



































































































































2.2. How does a spectral sequence arise? 31

Under the best possible conditions, the computation ends at some finite
stage; recall that a spectral sequence collapses at the NP term if the differen-
tials d,, = 0 for » > N. From the short exact sequence,

dr
0— Z’!‘/B’I‘—l B Zr—l/BT—l — B’!‘/B’!‘—l — 0,

the condition d, = 0 forces Z, = Z,_1 and B, = B,_;. The tower of
submodules becomes

By CBysC---CBn_1
:BN:---:BOOCZ :...:ZN
=ZN1C--CZ3CZyC Eo
and so E,, = En. The reader should try his or her hand at generating some
examples of collapse analogous to those in §1.2.
2.2 How does a spectral sequence arise?

Now that we can describe a spectral sequence, how do we build one? In
this section we present two general settings in which spectral sequences arise
naturally: when one has a filtered differential module and when one has an
exact couple. These approaches lay out the blueprints followed in the rest of
the book.

Filtered differential modules
Definition 2.3. A filtration F** on an R-module A is a family of submodules
{FPA} for pinZ so that

. CFPTYACFPAC FPYAC .- C A (decreasing filtration)
or - CFPYACFPACFPTYAC .- C A (increasing filtration).

An example of a filtered Z-module is given by the integers, Z, together with the
decreasing filtration
g - Z, ifp<0,
207, ifp > 0.
Cl6ZCBLZCALC2LCLZCLC -+ CL.

We can collapse a filtered module to its associated graded module, Ej(A)
given by

FPA/FPYL A, when F is decreasing,

E§(A) =
FPA/FP~1A, when F is increasing.

In the example above, Ef (Z) = {0} if p < 0 and Ef(Z) = Z/2Zif p > 0.
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The 2-adic integers, 79 = lim % /9s7 has a decreasing filtration given by
—8
F*7s = ker(Zy — Z£/9p7)

for p > 0 and FPZy = 7 for p < 0. The projections ¢y : Zo — Z/sz give
rise to short exact sequences
A X220 Py 7
00— Zo —— Zg — /2pz—>0
and so we obtain the same associated graded module, EZ (Zg) = {0} if p < 0
and E8(Z,) = 21022/2%122 = Z/o7if p > 0.

Reconstruction of a filtered module from an associated graded module may
be difficult. In Chapter 1, in the case of field coefficients and a first quadrant
spectral sequence, dimension arguments allow the recovery of an isomorphic
vector space from the associated graded one. For an arbitrary commutative ring
R, however, extension problems may arise: Suppose A is a filtered R-module

and the (decreasing) filtration is bounded above and below, that is, ¥ A = {0}
if & > n. Further suppose that F* A = A for k < 0; we present the filtration

{0} CFrACF 'AC---CF'ACFACF 4= A

The associated graded module E( A) is nontrivial only in degrees —1 < k < n,
and we obtain the series of short exact sequences

0 F"A —= FEPA) ——0

0—— F"A——F"'"A—— E}"'(4) ——0

0 —— FFA—— F* 1A EFY4) ——0

0 F'A FO4 EJ(A) ——0

0 F%A A Ejl(4A) ——o0.
If one knows that the filtration satisfies such boundedness conditions, then
EZ(A) determines F™A. However, F™~1 4 is only determined up to choice
of extension of F* A by Ey~"(A). Working downward, each F¥~1 4 is deter-
mined by a choice of extension by F* A by E¥~'(A) down to A itself, which
is known only up to a series of choices. In general, we are left with some
ambiguity about A unless some further structure guides our choices.

If H* is a graded R-module and H* is filtered, then we can examine the

filtration on each degree by letting FPH™ = FPH* N H™. Thus the associated
graded module is bigraded when we define

FPH?H“?/

pp+1pgp+e, if F* is decreasing,
EYYH*F) =

P frp+q s s .
FPH / pr-1pgp+q, if F'* isincreasing.
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We next combine the associated graded module with the definition of a spectral
sequence.

Definition 2.4. A speciral sequence {E*,d,} is said to converge to H*, a
graded R-module, if there is a filtration F on H* such that

ERI =~ EPY(H*,F),
where EX2* is the limit term of the spectral sequence.

Determination of a graded module H* is generally the goal of a compu-
tation. If there is a spectral sequence converging to H* and if it converges
uniquely to H* and if all of the extension problems can be settled, then H* is
determined (a lot of #fs).

With the fundamental definitions in place, we begin to describe a general
setting in which spectral sequences arise.

Definition 2.5. An R-module is a filtered differential graded module if

o0
(1) Aisadirect sum of submodules, A = @ A™.
n=0
(2) Thereisan R-linear mapping, d: A — A, ofdegreel(d: A™ — A™H1)
or degree —1 (d: A™ — A™1) satisfying dod = 0.
(3) A has a filtration F and the differential d respects the filtration, that is,
d: FPA — FPA.

Since the differential respects the filtration, H (A, d) = ker d/ im d inherits
a filtration

H (inclusion)

FPH(A,d) = image (H(FFA,d)

H(A,d)).

1t’s time for the main theorem. For convenience, suppose that A is a filtered
differential graded module with differential of degree +1 and a descending
filtration. (This is often the case in cohomological examples. The case of a
spectral sequence of homological type is treated in the exercises.)

Theorem 2.6. Each filtered differential graded module (A, d, F*) determines a
spectral sequence, { EX*,d.}, r =1, 2, ... withd, of bidegree (r,1 — 1) and

EP9 = gPHa(FP A/ FPHLA).

