced by the maps on the generators 
and extended to be A-linear. It follows that 7r*(A ® X) ~ H*(X; A) and 
problems concerning homology become open to homotopy methods. 

In homological algebra, the basic datum of a resolution of a module M 
c; 

is the augmentation Fe ---+ M --+ O. We can view a cosimplicial space ye as 



356 8bi~ Nontrivial fundamental groups 

a kind of resolution (for example, when constructed from a triple; [Bousfield­
Kann, I,§5]). We consider all possible augmentations of Y·, that is, maps 
E: Z ----+ yO satisfying cfJ 0 E = dl 

0 E. The maximal augmentation associated 
to Y· is the subspace aye of yO that gives the equalizer (as simplicial sets) 
of the coface mappings dO, dl : yO ----+ yl. In detail, the space aye is given 
byaY· = {y E yO I cfJ(y) = dl(y)}. The maximal augmentation has the 
following characterization in the category of cosimplicial spaces. 

Lemma li'i~31. The maximal augmentation aye of a cosimplicial space Y· 
is the simplicial set CoSimp( *, Y·) of cosimplicial maps from the constant 
cosimplicial space *. 

We leave the proof of the lemma to the reader. The Hom-set of cosimplicial 
maps between X· and Y·, CoSimp( X· , Y·), has the structure of a simplicial 
set with n-simplices given by the cosimplicial maps ~[n] x X· ----+ Y·. Here 
~[n]. denotes the standard simplicial n-simplex, whose s-simplices are given 
by 

~[n]s = {(XO,XI, ... ,xs) I 0 ~ Xo ~ Xl ~ ... ~ Xs ~ n}. 

The face and degeneracy maps on CoSimp( X· , Y·) are induced by the standard 
maps. The inclusions Ci : ~[n] ----+ ~[n + 1] are given by ci((XO, Xl, ... , Xs)) = 

(XO,XI , ... ,Xs), whereXj = Xj, ifj < i, andXj = Xj + 1, ifj ~ i. The 
ci xl 

facemappingisgivenbydi : ~[n]xX·------+~[n+l]xX· ----+ Y·. Thedegen-
eracy maps are defined by the combinatorial collapse onto the /h face, namely 
Tfj: ~[n] ----+ ~[n - 1], given by Tfj( (XO, Xl, ... , Xs)) = (Xo, Xl, ... , Xs), 

r/j X I 

where Xl = Xl, if l < j, and Xl = Xl -1, if l ~ j. Thus Sj: ~[n] xX· ------+ 

~[n -1] xX· ----+ Y·. 
A desirable property of resolutions is homotopy invariance. For cosim­

plicial spaces, we want a similar property-if f: Y· ----+ Z· is a morphism of 
cosimplicial spaces that satisfies the condition that f: yn ----+ zn is a homotopy 
equivalence of simplicial sets for all n, then f ought to induce a homotopy equiv­
alence of maximal augmentations. However, this is too much to ask for. The fix 
for this desideratum is to replace the construction of the maximal augmentation 
with one that is more robust homotopically. 

Definition li'i~32. Given a cosimplicial space Y·, let Tot(Y·) denote the sim­
plicialsetCoSimp(~·, Y·) where ~. denotes the cosimplicialspace with ~[n] 
at level nand coface and codegeneracy mappings induced by the canonical face 
inclusions, Ci, and projections, Tfj, respectively. 

This functor was introduced by [Bousfield-Kann] and forms the basis for 
their study of localization and completion. Tot(Y·) can be built up canoni­
cally from a tower of fibrations. Let ~ .(s) denote the s-skeleton of the cosim­
plicial space ~., that is, at level n, one takes the s-skeleton of ~ [n]. Define 
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Tots(ye) = CoSimp(~e(s), ye). The cofibrations ~e(s) -+ ~e(s+l) in­
duce fibrations Tots+1 (ye) -+ Tots(ye), whose inverse limit is Tot 00 (ye) = 

Tot (ye). Notice that Toto (ye) = yO, and if E: Z -+ ye is any augmentation, 
then E induces a mapping Z -+ Tots(ye), for all s ~ 00. 

A tower of fibrations gives rise to an exact couple based on the long exact 
sequences of homotopy groups. The E1-term is determined by the homo­
topy groups of the fibres of Tots -+ Tots_I. A typical fibre takes the form 
OS((Nye)s) where (Nye)s maybe written as ysnker sOn·· ·nker ss-l when 
the simplicial sets at each level of ye are fibrant (that is, yn -+ * is a fibration 
for all n). It follows from the grading for the exact couple that this is a second 
quadrant spectral sequence. There are general conditions for its strong con­
vergence to 7r*(Tot(ye)) (see [Bousfield-Kann, IX, §5]). We will obtain the 
Eilenberg -Moore spectral sequence in this manner by taking the homotopy spec­
tral sequence associated to the tower of fibrations {Tots (A ® Ge(x, B, E))}. 

In the category of cosimplicial spaces we find the usual notions of homo­
topy theory such as fibrations, cofibrations, and homotopy equivalences. The 
case of interest is the following diagram depicting a fibration of cosimplicial 
spaces along with an augmenting fibration of spaces: 

F~Ge(*,B,E) 

1 1 
E~Ge(B,B,E) 

Pl 1 q 

B-----+B. 

Here B denotes the constant cosimplicial space with B at all levels and the 
identity map for all coface and codegeneracy maps. The maps for Ge (B, B, E) 
are given by id: B ---+ B +- E: p. The mapping q is given by first projection 
off the product B x Bxn x E. Thus, at each level, we have a trivial fibration 
and so 7rl (B) acts trivially on each fibre Gn( *, B, E). We next show that the 
action of 7rl (B) on Hi (Fi A) is compatible via the augmentation with this trivial 
action. 

Proposition 8bi~33. The augmentation map E: F -+ * x E = GO (*, B, E) in­
ducesa7rl(B)-equivarianthomomorphismE*: H*(FiA) -+ H*(EiA), where 
7rl (B) acts trivially on H*(Ei A) 

PROOF: We argue with spaces and lifting functions as in §4.3. The simplicial 
versions ofthese structures can be found in [May67]. The pullback spaces for the 
fibrationspandq are given by 0p = {(A,e) I A E WB,e E E,A(O) =p(e)}, 
and Oq = {(A, b, e) I A E WB, (b, e) E B x E, A(O) = b}. The augmentation 
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maps induce a mapping between these pullbacks Op ----+ Oq, given explicitly by 
(A, e) f---+ (A, p( e), e). This gives rise to the diagram 

OB x F '--c -------+ Op _----'-"A_---+ WE __ e_vl"----------+ F 

1 1 j j 
OB x (* x E) '----+Oq ~ W(B x E) ~ (* x E). 

As described in §4.3, the lifting function for the trivial fibration is given by 
A' (A, b, e) = (A, ce ), where Ce denotes the constant path at e. Since the action of 
7rl (B) is induced by these composites, compatibility of the actions is equivalent 
to the homotopy commutativity of this diagram. Let H: OB x F x I ----+ (* x E) 
be given by H( (w, y), t) = (*, A(w, y) (t)). Then H makes the leftmost square 
commute up to homotopy and so proves the proposition. D 

The fibration of cosimplicial spaces Ce ( *, B, E) ----+ C e (B, B, E) ----+ B 
provides control of the 7rl (B)-action in the tower of fibrations that give rise to 
the Eilenberg-Moore spectral sequence. 

Lemma If'i~34. For all i ;::: 1, 7ri (Tots (A ® Ce (*, B, E))) is a nilpotent 7rl (B)­
module. 

PROOF: We prove this by induction over 8. When 8 = 0, we have the trivial 
fibration E ----+ B x E ----+ B that describes the O-level of the fibration of 
cosimplicial spaces. Thus 7rl (B) acts trivially on 7ri (Toto (A ® Ce (*, B, E))). 

By induction we consider the fibration 

Totn(A ® C e(*, B, E)) ----+ Totn-l (A ® Ce(*, B, E)). 

[Bousfield-Kann, X, §6] give an explicit expression for the fibre of this fibra­
tion from which we deduce its structure as a 7rl (B) -module. To wit, the fibre of 
Totn (ye) ----+ Totn_ 1 (ye), for any cosimplicial space ye , is given by the func-

tion space Hom( (sn, *), (Nyn , * )) where Nyn = ker(yn ~ Mn-l ye) and 
Mn-l ye is the (n-1yt matching space consisting of simplices in (yn-l) xn, 
written (xO, ... ,xn-l), that satisfy 8 i Xj = 8 j - 1X i whenever 0 ~ i < j ~ 

1 Th . . yn Mn-1ye· . b ( ° n-l ) n -. e mappmg 8. ----+ IS glVen y y f---+ 8 y, ... ,8 y. 
In the case of a cosimplicial simplicial abelian group, the homotopy groups of 
the fibre may be written 

7ri(fibre(Totn(Ye) ----+ Totn_l(ye))) ~ 7rHn(Nyn) 

= 7rHn (yn) n ker 8° n ... n ker 8 n- 1 . 

When ye = A ® C e (*, B, E), the homotopy groups of the fibre have 
a 7rl (B)-action inherited from the inclusion into A ® Cn ( *, B, E). However, 
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7rHn(A®Gn( *, B, E)) is a trivial7rl (B)-module, and so then are the homotopy 
groups of the fibre of Totn (ye) --+ Totn_ 1 (ye). By induction, we assume 
that the groups 7rj(Totn_l(A ® G(*,B,E))) are nilpotent 7rl(B)-modules. 
The long exact sequence of homotopy groups for the fibration Totn (ye) --+ 

Totn-l (Ye) and the triviality of the 7rl (B)-action on the homotopy groups of 
the fibre complete the induction. D 

From the lemma we can deduce half of the proof of Theorem Sbis .30. 
Suppose that the spectral sequence converges strongly to H* (F; A). Then there 
is a filtration of Hi(F; A) for each i with E0 -p isomorphic to the associated 
graded group to this filtration. Strong convergence implies that the direct limit 
of the sequence 

... --+ 7ri(A®Tots(A®Ge(*,B,E))) --+ 7ri(Tots_l(A®Ge(*,B,E))) --+ ... 

vanishes and so there is an injection 

E:::* --+ Rp = nr im(7r*(Totp +r(A ® Ge
) --+ Totp(A ® Ge

)) 

C 7r*(Totp(A® Ge(*,B,E))). 

It follows that each E:::* is a nilpotent 7rl (B)-module. Strong convergence also 
implies that the nonzero 7rl (B)-modules E0 -p are finite in number. Arguing 

inductively using Corollary Sbis .19 we have proved that Hi(F; A) is a nilpotent 
7rl (B)-module. 

To prove the other half of Theorem Sbis .30 we use the towers of fibrations 
that arise from the application of the functor Tots to the cosimplicial fibration 
Ge ( *, B, E) --+ Ge (B, B, E) --+ B. The augmentation from the fibration p 
may be depicted in the diagram: 

F ~ Toto Ge ( *, B, E) +--- Totl Ge ( *, B, E) +-- ... +-- Tot Ge ( *, B, E) 

j 1 1 1 
E ~ Toto Ge (B, B, E) +-- Toh Ge (B, B, E) +-- . .. +-- Tot Ge (B, B, E) 

j 1 1 1 
B-----==--+--B+----=----B+------==--- +-----=-- B. 

Lemma If'i~35. Tot ( Ge (B, B, E)) ~ E. 

PROOF: The projection off the last coordinate Gn (B, B, E) --+ E provides an 
inverse to the augmentation E --+ Ge (B, B, E). D 

It follows that we can compare the augmentation fibration with the limit 
fibration. The nil potency condition plays a role in the following proposition 
that is a form of the Zeeman comparison theorem. The proposition was known 
in the early 1970's-it is stated explicitly by [Hilton-Roitberg76]. 
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Proposition 8bi~36. Suppose F '----+ E ----+ Band F' '----+ E' ----+ Bare fibrations 
with B connected, and 1: E ----+ E' is a map over B inducing an isomorphism 
on homology. IfJrI (B) acts nil potently on Hi (F) and on Hi (F'),jor all i, then 
11: F ----+ F' induces an isomorphism on homology. 

PROOF: We proceed by induction on the degree i of HiUI). In the case i = 0, 
HoU) = HoUI) because B is connected. 

Suppose Hi U I) is an isomorphism for 0 ~ i ~ n -1. This implies thatthe 
E2-terms of the associated Leray-Serre spectral sequences are isomorphic in 
bidegrees (*, i) for i ~ n - 1. We consider the morphism of spectral sequences 
in bidegrees (0, n) and (1, n), where we have E5 n ~ Ho(B, Hn(F)) ----+ 

Ho(B, Hn(F')) ~ E'~ no By Proposition Sbis.4, , , 

where Jr = JrI(B). By Theorem Sbis. ll, Ern ~ HI(Jr, Hn(F)). On the 
vertical edge of the spectral sequence the map ~f spectral sequences gives 

E02 ------++ E03 ----++... ----++ Eon + I = Eooo 
,n ,n ,n ,n 

1 1 ~1 

Since the E2 -terms are isomorphic in bidegrees ( *, i) for i ~ n -1, the differen­
tials arising to make the successive epimorphisms along the vertical edges are the 
same in each spectral sequence and so we conclude that Ho( Jr, Hn(F)) is iso­
morphic to HO(Jr, Hn(F')) via HnUI). Similarly, we find that HI (Jr, Hn(F)) 
maps onto HI (Jr, Hn(F')) via HnUI). Theorem Sbis .16 implies that Hn(F) 
is isomorphic to Hn(F'), and the inductive step follows. D 

The second half of the proof of the Theorem Sbis .30 follows because the 
homotopy spectral sequence for the tower of fibration {Tots(A®Ce

( *, B, E))} 
converges to Jr*(Tot(A ® C e (*, B, E))). Proposition Sbis.36 implies that 
Jr*(Tot(A ® Ce (*, B, E))) ~ H*(Fi A). 

Theorem Sbis.30 has been extended to connective generalized homology 
theories ([BousfieldS7]), nonconnected bases B ([Dror-Farjoun-Smith, J90], a 
useful case when dealing with function spaces) and to pullback fibre squares 

f p 
with data X -----+ B +- Y for which the set Jro(X) X"oCB) Jro(Y) is finite and, 
for all y E Y, JrI (B,p(y)) acts nilpotently on H*((Y)y) where (Y)y denotes 
the component of Y containing y ([Shipley96]). 

The development of convergence criteria for the Eilenberg-Moore spectral 
sequence is, in fact, a spinoff of the investigation of the general convergence 
properties of the Bousfield-Kan spectral sequence. 
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Theorem 8bi~37. Given ajibrant, pointed, cosimplicial space ye, there is a spec­
tral sequence associated to the tower of jib rations {Totn (ye) --+ Totn _ 1 (ye)} 
with 

t~s~O 

and converging under favorable conditions to 7r*(Tot(ye)). 

General results indicating favorable conditions were obtained by [Bousfield87], 
[Shipley96], and [Goodwillie98]. The fundamental example introduced by 
[Bousfield-Kann] is the cosimplicial space associated to the completion of a 
space with respect to a ring R. 

The R-completion of a pointed space (X, xo) is obtained by applying 
the totalization functor, Tot, to the cosimplicial space R e X obtained from the 
triple {R, ¢, '¢} as follows: If (X, xo) is a pointed simplicial set, then define 
the simplicial R-module RX by (RX)n = R ® XnlR ® Xo. The natural 
transformation ¢x: X --+ RX is defined by x f--+ [1 ® xl, and the natural 
transformation '¢x: R2 X --+ RX is given by [r ® [s ® xll f--+ [rs ® xl. The 
R-completion of X is defined by 

where Rk X = R( R k- 1 X) and R O X = RX. The cosimplicial structure is 
based on the natural transformations ¢ and '¢, with the coface and codegeneracy 
maps given by 

di : RkX --+ Rk+lX, di = Ri(¢Rk-iX), 

sj: RkX --+ Rk-1X, sj = Rj('¢Rk-iX)' 

It follows from the properties of Tot that RooX is the inverse limit of a tower 
of fibrations RsX --+ Rs-1X where RsX = Tots(Re X). This tower of 
fibrations is augmented by a family of mappings Is: X --+ RsX and it leads to 
the spectral sequence of [Bousfield-Kann]. 

When R is a subring of 1Ql, then, one can prove that, for some set P of 
primes, 

R = tlp = {alb E IQlI pi b, for allp E Pl. 

The R-completion of a nilpotent space (X, xo) coincides in this case with its 
7lp-Iocalization ([Bousfield-Kann, V, §4]). Thus (co)simplicial techniques 
generalize the localization construction via Postnikov towers of [Sullivan71] to 
general rings. The basic algebraic condition on the ring R that guarantees good 
completion properties is that R be solid, that is, the multiplication on R induces 
an isomorphism R ® R --+ R. 

When 100*: it(XiR) ---+ H*(RooXiR) is an isomorphism, then we 
say that X is R-good. For R-good spaces the R-completion, 100: X --+ 
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RooX, enjoys certain universal properties. For example, a mapping f: X ----+ 

Y induces an isomorphism H*(f): H*(Xi R) ----+ H*(Yi R) if and only if 
Roof: RooX ----+ RooY is a homotopy equivalence ([Bousfield-Kann, 1.5.5]). 
However, there are spaces that are not R-good-for example, an infinite wedge 
of circles is not Z-good. Nilpotent spaces are Z-good. With this language 
we can describe the solution to the natural question-what is the target of the 
Eilenberg-Moore spectral sequence in general? [Dwyer75] found the answer 
for the Eilenberg-Moore spectral sequence associated to the fibre of a fibration 
p: E ----+ B: The spectral sequence converges to the homology of the nilpotent 
completion of the fibration, that is, to H*(Fi R), where F is the fibre of the 
fibration Roop: RooE ----+ RooB. 

Completion and localization constructions have become fundamental in 
homotopy theory and a complete exposition of these ideas would take us too 
far afield. Nice expositions of this circle of ideas may be found in [Sul­
livan71], [Mimura-Nishida-Toda71], [Hilton75], [Hilton-Mislin-Roitberg75], 
and [Arkowitz76]. The most complete exposition of these ideas is the work of 
[Bousfield-Kann]. 

A consequence of the cosimplicial construction of the R-completion is a 
result of [Dror73] that shows the extent to which nilpotent spaces approximate 
general homotopy types. To state precisely what sort of approximation we mean, 
we compare a connected space X with the associated toweroffibrations {RsX}. 
By the definition of Tots, we have the augmentation mappings fs: X ----+ RsX 
for all s ~ 0 and these mappings are compatible with the sequence offibrations 
Rs+1X ----+ RsX. Thus the mappings {Is} determine a mapping of towers of 
spaces {X} ----+ {RsX}. 

A tower of groups { G s} is a sequence of homomorphisms G s+ 1 ----+ G s for 
s ~ O. A homomorphism of towers of groups, ~: {G s} ----+ {Hs}, is a sequence 
of group homomorphisms ~s: G s ----+ Hs, compatible with the tower mappings. 
The natural maps fs: X ----+ RsX determine, for each i ~ 0, a homomorphism 
of towers of groups f*: {Hi(Xi RH ----+ {Hi(RsXi RH· 

Definition li'i~38. A homomorphism of towers of groups, ~: {Gs} ----+ {Hs}, is 
a pro-isomorphism if, for any group A, ~ induces an isomorphism 

C: l~HomGrp(Hs,A) ----+ l~HomGrp(Gs,A). 

We leave it as an exercise to show that ~: {Gs} ----+ {Hs} is a pro­
isomorphism if and only if, for each t ~ 0, there is a value t' ~ t and a 
homomorphism Ut: H t , ----+ Gt such that the following diagram commutes: 
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Here pf, t denotes the composition Gt' ----+ Gt'-l ----+ ••• GH1 ----+ Gt and 
likewise 'for Pi! t. We also leave it to the reader to show that a pro-isomorphism 
induces an iso~orphism of limits: 

~: limGs ~ limHs and~: lim1Gs ~ lim1Hs. 
+-8 +-8 +-8 +-8 

We say that a pointed space (X, xo) is R-nilpotent if X is nilpotent and, 
for each n ~ 1, there is a central series of 7rl (X, xo)-modules 

for which each subquotient Mj/MH1 is a trivial 7rl(X,xo)-module and an 
R-module. A space is nilpotent when it is Z-nilpotent. 

Proposition 8bi~39. For an arbitrary connected, pointed space (X, xo), the 
spaces RsX = Tots (R- X) are R-nilpotent for all s ~ O. Furthermore, the 
natural maps is: X ----+ RsX induce,for all i ~ 1, a pro-isomorphism of towers 
of homology groups i*: {Hi(X; RH ----+ {Hi(RsX; RH· 

SKETCH OF A PROOF: The space RX is R-nilpotent since it is an H-space 
and an R-module. According to [Bousfield-Kann, IlLS.S], if p: E ----+ B is 
a principal fibration with connected fibre F and any two of E, B, and F are 
R-nilpotent, then so is the third. Their Proposition II.2.S asserts that RsX ----+ 

Rs-1X is a principal fibration with fibre a connected simplicial R-module. 
Thus the spaces RsX are R-nilpotent for all s ~ O. 

To establish that we have a homology pro-isomorphism, we observe that 
Hk(X; R) ~ 7rk(RX, xo) and so we can compare the tower of homotopy groups 
{7rk(RX,xoH with {7rk(RRsX,xoH. When comparing the spaces RX and 
RRsX, we have a triple structure available and hence mappings 

with '¢¢ = id . 

[Dror73] interpolates a condition that implies that a pro-isomorphism on ho­
motopy is induced by {RX} ----+ {RRsX}, namely, that the map of towers 
{RnX} ----+ {RsRnX} induce a pro-isomorphism. He then uses the conver­
gence of the homotopy spectral sequence associated to the tower {RsX} to 
obtain the pro-isomorphism {Hk(X; RH ----+ {Hk(RsX; RH for k ~ 1. D 

It follows from the proposition that every connected, pointed homotopy 
type may represented by a tower of R-nilpotent spaces, up to homology equiv­
alence. This approximation is analogous to the Stone-Weierstrass theorem: 
Every homotopy type (continuous function) may be represented by a tower 
of R-nilpotent spaces (a sequence of polynomials) such that H*(X; R) ~ 
limH*(RsX; R) (limits agree). To study whether a space is R-good, we can 
+-s 

focus on the relation between limH*(RsX; R) and H*(RooX; R). 
+-s 
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Exercises 

Sbis .1. Show that 7r1 (lJ.lIP2n) acts nonnilpotently on 7r2n (lJ.l!p2n). 

Sbis.2. Show that the action v:,F: 7r1(E, e) x 7rn(F, e) -+ 7rn(F, e) is well­

defined and that i* : 7r n (F, e) -+ 7r n (E, e) is a 7r1 (E, e)-module homomorphism. 

Sbis .3. Suppose that M is a module over a group 7r. Show that the coinvariants MJr 
is the largest quotient of M on which 7r acts trivially. Show directly that the functor 
M f-+ MJr is right exact. 

Sbis.4. Let 7r denote the cyclic group of order m, with generator t E 7r. Show that 

the complex 

N T c; 
... -+ Wn -+ ... -+ W 2 --+ WI --+ Wo ---+ Z -+ 0 

is a resolution of Z over Z7r, where W k the free Z7r-module on a single generator 
Wk and boundary homomorphisms T: W 2n+1 -+ W2n given by T(W2n+l) = 

tW2n - W2n and N: W2n -+ W 2n- 1 given by N (W2n) = W2n-1 + tW2n-1 + 
... + tm- IW2n_l. 

Sbis .5. Suppose that 7r is a finitely generated group. Show that Hi (7r, M) is finitely 
generated whenever M is finitely generated over Z7r and i ~ O. 

Sbis .6. Prove directly that HI (7r) ~ 7r /[7r, 7r]. 

Sbis.7. Prove Theorem Sbis. 11. 

Sbis .S. Suppose that 1 -+ H -+ 7r -+ Q -+ 1 is an extension of groups. Complete 
the proof of Theorem Sbis. 14 by showing that the Q-coinvariants of the conjugation 
action on H/[H, H] are given by H/[7r, H]. 

Sbis .9. Suppose that 1 -+ R -+ F -+ 7r -+ 1 is a presentation of the fundamental 
group 7r = 7r1 (X) of a space X, where F and R are free groups. Prove the classic 
resultofHopfthatH2(X)/h*(7r2(X)) ~ Rn[F, F]/[F, R] whereh*: 7r2(X) -+ 

H2(X) denotes the Hurewicz homomorphism. 

Sbis .10. Suppose that 1 -+ H -+ 7r -+ Q -+ 1 is a central extension, that is, H 
maps to a subgroup of the center of 7r. Show that there is an exact sequence: 

Sbis .11. Prove Corollary Sbis .19. 

b' P 
S IS .12. Suppose that F <.......+ E---+ B is a fibration of connected spaces. Suppose that 
E is nilpotent. Show that 7r1 (F) acts nilpotently on itself by conjugation. 

Sbis.13. Suppose 7r acts nilpotently on M and HO(7r, M) = {O}. Conclude that 

M = {O}. 
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Sbis .14. The functor r associates to a 7r-module the submodule r M generated by 
the union of the family of all perfect submodules of M, that is, submodules N with 
N = r;'N. Show that r M is also perfect and that it is the maximal 7r-perfect 
submodule of M. Show that r M c r~M for all n. 

Sbis.15. Show that r~M = r~+l M implies that r~M = r~+k M for all k ~ O. 
Thus the lower central series is a sequence of proper inclusions until it stablilizes. 

Sbis .16. Show that all nilpotent spaces are 7r-complete. 

Sbis .17. Show that the maximal augmentation of a co simplicial space Y· is given 
byaY· = CoSimp(*, Y·). 

Sbis .IS. If R C IQl is a subring of 1Ql, then show that there is a set of primes P 
(possibly empty) for which R = 7lp . 

Sbis.19. Show that a homomorphism of towers of groups,~: {Gs} -+ {Hs}, is 
a pro-isomorphism if and only if, for each t ~ 0, there is a value t' ~ t and a 
homomorphism Ut: Hi' -+ G t such that the following diagram commutes: 

G t ---,---+ H t · 
f;t 

Show further that a pro-isomorphism induces an isomorphism of limits: 

~: lim G s ~ limHs and~: limlGs ~ liml Hs. 
+-8 +-8 +-8 +-8 
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The Adams Spectral Sequence 

"In (various papers) it is shown that homological algebra 

can be applied in stable homotopy-theory." 
1. F. Adams 

One of the principal unsolved problems in modem mathematics is the 
determination of the homotopy groups, 7r*(X), of any nontrivial finite CW­
complex X. These groups playa key role in the solution of certain geometric 
problems and in the classification of CW-complexes up to homotopy. The 
computation of 7r*(X), however, remains difficult if not intractable. (For a 
discussion of the computability of 7r*(X) ® 1Ql, see the paper of [Anick85]; for 
some interesting progress for X = sn, see the work of [Wu, JD. 

A first approximation to 7r * (X) is provided by the Freudenthal suspension 
theorem (Theorem 4.10). The limit groups, limk-+oo [Sn+k, Sk Xl = 7r~ (X), 
are called the stable homotopy groups of X and they enjoy some regularity 
and further structure. Knowledge of these groups may also be sufficient for the 
solution of geometric problems (§9.4). A classical example is the celebrated 
theorem of [Adams60] on the nonexistence of elements of Hopf invariant one 
(Theorem 9.38). As this theorem was part of the motivation for the construction 
of the Adams spectral sequence, we discuss some of the details. 

The question settled by Adams arose with W. R. Hamilton (see [Ebbing­
haus90D: For which n, does lJ.tn have a division algebra structure? That is, for 
which n is there a bilinear mapping, j.1: lJ.tn X lJ.tn --+ lJ.tn, so that J.1( u, if) = 0 
implies that either u = 0 or if = O. For n = 1, 2, 4 or 8, there are the real, 
complex, quatemionic, and Cayley multiplications, respectively, that were clas­
sically known. If one requires further that 11J.1(x,;il) II = Ilx 1111;il11 (a normed 
algebra), then [Radon22] and [Hurwitz23] showed that these classical multipli­
cations are the only examples. [Hopf31, 35] used the classical multiplications 
to construct mappings, TJ: S3 ---+ S2, v: S7 ---+ S4, and (J: S15 ---+ S8, which 
are not homotopic to the constant map. These are the first examples of nontriv­
ial elements in the homotopy groups of spheres (other than the degree maps in 
7r n (sn)). Hopf's proof is geometric and proceeds, in the modem parlance, by 
introducing a homomorphism H: 7r2n-1 (sn) --+ Z, constructed by counting 
linking numbers of the inverse images of points in sn. Hopf showed that the 
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linking numbers are a homotopy invariant and then applied the division algebra 
structure to deduce that the maps derived from the classical multiplications have 
H-invariant equal to one. 

One can also compute linking numbers with the cup-product in coho­
mology. [Steenrod49] studied the Hopf invariant, H: 7r2n-l (sn) ----+ Z, us­
ing functional cup products: Given T s2n-l ----+ sn, form the mapping 
cone, K = sn U,' e2n . The Hopf invariant can be defined as follows: Let 
Xn E Hn (K) and Y2n E H2n (K) be generators for the free abelian group in 
each dimension. Then Xn '---'" Xn = ±H('y)Y2n. 

When we reduce to mod 2 coefficients, we can make the transition to stable 
homotopy. If H('y) = 1, then Xn '---'" Xn = Y2n. By the unstable axioms for 
the action of the Steenrod algebra (Theorem 4.45), Sqnxn = Y2n- We can 
suspend the map "(: s2n-l ----+ sn, and form the mapping cone. Then l:,K ~ 

sn+l U2;1' e2n+l. The suspension isomorphism determines H* (l:,K; IF 2) as 
a module over the Steenrod algebra. In particular, SqnXn+l = Y2n+l, where 
Xn+l E Hn+l(l:,K;IF2) and Y2n+l E H 2n+l(l:,K;IF2) are generators. This 
implies immediately that l:,"( is not homotopic to the constant map. By iterating 
this procedure we see that if H ( "() = 1, then "( determines a nontrivial element 
in 7r~_1 = 7r~_l(SO) = the (n - l)st stem of the stable homotopy groups of 
spheres. The existence of a division algebra structure on rn:n , then, implies a 
nonzero element ["(] exists in 7r~_1 with the mapping cone exhibiting a nonzero 
Sqn operation in mod 2 cohomology. 

This reduction is already useful. According to the Adem relations (Theo­
rem 4.45), Sqn factors into sums of products of lower degree Steenrod opera­
tions, unless n = 2k, for some k. For example, the relation 

implies Sq 7 = sl Sq4. It follows that Sq 7 cannot act non trivially on the coho­
mology of the mapping cone, H* (sn U f e n+ 7; IF 2)' because Sql through Sq6 
act trivially for dimensional reasons. We conclude, then, that rn: 7 cannot carry 
a division algebra structure. In fact, rn:n is a candidate for a division algebra 
structure only if n = 2k. 

To settle the division algebra problem, we are led to an analysis of Sq2k and 
the possible factorizations that might arise through secondary or higher order 
operations associated to the Steenrod algebra. [Adams60] completed this analy­
sis to prove that the classical examples ofrn:, rn:2 , rn:4 , and rn:8 provide a complete 
list of real vector spaces with a division algebra structure. In the course of this 
work, [Adams60] also introduced his eponymous spectral sequence that has be­
come one of the fundamental tools in the study of stable homotopy theory. The 
aim of this chapter is the construction and elaboration of this spectral sequence. 
The first section contains some motivation, a statement of the main theorem, 
and a discussion of secondary and higher order cohomology operations. Based 
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on the motivating discussion, we take a brief detour into homological algebra to 
introduce another important tool in the study of categories of modules over an 
algebra, the Ext functor. During this digression we introduce a change-of-rings 
spectral sequence. 

In §9.3 we construct the spectral sequence and derive its basic properties. In 
keeping with the spirit of previous chapters, we do not utilize the technology of 
spectra and the stable homotopy category ([Elmendorf-Kriz-Mandell-May97D. 
The reasons for this choice are as follows: The approach using spaces is con­
tained in the original papers of [Adams58] and, though cumbersome, it can be 
understood by the novice. Also, there are now several careful and complete ex­
positions of the spectrum approach, [Adams69], [Switzer75], [RaveneI86] and 
[Kochman96], on which this author could not improve. The reader may safely 
skip to §9.4 if he or she accepts the main results and wishes to go quickly to the 
computations. The references, especially Adams's papers, may also substitute 
for this material. 

In §9.4 we explore some of the geometric consequences of the existence and 
explicit form of the spectral sequence. We focus on the role played by the Adams 
spectral sequence in computing cobordism rings (the work of [Thom54], [Mil­
nor60], [Liulevicius62], and [WalI60D. This section is written backwards-we 
take as basic the spectral sequence and search for applications. This emphasizes 
technique over the deeper geometric insight of [Thom54] and others. However, 
it gives a smooth transition into this set of remarkable results and offers a natural 
motivation for the study of spectra and stable objects. 

In §9.5 some of the simpler, low-dimensional calculations are made and the 
geometric consequences explored. In particular, the first nonzero differential 
in the spectral sequence at the prime 2 settles one case of the division algebra 
problem. The low-dimensional stable homotopy groups of spheres at the primes 
2 and 3 are also deduced. 

In the final section of the chapter, we consider further structure in the 
spectral sequence. A product structure allows one to define Massey products and 
these are seen to converge to the secondary composition products of [Toda62]. 
The structure of the Steenrod algebra as a Hopf algebra imposes homological 
conditions on the spectral sequence including a large region of the first quadrant 
where all of the input at E2 is trivial. There is also a periodicity operator that 
acts across part of the spectral sequence. The formidable task of determining 
the E 2 -term of the Adams spectral sequence is developed in §9.6. The tool 
of choice is the May spectral sequence, introduced by [May64] in his doctoral 
thesis. We describe this spectral sequence in §9.6. We close the chapter with 
some tables and a discussion of further applications. 

9.1 Motivation: What cohomology sees 

The computation of Jr * (X) or Jrf (X) is a special case of the more general 
problem of determining [Y, Xl or {Y, X h = l~ [sn+ky, sn Xl. Here we 
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assume that our mappings are basepoint preserving, X and Y are connected 
and of the type of CW-complexes and, finally, that Y is finite-dimensional. A 
naive "picture" of [Y, Xl may be obtained by considering the image of the mod p 
cohomology functor, 

H*( ; IFp): [Y, Xl ---+ Hom(H*(X; IFp), H*(Y; IFp)) 

([Greenlees88] develops this idea for other cohomology theories). Because 
the mod p cohomology of a space carries a rich structure, this Hom may be 
taken to be a set of mappings in various categories. Of course, H* (f; IF p) is a 
homomorphism of graded vector spaces. It is also a graded algebra mapping. 
This can be used, for example, to distinguish CP(2) from S2 V S4-the mod p 
cohomology of these spaces are isomorphic as graded vector spaces but not as 
graded algebras. Finally, H*(f; IFp) is a mapping of unstable modules over the 
Steenrod algebra-with this structure we distinguish ~CP(2) and S3 V S5. 

In therestofthis section, wefixa primep and let H* (X) denoteH*(X; IFp). 
Let Ap denote the mod p Steenrod algebra and M and N graded left Ap­
modules. 

Let Hom~p (M, N) denote the set of Ap-linear mappings of M to N 
that have degree -t, that is, for all q, f(Mq) c Nq-t. The iterated suspen­
sion functor on graded modules over Ap is defined as follows: For k E Z, 
sk: ModAp ---+ ModAp is given on objects by (sk M)n ~ Mn- k and on mor­
phisms¢: M ---+ Nby(sk¢)n = (-l)k¢n_k. This generalizes the topological 
suspension isomorphism s: Hl(X) ~ Hl+l(SX). 

We construct a mapping {Y,Xh ---+ Hom~ (H*(X),H*(Y)) as fol­
lows: A mapping, f: sn+ty ---+ snx, determi;es a morphism H*(f) of 
modules over the Steenrod algebra. However, as modules over Ap, H* (sn X) 
~ snH*(X), H*(sn+ty) ~ sn+tH*(Y) and H*(f) determines a mapping 
in Hom~p(H*(X),H*(Y)). Furthermore, Sf: sn+t+1y ---+ sn+lx deter­
mines the same mapping as in the diagram 

H*(snx) ---::"'':----+ H*+l(Sn+l X) 

i*l lSi* 
H* (sn+ty) _'::"'",---+ H*+l (sn+t+l Y). 

Thus H*( ): {Y, Xh ---+ Hom~ (H*(X), H*(Y)) is a well-defined mapping 
p 

(the choice of pointed maps and connected spaces determines the mappings 
on HO). The image of this mapping may be taken as an approximation to 
{Y, Xh. It is, however, only a coarse approximation. A worst case is given 
by H* ( ): 7rf ---+ Hom ~p (IF p, IF p). The only classes in 7rf that are mapped 
nontrivially are generated by z: sn ---+ sn, the identity map in 7r5. The best 
case, however, suggests a course of action. Consider a free, left Ap-module 
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on one generator of degree n. This can be constructed as an extended module 
Ap ® snlFp where snlFp is the graded lFp-vector space with one copy of lFp 
in degree n and {O} in every other degree. We introduce the notation ~t for 
a homomorphism of graded modules that is an isomorphism in degrees less 
than t. A consequence of the Cartan-Serre theorem on H*(K(71jp71, n); lFp) 
(Theorem 6.20) is the bounded isomorphism 

This isomorphism leads to an isomorphism in the limit over the system of 
homomorphisms induced by the loop suspension mapping (Theorem 6.11) 

Hl+l(K(71jp71,n + t + l);lFp) -=. Hl(K(71jp71,n + t);lFp), for n + t ~ 
l ~ 2n + 2t -1: 

For Y a finite dimensional CW-complex and n < 2 dim Y, the fundamental 
correspondence [Y, K(71jp71, n)] ~ Hn(y; lFp) implies 

Thus our approximation is on the mark when we consider spaces that carry a 
free Ap-module structure, that is, Eilenberg-Mac Lane spaces. To increase the 
accuracy of the approximation, we could include the information that measures 
how far a module Mover Ap differs from being a free module. To do this, we 
introduce the functors ExtA (M, -), the derived functors of RomA (M, -), 
to be discussed in §9.2. Thd'reader should compare this discussion ~ith §7.1 
where the derived functors of the tensor product, M ®r - are considered. The 
role of these derived functors is seen in the main theorem of this chapter, due 
to [Adams58]. 

For an abelian group G, (p)G denotes the quotient 

(p)G = G / {elements of finite order prime to p}' 

It is elementary to show that the set { elements of finite order prime to p} forms 
a subgroup of G. Since {Y, Xh is an abelian group, (p){Y, Xh makes sense. 

Theorem 9.1. For X and Y spaces of finite type, with Y a finite dimensional 
CW-complex, there is a spectral sequence, converging to (p){Y, X}*, with E 2 -

term given by 

and differentials dr ofbidegree (r, r - 1). 
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Before beginning our discussion of Ext and the construction of the spectral 
sequence, let us consider how one might show that a mapping f: sn+t -+ sn 
is not homotopic to a constant map. Suppose t > 0 and we form the mapping 
cone, C (f) = sn U f e n+t+ l. Then there is a cofibration sequence: 

include bottom cell smash bottom cell +t+l 
sn : C(f) : sn . 

The exact sequence in cohomology, 

determines an extension of IF p by IF p over the algebra Ap and so a class in 
extA

p 
(IF p, IF p), here of degree t + 1. This extA

p 
(IF p, IF p) is the classical Ext or 

Extl group that figures in the Universal Coefficient theorem for cohomology 
([Massey91, p. 314]). When one provides an abelian group structure on Ext, 
the correspondence between a representative of a stable mapping sn+t -+ sn 
and the extension it determines gives a homomorphism (an e-invariant), 

e: 7rn+t(sn) ---+ extA
p 

(IFp, IFp). 

In the case of the classical Hopf maps, e(Hopf map) i= O. 
Whenever e ([fD i= 0, H* ( C (f)) is a nontrivial module over Avo In 

general, the Steenrod operations on H* (C (f)) are trivial on two-cell complexes. 
It may be the case, however, that a secondary or higher order operation, coming 
from relations in Ap, is nontrivial on H* ( C (f) ). This also implies that f i=- *. 
With this in mind, we next discuss higher order cohomology operations. 

Higher order cohomology operations 

Suppose W is a space and B: K(71/p71, n) -+ K(71/p71, n + t) represents 
an element in the Steenrod algebra. Suppose x E Hn(Wi IFp) is a cohomology 
class and that B(x) = o. Under these conditions, a secondary operation can 
be defined. Let E denote the total space of the pullback of the path-loop 
fibration over K(71/p71, n + t) with respect to the mapping B. Let a: E -+ 

K(71/p71,m) represent a class in Hm(EiIFp). Since B(x) = 0, x lifts (not 
necessarily uniquely) to a mapping x: W -+ E. The set of all composites, 
a ox E Hm(Wi IFp), varied over aliliftings x, defines the secondary operation, 
<I>""II(X) c Hm(Wi IFp). 

K(71/p71, n + t - 1) i E ---'="'=--------+K(71/p71, m) 
/--' I 

/~~~~~x~~~~ 1 
W x K(71/p71, n) ~ K(71/p71, n + t). 

We make several observations about this construction: 
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1) If t < n, then [B] E Hn+t(K(ZjpZ, n)i IFp) is primitive and hence a loop 
map (B = nB'; Corollary 8.25). It follows that E is a loop space, that is, 
there is a space Z with E = nz. Thus [W, E] is a group and we can identify 
<P""II(X) as a coset of Hm(Wi IFp). In particular, two liftings x and x: W -+ E, 
differ by a mapping of W to K(ZjpZ, n + t - 1). (Recall the exactness of 
[W, F] --+ [W, E] --+ [W, B] for a fibration F '---+ E -+ B.) It follows that 
<P "',11 (x) determines elements {a 0 x} in 

wherei*: [W, K(ZjpZ, n+t-l)]-+ [W, EJis (pre-)composition. As always, 
indeterminacies can be difficult to make explicit. In the best cases, dimensions 
conspire to make <P""II: ker B -+ Hm(Wi IFp) a well-defined function. 

2) This definition can be made for different coefficient groups and more gen­
eral cohomology operations ([Maunder64]). We will not need this level of 
generality. 

3) If V is a finite dimensional graded vector space over IFp, then we can write 

V = EB S snj IF p, where the nj correspond to the dimensions of basis ele-
J=l S 

ments for V. Let K (V) = I1 K (Zj pZ, nj). Then, as graded vector spaces, 
j=l 

K*(K(V)) ~ V. A class in [W, K(V)] is representable as a vector (Xl, ... ,XS ) 

S 

in I1 Hnj (Wi IFp). Furthermore, the (abelian) addition on ZjpZ determines 
j=l 

a mapping, 
+: K(ZjpZ ffi ZjpZ, n) --+ K(ZjpZ, n), 

which induces the vector addition on such spaces. 
We generalize the definition of secondary operations to vectors of classes. 

Let A: K (Va) -+ K (VI) represent an n-tuple of cohomology classes (Xl, ... , 
Xn) E EBi Hi(K(Va)i IFp). Then we have the analogous diagram defining a 
secondary operation associated to A: 

For example, consider the Adem relation Sq2 Sq2 + Sq3 Sql = O. Let A denote 
the mapping 

A = G:~) : K(Va) = K(Zj2Z, n) --+ 

K(Zj2Z, n + 1) x K(Zj2Z, n + 2) = K(Vl). 
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By the naturality of the Leray-Serre spectral sequence we get a mapping of 
spectral sequences whose source is associated to the path-loop fibration over 
K(Vl) with target associated to the pullback of the path-loop fibration with 
respect to the mapping A. The class in the cohomology of the fibre 

goes to zero under the transgression in the target spectral sequence because the 
Adem relation holds. 

3 1 2 2-
(SqSq + SqSq)Ln 

~----------------~--

A* 

The class [Slzn + Sq2zn+lJ E E~+3,a represents a class a E Hn+3(E; JF2 ), 

where E is the total space of the pullback over A. This gives a secondary 
operation as in the diagram: 

/ 

E ~ K(71/271, n + 3) 

x/'/' 1 
/ 

w ~ K (Va) -A,------7 K (VI). 

If x E Hn(w; JF2 ) and Sqlx = 0 and Sq2x = 0, then lifts 55 to E of x 
exist and <I> a,A (x) is defined. Furthermore, the indeterminacy is the subgroup 
Sq3 Hn(w; JF 2) + Sq2 Hn+l(W; JF 2) of Hn+3(W; JF2). 

This example was employed by [Adem57] to show the nontriviality of 
1]2 = 1] 0 1]: sn+2 -+ sn where 1] denotes a suspension of the Hopf map 
1]: S3 -+ S2. On H*(C(1]2);JF2), the operation <I>a,A carries the generator 
in degree n to the generator in degree n + 3. We say that 1]2 is detected by 
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the secondary cohomology operation <I>""A. More generally, any mapping 
f: sn+r -+ sn for which a secondary cohomology operation acts non trivially 
on H* ( C (1); IF p) is said to be detected by this operation and, in particular, f is 
not homotopic to the constant map. 

4) The Adem relation Sq3 Sql + Sq2 Sq2 = 0 holds universally on the cohomol­
ogy of any space. Any such quadratic relation between primary operations can 

. Ex. 
be expressed as a composIte, K(Vl) ---+ K(V2) ---+ K(V3), wlthxo~ ~ *. For 
example, in the case of the given Adem relation we have 

~l ~ 
(Sq2) +O(Sq2) 

K(snIF2) -----+ K(Sn+lIF2 EEl Sn+2IF2 ) : K(sn+4IF2). 

Generally, we can construct a diagram of spaces on which to define the associ­
ated secondary operation: 

K(S-lVd ~E ---+K(S-lV2) 
/'~ I 

///// lP 
W ~ K(Vo) ---y-+ K(Vd ----x---+ K(V2). 

Here E is the pullback of the path-loop fibration over K(Vd with respect to 
~. The mapping X, as a cohomology operation, produces classes in H*(E; IFp) 
because classes that transgress from the fibre of the fibration p are annihilated 
by x. If x: W -+ K(Vo) represents a vector of classes in H*(W;IFp) with 
~ 0 x ~ *, then we obtain the secondary cohomology operation due to the 
relation X 0 ~ ~ * as a subset of [W, K(S-l V2)]. 
5) In order to capture all of the relations between primary operations we turn to 
a homological description. Let 

c; dl d2 o +-- H*(X;IFp) +-- Co +-- C1 +-- C2 

be an exact sequence of Ap-modules, with Co, C1 and C2 free Ap-modules; Co 
can be taken as the free module on a set of Ap -generators of H* (X; IF p). We 
can think of C1 as the free module on the Ap relations among the generators 
of H* (X; IF p), and C2 as the free module on the secondary relations, that is, 
relations among the relations. If X is (n - 1)-connected and Ci ~ Ap ® 
Vi ~2n-l H*(K(Vi);IFp) for Vi, a graded vector space, then we associate a 
diagram of spaces, where we have written the name of the Ap-module map for 
a continuous map that induces it. (The identification of algebraic mappings 
di : Ci -+ Ci - 1 with di : K(Vi-d -+ K(Vi) follows from the representability 
of mod p cohomology.) 

K(S-lVd ---+ E ---+ K(S-lV2) 
//~ I 

///// lP 
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Applying the mod p cohomology functor to the bottom row gives the sequence 
of Ap-modules, exact in dimensions less than 2n - 1, 

The secondary operation arising from this diagram lies in [X, K( S-l V2 )]. We 
say that this operation is the second order operation associated to Co +--
C1 +-- C2 . dl 

d2 

6) Paragraph 5) can be generalized to m th order cohomology operations. Con­
tinue the exact sequence of free Ap-modules: 

This gives rise to a tower of fibrations: 

1 
K(S-2V2) E2 K(S-2V3) ~ K(S-2V4 ) 

1 
s d4 

K(S-lV1) E1 K(S-lV2) ~K(S-lV3) 

1 
s d3 

X c; K(Vo) 
d 1 

K(V1) 
d 2 

K(V2). 

In degrees less than 2n - r, the map in cohomology, induced by the composite 
K(s-(r-1)Vr_d ---+ Er- 1 ---+ K(s-(r-1)Vr), is s-(r-1)dr . This follows from 
the Serre exact sequence (Example S.D), applied inductively to each fibration. 

In order to get a lifting of c: X ---+ K (Vo) to E: X ---+ E m - 1 and so define 
an mth order cohomology operation on [X, K(s-(m-1)Vm )], it is necessary 

that the rth order operations defined by this tower, for r < m, all contain the 
zero class. Only then is a lift to the next stage possible. When f: sn+t ---+ sn is 
a mapping and X = sn Uf en+t+1, if the lifts of the class in Hn(x) determine 

only nonzero classes in H n+t+1 (X), then we say that f is detected by an mth 
order operation and f is not homotopic to the constant map. 

7) The dependence on the connectivity of X can be removed by considering only 
stable m th order operations. Such an operation <I> determines a commutative 
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diagram 

Hn+1(SX·lF ) ---+Hn+t+1(SX·lF ) 
'P <I> ' P 

The details of the construction of these operations and their properties can be 
found in the work of [Maunder63]. The connection between higher order stable 
cohomology operations and the spectral sequence of Theorem 9.1 lies in the 
interpretation of the filtration on (p)7r~ and (p){Y,X}* to which the spectral 
sequence data converge. 

Proposition 9.2. If an element U E (p) 7r~ can be detected by an nth order stable 

cohomology operation, then,for some m ~ n, u E Fm((p)7r~), the mth stage 
of the filtration of (p) 7r~ associated to the Adams spectral sequence. 

A proof of this proposition will emerge with the construction of the spectral 
sequence. The role of higher order operations in homotopy theory is fundamen­
tal and the Adams spectral sequence helps to codify and suggest their further 
use. The interested reader can consult the papers of [Cohen, R81] and [Lin76] 
for other possible applications. 

9.2 More Homological Algebra; the Functor Ext 

Before we construct the spectral sequence, a digression into homological 
algebra is necessary to secure the algebraic tools. In this section we also con­
struct a spectral sequence associated to an extension of Hopf algebras based on 
the change-of-rings spectral sequence of [Cartan-Eilenberg56] and elaborated 
by [Adams58]. 

In Chapters 3 and 7, we studied the categories of modules and differential 
modules over rings and over differential algebras. The tool of choice was the 
functor Tor that measures the deviation from (left) exactness of the functor 
M ®R -; Torf(M, -) is the ith left derived functor of M ®R -. 

One of the fundamental relations in homological algebra is the Hom-tensor 
interchange: When A is a left A-module, B is a right A-module and B and C 
are left r -modules 

HomA(A, Homr(B, C)) ~ Homr(B ®A A, C). 

This isomorphism plays a key role in the Universal Coefficient theorems in 
topology. The functors Homr(M, -) and Homr( -, N) are half exact. We 
next study their derived functors. 

We begin by identifying the category of interest. Let (r, cp) denote a graded 
algebra, over a field k, with product cp. We generally assume that r has a unit, 
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c: k -+ r, as well as an augmentation, TJ: r -+ k (we assume TJ 0 c = idk ). 

The category of graded left r -modules is denoted by rMod, and we take the 
morphisms in this category to be of degree zero. Denote the r -linear maps 
between two left r -modules, M and N by rMod(M, N). 

The suspension functor on rMod is defined as follows: If ME rMod, 
then sM is the graded vector space, (sM)n = M n- 1 , with r-action given 
by "( . (sx) = (-1 )deg '"Y s( "( . x), where x E Mn and sx is the corresponding 
element in (sM)n+l. Define the iterated suspension by sn = so sn-l and 
SI = s. The graded version of the Hom-functor is given by 

Equivalently, a r -module homomorphism in Hom~ (M, N) can be thought of 
as a homomorphism f: M -+ N that lowers degree by n. 

To study the derived functors ofHom~(M, -), we resolve a leftr -module 
M by projective r -modules. That is, construct a long exact sequence in rMod; 

c; d d d d o +- M +- Po +- PI +- ... +- Pn +- ... 

where each Pi is a projective module over r. (The reader should contrast this 
with the accounts in §2.4 and §7.1 where the presence of a differential is part of 
the construction.) Let N E r Mod and apply Hom~ ( -, N) to this sequence 

The homology of this sequence defines Ext~'* (M, N). We leave it to the reader 
to verify the usual properties of this derived functor: 

(1) The definition is independent of the choice of projective resolution. 
(2) Ext~'*(M, N) = Hom~(M, N). 
(3) Given a short exact sequence of left r -modules, 0 -+ A -+ B -+ C -+ 0, 
there are long exact sequences, 

-+ Ext~'*(C,N) -+ Ext~'*(B,N) -+ Ext~'*(A,N) .!..c, Ext~+l'*(C,N)-+ 
and 

8 
-+Ext~'*(M, A) -+Ext~'*(M, B) -+Ext~'*(M, C) ---+Ext~+l'*(M, A) -+ . 

(4) Ext is functorial in each of its three variables. 
(5) Ext~'*(P, M) = {O} ifn > 0, P is a projective r -module, and M is any left 
r -module. Furthermore, Ext~'* (M, J) = {O}, if n > 0 and J is an injective 
r -module and M is any left r -module. 

The notion of an injective module over r is the formal dual (mono re­
placing epi and arrows reversed) of the notion of a projective module. The key 
property of an injective module J is the exactness of the functor Homr ( -, J). 
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We could have defined Ext~'* (M, N) by fonning an injective resolution of the 
module N and applying the functor Homr(M, -). 

The Ext groups are bigraded. If we write ExtS = ExtS,*, the single 
grading refers to homological degree and forgets the internal degree of the 
mapping. 

In the applications to follow, we focus on the computation of 7r~ (X) = 

{SO, X}*. Theorem9.1 introduces a spectral sequence, converging to (p)7r~ (X), 
with the E 2 -term given by Ext::t*(H*(XilFp),lFp). Anticipating these com-

putations, we consider the compu"tation of Ext~'*(M, k) and some convenient 
resolutions for computation. In the particular case M = k, we write 

Ext~'*(k, k) = H*,*(r), 

and H*,*(r) is called the cohomology of the algebra r. The dual situation, 
given by Tor~,*(k, k) = H*,*(r), defines the homology of the algebra r. 

Henceforth, we assume that the algebra r is of finite type over k (that 
is, in each degree n, rn is finite-dimensional over k). For graded vector 
spaces of finite type, the definition of the dual is straightforward: (rdual)n = 

Homk (rn , k). Furthermore, if M' and M" are both of finite type, then so is 
M' ®k M" and (M' ®k M,,)dual ~ M,dual ®k M"dual. It follows that an 
algebra (r, r.p) and a left r -module M, of finite type, with module structure 
map '¢: r ® M ---+ M, yield by duality a coalgebra (rdual , r.p*) and a comodule 
Mdual, over the coalgebra, rdual, with structure map 

'¢*: Mdual ---+ r dua1 ®k Mdual. 

Recall from §7.1 the definition of the bar resolution: 

o +- M +- r ® M +- r ® I(r) ® M +- r ® I(r) ® I(r) ® M +- ... , 

where Bn(r, M) = r ® I(r)'Sln ® M and I(r) = ker(ry: r ---+ k). The 
differential and the contracting homotopy are given in Proposition 7.8. To 
compute Extr(M, k), we apply Hom~( -, k) to the bar resolution. Since k, as 
a r -module, is the I(r)-trivial module concentrated in degree 0, it follows via 
the Hom-tensor interchange that 

The bar resolution becomes the sequence 

where 1/;* is the composite 
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(i* is the dual of I(r) '---+ r) and d* is given by 

(recall that 0 = (_l)l+deg"'a for a, an element in a graded module) where 

cp* ( ai) = '" ni a~ J. ® a~'J. and 1/;* (A) = ",mal ® Af'. Thus 
.L.....,J=l" .L.....,1=1 

where B(r)n = I(r)'Sln. 
- dual 

To compute the cohomology of the algebra r then, we can use B(r) 
which consists of elements [a1 I ... I an] with ai E I(r)dua\ and differential 

L
n Lni d*([a1 I ... I an]) = . . [01 I ... I Oi-1 I o~ J. I a~'J. I ... I an]. 
2=1 J=l " 

We point out that such a construction can be made with any augmented coal­
gebra, (C,~, TJ), where ~ is the coproduct, J (C) = coker (TJ: k ---+ C) is the 
cokemel of the augmentation, which is the dual of I ( Cdual ). This functor on 
coalgebras is sometimes denoted F* (C) and called the cobar construction on 
(C,~, TJ). It was first introduced by [Adams56] to compute H*(OX) as a func­
tor of the chains on X, C*(X), as a coalgebra. We can express the cohomology 
of r in terms of the cobar construction by H*,*(r) = H(F* (rdual), d*). 

Another application of the Hom-tensor interchange shows the duality be­
tween the cohomology and homology of an algebra. Since we are over a field, 
the Universal Coefficient theorem allows us to interchange the homology oper­
ator with HOffik and obtain the equation, when r is of finite type, 

Extr(k, k) = H(Hoffir(B(r), k)) = H(Hoffik(k ®r B(r), k)) 
r dual 

= HOffik(H(k ®r B(r)), k) = Tor (k, k) . 

In the next section, the natural coalgebra structure on Torr (k, k) provides a 
natural product on Extr (k, k). Some calculations are eased by working in the 
dual. 

Finally, when speaking of the computation of Ext, we mention another 
computationally convenient type of resolution. 

Definition 9.3. A homomorphism, f: M ---+ N of left r -modules is said to be 
minimal if f(M) C I(r) . N. A projective resolution of a module M is said 
to be a minimal resolution if every mapping in the resolution is minimal. 
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c d d d d 
Proposition 9.4. Let 0 +- M +- Po +- PI +- PI +- P2 +- ... be a minimal 
resolution of M by projective r-modules. Then Ext~(M, k) ~ Homr(Ps, k). 

PROOF: We assume everything in sight is of finite type. We exploit the duality 
between Ext and Tor for a proof. The duality in this case is between Extr (M, k) 
and Torr (k, M), and the dual statementofthe proposition is thatTor~ (k, M) ~ 
k®rPs. However, for any r-module X, k®rX = XjI(r) ·X, which follows 
from the definition of k ®r X as 

k ® X / {(I.')') ® x-I ® b. x)}, 

where I·')' = Owhen')'isinI(r). Sinced(Ps) C I(r)·ps- I , l®d: k®rPs---+ 
k ®r Ps- I is the zero homomorphism for every s ;::: 1 and so Tor~(k, M) = 

k ®r Ps . Passing to the dual, we get a complex with all differentials zero and 
so ExtHM, k) ~ Homr(Ps, k). D 

Minimal resolutions come in handy for doing low-dimensional calculations 
or to begin an induction. As an exercise, the reader should compute H*'* (A( x)) 
where A( x) is the exterior algebra on one generator x, here taken to have odd 
degree. A minimal resolution or the bar construction can be applied to obtain 
H*'*(A(x)) ~ k[y] as vector spaces, where y has bidegree (l,degx). In the 
next section, the multiplicative properties of Ext are developed and we find that 
this isomorphism is true at the algebra level. 

Multiplicative structure on Ext 

The bigradedlFp-vectorspaceExt:A:(H*(X; lFp), H*(Y; lFp)) enjoys some 
further structure. There is a product when X = Y, and more generally, pair­
ings of Ext groups. We give two constructions of the same operation. We will 
present the first construction in detail and sketch the second. The first identified 
by [Yoneda54]. Suppose that r is an algebra over a field k. 

Theorem 9.5. Let L, M, and N be left r -modules. Then there is a bilinear, 
associative pairing, called the composition product, defined for all p, t, q, 

t' ;::: 0, 0: Ext~,t (L, M) ® Exti/ (M, N) ---+ Ext~+q,t+t' (L, N). 

PROOF: Let 0 +-- L +-- p. be a projective resolution of L, and 0 +-- M +-- Q. a 

projective resolution of M. If [I] lies inExt~,t(L, M) and [g] in Exti/ (M, N), 
then [I] may be represented by I: Pp ---+ st M and [g] by g: Q q ---+ st' N. The 
following elementary facts about the suspension functor are left to the reader to 
prove: 

(1) If X is projective, then sX is projective. (Hint: s(r ® V) ~ r ® sV 
for a graded vector space V.) 

(2) rMod(sW,sX) ~ rMod(W,X). 
(3) If 0 +-- X +-- W. is a projective resolution of X, then 0 +-- sX +-- sW. 

is a projective resolution of sX. 
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We define [f] 0 [g] as follows: Using the defining property of projec­
tive modules, lift f: Pp ---+ st M up the resolution to fq: Pp+q ---+ stQ q for 
q ;::: o. Suspend g to stg: stQq ---+ sHt' N and let [f] 0 [g] = [stg 0 fq] in 

Ext~+q'Ht' (L, N). The following diagram depicts this construction: 

o +----- st M +-- stQo +-- StQI +-- ... +--- stQq +---

1 s'g 

st+t' N 

Because we can lift fq to fq+1 andgodM = 0, it follows from the equation 
stg 0 fq 0 dL = stg 0 stdM 0 fq+1 = 0 that stg 0 fq is a cycle. To show that all 
of the choices made in the construction are irrelevant, observe that two choices 
differ by a chain homotopy and so the difference vanishes on homology. The 
bilinearity and associativity are elementary to establish. 

We remark that speaking of the suspension is the same as speaking of 
maps that change degree and so, by introducing the appropriate signs, this 
entire discussion can be carried out without the suspension. We do this later. D 

Yoneda's original construction of the composition pairing is useful both 
conceptually and computationally. The construction depends on the identifica­
tion of Ext~ (L, M) with equivalence classes of exact sequences of r -modules 
of the form 

0---+ M ---+ En - I ---+ En - 2 ---+ ••• ---+ Eo ---+ L ---+ 0 (n > 0). 