Suppose further that the filtration is bounded, that is, for each dimension n,
there are values s = s(n) and t = t(n), so that

{O}CFSAnCFS_lAnC"'CFt+1AnCFtAn:An,






























































































































































































































































































































































































160 5. The Leray-Serre Spectral Sequence [

a connected, locally simply-connected space has a universal cover. To prove
that universal covers exist for each of the spaces X, [Serre51] introduces the
point set condition ULC (uniformement localement contractile). A spaceY is
ULC if there is a neighborhood U of the diagonal in Y x Y and a homotopy
F:U x 1 — Y such that F(z,z,t) = ¢ forallz € YV and ¢t € I; and
F(x,y,0) = a, F(x,y,1) = y for all (z,y) € U. The relevant result is
that if Y is ULC, then Y exists, ¥ is ULC and QY is ULC. Spaces that are
ANRs (absolute neighborhood retracts, [Whitehead, GW78]) are ULC, and this
includes spaces of the homotopy type of locally finite CW-complexes.

Proposition 5.17. If X is ULC, of finite type, connected and simply-connected,
then 7;(X) is finitely-generated for all .

Proor: To study the relationship between Y and Y, we do not have the Leray-
Serre spectral sequence as a tool—the fibre is not connected. The tool of choice
is the Cartan-Leray spectral sequence (see¢ [Cartan48] and Theorem gbis 9),
converging to H,(X; A) for A, an abelian group, and for which

Ep = Hy(m(X), Hy(X; 4)),

where we are using the homology of the group 71 (X) with coefficients in the
71(X)-module H,(X; A). (See Chapter 8P for definitions.)

We proceed by induction. For X, = X, since X is simply-connected, X =
X =T and so Xy = Q1 is of finite type by the argument of Example 5.A.
By induction we suppose that X,,_ is of finite type and consider T}, = X,,_1.
[Serre51] showed that the abelian group (Xn—1) acts trivially on H,.(T},)
(since X,,_1 is an H-space—Corollary 8%18 3) The E2-term of the Cartan-
Leray spectral sequence for the covering 7,, — X,,_1 simplifies for a trivial
action:

Ez,q = Hp(wl (Xn—l)qu(Tn))
Hy(m1(Xn-1)) @ Hy(1,) ® Tor%(Hp—l(Wl (Xn—1)), Hy(T0))-

(IR

By induction, 7y (X,—1) = Hy(X,_1) is finitely generated, from which it
follows that the homology groups of the group 71 (X,,—1) with coefficients in the
trivial module Z, H;(m1(Xy,—1)), are finitely generated (they are subquotients
of the bar construction). Since the target groups Hpiq(X,—1) are finitely

1


















































































































































































































































































































































































































294 8. The Eilenberg-Moore Spectral Sequence Il

where S(n, k) is the set { (i1, ... ,ix) | >.% i; = n}. Another direct calculation
shows that this is a mapping of differential coalgebras. (See the papers of
[Clark65] or [Wolf77] for more details.) a

To see how this theorem relates to ‘algebras up to homotopy,” observe that,
for n = 2, the formulas above give

diyr)f*(a ®b) — f(da(a) ® b+ a @ da (b)) = f(a-b) — f1(a) - £ (1),

that is, f! induces an algebra mapping on homology. In order for f! to induce
an associative multiplication, f2 is needed to fill in the appropriate chain ho-
motopies. To quote from [Wolf77], “ ... f2 is a chain homotopy measuring
how far f! deviates from being multiplicative. Thus, in a sense, £ atones for
the sins of f1—but adds a few of its own. f3, in turn, is a chain homotopy of
chain homotopies, and atones for the sins of f! and f2—but ... and so on.”

Definition 8.19. A sequence of mappings, (f1,f2%,...), that arises from a
differential coalgebra morphism B(A) — B(I') is called an shm (strongly
homotopy multiplicative) map, denoted A =—> I". We also say that a mapping
of differential graded modules over k, f: A — T is an shm map, if there is a
sequence as above (f, f2,...) with f' = f.

The terminology of ‘strongly homotopy multiplicative’ mappings and the sys-
tems of higher homotopies that express the relations implied by associativity
were first codified in [Sugawara57] and [Stasheff63].

Extend the category DGAIg, of differential graded algebras over k 10 a
new category DASH;, with the same objects as DGAIg,, but with the sets of
morphisms given by

DASH; (A, T') = DCoalg(B(A), B(I).

The category DGAIg,, embeds in DASH;, by sending an algebra homomorphism
f+ A — T tothe sequence (f,0,0,...). We denote a morphism in DASH, by
fiA=T.

To prove Theorem 8.1, we develop the notions of algebras and mod-
ules over algebras having sh-structure maps and extend the functor Tor to
accept sh-objects and shm maps as variables. This extension was carried out in
[Gugenheim-Munkholm?74]. [Stasheff-Halperin70] observed that, for the dif-
ferential graded algebra C*(BG; k), satisfying the assumptions of Theorem 8.1,
there is an shm map, H*(BG; k) = C*(BG; k), inducing the identity map-
ping on homology. By getting the sh-module structure correct, the desired
isomorphism on Tor follows.

The following series of remarks and results, stated without proofs, gives
the steps in this program leading to the proof of the powerful collapse theorem
of [Munkholm74]. The interested reader can find details in the references cited
along the way.









































































































































































350 8% Nontrivial fundamental groups

Corollary 8"26.If $: M — M’ is a w-module homomorphism, M and M’ are
nilpotent, and ¢ induces an isomorphism Ho($) and an epimorphism H(9),
then M and M’ are isomorphic.