Two exact sequences of this form are said be equivalent if there are homomor­
phisms lPi: Ei ---+ E: that commute with the morphisms in the sequences and 
the identity maps on Land M. 

Given classes in Ext~(L, M) and Extf,(M, N) we can take representative 
exact sequences, 

o ---+ M ---+ E p- I ---+ Ep_ 2 ---+ ••• ---+ EI ---+ Eo ---+ L ---+ 0 

and 0 ---+ N ---+ Fq- I ---+ Fq- 2 ---+ ••• ---+ FI ---+ Fo ---+ M ---+ O. 

To represent the product splice these two sequences together at M: 

M 
/' ~ 

0---+ N ---+ Fq- I ---+ ••• ---+ Fo ----+ E p- I ---+ ••• ---+ Eo ---+ L ---+ O. 

[Yoneda54] showed that this pairing coincides with the composition product. 
An immediate consequence of this identification is the following result. 
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Proposition 9.6. If 0 --+ A --+ B --+ C --+ 0 is a short exact sequence of 
r -modules representing a class a in Extf (C, A), then the coboundary maps in 
the long exact sequences derived from the sequence, 

15: Extf(A,N) --+ Ext;+\C,N) and 15: Extf(N,C) --+ Ext;+\N, A), 

are given by left and right multiplication by a, respectively. 

The internal degree of such an n-fold extension is given by the total change 
in degree from left to right. That the internal degree of a product is the sum of 
the internal degrees follows immediately. 

Corollary 9.7. Ext~'*(M, M) is a bigraded algebra over k with the compo­
sition product as multiplication. Furthermore, Ext~'*(L, M) is a right, and 
Ext~'* (M, L) a left, Ext~'* (M, M) -module. 

With a concrete resolution like the cobar construction on hand, it is rea­
sonable to attempt to represent the composition product on Ext~'*(k, k) at the 
level of elements in the cobar resolution. Let [al I . .. I a p ] be in Fp (rdual) and 
[,61 I··· I ,6q] be in Fq(rdual). Notice that the internal degree of a: I(r) --+ k 
is the degree on which a is nonzero, that is, deg a = t if a =1= 0 as a mapping 
I(r)t --+ k. We define a product on F*(rdua1 ) by juxtaposition 

This mapping is clearly bilinear and associative. To see that it induces a product 
on Ext~'* (k, k), we show that the differential is a derivation. Let U = [al I 

... I a p] and V = [ap+l I ... I a p+q], then 

d*(UV) = d*([al I··· I a p+q]) 

= LP+qL [01 I ... Oi-l I O~ j I a~/j I ... I a p+q] 
2=1 J )) 

= L:=l L[OI I .. ·Oi-l I O~,j I a~:j I ... I ap][ap+l I ... I a p+q] 
j 

+ L:=l L[OI I ... Op] [Op+! I ... I Op+r-l I O~+r,u I a~+r,u I ... I a p+q] 
u 

= d*(U)V + (-l)p+tU d*(V), 

where t is the internal degree of U, that is, t = I:f=l deg ai. Thus, this juxta­
position product induces a product on Ext~'*(k, k) with the correct bidegree. 
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Theorem 9.S. The composition product and juxtaposition product coincide on 
Ext;'*(k, k). 

PROOF: We show how to lift a given mapping through the bar construction. 
Suppose [I] E Extf( k, k) and [g] E ExtH k, k). Consider the diagram where 
IkY[JiI I ... I Jis+i]) = 1["YI I··· 11i]I([JiHI I··· I JiHs]). 

k 

This lifting satisfies doli = li-I 0 d and so we have a mapping of part of 
the one resolution to the other. By the definition of the composition product 
[I] 0 [g] = [g 0 It]. The value of go It on a typical class Jibl I ... I Jis+t] is 
g(1[1I I ... 1t]) I([JiH I I ... I JiHS]). When we represent [I] and [g] in the 
cobar complex as tensor products of elements of r dua1 we get exactly the value 
obtained by applying the juxtaposed dual elements to a typical argument and 
adjusting signs for the suspensions. Thus the products coincide. D 

The simplicity of the product induced by juxtaposition allows one to do 
computations at the level of the cobar construction. This is especially useful 
for determining such secondary phenomena as Massey products (see §8.2) and 
'---'"I-products. 

Suppose r is a Hopf algebra with cocommutative coproduct '¢: r ---+ r ® r 
and counit TJ: r ---+ k. We assume further that r is of finite type over k. With 
these data, there is yet another way to induce a multiplication on Ext;'*(k, k). 
Suppose we are given a projective resolution of k, X. ---+ k ---+ 0 with the 
homomorphism c: Xo = r ---+ k ---+ 0, the counit of r. Let X. ® X. be the 

complex with (X. ® X.)s = EB. . Xi ® Xj and differential d®(x ® y) = 
2+J=S 

d(x) ® Y + (-l)p+rx ® d(y) (x E (Xpn, then X. ® X. can be given a 
r ® r action via the twist map and we obtain a projective r ® r resolution of 
k = k ®k k. 

U sing properties of the coproduct, counit and projective modules, we can 
construct a map, ~: X. ---+ X. ® X., making the following diagram commute: 

0+----- k +--_-"'c __ r +------ x. 

=1 ~1 ~1 
0+---- k ®k k+--c-®,--c-r ®r +----x. ®X. 
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Applying the functor Hom~ ( ,k) induces a product 

Homr(X., k) ® Homr(X., k) --+ Homr(X., k) 

that reduces to a product 

J.1= Extit(k, k) ® Ext~,t' (k, k) --+ Ext~+s',t+t' (k, k). 

One can construct an explicit ~ on the cobar resolution from which it is easily 
seen that f.1, is the same product as the one induced by juxtaposition. 

We introduce this construction to prove the following result. 

Theorem 9.9. If the coproduct on r is co commutative, then the multiplication 
on Ext~'* (k, k) is graded commutative with signs given by 

t ' t' for ex E Exti (k, k) and f3 E Ext~' (k, k). 

PROOF: We extend the diagram in the construction to another row: 

0+---- k +------'=--- r +----- x. 

=1 ~1 ~l 
O+--- k®k k~r®r+---x. ®X. 

=1 T1 Tl 
O+--- k®k k~r®r+---x. ®X. 

Since r is cocommutative, '¢ = T'¢ and ~ is chain homotopic to T~. This 
proves the theorem. D 

On the cobar resolution with its juxtaposition product it is apparent that 
~ and T ~ are not the same mapping. An explicit chain homotopy can be 
constructed. If we restrict our attention to k = IF 2, this chain homotopy allows 
us to define '---'"i-products and hence Steenrod operations on H*,*(r). For 
k = IFp, a similar construction over the (p - l)st iterate of the coproduct, 
,¢P: r ---+ r ® ... ® r (p times), allows one to define the mod p Steenrod 
operations on H*,*(r). We refer the reader to [Adams58] and [Liulevicius62] 
for details of these constructions. The elementary properties of these operations 
are listed next for later applications. 
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Theorem 9.10. Let (r, ,¢, 6., c, TJ) be a co commutative Hopf algebra over IFp. 
(a) p = 2. There are operations Sqi on Ext~'*(IF2' IF 2) that satisfy the following 
properties: 

(1) Sqi: Ext~,t(IF2,IF2) --+ Ext~+i,2t(IF2,IF2)' 

(2) Sqi(ab) = Lm+n=/qm(a)Sqn(b), 

(3) S rs s = ~[s/2] (s - t -l)S r+s-ts t 
q q ~t=o r - 2t q q , 

(4) SqO( {[al I··· I an]}) = {[ai I ... I a;']}, 
(5) SqSx = x 2 ifx E Extf(IF2,IF2). 

(b) p, an odd prime. There are operations pi and f3pi on Ext~'*(IFp,IFp) that 
satisfy the following properties: 

(1) pi: Ext~,t(IFp,IFp) --+ Ext~+(2i-t)(P-l)'Pt(IFp,IFp), 
f3pi: Ext~,t (IF P' IF p) --+ Ext~+(2i-t)(P-l)+l'Pt (IFp, IFp), 

(2) pi(ab) = Li»opj(a)pi-j(b), 
_J_ 

f3pi(ab) = Li»ipj(a)pi-j(b) + (_l)deg a pj (a)f3pi- j (b), 
_J_ 

(3) pr ps = L[r/
p
] (_ly+t ((P - l)(s - t) - 1) pr+s-t pt, 

t=O r - pt 

pr f3ps = L[r/
p
] (_ly+t ((P - l)(s - t)) (f3pr+s-t)pt 

t=O r - pt 

+ ~[r-l/p] ((P - l)(s - t) - 1) pr+s-t(f3pt), 
~t+o r - pt-1 

(4) pO( {[al I··· I an]}) = {[af I ... I a~]}. 
(5) pra=aP ifaEExt~,t(IFp,IFp)and2r=s+t. 

These operations differ from the usual Steenrod operations because SqO 
and po are not the identity mappings and Sql and f3 are not Bockstein operators. 
The explicit expression for SqO on a class in the cobar construction will be useful 
later. 

We consider a simple example over k = IF 2: Suppose the Hopf algebra, 
r, is the divided power algebra on a single generator r( x ). Recall that r( x) is 
generated as an algebra by generators 1'i(X) for i = 0,1, ... with 1'0 (x) = 1, 
1'1 (x) = x and deg 1'i (x) = i deg x. The product is determined by the relations 

and the coproduct is given on generators by 
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We choose this Hopf algebra to study because its dual is given by r( x ) dual = 

IF 2 [y], where y is dual to x. The reader can easily read the Hopf algebra structure 
on k[y] from the product and coproduct on r(x) and it agrees with the usual 
polynomial multiplication and coproduct 

To compute H*'* (r( x)), we can apply the cobar construction to the coal­
gebra (IF 2 [y], '¢ ). The following lemma holds generally. 

Lemma 9.11. Let r be a Hopf algebra of finite type over a field k. Then 
H1,*(r) = Ext~'*(k,k) = Prim*(rdual) ~ Q*(r). 

PROOF: We recall that Prim*( ) is the functor that associates to a Hopf alge­
bra its graded vector subspace (in fact, sub-Lie algebra) of primitive elements 
(see §4.4). Also the functor Q* ( ) associates to a Hopf algebra its quotient 
vector space of indecomposable elements. When r is of finite type over k, 
Prim*(rdual) ~ Q*(r), so it suffices to compute Prim*(rdual). This may be 
defined as the kernel of the reduced coproduct 

r.p*: J(rdual) ---+ J(rdual) ® J(rdual). 

From the cobar construction, this kernel is exactly Ext~'*(k, k). D 

To obtain H 1,* (r( x)) then, we find the primitives in IF 2 [y]. The arithmetic 
of binomial coefficients (Lucas's Lemma, see §7.3) determines the primitive 
classes li = [y2i] E Ext~'tx) (k, k), for i = 0, 1, . . . . The products of these 
classes can be identified in the cobar construction, where they are cycles; lilj, 
for example, corresponds to [y2' I y2J]. Coboundary formulas, such as 

8[y3] = [y2 I y] + [y I y2] = hlo + loh, 

show that the product on the sub algebra determined by the generators {li} is 
commutative. 

To complete the computation, one must show that the products of the li'S 
are not boundaries and furthermore, that no other class can be a cycle. Again 

the arithmetic of (~) mod 2 can be applied and one deduces that 

as bigraded algebras where each li has bidegree (1, 2i deg x). A corollary of this 
computation is the fact that SqO (li) = lH 1 and Sql (li) = If in Ext;'(:) (IF 2, IF 2). 
The reader should provide any further details needed to feel comfortable with 
this computation. We will use the results in computing the cohomology of ..42 , 

the Steenrod algebra. 
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A change-oj-rings spectral sequence 

We next introduce an analogue of the Lyndon-Hochschild-Serre spectral 
sequence (Theorem Sbis. 12) to compute H*,*(r), when r is an extension of 
Hopf algebras 

o ---+ A ---+ r -:r II A ---+ O. 

Herer/lA = rII(A)·randAisnormalinr, thatis,I(A)· r = r· I(A). This 
spectral sequence can be derived additively by methods of [Cartan-Eilenberg56]; 
its multiplicative properties were proved by [Adams60]. 

Theorem 9.12. Let A be a sub-Hopf algebra of a Hopf algebra r. Suppose A 
is central in r, that is, ab = (-1 )deg a deg bba for a E A, b E r. Then there is 
a spectral sequence, converging to H* (r), with 

and differentials dr ofbidegree (r, 1- r). Furthermore, this spectral sequence 
converges to H*(r) as an algebra with the product structure on the E 2 -term 
given in the isomorphism by 

(x ® y) . (x' ® y') = (_I)pq+tt' (xx') ® (yy') 

when y E HP,t(r II A) and x' E Hq,t' (A). 

PROOF: Before beginning the proof, we observe that this spectral sequence is 
actually trigraded-the third grading is given by the internal grading t in H*,t ( ). 
All of the differentials preserve this grading and so it is carried through to E~*, 
where it corresponds to the internal grading on H*,*(r). This hidden grading 
plays a key role in computations (§9.6). 

The proof exploits duality and so we begin with B(r), the reduced bar 
construction on r. Filter B(r) by 

FPB(r) = { bl I ... II's] for which at least s - p of the I'i lie in I(A)}. 

This is an increasing filtration with FOB(r) = B(A) and FSBS(r) = BS(r). 
Since A is a sub-Hopfalgebra, d(FPB(r)) C FPB(r). Thus we have a spectral 
sequence, converging to Torr (k, k) with E1-term given by 

To prove the theorem we first establish a chain equivalence between the EO_ 
term, (FPB(r)1 FP-l B(r), dO), and (B(A) ® I(r II A)®P, d ® 1). 

Consider the mapping, vP: FPB(r) ---+ B(A) ® I(r II A)®P 

VP([l'l I··· II's]) = bl I ... Il's-p] ® 7rl's-p+l ® ... ® 7rl's, 
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where 7r: r -+ r II A is the projection. Since 7rA = 0 for A E I(A) and ['/'l 1 

... Il"s] isinFPB(r) ifatleasts-pofthel"i lieinI(A), V P (bl I··· Il"s]) = 0 
unless exactly 1"1 through I" s-p lie in I (A). Hence vP is well-defined. 

We show that the following diagram commutes 

FPB(r) ---,-v
P
-----+ B(A) ® I(r II A)®P 

dl ld®1 

FPB(r) -vP"...--7 B(A) ® I(r II A)®P. 

Since vP is zero except on elements of the form [AIl· .. 1 As - p Il"s-p+l 
... Il"s], we check that vP 0 d = (d ® 1) 0 vP on such an expression. We write 

d([Al 1 ... 1 As-p Il"s-p+l 1 ... Il"s]) = 

L;:;-I['\1 I··· 1 '\iAHl I··· 1 As - p Il"s-p+l 1 ... Il"s] 

+ [,\1 1 ... 1 '\S-P-l 1 '\s-PI"S-P+l 1 ... Il"s] 

+ L;:~['\1 I··· 1 '\s-P 11s-p+l I··· 11s-p+jl"s-p+Hl 1 ... Il"s]· 

Observe that VP([,\1 1 ... 1 '\s-p-l 1 '\s-pl"s-p+l 1 ... 1 I"s]) = 0 because 
7r('\s-pl"s-p+d = 0 and that 

VP([,\1 1 ... 1 '\s-P 11s-p+l 1 ... 11s-p+jl"s-p+Hl 1 ... Il"s]) 

= [,\1 I··· 1 '\s-p-l] ® 7r'\s-p ® 7r1s-p+l ® ... ® 7rl"s = 0 

by the definition of vP on B(r)S-I,*. 
Finally, observe that vP takes FP-l B(r) to {O} and so we get an induced 

mapping of complexes 

We can rewrite FPB(r)1 FP-l B(r) as 

and so we plot a circuitous route to showing DP is a chain equivalence by showing 

is a homology equivalence. 
We introduce some associated complexes: LetC(p) = A®FP+r®FP-\ 

where we writeFP = FPB(r). Then the bar construction differential d, defined 
on B(r,r, k), takes C(p) to itself, as does the chain homotopy s. (You'll find 
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the fonnulas in Proposition 7.8). It follows that C(p) is acyclic. There is 
a surjection C (p) --+ A ® FP I FP-l that is induced by 1 ® pr where pr is 
projection. The kernel of this surjection is r ® FP-l. Increase p to p + 1 
and the surjection C(p + 1) ---++ A ® FP+l I FP takes C(p) as a subspace of 
C(p + 1) to O. This leads to a short exact sequence, which defines another 
complex K (p) as kernel, 

0-+ K(p) --+ C(p + l)IC(p) --+ A ® FP+l I FP -+ O. 

The associated long exact sequence on homology implies 

Hq(K(p)) ~ Hq+l(A ® FP+l IFP), 

because C(p + l)IC(p) is acyclic. We next analyze the complex K(p) that 
leads to the desired result via induction. 

Up to this point we have been using only part of our hypotheses-that A 
is a normal subalgebra of the algebra r. In the case of Hopf algebras we can 
apply the following remarkable consequence of the Hopf algebra structure due 
to [Milnor-Moore65] (Exercise 6.12): 

Fact. Suppose A is a sub-Hopf algebra of r and A is normal in r. Then r 
has a basis as a A-module, consisting of1 and certain homogeneous elements 
in I(r); r is free as a right A-module on this basis. Furthermore, the basis 
projects to a vector space basis for r II A. 

We denote such a basis for r by {"Ii} and its image in r I I A by {Wi = K( "Ii)}. 
It follows that we can write r as a right A-module by 

Since the kernel of C(p + 1) ---++ A ® FP+l I FP is r ® FP, K(p) may be 
written as the image of the inclusion followed by a quotient: 

K(p) = im(r ® FP -+ C(p + l)IC(p)). 

Replacing our expression for r as a right A-module, we get 

K(p) = im(r ® FP -+ C(p + l)IC(p)) 

= im(A ® FP + I(rIIA) ® A ® FP ----+ 

(A ® FP+l + I(r II A) ® A ® FP I A ® FP + I(r II A) ® A ® FP-l)) 

~ I(r II A) ® A ® FP I FP-l. 

We proceed by induction to prove the following assertion: 

(9.13) 
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Consider the composite, denoted by fP, 

For p = 0, f O is simply the mapping A ® B(A) -+ k given by the augmen­
tation. But this is an equivalence by the properties of the bar construction. 
Assume (9.13) for p, that is, H(fP): H(A ® FP I FP-l) -+ I(r II A)®P is an 
isomorphism. By the properties of the complex K (p), we have 

where the differential on I(r II A) is zero. Thus we have 

Since Hq+l (A ® FP+l I FP) ~ Hq(K(p)), we have shown that the assertion 
(9.13) holds in case of p + 1, and hence for all p by induction. 

When we apply k ® A - to gP, we obtain the desired chain equivalence 
between FPB(r)IFP-1B(r) and B(A) ® I(rIIA)®p. The E1-term of the 
spectral sequence is given by 

To compute the E 2 -term of this spectral sequence, we introduce a chain 
mapping fJl: B(A) ®I(r II A)®P ---+ FP I FP-l that acts as an inverse to DP and 
induces a chain equivalence on B (r II A). First, use the basis for r II A, {Wi}, to 
split the projection 7r and obtain a map fJ: r I I A -+ r of graded vector spaces. 
Next, introduce a version of shuffle map, J-lP: B(A) ® I(r)®p -+ FPB(r), 
given by 

J-lP([al I· ··1 ar]®[ar+l 1···1 ar+p]) = L (-l)c:(7)[a(7(l) I· ··1 a(7(r+p)]. 
(r,p )-shuffles (7 

Recall that an (r, p )-shuffle is an (r + p )-permutation that preserves order on 1 
through r and on r+ 1 through r+p. The sign c(fJ) is the sign ofthe permutation 
(see the proof of Lemma 7.11). The key property of the shuffle product in this 
setting is the formula d(J-lP( a ® b)) = J-lP( d( a) ® b)) ± J-lp- 1 (a ® d(b)), where 
a E B(A) and bE B(r). This equation depends on the centrality of A in r. 

Let fJl denote the composite 

p,v: B(A) ® I(r II A)®P ----+ B(A) ® I(r)®p 
l®(7P ---+ FPB(r) ---+ FPB(r)IFP-1B(r). 

flP 
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We leave it to the reader to verify that DP 0 p,P = id. Next consider the diagram 

Hq(8(A) ® I(r II A)®P) Hq (8(A) ® I(r II A)®p-l) 

M~l r-p-l I v. 

E~,q -----d--:1------+ E~_l,q. 

For a E 8(A) with d(a) = 0 and bE I(r II A)®P, 

D~-ldl fl~ (a ® b) = D~-ldJ.1~(1 ® (J"P) (a ® b) 
= D~-l J.1~-l(a ® d(J"Pb) 

= (1 ® 7rp -
1 )(a ® d(J"Pb) 

= a ® d7rP(J"Pb 

= a®db. 

Thus the diagram commutes and E;,q ~ Hq(A) ® Hp(8(r II A)). 
The last step in proving Theorem 9.12 is the construction of a coproduct 

structure on the spectral sequence (we are still in the dual spectral sequence 
for H*(r)). Recall that 8(r) has a natural coproduct given by '¢: 8(r) --+ 

8(r) ® 8(r), 

,¢(bl I··· I Jis]) = L;=O[Jil I··· I Jii] ® [JiHl I ... I Jis] 

This coproduct is dual to the juxtaposition product on the cobar construction. 
We filter 8(r) ® 8(r) with the tensor product filtration, 

One can check that 

(1) '¢ is filtration-preserving and commutes with the differentials; 
(2) DP and pP commute with '¢ if we equip 8(A) and 8(r II A) with the 

same coproduct. (This requires that the shuffle product commute with 
'¢, which it does.) 

With these facts the isomorphisms yield that the coproduct on the E2 -term is 
isomorphic to the tensor product of the coproducts on H*(A) and H*(r II A). 

Finally, to obtain Theorem 9.12, it suffices to dualize this proof. We have 
proved the dual of Theorem 9.12 for the homology of Hopf algebras. D 

A consequence of the proof of the multiplicative properties of the spectral 
sequence is the analogue of Corollary 6.9 that the Steenrod operations on H* (A) 
and H*(rIIA) commute with the transgression, dr : E~,r-l --+ E;'o. These 
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operations, for k = IF 2, act classically on the homological degree but double the 
hidden, internal degree. To prove the analogue of Corollary 6.9, one must work 
directly with the cobar complex and the explicit chain homotopies that give 
rise to the Steenrod operations. The interested reader can consult the papers of 
[Adams60] and [Liulevicius62]. 

With the necessary algebra all in place, we return to the problem of con­
structing the spectral sequence of Theorem 9.1. 

9.3 The spectral sequence 

The goal of the chapter is the computation of the groups, {Y, X}*, where 
X and Y are spaces of finite type and Y is a finite dimensional CW-complex. 
The tools of choice, in this exposition, are elementary; 

(1) the properties of fibrations, in particular, the construction of towers 
of principal fibrations and the exact sequences that result from these 
constructions, 

(2) the properties of the suspension, including Freudenthal's Theorem (The­
orem 4.10) and 

(3) exact couples and their subsequent spectral sequences. 

We first construct certain towers of fibrations, known as Adams resolu­
tions that realize geometrically an algebraic resolution of the mod p cohomology 
of a space. The reader can compare these constructions with the Postnikov tower 
of a space (§4.3 and §6.1) and the towers built in §9.1 to describe higher order 
cohomology operations. By building such a resolution for a space X, then 
8 X, then 8 2 X, and so forth, the mod p cohomology of the Adams resolutions 
assembles into better and better approximations of a free Ap-module resolu­
tion of H* (Xi IFp). The application of the functor [8m y, -] to the system of 
fibrations results in an exact couple and a spectral sequence. Our analysis of 
the construction allows us to identify the E 2 -term. 

We remark that the bigrading on the spectral sequence that results from 
the exact couple is not standard and, in fact, does not conform to the definitions 
in Chapter 2. This could be avoided by an unnatural regrading of everything in 
sight, but this would complicate matters further. The nonstandard grading does 
not affect the arguments that follow but might seem odd on first exposure. 

Next the properties of Adams resolutions are developed to demonstrate the 
convergence of the spectral sequence. Then a geometric pairing is defined at 
the E1-level that provides us with a spectral sequence of algebras. The pairing 
is so defined as to yield the Yoneda multiplication at the E 2-term. 

For the reader who has little interest in the geometric origins of the Adams 
spectral sequence, but interest in the computations, we suggest you skip on 
to §9.5 where the homological algebra of §9.2, the Steenrod algebra and the 
spectral sequence are used to compute some of the stable homotopy groups of 
spheres. 
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The construction: Adams resolutions 

Let X be a space (of the homotopy type of a CW-complex) that is of 
finite type over IFp and suppose X is (n - I)-connected. The basic goal of an 
Adams resolution is the geometric realization of a free Ap-module resolution 
of H* (X; IF p) through dimensions n ~ t < 2n (the stable range). The first 
step is to choose a graded vector space 0 Vo such that 

By the representability of the mod p cohomology functor we can choose a map­
ping oFo: X ---+ K(oVo) such that (oFo)*: H*(K(oVo);IFp) ---+ H*(X;IFp) 
is an epimorphism in degrees less than 2n realizing the isomorphism when 
composed with the quotient. 

Having chosen the mapping oFo, form the pullback of the path-loop fibra­
tion over it: 

X _.::....oF.....::.o---+ K(o Vo). 

Consider the long exact sequence on cohomology (Example 5.D), for t < 2n-l, 
where we write H* ( ) for the cohomology H* ( ; IF p): 

The epimorphism, oFo: Ht(K(o Vo)) ---+ Ht(X), is the transgression asso­
ciated to the fibration OXI ---+ X. Thus, for t < 2n - 1, Ht(oXI) maps 
isomorphically onto the kernel of (oFo) *. Observe, also, that oX I is at least 
(n - I)-connected, and the map Ht(X) ---+ Ht(OXI) is null for t < 2n - 1. 

Iterate this procedure for oX I; that is, choose 0 VI isomorphic in degrees 
less than 2n - 1 to H*(oXI)/I(Ap) . H*(oXI) and a mapping OFI: OXI ---+ 

K(o VI) realizing an epimorphism on mod p cohomology. Pullback the path­
loop fibration over K(o VI) with respect to OFI to get a fibration OX2 ---+ oXI. 

Continuing, we get a tower of fibrations, ... ---+ oXHq ---+ OXi ---+ ••• ---+ 

OXI ---+ X, with each OXi at least (n - I)-connected, and the mappings 
Ht(OXi) ---+ Ht(OXHI) null in degrees t < 2n - 1; 
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1 
OXH1 ~ K(o Vi+1) 

1 
OXi oFi K(o Vi) 

1 

1 
OX1 oFl K(oVd 

1 
X oFo K(oVo) 

i oFi +l 

The mappings OK(o Vi) --+ OXH1 -----+ K(o Vi+d have additional 
properties. On cohomology we have 

where the first map is onto in degrees less than 2n and the second map can be 
taken to be a degree 1 map that is one-one, onto the kernel of Hs+l (K(o Vi)) ---+ 

Hs+l(oXi) in degrees less than 2n - 1. If we compose and desuspend, the 
homomorphisms H*(K(o Vi+d) ---+ S-1 H*(K(o Vi)) can be assembled into a 
complex: 

which, in degrees less than 2n, is a free Ap-module resolution of H*(X). 
The next step in this process is to repeat the previous construction based 

on X for 8X, the suspension of X. Recall that H*(8X) ~ sH*(X) as 
modules over Ap- Since 8 X is n-connected, the stable range extends to degree 
2n + 1. We can relate the data from the Adams resolution of X to that of 8 X 
by choosing the graded vector spaces 1 Vi to be s(o Vi) EEl Wi, where Wi is the 
additional term needed to obtain an epimorphism up to degree 2n + 1. 

With these details of construction, the long exact sequences of cohomology 
vector spaces can be examined to show that 1Xi and 8(oXi) have the same 
mod p cohomology in degrees less than 2n - i. 

This establishes the inductive step. We continue by building Adams reso­
lutions over 8 2 X, 8 3 X, and so on. Over 8 m X, we have a tower of principal 
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fibrations: 

1 
mXi~K(mVi) 

1 

1 
mXI~K(mVd 

1 
smx =Fo K(m Vo). 

The properties of the construction can be summarized: 

(1) each mXi+l -+ mXi is a fibration with fibre OK(m Vi), 
(2) each mXi is at least (n + m)-connected, 
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(3) H*(mXii IFp) ~ H*(S(m-IXi)i IFp) in degrees less than n + m - i, 
(4) H*(mXii IFp) -+ H*(mXi+l i IFp) is null in degrees less than 2(n + m). 

Finally, desuspending the appropriate number of times leads to the com­
plex, a free Ap-module resolution in degrees less than 2(n + m): 

We next prove an important property holds for Adams resolutions that is 
analogous to the universal property enjoyed by projective resolution. 

Lemma9.14. Suppose {WI -+ Y, WHI -+ Wi, i ~ I} is a tower of principal 
fib rations and there is an integer N ~ 0 so that, if OK(Mi) is the fibre of 
WHI -+ Wi, then Mi is a graded vector space, trivial in degrees greater than 
N. If X is (n -I)-connected, 2n -1> N, and f: X -+ Y is a continuous 
mapping, then there is a sequence of mappings, OXi -+ Wi, for each i, such 
that the following diagram commutes, 

. .. ------+ 0 Xi ------+ . .. ------+ oX I ------+ X 

1 1 1f 
. .. ------+ Wi ------+ . .. ------+ WI ------+ Y 

PROOF: We construct the mapping from OXI to WI and leave the inductive 
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step (essentially the same argument) to the reader. Consider the diagram 

OXI PK(Mo) 

) "" r(/ 1 

X~Y~K(Mo) 

Since Ht(X) -+ Ht(oXI) is null in degrees less than 2n - 1, the composite 
OXI -+ K(Mo) is null-homotopic and so there is a lift of the composite to 
PK(Mo). By the universal property of the pullback, WI -+ Y, we get a 
mapping OXI -+ WI, making the diagram commute. D 

Corollary 9.15. Given two Adams resolutions of a space X, there are maps 
between them covering the identity. 

We finally derive the spectral sequence. First, form all of the Adams 
resolutions over X, S X, S2 X, .... From the observation that each tower 
yields a certain part of an Ap-free resolution of H*(X), let 

* c; o +- H (X;lFp) +- Po +- PI +- P2 +- ... 

denote the limit of these approximations, which can be realized as 

Pi = lim s-m-iH*(K(m Vi)). 
m-+oo 

For a given m, the Adams resolution of sm X yields the system of fibrations: 

1 1 
---+ 0 2 K(m VI) ---+ 0(mX 2) ---+ OK(m V2 ) ---+ mX 3 ---+ K(m V3 ) 

1 1 
---+ 0 2 K(m Vo) ---+ O(mXI) ---+ OK(m VI) ---+ mX 2 ---+ K(m V2 ) 

1 1 
o(smx) ---+ OK(m Vo) ---+ mXI ---+ K(m VI) 

1 
smx ---+K(mVo). 

To this system of spaces and maps, apply the functor [smy, -], where Y is a 
finite dimensional CW-complex. This yields an exact couple: 

[sm+'-'Y,m

X

,] ['<'=+'Y,m
X

,[ I. ['<'=+PY,m
X

,-,[ 

~ 
[sm+PY, K(m Vq-I)] 
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i is induced by np(mXq) -+ np(mXq-l), the p-fold loops on the fibration; 
j is induced by np(mXq-d -+ n p K(m Vq-d, the p-fold loops on the clas­
sifying map of the fibration, mFq-l; and k is induced by n p K(m Vq-d -+ 

np-1(mXq), the (p - I)-fold loops on the inclusion of the fibre. We have 
identified [T, nrU] with [srT, U]. 

To fix the bigrading, let the first degree denote the level in the Adams 
resolution where the map is found, and the second degree denotes the codegree 
for the number of suspensions. This yields 

[sm+py X] - Dq,p+q ,m q -

The bidegrees ofi,j and k are (-1, -1), (0,0) and (1, -1), respectively. When 
we display the unrolled exact couple, we get 

-+ Ds,t Ds-1,t-l ~ ... ~ D1,t-s+l DO,t-s 

/ / / 
Let X be (n - I)-connected, Y of dimension N and suppose that N + m + 
p < 2(n + m). By the Freudenthal suspension theorem, [sm+py, smx] ~ 
{y, Xlv. Furthermore, [sm+p+ry, mXi] ~ [sm+p+r+l y, m+lXi], if i < r. 
So, we may write the groups, Ds,t and Es,t as independent of m when we chose 
m large enough for a given 8 and t. In particular, when m is large enough, 

DO,t-s = [sm+t-sy, smx] = {y, Xh-s . 

We really have a spectral sequence for each m, but we think of the spectral 
sequences approaching a limiting value as m grows larger. 

We next apply the properties of Adams resolutions to identify the E 2 -term 
that arises from this construction. In the system of fibrations, the mappings 
j and k arise from the inclusion of the fibre and the classifying map for the 
fibration nt K(m Vs) '---+ nt - 1 (mXs+d ---+ nt - 1 K(m Vs+l)' If we apply the 
functor, [smy, -], then the first differential is given by 

However, for m large enough, 

[sm+ty, K(m Vs)] = Hom~p (H*(K(m Vs)), H*(sm+ty)) 

= Hom~ (H*(K(m Vs)), H*(smy)) 
p 

= Hom~p (8m Ps, 8mH*(Y)) 

= Hom~ (Ps, H*(Y)). 
p 
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Also, the mapping d l is simply 

Hom~p (H*(K(m Vs)), sm+tH*(Y)) 

Hom(o,l) ° 
-----+: HomA (sH*(K(m Vs+l )), sm+tH*(Y)) 

p 

where 8 is induced by OK(m Vs) -+ mXs+l -+ K(m Vs+ l ), which in tum 
induces 8: Ps+l --+ Ps . Thus the following diagram commutes (up to the sign 
introduced by the suspensions): 

This proves E~,t ~ Ext:A~ (H*(X), H* (Y)) in the spectral sequence resulting 
from the exact couple and the first part of Theorem 9 .1. 

Convergence 

The exact couple that gives rise to the spectral sequence has the "rightmost 
column" of groups, obtained by applying [smy, -] to the system offibrations, 
given by DO,t-s = {Y, Xh-s. Unrolling the exact couple, we have a sequence 
of maps: 

iii i 
--+ Ds,t --+ Ds-l,t+l --+ ... --+ DO,t-s = {Y, Xh-s . 

We now apply the methods of Chapter 3 to determine the convergence of the 
associated spectral sequence. 

PROOF: We can factor dr by 

Filter {Y, X}* by PS{Y, X}q = im is: Ds,q+s --+ DO,q = {Y, X}q. 
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Lemma 9.17. Thefiltration of {Y, X}* arising from a system of Adams resolu­
tions does not depend on the choice of Adams resolutions. 

PROOF: Apply Corollary 9.15 to cover the identity map smx ---+ smx 
between Adams resolutions. This system of mappings shows that each filtration 
is contained in the other. D 

We can relate this filtration to the spectral sequence by using Corollary 2.10, 
which yields a short exact sequence, for each r, 

DS,*/ . . J s,* 
0---+ ker(zr: DS'* ---+ Ds-r,*) + zDs+1,* ---+ Er+l 

k 
---+ im( i r : Ds+r+l,* ---+ D s+1,*) n ker( i: Ds+l,* ---+ D S '*) ---+ o. 

Let r go to infinity and observe that the left hand term of the short exact sequence 
stabilizes when r = s, since is: DS'* ---+ DO,*. 

Lemma 9.18. There are monomorphisms 

0---+ PS{Y, X}qj ps+l{y, X}q ---+ E,:;rs. 

PROOF: It suffices to show that 

PS{Y, X}q j ps+l{y, X}q ~ DS'* / kerW: DS'* ---+ DO,*) + iDs+l,*. 

Notice PS{Y, X}q = is Ds,q+s and ps+l{y, X}q = iW Ds+1,q+s+l). There 

are short exact sequences 

These maps are onto by the Five-lemma. We show that 'is is also a monomor­
phism. Let [a], [b]lie in DS'* / ker is +iDs+l,*. If 'is [a] = 'is [b], then 'is [a-b] = 

['is (a - b)] = O. This implies either is(a - b) = 0, and so a == b (keriS), or 
is (a - b) lies in i s+1 Ds+l,*, which implies (a - b) lies in iDs+1,*. In both of 
these cases [a] = [b]. D 

From Lemma 9.18, we have the exact sequence; 

0---+ PS{Y, X}* j ps+l{y, X}* ---+ E':;,* 

---+ nr im( ir : Ds+r+l,* ---+ Ds+1,*) n ker( i: Ds+l,* ---+ DS'*) ---+ o. 

To complete our proof of Theorem 9.1, we must show that the right term of this 
short exact sequence is trivial. We first develop some properties of the filtration. 
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Lemma 9.19. If a is in {Y, X}q and a is divisible by pn, then a is in 
pn{Y,X}q. 

PROOF: The term 'divisible by pn' makes sense in an abelian group, that is, 
there is a {3 in {Y, X} q so that a = pn (3. We proceed by induction on n for all 
spaces. The result for n = 0 is trivial. 

The case of n = 1 follows by observing that if f: sm+qy --+ sm X is 
such thatpf ~ *, then the composite sm+qy --+ smx --+ K(mVo) is null­
homotopic since it represents classes in mod p cohomology. Therefore f lifts 
to mXl and is in pl{y, X}q. 

Assume the result for n-l. Since a = pn {3 = pn-l (p{3) , we have thatp{3 
lies in pI {Y, X} q' that is, p{3 = iu where i: mX 1 --+ sm X and u: sm+qy --+ 

mXl. However, a = pn-l(p{3) = pn-l(iu) = i(pn-1u), and so pn-1u lies 
in pn-l {sm y, mX d q' Thus there is a map, w: sm+qy --+ mXn such that 
in-1w = pn-lu . Thus a = i(in-1w) = inw and a lies in pn{Y,X}q. D 

Lemma 9.20. If a is in {Y, X}q and a is not divisible by pn, then a is not in 
PS{y, X}q,for some s. 

PROOF: We introduce an auxiliary space constructed as follows: In {X, X}o 
consider the element given by pn times the identity. Let h: sm X --+ sm X 
represent this map. Pullback the path-loop fibration over S(h) to obtain the 
space U: 

I I 
U psm+lx 

1 1 
sm+lx~sm+lx 

By construction, if X is n-connected, then U is (n + m + 1 )-connected. If W 
is a CW -complex of dimension less than 2 (n + m + 1), then by the Freudenthal 
suspension theorem (Theorem 4.10) [W, nsm+l Xl ~ [W, sm Xl. We also 
have the exact sequence 

which follows from the long exact sequence for the fibration. This traps [W, Ul 
between the coker pn and ker pn in the short exact sequence: 

o --+ coker pn --+ [W, Ul --+ ker pn --+ O. 

Since pn annihilates both ends of this extension, [W, Ul is a d.::/p2nd.::-module. 
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Letj be the first nonzero dimension with7rj(U) i= {O} 0 ~ n+m+ 1). 
If j < 2(n + m + 1), then 7rj(U) is a Zlp2nZ-module by the argument above. 
Considerthequotientmap,7rj(U) ---+ 7rj(U)lp7rj(U) = 7rj(U)®ZlpZ. Since 
7rj(U) ® ZlpZ is a vector space over lFp , we can realize this quotient map by 
U ---+ K(7rj(U) ® ZlpZ,j). Let U1 be the total space of the principal fibration 
induced by this map: 

U1 ---+ PK(7rj(U) ® ZlpZ,j) 

1 1 
U -----+ K(7rj(U) ® ZlpZ,j). 

The short exact sequence, 0 ---+ 7rj(U1 ) ---+ 7rj(U) ---+ 7rj(U) ® ZlpZ ---+ 0, 
implies that 7rj(UI) is P7rj(U). But 7rj(U) is a Zlp2nZ-module, so if we 
repeat this procedure enough times, we get UiI with 7rj(UiI ) = {O}. Starting 
on 7rHl(Ui J, we can iterate the procedure until we eventually get to U' with 
7rk(U') = {O}forO ~ k < 2(n+m+1). Thetoweroffibrations{Ui ---+ Ui - 1 }, 

satisfies the conditions of Lemma 9.14 and so we have a mapping over the 
inclusion smx "--+ nsm+1 X "--+ U: 

mXr -----+ u' 

1 1 

1 1 
mXl -----+ U1 

1 1 
Recall a is not divisible by pn and suppose a E PS{y, X}q for all s ~ r. 

Then a = irv for v: sm+qy ---+ mXr. This factors through [sm+qy, U'] = 

{O} for sm+qy in the stable range and so a is in ker(inc) = pn [sm+qy, sm X]. 
But then a = pn (3, contradicting our assumption. Therefore, a rf. ps {y, X} q 

for some s ~ r. D 

Corollary 9.21. POO{y,X}q = nnpn{Y,X}q = {elements offinite order 
prime to pin {Y, X}q}. 

Notice thatthe assumptions that X is of finite type and Y of finite dimension 
playa role in the corollary. By Proposition 5.17 and induction over skeleta, 
we know that {Y, X}q is finitely generated and so there are no elements in the 
group of infinite divisibility by p. 
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Corollary 9.21 points out, however, that our filtration of {Y, X}q is not 
Hausdorff (§3.1) and so the spectral sequence cannot be expected to have 
{Y, X}* as its target-after all, all our constructions were done mod p. We 
determine the actual target as follows: For an abelian group G let (p)G be the 
p-component of G, that is, the quotient of G by the subgroup of elements of 
finite order prime top. Then (p){Y,X}* = {Y,X}*/POO{Y,X}*. We induce 
a filtration on the p-component, (p){Y, X}* by 

... c PS{Y,X}*/pOO{Y,X}* c··· c P2{y,x}*/pOO{Y,X}* 

c Pl{y,X}*/pOO{Y,X}* c (p){Y,X}*. 

This filtration is exhaustive and convergent (Hausdorff), that is, 

n ps /poo = {a}. 
n 

Furthermore we still have monomorphisms 

o --+ ps / poo / ps+l / poo --+ E~*. 

To complete our discussion of convergence, we prove the following lemma. 

Lemma 9.22. E~* ~ ps(P){Y'X}*/ ps+l(p){Y,X}*. 

PROOF: It suffices to show that 

[n(imir : D s+r+ 1 ,* --+ D S + 1,*)] n [ker(i: Ds+l,* --+ D S '*)] = {a}. 
r 

Consider the relevant piece of one of the towers; 

-------+ mXs+n+l ----+ ... ----+ mXs+l ----+ mXs 

T 
in 

For a finite complex Z we have the exact sequence 

--+ [Z, OK(m Vs)] --+ [Z, mXs+l] --+ [Z'mXs] --+ [Z, K(m Vs)] --+ 
i 

for which ker i = im[Z, OK(m Vs)] and p annihilates m Vs' Therefore, ker i is 
p-torsion. 

Apply [Z, -] again to the tower, and we can filter [Z, mXs+l] by the images 
of the in. But nn im in = POO[Z, mXs+l] and the argument of Lemma 9.20 
carries over to show that nn im in contains only elements of finite order prime 
to p. Therefore, nn im in n ker i = {a} since an element in a finitely generated 
abelian group cannot be p-torsion and have finite order prime to p unless it is 
zero. D 
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Corollary 9.23. There is a spectral sequence, converging to (p)7r~, the p­
components of the stable homotopy groups of spheres, with E 2-term given by 
E~,t ~ Hs,t(Ap) = Ext~~(lFp,lFp). 

In §9.5 we explore the consequences of Corollary 9.23 and compute some 
of the groups (p)7r~ for p = 2 andp = 3. 

Multiplicative structure on the spectral sequence 

The multiplicative structure on a spectral sequence is often pivotal in 
the computations. We next introduce the composition pairing, 0: {Y, Zh ® 
{X, Yh ---+ {X, Z}s+t, that is reflected in a pairing of the spectral sequences 
converging to these groups. We sketch how the pairing at each level arises. 
Complete proofs of the existence and properties of the pairing are given in detail 
by [Douady58] or [Moss68] where different tools are to hand. We identify this 
pairing at the E 2 -term as the Yoneda composition pairing. When X = Y = Z, 
the pairing becomes a product and so we have a product structure on the relevant 
spectral sequence. 

Definition 9.24. Suppose a E {X, Y}s and /3 E {Y, Zh and suppose that 
f: sm+s X ---+ sm Y and g: sn+ty ---+ sn Z represent a and /3, respectively. 
Define the composition product of a and /3, /3 0 a to be the class in { X, Z} s+t 
given by 

Proposition 9.25. The composition product is bilinear, associative andfuncto­
rial. The composition product induces the structure of a ring on {X, X}* and 
furthermore, {Y, X}* is a left {X, X}*-module and a right {Y, Y}*-module. 
In fact, {Y, X}* has the structure of a {X, X}r{Y, Y}*-bimodule. 

PROOF: These properties follow directly from the analogous properties of the 
unstable composition product, 0: [V, W] x [U, V]---+ [U, W]. In particular, the 
pairings 

[V, W] x [SU, V]-:[SU, W] 
[SV, W] x [U, V] ---+ [SV, W] x [SU, SV]-:[SU, W] 

are additive in the second and first factors, respectively. (For the reader who is 
unfamiliar with these properties, we suggest Chapter 3 of the classic book of 
[Whitehead, GW78].) D 

In the particular case of X = So, the ring structure on {SO, SO} * = 7r~ 
has better properties-7r~ is graded commutative. This follows by comparing 
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the composition product with the smash product: 

( l)(q+l)k Eq+l :::,:r S'+! ~ SP Aj~::! 
Sp+k!\ sq (-1)Q

k
Eq", SP !\ sq. 

We have (_l)qk EP+k (JoEqa = (_l)(q+l)k Eq+laoEq(J. This result was first 
proved by [Barratt-Hilton53]. The relationship between this smash product and 
the E 2-term, Ext, is through the external tensor product on Ext as defined by 
[Cartan-Eilenberg56]. We refer the reader to the blue book of [Adams74] for a 
thorough treatment of products. 

Let X be a space and construct a system of Adams resolutions for X. We 
construct 'pairings' on D*'* and E*'* of the resultant exact couple, that agree 
with the composition pairing on {X, X}*. Suppose [I] is a class in 

D s,t - [sm+t-s+t' -s'X X ] - ,m+t'-s' s 

and [g] is a class in Ds',t' = [sm+t' -s' X, mXs']' By Lemma 9.14 we can lift 
g through the Adams resolution: 

Sm+t-s+t' -s'X f X _----"-gc:....s --+ 
------+ m+t'-s' s mXs'+s 

1 1 
X gs-l X 

m+t'-s' s-l ----+ m s'+s-l 

1 1 

1 1 
m+t'-s,X1 __ g_l --+ mX s'+l 

1 1 
sm+t' -s' X ----=-g--+ mXs' 

We define [g] 0 [I] = {[gs 0 I] for all choices of gs} C DS+s' ,Ht'. Notice that 
if s = Sf = 0, then this is the composition product on {X, X}*. 

Similarly we define such a 'pairing' on E*,*; let 

[I] E Es,t = [sm+t-s+t' -s' X, K(m+t'-s,vs)] 

and [g] E Es',t' = [sm+t'-s'X,K(mVs')]' 

Because the K(V)'s are generalized Eilenberg-Mac Lane spaces and because 
sm+t' -s' X ---+ K (m+t' -s' Va) induces an epimorphism on mod p cohomology, 
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we can define a mapping ka: K (m+t' -s' Va) -+ K (m Vs') so that the following 
diagram commutes: 

1 1 
sm+t' -s' X ----=-g---+ mXs' 

1 1 

The mapping gl exists since the composite 

is null homotopic. 
Inductively, ifgH1 andki exist, then we can findgH2 andkHl by choosing 

ki+l so that the following diagram commutes 

(9.26) 

1 1 

and choosing an appropriate lifting of gi+l. We can define the composition of 
[g] and [1] as [g] 0 [1] = {[ks 01]1 all choices of ks} C Es+s',Ht'. We make 
some observations. 

1. The choices made in all of the constructions differ by elements in the groups, 
[sq X, F], of homotopy classes of mappings to the fibres of the fibrations in the 
towers. If [1] and [g] are in Es,t and Es',t' and they are cycles under d1, then 
their product [g] 0 [1] is also made up of cycles in E S+s' ,Ht' and the differences 

vanish as an element in E~+s' ,Ht'. Thus the defined 'pairing' is an actual 
pairing on E;'*. 

II. When we apply mod p cohomology to the diagrams (9.26), and compute the 
effect of the maps ki, then the construction is seen to be a geometric realiza­
tion of the Yoneda composition product and, in the isomorphism of E;'* with 
Ext::t* (H*(X), H*(Y)), the products go over isomorphically. 

p 
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III. The composition product is filtration-preserving on {X, X}*. To see this, 
examine the commutative diagram: 

This shows that 0: FP{X,Xh' ® Fq{X,Xh -+ Fp+q{X, Xhw. 

IV. With some change in notation, we could have defined the 'pairings' for 
0: {Y,Z}*®{X,Y}* -+ {X,Z}*justaseasily. 

We now state the full theorem on products in the Adams spectral sequence, due 
to [Adams58] and [Moss68]. 

Theorem 9.27. There exist associative, bilinear pairings, functorial in the 
spaces X, Y, Z, all finite dimensional CW-complexes, and, for r ~ 2, 

such that 

(1) for r = 2, the pairing agrees with the Yoneda composition pairing 

Ext~~ (H*(Z), H*(Y)) ® Ext~~t' (H*(Y), H*(X)) 

-+ Ext~~s',t+t' (H*(Z),H*(X)). 

(2) The differentials, dr are derivations with respect to these pairings, that 
is, in E;'*(X, Z), dr(uv) = (dru)v + (-l)t-S u (drv), ifbidegu = 

(8, t). 
(3) The pairings commute with the isomorphisms E r+1 ~ H(Er, dr ). 
(4) The pairings converge to the composition pairing 

0: {Y, Z}* ® {X, Y}* ---+ {X, Z}*, 

that is, this pairing is filtration-preserving and the induced pairing on 
the associated bigraded modules is isomorphic to the pairing on the 
Eoo-terms of the spectral sequences. 
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Of course, these pairings not only allow us to compute more easily but 
they also allow us to define Massey products in the spectral sequence. We take 
up this notion in §9.S. 

The simplest computation reveals the role of the composition pairing. For 
any prime, p, the beginning of a minimal resolution of IF p over Ap may be 
presented as in the diagram: 

We identify an element ao in ExtJ~ (IFp, IFp) generated by the dual of the Bock­
stein, and occurring in this resolution as the element 21. Because the Bockstein 
has degree 1, we show that it detects the mapping p: sn ---+ sn, the degree 
p map. Consider the complex sn Up en+!, the mod p Moore space, and the 
sequence pinch 

sn '---+ sn Up en+1 ----+ sn+1. 

On cohomology, we have the extension 

0---+ H*(Sn+1) ---+ H*(sn Up en+1) ---+ H*(sn) ---+ O. 

Since H*(sn Up en+!) = IFp{xn,,6xn} is a nontrivial module over Ap, 
this sequence identifies the only possible extension that can represent ao in 
ExtJ1 (IFp, IFp). 

Suppose l E Ext:A~ (IF p, IF p) is a nonzero permanent cycle in the Adams 
spectral sequence, that is, l lives to Eoo. Also suppose ao l is nonzero. If l 
represents A in (p)7rf-s, then, by Theorem 9.27, aol represents the composition 
of l with the element that detects the degree p mapping. We conclude that 
PA i= 0 in (p)7rf-s· 

Much more is known about the product structure on 7rf. In a classic paper 
[Nishida73] studied the global properties of the composition product. Using 
the extended power construction on a space and work of [Kahn-Priddy78], he 
proved a conjecture of Barratt that any element in 7rf for i > 0 is nilpotent. 

9.4 Other geometric applications 

The workhorse pulling the Adams spectral sequence along is the notion 
of an Adams resolutions together with convergence of the associated spectral 
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sequence. The construction is applied to a sequence of spaces X, 8 X, 8 2 X, 
.... The resolution for 8 m X is obtained through a range of dimensions depen­
dent on the connectivity of X. Taking these ideas as basic, we can enlarge the 
compass of application of the Adams spectral sequence to sequences of spaces 
with similar properties for which we can carry out the construction of an Adams 
resolution and identify the E 2 -term of the associated spectral sequence. 

Definition 9.28. A sequence of spaces X = {Xl, X 2 , ••• ,Xn , ... } constitutes 
a spectrum if, for all n, there is a mapping in: 8Xn -+ X n+l . A spectrum 
X = {Xn} is called a stable object ([Adams64]) if, for each n, Xn is (n - 1)­
connected and the mapping in: 8Xn -+ Xn+l is a (2n - 1)-equivalence. 

Spectra were introduced by [Lima59] and [Whitehead, GW62] to study 
Spanier-Whitehead duality and generalized homology theories. For our pur­
poses, a full discussion of spectra and stable homotopy theory is not needed. 
The student of homotopy theory needs some exposure to these ideas. The books 
of [Adams74], [Switzer75], and [RaveneI86, 92] are excellent introductions. 

If X = {Xn} is a spectrum, then the cohomology and homotopy of X are 
defined as the limits: 

When the spectrum is a stable object, these limits are achieved at some finite 
stage (dependent on q). Furthermore, 7r q (X) is the qth stable homotopy group of 
X N , for some N = N(q) and Hq(X; k) = s-r Hq+r(Xr; k) for some r ~ q. 
The construction of Adams resolutions may be applied without change in the 
case of a stable object. 

Proposition 9.29. Let X be a stable object. Then there is a spectral sequence 
with E~,t ~ Ext:A~ (H*(X; lFp), lFp) converging strongly to (p)7rt-s(X) under 
mild conditions. 

Though this appears to be a machine in search of a problem, in fact, these 
remarks apply broadly to the computation of cobordism groups as found im­
plicitly in the work of [Thom54] and explicitly in the work of [Milnor60], [Li­
ulevicius62], and others. Recall that two compact differentiable n-dimensional 
manifolds M I , M2 are (unoriented) cobordant if there is a compact differen­
tiable (n+ 1)-dimensional manifold W with aw = MI IIM2 (disjoint union). 
Being cobordant is an equivalence relation and the set of equivalence classes 
of n-manifolds is denoted by 1J1n- Disjoint union provides IJ1n with the struc­
ture of an abelian group. The cartesian product provides the direct sum of the 
cobordism groups 91* with a ring structure. 
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Lemma 9.30. 91* is a vector space over IF 2. 

PROO F: Given an n-dimensional manifold M, consider the (n+ 1) -dimensional 
manifold with boundary M x I. Since the boundary of M x I is M II M, we 
have that twice the cobordism class of M is zero in IJ1n . D 

Cobordism was introduced in 1895 by [PoincareI895]. The homotopy­
theoretic study of cobordism was begun by [Pontrjagin55] who showed that the 
study of cobordism classes of framed manifolds is related to the study of 7r~. 
By a theorem of [Whitney36] an n-dimensional manifold can be embedded 
in rn:n+k for k large enough, and so a manifold is equipped with a normal 
bundle to the embedding. A manifold M n c rn:n+k is said to be framed if the 
normal bundle to the embedding is trivial. If we restrict our attention to framed 
manifolds only, then cobordism remains an equivalence relation and we denote 
the framed cobordism ring by n~. 

A sufficiently small tubular neighborhood of M in rn:n+k is homeomor­
phic to M x rn: k . Projection off the second factor gives a mapping to rn: k. 

Taking the one-point compactifications of rn:n+k and rn:k, we construct a map­
ping f M: sn+k ---+ Sk by sending the complement of the tubular neighborhood 
of Min sn+k to 00 and going by the composite of the homeomorphism and sec­
ond projection on the tubular neighborhood. This construction is well-defined 
up to homotopy and determines a class in 7rn+k(Sk). When we embed the 
manifold into rn:n+k+l via the canonical inclusion M C rn:n+k c rn:n+k+l, 
the construction yields L;f M. Continuing in this way, we determine a class in 
7r~. [Pontrjagin55] proved that all the choices made in this construction re­
main within the homotopy class and so the mapping n~ ---+ 7r~ is well-defined. 
Furthermore, it is easy to see that it is a homomorphism. 

An inverse mapping may be constructed by using some facts of differential 
topology. If g: sn+k ---+ Sk represents a class in 7r~, then we can choose g 
to be smooth. Let p E Sk be a regular value of g, that is, the differential 
dgx : T S;;;+k ---+ T S; is of maximal rank for all x E g-l ( {p} ). Regular points 
exist in abundance by the theorem of [Sard42]. The Implicit Function theorem 
implies that M(g) = g-l(p) is an n-dimensional manifold whose normal 
bundle is trivial by comparing it with T S;, a single vector space. To show 
that n~r ~ 7r~ it remains to show that the construction from framed manifold 
to homotopy class provides the same element in 7r~, that is, fM(g) ~ g. For 
complete details, see the classic book of [Stong68]. 

This construction was significantly generalized by [Thom54] in his thesis. 
The normal bundle VM over an n-dimensional manifold M embedded in rn:n+k 
is classified by a homotopy class of a mapping F: M ---+ EO (k ). From the 
embedding, we can talk of a unit disk subbundle D < 1 (v M ) of the normal bundle, 
as well as its boundary, the unit sphere bundle S(VM) in VM. The key to the 
generalization is the Thorn space associated to the normal bundle, 
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When M is compact, Th(VM) is homeomorphic to the one-point compactifi­
cation of VM and so this construction may be carried out for any vector bundle 
over a compact space. When a vector bundle TJ is given by a Whitney sum, 
TJ = 6 EEl 6, then Th(TJ) ~ Th(6) !\ Th(6)· 

By taking a limit over Grassman manifolds, there is a universal Thorn space, 
MO(k) = Thbk)' associated to the universal dimension k vector bundle "(k 

over BO (k ). The Thorn space construction is functorial and so the classifying 
map provides a mapping Th(F): Th(VM) -+ MO(k). The canonical inclu­
sion O(k) C O(k + 1) corresponds to the addition of a trivial bundle to "(k and 
this provides a mapping Ik: l:;MO(k) = Thbk EEl rnt) -+ MO(k + 1). Thus 
the sequence 

MO = {MO(l), MO(2), MO(3), ... } 

constitutes a spectrum called the Thorn spectrum. ([Rudyak98] has written an 
excellent book on the properties of such spectra.) 

The passage from cobordism groups IJ1n to the homotopy groups of the 
spectrum MO is made by taking a sufficiently small tubular neighborhood of M 
in rntn+k that we denote by N. This space is homeomorphic to the open unit disk 
bundleD<l(vM) with boundary S(VM)' SupposeN C rntn+k C rntn+kUoo = 

sn+k; we define a mapping 1M: sn+k -+ Th(VM) as follows: Send N to 
D<l(VM) via the homeomorphism N ~ D<l(VM). Send the complement of 
N in sn+k to the basepoint of Th(VM) = D<l(VM)/S(VM). Composition 
with Th(F) determines amappingtM: sn+k ~ MO(k). When weembedM 
into rntn+k+l by the canonical inclusion M c rntn+k C rntn+k+l, the inclusion 
adds a trivial bundle to the normal bundle and the construction results in the 
suspension l:;tM. Thus we can pass from an embedded n-manifold M to a 
homotopy class in 7rn (MO). 

[Thom54] proved that this procedure is well-defined and defines a ho­
momorphism, e: IJ1n -+ 7rn(MO). The differential topology developed by 
[Thom54] leads to a description of the inverse homomorphism: Consider the 
zero section of the universal bundle as an inclusion BO(k) '---+ MO(k). If 
I: sn+k -+ MO(k) represents a class in 7rn (MO) as a smooth mapping, then 
the inverse image of the zero section generically gives an n-dimensional man­
ifold in sn+k and varying the representative remains in the cobordism class. 
The Whitney sum operation, as the mapping 

Wh: BO(r) x BO(s) ---+ BO(r + s), 

provides a mapping of Thorn spaces MO(r)!\ MO( s) -+ MO(r + s) that gives 
rise to a product on 7r*(MO). Since the Whitney sum of normal bundles rep­
resents the normal bundle to the product embedding, this product on homotopy 
groups corresponds to the product on cobordism groups. 

Theorem 9.31 ([Thom54]). As rings, 91* ~ 7r*(MO). 
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It follows from Lemma 9.30 that (2)7r*(MO) = 7r*(MO) and so we can 
apply the mod 2 Adams spectral sequence and hope to compute directly the 
cobordism ring 1)1*. We tum next to the input to the spectral sequence. 

Homology and cohomology of Thom spaces 

In order to study the mod 2 cohomology of the spectrum MO as an alge­
bra over the Steenrod algebra, we work on the individual Thorn spaces in the 
spectrum. One of the main results of [Thom54] is the following computational 
toehold. 

Theorem 9.32 (the Thom isomorphism theorem). If ~ ---+ B is an oriented 
k-dimensional vector bundle over a space B of the homotopy type of a finite 
complex, then, for any ring R, Hn+k(Th(~); R) is isomorphic to Hn(B; R) 
for n ;::: O. Furthermore, there is a class Uk E Hk (Th(~); R), corresponding 
in the isomorphism to 1 E HO(B; R), such that, for all n, Hn+k (Th(~); R) ~ 
Hn(B; R) '-..-/ Uk. 

SKETCH OF A PROOF: Recall that Th(~) = D<l(~)/S(~), When B has the 
homotopy type of a finite complex, we can write 

H*(Th(~); R) = H*(D<l(~)' S(~); R). 

We next apply the Leray-Serre spectral sequence for pairs (Exercise 5.6) to the 
fibration (ek,Sk-l) '---+ (D<l(~)'S(~)) ---+ B. The E 2-term is concentrated 
in the kth row where we find-E~,k ~ Hn(B; Hk(ek, Sk-\ R)) ~ Hn(B; R). 
The orientation allows us to make this isomorphism globally. The theorem 
follows from convergence of the Leray-Serre spectral sequence and the cup­
product structure on the spectral sequence. (See [Milnor-Stasheft74] for a 
more geometric proof.) D 

We apply this result to the universall1tk -bundle, "(k over BO(k). Fol­
lowing the discussion in §6.3 we know that H*(BO(k);IF2) is isomorphic 
to IF2 [Wl,'" ,Wk] where the Wi are the universal Stiefel-Whitney classes and 
deg Wi = i. The Wi may be defined from the symmetric functions on classes Yl, 

... , Yk of dimension one in H*((BO(l) yk; IF2) where 0(1) x ... x 0(1) '---+ 

O(k) is the inclusion of the diagonal matrices with entries ±1. (0(1) ~ Z/2Z.) 
The Thorn isomorphism theorem gives 

The zero section provides a map BO(k) '---+ MO(k) that is compatible with the 
structure maps induced by the inclusions, i: 0 (k) '---+ 0 (k + 1). It follow that 
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there is a commutative diagram: 

s-(k+1lH*(MO(k + 1);IF2) ----+s-kH*(MO(k);IF2) 

(t*l-ll 1 (t*l-l 

H*(BO(k + 1); IF2 ) Bi* H*(BO(k);IF2) 

where the vertical maps are the inverses of the Thorn isomorphism and the top 
horizontal map is induced by the spectrum map l:;MO(k) -+ MO(k + 1). 
It follows that we can identify H*(MO;IF2) with limc-rH*(BO(k);IF2) = 

H*(BO; IF 2) as a vector space. There is a coproduct structure on H*(BO; IF 2) 
that is induced by the Whitney product Wh: BO(r) x BO(s) -+ BO(r + s) 
and H* (BO; IF 2) is a Hopf algebra with this coproduct. As an algebra 

The coproduct formula is given by the Whitney sum formula (Lemma 6.42). 
This yields a commutative product on the dual of H*(BO;IF2) and the Hopf 
algebra in this case is self-dual, that is, as algebras, 

We turn to homology in order to avoid the noncommutative product on the 
Steenrod algebra. Mod 2 homology is endowed with the structure of a comodule 
over Agual, that is, there are homomorphisms 

satisfying the dual axioms for the Steenrod algebra action. Thus the following 
diagram commutes for all spaces X: 

H*(X; IF2) __ ---+'ljJx __ ---+ Agua1 ® H*(X; IF2) 

'ljJx 1 11®'ljJX 

Agua1 ® H*(X;IF2) Agual ® Agua1 ® H*(X;IF2) 
'ljJ®1 

where '¢: Agua1 -+ Agua1 ® Agua1 is the coproduct on the dual of the Steenrod 
algebra. 

To study H*(MO; IF2)' we notice that the Whitney sum induces a pairing 
MO(r) !\ MO(s) -+ MO(r + s) that commutes with the zero sections and 
the Whitney sum map on the classifying spaces. With some care in identifying 
generators ([Stong68, Chapter VI]), this induces a product on H* (MO; IF 2) and 
gives an algebra isomorphism 
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Recall the theorem of [Milnor58] on the structure of Agua1 (Theorem 4.47): 
At the prime 2 we have 

where deg ~i = 2i - 1. Consider the naive splitting: 

This decomposition suggests that H*(MOi IF2 ) may be isomorphic to an ex­
tended comodule over Agual, that is, H*(MOiIF2) ~ Agua1 ® IFdak I k oJ 
2j - 1, k ;::: 2]. An interpretation of the results of [Thom54] by [Liulevicius62] 
in the setting of Hopf algebras leads to a proof of this splitting. 

Theorem9.33. H*(MOi IF2 ) ~ Agua1 ®IF2[ak I k oJ 2j -1, k ;::: 2] as extended 
comodules over Agua1. 

SKETCH OF PROOF: Recall that H*(BO(l)i IF2) ~ r(XI)' the divided power 
algebra on a generator of dimension one. The main ingredients in the proof 
are: (1) The fact that Bi*: H*(BO(1)iIF2) ---+ H*(BOiIF2) is given by 
"(k (Xl) f---+ ak. This follows from the dual representation of the universal Stiefel­
Whitney classes as symmetric polynomials in the one-dimensional classes in 
H* (BO (1) x k i IF 2)' (2) The determination of the Agua1-comodule structure on 
H * (BO (1) i IF 2) and hence, by virtue of the commutative diagram, 

H*(BO(1)i IF2) 
'ljJBO(l) 

Agual ® H*(BO(l)i IF 2) 

Bi* 1 11®Bi* 
H*(BOi IF2) __ 'ljJ_B_o_--7Agua1 ® H*(BOi IF2), 

the Agua1-comodule structure on H*(BOiIF2) can be determined. Since the 
algebra structure on H* (BOi IF 2) is compatible with the Agual-comodule struc­
ture, it suffices to check on generators. The comodule structure may be written 
1f;Bo(an ) = I:~o oi ® ai where oi E (Agua1)n_i' (4) There is another com­
mutative diagram that allows us to determine the Agual-comodule structure on 
H*(MOi IF2): 

H*(BOi IF2) 
'ljJBO 

Agual ® H*(BOi IF2) 

t* 1 ll®t* 
H*(MOiIF2) 

'ljJMO 
Agua1 ® H*(MOiIF2). 
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Since the classes coming from MO(l) are identifiable with I"k(xI) '---'" aI, we 
get a map H*(BO(1)ilF2) -+ H*(MOilF2) given by I"k(xI) f--+ ak-l. This 
gives the crucial step as we can compute 

0/' ( ) {~r ® 1 + 2:1>0 ~Il ® al if k = 2
r 

- 1, 
'f/MO ak = 

1 ® ak + decomposables if k i= 2'1. 

(5) Finally, we can check that 1f;MO (a2r-I) = 2::=0 e~s®a2s_I' This follows 
from the representation of the dual classes Wk as symmetric polynomials and the 
pairing of the Steenrod algebra and its dual (Proposition 4 of [Liulevicius62]). 
A complete exposition of all these details may be found in [Schochet71'] or 
from the cohomological point of view in [Stong68]. D 

It follows from the theorem that H* (MOi IF 2) is a free module over ..42 and 
so 7r*(MO) is computable immediately from ExtA2(H*(MOilF2),lF2). But 
this is the dual to the generating module for the free module. 

Corollary 9.34 ([Thom54]). 7r*(MO) ~ lF 2 [ak I k i= 2r 
- 1, k > 2] as 

algebras. 

Thorn proved that there is a weak homotopy equivalence between MO 
and a product of Eilenberg-Mac Lane spectra ~ls(w)IKZ/2Z with the Is(w)1 
given by the degrees of homogeneous polynomials s(w) in lF2 [ak I k i= 2r 

-

1, k ;::: 2]. The role of characteristic classes in distinguishing nontrivial classes 
is crucial--{)ne of the main theorems of [Thom54] is the sufficiency of the 
mod 2 characteristic numbers in classifying cobordism classes of unoriented 
manifolds. 

Thorn's construction of the Thorn spaces admits considerable generaliza­
tion. In particular, we can define the oriented cobordism ring n~o by admitting 
only oriented manifolds MI and M2 and requiring that a cobordism W be ori­
entable with boundary MI II (-M2)' where -M2 is the manifold M2 with the 
opposite orientation. The normal bundles of such manifolds have a lifting of 
their classifying map Iv: M -+ BO(n) to Iv: M -+ BSO(n). The universal 
n-dimensional vector bundle over BSO(n) has Thorn space MSO(n) and the 
same argument for unoriented cobordism can be made to prove that the spaces 
MSO(n) form a spectrum MSO and 7r*(MSO) ~ n~o. 

If one focuses on the lifting of the normal bundle to some classifying 
space BG -+ BO(n), then a very general notion of cobordism is possible 
([Stong68]). For almost complex manifolds, there is a lifting of the normal 
bundle to BU (n) -+ BO (2n) and Chern classes and numbers distinguish cobor­
dism classes. In a classic paper that introduced the application of the Adams 
spectral sequence to cobordism, [Milnor60] proved that n~o has torsion only 
at the prime 2, and that n~ is torsion-free. Furthermore, Milnor computed 
7r * (MU) by determining the structure of H* (MU i IF p) for all primes p, and 
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then using the Adams spectral sequence. In fact, H*(MU; lFp ) is free over a 
quotient Hopf algebra of Ap and a change-of-rings argument (Theorem 9.12) 
allows the straightforward calculation of (p)7r*(MU). The homological sim­
plicity of complex cobordism led [Novikov67] in his study of a generalization 
of the Adams spectral sequence founded on MU. See the book of [RaveneI86] 
for more details. 

Similar arguments were first carried out by [Ray72] and [Kochman80] to 
obtain partial results for symplectic cobordism ([Kochman96] gave a different 
approach to calculating 7r * (MSp)). 

9.S Computations 

Our point of departure is Corollary 9.23-there is a spectral sequence 
with E 2-term isomorphic to the cohomology of the Steenrod algebra Ap, and 
converging to (p) 7r~. Thus the problem of computing (p) 7r~ breaks into the 
problems of computing H*'*(Ap), and then the differentials in the Adams 
spectral sequence. Finally, there is the problem of determining the extensions. 

We first construct a small part of a minimal resolution for A 3 , the mod 
3 Steenrod algebra. The computation begins easily enough and you even get 
some of (3)7r~, but it quickly gets complicated. We then consider the case of 
p = 2 more systematically. Following [Adams60], we are able to describe 
H S '*(A2 ) in some detail for s ~ 3. Next we put these computations to work 
and find the first nontrivial differential in the spectral sequence. A corollary 
is the first case of the Hopf invariant one problem. We continue the hands-on 
computations with a discussion of Massey products and their relation to Toda 
brackets. 

Low-dimensional calculations 

We begin by constructing the beginning of a minimal resolution, 

up to internal degree 9. For the most part, the discussion will be descriptive; 
the reader should construct a chart of everything that is happening. 

By Lemma 9.11 and Theorem 4.45, PI has A3 -module generators ao of 
degree 1 and hi of degree 4· 3i = 2· 3i . (3 - 1) for i = 0, 1, 2 .... These 

generators correspond to 13 and p3
i 

; the homomorphism do: PI ---+ A3 is given 
by do (ao) = 13 and do (hi) = p3'. In the kernel of do there is already f3ao 
since 132 = O. We put a generator 0,0 in P2 with dl(ao) = f3ao. The next 
phenomenon to arise in the kernel of do that is not accounted for by do(ao) 
occurs in degree 9. The diligent reader making a chart will find p2f3, f3p2, 
pIf3pl and f3pl pI in A3 in degree 9. The Adem relations imply that only 
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two of these expressions are independent. In degree 9 in PI there are three 
independent generators, p2ao, (JPIho and pI (Jho. The Adem relation 

implies that the element p2ao - pI (Jho - (Jpl ho is in the kernel of do. Let gl 
be in P2 in degree 9 with dl (gl) = p2ao - pI (Jho - (Jpl ho. 

The chart should be getting a bit complicated by now. However, two simple 
patterns emerge: 

(1) Except for the element 0,0 in P3 with d2(ao) = (Jao, the first generator 
to appear in P3 is in degree greater than 11. This implies that we have 
computed Hs,t(A3 ) for s ~ 2, t ~ 11; 

(2) The recurring Bockstein that arises at each stage behaves systematically 
and so, if we remove the chain of generators due to (J2 = 0, the connec­
tivity of this minimal resolution implies we have computed HS'*(A3 ) 

for t ~ 11 and all s. 

Because the resolution is minimal, Ext:A:(lF3,lF3) = (lF3 ®A3 ps)dua\ 
and so we have computed 

(s, t) = (0,0), (1, 1), (2,2), 

(3,3), (1,4), (2,9), 

elsewhere for s ~ 3 and t ~ 11. 

Since E'::l is related to (3) 7ff-s, we display ExtS,t with t -s running horizontally 
and s vertically. The differentials dr then lower t - s degree by 1 and raise s 
degree byr (that is, dr goes left one space and upr spaces in the (t-s, s)-plane). 
In the spectral sequence, we can display these data in the diagram: 

T 
2 

ao ho 

o 1 

o 2 3 4 5 6 7 8 9 

t-s ---+ 

With this chart, the connectivity of the resolution, and the evident lack of 
differentials, we have computed the following stable homotopy groups. 
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Proposition 9.35. { 77, 
!U ifn = 0, 

(3)7r~ = 2.::/32.::, ifn = 3,7, 

{O}, ifn = 1,2,4,5,6,8,9. 

The reader should compare this method with the method of killing homo­
topy groups in Chapter 6 (Corollary 6.27). 

If the reader has been creating a chart to keep track of the minimal resolu­
tion, it should be clear that a systematic method of computation is desirable. 

We change to the prime 2 and study H*'*(Jb) more systematically with 
the tool of choice-the change-of-rings spectral sequence (Theorem 9.12). 

Theorem 9.36. Let 9 denote the bigraded algebra 

with bideg Xi = (1,2i). There are elements hi in H 1,* (A2) for i = 0, 1, 2, ... 
such that bideg hi = (1, 2i) and a mapping a: 9 ---+ H*'*(A2), determined on 
generators by Xi f---+ hi; a is a well-defined mapping of bigraded algebras and 
a restricts to isomorphisms, 91,* ---+ H 1,*(A2) and 92 ,* ---+ H 2'*(A2), and 
to a monomorphism 93 ,* ---+ H 3'*(A2). All relations among products of the 
generators hi are consequences of this mapping for HS'*(A2), s ~ 3. 

PROO F ([ Adams60l): To compute H*'* (A2)' consider the supporting cochain 
complex for this algebra, F* (Agua1 ) given by the cobar construction on Agua1 . 

Recall the coproduct for Agua1 = IF 2 [6, 6, ... J on the generators is given 
by the formula of [Milnor58]: 

(~o = 1). 

We proceed by a series of remarks: 

1. H 1'*(A2) = IF2{hi I i = 0,1,2, ... , and deg hi = 2i}. This follows from 
Lemma 9.11. To determine Prim(Agual ) observe that ~1 is primitive and so, 
because we are working mod 2, ~r is also primitive for i > O. The formula for 
r.p* shows that these are the only primitives. Let hi denote the class [~n in the 
cobar construction. 

II. If h1hO = 0, h§h2 + hr = 0 and hoh§ = 0, then, for all i ;::: 0, hH1hi = 0, 
h; hH2 + hY+l = 0 and hih;+2 = O. 

Because Agua1 is commutative, we can apply Theorem 9.10: SqO exists in 
the Steenrod algebra that acts on H*'*(A2) and the Cartan formula shows that 
SqO is multiplicative. Since SqOhi = SqO([~r]) = [~r+lJ = hH1 , repeated 
applications of SqO to the initial identities obtains the identities for all i ;::: O. 
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III. h1hO = 0, h6h2 + hr = 0, and hoh§ = O. 
Consider the formulas in the cobar construction: 

d*([6]) = [~i 16], 
d*([6 16] + [~i 166] + [~i6 16]) = [~t 16 1 ~1] + [~i 1 ~i 1 ~i], 

d*([61 ~i]+[d 16]+[~t 1 ~i6]+[d 1 ~m = [~t 1 ~t 16]· 

These formulas imply that a: 9 -+ H*'* (A2) is well-defined in degrees s ~ 3. 
It remains to prove that a on 91,* and on 92,* gives isomorphisms and on 93,* 
a monomorphism. 

Because we can describe Agua1 so explicitly, we can find sub-Hopf algebras 
of Agual of particularly simple form. Let B~ = IF 2 [6, ... '~n]; then B~ is a 
sub-Hopf algebra of Agua1 . Furthermore, we have the short exact sequence for 
each n, 

o ---+ B~_l ---+ B~ ---+ A~ ---+ 0 

where A~ = B~//B~_l ~ IF2[~n], the Hopf algebra with ~n primitive. By 
dualizing, we obtain the extensions of Hopf algebras 

Notice that (B~y ~ (Agualy for r < 2n - 1. Thus H*,t(Bn) ~ H*,t(A2) 
for t < 2n - 1. We will use these extensions with the change-of-rings spectral 
sequence to compute H*'*(A2) in the desired range. To apply Theorem 9.12, 
we need a further remark. 

IV. An is central in Bn. 
Because we are not giving explicit descriptions of An and Bn, we consider 

the dual situation and ask: Does the following diagranl commute? 

B~ ® B~ ------+ B~ ® A~ 

B/~ jT 
n~ 

'P*~ 

B~ ® B~ ------+ A~ ® B~ 

Because r.p* is multiplicative, it suffices to check the commutativity on the 
algebra generators, 6, ~2' ... , ~n- The explicit formula for the coproduct 
implies that the diagranl commutes. 

By Theorem 9.12, for each n, there is a spectral sequence, converging to 
H*(Bn), with E~,q given by Hq(An) ® HP(Bn- 1 ). Because An is (2n - 1)­
connected, A2 = l~ Bn, and so we get better and better approximations to 

H*(A2) with each H*(Bn). 
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V. H*(An) ~ IF2[hn,i I i = 0,1,2, ... ], where hn,i denotes the class [~~'] in 
the cobar construction on A~. This follows because A~ ~ IF 2[~n]' 

With these data, we begin an induction. For n = 1, 

where the hi corresponds to [~r] of degree 2i. 
For n = 2, E~,q ~ Hq(A2) ® HP(Bd. First examine d2: Eg,1 -+ E~'o; 

d2 ([6D = [a I 6] or d2(h2,o) = hIho. When we apply SqO, we obtain 
d2(h2,i) = hi+lhi . Thus d2 is monic on Eg,1 and, since HI (B2) comes from 

E~I and E~o = E~'o = HI(Bd, we have shown HI(B2) ~ HI(BI) with 
the isomorphism coming from the projection B2 -+ B I. Notice further that we 
have introduced the identities hi+lhi = 0 into H*(B2)' 

Considernextd2 : E~,I -+ E~'o; E~,I is isomorphic to HI (A2) ®HI (BI) 
~ IF 2{h2,j ® hk }. Since d2 is a derivation, d2(h2,j ® hk ) = hj+lhjhk . This 
differential is a monomorphism except when the dimensions conspire to give a 
kernel. In particular, 

Because no other differential is defined on E~,I, these classes live to E~I and 
determine elements in H2 (B2) that we denote by 

These classes lie in t degrees 3 . 2i + 2H2 = 7 . 2i, and so they are linearly 
independent. 

To finish our description of H2(B2)' we must determine E~2. The dif­
ferential d2: Eg,2 -+ E~,I is given by d2(h2,ih2,j) = h2,j ® hHIhi + h2,i ® 
hj+lhj , and so is nonzero except when i = j. Thus only the classes (h2,i)2 

. t EO,2 surVlVe 0 3 . 

To determine d3 : Eg,2 -+ E~'o, we consider (h2,o)2. In the cobar con­
struction, this is the name for [6 I 6]; by III, this element is congruent modulo 
the filtration to [6 I 6] + [a I 66] + [a6 I 6] which is carried by d* to 
[a I 6 I 6] + [a I a I ~n Thus d3 ((h2,o)2) = h§h2 + hr· Repeated 
application of SqO gives 

Therefore, Er;;? = {O}. 
Because the spectral sequence converges to H*(B2)' we have the short 

exact sequence 
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We can describe E;;,o as IF2{hih j 1 j i= i + I} and E~l as IF2{g2,i 1 i = 

0,1, ... }. Recall the t degrees of all of these elements; hihj E E;;,O,2'+2
J 

and 

g2,j E E~1,7.2'. We deduce that H2(B2) is the direct sum of E;;,o and E~l. 
Finally, we determine H 3 (B2 ). In H 3 (B1 ) we have introduced the rela­

tions hi+lhihk = 0 and h;hH2 + hY+l = O. We compute d2: E~,2 ---+ E~,l. 
Again, d2 is a derivation, so on elements h2,ih2,j ® hk we have 

Unless i = j, d2 is nonzero, and so Ej,2 = IF 2{h2,ih2,i ®hk}' A subtlety enters 
here: d3(h2,ih2,i ® hk) = h;hH2hk + hY+lhk follows from the derivation 
property of d3 . It is possible for a relation to produce elements in the kernel of 
d3 if that relation is induced by d2 . Consider 

d3(h2,ih 2,i ® hH3 + h2,i+l h2,i+l ® hH1 ) 

= h;hH2hH3 + hY+lhH3 + h;+lhH3 hH1 + hY+2 hH3' 

The first and last terms are 0 since hl+ 1 hI = 0 and the middle vanishes as a pair. 
Since no other differential affects Ej,2, we have determined a flock of classes 
in E~2, denoted by 

h,i = {h2,ih 2,i ® hH3 + h2,i+l h2,i+l ® hHd 

= {[~~i 1 ~f 1 ~r+3] + [~~i+l 1 ~f+l 1 ~r+l]}. 

Once again, the t degrees of the hi show that they are linearly independent. 
Next consider d2 : Eg,3 ~ H 3(A2) ---+ H2(A2) ® H2(BI) ~ E~,2. The 

formula 

d2(h2,ih2,jh2,k) = h2,jh2,k®hHlhi +h2,ih 2,k ®hHlhj +h2,ih2,j ®hk+lhk 

is enough to show that d2 is a monomorphism; therefore, Efj;} = {O}. To 
finish off H 3(B2), we consider d2 : E~,l ---+ Ei'o. A class in E~,l is a sum of 
classes of the form h2,i ® hjhk, and d2(h2,i ® hjhk) = hHlhihjhk. Many 
relations can be obtained by mani~ulating subscripts; however, most of these are 
generated by the image of d2: E 2,2 ---+ E~,l and so are known. The exceptions 
are of the form 

h 2,i ® hH2hk + h2,Hl ® hihk' 

which is seen to be g2,ihk. These classes are missed by d2 and so give permanent 
cycles. However, they are not linearly independent in the rest of H 3 (B2 ). 

VI. g2,ihHl = h;+2hi in H 3(B2). 

To prove this, observe that in the cobar complex, 

d*([d 16] + [~t 1 ~i6] + [d 1 ~m = [~t 1 ~t 16] + [~t 161 ~t] + [d 16 1 ~i], 
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which represents h§ + 92,oh1 . Since SqO 92,i = 92,Hl, this formula proves VI. 
If the reader has kept track of the new elements in H3 (B2)' then, because 

the internal degrees of these elements all differ, we have shown that H 3 (B2 ) 

contains IF2{hihj hk 1 i i= j + l,j i= k+ I} modulo h;hH2 = hY+l' as well as 
IF 2{h,i 1 i = 0,1, ... } and IF2{92,ihj 1 92,ihHl = hY+2hi}. We next proceed 
in our induction to H* (B3). 

For n = 3, E~,q ~ Hq(A3) ® HP(B2). First examine d2: Eg,l --+ E~'o. 

When we apply SqO, we obtain d2(h3,i) = 92,i' Thus d2 is monic on Eg,l and 
therefore, Efj;} = {O}. This shows Hl(B3) ~ Hl(B2) ~ Hl(Bd with the 
isomorphisms induced by the projections B3 --+ B2 --+ B 1 . 

Consider next d2: E~,l --+ E~'O. By the derivation property of d2, we 
have d2(h3,i ® hj) = 92,ihj. If j = i + 1, this still makes sense and we 
get d2(h3,i ® hHd = 92,ihi+l = h;+2hi, which introduces a new relation 
among the 3-fold products of elements in Hl(B3)' Looking at sums in E~,l 
we consider classes h3,i ® hH3 + h3,Hl ® hi. Apply the differential to get 

d2(h3,i ® hH3 + h3,Hl ® hi) 

= 92,i hH3 + 92,H1 hi 

= {h2,i ® hH2 + h2,i+l ® hi }hH3 + {h2,i+l ® hH3 + h2,H2 ® hi+l}hi 

= 0, since hl+lhl = O. 

This determines classes 93,i = {h3,i ® hH3 + h3,Hl ® hi} in E~l and so in 
H2(B3). The classes 93,i lie in t degrees 2i(23 - 1) + 2H3 = 15· 2i and so 
are linearly independent. 

To finish the description of H2(B3), consider d2: Eg,2 --+ E~,l: 

h· h' I" N 'd d EO 2 E3 ° h . W lC IS nonzero un ess Z = J. ext consl er 3: 3' --+ 3' on t e remalll-
ing classes (h3 ,i)2. In the cobar construction for B 3 , [6 1 6] is identified mod­
ulothefiltrationwith[616]+[6616]+[~t616]+[~§ 166]+[~t 166]· 
The differential on this sum is [~~ 1 6 1 6] + [~§ 1 ~§ 1 ~i] which repre­
sents {h§:;l0 ® h3 + h§,l ® hI} = 12,0. By applying SqO, we have shown 
d3((h3,i) ) = h,i. 

Thus H2(B3) is the direct sum, 

Next, let us consider H 3(B3). Notice that in H3(B3) the relations 
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hold for 3-fold products of generators of Hl(B3)' In order to show that these 
are the only relations, we continue the induction and we determine more of 
H 3 (B3 ). 

Consider d2: E~,2 ---+ E~,l. The formula, 

shows d2 is nonzero unless i = j, so we have Ej,2 = IF2{h3,ih3,i ® hk}. 
Furthermore, d3((h3,i)2 ® hk) = h,ihk. This produces a kernel, however, 
when we consider the representative expressions for the h,i: 

d3(h3,ih3,i ® hH4 + h3,H1h3,Hl ® hHd 

= h,ihH4 + h,i+lhi+l 

= {h2,ih2,i ® hH3 + h2,i+l h2,i+l ® hH1 }hH4 

+ {h2,H1 h2,Hl ® h1+4 + h2,H2h2,H2 ® hH2}hi+l = O. 

We denote the classes {h3,ih3,i ® hi+4 + h3 ,H1 h3,Hl ® hHd by hi in E~2. 
The t degrees of the hi are 15 . 2Hl and so they are linearly independent. 

Next, we leave it to the reader to check that d2 and d3 map Eg,3 and Eg,3 
in such a way as to leave Er;;? = {O}. In E~'\ we find the classes g3,ihj 
left over after clearing the image of d2: Eg,2 ---+ E~,l and the classes mapped 
nontrivially by d2: E~,l ---+ Ei'o. If we check t degrees, however, it is possible 
for more than one g3,ihj to inhabit the same degree. The classes that require 
comparison are g3,ihi-l and g3,i-lhH3. Writing them out, we see that 

g3,i hi-l = {h3,i ® hH3 hi- 1 + h3,Hl ® hihi-d = {h3,i ® hH3 hi-d, 

g3,i-l hH3 = {h3,i-l ® hH2hH3 + h3,i ® hi- 1hi+3} = {h3,i ® hi- 1hH3 }, 

and so we must introduce the relation g3,ihi-l = g3,i-lhH3. Some amusing 
number theory can be employed to show that the other classes occur in differing 
t degrees and so we find classes g3,ihj, for i i= j + 1, all linearly independent. 
Thus H3(B3) is seen to contain IFdhihjhk Ii i= j + l,j i= k + I} modulo 
the relations hihH2 = hY+l and h;+2hi = 0, IF dg3,i I i = 0,1, ... } and 
IF 2{g3,i h j Ii i= j + I}. 

We can now summarize the inductive step in a series of formulas that 
extend the pattern above: 

(1) There is a spectral sequence, converging to H*(Bn) with 

(2) H1(Bn_d ~ IFdhi Ii = 0,1, ... } 
H2(Bn_d ~ IF 2{hih j I i i= j + I} EEl IF2{gn-l,i I i = 0,1, ... } 
H 3(Bn_d contains IF2{hih j hk } modulo the relations hi+lhihk = 0, 
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h;hH2 + hY+l = 0 and h;+2hi = 0 plus the direct sum lF2{Jn-l,i 

i = 0, I, ... } EEl lF2{gn,ihj Ii # j + I}. 
(3) d2(hn,i) = gn-l,i, d3((hn,i)2) = fn-l,i. 
( 4) There are new classes in E~ 1 and so in H2 (Bn) given by 

These classes are a result of the relation gn-l,i+lhi = gn-l,ihn+i. The 
relation gn,i+lhi = gn,ihHn+l is seen to hold for the new gn,i. 

(5) There are new classes in E~2 and so in H3(Bn) given by 

These classes are aresult ofthe relation hk+lhk = 0, and the expressions 
for fn-l,i. 

The reader can check that the t degrees of the new classes grows to infinity 
as n goes to infinity. What is left in the limit, H*(Jb), is the set of classes 
{hi I i = 0,1, ... } and the two and three fold products, subject to the relations 
we have derived. This proves Theorem 9.36. D 

The chart on the next page summarizes the data for H* (A2 ) given in 
Theorem 9.36 and for a small range of t - s. We follow the convention of 
writing Hs,t(A2 ) on the lattice point (t - s, s). We also use the convention 
(due to [Tangora66]) of joining two classes together by a vertical line if one is 
the product of the other with ho, and by a line of slope 1 if one is the product 
of the other with hI. 

The diligent reader can write out the first few stages of a minimal resolution 
to see that nothing occurs above filtration degree 3 for 0 < t - s < 5, and the 
tower of ho continues to infinity (this also follows from the discussion at the 
end of §9.3 and the fact that (2)7r5 = Z). 

I : t~ 
ho hI h2 

h~ t/ 
h3 

T 
h~ t 

h4 

0 1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

t-s ------+ 
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{ 

2.::, 

7rS ~ 2.::/22.::, 
(2) n - 2.::/82.::, 

{O}, 

ifn = 0, 

ifn = 1,2, 

ifn = 3, 

ifn = 4,5. 

PROOF: From the diagram we must first dispense with the possibility that 
dr(hI) = ho for some r. We use the fact that dr is a derivation and compute 

a contradiction. Therefore, dr (hI) = 0 for all r and hI is a permanent cycle. 
As for the 2.::/82.:: ~ (2) 7rff, the discussion at the end of §9.3 shows that the 

relations h2 i= 0, hoh2 i= 0 and h§h2 i= 0 describe an element in (2)7rff with 4 
times that element nonzero. This forces the composition series for (2)7rff to be 

D 

In order to do further calculation of (2) 7r~, more of H*'* (A2 ) is necessary 
than computed in Theorem 9.36. In fact, not all of H 3'*(A2 ) is given by 3-fold 
products, as we see later. A more powerful technique for computing H*'*(A2 ) 

is given in §9.6. In the meantime, we obtain some geometric consequences of 
our computations. 

The first nontrivial differentials 

The problem of the existence of elements in 7r~ with Hopf invariant one 

has been reduced to the study of the Steenrod operation Sq2' and whether it acts 

nontrivially on a two-cell complex. Because Sq2' is dual to ~r in Agual, the 
Adams spectral sequence further reduces the question to the survival of hi in 
E~,2' to E~2i . 

If hi survives to E~2' , it detects a class in (2) 7r~ -1' The stable homotopy 

ring 7r~ is graded commutative and so the square of the class detected by hi has 

order 2 because [hi] 0 [hi] = (_1)2'-1 [hi] 0 [hi] and so 2[hi ] 0 [hi] = O. This 
implies that the class hoh; that represents 2[hi ] 0 [hi], which is nonzero if i ;::: 3, 
cannot survive to Eoo by the identification of products with ho in Ext with the 
doubling map on 7r~. The kind reader will forgive the following algebraic deus 
ex machina: 

Fact. Ext::t:+l3(lF2,lF2) = {O} for all s. 

With our present techniques, the proof of this is a good day's work con­
structing a minimal resolution. More elegant and streamlined techniques will 
be presented later. Notice that this implies (2)7rr3 = O. 
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Proposition 9.38 ([Toda55], [Adams58]). There is no element of Hop fin variant 
one in 7r31 (816 ) = 7rr5 and so there is no division algebra structure on J1t16. 

PROOF: We consider hoh~ in E~,17. Because E~,S+13 = {O} for all s, no 
differential on hoh~ has a nonzero image and hoh~ is an infinite cycle. Since 
it cannot survive to Eoo, it must be a boundary. There is only one possible 
nonzero differential, that is, d2 (h4) = hoh~. Hence h4 does not survive to Eoo. 
D 

We remark on the extraordinary blend of topology and algebra in this proof. 
The graded commutativity of 7rf and an Ext computation together imply a deep 
result. 

The next question to consider is whether this technique propagates through 
the spectral sequence to settle completely the Hopf invariant one problem? A 
quick glance forward to the charts in §9.6 shows that we cannot naively proceed 
even to h5 (in particular, Hs,s+29(A2) i= {O} for some s). Something more is 
needed. Our goal for the rest of this section is to outline how to prove: 

In a celebrated paper, [Adams60] gave the first proof of this theorem based 
on a generalization of the factorization of Steenrod operations of [Adem52]. 
The equation d2 (h4) = hoh~ is equivalent to a nontrivial factorization of Sq16 
into products of primary and secondary cohomology operations. Therefore, 
Sq16 cannot act nontrivially on 8 16 U", e32 for any a in 7r31 (816 ). The fac­
torization is based on secondary operations, <I>i,j that arise from the Adem 

relation Sq2'Sq2J = L bsSq2S (i ~ j, i i= j - 1). [Adams60] showed 
O::';S<J 

that a decomposition, Sq2n = L. ai,j<I>i,j with ai,j E A2 and modulo some 
2,J 

indeterminacy, holds for all n ;::: 4. This settles the Hopf invariant one problem. 
We note that [Bott-Milnor58] and [Kervaire58] had also settled the di­

vision algebras question shortly after Adams by using K-theory techniques. 
[Maunder63, 64] developed the notion of higher order cohomology operations 
and related them generally to differentials in the Adams spectral sequence. The 
connections between these operations, Theorem 9.2 and the operations in §9.1 
were clarified by [Maunder63, 64]. 

Another way to show that d2(h i ) = hohL1 is to consider the Steenrod 
algebra that acts on Ext::t: (IF 2, IF 2) and the fact that this action intertwines 
with the differentials in the spectral sequence. A priori, there seems to be lit­
tle connection as this action is a formal feature of the cohomology of a Hopf 
algebra. The missing geometric link was forged by [Kahn70] using the ge­
ometric construction called the quadratic construction on a pointed space, 
(X, xo): First form the space 8 n 

<) (X x X), where U <) V = U x V / * x V, 
and then take the quotient rn(x) = 8n 

<) (X x X)/(8, X, x') rv (-8, x', x). 
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The inclusion of sn '---+ sn+l as equator detennines a natural transformation 
rn (X) -+ rn+l (X) and the quadratic construction is the direct limit of the 
natural transformations: 

rOO(X) = lim rn(x). 
n-+oo 

[Kahn70] showed that this construction carries the chain homotopy that gives 
rise to the Steenrod operations on H*'*(Jb) and so these operations can be 
related to the differentials. 

The theorem that applies to the question at hand is given in the fonnula of 
[Milgram72] : 

d2 (Sqi(a)) = hoSqHl(a), 

which holds if a E Ext:A~(IF2,IF2) and i == t (mod 2). Since hi is in 
12' . 0 1 . 

Ext.42 (IF 2, IF 2) and 2' == 0 (mod 2), d2 (Sq hi) = hoSq (hi), that IS, d2 ( hH1 ) 
= hoh;, which holds for i ;::: 1 by Theorem 9.10. This technique has been em­
ployed with great success to determine many of the known differentials in the 
Adams spectral sequence ([Kahn70], [Milgram72], and [Bruner84]). 

In §9.6 we return to the question of differentials in the Adams spectral 
sequence and discuss some other methods to determine them. 

Massey products 

Before we leave the computations that can be done by hand, we fill in 
more of our chart by considering the analogue of Massey products for a bigraded 
differential algebra. Ordinary Massey products and their higher order analogues 
are discussed in §8.2. 

Ext~'* (k, k) = H*'* (r) is computed from a differential bigraded alge­
bra, (B*'*,d) = (F*(Agual),d*), the cobar construction, with its differen­
tial of bidegree (1,0). In such a bigraded algebra, suppose [u] is a class in 
Hs,t(B*'*, d), [v] in Hs',t' (B*'*, d) and [w] in Hs",t" (B*'*, d), and further­
more, [u][v] = 0 = [v][w]. Then we can define the Massey triple product 

([u], [v], [w]) C H S+s' +s" -1,t+t' +t" (B*'*, d) 

by taking elements a in BS+s' -1,t+t' and bin BS' +s" -1,t' +t" such thatda = uv 
and db = vw, where u E [u], v E [v], and wE [w]. As in §8.2, 

([u], [v], [w]) = {[aw ± ub]1 all possible choices of a, b, u, v, w}, 

where we denote the homology class of an element t by [t]. The indeterminacy 
for ([u], [v], [w]) is given by [u]HS' +s" -1,t' +t" + HS+s' -1,t+t' [w]. The higher 
order analogues of the Massey product can be defined as in §8.2 with the extra 
index kept in tow. 
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Theorem 9.36 presents many trivial products that can give rise to triple 
products in H*'*(A2). We next record some nontrivial Massey products. In 
particular, we compute in detail that Co = (h§, ho, hI) and hI Co are nontrivial. 
Other computations are left as exercises or given in the references. The iden­
tification of Massey products in Ext also follows by special spectral sequence 
arguments first given by [Ivanovskii64] and by [May64]. 

We begin with an exercise for the reader. These relations were identified 
by [Adams60] and follow from the formulas in the proof of Theorem 9.36: 

These dispose of the most obvious choices for Massey products. 
The next relations to try are h§ho = 0 and hohl = O. In the cobar 

construction, these products vanish because the following formulas hold: 

[~t 1 ~t 16] = d*([6 1 ~i] + [d 16] + [~t 1 ~i6] + [d 1 ~m 
[6 1 ~i] = d*([6 + ~m· 

In fact, this class is the unique representative for (h§, ho, hI) since the indeter­
minacy of (h§, ho, hI) is h§ Ext l

,3 + Ext2
,9 hI = {O}. 

To show (h§, ho, hI) is nonzero, it suffices to show that it is nonzero in 
H3 (B4) since 11 < 24 -1. We first identify it in H3 (B3). Observe thatthe class 
can be identified with [6 1 a 1 a] modulo the filtration in the cobar construction 

for B3 and so it names the class h3,o ® hIhl in E~,I = HI(A3) ® H2(B2) in 
the spectral sequence converging to H*(B3). 

and so h3,o ® hIhl gives a class in E~,I that persists to E;;'I. Checking the 
degrees of the other nonzero classes in H3(B3), we find {h3,o ® hIhl }, of 
t degree 11, is not accounted for by classes hihjhk , h,i or g3,ihj. 

To see that {h3,o ® hIhd determines a nonzero class in H 3(B4), we 
consider the next spectral sequence and 

Since E~,I is 15-connected in this case, (h§, ho, hI) lives to H3(B4) and hence 
to a nonzero class in H3,1l (A2)' 

A similar dimension counting argument can be given for the class 
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Thus we have identified two new elements in Ext3
,11 and Ext4

,13, denoted by 
Co and hI Co by [May64]. 

The cobar construction is a very large complex to use for computing Massey 
products. [Ivanovskii64] and [May64] worked in more manageable complexes 
from which to compute H*'*(Jb). We summarize some of their computations 
in low degrees. We picture only the Massey product elements. 

11 

P'h~h' 10 

9 

8 

/1 
7 

P'h~h' I : t t 
do eo s 4 / 

3 Co 

2 

7 8 9 10 11 12 13 14 15 16 17 18 19 

t-s ------+ 

Theorem 9.40. For t - s ~ 19, the following Massey products are nonzero and 
their products with ho and hI are given in the chart. (The operators pI and 
p2 are periodicity operators that will be defined in §9.6.) 

(1) Co = (h§, ho, hI) in Ext3
,11, 

(2) p 1h 1 = (hI, h'5, h3) in Ext5,14, 

(3) pI h2 = (h2, h'5, h3) in Ext5,16, 

(4) do = (ho,h§,h§,ho) in Ext4
,18, 

(5) eo = (h2, Co, h2, hI) in Ext4
,21, 

(6) fo = (h6, h~, h2) modulo h6h2h4 in Ext4
,22, 

(7) C1 = (h2, hI, h~) in Ext3 ,22, 

(8) p1 CO = (co, h'5, h3) in Ext1,23, 
(9) p 2h 1 = (h1,h~,h4) = ((h3,h'5,h1),h'5,h3) in Ext9

,26, 

(10) p 2h2 = (h2, h~, h4) = ((h3, h'5, h2), h'5, h3) in Ext9
,26. 

For a more extensive and complete description of Massey products in the coho­
mology of the Steenrod algebra, the reader can consult the paper of [Tangora94]. 
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If the reader adds this chart to the results of Theorem 9.36, then the de­
scription of ExtS,t for t - s ~ 19 is almost complete. The missing data are 
given by a theorem of [Novikov59] that adds the relations 

[Novikov59] showed that h§= hm+l = 0 for m ~ 2. [Maunder65] showed the 
nontriviality of the products hbhm+l for l < 2m by comparing the Adams spec­
tral sequence converging to (2) 7r~ with the Adams spectral sequence converging 
to (2)7r~ (BU(2q, . .. ,(X) )), the stable homotopy groups of the 2q-coconnected 
cover of BU. With these facts, the description in these limited degrees is com­
plete. We discuss some of the differentials in §9.6. 

Massey products are a formal consequence of the structure of a differential 
graded algebra. In cohomology they capture higher order linking phenomena. 
We can ask if there is a topological interpretation of the Massey products in the 
Adams spectral sequence. The product structure on stable homotopy groups of 
spheres is identified with the composition product that shows up as the Yoneda 
product on the E 2 -term. We need the notion of secondary products for the 
composition product, introduced by [Toda59]. 

Definition 9.41. Let"( E [X, Yl, ,6 E [Y, Zl and a E [Z, Wl. Suppose ,60,,( and 
a o,6 are null-homotopic in [X, Wl. Let e, b, a be mappings representing ,,(, ,6 and 
a, respectively. There are extensions ofboe and aob to C X ---+ Z and CY ---+ W, 
which we denote by Band C, respectively. Write SX = C+ Xu C- X and 
consider the mapping SX ---+ W given on C+ X as a 0 B and on C- X as 
Co e. The set of all such mappings is denoted (a,,6, "() C [SX, Wl, called 
the Toda bracket of a, ,6 and "(. It has indeterminacy given by the subset 
a#[SW, Yl + (S"()#[SX,Zl· 

The definition, like the definition for Massey products, can be generalized 
to n-fold Toda brackets and matric Toda brackets. Furthermore, if we apply 
the definition to representatives of mappings in 7r~, by careful suspension, we 
can define Toda brackets of stable maps for which the Toda brackets represent 
cosets in 7r~. [Toda62] gave extensive computations of 7rn+k(sn) for k ~ 19, 
using this secondary bracket product to determine and name many elements. 
[Cohen, J68] proved that all of 7r~ can be represented by higher order Toda 
brackets applied to integer multiples of the classes Z E 7rt, TJ E 7rf, v E 7rf, 
(J E 7r~ and al E 7r~p-3 for each odd prime p. 

Massey products of all orders may be defined in Ext ~ E 2 • Their rela­
tionship to differentials can lead to a connection with Toda brackets. [Moss70] 
provided a description in some cases. Broadly stated, he proved that Massey 
products of permanent cycles, under certain conditions, converge to Toda brack­
ets in 7r~ (in fact, the main result of [Moss70] applies more generally to the 
composition product 0: {Y, W}* x {X, Y}* ---+ {X, W}*). 
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Theorem 9.42 ([Moss70]). Let (E:,t, dr ) denote the Er-term of the Adams 
spectral sequence converging to (p)7r~. 

(1) Suppose a E E:,t, b E E:'t', andc E Et,t" satisfyab = Oandbc = O. 
Then 

/ b 0 c ) 
dr((a,b,c)) C \dra, a, (-1)idrb b' (-1)i+i'drc ' 

the matric Massey product, where i = t - S, if = tf - Sf. 
(2) If adrb = 0 and bdrc = 0, then 

dr(a, b, c) C -(dra, b, c) - (_1)i (a, drb, c) - (_1)i+i' (a, b, drc). 

(3) If a, band c are permanent cycles representing a in 7r7, /3 in 7rf, and 
"( in 7rf" with a 0 /3 = 0 and /3 0 "( = 0, then, under certain technical 
assumptions on the filtrations of a, band c, the Massey product (a, b, c) 
contains a permanent cycle that is realized by an element of the Toda 
bracket (a, /3, "(). 

The simplest example of this is given by the element Co in H 3 ,1l(A2 ). 

Looking ahead to the more complete table, Co is a permanent cycle and h§, ho and 
hI satisfy the unspoken filtration conditions of the theorem. Thus (h§, ho, hI) 
represents a Toda bracket that is given in Toda's notation as (v2 , 22, TJ). 

9.6 Further structure 

The element-by-element arguments of §9.S led to many useful results; in 
this section we take a different point of view and discuss the spectral sequence for 
(p)7r~ in more global terms. We begin with two deep theorems of [Adams66]. 

The first determines conditions on sand t for which Ext::t:(IF2,IF2) = {O}. 

The second reveals portions of Ext::t: (IF 2, IF 2) that are isomorphic via periodic­
ity operators; this periodic phenomenon determines infinitely many nontrivial 
values of the E 2 -term of the spectral sequence. 

We then return to the computation of H*'*(Ap ) to exploit the fact that 
the Steenrod algebra is a graded Hopf algebra. The method of computation is 
called the May spectral sequence and was introduced by [May64]. Tables for 
H*'*(A2 ) and H*'*(A3 ) in a range are given. We then discuss some of the 
techniques to determine differentials in the Adams spectral sequence. We close 
the chapter with some remarks on further developments involving the Adams 
spectral sequence. 

The vanishing line 

The main theorem of this section gives a description of the cohomology of 
the Steenrod algebra in the large. The proof is due to [Adams61, 66] for p = 2, 
and to [Liulevicius63] for p, an odd prime. 
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Theorem 9.43. Let U(n) denote the function on natural numbers given by 
U(48) = 128 -1, U(48 + 1) = 128 + 2, U(48 + 2) = 128 + 4, U(48 + 3) = 

128 + 6. Then Ext:A~(IF2,IF2) = {O},jorO < 8 < t < U(8). 

Forp, an odd prime, Ext:A~(IFp,IFp) = {O}, for 0 < 8 < t < (2p-1)8 - 2. 

The vanishing condition in terms of n = t - 8, the stem dimension, is 
given by 0 < t - 8 < U(8) - 8. By definition, U(8) - 8 < 28 and so the 
condition n < U( 8) - 8 is satisfied when 8 > n/2. In other words, above the 
line of slope 1/2 in the (t - 8, 8) plane, Ext:A~ (IF 2, IF 2) = {O}. This line is 
called the vanishing line. 

Recall that the exponent of a group G is the least natural number, m, 
such that all m th powers of elements in G are zero. The vanishing line of 
Theorem 9.43 puts an upper bound on the length of a composition series for the 
stable homotopy groups of spheres. 

Corollary 9.44. For n 2: 1, the exponent of (2)7r~ is less than 2!(n) where f(n) 
is the minimum of {8 I n < U(8) - 8 - I}. The exponent of (p)7r~ is less than 
pg(n) where g(n) is the minimum of {8 I n < (2p - 1)8 - 8 - 3}. 

We give a proof of Theorem 9.43 in the case p = 2. We proceed by a 
series of lemmas to prove a slightly weaker result that is strengthened later by 
the periodicity isomorphisms. 

Consider another numerical function, T(n), given by 

T(48) = 128, T(48+1) = 128+2, T(48+2) = 128+4, T(48+3) = 128+7. 

Let A(r) denote the subalgebra of..42 generated by {SqI,Sq2, ... ,Sq2
r

}. 

Lemma 9.45. Ext:A~ (A(O), IF2) = {O} when 8 ~ 4 and 0 < 8 < t < T(8). 

PROOF: Observe first that the suspension isomorphism on graded modules 
over a graded algebra satisfies the relation for t 2: r: HomH 8r M, N) = 

rMod(8r M, 8 t N) ~ rMod(M, 8 t -
r N) = Hom~-r(M,N). It follows that 

Following [Adams66], we consider the extension over ..42: 

This extension determines a class in Ext J! ( 8IF 2, IF 2) ~ Ext J~ (IF 2, IF 2)' which 
is given by ho and corresponds to Sql. The short exact sequence leads to a 
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long exact sequence of Ext groups, here abbreviated as Ext:A~ (sIF 2, IF 2) = 

ExtS,t(sIF2), Ext:A~(IF2,IF2) = Hs,t, and Ext:A~(A(O),IF2) = ExtS,t(A(O)): 

The reader can consult the charts in §9.5 to prove the lemma in the bide­
grees stated (there are 11 cases). Whenever the boundary homomorphism 8 
is nonzero, it is given by multiplication by ha, and the result follows. D 

We next restrict our attention to a particular class of .;b-modules. An 
.;b-module L is an A(r)-module for any r because A(r) is a subalgebra of 
A 2 • Therefore we can speak of L being a free A(r)-module. The relation 
Sq1Sql = 0 provides a neat criterion for a module to be free over A(O): Take 
Sql: L -+ L as a differential and compute the homology H(L, Sql); an A2-
module L is free over A(O) if and only if H(L, Sql) = {O}. This follows 
because Sql x = 0 if and only if x = Sql y. (For generalizations of this idea see 
the work of [Adams-Margolis71], [Margolis83], and [Palmieri92].) 

Lemma 9.46. Suppose L is an A2-module, free over A(O), and Lis (n - 1)­
connected (that is, Lt = {O} for t < n). Then Ext:A~ (L, IF2) = {O} for s ~ 4 
and 0 < s < t < n + T( s). 

PROOF: Let {b1 , b2, .. . ,bj , ... } c L be an A(O) basis for L and let L(m) 
be the submodule over A(O) generated by the bi of degree ;::0: m. Notice that 
L( n) = L, that L( m) is an A2-submodule of L and that L( m) j L( m + 1) is a 
free A(O)-module on basis elements of degree m. Therefore, we can write 

L(m)j L(m + 1) ~ EB smA(O). 

We proceed by induction on m. Consider the short exact sequence 

0---+ L(m)jL(m + 1) ---+ LjL(m + 1) ---+ LjL(m) ---+ O. 

Lemma 9.45 applies, with a dimension shift, to L( m) j L( m + 1) and so we 
have 

Ext:A~(L(m)jL(m + 1),IF2) = {O} 

for s ~ 4,0 < s < t < T(s) + m. Ifm = n, then LjL(m) = {O} and the 
lemma holds trivially. If the lemma holds for values up to m, then the long 
exact sequence, 

---+ Ext:A~(LjL(m),IF2) ---+ Ext:A~(LjL(m + 1),IF2) 

---+ Ext:A~ (L(m)j L(m + 1), IF2) ---+, 

provides the inductive step. Finally, for a given sand t one can find m large 
enough that Ext:A~ (L, IF2) ~ Ext:A~ (Lj L(m), IF 2)' This proves the lemma. D 
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Lemma 9.47. Suppose L is an A 2-module, free over A(O), and (n - 1)­
connected. Then,forO < 8 < t < n+T(8), Ext::t:(L,IF2) = {O}. 

PROOF: Suppose we are given a short exact sequence of A2-modules 

and suppose two of the three modules is A(O)-free. When we apply the functor 
H ( ,Sql) to the short exact sequence we get a long exact sequence on homology. 
It follows immediately that the third module is A( 0) -free since its Sql-homology 
must vanish. We use this observation in what follows. 

Lemma 9.46 gives us the lemma for 8 ~ 4, that is, for k = Oand8 = 4k+i, 
for i = 1, ... , 4. Suppose the lemma holds for all modules and for values of 8 
less than 4k + 5. Let 

be an A2-free resolution of L. Since the Ci are A2-free, they are A(O)-free. 
It follows that the modules ker d i are A(O)-free, for i = 0 to 4. Let M = 

ker d2 = im d3 . For a minimal resolution, Lemma 9.46 implies that M is 
(n + 11) -connected. Therefore 

for 8 ~ 4k + 4,0 < 8 < t < n + 12 + T(8). However, because M = imd3 , 

Ext::t:(M,IF2) = Ext~~4,t(L,IF2) 

and so the lemma holds for 8 less than 4(k + 1) + 5. D 

Corollary 9.48. Ext::t: (IF2' IF 2) = {O} forO < 8 < t < V(8) where V(8) is the 
functiongivenbyV(48) = 128-3, V(48+1) = 128+2, V(48+2) = 128+4, 
V(48+3) = 128+6. 

PROOF: Consider the short exact sequence 

The minimal resolution for A2/I(A2) . Sql is particularly simple and implies 
that, for 8 > 0, t "# 8, 

It follows from the long exact sequence associated to the extension that 
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for t > 8 > O. The module I(Jb)jI(Jb) . Sq1 is I-connected and free over 
A(O)-this follows from the formula Sq1 SqI = SqI' when I = (i1 , ... ,ir ) i= 
(0), and i1 is even, while Sq1SqI = 0 when i1 is odd. The corollary follows 
from Lemma 9.47 and the appropriate expression for V (n). D 

Notice that V(n) = U(n) for n =f=. 0 (mod4); to prove Theorem 9.43 
we only need to settle one further case. We do this next. The proof for odd 
primes is similar and the appropriate homological algebra was developed by 
[Liulevicius62] . 

Periodicity 

The use of subalgebras of ..42 in proving structure theorems about Ext was 
very fruitful in §9.S. We continue to study the family of subalgebras A(n) = 

(Sq1, Sq2 , . .. ,Sq2n), the subalgebra of ..42 generated by the indecomposables 
Sq1 to Sq2n. The first such subalgebra, A(O) is isomorphic to an exterior algebra 
on a single generator of degree one. We can picture A(l) as in the diagram, 
where 1 is the bottom element, and each circle is a basis element. The straight 
line connections are given by multiplying (on the left) by Sq1, and all curved 
line connections are given by multiplying by Sq2. 

We construct a minimal resolution of A(O) as an A(l)-module, from the 
following short exact sequence: 

dl d2 o +- A(O) +- A(l) +- A(l)a EEl A(l)b +-

A(l)u EEl A(l)v :!2- A(l)t +- 8
12 A(O) +- 0, 

where d1(a) = Sq2, d1(b) = Sq2Sq\ d3(u) = Sq2a + Sq1b, d3(v) = Sq2b, 
and d4 (t) = Sq2 Sq1 U + Sq2 v (The reader is encouraged to make a chart of this 
resolution using pictures of A(l)). We can extend this sequence to a complete 
minimal resolution of A(O) over A(l) that is periodic of order 4 and degree 12. 
This implies the following result. 
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Lemma 9.49. Ext~~1)(A(O),IF2) ~ Ext~~;)t+12(A(O),IF2),for8 > O. 

The quibble at 8 = 0 has to do with the units in A(O) and A(l). An immediate 
corollary of the lemma is the isomorphism for A(l )-modules, free over A(O): 

Ext~~1)(L,IF2) ~ Ext~~;)t+12(L,IF2)' 

The proof follows the same lines as the proof of Lemma 9.46. 
Ext groups have an interpretation in terms of equivalence classes of finite 

exact sequences; the piece of a minimal resolution we constructed gives a class 
in Ext ~g) (A( 0), A( 0)) and the isomorphism in Lemma 9.49 can be obtained by 
splicing (Yoneda multiplication) with this class. There is also the composition 
pairing that determines a right action: 

Ext~~1)(L,IF2) ® Hs',t' (A(l)) ---+ Ext~~;;'t+t' (L,IF2)' 

Our first goal is to describe the isomorphism between Ext~~1) (L, IF 2) and 

Ext~~;)t+12(L, IF 2) as multiplication on the right with a class in H 4 ,12 (A(l)). 
From this viewpoint we will see how to generalize. 

Lemma 9.50. Ext~g)(IF2,IF2) ~ Ext~(;)(A(O),IF2) ~ IF2. Furthermore, 
right multiplication by the unique class {u f E Ext ~g) (IF 2, IF 2) gives the iso-

morphism Ext~~1)(A(O),IF2) ~ Ext~~;)t+12(A(O),IF2)' 

PROOF: Consider the short exact sequence of A(l)-modules: 

o ---+ 8IF 2 ---+ A(O) ---+ IF 2 ---+ O. 

This induces a long exact sequence of Ext groups: 
EJ 

---+ H 3 ,1l(A(1)) ---+ H 4 ,12(A(1)) ---+ Ext~g)(A(O),IF2) ---+ H 4 ,1l(A(1)) ---+. 

The six-term exact sequence that starts a minimal resolution of A(O) over 
A(l) determines a class in Ext~g)(A(O),IF2)' By constructing a minimal 

resolution of IF2 over A(l), the reader will find that H 3 ,1l(A(1)) ~ {O} ~ 
H 4 ,1l(A(1)), and that the isomorphism at bidegree (4,12) is induced by the 
quotient 1]: A(O) ---+ IF2. 

If 0 +- IF 2 +- Q. is a minimal resolution of IF 2 over A (1), then there is a 
morphism of exact sequences: 

o +-- A(O) +-- A(l) +-- PI +-- P2 +-- P3 +-- 8
12 A(O) +-- 0 

ryl 1 1 1 1 1 
o +-- IF 2 +-- A( 1) +-- Ql +-- Q2 +-- Q3 +------- Q 4 +------- ... 

ul 
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Let u: Q 4 -+ S12IF 2 denote the map representing the unique class {U} E 
H 4,12(A(1)). To complete the proof of the lemma, we show that right multi­
plication by the cohomology class of u determines the isomorphism given by 
left multiplication by the class of the six term short exact sequence given by the 
minimal resolution of A(O) over A(l). 

A minimal resolution of A(O) can be constructed from the six-term exact 
sequence, 

o +- A(O) +- A(l) +- PI +- P2 +- P3 +- S12 A(l) +- S12 PI +- .... 

Given a class in Ext~~1)(A(0),IF2)' it may be represented by a cohomology 

class of a homomorphism f: Ps -+ stIF 2. Lift this mapping through the mini­
mal resolution 0 +-IF2 +- Q., suspended t times. 

The commutativity of the diagram 

Ps+4~SI2ps 

!41 lS12! 
StQ4 ----,----+ SHI2IF2 , 

s u 

where vs is the isomorphism that carries the periodicity of the resolution of A(O) 
over A(l), follows by the properties oftheresolutions andliftings. The different 
composites imply that multiplication on the right by { u} E Ext ~g) (IF 2, IF 2) is 
isomorphic to left multiplication by the element determined by the periodicity 
of the resolution. D 

We next generalize the isomorphism of Lemma 9.49 to the other subalge­
bras A(n) of A 2. Our point of departure is the observation that H 4,12(A2) = 

{O} = H5,12(A2), while H 4,12(A(1)) ~ IF 2 . More generally, we observe 
that, for r ~ 3, we have hr+lhr = 0 in H*'*(A2): Consider the composite 
of Steenrod operations acting on H*'*(A2): Sq2r Sq2

r
-

1 
••• Sq2Sql(h1ho). By 

Theorems 9.10 and 9.36, one finds that, for r ~ 2, 

2r 2 1 2r 

Sq ... Sq Sq (hlhO) = hr+lho . 

Since h3h6 = 0, it follows that hr+!hr = 0 for r ~ 3. 
These relations suggest the following construction: The dual of the inclu­

sion i: A(r) "--+ A 2, annihilates ~r+l , the class dual to Sq2r+l. Let Cr be a 
class in F* (Agual ) such that 

d*(cr ) = [6 1···16 1 ~r+\ 
'-v-" 

21"' times 

which represents hr hr+!. The class i* Cr in F* (A( r) dual) is a cycle. We 
let Wr = {i*cr } denote the cohomology class of i*cr in H 2r ,3.2

r
(A(r)). 

[Adams66] described explicit representatives for the classes Wr using the '---'"1-

product on the cobar construction. We need the following facts from this explicit 
construction: 
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Fact 1. W2 in H 4 ,12(A(2)) maps nontrivially to the class {u} in H4 ,12(A(1)) 
that induces the isomorphism in Lemma 9.49. 

To see this, consider the short exact sequence of finite Hopf algebras, 

0-+ A(l) -+ A(2) -+ A(2)jjA(1) -+ 0 : 

A(2) j j A(l) is an exterior algebra that is 3-connected, and so the associated 
long exact sequence provides an isomorphism H 4,12(A(2)) -+ H 4 ,12(A(1)). 
[Adams66] gives a nonzero class for W2 and so it must go over to the unique 
generator for H 4 ,12(A(1)). 

Fact 2. Under the inclusion A(r) -+ A(r + 1), the class Wr+l maps to (Wr)2 
in cohomology, H*(A(r + 1)) -+ H*(A(r)). 

This also follows from the explicit representative given by [Adams66]. 
The cobar classes Cr may be used to define Massey products; let ker(hr) 
denote the subset of Ext:A~ (L, IF 2) of elements whose product (on the right) 

with hr vanishes. In the cobar construction, Ldual ® F*(Agua1 ), let a represent 
a class a = {a} E Ext:A~(L,IF2) satisfying ahr = 0; let y be such that 
d*y = a[6 I ... I 6]. Define the homomorphism 

r-l ( 2r) Ext~~2r,t+3.2r (L,IF2) 
p : ker ho -+ s+2r-l t+2r 

ExtA2 ' (L,IF2)hr+1 

by pr-l(a) = {acr + Y[~r+I]}. Notice that pr-l is well-defined because 
the choices are absorbed into the quotient. Since Cr is a specific choice of 
element with d* (cr) = [6 I 6 I ... I ~r+ '], this class pr-l (a) can be 
further projected to Ext~~2r,t+3.2r (L,IF2) modulo indeterminacy where the 
indeterminacy is given by 

Ext:A~+2r+1 (L, IF2)hr + Ext~~2r -1,t+2
r 
(L, IF 2)hr +l' 

Thus pr-l (a) represents the Massey product (a, hr, hr+1/. 
Consider the mapping 

. E s,t (L IF) E s+2r,t+3.2r(L IF ) - OWr · xtA(r) , 2 -+ xtA(r) , 2, 

given by the composition product on the right with W r . 