The next lemma provides another step in proving the generalized White-
head Theorem.

Lemma 8°%27. Suppose X is a connected space and K (1, (X),n) — P, X —
Po_1X isthen'® fibration in the Postnikov tower for X. Then there is an exact
sequence, functorial in X, given by

Hpy2(PrX) — Hpyo(Pr1X) — Hi(m1(X), 70 (X)) — Hny1(PrX)
- n+1(Pn—1X) — (ﬂ'n(X))ﬂ' — n(X) - Hn(Pn—lX) —0

PROOF: The Leray-Serre spectral sequence for this fibration has £2-term given
by E? = Hp(Py_1X;He(K (7 (X),n)), where the action of 7 = 71 (X) on
7 (X)) determines the local coefficients. Since H,, 11 (K (7, (X),n)) = {0} (a
consequence of Lemma 6.2) and K (7,(X),n) is (n — 1)-connected, we get a
lacunary E*-term in bidegrees (¥, ) for i < n+ 1—there are only two nonzero
stripes in bidegrees (*,0) and (*, ). As in the derivation of the Gysin sequence
(Example 1.D) we get short exact sequences

qntt
00 2 2 00
0= Entr0 = Bata0 7 Fon — Eon = 0
00 2 2 00
0= Els0— Enyoo—— Ei, — E7, =0
o] [ee]
0 — Eg, — Hp(PpX) — B — 0

0— ET, — nt1(PrnX) — nt1,0 — 0
Splicing these together we get

Hypyo(PrX) — Hyqo(Pr1X) — Hi(Proa X, Ho (K (70 (X)), n)))
— n+1(PnX) — n+1(Pn—1X) - HO(Pn—1X§Hn(K(7Tn(X)’n)))
— Hy (P, X) — Hp(Po1X) — 0

However, from Proposition 8% 4 and Theorem 8P5.10 we know that
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We now complete the proof of Theorem gbis 23, Suppose that our map
f:+ X — Y satisfies the conditions S,,. Then f induces a map of Postnikov
towers and by naturality of the short exact sequence of Lemma 8Y18 27 we get
a morphism of exact sequences

Hn+1(PnX) - n+1(Pn—1X) - (Wn(X))W - Hn(X) _’Hn(Pn—lx) —0

R

Hp1(BY) = Hp1 (Pa1Y) — (m(Y)) e — Ho(Y) — Hp(Po1Y) — 0.

IR
IR

The leftmost horizontal map is seen to be an epimorphism by considering the
next stage of the Postnikov tower where we have H,, 1 (X) —» H, 11(P,X),
and similarly for Y. Since H,,1(f) is an epimorphism by 2,,, we get the
first vertical epimorphism. By the Five-lemma, (7, (X))r — (mp(Y))r is an
isomorphism. Next consider the other end of the exact sequence:

Hn+2(Pn—1X) - Hl(ﬂ'l(X)yﬂ'nX) - n+1(PnX) - n+1(Pn—1X) - ﬂ.’n(X)ﬂ'

J: J zn.Jepi J f,i:

Hyyo(Pr1Y) — Hi(mi(Y),7Y) = Hpy1(PrY) — Hpp1(Pr—1Y) = mn(Y)x.

14

The Five-lemma implies that Hy (71 (X), 7 (X)) — Hi(m1(Y), 1, (Y)) is an
epimorphism. By Lemma 821825 we have that 7, (f) induces an isomorphism
between 7, (X) /Thm,(X) and 7, (V) /TLm,(Y) for all » and hence induces

an isomorphism 7, ( f). Finally we use the remaining conditions of .S,,.
There are exact sequences of functors given by

[ee] et !
0TI, = mp —mp =T omp — 0

0—TImyp — mp — w0/ — 0.

The Five-lemma and conditions 3,,, 4,,, and 5,, for 7, (f) imply that 7, (f) is
an epimorphism.

To prove that 7, (f) is a monomorphism, we use 5., that is, I'm, (f) is a
monomorphism. We only need to show that 7, X /T'm,, (X) — m,(Y) /T'm, (Y)
is a monomorphism. The lower central series has the property that I'” M C
I'7—'M is always strictly decreasing until it becomes stable. This is because
"M = I'2(I'7"1M). We also know that M C I'"M for all . In fact,
this inclusion extends to r, any transfinite ordinal, as follows: If « = 5 + 1
are ordinals, then let T¢M = I'2(I'2M); if « is a limit ordinal, let @M =
Ng<a TZM. Ttstill follows that M C T'M for all ordinals «v. But the lower
central series always decreases so I'M = I'Y M for some ordinal . We have
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shown already that 7., (X ) /T7mp (X) — mp(Y) /Thmn(Y) is an isomorphism
for finite r. Introducing the limit ordinals, we get an isomorphism for r = w
and the argument of Lemma 818 25 works for the higher ordinals. Thus, 7, (f)
induces an isomorphism 7, (X)/T'm,(X) — 7, (Y)/T'm,(Y) and so, by the
Five-lemma, 7, (f) is a monomorphism. a

A characterization of nilpotent spaces

In Chapter 4 (Theorem 4.35) we constructed the Postnikov tower of a space
and stated that, for simply-connected spaces, the fibrations in the tower could
be taken to be principal, that is, each p,, : P, X — F,,_1X is apullback of the
path-loop fibration over the Eilenberg-Mac Lane space K (7, (X),n+1) viaa
k-invariant, k™ : Pp_1 X — K(mp(X),n+1):

K(m(X),n) K(m(X),n)

PoX — — K(m(X),n + 1).