Lemma 9.51. The following diagram commutes: 

pr-I Ext~~2r ,t+3·2
r 
(L, IF 2) 

ker(hr) --"--------+ Ext~~2r-l,t+2r (L, IF
2
)h

r
+l 

" j j " 
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PROOF: i*(acr + Y[~r+l]) = (i*a)(i*cr ) = (i*a) 0 Wr. D 

This shows that the mapping - 0 Wr is computable in terms of Massey 
products. This identification will be sharpened as we proceed. 

Theorem 9.52. If L is an (n - 1 )-connected module over A(r) that isfree over 
A(O), then - 0 Wr: Ext~~r)(L,lF2) ---+ Ext~~;~,t+3'2r (L,lF2) is an isomor­
phismfor 8 ~ 0 and t < n + 48. 

PROOF: For 8 = 0, the result follows because the Ext groups vanish in these 
degrees. We proceed by induction on 8 and t - n. Consider the short exact 
sequence 

0---+ K ---+ A(r) ®A(l) L ---+ L ---+ O. 

We make some useful observations: 

Fact 3 (A change-oj-rings theorem). If H is a sub-Hopf algebra of a co com­
mutative Hopf algebra r over a field k, then r is free as an algebra over H, 
and furthermore, for all r -modules L, 

Fact 4. If L is an A(r )-module that is free over A(O), then, for r ~ p ~ 00, 

A(p) ®A(r) L isfree over A(O). 

Fact 3 follows from a theorem of [Milnor-Moore65]. Fact 4 is proved 
by [Adams66, p. 368] from an explicit choice of representatives for the dual 
comodules. 

Since L is free over A(O) and, by Fact 4, A(r) ®A(l) L is free over A(O), we 
have thatK is free over A(O). Notice also thatK is (n+3)-connected. Consider 
the commutative diagram, where wehavewrittenHs,t(M) forExt~~r) (M, lF2): 

HS-1,t(A(r) ®A(l) L) __ -----+Hs-1't(K) __ -----+Hs't(L) ---+ 

Wr 1 Wr 1 Wr 1 
H s+2r -1,t+3·2

r (A(r) ® A(l) L) --+ H s+2r -1,t+3·2
r (K) --+ H s+2r ,t+3·2

r (L) ---+ 

Hs,t(A(r) ®A(l) L) Hs,t(K) ---+ 

wrl wrl 
H s+2r

,t+3.2
r 
(A(r) ®A(l) L) --+ H s+2r

,t+3.2
r 
(K) ---+ 

By induction, we assume the results hold up to 8 - 1 and for all (N - 1)­
connected modules and t - N < 4(8 - 1). The first and fourth vertical arrows 
are isomorphisms by applying the change-of-rings to get Hs,t (A(r) ® A(l) L) ~ 
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Ext~~1) (L, IF2)' This isomorphism takes Wr to (W2)2r-2, which is an isomor­
phism fort- (n+4) < 4(8-1) by Lemma 9.49. Since K is (n+3)-connected, 
the second and last Wr are isomorphisms for t - (n + 4) < 4( 8 - 1), that is, 
t - n < 48. The Five-lemma implies that the third Wr is an isomorphism and 
the theorem is proved. D 

In order to extend this result about subalgebras of A2 to the entire Hopf 
algebra, we need the following approximation result. 

Theorem 9.53. Suppose r ~ p ~ 00 and i: A(r) ---+ A(p) denotes the inclusion 
ofHopfalgebras. Then, if L is an A 2-module that isfree over A(O) and (n-1)­
connected, then the induced homomorphism 

is an isomorphismfor 0 < 8 < t < n + 2r
-

1 + T(8 - 1). 

PROOF: We consider once more the short exact sequence of A(p)-modules, 
each free over A(O): 

0---+ K ---+ A(p) @A(r) L ---+ L ---+ O. 

By definition, K is (n+ 2r +l-1)-connected. By Lemma 9.47, Ext~~p) (K, IF 2) 
vanishes when t < n + 2r +1 + T(8 - 1) and theorem follows from the change­
of-rings isomorphism. D 

We combine theorems 9.52 and 9.53 with the results on vanishing to prove 
the main result of this section. 

Theorem 9.54. Suppose L is an A 2 -module that isfree over A(O) and (n -1)­
connected. For r ~ 2 and 8 > 0, the mapping pr-l induces an isomorphism 

whenever t < n + min(48, 2r +1 + T(8 -1)). 

PROOF: Ift < n + 2r +1 + T(8 - 1), then 

t + 2r < n + 2r +1 + 2r + T(8 - 1) 

< n + 12· 2r + T(8 - 1) 

=n+T(8+2r-1). 
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+2r t+2r t r 
By Lemma 9.47, Ext~2' (L,lF2) = {O} and so Ext:A2(L,lF2)h6 = {O}. 

Similarly Ext~~2r -1,t+2
r 
(L, lF2)hr+l = {O}. Thus we have the following 

diagram from Lemma 9.51: 

Ext:A~ (L,lF2) ~ Ext~~2r,t+3'2r (L, lF2) 

i* 1 1 i* 

By Theorem 9.53, i* is an isomorphism in both cases. Since t < n + 48, it is 
also the case that - 0 Wr is an isomorphism. Thus pr-l is an isomorphism. D 

Corollary 9.55. For r 2 2, the mapping pr-l induces an isomorphism 

for 1 < 8 < t < min(48 - 2,2 + 2r +1 + T(8 - 2)). 

The proof of this follows as in the proof of Corollary 9.48. Notice that the 
isomorphism, 

is induced by multiplication on the left by the equivalence class of the extension 

0-+ I(Jb)/I(Jb) . Sql -+ Jb/I(Jb) . Sql -+ lF2 -+ 0 

lying in ExtJ~(lF2' I(A2)/I(A2) . Sql). 
We have showed already that H4,12(A2) = {O}. Applying the operator 

- 0 W2 repeatedly, we get H 4k,12k(A2) = {O} for all k. This completes 
the proof of Theorem 9.43. It also shows that Hs,t+2

r
+

1 
(A2)hr = {O} for 

8 > O. This group appears in the indeterminacy of the Massey product of 
pr-l. By carefully tracking through the isomorphisms one concludes that, for 
1 < 8 < t < min(48 - 2,2 + 2r +1 + T(8 - 2)) and a E Hs,t(A2 ), 

pr-l(a) = (a, hr, hr+l) modulo {O}. 

We leave it as an exercise in the definition of Massey products to show pr-l 0 

pr-l = pro 
The reader should look ahead to the tables to see how the periodicity 

interacts with the vanishing line to determine that the vanishing is best possible. 
We note further that the results of [Moss70] show how the periodicity operator 
interacts with the differentials in the spectral sequence. 



9.6. Further structure 441 

The May spectral sequence 

In spite of our understanding of some of the global features of H*'* (Ap) 
and our ability to compute in low dimensions, we still need an effective technique 
to compute large parts of the E 2 -term of the Adams spectral sequence. The 
Princeton thesis of [May64] provided such a method. The point of departure 
for this work is the observation of [Milnor-Moore65] that Hopf algebras are 
endowed with certain natural filtrations. In this space we cannot present all 
of the details of May's work. We can give the thread of the argument. For 
the relevant definitions and further details, we refer the reader to the papers of 
[Milnor-Moore65] and [May64, 66]. 

Let (f, ¢, 1j;, c, TJ) denote a graded Hopf algebra over a field k with product 
rp, coproduct 1j;, augmentation c and counit TJ. Following [Milnor-Moore65], f 
is filtered: Let I(f) denote the augmentation ideal, then we filter f by letting 
Fnf = f, if n ~ 0, and F -nf = im( rpn: I(f)®n ---+ I(f)), where rpn is the 
iterated product. Denote the associated bigraded object by 

(Eof)q,r = (Fqf / Fq-1f)q+r' 

Fact: EOf is a primitively generated Hopf algebra, that is, the natural mapping 
Prim(EOf) ---+ Q(EOf) is an isomorphism. 

We assume henceforth that k = IF p for p, a prime, the case of interest for Ap­
Let Prim(f) denote the space of primitives in the Hopf algebra f. 

Fact: Prim(f) is a restricted Lie algebra. 

A restricted Lie algebra is a graded Lie algebra over IF p, say L, together with 
a map, !3: Ln ---+ Lpn, defined for n, even, if p is an odd prime, and for all n, if 
p = 2, such that, for some graded algebra A, there is a monomorphism of Lie 
algebras, f: L ---+ A, such that the diagram for each n 

j3 
Ln -----+ Lpn 

in 1 lipn 
An t; Apn 

commutes, where ~ is the Frobenius map ~ (x) = xp • The Lie bracket product 
on Prim(f) is the canonical graded commutator. 

To each Lie algebra L, one can associate an algebra U(L) called the 
universal enveloping algebra. If L is restricted, an algebra V (L) can be 
defined that has a compatible Frobenius map. Both U(L) and V(L) are Hopf 
algebras. 

Fact: If f is a primitively generated Hopf algebra over IF p, then f is isomorphic 
to V (Prim(f)) as a Hopf algebra. 

A corollary of this fact is that EOf is isomorphic to V(Prim(EOf)) for any 
Hopf algebra f over IF p' With these definitions and facts, we can now state the 
main theorem of [May66]. 
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Theorem 9.56. Given afiltered, augmented algebra r over afield k, there is a 
spectral sequence, converging strongly to Ext~'*(k, k), with differentials dr of 
bidegree (r, 1- r), and E;'* ~ Exti;r(k, k). 

For a graded Hopf algebra r over IF p, Ear ~ V (Prim( Ear)) and so we 
can turn to the theory of restricted Lie algebras for tools to detennine the E 2 -

term of this spectral sequence. In particular, the cohomology of a Lie algebra is 
defined to be the cohomology of its universal enveloping algebra. In this context, 
[May66] introduced small resolutions, resembling Cartan's constructions and 
Koszul resolutions, to compute H*'*(V(Prim(EOr))). 

By determining EO Ap and applying these methods, [May66] proved the 
following computational result. 

Theorem 9.57. For p = 2, Exti;A2(IF2,IF2) ~ H*(R,d), where R is the 
bigraded polynomial algebra IF 2 [Ri,j I i ~ 0, j ~ 1] on generators Ri,j of 
bidegree (1, 2i (2j - 1)) and the differential d is given on generators by 

The product on Exti;A2 (IF2' IF 2) is induced by the polynomial product. 

For p, an odd prime, Exti; Ap (IF p' IF p) ~ H* (S, d), where S is the bi­
graded commutative algebra 

on generators Ri,j, Ri,j and Sk, ofbidegree (1, 2P' (pi -1)), (2, 2pHl (pi -1)) 
and (1, 2pk - 1), respectively, and the differential is given on generators by 

d(Ri,j) = 0, 

The product on Exti; Ap (IF P' IF p) is induced by the product on this algebra. 

Though the E2 -terms of these spectral sequences appear simple, there are many 
differentials and the product structure on EO ExtA (IFp,IFp) is not the one in­
duced by the spectral sequence. These obstacles c~ be overcome and [May64] 
computed Hs,t(Ap) for t - s ~ 2(p - 1)(2p2 + p + 2) - 4, when p is an odd 
prime, and for t - s ~ 42, when p = 2. [Tangora70] extended these techniques 
to compute Hs,t (A2) for t - s ~ 70. Other filtrations of the initial datum, Ap, 
are possible leading to other versions of the May spectral sequence with com­
putational aspects better suited to a given problem. For a thorough discussion 
of these ideas, see Appendix A.I of the book of [Ravenel 86] . 
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Machine calculations of H*'*(Ap ) have been made since 1964 ([Liule­
vicius66]). [Bruner93] used minimal resolutions and considerable computing 
expertise to push the tables of known Ext groups for Hs,t(A2 ) to t - s ~ 88, 
with t ~ 116 and s < 38. 

We have given the tables for H*'* (A2 ) and H*'* (A3) for t - s ~ 35. The 
reader is referred to [May64] and [Tangora70] for the origins and naming of the 
elements in the May spectral sequence and the relations between them. Other 
tables of Ext have been prepared by [Shick93], [Bruner93], by [Nassau] (an 
internet page that features h2 connections), and by [Hatcher] (another internet 
page that features different axes for which h2 connections are horizontal lines). 
These charts are the raw data from which we will compute some of 7r~. 

Extensions and differentials 

Having computed a portion of the E 2-term of the Adams spectral sequence 
we next determine the differentials in this range. As you have come to expect, 
this can be a difficult task. Furthermore, once we have determined even part of 
the Eoo-term, we only have a composition series for each (p)7rr-s. There can be 
extension problems. In this section, we discuss techniques that help determine 
differentials. Having done this, we settle some extension problems in order to 
give the reader an idea of how one can approach them. 

The most successful methods for constructing differentials are those that 
arise from geometric properties. The first example of this is the graded com­
mutativity of 7r~ (Theorem 9.38). This forced classes hoh;, for i ~ 3, to be in 
the image of a differential. The difference between the ring structure on (2) 7r~ 
and the ring structure on E~'*((2)7r~) ~ E~* induced through the spectral 
sequence from E2 must be accounted for by differentials. 

Another geometric idea is the nontriviality of secondary and higher order 
cohomology operations.[Maunder64] showed how higher order operations can 
be related to differentials, the primary examples being the decompositions of 
Sq2n by [Adams60] and the decomposition of ppn by [Liulevicius62]. These 
decompositions correspond to d2 (hH1 ) = hoh;, for p = 2 and i > 3, and 
d2 (hi ) = aObi - 1 , for p an odd prime. 

Theorem 9.58. Let X and Y be CW-complexes of finite type over IF p with Y 
finite dimensional and let 

be an Ap-free resolution of H* (X; IF p). Then there is a family of higher order 
cohomology operations, {<I>r,s}, associated to Co +-- C1 +-- C2 +-- ... such 
that, in the Adams spectral sequence converging to (p){Y, Xh, the differential 
dr : E:,t ---+ E:+r,t+r- 1 is given by <I>s+r,s acting on H* (Y; IF p). 
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That is, if U E E:,t, then it has a representative 

on which d1, d2 , ... , dr- 1 vanish, on which <I>s+r,s is defined, and <I>s+r,s(u) 
is a coset of Et+r,t+r- 1 identified with dr (u). 

Another source of differentials are the known stable groups themselves. If 
the E 2 -term of the Adams spectral sequence lies before us and a known group 
(2)7r~ does not agree with the initial data, a differential must be nontrivial to 
correct the discrepancy. The computations of [Toda62] provide a geometric 
'priming' for the Adams spectral sequence with explicit groups (p)7r~ for 0 ~ 
n ~ 19. For convenience, we listthese data for the prime 2 (we write (7l/n71)ffik 
for 7l/n71 EEl 7l/n71 EEl· .. 7l/n71, k times): 

TODA'S TABLES 

n (2)7r~ generators comments 

0 7l 

1 7l/271 TJ {hI} 

2 7l/271 TJ2 {hi} 

3 7l/871 v {h2},4v = TJ3 

4 {O} 
5 {O} 
6 7l/271 v2 {h§} 

7 7l/1671 (J {h3} 

8 (7l/271)ffi2 D,c TJ(J = D + c 

9 (7l/271)ffi3 v3, J.1, TJ 0 c {h~ =hrh3},TJD= v3 

10 7l/271 TJoJ.1 

11 7l/871 ( {P1 h2} 

12 {O} 
13 {O} 
14 (7l/271)ffi2 (J2, /'i, {hn 

15 7l/3271 EEl 7l/271 p, TJ 0 /'i, 

16 (7l/271)ffi2 TJ*, TJ 0 P TJP = (JJ.1 

17 (7l/271)ffi4 * 2-TJ 0 TJ ,v 0 /'i" TJ 0 p, J.1 TJ2 p =cJ.1 

18 7l/871 EEl 7l/271 v*, TJ 0 il TJ2TJ* = 4v*, TJil = J.12 

19 7l/871 EEl 7l/271 (2,0- P2h2' Cl 
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Theorem 9.59 ([May64]). There is only one pattern of differentials consistent 
with Toda's data on E~,t for t - s ~ 19. This pattern is given by 

d2(h4) = hoh~ 
d3(hoh4) = hodo, d3(h6 h4) = h6do 

d2(eo) = hido 

d2(fo) = hoh2do, d2(hofo) = h6h2do. 

The reader will find proving this theorem quite straightforward and instruc­
tive. Notice that a relation in the E 2 -term has been made part of the statement 
of the theorem, that is, hoeo = h2do. This can be shown using identities with 
Massey products. 

These differentials immediately imply later ones by virtue of the product 
structure and the relations between differentials and the periodicity operators. 
This allows us to compute stable stems. 

Corollary 9.60. The following differentials are implied by the previous ones. 
Fori ~ 0, 

dr(pido) = 0, for all r, dr(pign) = 0, for all r, 

d2(pi eo ) = pihido, d2(pij) = pHIh2do, d2(pik) = pHI hog. 

PROOF: We show the case for pij. First of all, d2Pi = p id2 can be shown to 
follow from a homotopy computation or Theorem 9.42. Among the relations 
that hold in Ext (see [Tangora70]), we find hoj = h2i = pI fo. Also, from 
the structure of the May spectral sequence, pIxy = xPIy = ypIx, where 
it applies. Thus h§j = pIhofo = pIhIeo = eoplhl and so d2(h§j) = 

d2(eop l h l ) = hidoPlhl = PIhrdo = P Ih§h2do = h§pIh2do. It follows 
that d2 (j) = p I h2do. 

The other relations that enter this proof include h2eo = hog, pHI hIh3 = 

Pihido, p Ih4 = h2g, pIg = d6, dog = e6. We add that i = pIh6h4' D 

This corollary allows one to compute (2) 7rf-s for 20 ~ t - s ~ 28. 

MAY'S TABLES 

n s (2)7rn generators 

20 ?l/8?l {g} 

21 (?l/2?l)ElJ2 {h~}, {hlg} 

22 (?l/2?l)ElJ2 {h2CI}, {pIdo} 

23 (?l/2?l)ElJ2 EEl ?l/8?l EEl ?l/16?l {h4Co}, {PIhIdo}, {h2g}, { P2h3} 

24 (?l/2?l)ElJ2 {h Ih4Co}, { p2eo} 
25 (?l/2?l)ElJ2 {p2hICO},{p3hl} 
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26 

27 

28 

(2.::/22.::)ElJ2 

2.::/82.:: 

2.::/22.:: 

{h§g}, {p3 hi} 

{p3 h2 } 

{PIg} 

In order to extend these computations further, we employ the naturality of 
the Adams spectral sequence. [Maunder65] considered the mapping f: S2q -+ 

F where F is the homotopy fibre of the mapping p: BU(2q, ... ,00) --+ 

K (2.::, 2q + 2m ), BU (2q, . .. ,00) is the 2q-coconnected space associated to 
the classifying space of the infinite unitary group BU (that is, the homotopy 
groups 7ri(BU(2q, ... ,00)) = {O} for i 2': 2q) and p represents the Chern 
character chq ,2=-1. The mapping f: S2q -+ F is induced by the generator of 

7r2q(BU), which is given by the q1h iterate of the Bott map. The mapping f 
induces a homomorphism of spectral sequences: 

and by naturality we have, for all r 2': 2, dr (1* (x)) = 1* (dr (x)). [Maunder65] 
computed H* (F; IF 2) as a module over A2 from which he computed the relevant 
parts of Ext::t: (H* (F; IF 2), IF 2)' The main result of this paper is that the classes 
hohm, for n < 2m, in H*'*(A2 ) are never in the image of any differential in 
the Adams spectral sequence converging to (2)7rf. 

The papers of[Mahowald67], [Mahowald-Tangora67], and [Barratt-Maho­
wald-Tangora70] use stable cofibration sequences of small complexes, Sa --+ 

X --+ X' to determine differentials. Such cofibrations induce a short exact 
sequence on cohomology, 

and so long exact sequences of Ext groups. 

If the complexes are chosen carefully, the coboundary operator in this sequence 
has a nice form and computation of the stable homotopy of X and X' in low 
dimensions is possible. 

Examples of such sequences are 

The following proposition (Lemma 3.4.1 of [Mahowald-Tangora67]) gives a 
general method for applying such sequences. 
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i p 
Proposition 9.61. Consider a sequence SO --+ X --+ X' such that p*i* = 0 
on stable homotopy. Suppose a E Ext for SO is such that i*a in Ext for X 
survives and, for any <Y E {i* a}, the class represented by i* a, P*<Y is essential, 
then a is not a permanent cycle. 

PROOF: Let f: sq --+ SO represent {a}. Then [ifl is in {i*a} and so [Pifl is 
essential. But p* i* = 0, therefore a cannot be a surviving cycle. Suppose a is 
in the image of some differential, a = dr /3. By naturality, i*a = dri* /3, which 
is impossible since i*a is a surviving cycle. Therefore, some differential must 
originate on a. D 

This lemma can be applied to the element eo with the sequence given by 
SO --+ SO U'l e2 --+ S2. [Mahowald-Tangora67] showed that i*eo survives and 
p*{ i*eo} = TJK, i= O. Thus a differential arises on eo. 

The last source of differentials to be considered here is the interaction of 
differentials with the Steenrod algebra action on Ext (Theorem 9.10). Devel­
oped first by [Kahn70], it has been extended by [Milgram72], [Maakinen73] 
and [Bruner84] to a powerful tool in this enterprise. The reader is encouraged to 
read the contributions of Bruner in [Bruner-May-McClure-Steinberger86] for 
an overview of this method. 

11 

10 

9 

8 

7 

Let us now consider the Eoo -term of the spectral sequence. 

7 8 9 10 11 12 13 14 15 

t-s ----+ 

• 
P 1 / 

Co 

16 17 18 19 

We suppose that Toda's tables are to be deduced from this table with as little 
input as possible. The interpretation of multiplication by ho settles the 7, 10, 
11, 15, 16, 18 and 19 stems. Consider the 8-stem. The element hlh3 satisfies 
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hohlh3 = 0 and furthermore, hohlh3 is in filtration 3 where Co lies. Thus we 
cannot have Co as an element representing 2{ hI h3} because in this filtration it 
would be hohlh3. Also no further classes lie in the 8-stem in higher filtrations. 
Thus (2)7rt ~ 7l/271 EEl 7l/271. An easier argument follows from the relations 
2{ hI} = 0 and {hI H h3} = {hI h3}' However, such relations are only true up 
to filtration and indeed, [Toda62] has shown TJV = D + c, where D = {hlh3} 
and c = {co}. One needs to be careful. 

The same argument works for {hrh3} and {hIPICO}. By filtration 4 
we can see that 2{hI P I CO} = 2{hIHPlco} = {hohI}{plco} = O. Thus 
(2)7re ~ (71/271)ElJ3. Similarly, (2)7rr7 ~ (71/271)ElJ4. 

We finally tum to the determination of the composition product structure 
on (2)7r~ from the spectral sequence. It is here that some geometric input is 
needed. A 'hidden extension' can be found when we consider the ideal TJ 0 7r~. 
Let p be the generator in the 15-stem of the factor 7l/3271. From the data in 
Ecx;, TJ 0 p appears to be zero. However, we know the following (deep) facts: 
p generates the image of the J -homomorphism 7r15 (SO) --+ 7rr5 and TJ im J 
is nonzero (see [Switzer75, p. 488]). Because TJ 0 p must appear in a higher 
filtration than hlh~h4' it happens that TJ 0 p = {PICO}, the only other choice. 

[Mahowald-Tangora67] and [Tangora70'] consider more difficult exten­
sion problems. The interplay between geometric and algebraic data is compli­
cated and extended by numerous identities in Ext and in 7r~. Knowledge of 
(2) 7r~ can be derived, as far as anyone has tried using these methods, for n ~ 45 
(see [Bruner84]). 

Other approaches to computing stable homotopy groups of spheres have 
been developed that have features similar to the Adams spectral sequence. One 
attractive way is via a kind of reverse Adams spectral sequence that was in­
troduced by [Cohen, 170] and applied with great success (and computer aid) 
by [Kochman90]. Using these methods, information on stable stems out to 
dimension 64 were obtained (and corrected in [Kochman-Mahowald95]). 

Epilogue 

Where do we go from here with the Adams spectral sequence? 
Work on the classical Adams spectral sequence continues. The stem-by­

stem calculations have given way to the determination of regular phenomena 
such as infinite families of elements in 7r~ (for example, [Mahowald81], [Co­
hen, R81], and [Lin, WH85]), global structures in Ext ([Singer81]), and the 
identification of geometric phenomena like the EHP-sequence or the image of 
the J -homomorphism at the level of the spectral sequence ([Mahowald82]). 
Recent surveys of this work can be found in the book of [Kochman96] and the 
paper of [Miller-RaveneI93]. 

The notion of spectrum discussed in §9.4 was introduced in order to study 
Spanier-Whitehead duality and generalized (co)homology theories. All gen­
eralized theories are represented by spectra ([Brown, E62]) and among the 
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most important have been the bordism theories represented by Thorn spectra 
([Rudyak98D. [Novikov67] carried out a program initiated by [Adams64] to 
construct and compute the stable homotopy of spheres using complex cobor­
dism theory. The development of this line of ideas now forms a major part of 
homotopy theory. The excellent books of [Switzer75] and [RaveneI86] offer a 
basic introduction. The viewpoint of complex cobordism has led to many new 
algebraic tools (for example, formal group laws [Quillen69"D and deep global 
results ([Devinatz-Hopkins-Smith88D. The book of [RaveneI92] gives a sketch 
of this work and its place in the emerging global picture of homotopy theory. 

As a tool the Adams spectral sequence has been applied with consider­
able success to various geometric problems. Beyond the solution to the Hopf 
invariant one problem we discuss two further spectacular examples. 

The Kervaire invariant of an almost framed manifold was introduced 
by [Kervaire60]. It is based on the Arf invariant of a quadratic form. In a 
classic paper, [Browder69] identified the Kervaire invariant with the value of 
a cohomology operation defined for Poincare duality spaces M 2

q with extra 
structure. That extra structure is a lifting of the classifying map of the normal 
bundle to a fibration with vanishing Wu class Vq+l. This gives a cobordism 
theory based on the vanishing of the Wu class (for a discussion of the Wu 
class see [Milnor-Stasheff74D. By analyzing orientations with respect to this 
cobordism theory one can show that there is a structure on sq x sq with Vq+l = 0 
and Arf invariant one. To complete the analysis one has to know if this structure 
comes from a framed manifold. The identification of framed cobordism with 
7r~ and the Adams spectral sequence allow one to ask this question at the level 
of the E 2 -term of the spectral sequence. [Browder69] proved that the only 
dimensions in which a Kervaire invariant one manifold may exist are of the 
form 2i - 2 and that there is a manifold of Kervaire invariant one if and only if 

the class hLl in Ext~~' (IF 2, IF 2) represents a nontrivial element in 7r~_2' At 
this time, calculations of [Barratt-lones-Mahowald84] and [Kochman90] have 
shown that there are manifolds of Kervaire invariant one of dimensions 2, 6, 14, 
30, and 62. It is still open whether there are Kervaire invariant one manifolds 
in dimensions 2i - 2 for i ~ 7. 

A differential geometric question one can ask of a manifold is whether 
it admits a Riemannian metric of positive scalar curvature. Using methods of 
surgery this question can be reduced to a cobordism problem for which the 
property of being a Spin manifold or not breaks the problem into two parts. 
The nonSpin case for simply-connected manifolds was studied by [Gromov­
Lawson80]. There all obstructions to admitting a positive scalar metric vanish 
and examples in each cobordism class are given. There are obstructions in 
the Spin case studied first by [Lichnerowicz63] and extended by [Hitchin74]. 
[Stolz92] showed that the vanishing of Hitchin's obstruction was sufficient for 
the existence of a positive scalar metric. The argument requires the identifi­
cation of the image in the Spin cobordism ring of the Spin bordism groups of 
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a classifying space of a certain group. Since the Spin bordism groups are the 
stable homotopy groups of a particular spectrum, then one can compute these 
groups explicitly via the Adams spectral sequence. 

Exercises 

9.1. If f: sn -+ Y is a mapping and M f = Y U f en+! is the mapping cone, show 
that 

9.2. Use the Cartan-Serre theorem (Theorem 6.20) to prove 

Ap ® snIFp ~2n-1 H*(K(ZjpZ, n); IFp). 

9.3. For an abelian group G, show that the set { elements of finite order prime to p} 
forms a subgroup of G. This shows that (p)G is well-defined. 

9.4. Carry out the construction in §9.1 to construct a secondary operation associated 
to the Adem relation Sq2Sq2 + Sq3Sq1 = O. Use this to prove Adem's theorem 

that TJ 0 TJ '/=. *. 

9.5. Prove thatthe functors defined on graded leftr -modules satisfy: Homr (M, -) 
is left exact, and Homr (-, N) is right exact when M and N are fixed r -modules. 

9.6. Let r (x) denote the divided power Hopf algebra over IF 2 on a single generator 

x. Prove that r (x) dual, as a Hopf algebra, is isomorphic to IF 2 [y 1 where y is the 
dual of the generator 1"1 (x). Finish the proof, begun in §9.2, that 

H*'*(r(x)) ~ IF2 [li Ii = 0,1, ... J, 
where the bidegree ofli is (1, 2i deg x). 

9.7. On Extr(M, N). 

(1) Verify that the definition of Extr (M, N) given in §9.2 does not depend on 
the choice of projective resolution of M. 

(2) Verify that Ext~'*(M, N) = Hom~'*(M, N). 
(3) Verify that, if given a short exact sequence in rMod, 

o ---+ A ---+ B ---+ C ---+ 0, 

then there is a long exact sequence 

-+ Ext~'*(M,A) -+ Ext~'*(M,B)-+ 
8 

Ext~'*(M,C) ---+ Ext~+l'*(M,A) -+. 

(4) Verify that, for a projective module over r, P, 

Ext~'*(P, M) = {O}, 

for n > 0 and M any left r -module. 
(5) Verify that Extr (M, N) is a functor in each variable separately. 
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9.8. Show that the composition product on Ext is bilinear and associative. Show 
further that Yoneda's product induced by splicing agrees with the composition 
product defined via resolutions. 

9.9. In categories of modules, the dual of the notion of a projective module is that of 
an injective module. Give the definition by formally inverting the definition of a 
projective module (remember epi becomes mono). Prove that a module J is injective 
if and only if to each monomorphism, i: A --+ B, the mapping Hom( B, J) --+ 

Hom( A, J) is an isomorphism. If given a module, N, then an injective resolution 
of N is an exact sequence 

with each Ji injective. Show that any two injective resolutions of the module N 
can be compared by a lift of the identity mapping between the resolutions. Show 
that one can define Extr(M, N) by constructing an injective resolution of Nand 
applying the functor Hom( M, - ) to form a complex and then taking the homology. 

9.10. Prove the assertion that H*'*(A(x)) ~ k[y] as algebras, where A(x) denotes 
an exterior algebra over k on a single generator x and y has bidegree (1, deg x). 

9.11. Prove the following facts about the suspension functor on graded r -modules 
and projective modules: 

(1) If X is projective, then sX is projective. (Hint: s(r ® V) ~ r ® sV for 
a graded vector space V.) 

(2) rMod(sW,sX) ~ rMod(W, X). 
(3) If 0 +- X +- W. is a projective resolution of X, then 0 +- sX +- sW. 

is a projective resolution of sX. 

9.12. Suppose that r is a co commutative Hopf algebra. Show that the cobar con­
struction F*(rdua1 ) supports a '---'"rproduct defined by 

[a1 I a2 I ... I a p] '---'"I [,61 I ,62 I ... I ,6q] = 

"" [a1Ia21·· 'lar_1Ia~1),61Ia~2),621" 'la~q),6qlar+lI" . lap], 
L...- 1:::;r:::;p 

where the elements a~j) are determined by the iterated coproduct 

Show that this '---'"I -product satisfies a Hirsch formula: 

d*(x '---'"I y) = d*(x) '---'"I Y + X '---'"I d*(y) + xy + yx. 
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9.13. Prove the theorem of [Milnor-Moore65]: Given A a normal sub-Hopf algebra 
of a Hopf algebra r, then r has a basis as a A-module consisting of 1 and certain 
homogeneous elements in I(r) and r is free as a right A-module on this basis. 
Furthermore, this basis projects to a vector space basis for r / / A. 

9.14. Prove the Fact from §9.5 that, for all s, 

9.15. Prove the following relations in the cohomology of Jb: 

9.16. For the periodicity operator of §9.6, prove that 

pr 0 pr = pr+l. 

9.17. Consider the following Toda bracket construction suggested by the Adem 
relation Sq3 Sql + Sq2 Sq2 = 0: 

X Sql,Sq2 
X ---+ K(71/271, n) : K(71/271, n + 1) X K(71/271, n + 2) 

+o(Sq3,Sq2) 
-----+: K(71/271, n + 4). 

Such a Toda bracket is defined when Sqlx = 0 and Sq2x = O. Show that the 

elements in the Toda bracket comprise a secondary cohomology operation based on 
the Adem relation. Thus Toda brackets may be used to express such operations. 

9.18. Compute Ext:A~ (A2/I(A2 . Sql ),lF2 ). 

9.19. Suppose that L is a graded Lie algebra over a field k. Let (U(L), iL: L --+ 

U (L)) denote the universal enveloping algebra of L, defined by the universal 
property that if f: L --+ A is any morphism of Lie algebras where A is an algebra 
endowed with the bracket product [a, b] = ab - (_l)degadegbba, then there is a 

uniquemorphismofalgebrasj: U(L) --+ AsuchthatjoiL = f. ShowthatU(L) 
may be defined as the quotient of the tensor algebra on L by the ideal generated by 
elements of the form x ® y - (_l)degxdegy y ® x - [x, y] for x, y E L. The 

product of two graded Lie algebras is given by (L X L')n = Ln X L~. Using these 

facts show that U(L) is a graded Hopf algebra with the coproduct induced by the 
diagonal mapping. 

9.20. Prove Theorem 9.59. 
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The Bockstein Spectral Sequence 

"Unlike the previous proofs which made strong use of 

the infinitesimal structure of Lie groups, the proof given 
here depends only on the homological structure and can 

be applied to H-spaces ... " 

W Browder 

In the early days of combinatorial topology, a topological space of fi­
nite type (a polyhedron) had its integral homology determined by sequences 
of integers-the Betti numbers and torsion coefficients. That this numerical 
data ought to be interpreted algebraically is attributed to Emmy Noether (see 
[Alexandroff-Hopf3S]). 

The torsion coefficients are determined by the the Universal Coefficient 
theorem; there is a short exact sequence 

To unravel the integral homology from the mod r homology there is also the 
Bockstein homomorphism: Consider the short exact sequence of coefficient 
rings where redr is reduction mod r: 

- Xr redr o ----+ Z ------+ Z ------+ ZjrZ ----+ O. 

The singular chain complex of a space X is a complex, C* (X), of free abelian 
groups. Hence we obtain another short exact sequence of chain complexes 

and this gives a long exact sequence of homology groups, 

When an element u E Hn - 1 (X) satisfies ru = 0, then, by exactness, there is 
an element U E H n +1 (Xi ZjrZ) with 8(u) = u. To unpack what is happening 
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here, we write u {c ® 1} E Hn(X;ZjrZ). Since 8(c ® 1) = 0 and 
8(c) i= 0, we see that 8(c) = rv and the boundary homomorphism takes u to 
{v} E Hn - 1 (X). The Bockstein homomorphism is defined by 

1 
(3: Hn(X; ZjrZ) -+ Hn- 1 (X; ZjrZ), u = {c®1} f--+ {v®1} = {-8c®1}. 

r 

This mapping was introduced by [Bockstein43]. The Bockstein spectral se­
quence is derived from the long exact sequence when we treat it as an exact 
couple (§1O.1). 

One of the motivating problems for the development of the Bockstein 
spectral sequence comes from the study of Lie groups. Recall that a space X is 
torsion-free when all its torsion coefficients vanish, that is, when Hi (X) is a 
free abelian group for each i. A remarkable result due to [Bott54, 56] identifies 
a particular class of torsion-free spaces. 

Theorem 10.1. If(G,e,J-l) denotes a connected, simply-connected, compact 
Lie group, then OG is torsion-free. 

Bott's proof of this theorem is a tour-de-force in the use of the analytic 
structure of a Lie group. The transition to topological consequences is via Morse 
theory. The essential ingredient is the study of the diagram D associated to 
G-a system of subspaces of the tangent space to a maximal torus T C G which 
may be described in terms of "root forms" on G. The fundamental chambers in 
D carry indices that determine the Poincare series of the based loop space OG. 
In fact, the Poincare series has nonzero entries only in even degrees. From this 
condition for all coefficient fields, it follows that OG is torsion-free. 

By way of contrast, we recall a celebrated result of [Hopf41]. H-spaces 
and Hopf algebras made their first appearance in this landmark paper where 
results about the algebraic topology of Lie groups were shown to depend only 
on the more fundamental notion of an H -space structure. 

Suppose (X, xo, J-l) is an H -space. The commutativity of the diagram 

X x X x X x X lxTxl X X X x X x X 

lMXM 

x---------------~~-------------7X xX. 

implies that the coproduct on homology, 

is an algebra map with respect to the product J-l*. Thus (H* (X; k), J-l*, ~*) 
satisfies the defining property of a Hopf algebra. This algebraic observation 
implies the following structure result. 
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Theorem 10.2 ([Hopf41]). If (X, Xo, /-1) is an H-space of the homotopy type of 
a finite CW-complex and k is a field of characteristic zero, then H* (X; k) is an 
exterior algebra on generators of odd degree. 

PROOF: Consider the graded vector space of indecomposable elements in 
H*(X; k): 

Q (H* (X; k)) = H+ (X; k) I H+ (X; k) '-../ H+ (X; k). 

Let Q(H*(X; k)) = k{ Xl, X2, . .. ,Xq} with the generators ordered by degree, 
deg Xl ~ deg X2 ~ ..• ~ deg x q . Let X = Xj denote first even-dimensional 
generator, of degree 2m, and Ax denote the sub-Hopf algebra generated by the 
odd-dimensional classes Xl through Xj-l. 

Recall that if C c B is a normal sub-Hopf algebra of C, that is, 1 ( C) . B = 

B· 1(C), then C II B = B 11(C)· B is the quotient Hopfalgebraand 1(C) and 
1 (B) denote the kernels of the augmentation. 

Consider the short exact sequence of Hopf algebras: 

0-+ Ax ---+ H*(X; k) ---+ H*(X; k)IIAx -+ o. 

Since H* (X; k) is commutative, Ax is normal in H* (X; k). The class X goes 
to a primitive class x in H*(X; k )IIAx, that is, /-1* (x) = x ® 1 + 1 ® x. Since 
H* (X; k) I I Ax is also a Hopf algebra, we have that /-1* is a homomorphism of 
algebras and so /-1* ((x)n) = (/-1* (x))n = (1 ® x + x ® l)n. It follows, as in the 
proof of the binomial theorem, that, for all n > 0, 

where (x)o = 1. 

Since X has the homotopy type of a finite CW-complex, for some N, 
HS(X; k) = {O} for s ~ N. It follows that (X)i = 0 whenever 2mi ~ N. 
However, for the first such t, 

because G) i= 0 in k and (X)i ® (X)t-i i= 0 when i ~ 1. Thus, the ap­

pearance of x i= 0, a primitive of even degree in H*(X; k)IIAx, implies that 
(x)t i= 0 for all t ~ 1, and H*(X; k)IIAx is of infinite dimension over k. 
Since H*(X; k)IIAx is a quotient of H*(X; k), this contradicts the finiteness 
assumption on X. It follows that H* (X; k) has only odd degree algebra gener­
ators. The theorem follows from Theorem 6.36--a graded commutative Hopf 
algebra on odd generators is an exterior algebra on those generators. D 
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The interplay between the homotopy-theoretic properties of H -spaces and 
the analytic properties of Lie groups has deepened our understanding of such 
spaces considerably. At first it was believed that H-spaces with nice enough 
properties need be Lie groups ([Curtis, M71] reviewed this program), but 
the powerful methods of localization at a prime soon revealed a much richer 
field of examples including the so-called "Hilton-Roitberg criminal" ([Hilton­
Roitberg69]), a manifold and H-space of non-Lie type. The generalization of 
properties of Lie groups to H -spaces of the homotopy type of a finite complex 
fueled considerable efforts that include the development of the Bockstein spec­
tral sequence ([Browder61]), the introduction of An -structures ([Stasheff63]), 
new applications of localization ([Zabrodsky70], [Hilton-Mislin-Roitberg75]), 
and the solution of the torsion conjecture ([Lin82], [Kane86]), which states 
that OX is torsion-free for X a finite, simply-connected H-space. [Dwyer­
Wilkerson94] have applied the methods of homotopy fixed point sets developed 
by [Miller84] and [Lannes92] to recover the algebraic topology of Lie groups 
from a completely homotopy-theoretical viewpoint ([Dwyer98]). 

In this chapter we develop the properties of the Bockstein spectral se­
quence, especially for applications to H-spaces. We introduce the remarkable 
notion of oo-implications due to [Browder61] and apply it to derive certain 
finiteness results. We then consider some unexpected applications of the Bock­
stein spectral sequence to differential geometry and to the Adams spectral se­
quence. The short exact sequence of coefficients that characterizes the Bock­
stein spectral sequence can also be generalized to other homology theories and 
to homotopy groups with coefficients (introduced by [Peterson56]). This leads 
to other Bockstein spectral sequences-for mod r homotopy groups, and for 
Morava K-theory-whose properties have played a key role in some of the 
major developments in homotopy theory. These ideas are discussed in §1O.2. 

10.1 The Bockstein spectral sequence 

Although it has a modest form, the Bockstein spectral sequence has led to 
some remarkable insights, particularly in the study of H-spaces. We recall the 
construction of the Bockstein spectral sequence here (§2.2). Fix a prime p and 
carry out the construction of the long exact sequence associated to the exact 
sequence of coefficients, 0 ---+ Z ---+ Z ---+ IF p ---+ O. Following a suggestion 
of John Moore, [Browder61] interpreted the long exact sequence as an exact 
couple: 

H*(X;IFp ) 

We denote the E1-term by B~ ~ Hn(X; IFp). The first differential is given by 
d1 = 80 redp * = (3, the Bockstein homomorphism. The spectral sequence is 
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singly-graded and the results of Chapter 2 apply to give the following theorem. 

Theorem 10.3. Let X be a connected space of finite type. Then there is 
a singly-graded spectral sequence {B:, dr

}, natural with respect to spaces 
and continuous mappings, with B~ ~ Hn(X; IFp), d l = /3, the Bockstein 
homomorphism, and converging strongly to (H*(X)/torsion) ® IFp. 

PROOF: Suppose G is a finitely generated abelian group. Then we can write 

where the qt are primes not equal to p. The times p homomorphism is an 

isomorphism on EBtLZ:/q;'LZ: and a monomorphism on EBiLZ:. Recall the p­

component of G is the quotient group 

(p) G = G / { elements of torsion order prime to p} ~ EB. LZ: EEl EB . LZ: / pej LZ:. 
2 J 

An nonzero element u in Gis p-divisible if u = pv for some v in G. The ele­

ments in EB t LZ:/ q;' LZ: are infinitely p-divisible since - x p is an isomorphism on 

this summand. No elements in the rest of G can be infinitely p-divisible without 
violating the condition that G is finitely generated. With these observations we 
prove the convergence assertion of the theorem. 

By Corollary 2.10 we have the short exact sequence 

o ---+ Hn(X) / (pHn(X) + ker pr) ---+ B~+I ---+ pr Hn- I (X) n ker p ---+ O. 

Notice that B~+I = {O} implies Hn(X) = pHn(X) + kerpr. Ifu E Hn(X) 
generates a copy of LZ:, the u rf:. kerpr. But if u E pHn(X), then u is p­
divisible. Writing u = PVI, it follows that VI is also p-divisible. Continuing in 
this manner, we conclude that u is infinitely p-divisible, a contradiction to finite 
generation. It follows that (p)Hn(X) = kerpr and so (p)Hn(X) has exponent 
less than or equal to pr. 

Let r go to infinity to obtain the short exact sequence 

0---+ Hn(X) / (pHn(X) + p-torsion) ---+ B:;;: ---+ \7~~~ ---+ 0, 

where \7~~~ is the subgroup of H n - I (X) of infinitely p-divisible elements that 
vanish when multiplied by p. Because Hn - I (X) is finitely generated, \7~~~ is 
trivial and so 
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Some immediate consequences of the existence and convergence of the 
Bockstein spectral sequence are the following inequalities. Suppose that X is 
a space of finite type. Then, in each dimension i, we have 

dimwp Hi(X; lFp ) ;::: free rank Hi(X) 

= dimClJ!Hi(X; QJ) 
= dimwp ((Hi (X)/torsion) ® lFp ). 

This follows from the Universal Coefficient theorem and the fact that Hi (X) is 
finitely generated. Thus the Bockstein spectral sequence for X collapses at Br 
if and only if dimwp B[(X) = dimClJ! Hi(X; QJ) for all i. 

There is an alternate description of the differential that identifies the Bock­
stein homomorphism directly. Consider the short exact sequence of coefficients 

where we have written 7l/p71 ~ p71/p271 as the kernel. The associated long 
exact sequence on homology for a space X is given by 

••• ---+ Hn(X; 7l/p71) ~ Hn(X; 7l/p271) j3 

---+ Hn(X;71/p71) ---+ Hn_ 1 (X;71/p71) ---+ ••• 

and has d 1 = (3, the connecting homomorphism. This can be seen by comparing 
the short exact sequences of coefficients 

o -----+ 7l __ -_x....:.p_-+ 7l ----+ 7l/p71 -----+ 0 

redp 1 1 red p
2 II 

o ---+71/p71---+71/p271---+ 7l/p71---+ O. 
-xp 

The associated homomorphism of long exact sequences carries (3 to redp 08. 

When we consider the short exact sequence of coefficients 

we obtain the rth order Bockstein operator as connecting homomorphism. 
Taking all of the short exact sequences of coefficients for all r ;::: 1, the following 
more refined picture of the Bockstein spectral sequence emerges. 
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Proposition lOA. B~ can be identified with the subgroup of Hn(X; 7l/pr71) 
_xpr-l 

given by the image ofHn(X; 7l/pr71) : Hn(X; 7l/pr71) anddr : B~ -+ 

B~_l can be identified with the connecting homomorphism, the rth order Bock­
stein homomorphism. 

PROOF: Write G~ = im( - X pr-l: Hn(X; 7l/pr71) -+ Hn(X; 7l/pr71)) and 
consider the sequence of homomorphisms 

defined by a ({Llr-1ui}) = {LiUi ® (pr-l + pr71)} E G~. This 

homomorphism is well-defined and has im( - x p) as its kernel. If a homology 

class {LiVi ® (pr-l + pr71)} E Hn(X; 7l/pr71) is in G~, then define 

where8is the chain boundary operator. Since 8 (LVi ® (pr-l + pr71)) = 0, 

it follows that L 8Vi = p (pr-l L j Xj) and so dividing by p determines a 

class inpr-l Hn - 1 (X). His easy to see thatker ( = ima and we have exactness 
at G~. We compare this sequence with the rth derived couple 

The Five-lemma implies B~ ~ G~. 
To identify the differential dr with the higher Bockstein 

it suffices to compare the connecting homomorphism that defines f3r with the 
definition of the homomorphism (. D 

This representation of the terms in the Bockstein spectral sequence can be 
completed by embedding the data for all r ~ 1 into a Cartan-Eilenberg system, 
a general technique to construct a spectral sequence (also known as a spectral 
system in [Neisendorfer80] or a coherent system of coalgebra/algebraslLie 
algebras in [Anick93]). The definition and relation between a Cartan-Eilenberg 
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system and its associated spectral sequence are explored in Exercises 2.2 and 
2.3. For a prime p and a pair (s, t) with -00 < s ~ t < 00 we define 

If s ~ s' and t ~ t', let H(s, t) ---+ H(s', t') be the homomorphism induced 
by the map of coefficients, Il/pt-sll ---+ Il/pt' -s' Il, that is determined by 
1 f--+ pt'-t: H*(Xill/pt-SIl) ---+ H*(Xill/pt'-S'Il). Ifr ~ s ~ t, then 
let 8: H(r, s) --+ H(s, t) be the connecting homomorphism associated to the 
coefficient sequence 

a homomorphism H*(Xi Il/ps-rll) ---+ H*-l(Xi Il/pt-Sll). In this context 
the limit terms of the Cartan-Eilenberg system are given by H(q) = H(q, q) = 

Hq(X) andH(q, 00) = Hq(Xi limr -+oo Il/prll). The exact couple determined 
by the long exact sequence 

EJ 
••• ---+ H(q - 1) ---+ H(q) ---+ H(q - 1, q)--+H(q - 1) ---+ H(q) ---+ ••• 

gives the Bockstein spectral sequence. 
With this added structure the (co)multiplicative properties of the spectral 

sequence may be studied. We refer the reader to the work of [Neisendorfer80] 
and [Anick93] for more details. 

Though we developed the Bockstein spectral sequence for homology, it is 
just as easy to make the same constructions and observations for cohomology. 
The Bockstein homomorphism for cohomology has degree 1, 

and is identified with the stable cohomology operation f3 in the Steenrod algebra 
Ap, whenpis odd, andSql in A 2 , whenp = 2. This leads to a spectral sequence 
of algebras since f3 is a derivation with respect to the cup product. 

When X is an H-space 

The naturality of the Bockstein spectral sequence applies to the diagonal 
mapping to give a morphism of spectral sequences B; (X) ---+ B; (X x X). 
When (X, xo, J.1) is an H -space, the multiplication mapping induces B; (J.1) : 
B;(X x X) --+ B;(X). Our goal in this section is to identify B;(X x X) 
with B; (X) ® B; (X) and so obtain a spectral sequence of coalgebras for the 
homology Bockstein spectral sequence. Dually, we obtain a spectral sequence 
of algebras for the cohomology Bockstein spectral sequence; and for H -spaces, 
a spectral sequence of Hopf algebras. 
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Following [Browder61], we introduce small models of chain complexes 
whose structure makes explicit the key features of the Bockstein spectral se­
quence. Suppose nand s are nonnegative integers. Define the chain complex 
(A(n, s), d), free over 2.::, where 

{ 

{O}, m i= n,n+ 1, 

A(n,s)m= 2.::~(u), m=n, 

2.:: = (v), m = n + 1 (= {O} if s = 0). 

The differential is given on generators by d( v) = su, and so Hn (A( n, s), d) ~ 
2.::js2.::andHr(A(n,s),d) = {O}forr i= n. This chain complex can be realized 
cellularly by the mod s Moore space pn+l(s) = sn Us en+l where shere 
denotes the degree s map on sn. The reduced integral homology of pn+l (s) 
is H*(A(n, s), d). 

The times p map, denoted - x p, on A( n, s) fits into the short exact 
sequence 

-xp redp _ 

0--+ (A(n,s),d) ---+ (A(n,s),d) ---+ (A(n,s) ®lFp,d) --+ 0, 

where redp denotes reduction mod p. The long exact sequence in homology 
is the Bockstein exact couple. We consider the Bockstein spectral sequence 
associated to this exact couple. 

Proposition 10.5. Ijgcd(s,p) = 1, then H*(A(n, s) ® lFp, J) = {O}. If s = 0, 
then Bl ~ BOO ~ 2.::jp2.:: in degree n. If s = apk with k > 0 and gcd( a, p) = 1, 
then Bl ~ B2 ~ ... ~ Bk and Bk+l ~ BOO = {O}. 

PROOF: The first assertion follows from the Universal Coefficient theorem 
and the fact that 2.::js2.:: ® lFp = {O}. When s = 0, A(n,O) ® lFp is simply lFp 
concentrated in degree n and the spectral sequence collapses. 

By the fundamental theorem for finitely generated abelian groups, we can 
split 2.::japk2.:: as 2.::ja2.:: EEl 2.::jpk2.::. Since the contribution by 2.::j a2.:: vanishes, we 
only need to consider the case s = pk with k > O. Since A(n,pk) ® lFp ~ 
A(n,pk)jpA(n,pk), we have that 11 = 0 and so 

k - rv {lFp, when r = nor n + 1, 
Hr(A(n,p ) ®lFp,d) = 

{O}, otherwise. 

We write (u)p and (v)p for the mod p reductions of u and v. The mapping 
8: Hn+l(A(n,pk) ® lFp, (1) --+ Hn(A(n,pk), d) in the exact couple is given 
by 8((v)p) = pk-1u for reasons of exactness. We can peel away powers of p 
from pk-1u until it becomes the generator of pk-l (2.::jpk2.::) ~ 2.::jp2.::, and so 
d1 = d2 = ... = dk- 1 = O. At Bk we have 
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Thus Bk+l ~ Boo = {O}. D 

In fact, more can be deduced from the small complexes. 

Lemma 10.6. If s = apk with k > 0 and gcd(a,p) = 1, then there is an 
isomorphism of exact couples (q, q): 

H(A(n,apk),d) ~H(A(n,apk),d) ~H(A(n,apk) ®lFp,d) ~ 

ql ql ql 

pH(A(n,apk+l),d) ~pH(A(n,apk+1),d) ~B2(A(n,apk+1)) ~ 

PROOF: Write A = A( n, apk+l) with generators u and v and A' = A( n, apk) 
with generators U and V. Consider the mapping q: A' -+ A and its reduction 
q: A' ® lFp -+ A ® lFp given by 

q(U) = pu, 

q(V) = v, 

q((U)p) = (u)p, 

q((V)p) = (v)p. 

By the linearity of the differentials, q is a chain map. By the definition of q, 
q*H(A(n, apk)) = pH(A(n, apk+1 )). If k > 0, then q* is an isomorphism at 
B1(A) ~ B2(A). 

It is left to show that the mapping pair (q*, q*) is a morphism of exact 
couples. Since q is a chain map, it commutes with - x p. The class {U} 
generates Hn(A'). The mapping jon H(A') is given by {U} f--+ (U)p, the 
reduction modp of {U}. Therefore, q* oj({U}) = (u)p. By the definition 
of a derived couple and the fact that j( {u}) = (u)p, we have j' ° q*( {U}) = 

j'(p{u}) = j( {u}). Thus j' ° q* = q* oj. 
For dimensional reasons, 8((U)p) = 0 = 8'((u)p). For k > 0, (V)p i= 0 

and, by exactness, 8( (V)p) = { apk-1 U} and 8' (( v)p) = {apku}. Since 
q*( {U}) = {pu}, we have that q* 08= 8' ° q* and so (q*, q*) is a morphism 
of exact couples. D 

With this lemma, we prove a structure result. 

Proposition 10.7. Consider the Bockstein spectral sequence for C1 ® C2 where 
C1 = (A(n, apk), d) and C2 = (A(m, bpI), d), k ;::: l > 0 and gcd(a,p) = 

1 = gcd(b,p). Then B2(C1 ® C2) may be taken to be B2(CI) ® B2(C2). 

PROOF: By Lemma 10.6 we can take B 2(C1) = H(A(n,apk-1) ® lFp,d) 
and B 2(C2) = H(A(m, bpI-I) ® lFp, d). We write B2(Ci ) = C;; denote 
the generators of Ci by Ui, Vi, and the generators of C; by u~, v~ for i = 1,2. 
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Assume that k ~ l and let 

"( = lcm(a, b) = ag = bh, 
15 = gcd( apk-l , b) = N apk-l + Mb, 

x = g(V1 ® U2) - (_1)degulhpk-l(U1 ® V2), 

y = N(V1 ® U2) + (_l)degul M(U1 ® V2). 
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It follows that {x, y} is a basis for (C1 ® C2)n+m+1. Putting primes on x, y, 
Ui and Vi, we get a basis {x',y'} for (C~ ® C~)n+m+1' By the definitions, 
dx = 0 = dx', dy = I5pl(U1 ® U2), and dy' = I5pl-1(U~ ® u~). Define the 
morphism of exact couples by letting q: C~ ® C~ ---+ C1 ® C2 be given by 

q(U~ ® u~) = P(U1 ® U2), 
q(y') = y, 

q(x') = px, 

q(v~ ® v~) = VI ® V2' 

Then q is a chain map and q*H( C~ ® q) = pH( C1 ® C2). On the reductions 
mod p, define the map iii: c; ® lFp ---+ Ci ® lFp by ili((u~)p) = (Ui)p and 
iii(( vDp) = (Vi)p. Let ii = iiI ® ii2. Then 

The morphism (q*, ii*) is a morphism of exact couples and, as in the proof of 
Lemma 10.6, an isomorphism. D 

We put the small models to work after we state two results of [Browder61] 
that follow from the properties of free and torsion-free chain complexes. We 
leave the proofs to the reader. 

Proposition 10.8. Let (A, d) be a chain complex,free over Z; let (A', d') be 
a torsionlree chain complex, and p, a prime. If (¢, ¢) is a morphism of the 
associated Bockstein exact couples, 

--+Hn(A) ~Hn(A) ~Hn(A®lFp) ~Hn-1(A)--+ 

¢1 ¢1 ¢1 ¢1 

Then there is a chain map f: (A, d) ---+ (A', d') such that H(f) = ¢ and 
H(f ® lFp) = ¢. 
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Lemma 10.9. Let (A, d) and (A', d') be torsion-free chain complexes. Then, 
forallr, Br(AEBA',d+d') ~ Br(A,d) EBBr(A',d'). 

Assume that (A', d') is a torsion-free chain complex whose homology 
groups are finitely generated in each dimension. Using Proposition 10.8 and 
Lemma 10.9 we can replace (A', d') with another complex (A, d) which is free 

and of the form EB(Ai , di ) with each (Ai, di ) of the form (A(ni' aipki
), d). 

2 

By Lemma 10.9, Br(A',d') ~ EBBr(Ai,di ). 
2 

Suppose X is a space of finite type. The homology Bockstein spectral 
sequence for X is the Bockstein spectral sequence for (C* (X), 8) and this 
spectral sequence is functorial in X. The diagonal mapping on X gives a 
morphism of spectral sequences 

Replacing the chains on X with a direct sum of small models, we can apply 
Proposition 10.7 to the Alexander-Whitney map to prove the following result. 

Theorem 10.10. For (X, xo) a pointed space of finite type, the homology 
Bockstein spectral sequence is a spectral sequence of coalgebras. 

When X is an H -space of finite type, the same argument applied to the mul­
tiplication, along with the compatibility of the multiplication with the diagonal, 
gives the following key result. 

Theorem 10.11. For X, an H-space of finite type, the homology Bockstein 
spectral sequence for X is a spectral sequence of Hopf algebras. 

The cohomology Bockstein spectral sequence admits a dual analysis using 
the small complexes Hom(A(n,apk),Z). In fact, Hom(A(n, apk), Z) is sim­
ply A( n, s) with the differential upside down. Its single nontrivial homology 
group is Hn+l(A(n, apk), ddual). Using these complexes and carrying out the 
same kinds of arguments as for the homology Bockstein spectral sequence we 
obtain the theorem: 

Theorem 10.12. For (X, xo) a pointed space of finite type, the cohomol­
ogy Bockstein spectral sequence is a spectral sequence of algebras. Sup­
pose (A*, d) is a chain complex with homology of finite type. Let {B; = 

B: (Hom( A*, Z)), dr } denote the cohomology spectral sequence for the dual 
of (A*,d). Then B; ~ Hom(B:(A*),lFp ) and dr is the differential adjoint 
to dr. If X is an H-space offinite type, then the cohomology Bockstein spec­
tral sequence for X, B;(X) = B;( C*(X), 8), is a spectral sequence of Hopf 
algebras dual to the homology Hopf algebras B: (X). 
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Having established these structural results, we tum to some examples. 
The universal examples for cohomology are the Eilenberg-Mac Lane spaces for 
which we have complete descriptions of the mod p cohomology according to 
the theorems of Cartan and Serre (Theorem 6.16). We reinterpret these known 
data to give a complete description of the Bockstein spectral sequence in a range 
of dimensions. 

We note thatthe limitofthe Bockstein spectral sequences for K (Ill pkll, n) 
has Boo ~ {O}. To see this, suppose it (K(lllpkll, n)) contained a torsion­
free summand. Then if * (K (Il I pk Il, n); QJ) would have a nonzero lowest degree 
generator. By the Hurewicz-Serre theorem over QJ (Theorem 6.25), this would 
imply a torsion-free summand in the homotopy of K(lllpkll, n) which does 
not happen. Hence Boo ~ {O}. 

Suppose p is an odd prime. The cohomology of K(lllpll, n) with co­
efficients in the field IFp is a free graded commutative algebra (exterior on 
odd-dimensional classes, tensor polynomial on even-dimensional classes) gen­
erated by classes StIzn where I = (CO,Sl,Cl,'" ,sm,cm) is an admissible 
sequence (ci = 0 or 1, Si ~ pSHl + Ci, for m > i ~ 1; Definition 6.17) of 
excess less than or equal to n. Notice that the excess, e(I) = 2pSl + 2co - In 
is such that, if I = (1, Sl, Cl, ... ,Sm, cm) and e(I) ~ n, then e(I') ~ n for 
I' = (O,Sl,cl,'" ,sm,cm)' Thus, the generators pair off. Since this pairing is 
given by /3StI' Zn = StI zn and d l = /3, we are looking at two sorts of differential 
graded algebras: 

I' I I' I I' A(St zn)Q?JIFp[St Znl, dl(St Zn) =St Zn, degSt znodd, 

IFp[StI' znl ® A(StI Zn), dl (Sl' Zn) = sl Zn, deg sl' Zn even. 

When StI' zn has odd degree, the complex A(Sl' Zn) ® IF p [StI znl has the same 
form as the Koszul complex for A(Xodd) and so its homology is trivial. When 
StI' zn has even degree, the complex has homology H(IFp[Sl' znl®A(Sl zn), dl ) 
~ A( {(Sl' zn)p-l ®sl zn}) ®IFp[{(StI' zn)P}], where {U} denotes the homol­
ogy class of U with respect to the the differential d l . This follows because d l 

is a derivation and so d l ((StI' zn)P) = p(Sl' zn)p-l = O. Notice how the class 
{(Sl' zn)p-l ®sl zn} encodes the trans potence element that figures in Cartan's 
constructions and Kudo's transgression theorem (§6.2). 

Suppose n = 2m. Recall that pmZ2m = (Z2m)P. In dimensions less than 
2mp = deg z~m' we find classes coming from the paired algebras: 

(IFp[Z2ml ® A(/3z2m)) ® (IFp[Plz2ml ® A(/3plZ2m)) ® ... 
® (IFp[pm-lz2ml ® A(/3pm- l Z2m )). 

Computing the homology of this product as a differential graded algebra with 
differential /3, we are left with the first nonzero classes, {Z~~ 1 ® /3Z2m} E 
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B~mp-l and { z~m} E B~mp. The next indecomposable class in B2 corresponds 

to {(P1Z2m)P} E B~(2m+2(p-1)). Thus, for q < p(2m + 2(p - 1)), 

BHK(7l/p7l, 2m)) ~ (A( {,sZ2m '-../ (Z2m)p-l)}) ® IF p[{ z~m}l )q. 

The case of K(7l/pk7l, n) for k > 1 yields to a similar analysis of admis­
sible sequences except in the lowest degrees. Here the contributing classes are 
Zn and ,skZn, the Bockstein of kth order associated to the short exact sequence 
of coefficients 0 ---+ 7l/p7l ---+ 7l/pk7l ---+ 7l/pk- l7l ---+ O. In dimensions 
q < p(n + 2(p - 1)) we have that B( (K(7l/pk7l, n)) ~ 

{ 

Bi, if l ~ k, 

{O}, if l > k and n is odd, 

(A( {,skZn '-../ (zn)p-l}) ® IFp [{ z~}])q, if l = k + 1 and n is even. 

We complete the analysis for the lower dimensions of the Bockstein spec­
tral sequence when n is even. The input is part of the computation of [Cartan54] 
of the integral cohomology of the Eilenberg-Mac Lane spaces. 

Proposition 10.13. Ifp is any prime and k ~ 1, then H2mp(K(7l/pk7l, 2m)) 
contains a subgroup isomorphic to 7l/pk+ l7l as summand. Furthermore, there 
are no summands isomorphic to 7l or 7l/pk+ j 7l with j > 1. 

Corollary 10.14. Suppose that p is an odd prime. Let Z2m denote the funda­
mental class in Brm(K(7l/pk7l, 2m)). Then,for some c E IFp , 

dk+l({Z~m}) = C{,skZ2m '-../ (Z2m)p-l} i= O. 

The proof of Proposition 10.13 is a direct computation using the method 
of constructions ([Cartan54]). This method applies integrally and so one can 
compute the desired homology group by hand and discover the p-torsion height. 

The corollary follows from the convergence of the Bockstein spectral se­
quence. Since there are no other classes in the degree involved, the formula for 
dk+l ({ z~m}) follows without choice. [Browder62, Theorem 5.11] gave a more 
general chain level computation that obtains the formula directly. 

For the prime 2, a new phenomenon occurs in the Bockstein spectral se­
quence for K(7l/27l, n). [Serre53] showed that H* (K(7l/27l, n); IF2 ) is a poly­
nomial algebra on generators StI Zn where I is an admissible sequence (mod 2) 
of excess less than or equal to n (Theorem 6.20). However, when x = StI Zn 
has odd degree 2m + 1, then 

x 2 = Sq2m+lx = Sq1Sq2mx = Sq1spm,I)zn, 

that is, the squares of certain classes are the image under the Bockstein of other 
generators. The pairing of classes that occurs in the case of odd primes does not 
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occur here and new cycles are produced. We write SqIz2m = 172m+!' Because 
Sql = f3 is a derivation, we have 

2 S 2m+1 S IS 2m S I ( ) 172m+1 = q Z2m = q q 172m+1 = q Z2m172m+I' 

Thus Sq2m 172m+1 + Z2m '---'" 172m+! is a cycle under d l . By the same analysis of 
the low degrees of H*(K(71/271, 2m); IF 2) and Cartan's integral computation 
we have the following result. 

Corollary 10.15. Suppose that p = 2. Let Z2m E Bim(K(71/271, 2m)) and 
172m+! = SqIz2m' Then 

We leave the remaining case of K(71/2k 71, n) for k > 1 to the reader. In 
this case, Corollary 10.14 for odd primes goes over analogously. 

We next explore some of the consequences of these calculations. 

Infinite implications and their consequences 

The proof of Theorem 10.2 for fields of characteristic zero shows that the 
presence of a primitive element x of even degree implies the condition xn i= 0 
for all n. For fields of characteristic p > 0, it can happen that a primitive 
element x of even degree can satisfy xpr = 0 for some r, and so the finiteness 
of the H -space need not be violated. For example, the exceptional Lie group 
F4 has mod 3 cohomology given by 

H*(F4; IF3) ~ IF3 [xsl/(x~) ® A(X3, X7, Xll, XI5), 

where Xs is clearly primitive ([BoreI54]). The rational cohomology is given by 
H*(F4; QJ) ~ A(X3, X ll , X 15 , X 23 ). The Bockstein spectral sequence mod 3 
requires f3(X7) = Xs; subsequently the class X23 is represented by the product 
[X7 '---'" x~l· 

The Eoo-term of the Bockstein spectral sequence of a finite H -space is fixed 
by Hopf's theorem. The appearance of even-dimensional primitive elements 
in H* (X; IF p) forces some nontrivial differentials in the Bockstein spectral 
sequence in order to realize this target. The consequences of such differentials 
are organized by the phenomenon of implications due to [Browder61]. 

Definition 10.16. Let A* denote a Hopf algebra of finite type over the finite field 
IF p and denote its dual by A *. An element x E Am is said to have r-implications 
if there are elements Xi E Ampi, for i = 0,1,2, ... ,r, with Xo = x, Xi i= 0 

for all i, and either XHI = xf or there exists an element Xi E Amp' such 
that Xi(Xi) i= 0 and Xf(XHd i= O. An element has oo-implications if it has 
r-implications for all r. 
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Lemma 10.17. If A* is a Hopf algebra over lFp that contains an element which 
has oo-implications, then A* is infinite dimensional as a vector space over lFp. 

The Hopf algebras that we want to study are the terms of the Bockstein 
spectral sequence for an H-space which are, in fact, differential Hopf algebras. 
Before stating Browder's theorem on oo-implications we collect a few basic 
lemmas about Hopf algebras and differential Hopf algebras. 

Lemma 10.18. Suppose (A*, /-l,~) is a Hopf algebra and x E A2m is a 
primitive element. Then 

This follows like the binomial theorem for the algebra A* ® A* using the 
fact that the comultiplication ~ is an algebra map. (yVe do not need to assume 
associativity of /-l if we define xn inductively by xO = 1 and xn = x n- 1 . x, 
and pay careful attention to parentheses.) 

Lemma 10.19. Suppose A* is a Hopf algebra over afield k and A* is its dual. 
If x E A2m is a primitive element and x E A*, then xn(xn) = n!(x(x))n. 

PROOF: We compute 

xn(xn) = ~*(xn-l ® x)(xn ) = (xn- 1 ® x)(~(xn)) 

= (x
n

-
1 

® x) (Li (7 )xn-i ® Xi) 

= (xn- 1 ® x)(nxn- 1 ® x). 

Thus xn(xn) = n(xn-1(xn- 1). x(x)) and so, by induction, we get xn(xn) = 

n!(x(x))n. D 

Lemma 10.20. Suppose that (A*, /-l,~, d) is a connected, differential graded 
Hopf algebra over the field lFp, x E A2m is primitive, x = d(y) for some 
y E A 2m+l, and x E A2m satisfies x(x) i= O. Set y = d*(x) where d* is the 
dual differential on A*. Then (xp - 1 . y)(xp - 1 . y) i= O. 

PROOF: First notice that y(y) = (d*(x))(y) = x(d(y)) = x(x) i= 0 and so 
y i= O. We next compute 
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By Lemma 10.18, we can write 

~(Xp-I)~(y) = 

~ (~ (p ~ 1)",,_,_, 0 x') (Y 01+ 10Y+ ~Y; 0 yj) 

~ (""-' 0 y + <H1,f~, (p - l)x'-'y; 0 xyj + "UIT) , 

where the "stuff" is a sum of tensor products of classes u ® v where deg u i= 
(p - 1) deg x or deg v i= deg y. Since (xp- I ® y)(xp- I ® y) = xp- I (xp- I) . 
y(y) i= 0, it suffices to show that y(xy'j) = 0 for y'/ E AI. Consider 

y(xy'j) = (d*(x))(xy'j) = x(d(x)y'j + xd(y'j)). 

Since x = d(y), d(x) = O. Thus d(xy'j) = xd(yj'). If d(y'j) i= 0, then there 
is an element Wj E AO with d*(wj) i= O. Since A* is taken to be connected, 
Wj = Ctj"lforsomeCtj i= 0 E lFp . Butd*(I) = d*(I·I) = d*(I)·I+I·d*(I) = 

2d*(I) and so d*(I) = O. Thus d*(wj) = d*(Ctj . 1) = Ctj d*(I) = O. This 
implies that y(xy'j) = 0 for all j. D 

Lemma 10.21. If A* is a differential graded Hopf algebra and x E H(A*) 
satisfies xP i= 0, then for any y E A* with {y} = x, we have yP i= O. If x has 
r-implications in H (A*) for some r ~ 00, then y has r-implications in A*. 

PROOF: Since xP = {y}P = {yP} i= 0, then yP i= O. We can apply this 
argument at each power of p. Thus, if x has oo-implications in H(A*), then y 
has oo-implications in A*. D 

Lemma 10.22. Suppose that A* is a differential graded Hopf algebra over lFp . 

Suppose further that x E A2m is primitive, that xP = 0, and there is an element 
y with d(y) = x. If {xp-Iy} i= 0 in H(A*), then it is primitive. 

PROOF: By definition, H(~)( {xp-Iy}) = {~(Xp-Iy)}. By assumption we 
have d(~(y)) = ~(d(y)) = ~(x) = 1 ®x+x® 1. This implies thatd(~(y)-

y®I-I®y) =0. Furthermore,~(xP-I) = ""P-I(P-:-l)xP- I- i ®X i . 
L....-,=o ~ 

(
P-l) From elementary number theory we know that i == (-1) i mod p, and 
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so we can write 

fl(xp-1y) = fl(xp-1)fl(y) 

= (L:~: (_l)i Xp-l-i ® Xi) (y ® 1 + 1 ® Y + (fl(y) - 1 ® Y - Y ® 1)) 

= xp-1y ® 1 + 1 ® xp-1y + ",",p-2 (_l)i Xp-l-i ® xiy 
L....-,=o 

+ L:~; (_l)i Xp-l-i y ® Xi + fl(x p- 1 )(fl(y) - 1 ® Y - Y ® 1) 

= xp-1y ® 1 + 1 ® xp-1y + d (L:~; (_1)i+l(Xp - 1 - i y ® Xi- 1y)) 

+ d(fl(xp- 2y) (fl(y) - 1 ® Y - Y ® 1)). 

It follows that {fl(Xp-ly)} = {xp-1y} ® 1 + 1 ® {xp-1y}. D 

The last lemma we need before we state and prove the main theorem of 
[Browder61] is a technical fact about the mod 2 Steenrod algebra and H -spaces. 
While the previous lemmas followed for purely algebraic reasons, this lemma 
requires that we are working with the mod 2 cohomology of an H-space. 

Lemma 10.23. Ij (X,xo, J-l) is an H-space, X E H2m(XiIF2) is a primitive 
element, y E H2m+1 (Xi IF2 ), and Z E H 2m+l (Xi IF2 ), then (Sq2m z)(xy) = O. 

PROOF: In terms of the induced operations we can write 

We write J-l*(z) = I:i z~ ® z~/ and the Cartan formula gives 

By the unstable axiom for the action of the Steenrod algebra, if q > dim z~, 
then Sqq (zD = 0, and similarly if r > dim z~/. Let c = deg z~, d = deg z~/. 
Then c + d = 2m + 1 and it follows by examining the solutions to q + r = 2m 
that 

Sq2m (z~ ® z~/) = SqC z~ ® Sqd-l z~/ + SqC-l z~ ® Sqd z~/. 

Since SqCz~ = (ZD2 and x is primitive, (ZD2(X) = O. It follows that 
(SqCz~ ® Sqd-lZ~/)(X ® y) = O. Similarly, Sqdz~/ = (zn2, a class of even 
degree. Since y has odd degree, (z~/) 2 (y) = 0 and so the lemma follows from 
(SqC-lz~®Sqdz~/)(x®y) =0. D 
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Theorem 10.24. Suppose (X, Xo, J-l) is a connected, path-connected H-space 
of finite type and {B: (X)} is its homology Bockstein spectral sequence. If 
x E B2m is a nonzero primitive element and, for some y i= 0, x = dr (y), then 
x has oo-implications. 

PROOF: We may assume that xP = 0, for otherwise we can take Xl = xP, 
also a primitive, with dr(xp-Iy) = xp. Thus Xl satisfies the hypotheses of 
the theorem, and if this process never stops, we have obtained the sequence of 
oo-implications of x. Assuming xP = 0, we will produce Xl E B 2mp such that 
xP (xd i= 0 for any x E B;m (X) for which x( x) i= O. The Xl produced will be 
neither primitive nor a boundary, but its homology class {Xl} E B;!~ will be 
both primitive and a boundary. By Lemma 10.21 it suffices to check that there 
is the I-implication Xl at the next stage of the Bockstein spectral sequence and 
then take a representative in Br. 

In the cohomology Bockstein spectral sequence suppose that x E B;m 
satisfies x(x) i= O. Set y = dr (x). Then 

y(y) = (dr(x))(y) = x(~(y)) = x(x) i= O. 

It follows that y i= 0 and, by Lemma 10.20, that (xp-IY)(Xp-Iy) i= O. Fur­
thermore, if p i= 2, dr(xp-Iy) = (p - l)xP- 2y2 = O. If p = 2 and r > 1, 

in B2 where Z E H2m+ I (X i IF 2) is such that { Z} = y. That is, squares of odd 
degree classes vanish in B 2 • If P = 2 and r = 1, then 

and, by Lemmas 10.20 and 10.23, (Sq2my + xy)(xy) i= O. 
We check thatthe class {xp-Iy} (or {Sq2my+xy} when r = 1 andp = 2) 

is nontrivial in Br+l' Suppose that xp-Iy = dr(z). Then 

o i= (xp-IY)(Xp-Iy) = dr(z)(xp-Iy) = z(dr(xp-Iy)) 

= z(xP ) = z(O) = 0, 

a contradiction. Thus xp-Iy i= dr(z). Similarly, (Sq2my + xy) i= dl(z). 
To complete the proof we show that the class {xp-Iy} E Br+l satisfies 

dr+I({xP }) = C{Xp-Iy} i= 0 when p i= 2 or p = 2 and r > 1. In the 
case p = 2 and r = 1, we show that the class {Sq2my + xy} E B2 satisfies 
d2({X2}) = {Sq2my + xy}. Recall dr(x) = y. Then there is a class u E 
H2m(Xi Zjprz) such that {red; u} = x E Br where redp : Zjprz ---+ ZjpZ 
isreductionmodp. Let]: X ---+ K(Zjprz, 2m) representu, that is, !*(Z2m) = 
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U where 22m E H2m(K(71jpr71, 2m); 7ljpr71) is the fundamental class. Let 
f = red;(22m)' It follows that 

Let J:: Br(K(71jpr71,2m)) --+ Br(X) denote the homomorphism induced 
by f on the cohomology Bockstein spectral sequences. If iJ = dr(f), then we 
have 

J:(iJ) = J:(dr(f)) = drU:(f)) = dr(x) = Y 

and so J:(fP-liJ) = xp-Iy. Since {xp-Iy} i= 0 in Br+l, f:+l({fP-liJ}) = 

{xp-Iy}. By naturality and the calculation of the cohomology Bockstein spec­
tral sequence for K(71jpr71,2m), f:+l(dr+l({fP})) i= 0 and f:+I({fP}) 
{xP } i= O. Thus 

dr+l({xP}) = dr+l U:+l ({fP})) = f:+I(C{fP-liJ}) = C{Xp-Iy}. 

The analogous argument mod 2 gives d2( {x2}) = {Sq2my + xy}. 
In order to continue the argument, we show that there is an element v E 

B;;t;~ that is primitive with {xP}(v) i= 0 and v = dr+l(w) for some w. 
Consider the element w = {xp -

l y}. We compute: 

By Lemma 10.22, w is primitive. Also, v = dr+l (w) is primitive. In the 
sequence of elements making up the oo-implications of x we take Xl to be a 
choice of representative of v in Br. Then, xP(xI) = {xP}( v) i= 0, and, since 
x(x) i= 0, Xl is the next element in the sequence making up the oo-implications 
for x. To obtain X2, either take xi if nonzero, or repeat the argument using the 
primitive v E B;;t;~ with v = dr+l ( w ). D 

Notice that if xP = 0, then the choice of x with x(x) i= 0 was arbitrary in 
the construction. It follows from xP(xI) i= 0 that, if X is a primitive in B2m 
with 0 i= dr(y) = X and xP = 0, then xP i= 0 for all x E B;m with x(x) i= O. 

We tum to applications of Theorem 10.24. A space X is said to be a 
mod p finite H-space if it is a connected, path-connected H-space of finite 
type for which the mod p homology ring is finite-dimensional over lFp . By 
Theorem 10.2, for a mod p finite H -space X, Boo (X) is an exterior algebra on 
finitely many odd-dimensional generators. 

A shorthand statement of Theorem 10.24 is the expression for X, a mod p 
finite H-space, 

Imdr n Prim(Heven(X;lFp)) = {O}. 

A dual formulation of Theorem 10.24 depends on a fundamental theorem due 
to [Milnor-Moore651: 
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Theorem 10.25. If (A, /-l,~) is an associative, commutative, connected Hopf 
algebra over the field IF P' then there is an exact sequence 

o --+ Prim(~A) --+ Prim(A) --+ Q(A) 

where ~: A --+ A is the Frobenius homomorphism ~ (a) = aP• 

SKETCH OF A PROOF: The reader can check that the theorem holds for A a 
monogenic Hopf algebra. For a finitely generated Hopf algebra A and A', a 
normal sub-Hopf algebra, there are short exact sequences: 

0------7 Prim(A') ------7 Prim(A) ------7 Prim(AjjA') 

1 1 1 
Q(A') ------+ Q(A) ------+ Q(AjjA'). 

We leave it to the reader to show that, if A' ~(A), then the mapping 
Prim(AjjA') --+ Q(AjjA') is injective. The theorem follows from the dia­
gram of short exact sequences. D 

Suppose X is a mod p finite H -space, x E B;m is a primitive element and 
dr(x) = Y i= O. Since H*(Xi IFp) is an associative, commutative connected 
Hopf algebra, Theorem 10.25 implies that y, a primitive of odd degree, is not a 
pth power (y2 = 0) and hence y is indecomposable. Thus there is an element y 
inB2m+l withy(y) i= o andy primitive. Theny(y) = dr(x)(y) = x(dr(y)) = 

x (x) i= 0, and so x E B2m is a primitive in the image of dr. Since H* (X i IF p) 
is a finite vector space, there cannot be oo-implications, and so the assumption 
that there is an x E B;m with dr(x) i= 0 must fail. Thus, the dual version of 
Theorem 10.24 for mod p finite H-spaces may be written 

Imdr n Prim(B;m+l) = {O}, for all m. 

From the structure of an exact couple, an element in the image of the 
descending homomorphism is always a cycle (Proposition 2.9). In the case of 
the Bockstein spectral sequence, the descending homomorphism is reduction 
mod p. Thus, for a mod p finite H-space, the image of redp *: H*(X) --+ 

H*(XiIFp) cannot contain an even-dimensional primitive element. If x E 

1m redp* n Prim (Heven (Xi IFp)), then dr(x) = 0 for all r and since x cannot 
persist to Boo, then x = dB (y) for some s and y. But then x has oo-implications 
and H*(Xi IFp) has infinite dimension over IFp. 

A consequence of this discussion is the theorem of [Browder61] generaliz­
ing the classical result of [Cartan, E36] that 7r2 (G) = {O} for simply-connected 
Lie groups. 
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Theorem 10.26. If X is a mod pjinite H-space, then the least m > l/or which 
7rm(X) ® IFp i= {O} is odd. 

PROOF: Consider the mod p Hurewicz homomorphism h®IF p: 7r m (X) ®IF p ---+ 

Hm(X) ® IFp ---+ Hm(X; IFp). This factors through redp* and takes its image 
in the primitive elements. It follows that this mapping is trivial when m is even. 

When X is simply-connected, the Hurewicz-Serre theorem for mod p 
coefficients (Theorem 6.25) implies that the first nonvanishing homology group 
H m (X; IF p) is isomorphic via h ® IF p to the first nonvanishing homotopy IF p­

module 7r m (X) ® IF po Since this must happen in an odd dimension, the theorem 
holds. 

When X is not simply-connected we can argue using the universal cover 
X. [Browder59] showed that the universal cover of a mod p finite H -space is 
again amodpfinite H-space. Since7rm(X) ~ 7rm(X) form> 1, we reduce 
to the simply-connected case. D 

In developments that grew out of the study of torsion in H-spaces, [Jean­
neret92] and [Lin93] have shown that the first nonvanishing homotopy group 
of a mod 2 finite H-space, whose mod 2 homology ring is associative, must be 
in degree 1, 3, or 7. 

An H-space with the homotopy type of a finite CW-complex is called a 
finite H -space. The compact Lie groups offer a large class of examples of finite 
H -spaces. A guiding principle in the study of such spaces is that the topological 
properties of compact Lie groups have their origin at the homotopicallevel of 
structure. That is to say, what is true homotopically of a compact Lie group 
G ought to be true because G is a finite H-space. Hopf's theorem (10.2) and 
Browder's theorem (10.26) lend considerable support to this principle. That 
the class of finite H-spaces is larger than the examples of compact Lie groups 
is a result of the development of localization and the mixing of homotopy types 
due to [Zabrodsky72]. [Hilton-Roitberg71] used mixing to exhibit examples of 
finite H -spaces not of the homotopy type of any compact Lie group. 

A major theme in the development of finite H-spaces is the application 
of the guiding principle to Bott's theorem (10. I)-if X is a simply-connected 
finite H-space, then H*(OX) has no torsion. 

Under the assumption that X is a simply-connected finite H-space and 
H*(OX) has no torsion [Browder63] showed that H*(OX) = Heven(OX), 
strengthening Bott's theorem considerably. This paper introduces a family 
of spectral sequences based on the natural filtrations on a Hopf algebra that 
interpolate between the terms in the Bockstein spectral sequence and enjoy a 
particularly nice algebraic expression. 

[Kanen] applied work of [Browder63] and [Zabrodsky71] to obtain a 
necessary and sufficient condition that H* (OX) have no p-torsion when X is a 
simply-connected finite H-space. The condition is given in terms of the action 
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of the Steenrod algebra on the cohomology of the finite H-space: 

Notice, in the case that p = 2, this condition holds only when H*(X;IF2) 
has no even-dimensional indecomposables. When p = 2, pm = Sq2m and 
/3Sq2m = Sql Sq2m = Sq2m+l, which is the squaring map on H2m+l. [Lin76, 
78] established that Q(Heven) = I:m>l /3pmQ(Hodd) holds for odd primes 
by extending work of [Zabrodsky71] on secondary operations. 

Building on work of [Thomas63] on the action of the Steenrod algebra on 
the cohomology of an H-space, [Lin82] established the absence of 2-torsion 
in H*(OX) when X is a mod 2 finite H-space and H*(X; IF2 ) is an associa­
tive Hopf algebra. [Kane86] studied the presence of 2-torsion in H*(OX) by 
using a version of the Bockstein spectral sequence for the extraordinary coho­
mology theory k (n) * introduced by [Morava85]. Putting together all of these 
developments, the goal of generalizing Bott's theorem was realized. 

Theorem 10.27. If X is a simply-connectedjinite H-space, then H*(OX) has 
no torsion. 

The proof of Theorem 10.27 generated a number of powerful methods in 
algebraic topology. Accounts of these developments and much more can be 
found in [Kane88] and [Lin95]. 

Other applications of the Bockstein spectral sequence ® 
Away from the study of H-spaces, the results of [Browder61] may be ap­

plied to obtain some general results about H*(OX; IFp). In particular, using 00-

implications, [McCleary87] proved a generalization of the results of [Serre51] 
(Proposition 5.16) and [Sullivan73] on the nontriviality of H*(OX; k) for k a 
field. 

Theorem 10.28. Suppose M is a simply-connected compactjinite-dimensional 
manifold and dimk Q(H*(M; k)) > 1, then the set {dimk Hi(OM; k) Ii = 

1,2, ... } is unbounded. 

The assumption that dimwp Q(H*(X; IFp)) > 1 together with the results 
over Ql of [Sullivan73] force the existence of oo-implications on two elements. 
The intertwining of the oo-implications of these elements in a Hopf algebra 
gives a subspace of H* (OM; IF p) that is isomorphic as a vector space to a 
polynomial algebra on two generators. The vector space IFp [x, y] has subspaces 
IFp{x1m,x(l-1)myn, ... ,x(l-i)myin, ... ,xmy(l-l)n,yn} where mdegx = 

n deg y = lcm( deg x, deg y). This subspace has dimension l + 1 and so grows 
unbounded with l. 
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This theorem, like Proposition 5.16, implies geometric results about the 
geodesics on the manifold M. Under the assumptions of the theorem, the 
number of geodesics on M joining two nonconjugate points of length less than 
A grows at least quadratically in A. 

Another place where p-torsion makes a key appearance is in the Adams 
spectral sequence. Following the discussion in §9.3, the times p map is de­
tected in the Adams spectral sequence by multiplication by a class ao E 
ExtJ~ (IFp, IFp). For an Ap-module M, [May-Milgram81] say that an element 

x E Ext Ap ( M, IF p) generates a spike if x i= aox' and ab x i= 0 for all i. There 
is a single spike in ExtA2 (IF2 , IF2 ) as the charts (pp. 443-444) in Chapter 9 
show-the picture explains the terminology. 

[Adams69] wrote of the Adams spectral sequence, "Whenever a chance 
has arisen to show that a differential dr is non-zero, the experts have fallen on it 
with shouts ofjoy-'Here is an interesting phenomenon! Here is a chance to do 
some nice, clean research!' -and they have solved the problem in short order." 
The Bockstein spectral sequence interacts with the Adams spectral sequence to 
produce differentials that form a coherent pattern. The function T( 8) used in 
the statement of the following theorem refers to Lemma 9.45: When p is odd, 
then T( 8) = (2p - 1)8 - 1; when p = 2, then T( 8) is defined by T( 48) = 128, 
T(48 + 1) = 128 + 2, T(48 + 2) = 128 + 4, and T(48 + 3) = 128 + 7. 

Theorem 10.29. Suppose X is an (n - I)-connected space offinite type. For 
r ~ 1, suppose that Cr is a basis for B;(X), the homology Bockstein spectral 
sequence. Assume that Cr is chosen so that Cr = Dr U f3rDr U Cr+! where 
Dr, f3rDr, and Cr +1 are disjoint, linearly independent subsets of B;(X) such 
that f3rDr = {f3rw I W E Dr} and Cr +1 is a set of cycles with respect to f3r 
that projects onto the chosen basis for B;+l(X). Then 

(1) The set of spikes inEr(X), 2 ~ r ~ 00, is in one-to-one correspondence 
with Cr. If C E Cr has degree q and "( E E:,t(X) generates the 
corresponding spike, then T( 8) - 8 + n ~ q = t - 8. 

(2) Ifd E Dr and 15 E E:,t(X) and E E E~'V(X), with v - u = t - 8 -1, 
generate spikes corresponding to d and f3rd, then 

provided n + T(i + 8) ~ t. 

PROOF: Since X is taken to be of finite type, H* (X) is a direct sum of torsion 
prime to p, summands of the form Z / pk Z, and summands Z whose generators 
reduce mod p to the elements of Coo. We may use this decomposition to 
construct mappings 
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that induce isomorphisms on integral homology in degree i. Let Y denote the 

space V K (Hi (X), i) and <P = Vi <Pi: X --+ Y denote the wedge product 
2 

of all of these mappings. On homology with coefficients in IF p, <P* induces a 
monomorphism from Hi(X) for all i. This gives rise to a short exact sequence 

where M* is seen to be EE\~H2 Hq(K(Hi(X), i); IFp). 
Ignoring the contribution to torsion at primes not equal to p, we know from 

theorems of Cartan and Serre that the dual of M* is A(O)-free (§9.6), that is, 
the Bockstein homomorphism on M~ual, as a differential, is exact. We next 
examine the long exact sequence of Ext groups associated to the short exact 
sequence: 

Lemma 9.47 implies that Ext:A~(M~ual,IFp) = {O} when 0 < s < t ~ 
n + T(s). It follows that E~,t(X) --+ E~,t(y) is onto in this range and an 
isomorphism when s ~ 2 and 0 < s < t ~ n + T(s - 1). By the naturality of 
the Adams spectral sequence, that it suffices to examine the case of Eilenberg­
Mac Lane spaces to prove the theorem. We leave it to the reader to show that 
a factor of K(71/p71, i) introduces a single copy of IFp that persists to Eoo; a 
factor of K(71/pk71, i) introduces a pair of spikes at E2 on generators z and y 
with dk(abz) = aHky, leaving a basis of {aby I 0 ~ i ~ k} at Eoo; finally, a 
factor of K(71, i) introduces a permanent spike at E 2. D 

This argument requires that spikes have the right Adams filtration to work. 
Spikes in E2 (X) could be generated by elements lying in lower filtration degree 
than in the range of the isomorphism. Such generators might have nontrivial 
differentials earlier than predicted by the theorem. Such differentials could 
occur on the bottoms of spikes whose top parts survive to Eoo (X). 

Plugging this argument into a dual setting via Spanier-Whitehead duality, 
[Meyer98] has used the resulting differentials to compute certain cohomotopy 
groups and these groups force Euler classes associated to geometric bundles to 
vanish. These data imply an estimate of certain numerical invariants of lens 
spaces. Let 

Vp ,2(m) = min{ n I there is a 7l/p71-equivariant f: L2m-l(p) --+ s2n-l}. 

Here the action of 7l/p71 on L2m-l(p) is induced by the multiplication by a 
primitive root of unity of order p2 on em and on s2n-l by the standard action. 
The estimates of [Meyer, D98] generalize work of [Stolz89] at the prime 2. 
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10.2 Other Bockstein spectral sequences 

Consider the cofibration sequence 

where pn (r) = sn-l Ur en is a mod r Moore space and r denotes the degree r 
map on sn-l. Following [Peterson56], these spaces may be used to define the 
mod r homotopy groups, 

The properties of cofibration sequences lead to an exact couple 

and hence a Bockstein spectral sequence, denoted by JrB:(X), with JrB; (X) ~ 
7r*(Xi 7l/r71). When r = p, a prime, the spectral sequence converges to 
(7r*(X)/torsion) ® lFp for X of finite type. (Some care has to be taken when 
p = 2 because 7r3(Xi 7l/271) need not be abelian.) This spectral sequence was 
studied by [Araki-Toda65] for applications to generalized cohomology theories, 
by [Browder78] for applications to algebraic K-theory, and by [Neisendorfer72] 
for its relations to unstable homotopy theory. 

Among the properties of the Moore spaces is the following result of 
[Neisendorfer72]. The proof requires careful bookkeeping in low dimensions 
(for details see the memoir of [Neisendorfer80D. 

Proposition 10.30. If m, n ~ 2 and r, s are positive integers for which 
d = gcd(r, s) is odd, then there is a homotopy equivalence: 

When r = s = p, an odd prime, this homotopy equivalence may be used to 
define pairings on mod p homotopy groups. In particular, given f: pm (r) ---+ 

X and g: pn(s) ---+ Y, we can use the canonical injection, x f--+ (x,*), 
pm+n (d) ---+ pm+n (d) V pm+n-l (d) to obtain a mapping pm+n (d) ---+ X !\ Y 
as the composite 
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A mapping 0": X 1\ Y --+ Z induces a pairing 7rm(X; ZjrZ) ®7rn (Y; Zj sZ) --+ 

7rm+n(Z; ZjdZ) and this pairing for X = Y = Z = BGI(A)+ was developed 
by [Browder78] to study the algebraic K-theory with coefficients of a ring A 
via the homotopy Bockstein spectral sequence. 

When (G, /-l, e) is a grouplike space, that is, G is a homotopy associative 
H-space with a homotopy inverse (for example, a based loop space OX), then 
the commutator mapping [ , ]: G x G --+ G, given by (x, y) f---+ (xY)(X-1y-l), 
determines a mapping [ , ]: G 1\ G --+ G, since, up to homotopy, the commutator 
mapping restricted to G V G is homotopic to the constant mapping to e. This 
mapping may be applied to the homotopy groups of G with coefficients to define 
a pairing for d = gcd(r, s): 

The pairing is given by the composite 

The pairing induced on homotopy groups by the commutator mapping is the 
Samelson product. The properties of the generalized Samelson product for ho­
motopy groups with coefficients are extensively developed by [Neisendorfer80]. 
In particular, we have the following result. 

Proposition 10.31. If r = s = d, gcd(r,6) = 1, and G is a 2-connected, 
grouplike space, then 7r * (G; ZjrZ) is a graded Lie algebra. 

When G is grouplike, H*( G; ZjrZ) is an associative algebra and hence 
enjoys a Lie algebra structure given by [z, w] = zw - (-1)l z l·lw 1 wz . The 
Hurewicz map, h*: 7r*(X; ZjrZ) --+ H*(X; ZjrZ), is induced by h*([!D = 

!*(y), where y E Hm(pm(r);ZjrZ) is the canonical generator. This map­
ping for r = p, an odd prime, induces a mapping 1rB;(X) --+ B;(X), 
where {B! (X), dB} denotes the mod p homology Bockstein spectral sequence. 
[Neisendorfer72] showed that both the homotopy and homology Bockstein 
spectral sequences are spectral sequences of Lie algebras for p > 3, and that the 
Hurewicz homomorphism induces a Lie algebra homomorphism on BB-terms 
for all s. 

It is possible to develop the properties of differential Lie algebras byanal­
ogy with the development of differential Hopf algebras for the Bockstein spectral 
sequence. This development makes up the first few sections of [Cohen-Moore­
Neisendorfer79], especially applied to the case of free Lie algebras. These 
results may be used to study the spaces opn (pr) and opn (pr), where pn (pr) 
is the homotopy fibre of the pinch map pn (pr) --+ sn, defined by collapsing the 
bottom cell. The main results of [Cohen-Moore-Neisendorfer79] are homotopy 
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equivalences between the space opn(pr) (suitably localized) and products of 
countable wedges of known spaces whose structure may be read off the behav­
ior of Bockstein spectral sequence. A similar result holds for opn (pr). The 
comparison of the homotopy and homology Bockstein spectral sequences via 
the Hurewicz homomorphism allows one to obtain representative mappings that 
go into the construction of the homotopy equivalences. Finally, the decomposi­
tions are used to establish the inductive argument that goes from the theorem of 
[Selick78], that p annihilates the p-component (p)7rk(S3) for k i= 3 and p > 3, 
to prove the following result. 

Theorem 10.32. lfp> 3, and n > 0, then pn+l annihilates (p)7rk(S2n+l )'/or 
all k > 2n + 1. 

The final generalization of the Bockstein spectral sequence that we present 
is best framed in the language of spectra and generalized cohomology theories. 
If X is a spectrum and f: X ---+ X is a selfmap of degree k, then we can form 
the cofibre of f in the category of spectra and obtain an exact couple: 

f* [W, Xl -----'-----------7 [W, Xl 

~ / 
[W, cofibre(J) 1 

The mapping f may be thought of as a cohomology operation and [W, Xl = 

X*(W) as the value of the associated generalized cohomology theory on W. 
If X = HIl, the Eilenberg-Mac Lane spectrum for integer coefficients, and f 
represents the times p map, then the cofibre represents the Eilenberg-Mac Lane 
spectrum HIFp and we obtain the usual Bockstein spectral sequence. 

Let k(n)*( ) denote the generalized cohomology functor known as con­
nective Morava K-theory (see the work of [Wurgler77] for the definition and 
properties). This theory has certain remarkable properties: 

(1) k(n)*(point) ~ IFp[vnl where Vn has degree _2pn + 2. 
(2) k(n)*(W) has a direct sum decomposition into summands IFp[vnl and 

IFp[vnl/(v~). 

Property (2) is analogous to the result for a finitely generated abelian group 
modulo torsion away from a prime p where the summands are Il and ll/psll. 
We choose the mapping of the representing spectrum for Morava K-theory that 
induces the times Vn map. The cofibre is represented by HIF p and the exact 
couple for a finite H -space X may be presented as 

k(n)*(X) ___ - ___ XV...:.::...n ------+k(n)*(X) 

~ / 
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where Pn is mod Vn reduction. The Bockstein spectral sequence in this case 
has Br = H* (X; IF p) and the first differential d1 is identifiable with Q n, the 
Milnor primitive in Agual ([Milnor58], [Kane86]). The limit term, Boo, is given 
by (k*(n)(X)jvn-torsion) ®JFp[vnJ IFp- The vn-torsion subgroup of k(n)*(X) 
consists of elements annihilated by some power of Vn . [Johnson, D73] identi­
fied this spectral sequence with an Atiyah-Hirzebruch spectral sequence (Theo­
rem 11.16). It follows from this observation that the spectral sequence supports 
a commutative and associative multiplication. [Kane86] developed many prop­
erties of this spectral sequence for the prime 2 including a notion of infinite 
implications that played a key role in a proof of Theorem 10.27. [Kane86] 
conjectured that, for a mod 2 finite H-space (X, /-1, e), the Bockstein spectral 
sequence for Morava K-theory should satisfy the following two properties: 

(1) The even degree algebra generators of H* (X; IF 2) can be chosen to be 
permanent cycles in B r . 

(2) In degrees greater than or equal to 2n + 1, the even degree generators can 
be chosen to be boundaries in B r . 

If these conjectures were to hold, a simple proof of the absence of 2-torsion in 
H*(nX) for a mod 2 finite H-space (X, /-1, e) would be possible (as outlined 
by [Kane86]). 

Exercises 

10.1. Show that the condition, Hodd(nG; k) = {O} for all fields k, implies that 
H* (nG) is torsion-free. 

10.2. Prove that a commutative, associative Hopf algebra over a field of characteristic 
zero that is generated by odd-dimensional generators is an exterior algebra. 

10.3. From the structure of H* (l1tpn; IF 2) as a module over the Steenrod algebra, 
determine completely the mod 2 Bockstein spectral sequence for l1tpn. 

lOA. The mod 2 cohomology of the exceptional Lie group G2 is given by 

The rational cohomology of G2 is given by H*( G2 ; QJ) ~ A(X3, Xll). From 
these data determine the mod 2 Bockstein spectral sequence for G2 . 

10.5. Prove Proposition 10.S and Lemma 10.9. 

10.6. Prove the analogue of Corollary 10.14 for K(Zj2kZ, n). 

10.7. Suppose X is an H-space and 7r: X ----+ X a covering space of X. Then 
X is an H-space and 7r a multiplicative mapping. Use the Cartan-Leray spectral 
sequence (Theorem Sbis .9) which is a spectral sequence of Hopf algebras in this 
case to prove that if X is a mod p finite H-space, then X is a mod p finite H-space 
([Browder59]). 
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10.8. Show that if A' is a normal sub-Hopf algebra of the Hopf algebra A, then 
there is a diagram of short exact sequences: 

0------7 Prim(A') ------7 Prim(A) ------7 Prim(AjjA') 

1 1 1 
Q(A') ------+ Q(A) ------+ Q(AjjA'). 

Use this fact to give a complete proof of Theorem 10.25. 

10.9. Show that the universal examples of K(7Ljpk 7L, n), for k > 0, and K(7L, n) 
lead to the spikes and differentials in the Adams spectral sequence as predicted by 
Theorem 10.29. 

10.10. Suppose that M is compact, closed manifold (or more generally a Poincare 
duality space). If M has dimension 4m + 1, then prove the following result due 
to [Browder62']: either (1) H2m(M) ~ FEEl T EEl T, where F is a free abelian 
group and T is a torsion group, or (2) H2m(M) ~ FEEl T EEl T EEl 7Lj27L and in 
this case, Sq2m: H2m+l(Mi lF2 ) ---+ H4m+l(Mi lF2 ) is nonzero. 
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11 

More Spectral Sequences in Topology 

"Topologists commonly refer to this apparatus as 
'machinery' ." 

1. F. Adams 

The examples developed in Chapters S through 10 by no means exhaust 
the significant appearances of spectral sequences in mathematics. A recent 
search on the keyword spectral sequence in the database MATHSCINET 
delivered more than 2800 reviews in which the words are mentioned. In this 
chapter and the next, we present a kind of catalogue, by no means complete 
or self-contained, meant to offer the reader a glimpse of the scope of the ap­
plications of spectral sequences. (Similar catalogues are found in the books 
of [Griffiths-Harris78], [Benson91], [WeibeI94], and the fundamental paper of 
[Boardman99].) I hope that the reader will find a useful example in this collec­
tion or at least the sense in which spectral sequences can be applied in his or 
her field of interest. The algebraic foundations supplied in Chapters 1, 2, and 3 
are sufficient to understand the constructions found in the cited references. 

In this chapter we concentrate on diverse applications of spectral sequences 
in algebraic and differential topology. The examples are organized loosely 
under the rubricks of spectral sequences associated to a mapping or space of 
mappings (§ 11.1), spectral sequences derived for the computation of generalized 
homology and cohomology theories (§ 11.2), other Adams spectral sequences 
(§ 11.3), spectral sequences that playa role in equivariant homotopy theory 
(§11.4), and finally, miscellaneous examples (§I1.S). 

11.1 Spectral sequences for mappings and spaces of mappings 

The Leray-Serre spectral sequence is associated to a fibration, 7r: E -+ B. 
Its success owes much to the right definition of fibration, due to [SerreS 1]. In 
this section we discuss some spectral sequences also associated to particular 
types of mappings or to spaces of mappings. 

We first consider the dual of a fibration and present two spectral sequences 
related to cofibrations. The first is due to [Quillen69] and appears in his foun­
dational paper on rational homotopy theory. The key piece of structure in the 
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following theorem is the fact that the rational homotopy groups 7r*(OX) ® IQl 
form a graded Lie algebra with the product induced by the Samelson product. 
The following is a kind of dual to the rational Leray-Serre spectral sequence. 

Theorem 11.1. Suppose A ---+ X ---+ X j A is a co fib ration sequence. Then there 
is a spectral sequence of graded Lie algebras with 

and converging to 7r*(OX) ® 1Ql. Here f! V f!' is the direct sum of the graded Lie 
algebras f! and t. 

[Neumann99] has given a parallel derivation of an analogous spectral sequence 
for loops on a cofibre sequence by filtering the cobar construction. 

The next spectral sequence is roughly dual to the homology Eilenberg­
Moore spectral sequence of §7.4. The derivation is due to [Barratt62] and the 
spectral sequence generalizes the suspension phenomena that occur in the E H P 
sequence of [Whitehead, GW53]. 

Theorem 11.2 (the Barratt spectral sequence). Given a co fibration sequence 
A ---+ X ---+ X j A, there is a spectral sequence with 

{ 

7rq(X), ifp = 0, 

Ef,q ~ 7rq+2(XjA), ifp = 1, 

7r2p+q(XjA V SA V··· V SA), ifp> 1, 
'-v-" 

p-I times 
where 7r*(XjA V SA V··· V SA) C 7r*(XjA V SA V··· V SA) is the subgroup 
of cross terms. The spectral sequence converges to 7r * (A). 

[Barratt62] studied dl and showed that the E 2 -term of this spectral sequence 
can be expressed in terms of the cohomology of an analyzer as defined by 
[Lazard55]. Generalizations of and computations using this spectral sequence 
are found in work of [Goerss93]. 

Just as the Ktinneth spectral sequence generalizes the Ktinneth theorem, 
other classical constructions in homotopy theory admit a generalization by a 
spectral sequence. A tool in deriving these generalizations is a result due to 
[Quillen66]. 

Theorem 11.3. Let A •• denote a bisimplicial group. There is a natural first 
quadrant spectral sequence of homological type with E;,q ~ 7r;7r~ (A •• ) and 
converging to 7rp+q(~A •• ), where ~A •• is the diagonal simplicial group with 
(~A •• )n = Ann. 
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The vertical homotopy groups 7r~ (A •• ) denote the homotopy groups of the 
simplicial groups An., and the resulting groups form another simplicial group 
whose homotopy groups are the horizontal groups 7r;7r~ (A •• ). 

When the bisimplicial group A •• = (GX). * (GY)., for spaces X and 
Y, G the loop group functor of [KanSS], and * the free product of groups, then 
[HirschhomS7] has analyzed the resulting spectral sequence: 

Theorem 11.4. For spaces X and Y, there is a natural first quadrant spectral 
sequence of homological type, converging to 7r*(X V Y). When Y is (n - 1)­
connected, E;,o ~ 7rp+l(X) and E;,q ~ Hp(nX;7rq+l(Y)) for 1 ~ q ~ 
2n - 3. If X is (k - I)-connected, then E6,q ~ 7rq+l (Y), and E;,q = {O} for 
1 ~ p ~ k - 2. 

More can be said in this case by adding the subtleties that are organized 
by the notion of a II-algebra, introduced by Kan and developed by [StoverSS]. 
The homotopy groups of a space X, as a graded set, enjoy the action by the 
primary homotopy operations, namely, 

(1) Composition: a E 7rr(X) f--+ a 0 ( E 7rk(X) where ( E 7rk(sr) and 
k>r>1. 

(2) Whitehead products: [a,,6J E 7rp+q-l (X) for any a E 7rp(X), ,6 E 
7rq(X); elements of the form [AJa - a E r;'(7rr(X)) where [AJ E 
7r = 7rl(X) and a E 7rr(X) (see Chapter Sbis); and commutators 
[a,,6J = a,6a-1,6-1 E 7rl(X), fora,,6 E 7rl(X). 

The free objects in the category of II -algebras correspond to wedge prod­
ucts of spheres. A simplicial resolution of a space X, V.X may be constructed 
whose homotopy groups constitute a free II -algebra resolution of the homotopy 
of a space. Forming the wedge product V.X V V.Y, [Stover90] proved the 
following generalization of the van Kampen theorem. 

Theorem 11.5. There is a naturalfirst quadrant spectral sequence ofhomolog­
ical type, converging strongly to 7r*(X V Y), with E;,* ~ Dp(7r*(X), 7r*(Y)), 
where Do denotes the coproduct of 7r * (X) and 7r * (Y) in the category of II­
algebras, and Dp is the pth derived functor of the coproduct functor. 

The van Kampen theorem follows from the lower left comer of the spectral 
sequence where 7rl (X V Y) ~ Eoi ~ E6 1 ~ 7rl (X) * 7rl (Y), as expected. , , 

If we view the resolution of [Stover90] as a bisimplicial set, then, for a 
commutative ring with unit R, the functor X f--+ RX of [Bousfield-Kann] 
may be applied to V.X to obtain a bisimplicial R-module RV.X. The spectral 
sequence of [Quillen66] leads to the Hurewicz spectral sequence introduced by 
[Blanc90]: 
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Theorem 11.6. Given a pointed, connected space X and a ring R, there 
is a spectral sequence that converges strongly to H*(Xi R), with E;, k ~ 
Ln(Qk( -) ® R)C7r*(X)). Here Ln denotes the derivedfunctors ofthefu~ctor 
Qk( -) ® R on IT-algebras that associates to the IT-algebra 7r * (X) the quotient 
7r*(X)/P(7r*(X)) for P(7r*(X)) the subgroup generated by the image of the 
primary homotopy operations. 

The edge homomorphism E6 * ---++ Eo* C H*(Xi R) is given by the , , 
R-Hurewicz homomorphism Q(7r*(X)) ® R ---+ H*(Xi R). By developing 
the homological algebra of the category of IT-algebras, [Blanc90] showed that 
the E2-term has a vanishing line of slope 112. [Blanc94] enriched this spectral 
sequence by considering operations on resolutions in abelian categories. He 
computed the case of X = K(71/271, n) and was able to relate the differen­
tial d2 to Toda brackets. An interesting corollary of the new operations is a 
nonrealization result: There is no space X with 7r*(X) ~ 7r*(sr) ® 7l/271 as 
IT-algebras for r ;::: 6. 

The next examples of spectral sequences apply to the problem of computing 
the homotopy groups of spaces of mappings. Given spaces X and Y, endow 
the set of continuous functions from X to Y, denoted map (X, Y), with the 
compact-open topology. Suppose f: X ---+ Y is a choice of mapping as a 
basepoint in map (X, Y). The following theorem is due to [Federer56]. 

Theorem 11.7 (the Federer spectral sequence). Suppose X is ajinite dimen­
sional CW-complex and Y is a space on which the fundamental group acts 
trivially on the higher homotopy groups. Then there is a spectral sequence with 

converging to 7r*(map(X, Y), 1). 

Federer applied the spectral sequence to the cases Y = K (7r, m) and Y = sm. 
[Smith, S98] investigated the Federer spectral sequence in rational homotopy 
theory where models for spaces can be taken to be algebraic objects, such as the 
Quillen model given by a free Lie algebra. In this context [Smith, S98] made 
some explicit computations with surprising corollaries about the inequality of 
homotopy types of components of a mapping space in the general case. 

When X and Y have the homotopy type of CW-complexes, there is a 
natural mapping in the category of IT -algebras 

which is an isomorphism when X has the homotopy type of a wedge of spheres. 
In the general case, there is a spectral sequence that relates 7r* (mapj (X, Y)) 
and hom~* (f) (7r * (X), 7r * (Y)) due to [Dwyer-Kan-Smith, I-Stover94]. 
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Theorem 11.8. Let X andY have the homotopy type ofCW-complexes. There is 

a second quadrant spectral sequence with E~,q ~ hom~*r) (7r*(X), 7r*(Y) )q, 
for q ;::: p ;::: 1, converging conditionally to 7r * (map j (X, Y)). The edge homo­
morphism for this spectral sequence is the natural homomorphism b. 

Here hom~*~~)(7r*(X), 7r*(Y)) = hom~*(f)(7r*(X), 7r*(Y)), the hom­

set functor in the category of II -algebras, and the functor homll 
(p) is the pth 

derived functor of homII
( -, 7r*(Y)). When Y has only finitely many non­

trivial homotopy groups, or 7r*(X) has finite cohomological dimension as a 
II-algebra, then the authors show that the spectral sequence converges strongly 
to 7r* (mapj (X, Y)). 

Another source of examples of spectral sequences is the problem of com­
puting the homology or cohomology of mapping spaces. The particular case 
of pointed maps of spheres, onx = map((sn, ed, (X, xo)), was solved by 
[Adams 56] for the functor X f--+ OX with the introduction ofthe cobar construc­
tion and its associated spectral sequence. [Baues9S] has developed the structure 
of the cobar construction further so that it may be iterated (compare the work 
of [Drachman67] and [Smith, Ju94]). The homology Eilenberg-Moore spectral 
sequence (Chapter 7) provides a generalization of the cobar construction. Using 
cosimplicial methods, [Anderson72] constructed a spectral sequence that may 
be used to compute H*(map(X, Y)): 

Theorem 11.9. Given a Kan complex Y and a finite CW-complex X for 
which the connectivity of Y is greater than or equal to the dimension of X, 
there is a spectral sequence, converging to H*(map(X, Y)), with E;,q ~ 
Hq(X; Hp(Y)). 

A complete proof of this theorem and some considerable generalizations are 
given by [Bendersky-Gitler91], who show how configuration spaces appear in 
the computation of the El -terms of the associated spectral sequences and relate 
these results to the computation of the Gelfand-Fuks cohomology of manifolds. 
[BousfieldS7] greatly generalized the construction of [Anderson72] by deriving 
a dual version of the Bousfield-Kan spectral sequence (Theorem Sbis .37) for 
homology. 

Unstable Adams spectral sequences 

The existence of the Adams spectral sequence to compute the stable ho­
motopy groups of a space leads one to wonder if similar machinery can be 
constructed to compute [X, Yj or 7r*(X), the unstable sets of mappings. In this 
section we present several variants of the unstable Adams spectral sequence 
that converge to these unstable homotopy groups. 

In the next theorem, the information that determines all of the homotopy of 
a simply-connected space, its Postnikov system, is used to obtain the homology 
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of the space. Introduced by [Kahn, DW66], the spectral sequence provides a 
kind of dual to the Adams spectral sequence. 

Theorem 11.10. Let X be a space of the homotopy type of a I-connected, 
countable CW-complex. There is a spectral sequence, converging to H*(X), 
with E1-term partially given by E~,q ~ Hp+q(K( Jrp(X),p)) for 0 ~ q ~ p. 

Though practically incalculable, this spectral sequence enjoys many ge­
ometric features that make it a useful tool. For example, the first differential, 
d1 , can be interpreted in terms of the k-invariants of the space. Also the edge 
homomorphism is the Hurewicz homomorphism. [Kahn, DW66] developed 
this spectral sequence in order to study composition products in Jr~ and it was 
used in this context by [Cohen, J68] to prove his celebrated theorem on the de­
composition of the stable homotopy groups of spheres in terms of Toda brackets 
of Hopf maps. 

The first spectral sequence to generalize the Adams spectral sequence 
to unstable computations is due to [Massey-Peterson67]. The construction is 
based upon their study of the cohomology of spaces satisfying a certain algebraic 
condition. The action of the mod 2 Steenrod algebra, .,42, on H* (X; IF 2) satisfies 
the unstable axioms; (U 1) Sqn x = x 2, if deg x = n, and (U2) Sqn x = 0 
if n > deg x. Suppose M is a module over .,42 such that (U2) holds for 
M. We define an algebra U(M), satisfying the unstable axioms, by letting 
U (M) be the quotient of the tensor algebra on M modulo the relations of 
graded commutativity and Sqnx = x 2 for deg x = n. If X is a space and 
H* (X; IF 2) = U (M) for some unstable .,42 -module M, then we say that X is 
very nice (following [Bousfield-Curtis70]). 

Theorem 11.11. Suppose Y is a simply-connected, very nice space with 
H*(X; IF 2) = U(M). If K is ajinite complex, then there is spectral sequence, 
converging to (2) [sm K, Yj for m > 1, with 

E~,q ~ Unextp,q(M,H*(K;IF2)), 

the extension functor derived from Hom(M, -) in the category of unstable 
modules over the Steenrod algebra. 

For K = * and Y = s2n+\ this spectral sequence can be applied to 
compute (2) Jr * (S2n+ 1 ). However, the calculation of the unstable Ext groups 
remains difficult, if not intractable. This spectral sequence was developed for 
odd primes by [Barcus68] and further properties, like a vanishing line, have 
been proved by [Bousfield70]. 

For more general spaces, we tum to simplicial methods to compute Jr * (X). 
If X is a simplicial set, then there is a simplicial free group, G X, that is 
a model for the loop space on the realization of X, n IX I. It follows that 
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7ri(X) ~ 7ri-l (GX). For any simplicial group, W., there is a filtration of W., 
given by the lower central series in W.: 

where r 2 W. = [W., W.] and r n W. = [r n-l W., W.]. 
[Curtis65] introduced a spectral sequence based on this filtration of G X 

and converging to 7r*(X); [Rector66] generalized this with the mod plower 
central series and he obtained a spectral sequence converging to (p)7r*(X). 
Finally, [Bousfield et al.66] (a group of six authors; A.K. Bousfield, E.B. Curtis, 
D.M. Kan, D.G. Quillen, D.L. Rector, and J.w. Schlesinger, then at MIT) 
analyzed Rector's spectral sequence to prove the following result. 

Theorem 11.12 (the A-algebra). Let (A, d) denote the associative differential 
graded algebra with unit given by 

(1) A is generated by {Ai Ii = 0,1, ... } with deg Ai = i. 
(2) Products are subject to the relations that follow from 

i;::: O,n;::: 0. 

(3) The differential is given by 

n;::: 0. 

Then there is a spectral sequence with (El' dl ) ~ (A, d) converging to (2)7r~. 
If I = (iI, ... ,ir), then I is said to be admissible if2is ;::: is+dor 1 ~ s < r. 
Let AI = Ai! ... Air; we say that AI is an admissible monomial if I is admissible. 
Let A( n) be generated by admissible monomials with i l < n. There is a spectral 
sequence with (El (n), dl (n)) ~ (A(n), dIA(n») converging to (2)7r*(sn). 

The odd primary version of the A-algebra was also given by [Bousfield 
et a1.66] (and corrected by [Bousfield-Kann]). Furthermore, by writing the 
adjoint of the Steenrod algebra action as 

Hn(XiIF2) = Hom(Hn(Xi IF2),IF2) 

-----+: Hom(Hn- i (Xi IF 2),IF2) = Hn- i (Xi IF 2), 
(Sqi)dual 

there is a differential on H * (X i IF 2) ® A that gives the Er term of a spectral 
sequence converging to (2)7r~ (X) (see [Bousfield et al.66]). Extensive calcu­
lations of the unstable homotopy groups of spheres using the A-algebra were 
done by [Whitehead, GW70] and [Tangora85].) 
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A special case of the Bousfield-Kan spectral sequence (Theorem Sbis .37) 
for a ring R gives a general spectral sequence converging to the homotopy 
groups of Roo X , the R-completion of X under good conditions. When R = IF p, 

IF pooX is the mod p completion of X when X is mod p good, and 7r * (IF pooX) = 

7r * (X) ® Z(p), where Z(p) denotes the p-adic integers. 

Theorem 11.13. For an IFp-good space X, there is a spectral sequence with 

and converging to 7r*(X) ® Z(p). 

The E 2 -term is expressed in terms of the 'derived' functors of the functor 
Hom in the category of unstable coalgebras over Ap. Since this category is 
not abelian, we must take the derived functors of Hom in the extended sense of 
[Andre67]. The spectral sequence was derived and developed by [Bousfield­
Kann']. In the case of the homotopy groups of a mapping space, [Goerss90] has 
made considerable progress in identifying the E 2-term of this spectral sequence 
using Andre-Quillen cohomology. 

The (co)simplicial techniques of [Bousfield-Kann] can be generalized 
to derive an unstable Adams spectral sequence associated to the spectrum BP 
([Bendersky-Curtis-Miller7S]). 

Finally, we mention a spectral sequence that relates the unstable homotopy 
groups of spheres and the stable groups. [James 56] identified a fibration of 
spaces localized at the prime 2: 

whose long exact sequence of homotopy groups, the EHP sequence, is given 
by 

[Toda62] extended the EHP sequence to odd primes by introducing p primary 
fibrations 

where s2n is a modified version of the 2n-sphere that has p - 1 cells, one in 
each dimension divisible by 2n up to 2n(p - 1). 

The exact couple associated to the resulting long exact sequences of ho­
motopy groups gives the EHP spectral sequence: 
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Theorem 11.14. There are spectral sequences for each prime p, converging to 
(p)7r~, indexed so that dr : E~,n --+ E~-l,n-r, and with E1-terms given by 

E~,n ~ (2)7rn+k(s2n-l) for p = 2, 

E l rv (s2mp+l) El rv (s2mp-l) fi dd k,2m+l = (p) 7r2m+l+k , k,2m = (p)7r2m+k , or p, 0 . 

[Toda62] was able to compute 7r n+k (sn) through a range of nand k using the 
EHP sequence inductively, together with the secondary composition operations 
(the Toda bracket) that he introduced. The EHP spectral sequence ties together 
all of the EHP sequences and codifies the 'birth' and 'death' of elements in the 
homotopy groups of spheres-an element in 7r~ is represented in the E1-term by 
the Hopf invariant of the a maximal desuspension of the element; each differen­
tial represents a Whitehead product. The EHP sequence may be approached at 
an algebraic level through the A-algebra (see the work of [Whitehead, GW70], 
[Singer75], [Lin, WH92], and [Mahowald-Thompson95]). A thorough discus­
sion of the EHP spectral sequence may be found in [RaveneI86, §1.5]. 

11.2 Spectral sequences and spectra 

The focus of this book has been on the computation of the classical homo­
topy invariants of a space--{)rdinary homology, cohomology, and homotopy 
groups. However, there are many other homotopy invariants associated to 
a space-in particular, there are the generalized homology and cohomology 
functors. These functors satisfy all but one of the Eilenberg-Steenrod axioms 
for a homology or cohomology theory. 

[Brown, E62] proved that the generalized cohomology functors, X f---+ 

E*(X), were representable, that is, for each n, there is a space, W n, such that 
En(x) = [X, W n]. This generalizes the fact that the ordinary cohomology 
groups are represented by the Eilenberg-Mac Lane spaces. The system of 
spaces, {Wi}, satisfies certain relations that had been identified by [Lima58] and 
[Whitehead, GW62]. In particular, they constitute a spectrum (Definition 9.28). 