We next give a proof of this property of simply-connected spaces and generalize
it to nilpotent spaces.

Lemma 8%28. Let A be a finitely generated abelian group and let E and B be
spaces of finite type. A fibration K(A,n) — E 2 Bis principal if and only
if it is simple, that is, the action of 71 (B) on K (A, n) is trivial.

PROOF: Let’s assume that p: £ — B is principal and it is pulled back over
a classifying map §: B — K(A,n + 1). The relevant part of the long exact
sequence of homotopy groups may be written

0 = Ts1 (E) B my1 (B) —— 1 (K (A, 1)) —— 7 (E) 22 7 (B) — 0

0 — mpy1(E) w2 Tnt1(B) o Tnt1(K(A,n+ 1)) = 1 (E) — mp(B) = 0.
The action of 71 (B) on A can be identified in the second row with the action
of the fundamental group of the total space of the fibration € on the base space

K(A,n + 1). But this factors through the action of the fundamental group of
K(A,n+ 1), which is trivial. Hence, the fibration is simple.
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Suppose next that 7y (B) acts triviallyon A = H,, (K (A, n)). Consider the
cohomology Leray-Serre spectral sequence for the fibration with coefficients in
the abelian group A. Then, Eg "~ (K (A,n); A) contains the fundamental
class « corresponding to the identity map on K (A4, n). Since K (A,n)is (n—1)-
connected, the first differential to arise on ¢ is the transgression dy, 1, and this
gives a class dy+1(2) = [f] € H"1(B; A); we can form the pullback over
§: B — K(A,n + 1). This produces a space Ey together with a mapping
g: E — FEjy. Checking the long exact sequence of homotopy groups, g induces
an isomorphism on homotopy, and so, in the category of spaces of the homotopy
type of CW-complexes of finite type, g is a homotopy equivalence, and p is a
principal fibration. ad

It follows immediately from the lemma that a simply-connected space X
has a Postnikov tower of principal fibrations. For an arbitrary space X, let
{PnX, pn, fn} denote its Postnikov tower. We say that p,: P, X — P11 X
admits a principal refinement if there is a sequence of principal fibrations

de—1 g

PoX =P, X 2, Pro1X — 5 o 5 PoX 2, Po1X =P,_1X

with p, = g2 0 ¢q3 0 -- - 0 g.. With this extension of the notion of a principal
fibration, we can now give a characterization of nilpotent spaces.

Theorem 87°29. A space X is nilpotent if and only if every stage of its Postnikov
tower admits a principal refinement.

ProoF: Since each g; is a principal fibration, we can write its classifying
map as O ;: Py, ;X — K(A,;,n+1). We proceed by induction. By the
properties of a Postnikov tower, 7, (Py,1X) = mn(Pr—1X) = {0} and so
m1(X) acts trivially (hence nilpotently) on 7y, (P, 1X). Suppose that 71 (X)
acts nilpotently on 7, (FPn ;—1X) of nilpotency class < j — 1. View the k-
invariant 6, ; as a fibration (up to homotopy) and ¢;: P, ;X — P, ;_1 X as
the inclusion of the fibre. By Proposition 8bis 21, my (X) acts nilpotently on
o (Pr,; X)) of class < j. By induction, 7y (X) acts nilpotently on 7, (P, . X) =
T (P X) =2 mp(X).

Suppose that X is a nilpotent space and = = 71 (B). The lower central
series for 7, (X) as a w-module has the form

{0} CTem,(X) C TS M mp(X) € -+ C 27 (X) C mn(X).

By construction each quotient I't 7, (X) /Tt 7, (X) is a trivial 7-module.
Consider the fibration py, : P, X — P,_1.X. The homology Leray-Serre spec-
tral sequence (Lemma 8b1S 27) for this fibration gives the exact sequence

P!

DPnx
Hyy1(PrX) — Hpp1(PraX) — Wn(X)/Fgrﬂn(X) —_
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Consider the cohomology Leray-Serre spectral sequence with coefficients in
(10 X) e = mn(X) /T2, (X) for which

EDY 2 HP (P 1 X; HU(K (mn(X), n); (10 (X))

There is a class 3 € H™(K(mn(X),n); (mn(X))r) that represents the quo-

tient m,(X) — (mn(X))r. This class transgresses to a class [lz] lying in
n+1

H™"W(P,_1X; (mn(X))x) whichrepresents Hy1(Pr—1X) —— (mn(X))x
and for which we take a representative lo: P, 1 X — K((7p(X))r,n + 1).
Let g2: Pp2X — P,_1X be the pullback of the path-loop fibration over o
and let ug: P, X — P, X be a lifting of p,, through P, 2 X. Such a lifting
exists because Iy o p, ~ *.