Definition 11.15. Given a spectrum E = {En}, with structure mappings 

{en: SEn -=. En+d, the generalized cohomology theory associated to E 
of a space X, is denoted by E*(X) and defined by En(x) = [X, En]. The 
generalized homology theory associated to E is denoted E*(X) and defined 
by Ek(X) = limn,en 7rn+k(Ek !\ X). The coefficients of the generalized 
theories determined by E are given by the graded group Ek (*) ~ Ek (*) = 

limn,en 7rn+k(En). The analogue of the Steenrod algebra for the cohomology 
theory E*( -) is the algebra, E* E, (E* E)r = limn,eJEn+r , En]. 

Generalized homology and cohomology theories satisfy most of the axioms 
of Eilenberg-Steenrod for homology and cohomology; the exception is the 
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coefficient axiom. A further axiom, the wedge axiom may be introduced: If X is 
a (possibly infinite) wedge of spaces, X = Va Y"" then E*(X) ~ TIa E*(Ya) 
and E*(X) ~ EBa E*(Ya). A generalized theory is said to be connective if 
there is an integer N such that Ek = {O} for all k < N. 

How do we compute E*(X) for a given space X? The most general 
answer to this question is a spectral sequence relating the classical invariants 
of the space X and the coefficients of the theory E*( -) to E*(X). The first 
published version is due to [Atiyah-Hirzebruch69], though the spectral sequence 
was known to exist by G.W. Whitehead and by E.L. Lima. 

11.16 (the Atiyah-Hirzebruch spectral sequence). Suppose E is a spectrum 
and X is a space of the homotopy type of a CW-complex. Then there are 
half-plane spectral sequences with 

converging conditionally to E*(X) and strongly to E*(X), respectively. 

The construction is based on the cell decomposition and is similar to 
the proof of Theorem 4.13. [Davis-Ltick98] have generalized the Atiyah­
Hirzebruch spectral sequence to the framework of spectra over a category, which 
allows one to use it in many contexts including equivariant homotopy theory, 
and for algebraic K-theory. 

The classic book of [Adams74] is a good starting place for the study of 
spectra. Other good references include [Switzer75], [Margolis83], [RaveneI92], 
and [Kochman96]. 

In the special case of X = BG, G a finite group, andE* = KU*,complex 
K-theory, the computation of KU*(BG) is aided by the interpretation of its 
input ([Atiyah61]): 

Theorem 11.17. For G ajinite group, there is a spectral sequence with E2 ~ 
H*(G) and converging strongly to KU*(BG). 

The input of the spectral sequence is the cohomology of the group G with 
coefficients in the trivial G-module LI::, an algebraic invariant of the group. A 
filtration of the complex representation ring of the group G leads to the same 
associated graded ring for KU* (BG) related by interpreting representations as 
vector bundles. The result shows that the complex K-theory of BG is given by 
the completion of the representation ring of G with respect to this filtration. 

The Atiyah-Hirzebruch spectral sequence also plays a key role in compu­
tations of the homotopy groups of spheres. In this case the spectrum E is the 
sphere spectrum and the space X is replaced by a spectrum X. The E2 -term 
is given by H*(X; 7rf) and the spectral sequence converges to 7r*(X). [Cohen, 
J68] used this when X = KLI::, the integral Eilenberg-Mac Lane spectrum. Then 
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7r~(K;;Z) ~ H*(SO) determines a sparse target for the spectral sequence and 
the homology of the Eilenberg-Mac Lane spaces is well-known, so computa­
tions of 7r~, the coefficient ring for the sphere spectrum may be made. This 
becomes cumbersome quickly, however. [Kochman90] applied this technique 
for X = BP, the (mod 2) Brown-Peterson spectrum for which both H*(BP) and 
7r*(BP) are well-known and algebraically tractable. Furthermore, it is known 
that the Hurewicz homomorphism h: 7r * (BP) ---+ H* (BP) is a monomorphism 
and so E:;:"o ~ h(7rn (BP)) is also known. [Kochman90] pushed the calculation 
of (2)7r~ t~ n ~ 66 by automating the computation. [Ray72] used this method 
with X = MSU and MSp instead of the sphere spectrum. Since MSp * (MSU) 
and H*(MSU) are known, [Ray72] was able to compute MSPk for k ~ 19. 

Finally, we mention work of [Arlettaz92] analyzing the differentials in 
the Atiyah-Hirzebruch spectral sequence. He proved that there are integers 
Rr such that Rrd~ t = 0 for all r ;::: 2, s and t for any connected space X. 
The key ingredient of the proof is the structure of the integral homology of 
Eilenberg-Mac Lane spectra. 

By exploiting the analogue of the Steenrod algebra for a generalized coho­
mology theory, [Novikov67] generalized the Adams spectral sequence to other 
cohomology theories. We will discuss this advance separately. 

A spectrum equipped with a multiplication, J.1: E !\ E ---+ E, (here J.1 is a 
map of spectra where the smash product is appropriately defined) is called a ring 
spectrum. If F is another spectrum and there is a mapping of spectra '¢: E !\ 
F ---+ F with good properties, then we say that F is an E-module spectrum 
([Elmendorf-Kriz-Mandell-May95]). The following theorem generalizes the 
Universal Coefficient theorem. 

Theorem 11.18 (the Universal Coefficient spectral sequence). Suppose E is 
a ring spectrum, F is an E-module spectrum, and X is a space. Under certain 
conditions, there are spectral sequences with 

converging to F*(X) and to F*(X), respectively. 

For appropriate conditions, the reader can consult the book of [Adams69] 
or the paper of [Boardman99] where there is a derivation and applications of 
this spectral sequence. The unstated technical conditions are satisfied by many 
of the geometric spectra (the sphere spectrum, mod p Eilenberg-Mac Lane 
spectrum, the Thorn spectra MO, MU, MSp, and the K-theory spectra EU and 
EO) and this leads to many interesting applications. 

Another approach to the computation of E* (X) is via the Adams spectral 
sequence. We can carefully define the spectrum E !\ X whose homotopy groups 
are analyzed in the same manner as the stable homotopy groups of a space. This 
approach figures in the classical computation of MU* of [Milnor60] that has 
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served as a paradigm for many computations of generalized homology (for 
example, [Davis78], [Davis et a1.86], [McClure-Staffeldt93]). 

For a generalized homology theory E* ( - ) and a fibration 7r: Y ---+ B with 
fibre F, there is a version of the Leray-Serre spectral sequence that at once 
generalizes the classical spectral sequence for singular theory and the Atiyah­
Hirzebruch spectral sequence. (One can consult the book of [Switzer75] for a 
derivation.) 

Theorem 11.19. Given a generalized homology theory E* ( -) that satisfies 

the wedge axiom Jor CW-complexes and a fibration F "--+ Y .:.. B that is 
orientable with respect to the theory Jor which B is connected, there is a spectral 
sequence, natural with respect to maps oj fibrations, converging to E* (Y), and 
with E;,q ~ Hp(B; Eq(F)). 

There is also a version of the Eilenberg-Moore spectral sequence for gen­
eralized theories that was set up by [Hodgkin75] and [Smith, L70] (see §8.3). 
For this spectral sequence to have an identifiable E 2 -term and to converge, how­
ever, many conditions must be placed on the generalized theory. In their study 
of the K-theory of p-compact homogeneous spaces, [Jeanerret-Osse99] gave a 
tidy statement of a useful case of this tool: 

Theorem 11.20. Suppose E* ( -) is a generalized, multiplicative, cohomology 
theory such that E* (*) is a graded field. Suppose B is connected and 

XxBY X 

1 lp 
Y -----:-f---+ B 

is a pullback diagram. Then there is a spectral sequence oj algebras, compatible 
with the stable operations associated to E* ( - ), with 

. ~-i 

E~'* ~ TorE*(B)(E*(X),E*(Y)) 

where fcrr- i 
denotes the ith derived Junctor oj the completed tensor product. 

When p: X ---+ B is a fibration and E*(nB) is isomorphic to an exterior 
algebra on odd degree generators, the spectral sequence converges strongly to 
E*(X XB Y). 

The main examples considered by [J eanneret -Osse99] are p-compact groups 
and E*( -) = H*( -; k), KU*( -; ZjpZ), or K(n)*( -) for which these hy­
potheses are appropriate. [Tanabe95] has also applied a version of the Eilenberg­
Moore spectral sequence for generalized theories to compute the Morava K­
theories of Cheval ley groups. [Seymour78] also studied the convergence ques­
tion for generalized theories under more general circumstances. 
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We close this section with a spectral sequence that computes an invariant 
of a spectrum E = {En}, its mod p stable homology, 

Suppose E = {En} is an Omega-spectrum, that is, En ~ OEn+l, and that 
E is (-1)-connected, that is En is (n - 1)-connected for all n ;::: O. In this 
case, the space Eo is an infinite loop space; Eo ~ OE1 ~ 0 2 E2 ~ .... The 
mod p homology of an infinite loop space is endowed with the action of the 
Dyer-Lashof algebra, ar ([Araki-Kud056], [Dyer-Lashof62]). 

Let Q( -) denote the functor that assigns the space of indecomposables to 
an algebra. 

Theorem 11.21 (the Miller spectral sequence). Given an Omega-spectrum 
{En} that is ( -1 )-connected, there is a spectral sequence with 

the left derived functors ofIFp ®eR Q( -), and converging to H~(E; IFp). 

[Miller78] analyzed the left derived functors in the theorem and expressed 
them in terms of an unstable Tor functor. The spectral sequence has been 
applied by [Kraines-Lada82] and [Kuhn82]. 

11.3 Other Adams spectral sequences 

The Adams spectral sequence begins with the algebraic information en­
coding the action of the Steenrod algebra on the cohomology of the spaces 
involved. The output is geometric-the groups of stable mappings between 
the spaces. The construction presented in Chapter 9 is based on the proper­
ties of mod p cohomology and focuses on the Eilenberg-Mac Lane spaces for 
their homological properties on cohomology. [Adams66] introduced a variant 
of the Adams spectral sequence based on K-theory and posed the question of 
the existence of an Adams spectral sequence for any generalized cohomology 
theory. [Novikov67] introduced the appropriate generalization and applied it to 
the spectrum MU representing complex cobordism. 

Theorem 11.22 (the Adams-Novikov spectral sequence). Suppose E is a spec­
trum and E* (E) is fiat as a right module over E* (*). Suppose further that E is 
a direct limit offinite spectra that satisfy good duality properties, then there is 
a spectral sequence with 
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and converging to 7r~. In particular, this theorem holdsjor the sphere spectrum, 
the Thom spectra MO, MU, MSp and the connective K-theory spectra, bu and 
boo 

For the full generality of the Adams spectral sequence (which converges 
to a subgroup of {Y, Xh), one needs to introduce the localization of the stable 
group {Y, X}* with respect to the generalized theory E*. The details of this 
localization are due to [Bousfield75] and a complete derivation of the spectral 
sequence is presented in [RaveneI86]. 

When we consider MU one prime at a time, then we are led to consider 
the localization MU(p) in Novikov's variant of the Adams spectral sequence. 
[Quillen69"] showed that the mod p part of the MU spectrum splits into a wedge 
of suspensions of another mod p spectrum, constructed by [Brown-Peterson66], 
now denoted by BP; in particular, there is a retraction MU(p) ---+ BP and so 
Theorem 11.22 may be localized mod p: 

Theorem 11.23. There is a spectral sequence with 

converging to (p)7r~. 

The algebraic properties of this spectrum and the algebra of operations 
associated to it are considerably more manageable than the analogous case of the 
Steenrod algebra. In particular, BP * ( *) ~ il(p) [VI, . .. ,vt, . .. J, a polynomial 
algebra on generators Vi E BP2pi_2, and BP * (BP) ~ BP*( * )[t1, ... ,tn ,·· .J 
where ti E BP2pi_2(BP). The subsequent further structnre that has been 
developed for the E 2-term of the associated Adams-N ovikov spectral sequence 
has led to great deal of progress in the understanding of the stable groups 
(p)7r~ (see, for example, the papers of [Thomas-Zahler74], [Miller-Ravenel­
Wilson77], and [Devinatz-Hopkins-Smith88]). For a good introduction to this 
point of view, see the books of [RaveneI86] and [Kochman96]. 

Another consequence of the study of formal group laws is the possibil­
ity of constructing new cohomology theories with particular rings of coeffi­
cients as E* (* ). The principal theorem in such constructions is the Landwe­
ber exact functor theorem ([Landweber76]). Of particular interest is the case 
of elliptic homology, Ell*(X) = Ell*(*) Q9MU* MU*(X) where Ell*(*) ~ 
il[I/6][8,c,~-IJ where ~ = (1/1728)(83 - c2), with 8 EElls, c E Elh2 
and ~ E E1l24. This ring is isomorphic to the ring of modular fonns of level 1 
and there is a genus MU* (*) ---+ Ell* (*) giving the module structure. The ring 
of cooperations has been worked out by [Clarke-Johnson92] and so the input 
for the Adams-Novikov spectral sequence is known. [Hopkins95], [Laures99], 
and [Baker99] have used methods from number theory to identify parts of the 
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E 2-term of the spectral sequence converging to the stable stems. This gives in­
formation in both directions-number theory to topology, and stable homotopy 
to number theory. 

11.4 Spectral sequences in equivariant homotopy theory 

Suppose that G is a topological group of the homotopy type of a CW­
complex and X is a space on which G acts. The equivariant cohomology of 
X is defined using the Borel construction ([BoreI60]): 

Hc(X; R) ~ H*(EG XG X; R), 

that is, the ordinary cohomology with coefficients in R of the space EG x G X 
that can be thought of as first making X into a free G-space by forming the 
product with the G-free contractible space EG and then taking the quotient. 
There is a fibration EG x G X ---+ EGG X * = BG, induced by the G-mapping 
X ---+ *, and so we can apply the Leray-Serre spectral sequence: 

Theorem 11.24. There is a first quadrant spectral sequence converging to 
Hc(X; R) with E~,q ~ HP(BG; Hq(X; R)). 

When G is a discrete group, the E2-term is the cohomology of the group 
G with coefficients in the G-module H* (X; R). The coefficients of equivariant 
cohomology are given by Hc (*; R) = H*(BG; R). The spectral sequence has 
an induced action of this ring on its terms, making it more tractable. Applications 
of this spectral sequence abound in equivariant homotopy theory. 

Another invariant of a G-space X is the Bredon homology ([Bredon67]) 
associated to a functor H: G-Mod ---+ Ab, from G-modules to abelian groups, 
which preserves arbitrary direct sums. When we apply H to the G-module of 
n-chains on X, we obtain a chain complex C;;(X; H) = H(Cn(X)). The 
Bredon homology of X with coefficients in H is defined as the homology 
groups lHI~(X; H) = Hn(C:(X; H), H(8)). One can identify the category 
of G-modules with the orbit category, O( G), consisting of subgroups of G 
together with inclusions. A similar definition can be given for a coefficient 
functor taking values in modules over a given ring. 

Suppose G is a finite group and f: X ---+ Y is a G-fibration, that is, f 
is G-equivariant and has the homotopy lifting property for all G-space. Then 
there a version of the Leray-Serre spectral sequence, derived by [Moerdijk­
Svensson93] using the cohomology of categories, and by [Honkasal098] using 
the locally constant cohomology of [Spanier92]. Let lHIc(X, M) denote the 
Bredon cohomology of the G-space X with coefficients in a G-module M. 
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Theorem 11.25. Given a finite group G and a G-fibration f: X ---+ Y, then 
there is a natural, first quadrant, spectral sequence converging to lHIc(X, M) 
with E~,q ~ lHIf;,(Y,lHIh(f, M)), where M may be taken to be a G-coefficient 
system determined by a Junctor M: O( G)OP ---+ Ab and lHIc (f, M) is another 
G-coefficient system that is induced by the fibration. 

Other spectral sequences useful in ordinary homotopy theory have equiv­
ariant versions as well. [Intermont97, 99] has extended the notion of II­
algebras to the equivariant case and derived versions of the spectral sequence 
of [Stover90] for computing 7r~ +n (X V Y) and 7r~ +n (X !\ Y) where G is a 
finite group and W is a finite dimensional representation of G. 

There is a version of the Eilenberg-Moore spectral sequence as it resem­
bles the Universal Coefficient and Ktinneth spectral sequences for Borel ho­
mology and cohomology developed by [Greenlees92]. Equivariant versions of 
the Federer spectral sequence have been derived by [M0ller90] and by [Fieux­
Solotar98] converging to 7r*(maP1(X, Y)) under certain conditions. Finally, 
there are Adams spectral sequences for which the target is the appropriate 
completion of {X, y}G, the group of homotopy classes of G-equivariant stable 
mappings. This method has been developed extensively by [Greenlees88', 92']. 
A nice overview of these ideas and their relation to classical homotopy theory 
is found in [Greenlees88]. 

Homotopy limits and colimits spectral sequences 

One of the most general topological situations in which a spectral sequence 
arises is when a homotopy limit or colimit is constructed. Following [Bousfield­
Kann] and [Dwyer98], we associate to a small category D a simplicial set, 
nerve(D)., given by 

nerve(D)n = Homcat(n,D) 
al an 

= {O"(O) ---+ 0"(1) ---+ ••• ---+ O"(n) I O"(i) E Obj(D), (Xi E Mor(D)}, 

where Cat is the category of small categories with functors and n is the cat­
egory (0 ---+ 1 ---+ ••• ---+ n) with a single morphism between objects i ---+ j 
whenever i ~ j. Thus, nerve(D)n consists of the length n strings of compos­
able morphisms in D. The face maps are given by omission or composition 

al an a2 an 
in D: do(O"(O) ---+ ... ---+ O"(n)) = 0"(1) ---+ ... ---+ O"(n), and if i > 0, 

al an ai+l oa i 

di(O"(O) ---+ ... ---+ O"(n)) = 0"(0) ---+ ••• ---+ O"(i -1) : O"(i + 1) ---+ 

••• ---+ 0"( n). Degeneracies are given by inserting the identity morphism on the 
objects in the sequence. 

If F: D ---+ Simp is a functor, then the simplicial replacement of F is 
the bisimplicial set (U F). given by (U F)n = UaEnerve(D)n F(O"(O)) (the 
disjoint union) with di determined by F(O"(O)) ---+ F((diO") (0)), which is the 
identity if i > 0 and F( (Xl): 0"(0) ---+ 0"(1) if i = O. Since F: D ---+ Simp, 
(U F). is a bisimplicial set. 
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Definition 11.26. Given a small category D and a functor F: D -+ Simp, 
the homotopy colimit of F is the diagonal simplicial set of the simplicial 
replacement of F, that is, hocolim F = ~((U F).) with (hocolim F)n = 

(UF)n,n. 

Given an abelian group A as coefficients, the spectral sequence of a bisim­
plicial group (Theorem 11.3) gives the Bousfield-Kan homology spectral se­
quence. 

Theorem 11.27. There is a spectral sequence, converging to H* (hocolim F; A), 
with E;,q ~ colimp H q (F; A), where colim AbD 

-+ Ab is the colimit functor, 

colimi the ith left derived functor of colim, and Hq(F; A) is the composite 
functor Hq( -; A) 0 F. 

Dually,[Bousfield-Kan72] defined the homotopy limit of a functor F: D -+ 

Simp. We first form the cosimplicial replacement of F, (I1 F)·, which con­
sists of the product (I1 F)n = I1uEnerve(DOP)n F( u(O)) and the coface and 
codegeneracy mappings given by tfl = F( ad: F( 0"(1)) -+ F( 0"(0)), d j = id, 
for j > 0; Si = id, for 0 ~ i ~ n. The homotopy limit of F is given by 
holim F = Tot ((I1 F)·). There is a natural mapping lim F (d) -+ holim F, 

c-dED 

which may not be a homotopy equivalence. This is called the homotopy limit 
problem ([ThomasonS3]). The Bousfield-Kan spectral sequence associated to 
the tower of fibrations built from Tot (Theorem Sbis .37) implies the following 
result. 

Theorem 11.28. Suppose that F: D -+ Simp is such that F(d) isfibrantfor 
all d E Obj D. There is a spectral sequence, with E~,q ~ l~P7rq(F), for 

o ~ p ~ q, where l~ Ab
Dop 

-+ Ab is the inverse limit functor, l~ i the ith 

derivedfunctor ofl~, and 7rq(F) is the composite functor d f---+ 7rq(F( d)). The 

spectral sequence converges to groups related to 7r * (holim F). 

[ThomasonS3] showed how the homotopy limit problem included certain 
deep problems in homotopy theory. In particular, we can view a group G as 
a category, G, with objects the elements of G and a unique morphism g -+ h 
for all g, h E G. The nerve of this category has the homotopy type of EG. A 
space (simplicial set) on which G acts determines a functor X: G -+ Simp for 
which hocolimX = EG Xc X and holimX = mapc(EG, X), the space of 
equivariant mappings EG -+ X. 

The Bousfield-Kan homology spectral sequence in this case can be iden­
tified with the homology version of the spectral sequence of Theorem 11.24, 
which in tum may be identified as the Leray-Serre spectral sequence associated 
to the fibration X "--+ hocolim X -+ hocolim * = EG. 
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The homotopy limit problem for this setting is the comparison of l~ X = 

X and mapc(EG, X). If X has a trivial action of the group G, then the 
comparison leads to a comparison of fixed point sets 

[Sullivan70] conjectured that if G is finite and X is a finite CW-complex, then 
the based mapping space map*(BG, X) = map((BG, *), (X, xo)) would be 
weakly contractible. Through the use of group theory, the relevant cases to 
check are G = 7ljp71 for p, a prime. [Miller84] proved the Sullivan conjecture 
with a remarkable argument: The target of the Bousfield-Kan spectral sequence 
for this problem is 7r* (map(B71jp71, X)) for which the E 2-term has been iden­
tified as Ext~A (H*(~qB71jp71; IFp), H*(X; IFp)), where the Ext is taken over 
the category of unstable coalgebras over the mod p Steenrod algebra Ap. The 
analysis of H*(B71jp71; IFp) as an object in the category U of unstable comod­
ules over Ap reveals that Extu(H*(B71jp71;IFp),H*(X;IFp)) vanishes when 
H * (X; IF p) is bounded above. A version of the EHP spectral sequence for the 
algebraic functors ~: U ---+ U and its adjoint n extend the vanishing of Extu 
to Extu(H*(~B71jp71; IFp), H*(X; IFp)). A Grothendieck spectral sequence 
for composite functors (Theorem 12.9) allows the passage from the category 
U to the category CA. Thus the vanishing of the initial term of the spectral 
sequence converging to the initial term of the Grothendieck spectral sequence 
that converges to the initial term of the Bousfield-Kan spectral sequence gives 
the proof of the Sullivan conjecture. 

The homotopy limit problem for spectra plays a role in the descent spectral 
sequence of [Thomason82] (see Chapter 12) and in the analysis of the Segal 
conjecture ([Carlsson87]). 

11.5 Miscellanea 

We add to our catalogue a few entries that are not in the mainstream of 
homotopy theory. The first focuses on manifolds and Poincare duality; the 
second has led to considerable progress in the classification problem for knots, 
and the last appears in the study of singularities of mappings. 

The first example is due to [Zeeman62] from his Cambridge thesis. The 
spectral sequence is derived from a double complex that is defined for a ho­
mology theory based on pairs of simplices instead of single cells. If given two 
simplicial complexes, K and L, then a facing relation on K x L is a set F of 
cells in K x L, such that, whenever (J x T E F and (J' x T' ~ (J X T, then 
(J' x T' E F. Let H*(F) denote the system oflocal coefficients on K induced 
by:F. 

Given a facing relation, let LF = {(J I (J X T E F} and we say that F is 
left acyclic if all (J E LF are acyclic. 
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Theorem 11.29 (the dihomology spectral sequence). A left acyclic facing 
relation F on K and L gives rise to a spectral sequence with 

and converging to H*(L). 

This spectral sequence can be used to relate various homology theories 
(Cech to Vietoris, simplicial to singular, etc.) and to relate the spectral sequence 
of Leray to that of Serre (Cech to singular). Also, if 

then the resulting dihomology spectral sequence collapses to the isomorphism 
of Poincare duality if K is a closed, orientable, combinatorial n-manifold. Thus 
the spectral sequence measures the failure of Poincare duality for an arbitrary 
complex. Generalizations of this spectral sequence were derived by [Cain74] 
and [Sklyarenk092]. 

[Arnol'd70] introduced a spectral sequence to study the space of entire 
complex functions. [Vassiliev92] has applied the motivating idea of [Arnol' d70] 
to many different settings including the complexity of algorithms, the cohomol­
ogy of braid groups, classical Lie groups, spaces of generalized Morse functions, 
loop spaces, and most dramatically, spaces of knots and links. The key object 
of study is a function space F, such as the space of monic real polynomials 
of fixed degree d. This particular space contains a subspace ~, consisting of 
polynomials with a multiple root. The subspace ~ is called a discriminant and 
since F is finite-dimensional, then the space F\~ consists of real polynomials 
without multiple roots. The Spanier-Whitehead dual of F\~ is the one-point 
compactification f;. Thus, the cohomology of F\~ is calculable from the 
homology of f;. This space admits a filtration that is well-behaved when we 
resolve f; geometrically by inserting simplices whenever higher multiplicities 
of roots occur. The filtration leads to a spectral sequence of (Borel-Moore) 
homology groups. By an index shift we get a spectral sequence converging to 
the cohomology of the complementary space F\~. 

In the various settings considered by [Vassiliev92], the E1 -term of the as­
sociated spectral sequence may be given in terms suited to the problem. For 
knots, the space F consists of all smooth maps of 8 1 into rn:3 and the dis­
criminant consists of maps that have singularities or self-intersections. The 
complement of this discriminant has path components that correspond to knot 
types and so its topology is important for the classification problem for knots. 
Thus the invariants of the space of knots appear as the groups E;:;,i,i of the 
spectral sequence. [Vassiliev92] identified a combinatorial procedure for the 
determination of E~i,i, giving invariants of a knot diagram. The analysis of 
the rest of the spectral sequence leads to the Vassiliev invariants of knots. 



506 11. More Spectral Sequences in Topology 

There has been considerable development of these invariants, relating them 
to classical and more recent knot invariants ([Birman-Lin, X.-S.93]), and giv­
ing a combinatorial description, independent of the spectral sequence origins 
([Bar-Natan95]). 

Another spectral sequence inspired by the work of [Arnol'd70] and used 
to study singularities was introduced by [Goryunov-Mond93]. The ingredients 
are a continuous, proper and finite mapping f: X ---+ Y to which we associate 
the kth multiple point space 

These spaces are equipped with natural mappings ci,k: Dk(f) ---+ Dk-l(f) 
definedbyci,k(XI, ... ,Xk) = (Xl, ... ,Xi, ... ,xk),andwithanactionofthe 
symmetric group ~k given by permuting the entries. To any cellular ~k-space Z 
for which the ~k-action is cellular, we associate the alternating chain complex 
and homology: 

c~lt(Z) = {c E Celln(Z) I erc = sign(er)c for all er E ~k}' 

where sign: ~ k ---+ {± 1} is the canonical sign representation. Since the action 
is cellular, the differential on Celln (Z) determines a differential on C~lt (Z) 
and so we can define H:1t (Z). 

We also associate the kth image multiple point space Mk (f) = E( Dk (f)), 
whereE: Dk(f) ---+ YisgivenbYE(xI, ... ,Xk) = f(XI). 

The following spectral sequence appeared in this form in the paper of 
[Goryunov95]. The expository paper of [Houston99] is a very nice introduction 
to its applications. 

Theorem 11.30 (the image computing spectral sequence). Given a continuous, 
finite, and proper mapping f: X ---+ Y for which the kth multiple point spaces 
Dk (f) have the ~k-homotopy type of a ~k-cellular complex for all k > 1, 
and for which each kth image multiple point space Mk (f) has the homotopy 
type of a cell complex for k > 1, there is a spectral sequence, converging to 
Hp+q+l (f(X)), with 

E~,q ~ H;lt(DP+I(f)), dl = (cI,p+I)*: H;lt(DP+l(f)) ---+ H;lt(DP(f)). 

When the spectral sequence collapses at EI (for example, when f is a 
corank-l map-germ en ---+ en+l with finite A-dimension; [Goryunov95]), 
the rational homology of the image is the sum of alternating homologies of the 
multiple point spaces, which is useful in the study of mixed Hodge structures on 
the image ([Goryunov-Mond93]). [Houston97] applied the spectral sequence 
to study the singularities of finite analytic mappings and to obtain relations 
between the fundamental groups of the domain and image of such mappings. 



12 
Spectral Sequences in Algebra, 

Geometry and Analysis 

"During the last decade the methods of algebraic topol­

ogy have invaded extensively the domain of pure algebra, 
and initiated a number of internal revolutions." 

From [Cartan-Eilenberg56] 

Spectral sequences arise from filtered differential modules, from double 
complexes, and from exact couples (Chapter 2). These basic structures may 
be found in almost any situation where homological methods are used-many 
examples of spectral sequences have become essential tools in fields outside of 
topology. 

In this chapter, we continue the catalogue begun in Chapter 11. The ex­
amples here fall into three broad classes: those of homological origin (§12.1); 
those based on algebraic or differential geometric structures (§ 12.2), and those 
whose origin is chiefly topological but whose interpretation is algebraic (§ 12.3). 
We close the chapter with a short discussion of the notion of derived categories 
(§12.4), a formalism that lurks behind the 'unreasonable effectiveness' of spec­
tral sequences. 

The reader is expected to be acquainted with the categories of discourse for 
the examples presented in this chapter--definitions can be found in the cited 
references. Furthermore, this catalogue is quite far from complete (though 
some might argue that inclusion of Grothendieck's composite functor spectral 
sequence excludes very few examples). The hope remains that the reader will 
find a useful example in this collection or at least the sense in which spectral 
sequences can be applied in his or her field of interest. A search of the review 
literature in mathematics will provide a bounty of details to the curious reader. 

12.1 Spectral sequences for rings and modules 

Suppose Rand S are commutative rings with unit. Denote the category of 
left (right) modules over Rby RMod (ModR) and similarly for the ring S. Ifwe 
are given a homomorphism of rings, r.p: R ---+ S, then modules over S obtain the 
structure of modules over R, where r . m = r.p(r) . m. Under these conditions, 
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we would like to relate the homological invariants of modules over the given 
rings in terms of the homomorphism cp. The following theorem describes these 
relations in terms of spectral sequences due to [Cartan-Eilenberg56]. 

Theorem 12.1 (the change-oj-rings spectral sequences). Suppose cp: R ---+ S 
is a homomorphism of commutative rings with unit, and M E ModR, N E 

sMod, M' E Mods and N' E RMod. 

(1) There is a spectral sequence with E;,q ~ Tor: (Tor:(M, S), N), and 

converging to Tor~(M, N). 
(2) There is a spectral sequence with E;,q ~ Tor: (M', Tor:(S, N')), and 

converging to Tor~(M',N'). 
(3) There is a spectral sequence with E~,q ~ Ext~(Tor:(S, N'), N), and 

converging to Ext~(N',N). 
(4) There is a spectral sequence with E~,q ~ Ext~(N, Extk(S, N')), and 

converging to Ext~(N, N'). 

These spectral sequences can be derived in the manner of Theorem 2.20 
(the Ktinneth spectral sequence) by judicious choices of double complexes. 
They are also special cases of the Grothendieck spectral sequence for derived 
functors on abelian categories (Theorem 12.10). 

The change-of-rings spectral sequence applies in the special case of an 
extension of algebras over a field, 0 ---+ B ---+ A ---+ All B ---+ 0, where 
AIIB = All (A) . B. 

Theorem 12.2. Suppose A is an augmented algebra over a field, k. Suppose 
B is a normal subalgebra of A and A is projective over B. If M E ModA and 
NEAll BMod, then there is a spectral sequence with 

E2 ~ TorAllB (TorB (M k) N) 
p,q p q" 

and converging to Tor;;(M, N). Also, for M' E AMod, there is a spectral 
sequence with 

E~,q ~ Ext~IIB(N,Ext~(k,M')) 

and converging to Ext:4 (N, M'). 

The reader can compare this theorem with Theorem 9.12 for central extensions 
of Hopf algebras. 

The next three examples represent special cases of extra structures on rings 
or algebras that lead to spectral sequences. The first bears a strong relation to 
the Eilenberg-Moore spectral sequence. The second example treats some other 
homological invariants of a ring, namely the Hochschild homology and the 
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cyclic homology of a ring. The third example is quite general and focuses on 
the consequences of a filtration on an algebra and a module over it; a special 
case appears as Theorem 9.56. 

In the study of local rings, various homological invariants have played a 
key role. In particular, the Poincare series for a local ring, (R, m), is defined by 

Several spectral sequences have been useful in the study of this series (re­
viewed by [Avramov-Halperin86]). The following example was derived by 
[Avramov81] to study the problem of whether a minimal free resolution can be 
given the structure of an algebra. 

Theorem 12.3. Given a diagram of commutative ring homomorphisms 

B 

/~ 
A B®AC~D 

~/ 
C 

and a module Mover B, then TorA(M, C) is a TorA(B, C)-module, and Dis 
a TorA(B, C)-module via the homomorphism h. Furthermore, there is a spec­

tral sequence with E;,q ~ Tor~,,:A(B,C)(TorA(M, C), D), and converging to 

Tor~(M,D). 

The spectral sequence leads to an obstruction theory for the existence 
of multiplicative structures on resolutions. [Avramov81] also explicated the 
relationship of this spectral sequence to the Eilenberg-Moore spectral sequence. 

An invariant of associative algebras over a fixed ring R was introduced 
by [Hochschild45] to study the classification of extensions of algebras. One 
expression for the Hochschild homology of an algebra, taken to be projective 
as a module over R, is given by 

where A op ® A acts on A by (a ® ,B) (a) = ,Baa. [Hochschild45] introduced 
a functorial complex, resembling the bar construction, to compute HH*(A). 
When A is a regular affine k-algebra over a perfect field k, [Hochschild­
Konstant-Rosenberg62] proved that HH*(A) is isomorphic to the algebraic 
de Rham complex n~1 k = A( J / j2), where J = ker J.1: A ® A ---+ A is the 
kernel of the multiplication mapping on A. 
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[Connes85] introduced a variant of the Hochschild homology in order to 
extend the Chern character to the algebraic K -theory of a C* -algebra. For a field 
k of arbitrary characteristic, the cyclic homology H C* (A) of an algebra A over 
k is defined from a double complex in which each column is the Hochschild 
complex, and in each row we find the homology of a cyclic group. This leads 
to two spectral sequences ([Connes85]). 

Theorem 12.4. Given an algebra A over a field k, there are two spectral 
sequences converging to H C* (A). In the first spectral sequence, E~,q ~ 
HHq_p(A) and d1 = B, the Connes boundary map. In the second, E~,q ~ 
HpC;Z/(q+l)ll, A®q+l), the homology of the group ll/( q+l)ll with coefficients 
in the ll/(q + l)ll-module A®q+l, where the generator ofll/(q + l)ll acts on 
A®q+l by the cyclic permutation ao ® ... ®aq f---+ (-l)qaq ®ao ® ... ®aq-l. 

Cyclic homology figures in the computation of the algebraic K-theory of 
rings, in noncommutative differential geometry, and in mathematical physics. 
For a comprehensive and comprehensible survey ofthese ideas, see the excellent 
book of [Loday98]. 

Suppose we begin with a filtered augmented algebra (A, /-l, F, c) over a field 
k, and a filtered A -module, M, satisfying either of the following conditions: 

Theorem 12.5 (the May spectral sequence). For a filtered k-algebra, A, and 
filtered A-module, M, satisfYing I or II, there is a spectral sequence with 

E2 ~ Tor EO A(k, EO M), and converging to Tor1(k, M). Dually, there is 

a spectral sequence with E2 ~ ExtEOA(k, (EO M)dual), and converging to 
Ext~ (k, Mdual) as an Ext~ (k, k )-module. 

When A and M are graded, the spectral sequences are trigraded, where 
the first two gradings sum to the homological degree and the last two sum to 
the internal degree. Applications of this spectral sequence to the case where A 
is a Hopf algebra were pioneered by [May64, 66]. A natural generalization of 
this spectral sequence is presented in Exercise 3.4. 

The May spectral sequence may be applied in computations of group coho­
mology. [Bajer94] established a collapse result for the May spectral sequence 
converging to Extk[G] (k, k) when A = k[G], the group algebra for a finite 
p-group G and a field k of characteristic p > o. 
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Other algebraic structures 

The homological algebra of other algebraic structures, such as Hopf al­
gebras, Lie algebras, and Leibniz algebras, was developed to obtain invariants 
that would aid in the classification problem of such structures and, more gen­
erally, lead to a deeper understanding of the structures themselves. The notion 
of an extension of Hopf algebras, Lie algebras, etc., plays the role of a fibra­
tion in topology, linking the members of the extension together. The case of a 
group extension, 1 ---+ K ---+ G ---+ Q ---+ 1, is paradigmatic-the homological 
invariants of the constituent groups are linked together in the behavior of the 
Lyndon-Hochschild-Serre spectral sequence (Theorem Sbis. 12). 

The analogue of the Lyndon-Hochschild-Serre spectral sequence for Lie 
algebras was introduced by [Hochschild-Serre53']. 

Theorem 12.6 (the Hochschild-Serre spectral sequence). Let f) be a Lie ideal 
in the Lie algebra g and M, a g-module. Then there is a spectral sequence, 
converging to Hp+q(g, M), with E~,q ~ HP(g/f), Hq(f), M)). 

This theorem generalized the results of [KoszuI50] who worked with a relative 
version of cohomology for pairs of Lie algebras and over fields of characteristic 
zero, where the geometric theory of Lie groups provided motivation. Koszul 
pioneered the homological algebra of Lie algebras as a tool independent of the 
topology and geometry involved. 

When a Lie group is present, it is possible to view it as a manifold, a group, 
and its associated Lie algebra. [van Est5S] introduced a spectral sequence in 
which all of these structures playa role. Let G denote a Lie group and H a 
compact subgroup of G. Suppose 7r: G ---+ V is a representation of G into V 
a real vector space. Let g and f) denote the Lie algebras of G and H respec­
tively. With these assumptions there are three cohomology algebras that can 
be defined; HdeR ( G / H), the de Rham cohomology of the homogeneous space 
G / H, H;lg ( G, V, 7r), the smooth group cohomology of G with respect to the 
representation 7r in V, and HLie(g, f); V), the relative Lie algebra cohomology 
with coefficients in V. 

The spectral sequence is based on a double complex with elements of 
bidegree (r, s) given by V -valued functions of which the first r variables are in 
g and the last s are in G. These functions are alternating multilinear on the first 
r variables and smooth on the last s. 

Theorem 12.7 (the van Est spectral sequence). With G, H, V and 7r as above, 
there is a spectral sequence with 

and converging to HLie(g, f); V). 
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This spectral sequence has proved useful in the study of the cohomology of 
Lie algebras. [Tillman93] has related the edge homomorphism in the van Est 
spectral sequence to the boundary map between Hochschild homology of a 
Banach algebra A and the cyclic homology of A. 

A more general class of algebras that extends the notion of a Lie algebra 
was identified by [Loday93]: A Leibniz algebra g is a k-module together with 
a bilinear mapping [ , l: g X g ---+ g satisfying the Leibniz relation 

[x, [y, z]] = [[x, yl, zl - [[x, z], yl· 
The definition leaves out the anti symmetric relation expected of Lie algebras 
and so gives a noncommutative version of a Lie algebra. A Leibniz module (or 
representation) is a k-module M together with a bilinear mapping M x g ---+ M, 
written (m,g) f--+ [m,g], satisfying [m, [x,y]] = [[m,x]'yl- [[m,y],xl. 

[Loday-Pirashvili93] defined the Leibniz cohomology, HL*(g, M), of a 
Leibniz algebra g with coefficients in a Leibniz module M as the homology of 
the complex 

° I d 2 d d k d rnt ---+ e (g, M) ---+ e (g, M) ---+ ... ---+ e (g, M) ---+ ... 

where ek (g, M) = HOffiJR( (g®k , M) and the differential d is defined 

d(a)(gl ® ... ® gk+d = 

L (-l)j+la(gl ® ... ® gi-I ® [%gjl ® gHI ® ... ® fjj ® ... ® gk+l) 
ISci<jSck 

k+1 

+ [gl, a(g2 ® ... ®gk+l)l + L( _l)HI[%a(gl ® ... ®§i ® ... ®gk+dl· 
i=2 

When g is a Lie algebra, the canonical mapping g®k ---+ gi\k induces a ho­
momorphism H!,ie (g, M) ---+ HL * (g, M). [Pirashvili94] and [Lodder98] have 
introduced a spectral sequence that computes the relative theory defined as 

where s is the operator that shifts degree, and O*(g) is the complex that de­
fines Lie algebra cohomology. The spectral sequence measures the differ­
ence between the Lie algebra cohomology and the Leibniz cohomology when 
they are applied to a Lie algebra, that is, it reveals the importance of the an­
ticommutative condition on a Lie algebra. The E 2-term of the spectral se­
quence is made up of the Leibniz cohomology of the Lie algebra g and another 
term defined as follows: There is a left g-module structure on gdual given by 
g"((h) = 1'([h,g]). Wecandefinemorphismsi l : on+l(g) ---+ on(g;gdual) 
and i2: on (g, gdual) ---+ en+l (g, rnt) by the formulas 

i l (a)(gl' g2, ... ,gn)(gO) = (-l)na(go, gl, ... ,gn) 
i2((3)(gO,gl, ... ,gn) = (_l)n(3(gl' ... ,gn)(gO). 
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The complex CR* (g) is defined by the short exact sequence 

The homology of CR* (g) is denoted by HR* (g). 

Theorem 12.B. Let g be a Lie algebra and Mag-module. Then there is 
a spectral sequence with E;,q ~ HLP(g, M) ® HRq(g), and converging to 

H:'er(g, M). 

The spectral sequence was derived for Leibniz homology by [Pirashvili94] and 
for cohomology by [Lodder98], who has extended the Leibniz cohomology 
groups to diffeomorphism invariants of a manifold, and related them to the 
Gelfand-Fuks cohomology of smooth vector fields. He has also identified the 
Godbillon-Vey invariant of foliations as a Leibniz cohomology class. 

The category of connected Hopf algebras over a ring R shares a great 
deal with the category of groups. One of the uses of group cohomology is the 
classification of extensions of groups. Suppose 1 ---+ K ---+ G ---+ Q ---+ 1 is an 
extension. Then Q acts on K by conjugation, giving K a Q-module structure. 
There is also a twisting function (a factor set) T: Q x Q ---+ K. The Q­
module structure and T together determine the extension G up to a coboundary 
condition. This identifies H2 (Q, K) as the group that classifies extensions 
with the given Q-module structure. [Gugenheim62] and [Singer72] carried out a 
similar development of the structure of an extension of connected Hopf algebras. 
The notion of a Q-module structure with a twisting function is replaced with 
the notion of an abelian matched pair of Hopf algebras, (A, B). The definition 
may be found in [Singer72, Definition 3.1]. This leads to cohomology groups 
Hn(B, A), definable as the derived functors of an appropriate hom functor, or 
via a cotriple. [Henderson97] has studied the problem of computing the groups 
Hn (B, A) for which he has introduced a spectral sequence. 

Theorem 12.9. If (A, B) is an abelian matched pair of graded connected 
Hopf algebras over a ring R, then there is a spectral sequence for each integer 
r > 0 with rE~,t ~ Ext~{ (R, Cotor:{ (R, R)), and converging to E~,s+t-r, 
the El -term of a spectral sequence that converges to H* (B, A). 

The method of construction is to use cosimplicial objects and interpret the 
various filtration quotients. [Henderson97] computed the spectral sequences in 
the case of a truncated monogenic tensor algebra, from which he determined the 
nature of certain extensions over IF P that occur in the study of finite H -spaces 
([Lin78]). 
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Abelian categories 

The structure of a spectral sequence requires a homological algebra that 
includes filtrations, subquotients, and additivity of morphisms. The minimal 
requirements of a category in which spectral sequences may be constructed 
and studied were identified by [Grothendieck57], who introduced the notion 
of an abelian category. General results about spectral sequences in abelian 
categories soon followed in papers of [Dold62], [Eilenberg-Moore62], and 
[Eckmann-Hilton66]. For a thorough introduction to foundations and the homo­
logical algebra of abelian categories, see the books of [Tamme94] and [Gelfand­
Manin96]. 

Among the most important results of[Grothendieck57] is a general spectral 
sequence whose instances include many classical results. We begin with abelian 
categories, AbelCatl, AbelCat2, and AbelCat3, along with functors 

F: AbelCatl ---+ AbelCat2 and G: AbelCat2 ---+ AbelCat3. 

We relate the derived functors F and G to the derived functors of (Go F). 

Theorem 12.10 (the composite functor spectral sequence). Suppose the func­
tors F and G are covariant, G is left exact and F takes injective objects in 
AbelCat1 to G-acyclic objects in AbelCat2 (G-acyclic objects have the prop­
erty that the derived functors of G vanish on them). Then there is a spectral 
sequence with 

E~,q ~ (RPG)(Rq F(A)), 

and converging to R* (G 0 F) (A) for A in AbelCat1 . 

The homological invariants we have considered are instances of the derived 
functors of such functors as M ®r - or Homr( -, C). The interested reader 
can review the spectral sequences of §12.1, §2.4, §7.1, and §9.2 and try to 
derive these spectral sequences as instances of the composite functor spectral 
sequence. 

When the categories involved are not abelian, it is still possible to set up 
a Grothendieck spectral sequence. Using simplicial methods and homotopy 
theory, [Blanc-Stover92] have generalized the composite functor spectral se­
quence to categories of universal algebras (such as groups, rings, Lie algebras, 
etc.) and more general functors. 

An example of the Grothendieck spectral sequence is a generalization of 
the change-of-rings spectral sequence. Suppose we have a family of functors, 
indexed over 2.:, 

{Tn}: AbelCatl ---+ AbelCat2 

that act like the derived functors of To. That is, they are additive, left or right 
exact, and to a short exact sequence in AbelCatl, 0 ---+ A ---+ B ---+ C ---+ 0, 
there is a long exact sequence in AbelCat2 

... ---+ TnA ---+ TnB ---+ TnC ---+ Tn±lA ---+ ... 
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(where ±1 depends on the variance of the T's). 

Theorem 12.11 (the Universal Coefficient spectral sequence). Suppose A is 
an object in AbelCatl and M E AMod. Suppose 

(1) projdim M < 00 or T-N = Of or sufficiently large N, 
(2) A is Noetherian and M isjinitely generated or, for q ~ n, Tq commutes 

with arbitrary direct sums. 

Then there is a spectral sequence with E;,q ~ Tor: (TqA, M), and converging 
to T*M. Dually, for T* = T _*, contravariant, there is a spectral sequence 
with E~,q ~ Ext~ (M, Tq A), and converging to T* M. 

This theorem is proved in this generality in the paper of [Dold62]. For the 
abelian categories of chain and cochain complexes, the familiar Universal Co­
efficient theorem can be recovered. For Tn = Ext::t(B, -), this gives another 
spectral sequence relating the homological invariants of rings and modules. 

Another application may be made to compute the hypercohomology of a 
complex, (A*, d), of objects in AbelCatl with respect to a left exact functor 
F: AbelCatl ---+ AbelCat2. Suppose AbelCatl has enough injectives. Then 
the hyperderived functors of F can be defined: Suppose (Ie, 8) is a complex 
of injective objects in AbelCatl with H(Ie, 8) ~ H(A*, d). The hypercoho­
mology of A* is defined by lHIF*(A*) = H(F Ie, F8). This definition can be 
shown to be independent of the choice of injective object. 

Theorem 12.12 (the hypercohomology spectral sequence). If {Rj F} denotes 
the sequence of right derived functors of F, then there is a spectral sequence, 
with E~,q ~ (RP F) (Hq(A*, d)), and converging to lHIF*(A*). 

This theorem can be proved from the composite functor spectral sequence 
or from the construction of a double complex of injective objects whose total 
complex has homology H(A*, d) (in the manner of the proof of Lemma 2.19). 
A direct proof for rings and modules appears in the classic books of [Cartan­
Eilenberg56] and [Mac Lane63]. 

12.2 Spectral sequences in Geometry 

The basic objects that are studied in algebraic geometry, varieties and 
schemes, carry many different structures. Similarly, the basic objects in dif­
ferential geometry, manifolds, are rich with structure. There is an underlying 
topological space (sometimes with the nonHausdorff Zariski topology), possi­
ble analytic structure, and, for varieties, the underlying structure of polynomial 
rings; the interaction between these structures and with the homological invari­
ants of such objects leads to many useful spectral sequences. 

The first example is historically the first spectral sequence. [Leray46], 
in a series of Comptes Rendues notes, introduced the notions of a sheaf over 
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a topological space, cohomology with coefficients in a sheaf, and the Leray 
spectral sequence associated to a mapping (§6.4). Suppose X and Yare spaces 
with f: X -+ Y, a continuous mapping. Suppose <I> = {U", I a E J} is an 
open cover of Y. Such a covering gives rise to a left exact functor from the 
category of sheaves on X to the category of sheaves on Y, which is constructed 
from the presheaf of sections. For a sheaf S on X, 

r<I>(S) = sheaf derived from the presheaf U'" f--+ {r(f-l(U",),S) I u'" E <I>}. 

The theorem of [Leray46] relates the sheaves S on X and r<I>(S) on Y. The 
category of sheaves (of abelian groups) is an abelian category and so there is a 
notion of homological algebra for sheaves. 

Theorem 12.13 (the Leray spectral sequence). Let R*r<I> denote the right 
derived functors of r <I>. If H* denotes the sheaf cohomology of a space in a 
given sheaf, then there is a spectral sequence with E~,q ~ HP(Y, Rqr<I> (S)), 
and converging to H*(X, S). 

An application of the Leray spectral sequence is the case of a complex 
variety. Algebraically, the variety has the Zariski topology. Analytically, it 
carries a topological manifold structure. The sheaves of germs of functions on 
the variety (analytic and algebraic) and the cohomology of the variety in these 
sheaves are related by the spectral sequence in the theorem and the continuous 
function Xc --+ X Zar ' This example also reveals a role played by spectral 
sequences in algebraic geometry-patching local data into global data. Another 
example of a spectral sequence focusing on patching is the local-to-global 
spectral sequence. 

Theorem 12.14. Suppose X is a topological space and S, a sheaf of rings on X. 
Suppose that M and N are sheaves of left S-modules. Then there is a spectral 
sequence withE~,q ~ HP(X, £xt~(M,N)), and converging to Ext'S(M,N), 
which denotes the derived functors of 

Homs(M,N) = II Homs(x)(M(x),N(x)). 
xEX 

We refer the reader to a classic text on sheaves and spectral sequences 
by [Godement58], for a discussion of local-to-global spectral sequences and 
a proof of this theorem. See the book of [Griffiths-Harris78] for applications 
of the Leray spectral sequence, especially in complex algebraic geometry. A 
generalization of the Leray spectral sequence has been derived by [Paranjape96] 
in the context of abelian categories and filtered complexes. 
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Spectral sequences and the de Rham complex 

Other sources of spectral sequences in algebraic and differential geometry 
are filtrations of the de Rham complex that derive from some structural feature 
of the particular situation. As a first example, we mention a spectral sequence 
introduced by [Grothendieck61]. 

If X is a nonsingular algebraic variety of dimension n over a field k of 
arbitrary characteristic, then define 

01-/k = the sheaf of differential I-forms on X over k. 

We form the exterior algebra, 0:X/k = Ai(01-/k)' Then there is a natural 

derivation d: Ox ---+ 01-/k and so an exterior derivative giving a complex 

called the algebraic de Rham complex on X. The hypercohomology of this 
complex is called the algebraic de Rham cohomology of X, and denoted by 
HdeR(X). 

Theorem 12.15 (the Hodge-de Rham spectral sequence). There is a spectral 
sequence with Ef,q ~ IJP(X, 0'1-/k)' the cohomology of X in the sheaf0'1-/k' 

and converging to H deR (X). 

[Grothendieck61] related the algebraic de Rham cohomology of a finite 
dimensional variety X over C to its singular cohomology by using the spectral 
sequence to prove 

HdeR(X,q ~ H~ng(xan;q 

where xan, is the analytic space associated to X. The filtration on H deR (X) 
derived from this spectral sequence is related to the system of weights due to the 
Hodge structure on a compact complex variety. This relation has been studied 
thoroughly by [Deligne71]. 

When X is a scheme, smooth and proper over a perfect field k of character­
istic p > 0, then there are other invariants that reflect the p-adic structure of the 
scheme. In particular, there is the crystalline cohomology of X, H~ris(X/W), 
where W denotes the ring of Witt vectors, defined by [Grothendieck68] and 
[Bertholet76]. [Bloch78] studied the relations between the various cohomo­
logical invariants of a variety over a perfect field of characteristic p > 2. He 
introduced a spectral sequence to compute H~ris (X /W) using a complex Cx 
of typical curves on K-theory. The hypercohomology spectral sequence in this 
case is called the slope spectral sequence and has Ef,q ~ Hq(X, Cr;J and 
converges to H~ris (X /W). By analogy with the Hodge-de Rham spectral se­
quence, Deligne ([Illusie79]) introduced the de Rham-Witt complex for a scheme 
X, WOx, which agrees with Cx when the latter is defined. 
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Theorem 12.16 (the slope spectral sequence). Let X be a scheme, smooth 
and proper over a perfect field k of characteristic p > 0, and WO~ the 
associated de Rham-Witt complex. Then there is a spectral sequence with 
Ef,q ~ Hq(X, WO~), and converging to H~ris(X/W). 

[EkedahI86] has written a booklength account ofthe structure theory of the slope 
spectral sequence. The applications of this spectral sequence are numerous in 
algebraic geometry ([Illusie79], [EkedahI86]). 

Suppose M is a finite dimensional complex manifold. The cotangent 
bundle T* M of M admits a decomposition, T* M = T*' M EEl T*" M, into 
holomorphic forms (sums I: Ii dZi with Ii a holomorphic function on M) and 
antiholomorphic forms (sums I: Fi dZi with Pi holomorphic). This decom­
position induces a bigrading on the de Rham complex of [>valued differential 
forms on M, O*(M,q, whereOp,q(M,q = AP(T*'M) ®Aq(T*"M). An 
n-form with n = p + q in Op,q (M, q is called a (p, q)-form. The exte­
rior differential on O*(M, q takes a form W E Op,q(M, q to the direct sum 
Op+l,q(M, q EEl Op,q+l(M, q. Composing with the projections we get the 
expression d = 8 + a with 8 ofbidegree (1,0) and a ofbidegree (0,1). Fur­
thermore, 808 = 0 = a 0 a. 

It follows that the data (Op,q (M, q, 8, a) determine a double complex 
whose total complex is the de Rham complex. The vertical differential, a, leads 
to the Dolbeault cohomology of M, 

Theorem 12.17 (the Frolicher spectral sequence). Given a complex manifold 
M, there is a spectral sequence, converging strongly to H deR (M, q, with 
E 2-term given by E~,q ~ H~,q (M). 

[Frolicher55] introduced the spectral sequence to relate the geometric in­
variants of the Dolbeault complex to the topological invariants of the de Rham 
cohomology. He observed that a complex manifold with a positive definite 
Kahler metric has El ~ Eoo, and so the spectral sequence gives a necessary 
condition for the existence of a Kahler structure. [Cordero-Femandez-Gray91, 
93] have given examples of complex manifolds for which the spectral sequence 
does not collapse at E 1 . 

When X is a smooth projective complex variety, there is also a Hodge 
filtration on the cohomology of X. Because it has an underlying Kahler mani­
fold, the Frolicher spectral sequence collapses for X. In the more general case 
of a quasi-projective complex variety V (that is, V = X - Y for X and Y 
complex varieties), [Deligne68] has proved that there is a different filtration on 
H* (X; Ql), called a weight filtration. Such a filtration is increasing 
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for which the complexified associated graded group E? ® C = (WI jWI- 1 ) ® C 

has a decomposition of Hodge type E? = ffi HP,q. Such a structure 
'CDp+q=1 

is called a mixed Hodge structure. When X is a quasiprojective algebraic 
variety, [Deligne71] proved that there is a weight filtration on Hm(x; QJ) and 
a decreasing Hodge filtration on Hm(x; q such that the filtration induced by 
the Hodge filtration on the complexified associated graded module from the 
weight filtration was a mixed Hodge structure. The existence of two filtrations 
of this sort can lead to the collapse of the associated spectral sequences. For 
an introduction to mixed Hodge structures, see the 'naive guide' of [Durfee83]. 
The appearance and uses of spectral sequences from mixed Hodge structures is 
developed in the book of [EI Zein91]. 

If (M, g) is an n-dimensional Riemannian manifold and 7r: E -+ M 
is a flat vector bundle, then a smooth distribution of k-planes AcT M to­
gether with its orthogonal complement B leads to a decomposition of the metric 
g = gA ffi gB· If we vary the metric by g8 = gA +8-2 gB for 0 < 8 ~ 1, then we 
obtain a family ofLaplacians for (M, g8) and a corresponding exterior derivative 
on 0* (M; E). There is a filtration on the L2-completion ofOP(M; E) given by 
wE pk when there is aj with d8(w + 8w + ... + 8j w) E 8k Op+1 [8]. A spec­
tral sequence results that has been shown to be isomorphic to the Leray spectral 
sequence associated to the splitting A ffi B = T M ([Mazzeo-Melrose90], [For­
man95]). This spectral sequence is related to the behavior of the spectrum of 
the Laplacians involved and is called the adiabatic spectral sequence. For a 
general discussion of these ideas, see the paper of [Forman94]. 

The bigrading of the de Rham complex in Hodge theory has a striking rela­
tive in the calculus of variations. Here one wants to study differential equations 
as sections of jet bundles associated to a smooth vector bundle 7r: E -+ M. Let 
Joo (E) -+ M denote the infinite order jet bundle associated to 7r. Let I denote 
the contact ideal, the differential ideal of the de Rham complex 0* (Joo (E)) 
of forms that pull back to zero under any extension to infinite jets of a sec­
tion s: M -+ E. A bigrading results on 0* (Joo (E)) by counting the number 
of forms from I needed to express a given form. The exterior derivative can 
be decomposed into horizontal and vertical components giving a double com­
plex, known as the variational bicomplex. The associated spectral sequence 
was identified by [Vinogradov78] and a clear presentation can be found in the 
monograph of [Krasil'shchik-Verbotevsky98]. 

Theorem 12.18 (the C-spectral sequence). Let 7r: E -+ M be a smooth 
vector bundle over an n-dimensional manifold M. Then the spectral sequence 
associated to the variational bicomplex converges to HdeR (Joo (E)) and has 

E~,q isomorphic to the horizontal cohomology associated to 7r; Ef,n isomorphic 

to the module L~t( 7r) for p > 0, where L~t is the homology of the complex of 
alternating differential operators associated to 7r, and E~'s ~ {O}, otherwise. 
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The differential d1 : E~,n -+ Ei,n can be identified with the operator that 
associates to a Lagrangian its Euler-Lagrange equation. 

In the case of a specific distribution on a subspace of JOO(E), the horizontal 
cohomology is based on the associated Cartan submodule determined by the 
equation (hence the C-spectral sequence) and the El -term is more complicated to 
describe. Applications ofthe variational bicomplex are presented by [Anderson­
Thompson92]; applications of the C-spectral sequence by [Krasil'shchik98]. 

Finally, to close this section we mention work of [Dixon91] on the compu­
tation ofBRS cohomology for gauge systems ([Henneaux-Teitelboim92]). The 
BRS operator determines a differential on the Fock space of integrated local 
polynomial functions of a Yang-Mills field and a Fadeev-Popov ghost field. 
The resulting cohomology determines invariants of a gauge system, such as 
the ghost numbers, the Lorentz character, and discrete symmetries. [Dixon91] 
filtered the space on which the BRS operator acts and deduced the associated 
spectral sequence. The induced grading from the Eoo-term of the spectral se­
quence decomposes the desired complicated cohomology in simpler pieces that 
are computable. 

12.3 Spectral sequences in algebraic K-theory 

Algebraic K-theory assigns a sequence of invariants to a ring R and these 
invariants may be constructed as the homotopy groups of a certain space (or a 
certain spectrum). The tools for the study of algebraic K-theory are as varied 
as the appearances of rings throughout mathematics and so there are many 
structures at play, interwoven and interacting in algebraic K-theory. 

To a ring R we associate the scheme Spec R with the Zariski topology. 
[Brown, K-Gersten73] and [Quillen73] derived a spectral sequence, defined for 
cohomology groups related to simplicial sheaves, and applicable to algebraic K­
theory: Suppose X is a Noetherian space (that is, the open sets in X satisfy the 
ascending chain condition) and suppose that the irreducible closed subsets of X 
also satisfy the ACC (for example, if X = Spec R for R a regular, commutative 
ring). A simplicial sheaf on X is a sheaf with values in SimpEns, the category 
of simplicial sets. If K is a simplicial sheaf on X, then we say that K is flasque 
if the mapping t: K ---+ * satisfies the property that, for U, V open in X, 

(r(v,t),restr) 
r(V, K) : r(V, * H.9r(u,*) r(U, K) 

is a simplicial fibration. 
Replace the functors r(U, -), for U open in X, by a functor Rr(U, -) 

defined on the homotopy category of sheaves over X, 

Rr(U, - ): HoSimpSheaves x ---+ HoSimpEns 

such that, when K is ftasque, there is natural isomorphism of Rr(U, K) with 
r(U, K). Define the generalized sheaf cohomology groups, H* (X, K) by 

Hq(X,K) = 7r_q(Rr(X,K)). 
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Theorem 12.19 (the Brown-Gersten-Quillen spectral sequence). Suppose X 
is a Noetherian space of finite Krull dimension and K is a simplicial sheaf 
with basepoint that satisfies 7ro(K) = {O} and 7rl(K) and H-l(X, K) are 
abelian. Suppose HP(X,7rn (K)) = {O} for p ~ n. Then there is a fourth 
quadrant cohomological spectral sequence with E~,q ~ HP(X, 7r_q(K)), and 
converging to H*(X, K). 