We can modify us to be a fibration and consider a portion of the homotopy
exact sequences

27, (X) —=— m,(fibre(ug))

| |

0 T (X) T (PaX) =22 1 (Py_y X) —— -

R

0 —— (T (X))r —z— TN (Pn2X) - Tn(Ppo1 X) —— - -

From this diagram we see that the fibre of uy is K (I'2m,(X),n). If we repeat
this construction with uy replacing p,,, then we get a space P, 3.X together
with a principal fibration g3 : P, 3X — P, »X. Continuing in this way, if X
is nilpotent, we eventually get to I'¢*17,(X) = {0} and the process stops with
u. = q. and p, refined by principal fibrations. a

The sequence of k-invariants that a tower of principal fibrations admits may
be applied to many problems in classical homotopy theory. For example, the k-
invariants are the data for classical obstruction arguments. Another application
was introduced by [Sullivan71] in his work on the Adams conjecture. [Serre53]
showed, in his development of classes of abelian groups, that homotopy theory
can become simpler when viewed one prime at a time. Making this notion
topological rather than algebraic is the goal of localization at a prime. To
localize a space X at a prime p, first consider the ring of integers localized at
the prime p, denoted Z,, and given by the subring of Q) of fractions ¢ /b with
b relatively prime to p. The functor on abelian groups, A — A ® Z,, is called
localization at the prime p; it eliminates all torsion prime to p and so leaves
only the p-primary data. This functor can be extended to spaces by modifying
the refinement of the Postnikov tower by composing the classifying maps 6, ;
with the mapping induced by the localization, K (A, j,n) — K (A ; @Zp,n),
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and then pulling back carefully. The resulting space X, has homotopy groups

n(Xp) = 7o (X)®Z, and integralhomology groups H,, (X,,) = H,(X)QZ,,.
Later in the chapter, we will present an alternate construction of the local-

ization of a space, due to [Bousfield-Kan72] and carried out simplicially.

Convergence of the Eilenberg-Moore spectral sequence @

Theorem 8bi5.23, the generalized Whitehead theorem, illustrates how the
nilpotence condition can control the effect of the fundamental group. The rela-
tions between the homotopy groups of a space and their nilpotent completions
provide the data for measuring the departure from the simply-connected case of
the Whitehead theorem. Another naive situation in which simple connectivity
plays a role is the convergence of the Eilenberg-Moore spectral sequence. The
goal of this section is to prove the following result of [Dwyer74] that shows
how the nilpotence of a certain action of the fundamental group is decisive in
generalizing the naive convergence criterion.

Theorem 830, Suppose FF — E 2 Bisafibrationwithall spaces connected,
and A is an abelian group. Then the Eilenberg-Moore spectral sequence for the
Jibre of p converges strongly to H,(F'; A) if and only if w1 (B) acts nilpotently
on Hy(F; A) foralli > 0.

Following [Rector71] (§8.3) we associate to the pullback data X i> B Z E
the cosimplicial space (the geometric cobar construction) G*(X, B, E) where
G"(X,B,E) = X x B*"™ x E for n > 0 and with coface and codegeneracy
maps given by

(x, f(x),b1,... ,bp,€) 7 =0,
d'(x,b1,... ,bn,e) =< (2,b1,... ,bi,biy. .. bnye) 1<i<mn,
(,b1,...,bn,p(e),€) i=n+1
s (2,01, ... bny€) = (@01, big1, .. s b, €), 0<i<n-—1.

In this discussion we take all spaces involved to be simplicial sets. Thus
G*(X, B, E) is a cosimplicial simplicial set. We explore the combinatorial
structure of such an object in what follows.

Let A denote an abelian group and X, a simplicial set (§4.2). Then we
define the simplicial abelian group A ® X by (A ® X)n = P cx A, for
n > 0, with face and degeneracy maps induced by the maps on the generators
and extended to be A-linear. It follows that 7.(A ® X) = H.(X;A) and
problems concerning homology become open to homotopy methods.

In homological algebra, the basic datum of a resolution of a module M

€
is the augmentation Fy, — M — 0. We can view a cosimplicial space Y* as




356 8% Nontrivial fundamental groups

a kind of resolution (for example, when constructed from a triple; [Bousfield-
Kan72, 1,§5]). We consider all possible augmentations of Y®, that is, maps
e: Z — Y9 satisfying d° o € = d' o e. The maximal augmentation associated
to Y'* is the subspace aY® of YO that gives the equalizer (as simplicial sets)
of the coface mappings d°,d': Y° — Y. In detail, the space aY® is given
by aY* = {y € Y° | &°(y) = d*(y)}. The maximal augmentation has the
following characterization in the category of cosimplicial spaces.

Lemma 8%31. The maximal augmentation aY* of a cosimplicial space Y*
is the simplicial set CoSimp(x,Y®) of cosimplicial maps from the constant
cosimplicial space *.

We leave the proof of the lemma to the reader. The Hom-set of cosimplicial
maps between X* and Y*, CoSimp(X*,Y*), has the structure of a simplicial
set with n-simplices given by the cosimplicial maps A[n] x X* — Y*. Here
A[n]e denotes the standard simplicial n-simplex, whose s-simplices are given
by

Aln]s = {{z0,21,...,2s) [0 <@g <@y < -+ <3 <l
The face and degeneracy maps on CoSimp(X *, Y*) are induced by the standard
maps. Theinclusionse; : An] — A[n + 1]aregivenbye;({xo, 21, ... ,Ts)) =

<X0,X1,... ,Xs>, WhCI'CXj = Ty, ifj <, ande =z; + 1, if 5 > 1. The

ix1
face mapping is givenby d;: A[n]x X ’LA[n—f—l] xX*® — Y*. Thedegen-
eracy maps are defined by the combinatorial collapse onto the 5™ face, namely
n;: Aln] — Aln — 1], given by n; ({0, 1,... ,2s)) = (Xo, X1,..., Xs),

where X = a1, i1 < j,and X; = 2y — 1,ifl > j. Thus s;: Afn] x X*
An—1x X* —>Y*.

A desirable property of resolutions is homotopy invariance. For cosim-
plicial spaces, we want a similar property—if f: Y* — Z* is a morphism of
cosimplicial spaces that satisfies the condition that f: Y™ — Z™ is a homotopy
equivalence of simplicial sets for all n, then f ought to induce a homotopy equiv-
alence of maximal augmentations. However, this is too much to ask for. The fix
for this desideratum is to replace the construction of the maximal augmentation
with one that is more robust homotopically.