If X = Spec R for R regular and such that every coherent sheaf on X is a 
quotient of a locally free sheaf, then one builds a simplicial sheaf K on X from 
the classifying construction for a category with 7r _q (K) = K_ q , the abelian 
sheaf oflocal K-groups of R and satisfying, H*(X, K) = K*(R). In this case, 

and the spectral sequence converges to K*(R). A construction and discussion 
of the applications of the Brown-Gersten-Quillen spectral sequence may be 
found in the book of [Srinivas96]. [Gillet81] has given an alternate derivation 
of the Brown-Gersten-Quillen spectral sequence as the solution to a homotopy 
limit problem (following [Thomason83]). 

Another example of an invariant of a scheme (a ringed space) is its etale 
cohomology ([Milne80], [Tamme94]). In this example, we relate the etale 
cohomology of a scheme with coefficients in various cyclic groups, to the 
localized algebraic K-theory of the scheme. 

In order to introduce Ilj mil coefficients on homotopy groups of a spectrum, 
one smashes the spectrum with the appropriate Moore spectrum for Iljmll 
([Browder78]). The algebraic K-theory of a scheme with coefficients in Iljmll 
can be defined analogously by taking the spectrum associated to the scheme 
and smashing it with the Moore spectrum; its homotopy groups are denoted by 
(Kjm)*(X). 

Suppose bE (Kjm)*(X) and we consider the direct limit of the system 

bx- bx-
(Kjm)*(X) ----+ (Kjm)*(X) ----+ ... 

given by left multiplication by b. This direct limit is called the localization of 
(K j m) * (X) with respect to b (or by inverting the element b), and it is denoted 
by (Kjm)*(X)[b-1j. 

In connection with the Lichtenbaum-Quillen conjecture, [Thomason85] 
introduced a descent spectral sequence associated to schemes X satisfying 
certain technical conditions: 

Theorem 12.20 (the descent spectral sequence). Suppose l is afixed prime and 
v, a natural number. Let X be a separated, Noetherian, regular scheme offinite 
Krull dimension, with sufficiently nice residue fields of characteristic different 
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from l. Suppose f3 is the Bott element in (KjlVh(X), that is, the element such 
that the Bockstein off3 is an appropriate power of an lth root of unity in Kl (X). 
Then there is a spectral sequence with differentials ofbidegree (r, r - 1), 

E~,q ~ {H~t(X;ill(i)), ifq = 2i, 

{O}, if q, odd, 

where ill (i) = ill (1 )®i is the ith Tate twist of the l-adic integers. The spectral 
sequence converges to (KjlV)*(X)[f3- 1 j. 

The Lichtenbaum-Quillen conjecture relates the order of the K-groups to 
values of zeta functions for certain arithmetic number fields. [Thomason85] 
proved it for this localized version of algebraic K-theory. The result also ap­
plies to the case of X, a variety over an algebraically closed field k of char­
acteristic i= l and so allows computation of these algebraic K-groups for such 
varieties. [Mitche1l97] presented a proof of Thomason's theorem in terms of 
hypercohomology spectra in which he exposes many of the details and concep­
tual underpinnings of this result, as well as the applications. [Thomason82, 83] 
described a context where this theorem is a case of a homotopy limit problem, 
here for diagrams of spectra (see § 11.4). 

The next spectral sequence has played a key role in recent developments 
of Voevodsky in his proof of the the Lichtenbaum-Quillen conjecture at 2 for 
fields of characteristic zero ([Friedlander97]). An important tool in algebraic K­
theory is the motivic cohomology of a field. Motivic cohomology is a functor on 
schemes that plays the role of singular cohomology for spaces. For a topological 
space X, the Atiyah-Hirzebruch spectral sequence has E~,q ~ HP(X; Kfop) 

and converges to Kfo~q (X). Beilinson conjectured that there should be a spec­
tral sequence of Atiyah-Hirzebruch type from the motivic cohomology of a 
scheme with coefficients in the algebraic K-theory of a point (Spec(k)) to the 
algebraic K-theory of the scheme. Furthermore, tensored with the rational 
numbers, this spectral sequence would collapse determining the algebraic K­
theory groups mod torsion. [Bloch86] has proposed that motivic cohomology of 
Spec( k), H'M (Spec( k), il( 8)), may be identified with the higher Chow groups 
CHS(Spec k, 28 - r) and with this definition, there is a spectral sequence de­
rived by [Bloch-Lichtenbaum94]. 

Theorem 12.21 (the Bloch-Lichtenbaum spectral sequence). Let k denote a 
field. There is afourth quadrant spectral sequence with 

E~,q ~ Htl
q (Spec(k), il( -q)), 

and converging to K_p_q(Spec k). 

Voevodsky used his proof of the Milnor conjecture ([Voevodsky96], [Kahn, 
B97], [MoreI98]), together with this spectral sequence to obtain his proof of the 
Lichtenbaum-Quillen conjecture. 
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Finally, we close this section with another analogue of the Atiyah-Hirze­
bruch spectral sequence, this time for a different K-theory and a different fil­
tration. If A is a C*-algebra, then there is a K-theory of A, defined and de­
veloped by [Brown-Douglas-Fillmore77], [Pimsner-Popa-Voiculescu79], and 
[Kasparov79]. [Schochet81] introduced a spectral sequence that applies when 
A is a filtered C* -algebra, that is, there is a sequence of closed ideals, 

Theorem 12.22. Suppose given afiltered C* -algebra, (A, {An}). Then there is 
a spectral sequence with E~,q ~ Kp+q(ApjAp-d, and converging to K*(A). 
The spectral sequence is natural with respect to filtration-preserving maps of 
C* -algebras. 

This result and other results of Schochet bring the technical tools of algebraic 
topology to bear on the study of C* -algebras. 

12.4 Derived categories 

The functors of homological algebra such as Tor and Ext are defined as 
the homology of chain complexes that are built in a noncanonical manner. In 
order to obtain homological invariants, the chain complexes must be carefully 
chosen. For example, a projective resolution of a right A-module, 

... ---+ p-H 1 ---+ p-i ---+ ... ---+ p-l ---+ pO ---+ M ---+ 0, 

gives Tor1(M, N) by computing H(P· ®A N) for a left A-module N. Other 
choices of projective resolution can be compared with this particular choice to 
give isomorphic Tor groups, that is, groups that depend on A, M, and N only. 
In the case of modules, flat modules have the property of exactness on tensoring 
over A and so the axiomatic properties of Tor can be achieved by a choice of a 
flat resolution. However, it may be difficult to compare two flat resolutions. 

Grothendieck and [Verdier63/97] defined the notion of the derived category 
of an abelian category A in an effort to establish a framework in which to 
extend the duality results of [Serre54]. Let C(A) denote the category of chain 
complexes of objects and degree zero maps of complexes in A. Let C+(A) 
(C- (A)) denote the subcategory of chain complexes that are bounded below 
(above). A morphism of complexes p. ---+ Q. is a quasi-isomorphism if it 
induces an isomorphism H(P*) ---+ H(Q*) of graded objects. The derived 
category of A, [ll(A), is obtained by formally inverting the class of quasi­
isomorphisms in C(A). This formal inversion can be made concrete by using a 
calculus of fractions developed by [Verdier63/97] and [Gabriel-Zisman67]. 

If F: A ---+ B is an additive functor between abelian categories, then we 
can ask if there is an extension of F to a functor [ll+ (A) ---+ [ll+ (B). A minimal 



524 12. Even More Spectral Sequences 

requirement is that F, extended levelwise to C+ (A) -+ C+ (B), preserve quasi­
isomorphisms. This is true if F is left exact. The right derived functors of 
F determine the extension of F to RF: [ll+(A) -+ [ll+(B). This extension 
is proved to exist by analyzing the mapping cylinder construction in abelian 
categories, a construction formalized in the notion of a triangulated category. 

When the abelian category A has enough injectives, then the value of 
HS(RF(Ke)) is called the 8th hyperderived functor of F with respect to 
the complex K e. The computation of H*(RF(Ke)) may be carried out by 
replacing K e with a double complex of injective objects, from which there 
is a spectral sequence with E~,q ~ (RPF)(Hq(Ke)), converging weakly to 
H*(RF(Ke)). 

The point of derived categories, however, is to argue with the objects up to 
equivalence and the derived functors as functors on a particular category. An 
example of this principle in action is the following basic result. 

Theorem 12.23. Given three abelian categories A, B, and C, and additive left 
exact functors F: A -+ Band G: B -+ C such that F takes injective objects 
in A to G-acyclic objects in B, then the extensions of F, G and G 0 F to the 
derived categories are naturally isomorphic, that is, R( Go F) ~ R( G) 0 R( F). 

(Proofs of this theorem can be found in the book of [WeibeI94, 10.8.2], or 
[Gelfand-Manin96, III.7.1] or in the survey paper of [Keller96].) When the 
spectral sequence is applied to compute the hyperderived functors of the prod­
uct, we recover the Grothendieck spectral sequence (Theorem 12.9). The under­
lying equivalence is more revealing than the spectral sequence and the derived 
category provides the framework to make such insights. 

The language of derived categories is based on the basic structures of 
stable homotopy theory. [May94] has given a dictionary between algebra and 
topology that illuminates the analogies. The homological algebra of rings and 
modules can be carried back to stable homotopy through the foundational work 
of [Elmendorf -Kriz-Mandell-May97]. 

Derived categories have spread throughout mathematics wherever homo­
logical algebra has developed. As derived categories provide organization, 
spectral sequences will provide computations. 



Bibliography 

Adams, J.F., On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42(1956), 409-412. (379, 

491) 

Adams, J.F., On the structure and applications of the Steenrod algebra, Comm. Math. Helv. 

32(1958),180-214.(368,370,376,384,406,425) 

Adams, J.F., On the non-existence of elements of Hopf invariant one, Ann. of Math. 72(1960), 

20-104. (191,207,366,367,387,392,415,417,425,427,445) 

Adams, J.F., A finiteness theorem in homological algebra, Proc. Camb. Philos. Soc. 57(1961), 

31-36. (430) 

Adams, J.F., A spectral sequence defined using K-theory, Colloque de topologie algebrique Brux­

elles, 1964, 146-166. (408,451) 

Adams, J.F., A periodicity theorem in homological algebra, Proc. Camb. Philos. Soc. 62(1966), 

365-377. (430, 431, 436ff., 499) 

Adams, J.F., Stable Homotopy Theory. Lectures delivered at the University of California at Berke­

ley, 1961. Notes by A. T. Vasquez. Third edition. Springer Lecture Notes in Mathematics, 

3(1969),78 pp. (368, 430, 478, 497) 

Adams, J.F., Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics, 

University of Chicago Press, Chicago, Ill.-London, 1974, x+373 pp. (76,368,404,408,496) 

Adams, J.F., Margolis, H.R., Modules over the Steenrod algebra, Topology 10(1971), 271-282. 

(432) 

Adem, J., The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A. 

38(1952),720-726. (128,425) 

Adem, J., The relations on Steenrod powers of cohomology classes, in Algebraic Geometry and 

Topology, Essays in Honor of S. Lefschetz, Princeton Univ. Press 1957, 191-238. (373) 

Adem, A., Milgram, R.J., Cohomology of Finite Groups. Grundlehren der Mathematischen Wis­

senschaften, 309 Springer-Verlag, Berlin, 1994. viii+327 pp. (344) 

Ahlfors, L.V., Complex analysis. An introduction to the theory of analytic functions of one complex 

variable, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1966 xiii+317 pp. 

(202) 

Alexander, J.W., On the chains of a complex and their duals; On the ring of a compact metric 

space, Proc. Nat. Acad. Sci. U.S.A. 21(1935),509-511 and 511-512. (133) 

Alexandroff, P., Hope, H., Topologie, Springer-Verlag, Berlin, 1935. (455) 

Anderson, D.W., A generalization of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. 

Soc. 78(1972), 784-788. (491) 

Anderson, I., Thompson, G., The inverse problem of the calculus of variations for ordinary 

differential equations, Mem. Amer. Math. Soc. 98(1992), no. 473, vi+110 pp. (520) 

Andre, M., Methode simpliciale en algebre homologique et algebre commutative, Springer Lecture 

Notes in Mathematics, 32(1967), iii+ 122 pp. (109, 494) 

Anick, D.J., The computation of rational homotopy groups is #P-hard. Computers in geometry 

and topology (Chicago, IL, 1986), 1-56, Lecture Notes in Pure and Appl. Math., 114, Dekker, 

New York, 1989. (366) 



526 Bibliography 

Anick, D.J., Differential Algebras in Topology, A K Peters, Wellesley, MA, 1993. (461,462) 

Araki, S., Steenrod reduced powers in the spectral sequence associated to a fibering I, II, Mem. 

Fac. Sci. Kyusyu Univ. Series (A) Math. 11(1957), 15-64, 81-97. (194) 

Araki, S., Kudo, T., Topology of Hn-spaces and H-squaring operations, Mem. Fac. Sci. Kyusyu 

Univ. Ser. A. 10(1956), 85-120. (326,499) 

Araki, S., Toda, H., Multiplicative structures in mod q cohomology theories. I; II, Osaka J. Math. 

2(1965),71-115; 3(1966),81-120. (480) 

Arkowitz, M., Localization andH-spaces. Lecture Notes No. 44, Aarhus Universitet, Aarhus, 1976, 

iii+143 pp. (362) 

Arlettaz, D., The order of the differentials in the Atiyah-Hirzebruch spectral sequence, K-Theory 

6(1992),347-361. (497) 

Arnol'd, V.I., Certain topological invariants of algebraic functions (Russian), Trudy Moskov. Mat. 

Obsc. 21 1970 27-46 (English transl. in Trans. Moscow Math. Soc. 21(1970), 30--52); II. 

Funkcional. Anal. i Prilozen. 4(1970),1-9 (English transl. in Functional Anal. Appl. 4(1970). 

(505ff.) 

Artin, M., Mazur, B., Etale Homotopy, Springer Lecture Notes in Mathematics 100(1969). (82) 

Assmus, E., On the homology oflocal rings, Ill. J. Math. 3(1959).187-199. (14, 246) 

Atiyah, M.F., Characters and cohomology of finite groups, Publ. Math. IHES, Paris 9(1961),247-

289. (496) 

Atiyah, M.F., Vector bundles and the Kiinneth formula, Topology 1(1962), 245-248. (274,313, 

315,317) 

Atiyah, M.F., Geometry of Yang-Mills Fields, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 

1979. (220) 

Atiyah, M.F., Hirzebruch, F., Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. 

3(1969),7-38. (222, 496) 

Avramov, L., Obstructions to the existence of multiplicative structures on minimal free resolutions, 

Amer. J. Math. 103(1981), 1-31. (310,509) 

Avramov, L., Local rings over which all modules have rational Poincare series, J. Pure Appl. 

Algebra 91(1994), no. 1-3,29-48. (14) 

Avramov, L., Halperin, S., Through the looking glass: A Dictionary between rational homotopy 

theory and local algebra, in Algebra, Algebraic Topology and their Interactions, Springer 

Lecture Notes in Mathematics 1183(1986), 3-27. (310, 509) 

Bahri, A.P., Operations in the second quadrant Eilenberg-Moore spectral sequence, J. Pure Appl. 

Algebra 27(1983),207-222. (326) 

Bajer, A.M., The May spectral sequence for a finite p-group, J. Algebra 167(1994), 448-459. (510) 

Baker, A., Hecke operations and the Adams E 2 -term based on elliptic cohomology, Canad. Math. 

Bull. 42 (1999), 129-138. (500) 

Bar-Natan, D., On the Vassiliev knot invariants, Topology 34 (1995), 423-472. (506) 

Barcus, W.D., On a theorem of Massey and Peterson, Quart. J. Math. Oxford, 19(1968),33-41. 

(492) 

Barnes, D.W., Spectral sequence constructors in algebra and topology. Mem. Amer. Math. Soc. 

53(1985), no. 317, viii+174 pp. (181,229) 

Barratt, M.G., Track groups, I, II, Proc. London Math. Soc. 5(1955), 71-106, 285-329. (97) 



Bibliography 527 

Barratt, M.G., The spectral sequence of an inclusion, Proc. ColI. Alg. Topology Aarhus (1962), 

22-27. (488) 

Barratt, M.G., Hilton, P.J., On join operations in homotopy groups, Proc. London Philos. Soc. 

(3)3(1953),430-445. (404) 

Barratt, M.G., Jones, J.D.S., Mahowald, M.E., Relations amongst Toda brackets and the Kervaire 

invariant in dimension 62, J. London Math. Soc. 30 (1984), 533-550. (451) 

Barratt, M.G., Mahowald, M.E., Tangora, M.e., Some differentials in the Adams spectral se-

quence II, Topology 9(1970),309-316. (448) 

Baues, H.J., Obstruction Theory, Springer Lecture Notes in Mathematics 628 (1977). (96) 

Baues, H.-J., The cobar construction as a Hopf algebra, Invent. Math. 132(1998),467-489. (491) 

Bawn, P.F., On the cohomology of homogeneous spaces, Topology 7(1968), 15-38. (275ff., 328) 

Bawn, P.F., Smith, L., The real cohomology of differentiable fibre bundles, Comm. Math. Helv. 

42(1967),171-179. (276) 

Bendersky, M., Curtis, E.B., Miller, H.R., The unstable Adams spectral sequence for generalized 

homology, Topology 17(1978), 229-248. (494) 

Bendersky, M., Gitler, S., The cohomology of certain function spaces, Trans. Amer. Math. Soc. 

326(1991),423-440. (491) 

Benson, D., Representations and Cohomology II, Cambridge University Press, Cambridge, UK, 

1991. (344, 487) 

Berthelot, P., Cohomologie cristalline des schemas de caracteristique p>O, Springer Lecture Notes 

in Mathematics,407(1974). 604 pp. (517) 

Beyl, R., The spectral sequence of a group extension, Bull. Sc. Math. 105(1981),417-434. (342) 

Binnan, J.S., Lin, X.-S., Knot polynomials and Vassiliev's invariants, Invent. Math. 111(1993), 

225-270. (506) 

Blanc, D.A., A Hurewicz spectral sequence for homology, Trans. Amer. Math. Soc. 318(1990), 

335-354. (489, 490) 

Blanc, D.A., Operations on resolutions and the reverse Adams spectral sequence, Trans. Amer. 

Math. Soc. 342(1994),197-213. (490) 

Blanc, D., Stover, e., A generalized Grothendieck spectral sequence, Adams Memorial Symposium 

on Algebraic Topology, 1 (Manchester, 1990), London Math. Soc. Lecture Note Ser., 175(1992), 

145-161. (514) 

Bloch, S., Algebraic K-theory and crystalline cohomology, Inst. Hautes Etudes Sci. Publ. Math., 

47(1977), 187-268 (1978). (517) 

Bloch, S., Algebraic cycles and higher K-theory, Adv. Math. 61(1986), 267-304. (522) 

Bloch, S., Lichtenbawn, S., A spectral sequence for motivic cohomology, preprint, University of 

Illinois, Champaign-Urbana, K-theory archive, 1995. (522) 

Boardman, J.M., Conditionally convergent spectral sequences, in Homotopy Invariant Algebraic 

Structures: A Conference in Honor of J. Michael Boardman, Edited by: Jean-Pierre Meyer, 

Jack Morava, and W. Stephen Wilson, AMS, Contemporary Mathematics 239(1999) 49-84. 

(40,76,79,80,487,497) 

Bockstein, M., A complete system of fields of coefficients for the V' -homological dimension, 

Doklady Acad. Sci. URSS 38(1943),187-189. (456) 

Borel, A., Impossibilite de fibrer une sphere par un produit de spheres, C.R. Acad. Sci. Paris 

231(1950), 943-945. (230) 



528 Bibliography 

Borel, A., Cohomologie des espaces localement compacts d'apres J. Leray, Springer Lecture Notes 

in Mathematics 2(1964). Exposes faits au Seminaire de Topologie algebrique de I' Ecole Poly­

technique Federale au printemps 1951. Troisieme edition, 1964. (134, 139) 

Borel, A., Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes 

de Lie compacts, Ann. of Math. 57(1953),115-207. (20,23,85,86,131,134,136,150,154, 

181,197,198,208,213,222,269,276) 

Borel, A., La cohomologie mod 2 de certains espaces homogenes, Comm. Math. Helv. 27(1953'), 

165-197. (219) 

Borel, A., Topics in the Homology Theory of Fibre Bundles. Lectures given at the University of 

Chicago, 1954. Notes by Edward Halpern. Springer Lecture Notes in Mathematics, 36(1967), 

95 pp. (149,469) 

Borel, A., Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61(1955), 

397-432.(149,208,278) 

Borel, A., Seminar on Transformation Groups, with contributions by G. Bredon, E.E. Floyd, D. 

Montgomery, R. Palais; Annals of Mathematics Studies, No. 46 Princeton University Press, 

Princeton, N.J., 1960. (501) 

Borel, A., Jean Leray and algebraic topology, in Leray, Jean: Selected Papers. CEuvres Scientifiques. 

Vol.l. Topologie et theoreme du point fixe. Edited by Paul Malliavin. Springer-Verlag, Berlin; 

Societe Mathematique de France, Paris, 1998. x+507 pp. (198,222,307) 

Borel, A., Serre, J.-P., Impossibilite de fibrer un espace euclidien par des fibres compactes, 

C.R. Acad. Sci. Paris 230(1950), 2258-2260. (141-2) 

Bott, R., On torsion in Lie groups, Proc. Nat. Acad. Sci. U. S. A. 40(1954), 586-588. (456) 

Bott, R., An application of the Morse theory to the topology of Lie-groups, Bull. Soc. Math. France 

84(1956),251-281. (456) 

Bott, R., On some recent interactions between mathematics and physics, Canad. Math. Bull. 

28(1985), 129-164. (220) 

Bott, R., Milnor, J.W., On the parallelizability of the sphere, Bull. Amer. Math. Soc. 64(1958), 

87-89. (425) 

Bott, R., Tu, L.W., Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, 82. 

Springer-Verlag, New York-Berlin, 1982. xiv+331 pp. (139, 208, 222, 278) 

Bousfield, A.K., A vanishing theorem for the unstable Adams spectral sequence, Topology 9(1970), 

337-344. (492) 

Bousfield, A.K., The localization of spaces with respect to homology, Topology 14(1975), 133-150. 

(500) 

Bousfield, A.K., On the homology spectral sequence of a co simplicial space, Amer. J. Math. 

109(1987),361-394. (82, 360, 361, 491) 

Bousfield, A.K., Curtis, E.B., Kan, D.M., Quillen, D.G., Rector, D.L., Schlesinger, J.W., The 

modp lower central series and the Adams spectral sequence, Topology 5(1966), 331-342. 

(493) 

Bousfield, A.K., Curtis, E.B., A spectral sequence for the homotopy of nice spaces, Trans. Amer. 

Math. Soc. 151(1970),457-479. (492) 

Bousfield, A.K. and Kan, D., Homotopy Limits, Completions and Localizations, Springer Lecture 

Notes in Mathematics 304(1972). (82, 109,274,330,355,356,358,361,362,363,357,489, 

493,494,502,503) 



Bibliography 529 

Bousfield, A.K., Kan, D.M., The homotopy spectral sequence of a space with coefficients in a ring, 

Topology 11(1972'), 79-106. (494) 

Bredon, G., Equivariant Cohomology Theories, Springer Lecture Notes in Mathematics 34 (1967). 

(501) 

Browder, W., The cohomology of covering spaces of H-spaces, Bull. Amer. Math. Soc. 65(1959), 

140--141. (476, 483) 

Browder, W., Torsion in H-spaces, Ann. of Math. (2) 74(1961),24-51. (458,463,465,469,472, 

475,477) 

Browder, W., Homotopy commutative H-spaces, Ann. of Math. (2) 75(1962),283-311. (468) 

Browder, W., Remark on the Poincare duality theorem, Proc. Amer. Math. Soc. 13(1962'), 927-930. 

(484) 

Browder, W., On differential Hopf algebras, Trans. Amer. Math. Soc. 107(1963), 153-176. (476) 

Browder, W., The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 

90(1969),157-186. (451) 

Browder, W., Algebraic K-theory with coefficients Z / p., in Geometric applications of homotopy 

theory (Proc. Con!, Evanston, Ill., 1977), I, Springer Lecture Notes in Math., 657 (1978), 40--84. 

(480,481,521) 

Brown, E.H., Finite computability ofPostnikov complexes, Ann. of Math. 65(1957),1-20. (180, 

330) 

Brown, E.H., Twisted tensor products I, Ann. of Math. 69(1959), 223-246. (110, 181,223,224) 

Brown, E.H., Cohomology theories, Ann. of Math. 75(1962), 467-484. (450, 495) 

Brown, E.H., The Serre spectral sequence theorem for continuous and ordinary cohomology, Top. 

and its Appl. 56(1994), 235-248. (136, 139, 163) 

Brown, E.H., Peterson, F.P., A spectrum whose Zp cohomology is the algebra of reduced pth 

powers, Topology 51966149-154. (500) 

Brown, K., Cohomology of Groups, Springer-Verlag, New York, 1982. (344) 

Brown, K., Gersten, S., Algebraic K-theory as generalized sheaf theory, Springer Lecture Notes 

in Math. 341(1973),226-292 (520) 

Brown, L.G., Douglas, R.G., Fillmore, P.A., Extensions of C* -algebras and K-homology, Ann. 

of Math. (2) 105(1977), 265-324. (523) 

Brown, R., Two examples in homotopy theory, Proc. Cambridge Philos. Soc., 62(1966) 575-576. 

(110,297) 

Bruner, R.R., A new differential in the Adams spectral sequence, Topology 23(1984),271-276. 

(426,449,450) 

Bruner, R.R., Ext in the nineties, Algebraic topology (Oaxtepec, 1991), Contemp. Math. 146(1993), 

71-90. (445) 

Bruner, R.R., May, J P., McClure, J.E., Steinberger, M., H = ring spectra and their applications. 

Springer Lecture Notes in Mathematics 1176(1986). viii+388 pp. (449) 

Brunn, H., Uber Verkettung, S.-B. Math. Phys. Kl. Bayer. Akad. Wiss. 22(1892), 77-99. (309) 

Bullett, S.R. and MacDonald, I.G., On the Adem relations, Topology 21(1982), 329-332. (130) 

Cam, R.N., A spectral sequence for the intersection of subspace pairs. Proc. Amer. Math. Soc. 

43(1974), 229-236. (505) 

Carlsson, G., Segal's Burnside ring conjecture and the homotopy limit problem. Homotopy theory 

(Durham, 1985), London Math. Soc. Lecture Note Ser., 117(1987), 6-34. (504) 



530 Bibliography 

Cartan, E., La topologie des espaces repnSsentatifs des groupes de Lie, Acualites Scientifiques et 

Industrielles, no. 358, Paris, Hermann, 1936. (475) 

Cartan, R., Sur la cohomologie des espaces OU opere un groupe: I. Notions algebriques preliminaires; 

II. etude d'un anneau differentiel OU opere un groupe, C.R. Acad. Sci. Paris 226(1948), 148-

150,303-305. (34,45, 134, 160) 

Cartan, R., Une theorie axiomatique des carres de Steenrod, C.R. Acad. Sci. de Paris 230(1950), 

425-427.(128,273,275,277) 

Cartan, R., Notions d' algebre differentielle; applications aux groupes de Lie et aux varietes ou 

opere un groupe de Lie; La transgression dans une groupe de Lie et dans un espace fibre 

principal, Colloque de Topologie, Bruxelles (1950), CB RM, Liege, 1951, 15-27, 51-71. (221, 

222) 

Cartan, R., Algebres d'Eilenberg-Mac Lane, Seminaire Cartan, ENS, 1954-55, exposes 2 to 11. 

(128,180,194,197,224,232,468) 

Cartan, R., Eilenberg, S., Homological Algebra, Princeton Univ. Press, 1956. (25, 58, 63, 69, 335, 

376,387,404,507,508,515) 

Cartan, R., Leray, J., Relations entre anneaux d'homologie et groupes de Poincare, Topologie 

algebrique, pp. 83-85. Colloques Internationaux du Centre National de la Recherche Scien­

tifique, no. 12. Centre de la Recherche Scientifique, Paris, 1949. (338) 

Cartan, R., Serre, J.-P., Espaces fibres et groupes d'homotopie, I. Constructions generales; II. 

Applications, C.R. Acad. Sci. Paris 234(1952), 288-290, 393-395. (203) 

Cech, E., Theorie generale de l'homologie dans un espace quelconque, Fund. Math. 19(1932), 

149-183. (133) 

Chen, K.T., Iterated path integrals, Bull. Amer. Math. Soc. 83(1977), 831-879. (225) 

Chern, S.-S., On the multiplication in the characteristic ring of a sphere bundle, Ann. of Math. 

49(1948),362-372. (185, 207, 220) 

Chern, S.S., From triangles to manifolds, Amer. Math. Monthly 86(1979),339-349. 

Clark, A., Homotopy commutativity and the Moore spectral sequence. Pacific J. Math. 15(1965), 

65-74. (262,292,294,295) 

Clarke, F., Johnson, K., Cooperations in elliptic homology, Adams Memorial Symposium on 

Algebraic Topology, 2 (Manchester, 1990), 131-143, London Math. Soc. Lecture Note Ser., 

176, Cambridge Univ. Press, Cambridge, 1992. (500) 

Cochran, T.D., Derivatives oflinks: Milnor's concordance invariants and Massey's products, Mem. 

Amer. Math. Soc. 84(1990), no. 427, x+73 pp. (310) 

Cohen, F.R., Moore, J.e., Neisendorfer, J.A., The double suspension and exponents of the ho­

motopy groups of spheres, Ann. of Math. (2) 110(1979), 549-565. (327,481) 

Cohen, J.M., The decomposition of stable homotopy, Ann. of Math. 87(1968), 305-320. (429, 492, 

496) 

Cohen, J.M., Stable Homotopy. Springer Lecture Notes in Mathematics, 165(1970), v+194 pp. 

(450) 

Cohen, R.L., Odd primary infinite families in stable homotopy theory, Mem. Amer. Math. Soc. 

30(1981), no. 242, viii+92 pp. (376, 450) 

Conner, P. E., Smith, L., On the complex bordism of finite complexes, I.H.E.S. Pub!. Math. 

37(1969),117-221. (313) 

Connes, A., Non-commutative differential geometry, Pub!.I.H.E.S. 62(1985), 41-144. (510) 



Bibliography 531 

Cordero, L.A., Fernandez, M., Gray, A., The Frolicher spectral sequence for compact nilmani­

folds, Ill. J. Math. 35(1991), 56--67. (518) 

Cordero, L.A., Fernandez, M., Gray, A., The failure of complex and symplectic manifolds to be 

Kahlerian, Differential geometry: geometry in mathematical physics and related topics (Los 

Angeles, CA, 1990), Proc. Sympos. Pure Math., 54 Part 2 (1993),107-123. (518) 

Crabb, M., James, I.M., Fibrewise Homotopy Theory, Springer Monographs in Mathematics, 

Springer-Verlag London, Ltd., London, 1998. viii+341 pp. (274,315) 

Curtis, E.B., Some relations between homotopy and homology, Ann. of Math. 82(1965), 386-413. 

(493) 

Curtis, E.B., Simplicial homotopy theory, Adv. in Math. 6(1971), 107-209. (109, 121) 

Curtis, M., Finite dimensional H-spaces, Bull. Amer. Math. Soc. 77(1971), 1-12, and 1120. (458) 

Damay, A.-S., Introduction aux suites spectrales: theorie generale et la suite spectrale de Serre, 

Projet de diplome, Ecole Poly technique Federale de Lausanne, 1996. (229) 

Davis, D.M., The BP-coaction for projective spaces, Can. Jour. Math. 30(1978) 45-53. (498) 

Davis, D.M., Johnson, D.C., Klippenstein, J., Mahowald, M.E., Wegmann, S.A., The spectrum 

(P/\BP<2> )_=, Trans. Amer. Math. Soc. 296(1986) 95-110. (498) 

Davis, J.F., Liick, W., Spaces over a category and assembly maps in isomorphism conjectures in 

algebraic K- and L- theory, K-theory 15(1998), 201-252. (496) 

Deligne, P., Theoreme de Lefschetz et criteres de degenerescence de suites spectrales. Inst. Hautes 

Etudes Sci. Publ. Math. No. 35(1968),259-278. (518) 

Deligne, P., Theorie de Hodge. II, Inst. Hautes Etudes Sci. Pub!. Math. 40(1971), 5-57. (517, 519) 

Deligne, P., Griffiths, P., Morgan, J., Sullivan, D., Real homotopy theory of Kahler manifolds, 

Invent. Math. 29(1975), 245-274. (310) 

Devinatz, E.S., Hopkins, M.J., Smith, J.H., Nilpotence and stable homotopy theory. I, Ann. of 

Math. 128(1988), 207-241. (451,500) 

Dieudonne, J., Grothendieck, A., Elements de geometrie algebrique. II. Etude globale elementaire 

de quelques classes de morphismes, Inst. Hautes Etudes Sci. Publ. Math, 8(1961), 222 pp. (79) 

Dirac, P.A.M., The Principles of Quantum Mechanics, Oxford University Press, Oxford, England, 

1935. (220) 

Dixon, J. A., Calculation of BRS cohomology with spectral sequences, Comm. Math. Phys. 

139(1991),495-526. (520) 

Dold, A., Universelle Koeffizienten, Math. Z. 80(1962), 63-88. (326,514,515) 

Dold, A., Lashof, R., Principal quasifibrations and fibre homotopy equivalences of bundles, Ill. J. 

Math. 3(1959), 285-305. (211) 

Douady, A., La suite spectrale d' Adams, Seminaire Henri Cartan (1958-59), expose 18, 19. (403) 

Dowker, C.H., Topology of metric complexes, Amer. J. Math. 74, (1952), 555-577. (94) 

Drachman, B., A diagonal map for the cobar construction, Bo!. Soc. Mat. Mexicana (2) 12(1967), 

81-91. (491) 

Dress, A., Zur Spectral sequenz von Faserungen, Inv. Math. 3(1967), 172-178. (163, 181,221,225, 

228) 

Dror, E., A generalization of the Whitehead Theorem, Springer Lecture Notes in Mathematics 

249(1971),13-22. (330, 331, 348) 

Dror, E., Pro-nilpotent representation of homology types, Proc. Amer. Math. Soc. 38(1973), 657-

660. (330,362,363) 



532 Bibliography 

Dror Farjoun, E., Smith, J., A geometric interpretation of Lannes' functor T, International Con­

ference on Homotopy Theory (Marseille-Luminy, 1988), Asterisque 191(1990), 87-95. (327, 

360) 

Dupont, J.L., Curvature and Characteristic Classes, Lecture Notes in Mathematics, Vol. 640. 

Springer-Verlag, Berlin-New York, 1978. viii+175 pp. (208,220) 

Dupont, J.L., Algebra of polytopes and homology of flag complexes, Osaka J. Math. 19(1982), 

599-641. (23) 

Durfee, A.H., A naive guide to mixed Hodge theory, Singularities, Part 1 (Arcata, Calif., 1981), 

Proc. Sympos. Pure Math., 40(1983), 313-320. (519) 

Dwyer, W.G., Strong convergence of the Eilenberg-Moore spectral sequence, Topology 13(1974), 

255-265.(331,355) 

Dwyer, W.G., Exotic convergence of the Eilenberg-Moore spectral sequence, Illinois J. Math. 

19(1975),607--617. (362) 

Dwyer, W.G., Vanishing homology over nilpotent groups, Proc. Amer. Math. Soc. 49 (1975), 8-12. 

(82) 

Dwyer, W.G., Homology, Massey products and maps between groups, J. Pure Appl. Algebra 

6(1975),177-190. (310) 

Dwyer, W.G., Higher divided squares in second-quadrant spectral sequences, Trans. Amer. Math. 

Soc. 260(1980), 437-447. (326) 

Dwyer, W.G., Classifying spaces and homology decompositions, preprint (Notre Dame) 1998. 

(458,502) 

Dwyer, W.G., Kan, D.M., Smith, J.H., Stover, C.R., A II-algebra spectral sequence for function 

spaces, Proc. Amer. Math. Soc. 120(1994),615-621. (490) 

Dwyer, W.G., Wilkerson, C.W., Homotopy fixed-point methods for Lie groups and finite loop 

spaces. Ann. of Math. 139 (1994), no. 2, 395-442. (149, 458) 

Dyer, E., Cohomology Theories. Mathematics Lecture Note Series W.A. Benjamin, Inc., New 

York-Amsterdam, 1969 xiii+183 pp. (222) 

Dyer, E., Lashof, R.K., Homology of iterated loop spaces, Amer. J. Math. 84(1962), 35-88. (326, 

499) 

Ebbinghaus, H.-D., with Hermes, H.; Hirzebruch, E; Koecher, M.; Mainzer, K.; Neukirch, J.; 

Prestel, A.; Remmert, R., Numbers. With an introduction by K. Lamotke. Translated from the 

second German edition by H. L. S. Orde. Translation edited and with a preface by J. H. Ewing. 

Graduate Texts in Mathematics, 123. Readings in Mathematics. Springer-Verlag, New York, 

1990. xviii+395 pp. (366) 

Eckmann, B., Zur Homotopietheorie gefaserter Rliume, Comm. Math. Helv. 14(1942), 141-192. 

(134) 

Eckmann, B. and Hilton, P.J., Groupes d'homotopies et dualite, C. R. Acad. Sci. Paris 246(1958), 

(Groups absolus) 2444-2447, (Suites exactes) 2555-2558, (Coefficients) 2991-2993. Trans­

gression homotopique et cohomologique, C. R. Acad. Sci. Paris 247(1958),620--623. (118) 

Eckmann, B., Hilton, P. J., Exact couples in an abelian category, J. Algebra, 3(1966), 38-87. (28, 

41,88,514) 

Ehresmann, Ch., Feldbau, J., Sur les proprietes d'homotopie des espaces fibres, C.R. Acad. Sci. 

Paris 212(1941), 945-948. (133) 

Eilenberg, S., Singular homology theory, Ann. of Math. 45(1944) 407-447. (104) 



Bibliography 533 

Eilenberg, S., Homology of spaces with operators. I. Trans. Amer. Math. Soc. 61(1947) 378-417; 

errata, 62(1947), 548. (120, 340) 

Eilenberg, S., La suite spectrale. I: Construction generale; II: Espaces fibres, Exposes 8 et 9, 

Seminaire Cartan, E.N.S. 1950/51, Cohomologie des groupes, suite spectrale, faisceaux. (139, 

190,229) 

Eilenberg, S., Mac Lane, S., Relations between homology and homotopy groups of spaces. I. Ann. 

of Math. 51(1945),480-509. (134) 

Eilenberg, S., Mac Lane, S., Relations between homology and homotopy groups of spaces. II. 

Ann. of Math. 51(1950), 514-533. (297) 

Eilenberg, S., Mac Lane, S., On the groups of H(rr,n). I. Ann. of Math. (2) 58(1953), 55-106. 

(242,247,290,339) 

Eilenberg, S., Moore, J.e., Limits and spectral sequences, Topology 1(1962),1-24. (28, 68, 69, 

81,88,514) 

Eilenberg, S., Moore, J.e., Limits and spectral sequences II, unpublished manuscript. (88) 

Eilenberg, S., Moore, J.e., Adjoint functors and triples, Ill. J. Math. 9(1965), 381-395. (322) 

Eilenberg, S., Moore, J.e., Homology and fibrations. I. Coalgebras, cotensor product and its 

derived functors. Comment. Math. Helv. 40(1966), 199-236. (229,232,233,252,271) 

Eilenberg, S., Steenrod, N.E., Axiomatic approach to homology theory, Proc. Nat. Acad. Sci. 

U.S.A. 31(1945),177-180. (133) 

Ekedabl, T., Diagonal complexes and F-gauge structures, With a French summary. Travaux en 

Cours. [Works in Progress] Hermann, Paris, 1986. xii+122 pp. (518) 

Elmendorf, A.D., Krlz, I., Mandell, M.A., May, J.P., Modern foundations for stable homotopy 

theory, in Handbook of Algebraic Topology, edited by I.M. James, Elsevier Science, Amster­

dam, 1995,213-253. (497) 

Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P., Rings, Modules, and Algebras in Stable 

Homotopy Theory. With an appendix by M. Cole. Mathematical Surveys and Monographs, 47. 

A.M.S., Providence, RI, (1997) xii+249 pp. (368,524) 

EI Zein, F., Introduction it la theorie de Hodge mixte, Actualites Mathematiques. Hermann, Paris, 

1991. 238 pp. (519) 

Evens, L., The Cohomology of Groups. Oxford Mathematical Monographs. Oxford University 

Press, New York, 1991. xii+159 pp. (344) 

Fadell, E., Review of [Brown, E59], Math. Rev. 21(1960) MR 214423. (110) 

Fadell, E., Hurewicz, W., On the structure of higher differentials in spectral sequences, Ann. of 

Math., 68(1958), 314-347. (110,181,222,223,225) 

Fadell, E., Husseini, S., Category weight and Steenrod operations, Boletin della Soc. Mat. Mex. 

37(1992),151-161. (302) 

Federer, H., A study of function spaces by spectral sequences, Trans. Amer. Math. Soc. 82(1956), 

340--361. (490) 

Feldbau, J., Sur la classification des espaces fibres, C.R. Acad. Sci. Paris 208(1939), 1621-1623. 

(112) 

Felix, Y., Halperin, S., Thomas, J.-e., Differential graded algebras in topology, Handbook of 

Algebraic Topology, edited by I.M. James, 829-865, North-Holland, Amsterdam, 1995. (287) 

Fenn, R., Sjerve, D., Basic commutators and minimal Massey products. Canad. J. Math. 36(1984), 

1119-1146. (310) 



534 Bibliography 

Fieux, E., Solotar, A., Une suite spectrale pour les groupes d'homotopie des espaces d' applications 

equivariantes, Bull. Belg. Math. Soc. Simon Stevin 5(1998), 565-582. (502) 

Formau, R., Hodge theory and spectral sequences, Topology 33(1994),591-611. (519) 

Formau, R., Spectral sequences and adiabatic limits, Comm. Math. Phys. 168(1995), 57-116. 

(519) 

Freudenthal, H., Uber die Klassen der Sphiirenabbildungen, Compo Math. 5(1937), 299-314. (98, 

205) 

Friedlander, E.M., Motivic complexes of Suslin and Voevodsky, Exp. No. 833, Seminaire Bour­

baki, 1996/97. Asterisque 245(1997),355-378. (522) 

Fritsch, R., Piccinini, R.A., Cellular Structures in Topology. Cambridge Studies in Advanced 

Mathematics, 19. Cambridge University Press, Cambridge, 1990. xii+326 pp. (94, 102) 

Frolicher, A., Relations between the cohomology groups of Dolbeault and topological invariants, 

Proc. nat. Acad. Sci. 41(1955), 641--644. (518) 

Gabriel, P., Zismau, M., Calculus of Fractions and Homotopy Theory. Springer-Verlag, Berlin, 

Heidelberg, New York, 1967. (523) 

Gelfand, S.I., Mauin, Yu.I., Methods of Homological Algebra. Springer-Verlag Berlin, Heidelberg, 

New York, 1996. (514,524) 

Ghazal, T., A new example inK-theory ofloopspaces, Proc. Amer. Math. Soc. 107(1989), 855-856. 

(321) 

Gillet, H., Comparison of K-theory spectral sequences, with applications, Algebraic K-theory, 

Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Springer Lecture Notes 

in Math., 854(1981), 141-167. (521) 

Gitler, S., Spaces fibered by H-spaces, Bol. Soc. Mat. Mexicana (2) 7(1962), 71-84.(262) 

Godement, R., Topologie algebrique et tbeorie des faisceaux, Publ. de l'Inst. Math. de Strasbourg, 

XII; Hermann, Paris, 1958. (165,516) 

Goerss, P.G., Andre-Quillen cohomology and the Bousfield-Kan spectral sequence, International 

Conference on Homotopy Theory (Marseille-Luminy, 1988). Asterisque 191(1990),109-209. 

(494) 

Goerss, P.G., Barratt's desuspension spectral sequence and the Lie ring analyzer, Quart. J. Math. 

Oxford (2)44(1993), 43-85. (488) 

Goerss, P.G., Jardine, J.F., Simplicial Homotopy Theory. Progress in Mathematics, 174, Birkhiiuser 

Verlag, Basel, 1999. xvi+510 pp. (109) 

Golod, E.S., On the homology of some local rings, Soviet Math. Doklady 3(1962),745-748. (14, 

310) 

Goodwillie, T.G., A remark on the homology of cosimplicial spaces, J. Pure Appl. Alg. 127(1998), 

167-175. (361) 

Goryunov, V.V., Semi-simplicial resolutions and homology of images and discriminants of map­

pings, Proc. London Math. Soc. (3) 70(1995),363-385. (506) 

Goryunov, V. V., Mond, D.M.Q., Vanishing cohomology of singularities of mappings, Compositio 

Math. 89(1993), 45-80. (506) 

Gottlieb, D.H., Fiber bundles with cross sections and non-collapsing spectral sequences, Ill. J. 

Math. 21(1977),176-177. (149) 

Greenlees, J.P.c., How blind is your favourite cohomology theory?, Expos. Math. 6(1988), 193-

208. (17, 369, 502) 



Bibliography 535 

Greenlees, J.P.e., Stable maps into free G-spaces, Trans. Amer. Math. Soc. 310(1988'), 199-215. 

(502) 

Greenlees, J.P.e., Generalized Eilenberg-Moore spectral sequences for elementary abelian groups 

and tori, Math. Proc. Cambridge Philos. Soc. 112(1992),77-89. (502) 

Greenlees, J.P.e., Homotopy equivariance, strict equivariance and induction theory., Proc. Edin­

burgh Math. Soc. (2) 35(1992'), 473-492. (502) 

Greenlees, J.P.e. and May, J.P., Equivariant stable homotopy theory, Handbook of algebraic 

topology, 277-323, North-Holland, Amsterdam, 1995. (17) 

Griffiths, P., Harris, J., Principles of Algebraic Geometry, Reprint of the 1978 original, Wiley 

Classics Library, John Wiley & sons, New York, 1994, xiv + 813 pp. (487, 516) 

Griffiths, P.A., Morgan, J.W., Rational Homotopy Theory and Differential Forms, PMI6, Birk­

hauser, Basel, 1981. (328) 

Grivel, P.-P., Formes differentielles et suites spectrales, Ann. Inst. Fourier (Grenoble) 2(1979), 

17-37. (226) 

Gromov, M., Lawson, H.B., The classification of simply connected manifolds of positive scalar 

curvature, Ann. of Math. 111(1980),423-434. (451) 

Grothendieck, A., Sur quelques points d'algebre homologique, Tohoku Math. J. (2)9(1957), 119-

221. (342,514) 

Grothendieck, A., Elements de Geometrie Algebrique. III. Etude cohomologique des faisceaux 

coherents.I. Inst. Hautes Etudes Sci. Pub!. Math. 11(1961), 167 pp. (517) 

Grothendieck, A., Crystals and the de Rham cohomology of schemes, Dix Exposes sur la Coho­

mologie des Schemas, North-Holland, Amsterdam; Masson, Paris, 1968,306-358. (517) 

Gugenheim, V.K.A.M., On a theorem of E. H. Brown, Illinois J. Math. 4(1960), 292-311. (224, 

297) 

Gugenheim, V.K.A.M., On extensions of algebras, co-algebras and Hopf algebras. I, Amer. J. 

Math. 84(1962), 349-382. (513) 

Gugenheim, V.K.A.M., On a perturbation theory for the homology of the loop-space, J. Pure App!. 

Algebra 25(1982), 197-205. (225) 

Gugenheim, V.K.A.M., Lambe, L.A., and Stasheff, J.D., Perturbation theory in differential ho­

mological algebra. II. Illinois J. Math. 35(1991),357-373. (224) 

Gugenheim, V.K.A.M., May, J.P., On the theory and applications of differential torsion products, 

Memoirs Amer. Math. Soc. 142, 1974. (277, 287ff., 288, 312) 

Gugenheim, V.K.A.M., Milgram, R.J., On successive approximations in homological algebra. 

Trans. Amer. Math. Soc. 150(1970), 157-182. (297) 

Gugenheim, V.K.A.M., Moore, J.e., Acyclic models and fibre spaces, Trans. Amer. Math. Soc. 

85(1957), 265-306. (222) 

Gugenheim, V.K.A.M., Munkholm, H.-J., On the extended functoriality of Tor and Cotor, J. P. 

App. Alg., 4(1974), 9-29. (294, 295) 

Gysin, W., Zur Homologietheorie der Abbildungen und Faserungen der Mannigfaltigkeiten, Comm. 

Math. Helv. 14(1941),61-121. (144) 

Halperin, S., Stasheff, J.D., Obstructions to homotopy equivalences, Adv. in Math. 32(1979), 

233-279. (310) 

Hardy, G.H., Wright, E.M., An Introduction to the Theory of Numbers. Fifth edition. The Claren­

don Press, Oxford University Press, New York, 1979. xvi+426 pp. First edition, 1938. (263) 



536 Bibliography 

Hatcher, A., Ext tables, http://math.comell.edu/hatcher/stemfigs/stems.html. (445) 

Henderson, G.D., Spectral sequences for the classification of extensions of Hopf algebras. J. 

Algebra 193(1997),12-40. (513) 

Henneaux, M., Teitelboim, c., Quantization of Gauge Systems. Princeton University Press, Prince­

ton, NJ, 1992. (520) 

Hilton, P.J., On the homotopy groups of the union of spheres, J. London Math. Soc. 30(1955), 

154-172. (303) 

Hilton, P.J., Localization in topology, Amer. Math. Monthly, 82(1975), 113-131. (362) 

Hilton, P.J., Mislin, G., Roitberg, J., Localization of Nilpotent Groups and Spaces. North-Holland 

Mathematics Studies, No. 15 .North-Holland Amsterdam-Oxford, New York, 1975. x+156 pp. 

(362,458) 

Hilton, P.J., Roitberg, J., On principal S3-bundles over spheres, Ann. of Math. (2) 90(1969), 

91-107. (458,476) 

Hilton, P.J., Roitberg, J., On the Zeeman comparison theorem for the homology of quasi-nilpotent 

fibrations, Quart. J. Math. Oxford Ser. (2) 27(1976), 433-444. (359) 

Hilton, P.J., Wylie, S., Homology theory: An Introduction to Algebraic Topology. Cambridge 

University Press, New York, NY 1960. (139) 

Hirsch, G., Cohomologie d'un espace de Postnikov (cas non stable), unpublished preprint. (277, 

291) 

Hirsch, G., Sur les groupes d'homologie des espaces fibres, Bull. Soc. Math. Belg. 2(1948-49), 

24-33. (185) 

Hirsch, G., Surles groupes d'homologie des espaces fibres, Bull. Soc. Math. Belg. 6(1950), 79-96. 

(181,223,225) 

Hirschhorn, P.S., A spectral sequence for the homotopy groups of a wedge, Amer. J. of Math. 

109(1987), 783-786. (489) 

Hirzebruch, F., Topological Methods in Algebraic Geometry. Springer-Verlag, Berlin, New York, 

Heidelberg, 1966. (217,220) 

Hitchin, N., Harmonic spinors, Adv. Math. 14(1974), 1-55. (451) 

Hochschild, G., On the cohomology groups of an associative algebra, Annals of Math. 46(1945), 

58-tJ7. (509) 

Hochschild, G., Konstant, B., Rosenberg A., Differential forms on regular affine algebras, Trans. 

Amer. Math. Soc. 102(1962), 383-408. (509) 

Hochschild, G., Serre, J.-P., Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 

11 0--134. (342) 

Hochschild, G., Serre, J.-P., Cohomology of Lie algebras, Annals of Math. 57(1953'), 591--603. 

(511) 

Hodgkin, L., Notes toward a geometric Eilenberg-Moore spectral sequence, (mimeograph) E. T. 

H. Zurich 1969. (274,313,321) 

Hodgkin, L., The equivariant Kiinneth theorem in K-theorem, Topics in K-theory. Two independent 

contributions, Springer Lecture Notes in Math.,496(1975), 1-101. (321, 498) 

Honkasalo, H., The equivariant Serre spectral sequence as an application of a spectral sequence 

of Spanier, Topology and it Appl. 90(1998), 11-19. (501) 

Hope, H., Uber die Abbildungen der dreidimensionalen Sphiire auf die Kugelflache, Math. Ann. 

104(1931), 637-665. (366) 



Bibliography 537 

Hope, H., Uber die Abbildungen von Sphiiren auf Sphiiren von niedriger Dimension, Fund. Math. 

35(1935),427-440. (366) 

Hope, H., Uber die Topologie der Gruppenmannigfaltigkeiten und ihre Verallgemeinerungen, An­

nals of Math. 42(1941), 22-52. (134,213,456,457) 

Hope, H., Fundamentalgruppe und zweite Bettische Gruppe, Comm. Math. Helv. 17(1942), 257-

309. (134,338) 

Hope, H., Rinow, W., Uber den Begriff der vollstandigen differentialgeometrischen Flachen, 

Comm. Math. Helv. 3(1931), 209-225. (158) 

Hopkins, M.J., Topological modular forms, the Witten genus, and the theorem of the cube, Pro­

ceedings of the International Congress of Mathematicians, (Ztirich, 1994,554-565, Birkhiiuser, 

Basel, 1995. (500) 

Houston, K., Local topology of images of finite complex analytic maps, Topology 36(1997),1077-

1121. (506) 

Houston, K., An introduction to the image computing spectral sequence. Singularity theory (Liv­

erpool, 1996),305-324, London Math. Soc. Lecture Note Ser., 263, Cambridge Univ. Press, 

Cambridge, 1999. (506) 

Houzel, c., Les debuts de la theorie des faisceaux, in Sheaves on manifolds by Masaki Kashiwara, 

Pierre Schapira, Berlin; New York: Springer-Verlag, 1990. (134) 

Hu, S.T., Homotopy Theory,. 

Huebschmann, J., Cohomology of meta cyclic groups, Trans. Amer. Math. Soc. 328(1991),1-72. 

(344) 

Huebschmann, J., Automorphisms of group extensions and differentials in the Lyndon-Hochschild­

Serre spectral sequence, J. Algebra 72(1981),296-334. (344) 

Huebschmann, J., Kadeishvili, T., Small models for chain algebra, Math. Z. 207(1991), 245-280. 

(225,297) 

Hunter, T.J., On H*(nn+2sn+l;F2), Trans. Amer. Math. Soc. 314(1989), 405-420. (326) 

Hurewicz, W., Beitrage zur Topologie der Deformationen, I-IV, Proc. Akad. Wetensch. Amsterdam 

38(1935)112-119,521-528;39(1936)117-126,215-224. (133-4) 

Hurewicz, W., On the concept of fiber space, Proc. Nat. Acad. Sci. U.S.A. 41(1955), 956-961. 

(110) 

Hurewicz, W., Steenrod, N .E., Homotopy relations in fibre spaces, Proc. Amer. Math. Sci. 27 (1941), 

60--64. 

Hurwitz, A., Uber die Komposition der quadratischen Formen, Math. Ann. 88(1923),1-25. (366) 

Husemoller, D., Fibre Bundles. Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, 

New York, 1994. xx+353 pp. (154, 208, 210, 211) 

Husemoller, D., Moore, J.C., Stasheff, J.D., Differential homological algebra and homogeneous 

spaces, J. P. Appl. Alg. 5(1974),113-185. (224, 296) 

illusie, L., Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Ecole Norm. Sup. (4) 

12(1979),501-661. (517, 518) 

Intermont, M., An equivariant van Kampen spectral sequence, Topology Appl. 79(1997), 31-48. 

(502) 

Intermont, M., An equivariant smash spectral sequence and an unstable box product, Trans. Amer. 

Math. Soc. 351(1999), 2763-2775. (502) 



538 Bibliography 

Ivanovskii, I.N., Cohomology of the Steenrod algebra, Dokl. Akad. Nauk USSR 157(1964),1284-

1287 (Russian). (427,428) 

James, I.M., The suspension triad of a sphere, Ann. of Math., 63(1956), 407-429. (494) 

James, I.M., The transgression and Hopf invariant of a fibration, Proc. London Math. Soc.U(1961), 

588-600. (185) 

James, I.M., Ex-homotopy theory. I, Illinois J. Math. 15(1971), 324-337. (315,328) 

James, I.M., Fibrewise Topology, Cambridge Tracts in Mathematics, 91. Cambridge University 

Press, Cambridge-New York, 1989. x+198 pp. (315, 328) 

Jeanneret, A., Algebras over the Steenrod algebra and finite H -spaces, Adams memorial symposium 

on algebraic topology, vol. 2, Proc. Symp., ManchesterlUK 1990, Lond. Math. Soc. Lect. Note 

Ser. 176(1992), 187-202. (476) 

Jeanneret, A., Osse, A., The Eilenberg-Moore spectral sequence in K-theory, Topology 38(1999), 

1049-1073.(321,498) 

Johnson, D.C., A Stong-Hattori spectral sequence, Trans. Amer. Math. Soc. 179(1973), 211-225. 

(483) 

Jozefiak, T., Tate resolutions for commutative graded algebras over a local ring, Fund. Math. 

74(1972),209-231. (261) 

Kahn, B., La conjecture de Milnor d'apres V. Voevodsky, Exp. No. 834, Seminaire Bourbaki, 

1996/97. Asterisque 245(1997),379-418. (522) 

Kahn, D.S., Cup-i products and the Adams spectral sequence, Topology 9(1970),1-9. (425,426, 

449) 

Kahn, D.S., Priddy, S.B., On the transfer in the homology of symmetric groups; The transfer 

and stable homotopy theory, Math. Proc. Cambridge Philos. Soc. 83(1978), 91-101; 103-111. 

(407) 

Kahn, D. W., The spectral sequence of a Postnikov system, Comm. Math. Helv. 40(1966), 169-198. 

(492) 

Kan, D.M., A combinatorial definition of homotopy groups, Ann. of Math. 67(01958), 288-312. 

(103, 109,489) 

Kan, D.M., Adjoint functors, Trans. Amer. Math. Soc. 87(1958), 294-329. (108) 

Kan, D.M., Thurston, W.P., Every connected space has the homology of a K(1l',l), Topology 

15(1976), 253-258. (339) 

Kane, R., On loop spaces withoutp torsion, Pac. J. Math. 60(1975),189-201. (265, 307, 327) 

Kane, R., On loop spaces withoutp torsion. II, Pacific J. Math. 71(1977), 71-88. (476) 

Kane, R.M., Implications in MoravaK-theory, Mem. Amer. Math. Soc. 59(1986), no. 340, iV+110 

pp. (458, 477, 483) 

Kane, R.M., The Homology of Hopf Spaces. North-Holland, Amsterdam, 1988. (477) 

Karoubi, M., Formes differentielles non commutatives et operations de Steenrod, Topology 34 

(1995),699-715. (128) 

Kasparov, G.G.,The K-functors in the theory of extensions of C* -algebras, Funktsional. Anal. i 

Prilozhen. 13(1979), 73-74. (523) 

Keller, B., Derived categories and their uses, Handbook of Algebra, vol. 1, edited by M. Hazewinkel, 

671-701. (524) 

Kervaire, M., Non-parallelizability of the n-sphere for n>7, Proc. Nat. Acad. Sci. U.S.A. 44( 

1958), 280--283. (425) 



Bibliography 539 

Kervaire, M., A manifold which does not admit any differentiable structure, Comment. Math. Helv. 

34(1960),257-270. (451) 

Kochman, S.O., The symplectic cobordism ring. I, Mem. Amer. Math. Soc. 24(1980), no. 228, 

ix+206 pp. (415) 

Kochman, S.O., Stable homotopy groups of spheres. A computer-assisted approach, L. N. M.1423, 

Springer-Verlag, Berlin, 1990. viii+330 pp. (450,451,497) 

Kochman, S.O., Bordism, Stable Homotopy and Adams Spectral Sequences. Fields Institute Mono­

graphs 7, AMS, Providence, RI, 1996. (120, 368,415,450,496,500) 

Kochman, S.O., Mahowald, M.E., On the computation of stable stems, The Cech centennial 

(Boston, MA, 1993), Contemp. Math., 181(1995), 299-316. (450) 

KolmogorotI, A.N., Uber die Dualitat im Aufbau der kombinatorischen Topologie, Math. Sbornik 

43(1936), 97-102. (133) 

Koszul, J.-L., Sur Ie operateurs de derivation dans un anneau, C. R. Acad. Sci. Paris 225 (1947), 

217-219.(34,45,134,222) 

Koszul, J.-L., Homologie et cohomologie des algebres de Lie, Bull. Soc. Math. France 78(1950), 

65-127. (185,221,222,277,511) 

Kraines, D., Massey higher products. Trans. Amer. Math. Soc. 124(1966),431-449. (273, 297, 

306,307) 

Kraines, D., The A(p) cohomology of some K stage Postnikov systems. Comment. Math. Helv. 

48(1973),56-71. Corrigendum: 48(1973),194. (292,307) 

Kraines, D., Lada, T., Applications of the Miller spectral sequence, Current trends in algebraic 

topology, Part 1 (London, Ont., 1981), pp. 479-497, CMS Conf. Proc., 2, Amer. Math. Soc., 

Providence, R.I., 1982. (499) 

Kraines, D., Schochet, c., Differentials in the Eilenberg-Moore spectral sequence, J. P. App. Alg. 