Definition 8%32. Given a cosimplicial space Y'*, let Tot(Y'*) denote the sim-
plicial set CoSImp(A®, Y'*) where A® denotes the cosimplicial space with A[n]
at level n and coface and codegeneracy mappings induced by the canonical face
inclusions, &;, and projections, n;, respectively.

This functor was introduced by [Bousfield-Kan72] and forms the basis for
their study of localization and completion. Tot(Y®) can be built up canoni-
cally from a tower of fibrations. Let A*() denote the s-skeleton of the cosim-
plicial space A®, that is, at level n, one takes the s-skeleton of A[n]. Define
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Tot,(Y*) = CoSimp(A*®),Y*). The cofibrations A*(®) — A®(+1) jpn.
duce fibrations Tot, 11 (Y*) — Tot,(Y'*), whose inverse limitis Tot. (Y*) =
Tot(Y'*). Notice that Toto(Y*) = Y9, andife: Z — Y'* is any augmentation,
then e induces a mapping Z — Tot(Y*), for all s < cc.

A tower of fibrations gives rise to an exact couple based on the long exact
sequences of homotopy groups. The E'-term is determined by the homo-
topy groups of the fibres of Tot, — Tot,_;. A typical fibre takes the form
Q2 ((NY*)*) where (NY*)* may be written as Y *Nker s°N- - -Nker s*~! when
the simplicial sets at each level of Y'* are fibrant (thatis, Y™ — x is a fibration
for all n). It follows from the grading for the exact couple that this is a second
quadrant spectral sequence. There are general conditions for its strong con-
vergence to 7. (Tot(Y'*)) (see [Bousfield-Kan72, IX, §51). We will obtain the
Eilenberg-Moore spectral sequence in this manner by taking the homotopy spec-
tral sequence associated to the tower of fibrations {Tots (4 ® G*(X, B, E))}.

In the category of cosimplicial spaces we find the usual notions of homo-
topy theory such as fibrations, cofibrations, and homotopy equivalences. The
case of interest is the following diagram depicting a fibration of cosimplicial
spaces along with an augmenting fibration of spaces:

F——~G*x,B,E)

| |

E—<—G*B,B,E)

pl Jo

B = B.

Here B denotes the constant cosimplicial space with B at all levels and the
identity map for all coface and codegeneracy maps. The maps for G*(B, B, E)
are given by id: B — B « E: p. The mapping ¢ is given by first projection
off the product B x B*™ x E. Thus, at each level, we have a trivial fibration
and so 7y (B) acts trivially on each fibre G™(x, B, E'). We next show that the
actionof 7 (B) on H; (F'; A) is compatible via the augmentation with this trivial
action.

Proposition 8"$33. The augmentation map €: F — x x E = G°(x, B, E) in-
duces ay(B)-equivariant homomorphisme,: H.(F; A) — H.(E; A), where
m1(B) acts trivially on H.(E; A)

Proor: We argue with spaces and lifting functions as in §4.3. The simplicial
versions of these structures can be found in [May67]. The pullback spaces for the
fibrations p and ¢ are given by 2, = {(\,e) | A € WB, e € E,\(0) = p(e)},
and Q4 = {(\,b,e) | A € WB, (b,e) € B x E,\(0) = b}. The augmentation
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maps induce a mapping between these pullbacks 2, — €, given explicitly by
(A e) — (A, p(e),e). This gives rise to the diagram

QB x F« 0 A . WE V1 F

.

QB x (x x B) —— Qg —— W(B x E) —7— (* x E).

As described in §4.3, the lifting function for the trivial fibration is given by
A'(A\, b, e) = (A, ce), where ¢, denotes the constant path ate. Since the action of
m1(B) is induced by these composites, compatibility of the actions is equivalent
to the homotopy commutativity of this diagram. Let H: QB X F xI — (xx E)
be given by H((w, y),t) = (*, A(w, y)(t)). Then H makes the leftmost square
commute up to homotopy and so proves the proposition. a

The fibration of cosimplicial spaces G*(*, B,E) — G*(B,B,E) — B
provides control of the 71 (B)-action in the tower of fibrations that give rise to
the Eilenberg-Moore spectral sequence.

Lemma 8°%34. Foralli > 1, m;(Tots(A® G* (%, B, E))) is a nilpotent 71 (B)-
module.

PrOOF: We prove this by induction over s. When s = 0, we have the trivial

fibration £ — B x E — B that describes the 0-level of the fibration of

cosimplicial spaces. Thus 71 (B) acts trivially on 7;(Toto(A ® G*(x, B, E))).
By induction we consider the fibration

Totn(A ® G*(*,B, E)) — Totp—1(A ® G*(x, B, E)).

[Bousfield-Kan72, X, §6] give an explicit expression for the fibre of this fibra-
tion from which we deduce its structure as a 71 (B)-module. To wit, the fibre of
Tot,(Y*) — Tot,_1(Y*), for any cosimplicial space Y*, is given by the func-
tion space Hom((S™, ), (NY™, *)) where NY™ = ker(Y™ —» M"~1Y*)and
M"Y is the (n— 1)* matching space consisting of simplices in (Y1) <7,
written (z°,... ,2""1), that satisfy s'z? = s7~12% whenever 0 < i < j <
n — 1. The mapping s: Y™ — M™ 1Y*is given by y — (s°y,...,s" 1y).
In the case of a cosimplicial simplicial abelian group, the homotopy groups of
the fibre may be written

73 (fibre(Toty, (Y*) — Totn—1(Y?))) = miqn(NY™)
= Tin(Y™") Nkers® N Nker s" 1,

When Y* = A ® G*(x, B, E), the homotopy groups of the fibre have
a m1(B)-action inherited from the inclusion into A @ G™(x, B, E). However,
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Titn (ARG (x, B, E)) is a trivial m (B)-module, and so then are the homotopy
groups of the fibre of Tot,(Y*) — Tot,_1(Y*). By induction, we assume
that the groups 7;(Tot,—1(4 ® G(*, B, E))) are nilpotent 71 (B)-modules.
The long exact sequence of homotopy groups for the fibration Tot, (Y*) —
Tot,—1(Y*) and the triviality of the 71 (B)-action on the homotopy groups of
the fibre complete the induction. a

From the lemma we can deduce half of the proof of Theorem 8bis 30,
Suppose that the spectral sequence converges strongly to H, (F'; A). Then there
is a filtration of H;(#'; A) for each i with £ isomorphic to the associated
graded group to this filtration. Strong convergence implies that the direct limit
of the sequence

-+ — m;(A®Tots(A®RG*® (x, B, E))) — m;(Tots—1(ARG* (x, B, E))) — - -+
vanishes and so there is an injection
EX, — Ry = ﬂT im (7, (Totyyr(A ® G*) — Tot,y(A ® G*))
C m(Tot,(A® G* (%, B, E))).
It follows that each E;<, is a nilpotent 71 (B)-module. Strong convergence also

implies that the nonzero 71 (B)-modules EpS;_,, are finite in number. Arguing

inductively using Corollary 8P%8.19 we have proved that H; (F'; A) is a nilpotent
71(B)-module.

To prove the other half of Theorem 818 30 we use the towers of fibrations
that arise from the application of the functor Tot, to the cosimplicial fibration
G*(x,B,E) — G*(B, B,E) — B. The augmentation from the fibration p
may be depicted in the diagram:

F —%- Tot G*(+, B, E) — Tot; G*(+, B, E) — - - - — Tot G* (%, B, E)

T | |

E - Toty G*(B, B, E) — Tot, G*(B, B, E) — - -- — Tot G*(B, B, E)

| |

B — B — B = = B.

Lemma 835, Tot(G*(B,B,E)) ~ E.

ProOOF: The projection off the last coordinate G(B, B, E) — E provides an
inverse to the augmentation £ — G*(B, B, E). a

It follows that we can compare the augmentation fibration with the limit
fibration. The nilpotency condition plays a role in the following proposition
that is a form of the Zeeman comparison theorem. The proposition was known
in the early 1970’s—it is stated explicitly by [Hilton-Roitberg76].
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Proposition 8":36. Suppose F — E — B and F' — E' — B are fibrations
with B connected, and f: E — E' is a map over B inducing an isomorphism
on homology. If m1(B) acts nilpotently on H;(F') and on H;(F"), for all i, then
fl: F — F' induces an isomorphism on homology.

PRroOOF: We proceed by induction on the degree ¢ of H;(f|). In the case i = 0,
Ho(f) = Ho(f]) because B is connected.

Suppose H;( f]) is an isomorphism for 0 < ¢ < n—1. This implies that the
E?-terms of the associated Leray-Serre spectral sequences are isomorphic in
bidegrees (x, ) for i < n— 1. We consider the morphism of spectral sequences
in bidegrees (0,n) and (1,n), where we have Eg, = Ho(B,Hn(F)) —
Ho(B, Hn(F")) 2 E'y . By Proposition 8154,

H0(37 Hn(F)) = HO(WyHn(F)) = (Hn(F))ﬂy

where m = m;(B). By Theorem 8P.11, E?, = Hi(m, H,(F)). On the
vertical edge of the spectral sequence the map of spectral sequences gives

2 3 n+1 _ roo
EO,n EO,n e EO,n - EO,n

| |

12 13 m+1l_ 00
E 0,n E o,n e E on — E 0,n°

IR

Since the F2-terms are isomorphic in bidegrees (, ) fori < n—1, the differen-
tials arising to make the successive epimorphisms along the vertical edges are the
same in each spectral sequence and so we conclude that Hy (7, H,, (F)) is iso-
morphic to Ho(m, H,(F")) via Hy(f]). Similarly, we find that Hy (7, H (F))
maps onto Hy (mr, Hy, (F')) via H,(f]). Theorem 816 implies that H,, (F)
is isomorphic to H,, (F”), and the inductive step follows. a

The second half of the proof of the Theorem 8Y18 30 follows because the
homotopy spectral sequence for the tower of fibration {Tots (AQG* (x, B, E)) }
converges to 7. (Tot(A ® G*(x, B, E))). Proposition 81836 implies that
7. (Tot (A ® G*(x, B, E))) = H.(F; A).

Theorem 8%5.30 has been extended to connective generalized homology
theories ([Bousfield87]), nonconnected bases B ([Dror-Farjoun—Smith, J90], a

useful case when dealing with function spaces) and to pullback fibre squares

with data X L B £ Y for which the set 7o(X) Xro(m) To(Y') is finite and,
forally € Y, w1 (B, p(y)) acts nilpotently on H.((Y'),) where (Y'), denotes
the component of Y containing y ([Shipley96]).