2(1972),131-148. (305, 307) 

Krasil'shchik, J., Cohomology background in geometry ofPDE, Cont. Math. 219(1998),121-139. 

(520) 

Krasil'shchlk, J., Verbovetsky, A., Homological Methods in Equations of Mathematical Physics. 

Open Education & Sciences, P.O. Box 84, 746 20 Opava, Czech Republic, 1998. (519) 

Kristensen, L., On the cohomology of two-stage Postnikov systems, Acta Math. 107(1962), 73-

123. (195) 

Kristensen, L., On the cohomology of spaces with two non-vanishing homotopy groups. Math. 

Scand. 12(1963), 83-105. (292) 

Kudo, T., A transgression theorem, Mem. Fac. Sci. Kyusyu Univ. (A)9(1956), 79-81. (192) 

Kuhn, N.J., A Kahn-Priddy sequence and a conjecture of G. W. Whitehead, Math. Proc. Cambridge 

Philos. Soc. 92(1982), 467-483. Corrigenda: 95(1984), 189-190. (499) 

Kuo, T.-C., Spectral operations for filtered simplicial sets, Topology 4(1965), 101-107. (195) 

Lambe, L.A., Homological perturbation theory, Hochschild homology, and formal groups, In De­

formation theory and quantum groups with applications to mathematical physics (Amherst, 

MA, 1990), Contemp. Math. 134(1992), 183-218. (225, 297) 

Lamotke, K., Semisimpliziale Algebraische Topologie, Die Grundlehren der mathematischen Wis­

senschaften, Band 147 Springer-Verlag, Berlin-New York 1968 viii+285 pp. (109) 

Landweber, P.S., Kiinneth formulas for bordism theories, Trans. Amer. Math. Soc. 121(1966), 

242-256. (313) 



540 Bibliography 

Landweber, P.S., Homological properties of comodules over M U * (M U) and B P * (B P), Amer. 

J. Math. 98(1976), 591--610. (500) 

Lannes, J., Sur les espaces fonctionnels dont la source est Ie classifiant d'un p-groupes abelien 

elementaire, Publ.1.H.E.S. 75(1992), 135-244. (327,458) 

Laures, G., The topological q-expansion principle, Topology 38 (1999), 387-425. (500) 

Lazard, M., Lois de groupes et analyseurs, Ann. Sci. Ecole Norm. Sup. (3) 72(1955),299-400. 

(488) 

Lefschetz, S., On singular chains and cycles, Bull. A.M.S. 39(1933), 124-129. (104) 

Leray, J., Sur la forme des espaces topologiques et sur les points fixes des representations; Sur 

la position d'un ensemble ferme de points d'un espace topologique; Sur les equations et les 

transformations, 1. Math. Pures Appl. (9)24(1945), 95-167, 169-199, and 201-248. (134, 307) 

Leray, J., L' anneau d'une representation; Propertes de I' anneau d'homologie d'une representation; 

Sur I'anneau d'homologie de I'espace homogene, quotient d'un grooupe clos par un sous­

groupeabelien, connexe, maximum, C. R. Acad. Sci. Paris 222(1946), 1366-1368; 1419-1422; 

223(1946),412-415. (34,45, 134,221,222,342,515,516) 

Leray, J., L' anneau spectral et I' anneau filtre d'homologie d'un espace localement compact et 

d'une application continue: L'homologie d'un espace fibre dont la fibre est connexe, J. Math. 

Pures Appl. 29(1950).1-80,81-139; 169-213. (139, 142, 181,221,222,277) 

Lichnerowicz, A., Spineurs harrnoniques, C.R. Acad. Sci. Paris 257(1963),7-9. (451) 

Ligaard, H., Madsen, I.,Homology operations in the Eilenberg-Moore spectral seuqence, Math. 

Z. 143(1975),45-54. (326) 

Lima, E.L., The Spanier-Whitehead duality in new homotopy categories, Summa Brasil. Math. 

4(1959),91-148. (408, 495) 

Lin, J.P., Torsion in H-spaces. I, Ann. of Math. 103(1)976,457-487. (376,477) 

Lin, J.P., Torsion in H-spaces. II, Ann. Math. (2) 107(1978), 41-88. (477,513) 

Lin, J.P., Two torsion and the loop space conjecture, Ann. of Math. (2) 115(1982), 35-91. (458, 

477) 

Lin, J.P., The first homotopy group of a finite H-space, J. Pure Appl. Algebra 90(1993),1-22. (476) 

Lin, J.P., H-spaces with finiteness conditions, in the Handbook of Algebraic Topology, edited by 

1. M. James, Elsevier Science, Amsterdam, 1995, 1095-1141. (477) 

Lin, W.H., Some elements in the stable homotopy of spheres, Proc. Amer. Math. Soc. 95(1985), 

295-298. (450) 

Lin, W.H., EHP spectral sequence in the lambda algebra, in Papers in honor of Jose Adem (Spanish). 

Bol. Soc. Mat. Mexicana (2) 37(1992),339-353. (495) 

Liulevicius, A., The factorization of cyclic reduced powers by secondary cohomology operations, 

Memoirs AMS 42(1962). (368, 384, 392,408,413,434,445) 

Liulevicius, A., A theorem in homological algebra and stable homotopy of projective spaces, Trans. 

Amer. Math. Soc. 109(1963), 540-552. (297,430) 

Liulevicius, A., Coalgebras, resolutions, and the computer, Math. Algorithms 1(1966), 4-11. (445) 

Liulevicius, A., Characteristic classes and cobordism. Part 1. Matematisk Institut, Aarhus Vniver­

sitet, Aarhus 1967 vi+ 152 pp. (225,227) 

Loday, J.-L., Vne version non commutative des algebres de Lie: les algebres de Leibniz, L'Enseign­

ement Math. 39(1993), 269-293. (512) 



Bibliography 541 

Loday,J.-L., Larenaissance des operades, Seminaire Bourbaki, Vol. 1994/95. Asterisque237(1996), 

Exp. No. 792, 47-74. (297) 

Loday, J.-L., Cyclic Homology. Appendix E by Maria O. Ronco. Grundlehren der Mathematis­

chen Wissenschaften 301, first edition, 1992. Second edition. Chapter 13 by the author in 

collaboration with Teimuraz Pirashvili. Springer-Verlag, Berlin, 1998. (510) 

Loday, J.-L., Pirashvlli, T., Universal enveloping algebras of Leibniz algebras and (co)-homology, 

Math. Annalen 296(1993), 139-158. (512) 

Lodder, J.M., Leibniz cohomology for differentiable manifolds, Ann. lnst. Fourier, Grenoble 

48(1998),73-95. (512, 513) 

Lubkin, S., Cohomology of Completion. North-Holland, Amsterdam, 1980. (28) 

Lundell, A.T., Weingram, S., The Topology of CW-complexes. Van Nostrand Reinhold Co., New 

York, 1969. (102) 

Lyndon, R.e., The cohomology theory of group extensions, Duke Math. J. 15(1948), 271-292. 

(342) 

Maakinen, J., Boundary formulae for reduced powers in the Adams spectral sequence, Ann. Acad. 

Sci. Fennicae (A-l)562(1973). (449) 

MacLane, S., Slide and torsion products for modules, Univ. e Politec. Torino. Rend. Sem. Mat. 

15(1955-56),281-309. (311) 

MacLane, S., Homology. First ed. Springer-Verlag, Heidelberg, 1963. (50, 122,515) 

Mac Lane, S., The Milgram bar construction as a tensor product of functors. 1970 The Steenrod 

Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, 

Battelle Memorial lnst., Columbus, Ohio,1970) pp. 135-152 Lecture Notes in Mathematics, 

Vol. 168. (243,247) 

Madsen, I., Milgram, R.J., The Classifying Spaces for Surgery and Cobordism of Manifolds. 

Princeton Univ., Princeton, NJ, 1979. (212) 

Mahowald, M.E., The metastable homotopy of sn, Mem. AMS72(1967). (448) 

Mahowald, M.E., The primary v2-periodic family, Math. Z.177(1981), 381-393. (450) 

Mahowald, M.E., The image of J in the EHP sequence, Ann. of Math. (2) 116(1982), 65-112. 

(450) 

Mahowald, M.E., Tangora, M.e., Some differentials in the Adams spectral sequence, Topology 

6(1967),349-369. (448,449,450,484) 

Mahowald, M.E., Thompson, R.D., The EHP sequence and periodic homotopy, in Handbook of 

Algebraic Topology, edited by l.M. James, Elsevier Science B.V., Amsterdam, 1995,397-423. 

(495) 

Margolis, H.R., Spectra and the Steenrod Algebra. Modules over the Steenrod Algebra and the Sta­

ble Homotopy Category. North-Holland Mathematical Library, 29. North-Holland Publishing 

Co., Amsterdam-New York, 1983. xix+489 pp. (432,496) 

Massey, W.S., Exact couples in algebraic topology, I, II, III, Ann. of Math. 56(1950), 363-396. 

(37) 

Massey, W.S., Products in exact couples, Ann. of Math. 59(1954), 558-569. (60) 

Massey, W.S., Some problems in algebraic topology and the theory of fibre bundles, Annals of 

Math. 62(1955), 327-359. (133, 194) 

Massey, W.S., Some higher order cohomology operations, 1958 Symposium internacional de 

topologfa algebraica, pp. 145-154 Universidad Nacional Aut6noma de Mexico and UNESCO, 



542 Bibliography 

Mexico City. (273, 297, 305) 

Massey, W.S., Obstructions to the existence of almost complex structures, Bull. Amer. Math. Soc. 

67(1961),559-564. (221) 

Massey, W.S., Algebraic Topology: An Introduction. Harcourt, Brace & World, Inc., New York 

1967 xix+261 pp. (159) 

Massey, W.S., Higher order linking numbers, J. Knot Theory Ramifications 7(1998), 393-414. 

(273,304) 

Massey, W.S., A Basic Course in Algebraic Topology. Graduate Texts in Mathematics 127, Springer­

Verlag, New York, 1991. (100, 102, 371) 

Massey, W.S., Peterson, F.P., The mod 2 cohomology of certain fibre spaces, Mem. Amer. Math. 

Soc. 74(1967). (492) 

Maunder, C.R.F., Cohomology operations of the Nth kind, Proc. London Math. Soc., (2)13(1963) 

125-154. (376, 425) 

Maunder, C.R.F., Chern characters and higher-order cohomology operations, Camb. Proc. Phi­

los. Soc., 60(1964) 751-764. (376, 425, 445) 

Maunder, C.R.F., On the differentials in the Adams spectral sequence for the stable homotopy 

groups of spheres. I.; II, Proc. Cambridge Philos. Soc. 61(1965), 53--60; 855-868. (429,448) 

May, J.P., The cohomology of restricted Lie algebras and of Hopf algebras; applications to the 

Steenrod algebra, Ph. D. thesis, Princeton Univ., 1964. (87, 368, 427, 428, 430, 441, 441, 442, 

445,447,510) 

May, J.P., The cohomology of restricted Lie algebras and of Hopf algebras, J. Alg. 3(1966), 123-

146. (441,442,510) 

May, J.P., Simplicial Objects in Algebraic Topology. Van Nostrand Reinhold Co., New York, 1967. 

(106,107,109,224,243,357) 

May, J.P., The algebraic Eilenberg-Moore spectral sequence, preprint, 1968. (312) 

May, J.P., The cohomology of principal bundles, homogeneous spaces, and two-stage Postnikov 

systems, Bull. Amer. Math. Soc. 74(1968),334-339. (311) 

May, J.P., Matric Massey products, J. Algebra 12(1969),533-568. (273, 297, 311, 312) 

May, J.P., A general approach to Steenrod operations, in The Steenrod algebra and its Applications, 

Springer Lecture Notes in Mathematics 168(1970), 153-231. (128, 193,326) 

May, J.P., The geometry of iterated loop spaces. Springer Lectures Notes in Mathematics 271(1972) 

viii+175 pp. (297) 

May, J.P., Classifying spaces and fibrations, Memoirs Amer. Math. Soc. 155(1975). (212, 268) 

May, J.P., Derived categories in algebra and topology, Proceedings of the Eleventh International 

Conference of Topology (Trieste, 1993). Rend. Istit. Mat. Univ. Trieste 25(1993), 363-377 

(1994). (524) 

May, J.P., A Concise Course in Algebraic Topology. The University of Chicago Press, Chicago, 

IL, 1999. (102) 

May, J.P., Milgram, R.J., The Bockstein and the Adams spectral sequences., Proc. Amer. Math. 

Soc. 83(1981), 128-130. (478) 

Mazzeo, R.R., Melrose, R.B., The adiabatic limit, Hodge cohomology and Leray's spectral se­

quence for a fibration, J. Diff. Geom. 31(1990), 185-213. (519) 

McCleary, J., Cartan's cohomology theories and spectral sequences, Current trends in algebraic 

topology, Part 1 (London, Ont., 1981), pp. 499-506, CMS Conf. Proc., 2, Amer. Math. Soc., 



Bibliography 543 

Providence, R.l., 1982. (227) 

McCleary, J., On the mod p Betti numbers ofloop spaces, Invent. Math. 87(1987), 643--654. (477) 

McCleary, J., Homotopy theory and closed geodesics, Homotopy theory and related topics (Ki­

nosaki, 1988), 86-94, Lecture Notes in Math., 1418, Springer, Berlin, 1990. (178, 224) 

McCleary, J., A topologist's account of Yang-Mills theory, Expos. Math. 10(1992), 311-352. (220) 

McCleary, J., A history of spectral sequences: Origins to 1953, in History of Topology, ed. James, 

l.M., North-Holland, Amsterdam, 1999,631--663. (45, 134) 

McClure, J.E., Staffeldt, R.E., On the topological Hochschild homology of bu. I, Amer. J. Math. 

115(1993),1-45. (498) 

McGibbon, e.A., Neisendorfer, J.A., On the homotopy groups of a finite-dimensional space, 

Comm. Math. Helv. 59(1984), 253-257. (205) 

Meyer, D.M., Z/p-equivariant maps between lens spaces and spheres, Math. Ann. 312(1998), 

197-214. (479) 

Milgram, R.J., The bar construction and abelian H-spaces, Ill. J. Math. 11(1967), 242-250. (211, 

212,268) 

Milgram, R.J., Group representations and the Adams spectral sequence, Pac. J. Math. 41(1972), 

157-182. (426, 449) 

Miller, H.R., A spectral sequence for the homology of an infinite delooping, Pac. J. Math. 79(1978), 

139-155. (499) 

Miller, H.R., The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120(1984), 

39-87. Correction: Ann. of Math. (2) 121(1985), 605--609. (205,458,504) 

Miller, H.R., Ravenel, D.e., Mark Mahowald's work on the homotopy groups of spheres. Algebraic 

topology (Oaxtepec, 1991), Contemp. Math. 146(1993), 1-30. (450) 

Miller, H.R., Ravenel, D.e., Wilson, W. S., Periodic phenomena in the Adams-Novikov spectral 

sequence, Ann. Math. (2) 106(1977), 469-516. (500) 

Milne, J.S., Etale Cohomology. Princeton Mathematical Series. 33. Princeton, New Jersey: Prince­

ton University Press. XIII, 323 p.(1980). (521) 

Milnor, J.W., Construction of universal bundles I, II, Ann. of Math. (2)63(1956), 272-284, 430-

436. (211,268,331) 

Milnor, J.W., The geometric realization of a semi-simplicial complex, Ann. of Math. 65(1957), 

357-362.(107,274,310) 

Milnor, J.W., The Steenrod algebra and its dual, Ann. of Math. 67(1958), 150-171. (131,413,417, 

483) 

Milnor, J.W., On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 

90(01959),272-280. (94) 

Milnor, J.W., On the cobordism ring [l* and a complex analogue. I, Amer. J. Math. 82(1960), 

505-521.(368,408,414,497) 

Milnor, J.W., On axiomatic homology theory, Pac. J. Math. 12(1962), 337-341. (69) 

Milnor, J.W., Morse Theory (Notes by M. Spivak and R. Wells). Princeton Univ. Press, Princeton, 

1963. (95) 

Milnor, J.W., Moore, J.e., On the structure of Hopf algebras, Ann. of Math. 81(1965), 211-264. 

(123,131,389,438,441,454,474) 



544 Bibliography 

Milnor, J. W., Stasheff, J.D., Characteristic Classes. Annals of Mathematics Studies, No.7 6. Prince­

ton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. vii+331 pp. 

(149, 151, 154208,218,220,411,451) 

Mimura, M., Mori, M., The squaring operations in the Eilenberg-Moore spectral sequence and the 

classifying space of an associaive H -space. I, Pub!. Res. Math. Inst. Sci. 13(1977/78), 755-776. 

(326) 

Mimura, M., Nishida, G., Toda, R., Mod p decompositions of compact Lie groups, Pub!. RIMS, 

Kyoto Univ., 13(1971), 627-680. (362) 

Mimura, M., Toda, R., Topology of Lie groups. I, II. Translated from the 1978 Japanese edition by 

the authors. Translations of Mathematical Monographs, 91. American Mathematical Society, 

Providence, RI, 1991. iv+451 pp. (149, 278) 

Mitchell, S.A., Hypercohomology spectra and Thomason's descent theorem, Algebraic K-theory 

(Toronto, ON, 1996), Fields Inst. Commun., 16(1997), 221-277. (522) 

Moerdijk, I., Svensson, J.-A., The equivariant Serre spectral wequence, Proc. AMS 118(1993), 

263-278. (501) 

Mjjller, J.M., On equivariant function spaces, Pacific J. Math. 142(1990), 103-119. (502) 

Moore, J.e., Some applications of homology theory to homotopy problems, Ann. of Math. 58(1953), 

325-350. (66) 

Moore, J.e., On homotopy groups of spaces with a single non-vanishing homology group, Ann. 

of Math. 59(1954), 549-557. 

Moore, J.e., Algebraic homotopy theory, mimeographed notes, Princeton, 1956. (108,224) 

Moore, J.e., Semi-simplicial complexes and Postnikov systems, Symposium internacional de 

topologia algebraica, Univ. Nac. Aut. de Mexico and UNESCO, Mexico City, 1958,232-247. 

(122) 

Moore, J.e., Algebre homologique et homologie des espace classificants, Seminaire Cartan, 

1959/60, expose 7. (232, 233, 235, 241, 266, 269) 

Moore, J.e., Cartan's constructions, the homology of KCrr,n)'s, and some later developments, 

Colloque "Analyse et Topologie" en I'Honneur de Henri Cartan (Orsay, 1974), pp. 173-212. 

Asterisque, No. 32-33, Soc. Math. France, Paris, 1976. (194) 

Moore, J.e., Smith, L., Hopf algebras and multiplicative fibrations I, II, Amer. J. Math. 90(1968), 

752-780,1113-1150.(327) 

Morava, J., Noetherian completions of categories of cobordism comodules, Ann. Math. 121 (1985), 

1-39. (477) 

Morel, F., Voevodsky's proof of Milnor's conjecture, Bull. Amer. Math. Soc. (N.S.) 35(1998), 

123-143. (522) 

Mori, M., The Steenrod operations in the Eilenberg-Moore spectral sequence, Hirosh. Math. J. 

9(1979),17-34. (326) 

Morse, M., The Calculus of Variations in the Large. AMS Colloquium Series 18, Providence, RI, 

1934. (158) 

Mosher, R., Tangora, M.e., Cohomology Operations and Applications in Homotopy Theory. 

Harper and Row, 1968. (128) 

Moss, R.M.F., The composition pairing of Adams spectral sequences, Proc. London Philos. Soc. 

(3)18(1968),179-192. (403, 406) 



Bibliography 545 

Moss, R.M.F., Secondary compositions and the Adams spectral sequence, Math. Zeit. 115(1970), 

283-310.(429,430,440) 

Munkholm, H.J., The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative 

maps, J. P. App. Alg. 5(1974), 1-50. (277,294,296) 

Nakaoka, M., Toda, H., On Jacobi identity for Whitehead products. J. Inst. Poly tech. Osaka City 

Univ. Ser. A. 5(1954),1-13. (303) 

Nassau, C. An internet page: http://www.math.uni-frankfurt.de/nassaulExt2. (445) 

Neisendorfer, J.A., Homotopy theory modulo an odd prime, Princeton University thesis, 1972. 

(480,481) 

Neisendorfer, J.A., Primary homotopy theory, Mem. AMS 25, no. 232, (1980). (461,462,480, 

481) 

Neumann, F., Quillen spectral sequence in rational homotopy theory, in Algebraic K-theory and its 

applications, Proceedings on the Workshop and Symposium, ICTP, Trieste (ed. H. Bass, A.O. 

Kuku, C. Pedrini), World Scientific Publishing Co. 1999. (488) 

Nishida, G., The nilpotency of elements of the stable homotopy groups of spheres, J. Math. Soc. Japan 

25(1973),707-732. (407) 

Novikov, S.P., Cohomology of the Steenrod algebra, Dokl. Akad. NaukSSSR 128(1959),893-895. 

(429) 

Novikov, S.P., The methods of algebraic topology from the viewpoint of cobordism theory, Izves­

tia Akad. Nauk SSSR Ser. Mat. 31(1967), 855-951 (Russian). Translation, Math USSR-Izv. 

(1967),827-913. (415, 451, 497, 499) 

Orr, K.E., Link concordance invariants and Massey products, Topology 30(1991),699-710. (310) 

Palmieri, J.H., Self-maps of modules over the Steenrod algebra, J. Pure Appl. Algebra 79(1992), 

281-291. (432) 

Paranjape, K.H., Some spectral sequences for filtered complexes and applications, J. Algebra 

186(1996),793-806. (516) 

Peterson, F.P., Generalized cohomotopy groups, Amer. J. Math. 78(1956), 259-281. (458,480) 

Pimsner, M., Popa, S., Voicnlescu, D., Homogeneous C* -extensions of C(X)®K(H). I, J. Op-

erator Theory 1(1979), 55-108. (523) 

Pirashvili, T., On Leibniz homology, Ann. Inst. Fourier, Grenoble 44(1994), 401-411. (512, 513) 

Poincare, H., Analysis situs, J. Ecole Poly. 1(1895), 1-121. (409) 

Poincare, J.H., Memoire sur les courbes definies par une equation differentielle, Jour. de Math. 

7(3) (1881), 375-442. (207) 

Pontryagin, L., Characteristic classes on differentiable manifolds, Mat. Sbornik N .S. 21(63)(1947), 

233-284. (207) 

Pontryagin, L.S., Smooth manifolds and their applications in homotopy theory, Trudy Mat. Inst. 

im. Steklov. 45(1955), Izdat. Akad. Nauk SSSR, Moscow, 139 pp. (409) 

Porter, R., Milnor's jl-invariants and Massey products, Trans. Amer. Math. Soc. 257(1980), 39-71. 

(310) 

Postnikov, M.M., Determination of the homology groups of a space by means of the homotopy 

invariants, Dokl. Akad. Nauk SSSR 76(1951),359-362. (120) 

Postnikov, M.M., On Cartan's theorem, Russ. Math. Surveys 21(1966),25-36. (197) 



546 Bibliography 

Prieto, c., The relative spectral sequence of Leray-Serre for fibration pairs, Monograffas del Insti­

tuto de Matematicas [Monographs of the Institute of Mathematics], 8. Universidad Nacional 

Aut6noma de Mexico, Mexico City, 1979. i+102 pp. (222) 

Puppe, D., Homotopiemenge und ihre induzierten Abbildungen I, Math. Zeit. 69(1958), 299-344. 

(97) 

Quillen, D.G., Spectral sequences of a double semi-simplicial group, Topology, 5(1966), 155-157. 

(488,489) 

Quillen, D.G., Homotopical Algebra, Springer Lecture Notes in Mathematics, 43(1967). (109) 

Quillen, D.G., Rational homotopy theory, Ann. of Math. 90(1969), 205-295. (487) 

Quillen, D.G., An application of simplicial profinite groups, Comm. Math. Helv. 44(1969'), 45-60. 

(82) 

Quillen, D.G., On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. 

Math. Soc. 75(1969"),1293-1298. (451, 500) 

Quillen, D.G., Higher algebraic K-theory. I, in Algebraic K-theory, I: Higher K-theories (Proc. 

Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer Lecture Notes in Math. 341 

(1973),85-147. (520) 

Radon, J., Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1(1922), 

1-14. (366) 

Ravenel, D.C., Complex Cobordism and Stable Homotopy Groups of Spheres. Pure and Applied 

Mathematics, 121. Academic Press, Inc., Orlando, Fla., 1986. xx+413 pp. (368,408,415,442, 

451,495,500) 

Ravenel, D.C., Nilpotence and Periodicity in Stable Homotopy Theory. Appendix C by Jeff Smith, 

Annals of Mathematics Studies, 128. Princeton University Press, Princeton, NJ, 1992. xiv+209 

pp. (408, 451, 496) 

Ray, N., The symplectic bordism ring, Proc. Cambridge Philos. Soc. 71(1972), 271-282. (415, 

497) 

Rector, D.L., An unstable Adams spectral sequence, Topology 5(1966),343-346. (493) 

Rector, D.L., Steenrod operations in the Eilenberg-Moore spectral sequence, Comment. Math. 

Helv. 45(1970),540-552. (274, 314, 322, 355) 

Rolfsen, D., Knots and Links. Mathematics Lecture Series, No.7. Publish or Perish, Inc., Berkeley, 

Calif., 1976. ix+439 pp. (304) 

Rothenberg, M., Steenrod, N.S., The cohomology of classifying spaces of H-spaces, Bull. Amer. 

Math. Soc. 71(1965), 872-875. (268) 

Rotman, J.J., An Introduction to Homological Algebra. Academic Press, New York, 1979. 

Rudyak, Y.B., On Thorn Spectra, Orientability, and Cobordism. With a foreword by Haynes Miller. 

Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xii+587 pp. (302,410) 

Rudyak, Y.B., On category weight and its applications, Topology 38(1999), 37-55. 

Samelson, R., Beitriige zur Topologie der Gruppenmannigfaltigkeiten, Annals of Math. 42(1941), 

1091-1137.(134,148,277) 

Samelson, R., Groups and spaces ofloops, Comment. Math. Helv. 28(1954), 278-287. (303) 

Sard, A., The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48(1942), 

883-890. (409) 

Sawka, J., Odd primary Steenrod operations in first-quadrant spectral sequences, Trans. Amer. 

Math. Soc. 273(1982), 737-752. (326) 



Bibliography 547 

Schlessinger, M., Stasheff, J.D., The Lie algebra structure of tangent cohomology and deformation 

theory, J. Pure App!. Algebra 38(1985), 313-322. (310) 

Schochet, c., A two-stage Postnikov system where E2#E= in the Eilenberg-Moore spectral 

sequence, Trans. Amer. Math. Soc. 157(1971), 113-118. (277,291,296) 

Schochet, c., Cobordism from an algebraic point of view. Lecture Notes Series, No. 29. Matematisk 

Institut, Aarhus Universitet, Aarhus, 1971. iv+190pp. (414) 

Schochet, c., Topological methods for C* -algebras. I. Spectral sequences. PacificJ. Math. 96(1981), 

193-211. (523) 

Schon, R., Effective algebraic topology, Mem. Amer. Math. Soc. 92(1991), no. 451, vi+63 pp. 

(330) 

Selick, P.S., Odd primary torsion in 1rk(S3), Topology 17(1978), 407-412. (482) 

Sergeraert, F., The computability problem in algebraic topology, Adv. Math., 104(1994), 1-29. 

(330) 

Serre, J.-P., Cohomologie des extensions de groupes, CR. Acad. Sci. Paris 231(1950),643--646. 

(342) 

Serre, J.-P., Homologie singuliere des espaces fibres. I. La suite spectrale; II. Les espaces de lacets; 

III. Applications homotopiques, CR. Acad. Sci. Paris 231(1950), 1408-1410; 232(1951), 31-

33 and 142-144. (134) 

Serre, J.-P., Homologie singuliere des espaces fibres, Ann. ofMath.54(1951), 425-505. (45, 134ff., 

190,205,206,222,297,298,331,477,487) 

Serre, J.-P., Cohomologie modulo 2 des complexes d'Eilenberg-MacLane , Comm. Math. Helv. 

27(1953),198-232. (18, 128, 180, 197,202,205,354,468) 

Serre, J.-P., Cohomologie et geoetrie algebrique, Conges International d' Amsterdam 3(1954), 

515-520. (523) 

Seymour, R.M., On the convergence of the Eilenberg-Moore spectral sequence, Proc. London 

Math. Soc. (3)36(1978),141-162. (498) 

Shick, P.L., Adams spectral sequence chart, in Algebraic Topology: Oaxtepec 1991, ed. by M.C Tan­

gora, Cont. Math. 146(1993),479-481. (445) 

Shih, W., Homologie des espaces fibres, Pub!. I. H. E. S. 13(1962), 88 pp. (223) 

Shipley, B.E., Pro-isomorphisms of homology towers, Math. Z. 220(1995), 257-271. (82, 360, 

361) 

Shipley, B.E., Convergence of the homology spectral sequence of a cosimplicial space, Amer. J. 

Math. 118(1996), 179-207. 

Shnider, S., Sternberg, S., Quantum groups. From coalgebras to Drinfel'd algebras. A guided 

tour. Graduate Texts in Mathematical Physics, II. International Press, Cambridge, MA, 1993. 

xxii+496 pp. (126) 

Singer, W.M., Connective fiberings over BU and U, Topology 7(1968),271-303. (327) 

Singer, W.M., Extension theory for connected Hopf algebras, J. Algebra 21(1972), 1-16. (513) 

Singer, W., Steenrod squares in spectral sequences I, II, Trans. AMS 175(1973), 327-336, 337-353. 

(195,221,326) 

Singer, W.M., The algebraic EHP sequence, Trans. Amer. Math. Soc. 201(1975), 367-382. (495) 

Singer, W.M., A new chain complex for the homology of the Steenrod algebra, Math. Proc. Cam­

bridge Philos. Soc. 90(1981), 279-292. (450) 

Sklyarenko, E.G., Zeeman's filtration in homology, Mat. Sb. 183(1992), 103-116. (505) 



548 Bibliography 

Smith, J.R., Iterating the cobar construction, Mem. Amer. Math. Soc. 109(1994), no. 524, viii+ 141 

pp. (491) 

Smith, L., Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. 

Soc. 129(1967),58-93.(235,243,277,298,300,301,321) 

Smith, L., The cohomology of stable two stage Postnikov systems, Illinois J. Math. 11(1967), 

310-329. (292) 

Smith, L., On the Kiinneth theorem. I. The Eilenberg-Moore spectral sequence, Math. Z.116(1970), 

94-140.(274,313,317,318,321,323,328,498) 

Smith, L., On the Eilenberg-Moore spectral sequence, Algebraic topology (1970), Proc. Sympos. 

Pure Math., 22(1971),231-246. (277) 

Smith, L., On the characteristic zero cohomology of the free loop space, Amer. J. Math. 103(1981), 

887-910. (178) 

Smith, L., A note on the realization of graded complete intersection algebras by the cohomology 

of a space, Quart. J. Math. Oxford Ser. (2) 33(1982), 379-384. (283) 

Smith, S.B., A based Federer spectral sequence and the rational homotopy of function spaces, 

Manuscripta Math. 93(1997), 59--66. (490) 

Spanier, E., Algebraic Topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966 

xiv+528 pp. Corrected reprint. Springer-Verlag, New York-Berlin, 1981. xvi+528 pp. (222, 

316) 

Spanier, E.H., Locally constant cohomology, Trans. Amer. Math. Soc. 329(1992), 607-624. (501) 

Srinivas, V., Algebraic K-theory. Second edition, Birkhauser, Boston, 1996. (96, 521) 

Stallings, J., Homology and central series of groups, J. Algebra 2(1965), 170--181. (274, 310, 342) 

Stammbach, U., Anwendungen der Homologietheorie der Gruppen auf Zentralreihen and auf 

Invarianten von Prasentierungen, Math. Z. 94(1966),157-177. (342) 

Stasheff, J.D., Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108(1963), 

275-312.(212,268.292,294,458) 

Stasheff, J.D., A classification theorem for fibre spaces, Topology 2(1963),239-246. (211, 212) 

Stasheff, J.D., H-spaces from a homotopy point of view. 1968 Conference on the Topology of 

Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) pp. 135-146 Prindle, Weber & 

Schmidt, Boston, Mass. (307) 

Stasheff, J.D., Deformation theory and the little constructions of Cartan and Moore, in Algebraic 

Topology and Algebraic K-theory, edited by W. Browder, Princeton University Press, Princeton, 

NJ, 1987,322-331. (194) 

Stasheff, J.D., The pre-history of operads, in Operads: Proceedings of Renaissance Conferences 

(Hartford, CTlLuminy, 1995),9-14, Contemp. Math. 202(1997), 9-14. (297) 

Stasheff, J.D., Halperin, S., Differential algebra in its own rite, Proceedings of the Advanced Study 

Institute on Algebraic Topology (Aarhus Univ., Aarhus 1970), Vo!' III, pp. 567-577. Various 

Pub!. Ser., No. 13, Mat. Inst., Aarhus Univ., Aarhus, 1970. (273, 277, 292ff.) 

Steenrod, N.E., Homology with local coefficients, Ann. of Math. 44(1943), 610-627. (163) 

Steenrod, N.E., Classification of sphere bundles, Ann. of Math. 45(1944), 294-311. (135) 

Steenrod, N.E., Products of cocycles and extensions of mappings, Ann. of Math. (2) 48(1947), 

290--320. (128, 299) 

Steenrod, N.E., Cohomology invariants of mappings, Ann. of Math. (2) 50(1949).954-988. (367) 



Bibliography 549 

Steenrod, N.E., Topology of Fibre Bundles. Princeton Univ. Press, Princeton, NJ, 1951. (113, 149, 

207,211,278) 

Steenrod, N.E., Reduced powers of cohomology classes, Ann. of Math. (2)56(1952),47-67. (128, 

134) 

Steenrod, N.E., Cohomology operations derived from the symmetric group, Comment. Math. Helv. 

31(1957), 195-218. (193) 

Steenrod, N.E., Homology groups of symmetric groups and reduced power operations. Proc. Nat. 

Acad. Sci. U. S. A. 39(1953),213-217. (326) 

Steenrod, N .E., Epstein, D.B.A., Cohomology Operations. Princeton U niv. Press, 1962. (128, 130, 

289, ) 

Steenrod, N.E., Cooke, G.E., Finney, R.L., Homology of Cell Complexes. Based on lectures by 

Norman E. Steenrod Princeton University Press, Princeton, N.J.; University of Tokyo Press, 

Tokyo 1967 xv+256 pp. (102) 

Stein, D., Massey products in the cohomology of groups with applications to link theory, Trans. 

Amer. Math. Soc. 318(1990), 301-325. (310) 

Stiefel, E., Richtungsfelder und Fernparallelismus in Mannigfaltigkeiten, Comm. Math. Helv. 

8(1936), 3-51. (207) 

Stolz, S., The level of real projective spaces, Comm. Math. Helv. 64(1989), 661--674. (479) 

Stolz, S., Simply connected manifolds of positive scalar curvature, Ann. of Math. 136(1992), 511-

540. (451) 

Stong, R.E., Notes on Cobordism Theory. Mathematical notes Princeton University Press, Prince­

ton, N.J.; University of Tokyo Press, Tokyo 1968 v+354+lvi pp. (409,412,413,414) 

Stover, e.R., A van Kampen spectral sequence for higher homotopy groups, MIT Ph.D. thesis, 

1988. (489) 

Stover, e.R., A van Kampen spectral sequence for higher homotopy groups, Topology 29(1990), 

9-26. (489, 502) 

Strom, J.A., Essential category weight and phantom maps, to appear in the Proceedings of the 

BCAT98. (302) 

Sugawara, M., A condition that a space is group-like, Math. J. Okayama Univ. 7(1957),123-149. 

(292, 294, 295) 

Sullivan, D., Geometric Topology. Part 1. Localization, Periodicity, and Galois Symmetry. Revised 

version. Massachusetts Institute of Technology, Cambridge, Mass., 1971. 432 pp. (330, 354, 

361, 362, 504) 

Sullivan, D., Differential forms and the topology of manifolds, Manifolds-Tokyo 1973 (Proc. 

Internat. Conf., Tokyo, 1973),37-49, Univ. Tokyo Press, Tokyo, 1975. (477) 

Switzer, R.M., Algebraic Topology-Homotopy and Homology. Die Grundlehren der mathema­

tischen Wissenschaften, Band 212. Springer-Verlag, New York-Heidelberg, 1975. xii+526 pp. 

(222,368,408,450,451,496,498) 

Tamme, G., Introduction to Etale Cohomology. Translated from the German by Manfred Kolster. 

Universitext. Springer-Verlag, Berlin, 1994. x+186 pp. (514, 521) 

Tanabe, M., On Morava K-theories of Chevalley groups, Amer. J. Math. 117(1995), 263-278. 

(498) 

Tangora, M.e., On the cohomology of the Steenrod algebra, Ph.D. dissertation, Northwestern 

University, 1966. (423) 



550 Bibliography 

Tangora, M.e., On the cohomology of the Steenrod algebra, Math. Zeit. 116(1970), 18-64. (442, 

445,447,428) 

Tangora, M.e., Some extension questions in the Adams spectral sequence, Proceedings of the 

Advanced Study Institute on the Algebraic Topology (Aarhus Univ., Aarhus, 1970), VoI.III, 

pp. 578-587. Various Publ. Ser. 13 Math. Inst., Aarhus Univ., Aarhus, 1970. (450) 

Tangora, M.e., Computing the homology of the lambda algebra, Mem. Amer. Math. Soc. 58(1985), 

no. 337, v+163 pp. (493) 

Tangora, M.e., Some Massey products in Ext, Topology and representation theory (Evanston, IL, 

1992), Contemp. Math. 158(1994), 269-280. 

Tate, J., Homology of Noetherian rings and local rings, Ill. J. Math. 1(1957), 14-27. (261) 

Thorn, R., Espaces fibres en spheres et carres de Steenrod, Ann. ENS 69(1952), 109-181. (217) 

Thorn, R., Quelques proprietes globales des varietes differentiables, Comment. Math. Helv. 28 

(1954),17-86.(368,408,409,410,413) 

Thomas, e.B., Characteristic Classes and the Cohomology of Finite Groups. Cambridge University 

Press, Cambridge, UK, 1986. (344) 

Thomas, P.E., Steenrod squares and H-spaces, Ann. Math. 77(1963), 306-317. (477) 

Thomas, P.E., Zahler, R.S., Nontriviality of the stable homotopy element 1'1, J. Pure Appl. Algebra 

4(1974), 189-203. (500) 

Thomason, R.W., First quadrant spectral sequences in algebraic K-theory via homotopy colimits, 

Comm. Algebra 10(1982),1589-1668. (504,522) 

Thomason, R. W., The homotopy limit problem, Proceedings of the Northwestern Homotopy The­

ory Conference (Evanston, Ill., 1982), Contemp. Math. 19(1983), 407-419. (503, 521, 522) 

Thomason, R.W., Algebraic K-theory and etale cohomology, Ann. Sci. Ecole Norm. Sup. (4) 

18(1985),437-552. Erratum: (4) 22(1989),675-677. (521, 522) 

Tillmann, U., Relation of the van Est spectral sequence to K-theory and cyclic homology, Illinois 

J. Math. 37(1993), 589--608. (512) 

Toda, R., Le produit de Whitehead et I' invariant de Hopf, e. R. Acad. Sci. Paris 241(1955), 849-

850. (425) 

Toda, R., p-primary components of homotopy groups IV, Compositions and toric constructions, 

Mem. CoIl. Sci. Kyoto Ser. A Math. 32(1959), 103-119. (429) 

Toda, R., Composition Methods in Homotopy Groups of Spheres. Annals of Mathematics Studies, 

No. 49 Princeton University Press, Princeton, N.J. 1962 v+193 pp. (368,429,446,450,494, 

495) 

Toomer, G.R., Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z. 138 

(1974),123-143. (302) 

Turaev, V.G., The Milnor invariants and Massey products, (Russian) Studies in topology, II. Zap. 

Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66(1976), 189-203,209-210. (310) 

Turner, J.M., Operations and spectral sequences. I, Trans. Amer. Math. Soc. 350(1998), 3815-

3835. (221, 326) 

Uehara, R., Massey, W.S., The Jacobi identity for Whitehead products, in Algebraic geometry 

and topology. A symposium in honor ofS. Lefschetz, pp. 361-377. Princeton University Press, 

Princeton, N. J., 1957. (273,297,303,304) 

Umeda, Y., A remark on a theorem of J.-P. Serre, Proc. Japan Acad. 35(1959), 563-566. (201, 205) 



Bibliography 551 

van Est, W. T., A generalization of the Cartan-Leray spectral sequence. I, II., Indag. Math. 20(1958), 

399-413. (511) 

Vassillev, V.A., Complements of Discriminants of Smooth Maps: Topology and Applications. 

Translated from the Russian by B. Goldfarb. Translations of Mathematical Monographs, 98. 

American Mathematical Society, Providence, RI, 1992. vi+208 pp. (505) 

Vazquez, R., Nota sobre los cuadrados de Steenrod en la sucession espectral de un espacio fibrado, 

Bol. Soc. Mat. Mexicana 2(1957), 1-8. (194) 

Verdier, J.-L., Des categories derivees des categories abeliennes. With a preface by Luc Illusie. 

Edited and with a note by Georges Maltsiniotis. Asterisque No. 239, (1996), xii+253 pp. (1997). 

(523) 

Vigue-Poirrier, M., Homologie et K-theorie des algebres commutatives: caracterisation des inter­

sections completes, J. Algebra 173(1995), 679-695. (283) 

Vinogradov, A.M., A spectral sequence associated with a nonlinear differential equation and 

algebro-geometric foundations of Lagrangian field theory with constraints, Soviet Math. Dokl. 

19(1978),144-148. (519) 

Viterbo, c., Some remarks on Massey products, tied cohomology classes, and the Lusternik­

Shnirelman category, Duke Math. J. 86(1997), 547-564. (304) 

Voevodsky, V., The Milnor conjecture, preprint, 1996, Algebraic K-theory preprint server, 

http://www.math.uiuc.edulK-theory/. (522) 

Wall, C.T.C., Determination of the cobordism ring, Ann. of Math. (2) 72(1960), 292-311. (368) 

Wang, H.C., The homology groups of the fiber bundles over a sphere, Duke Math. J. 16(1949), 

33-38. (145) 

Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups. Scott, Foresman and Co., 

Glenview, Ill.-London, 1971. viii+270 pp. Corrected reprint of the 1971 edition. Graduate Texts 

in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983. (165,276) 

Weibel, C.A., An Introduction to Homological Algebra. Cambridge University Press, New York, 

NY, 1994. (28,44,344,487,524) 

Whitehead, G.W., The (n+2)lld homotopy group of the n-sphere. Ann. of Math. 52(1950), 245-

247. (180,205) 

Whitehead, G.W., Fiber spaces and the Eilenberg homology groups, Proc. Nat. Acad. Sci. U.S.A., 

38(1952),426-430. (203) 

Whitehead, G.W., On the Freudenthal theorems, Ann. of Math. 57(1953), 209-228. (488) 

Whitehead, G.W., On mappings into group-like spaces. Comment. Math. Helv. 28(1954), 320-328. 

(303,347) 

Whitehead, G.W., On the homology suspension, Ann. of Math. (2) 62(1955), 254-268. (297, 301) 

Whitehead, G.W., Generalized homology theories, Trans. Amer. Math. Soc. 102(1962), 227-283. 

(222, 408, 495) 

Whitehead, G.W., Recent advances in homotopy theory, Conference Board of the Mathematical 

Sciences Regional Conference Series in Mathematics, No.5. American Mathematical Society, 

Providence, R.I., 1970. iv+82 pp. (493, 495) 

Whitehead, G.W., Elements of Homotopy Theory. Springer-Verlag, New York, (1978). (96, 115, 

132,139,160,178,199,340,403) 

Whitehead, G.W., Fifty years of homotopy theory, Bull. Amer. Math. Soc (2)8(1983),1-29. (205) 



552 Bibliography 

Whitehead, J.R.C., On adding relations to homotopy groups, Ann. of Math. (2) 42(1941), 409-428. 

(303) 

Whitehead, J.R.C., Combinatorial homotopy I, II, Bull. A.M.S. 55(1949), 213-245,453-496. (93, 

95) 

Whitney, R., Sphere spaces, Proc. Nat. Acad. Sci. U.S.A. 21(1935), 462-468. (133,207) 

Whitney, R., Differentiable manifolds, Ann. of Math. 37(1936), 645-680. (409) 

Whitney, R., On products in a complex, Annals of Math. 39(1938), 397-432. (133) 

Wolf, J., The cohomology of homogeneous spaces, Amer. J. Math. 99(1977), 312-340. (277, 294, 

296) 

Wu, J., On combinatorial descriptions of homotopy groups of certain spaces, to appear in Math. 

Proc. Cambridge Phil. Soc. (366) 

Wu, W.-T., Classes caracteristiques et i-carres d'une variete, C.R. Acad. Sci. Paris 230(1950), 

508-509. (217) 

Wiirgler, U., On products in a family of cohomology theories associated to the invariant prime 

ideals of 1l'* (BP), Comment. Math. Helv. 52(1977), 457-481. (482) 

Yamaguchi, A., Note on the Eilenberg-Moore spectral sequence, Publ. Res. Inst. Math. Sci. 

22(1986),889-903. (321) 

Yoneda,N., On the homology theory of modules, J. Fac. Sci. Univ. Tokyo. Sect. I. 7(1954),193-227. 

(380,381) 

Zabrodsky, A., Implications in the cohomology of H-spaces, Illinois J. Math. 14(1970), 363-375. 

(458) 

Zabrodsky, A., Secondary operations in the cohomology of H-spaces, Illinois J. Math. 15(1971), 

648-655. (476, 477) 

Zabrodsky, A., On the construction of new finite CW H-spaces, Invent. Math. 16 (1972), 260-266. 

(476) 

Zariskl, 0., Samuel, P., Commutative algebra. Vol. I and II. The University Series in Higher 

Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York. I. 1958. 

xi+329 pp.; II. 1960 x+414 pp. (278) 

Zeeman, E.c., A proof of the comparison theorem for spectral sequences, Proc. Camb. Phil os. 

Soc. 53(1957), 57-62. (23) 

Zeeman, E.c., A note on a theorem of Armand Borel, Proc. Camb. Philos. Soc. 54(1958), 396-398. 

(85,86) 

Zeeman, E. c., Dihomology: I. Relations between homology theories; II. The spectral theories of 

a map; III. A generalization of the Poincare duality for manifolds, Proc. London Math. Soc. 

(3) 12(1962), 609-638; 639-689; 13(1963),155-183. (504) 

Zisman, M., Fibre bundles, fibre maps, in History of Topology, ed. James, I.M., North-Holland, 

Amsterdam, 1999, 605--629. (113, 133) 



Symbol Index 

A(n) C A 2 , 434 
An -spaces, 292 

An C A 2.418 

B-(AI, r. N), 244. 267 

B-(r, N). 242 
.8: Hn(x: 'Fp) ----> Hn+l (X: J'p). 127 

B~q. 34 
B?,q.34 
C = {D.E.i.j.k}.37 
C' = {D',E',i'.J'.k'}.38 
X(A*),14 
d(9,44 
df(A).283 
DASHk,294 

DGAb.105 
DGModR, 53 

6.104 
E~·*(H*. F*).4 
Ef· q

, 4, 35 
en, 92 

Ext~·· (AI.N). 377 

extA" (IF p. F pl. 371 
FA(Kn ),I04 

pC, 370 

GAb,105 
C-(X,B, E), 322.355 

C2,178.483 

r(y).253 
r;c, 333 

H(L, Sql), 432 
HC.(A),510 
HH.(A).509 
HL*(g,AI).512 
Hq(X;k),408 
H'·' (r), 378 

H i (1T,AI).335 
H;ris(XjW),517 
Hom~ (AI, N). 369 

p 

:2p ,354 
J"'(A).283 

kS,124 
k { x) y, ... }. 23 

K(C,n).119 
A=:;. r.294 

lim{DS,gs}.67 
~s 

lim 1 D". 69 
-8 

map(X, Y). 95 

([ u], [l'], [w]). 302 
AI:8r N. 236 

MO.410 

l' Mod. 377 

91*,408 

V~·P.459 

@.34 
S1X.156 
S1(B, (I, b). 163 
S1(X, :ro), 95 

S1*: Hrl(X:k) ----> Hn-l(X:k).297 

S1~/k' 517 
S1~O. 414 

n~,414 
S1~r. 409 

0.105 
P(A*,t).14 
Pdt). 310 

1T~. 367 
1Tq(X),408 
Prim(H*).124 
Prin(O.209 
Q(H*).125 
RE~*. 76 
S(J).258 
SimpEns. 104 
Sing.(X).I04 
SO(n),153 

Spec Seq. 65 

Sql.289 
SU.151 

SU(n), ISO 



554 

To(sn),153 
Top/ B, 314ff. 

Tor, 288 

TordJ\1, N), 240 

Tot(Y·,356 
total(J\1*·*), 24, 47 

U(n),150 

Up, 110 

VdC
n

).151 

VdjE"),151 

W,94 
WB,IIO 

WT(G),279 
X (n), 203 

{Y, X}., 368 

Z1!,cQ.34 

Zr.-q
, 34 

Symbol Index 



abelian category, 514ff. 

action of a graded algebra, 17 

on a spectral sequence, 18 

Adams resolution, 393ff. 

Adams-Novikov spectral sequence, 499 

Adem relations, 129, 367 

adiabatic spectral sequence, 519 

adjoint function, 110 

admissible product, 130 

admissible sequence, 196 

algebraic May spectral sequence, 87 

algebraic de Rham complex, 517 

Alexander-Whitney map, 122, 167 

analyzer, 488 

approximation theorem, 439 

aspherical space, 339 

Arnol'd-Vassiliev spectral sequence, 505 

associated graded module, 4, 31 

associated principal bundle, 209 

Ati yah spectral sequence, 496 

Atiyah-Hirzebruch spectral sequence, 496 

attaching map, 92 

augmentation, 123 

BRS cohomology, 520 

bar construction, 242ff., 292, 335 

bar spectral sequence, 268 

Barratt spectral sequence, 488 

Barratt -Puppe sequence, 97 

base space, 11 0 

basic goal, 3 

bialgebra, 126 

bigraded algebra, 11 

bisimplicial set, 225 

Bloch-Lichtenbaum spectral sequence, 522 

Bockstein homomorphism, 127,455 

Bockstein spectral sequence, 38, 455ff. 

Borel construction, 501 

Borromean rings, 304 

Index 

bounded filtration, 34 

Bousfield-Kan homology spectral sequence, 503 

Bousfield-Kan spectral sequence, 361 

Bredon (co)homology, 501 

Browder's theorem, 473 

Brown-Gersten-Quillen spectral sequence, 521 

Brown-Peterson spectra, 500 

Brunnian links, 309 

bundle of groups over a space, 164 

C* -algebra, 523 

C-spectral sequence, 519 

Cartan formula, 128 

Cartan-Eilenberg system, 58, 461 

Cartan-Leray spectral sequence, 160, 337ff. 

caveat, 28, 29 

cell decomposition, 93 

cell-complex, 93 

cellular approximation theorem, 94 

cellular chain complex, 100 

cellular differential, 100 

cellular homology, 100 

cellular map, 94 

chain homotopy of order k, 87 

change-of-rings spectral sequence, 387, 508 

change-of-rings theorem, 280, 438 

characteristic mapping, 93 

characteristic ring, 213 

Chern classes, 220, 230 

classifying space, 210 

coalgebra, 124 

coassociativity, 123 

cobar construction, 379,491 

cobordism, 408 

cocommutativity, 124 

cocomplete category, 67 

coefficients of a generalized theory, 495 

coexact sequence, 278 

cofibrant space, 114 



556 

cofibration, 96 

coherent system of algebras, 461 

cohomology of an algebra, 378 

cohomology operation, 126 

coinvariants, 335 

colimit,67 

collapse of a spectral sequence, 7, 31 

collapse theorem for Eilenberg-Moore spectral se-

quence,275 

comodule over a coalgebra, 271 

complementary degree, 4 

complete category, 67 

complete filtration, 69 

complete intersection, 283 

completion, 72, 343, 345 

complex cobordism, 414 

composite functor spectral sequence, 514 

composition product, on Ext, 380 

composition product, on {X,X}., 403 

comultiplication, 123 

conditionally convergent spectral sequence, 76 

cone, 94 

connective generalized theory, 496 

Connes spectral sequence, 510 

construction, 194 

convergence as a graded algebra, 12 

convergence as an algebra, 45 

convergence of a spectral sequence, 5, 33 

convergence to a module over a graded algebra, 

18 

cosimplicial object, 322 

cosimplicial replacement of a functor, 503 

cosimplicial resolution, 323 

counit, 123 

countable CW-complex, 94 

cup product, 124 

cUPl product, 175, 288, 453 

CW-complex, 93 

cyclic homology, 510 

deficiency of H in G, 284 

deficiency of an algebra, 283 

defining system, 305 

degeneracy map, 103 

Index 

derivation, 11 

derived category, 523ff. 

derived couple, 38 

descent spectral sequence, 521 

desuspension, 259 

detected by a higher order operation, 374 

diagonal action of the Steenrod algebra, 326 

diagonal map, 123 

difference homomorphism, 298 

differential Hopf algebra, 470 

differential bigraded algebra, 44 

differential bigraded module, 4, 28 

differential graded algebra, 11,44, 235 

dihomology spectral sequence, 505 

dimension, 93 

direct limit, 67 

divided power algebra, 27, 253, 385 

division algebra, 113,366 

Doubeault cohomology, 518 

double complex, 47 

Dyer-Lashof algebra, 326 

E-algebra, 283 

effective action, 208 

EHP sequence, 494 

EHP spectral sequence, 495 

Eilenberg-Mac Lane space, 118 

Eilenberg-Mac Lane spectrum, 120 

Eilenberg-Moore spectral sequence for general-

ized theories, 498 

Eilenberg-Zilber map, 122, 247 

Eilenberg-Zilber theorem, 122, 167 

elementary spectral sequence, 86 

elliptic homology, 500 

equivariant Leray-Serre spectral sequence, 502 

equivariant cohomology, 501 

equivariant homology, 340 

Euler characteristic, 14 

Ext, 376ff. 

exact couple, 37ff. 

excess, 196 

exhaustive filtration, 62 

extended module, 237 

extension condition, 105 



extension problem, 32 

exterior algebra, 20, 124 

face map, 103 

Federer spectral sequence, 490 

fibrant simplicial set, 357 

fibration spectral sequence constructor, 229 

fibration, 109 

fibre bundle, 208 

fibre, 110 

filtered differential graded module, 33 

filtration, 31 

filtration degree, 4 

filtration topology, 87 

filtration, bounded, 3, 33 

filtration, decreasing/increasing, 31 

filtration-preserving action, 17 

finite CW-complex, 94 

finite H-space, 476 

finite type, 159 

finiteness of 1l"2n+k(s2n-l), 162 

first Eilenberg-Moore theorem, 241 

first derived functor of lim, 69 

Five-lemma, 26 

five-term exact sequence, 6 

flat module, 53 

formal space, 310 

framed manifold, 409 

free and proper group action, 337 

free graded commutative algebra, 258 

free loop space, 178 

free path space, 110 

Freudenthal suspension theorem, 99, 192 

Frobenius homomorphism, 215, 475 

Frolicher spectral sequence, 518 

functional cup product, 367 

fundamental group, action of, 3300. 

fundamental groupoid, 164 

generalized (co)homology theory, 495 

generalized sheaf cohomology groups, 520 

geometric cobar construction, 322 

geometric realization of a simplicial set, 107 

graded algebra, 10 

graded commutativity, 20 

Index 

graded commutative bigraded algebra, 24 

Grassmann manifold, 207 

Grothendieck spectral sequence, 514 

grouplike space, 481 

Gysin sequence, 8, 143 

H-space, 125 

Hausdorff filtration, 64 

height, 213 

hidden extension, 450 

higher order Bockstein operator, 460 

higher order cohomology operations, 371 

higher order linking invariants, 304 

Hirsch formulas, 288 

history, 133, 207, 222 

Hochschild homology, 509 

Hochschild-Serre spectral sequence, 511 

Hodge-de Rham spectral sequence, 517 

holes, 8 

Hom-tensor interchange, 376 

homogeneous spaces, 113,212, 274ff. 

homological perturbation theory, 224 

557 

homology Eilenberg-Moore spectral sequence, 268 

homology of a group, 335 

homology of an algebra, 378 

homology suspension, 190 

homology with local coefficients, 166 

homotopy colimit, 503 

homotopy extension property (HEP), 96 

homotopy groups of a Kan complex, 106 

homotopy lifting property (HLP), 109 

homotopy limit, 503 

Hopf algebra extension, 513 

Hopf algebra, 125 

Hopffibration,113 

Hopf invariant, 366 

Hopf map, 366 

Hopf-Borel theorem, 213 

Hurewicz fibration, 109 

Hurewicz spectral sequence, 490 

Hurewicz theorem, 108, 157 

Hurewicz-Serre theorem, 205 

hypercohomology spectral sequence, 514 

hyperderived functor, 514 



558 

image computing spectral sequence, 506 

implications, 469 

important observation, 6 

incidence number, 100 

indecomposable, 125 

infinite loop space, 499 

injective comodule, 271 

injective module, 377 

integers localized at a prime, 354 

inverse limit, 67 

I-homomorphism, 450 

Jacobi identity, 303, 347 

joke, booty boot hog, 558 

juxtaposition product, 382 

k-invariant, 121 

Kan complex, 105 

Kervaire invariant, 451 

Koszul complex, 259 

Koszul resolution, 260 

Kudo transgression theorem, 192 

Kiinneth spectral sequence, 56 

Kiinneth theorem for Top/B, 315 

Kiinneth theorem, 45 

Lambda-algebra, 493 

Leibniz algebra, 512 

Leibniz cohomology, 512 

lens space, 132, 198 

Leray spectral sequence, 515 

Leray-Hirsch theorem, 148 

Leray-Serre spectral sequence for generalized the-

ories,498 

lifting function, 11 0 

limit, 67 

local ring, 310 

local-to-global spectral sequence, 515 

locally finite CW-complex, 94 

locally finite module, 14 

locally trivial fibration, 112 

loop multiplication, 98 

loop suspension homomorphism, 298 

lower central series, 343, 345 

Lucas's Lemma, 263 

Index 

Lusternik-Schnirelmann category, 302, 347 

Lyndon-Hochshild-Serre spectral sequence, 340ff. 

mapping cone, 97 

mapping cylinder, 97 

Massey products in Ext, 426ff. 

Massey products, n-fold, 305 

Massey triple product, 302 

MathSciNet,488 

matching space, 358 

matric Massey products, 311ff. 

maximal1l'-perfect submodule, 345 

maximal augmentation, 356 

maximal torus, 278 

May spectral sequence, 441ff., 510 

May's tables, 447 

method of killing homotopy groups, 203 

Miller spectral sequence, 499 

Milnor jl invariants, 310 

Milnor spectral sequence, 268 

minimal resolution, 379 

Mittag-Leffler condition, 79 

mixed Hodge structure, 519 

mod p finite H-space, 474 

mod r homotopy groups, 480 

module over a differential graded algebra, 225 

module spectrum, 497 

monogenic Hopf algebra, 213 

Moore space, 463, 480 

Moore spectral sequence, 268 

Morava K-theory, 482 

morphism of bundles of groups, 165 

morphism of exact couples, 74 

morphism of fibrations, 112 

morphism of fibre bundles, 209 

morphism of filtered differential graded modules, 

66 

morphism of simplicial objects, 104 

morphism of spectral sequences, 65 

Morse theory, 304 

motivic cohomology, 522 

nerve of a category, 502 

nilpotent completion, 362 

nilpotent group, 344 



nilpotent module, 345 

nipotent space, 346 

Nishida's nilpotence theorem, 407 

normed algebra, 366 

Omega-spectrum, 120 

operad,297 

oriented cobordism ring, 414 

p-component of a group, 370 

p-divisble elements in a group, 459 

path-loop fibration, 112, 157 

perfect field, 213 

periodicity theorem, 431 

perturbation theory, 297 

II -algebra, 489 

1r-complete space, 348 

1r-module, 334 

1r -perfect, 345 

Poincare series, 14, 204, 310, 509 

polynomial cohomology, 275 

Pontrjagin-Thom construction, 409 

Pontryagin product, 125 

positive scalar curvature metric, 451 

Postnikov system, 120 

Postnikov tower, 182,327,352 

presentation of an algebra, 281 

primitives, 124 

principal bundle, 209 

principal fibration, 352 

principal refinement, 352 

pro- isomorphism, 362 

projective line, 113 

projective module, 51 

projective resolution, 51 

proper exact sequence, 226 

proper projective resolution, 55, 237, 238 

pullback of a fibration over a map, 114 

quadratic construction, 425 

Quillen spectral sequence, 488 

R-completion,361 

R-good space, 361 

R-nilpotent space, 363 

rank of a Lie group, 277 

Index 

rational Hurewicz theorem, 161 

real projective space, 94 

reduced suspension, 98 

Rees system, 88 

regular CW-complex, 100 

regular sequence, 283 

representable functor, 495 

restricted Lie algebra, 441 

reverse Adams spectral sequence, 450, 496 

ring spectrum, 497 

Rothenberg-Steemod spectral sequence, 268 

second Eilenberg-Moore theorem, 250 

secondary cohomology operation, 375 

semi free resolution, 287 

Serre exact sequence, 145 

Serre fibration, 109 

sheaf, 222, 515 

sh-module,295 

559 
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