The development of convergence criteria for the Eilenberg-Moore spectral
sequence is, in fact, a spinoff of the investigation of the general convergence
properties of the Bousfield-Kan spectral sequence.
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Theorem 837, Given afibrant, pointed, cosimplicial spaceY™®, there is a spec-
tral sequence associated to the tower of fibrations { Tot,,(Y*) — Tot,_1(Y*)}
with

EPHY®) =2 (V) Nkers® N -+ Nker s*7 1, t>s2>0
and converging under favorable conditions to .(Tot(Y'*)).

General results indicating favorable conditions were obtained by [Bousfield87],
[Shipley96], and [Goodwillie98]. The fundamental example introduced by
[Bousfield-Kan72] is the cosimplicial space associated to the completion of a
space with respect to a ring R.

The R-completion of a pointed space (X, zo) is obtained by applying
the totalization functor, Tot, to the cosimplicial space R*X obtained from the
triple {R, ¢, 1} as follows: If (X, xo) is a pointed simplicial set, then define
the simplicial R-module RX by (RX), = R ® X,,/R ® x9. The natural
transformation ¢x: X — RX is defined by z — [1 ® z], and the natural
transformation 9x : R2X — RX is givenby [r ® [s ® z]] — [rs ® «]. The
R-completion of X is defined by

R X = Tot(R*X) = Hom(A®*, R*X),

where R¥X = R(RF~'X) and R°X = RX. The cosimplicial structure is
based on the natural transformations ¢ and 1, with the coface and codegeneracy
maps given by

di: RkX N I%k—kl)(7 dz — Ri(¢Rk—ix),
T REX & Rk_lX, ¢ = Rj(d)Rk—jX).

It follows from the properties of Tot that R, X is the inverse limit of a tower
of fibrations RsX — Rs_1X where R, X = Tots(R*X). This tower of
fibrations is augmented by a family of mappings fs: X — RsX and it leads to
the spectral sequence of [Bousfield-Kan72].
When R is a subring of (@, then, one can prove that, for some set P of
primes,
R=Zp={a/becQ|pth, forall p € P}.

The R-completion of a nilpotent space (X, o) coincides in this case with its
Zp-localization ([Bousfield-Kan72, V, §4]). Thus (co)simplicial techniques
generalize the localization construction via Postnikov towers of [Sullivan71] to
general rings. The basic algebraic condition on the ring R that guarantees good
completion properties is that R be solid, that is, the multiplication on R induces
an isomorphism R ® R — R.

When foow: Ho(X;R) — H.(RooX;R) is an isomorphism, then we
say that X is R-good. For R-good spaces the R-completion, fo: X —
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R~ X, enjoys certain universal properties. For example, a mapping f: X —
Y induces an isomorphism H,(f): H.(X;R) — H.(Y;R) if and only if
Roof: RooX — RoY isahomotopy equivalence ([Bousfield-Kan72, 1.5.5]).
However, there are spaces that are not R-good—for example, an infinite wedge
of circles is not Z-good. Nilpotent spaces are Z-good. With this language
we can describe the solution to the natural question—what is the target of the
Eilenberg-Moore spectral sequence in general? [Dwyer75] found the answer
for the Eilenberg-Moore spectral sequence associated to the fibre of a fibration
p: £ — B: The spectral sequence converges to the homology of the nilpotent
completion of the fibration, that is, to H.(F; R), where F is the fibre of the
fibration Roep: RooEE — RooB.

Completion and localization constructions have become fundamental in
homotopy theory and a complete exposition of these ideas would take us too
far aficld. Nice expositions of this circle of ideas may be found in [Sul-
livan71], [Mimura-Nishida-Toda71], [Hilton75], [Hilton-Mislin-Roitberg75],
and [Arkowitz76]. The most complete exposition of these ideas is the work of
[Bousfield-Kan72].

A consequence of the cosimplicial construction of the R-completion is a
result of [Dror73] that shows the extent to which nilpotent spaces approximate
general homotopy types. To state precisely what sort of approximation we mean,
we compare a connected space X with the associated tower of fibrations { R, X }.
By the definition of Totg, we have the augmentation mappings fs;: X — R, X
for all s > 0 and these mappings are compatible with the sequence of fibrations
Rs11X — Rs;X. Thus the mappings {f,} determine a mapping of towers of
spaces {X} — {R.X}.

A tower of groups {G, } is a sequence of homomorphisms G117 — G for
s > 0. A homomorphism of towers of groups, £: {Gs} — {H,}, is asequence
of group homomorphisms &, : Gy — H,, compatible with the tower mappings.
The natural maps f;: X — R;X determine, for each ¢ > 0, a homomorphism
of towers of groups f.: {H;(X;R)} — {H;(R:X;R)}.

Definition 8°38. A homomorphism of towers of groups, £: {G,} — {H,}, is
a pro-isomorphism if, for any group A, £ induces an isomorphism

§*: lim Homgyp (Hy, A) — lim Homg,p (G, 4).

We leave it as an exercise to show that £: {G,} — {H,} is a pro-
isomorphism if and only if, for each ¢ > 0, there is a value ¢ > ¢ and a
homomorphism u; : Hys — G such that the following diagram commutes:

Gt/ ft/ Ht’
Gt Ht'

&t
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Here pﬁ}t denotes the composition Gy — Gp_1 — -+ Geyp1 — Gy and
likewise for pﬁ,t. We also leave it to the reader to show that a pro-isomorphism
induces an isomorphism of limits:

¢: lim G, = lim H, and ¢: lim' G, = lim' H,.

We say that a pointed space (X, z) is R-nilpotent if X is nilpotent and,
for each n > 1, there is a central series of 1 (X, z)-modules

(X, 20) =M1 D My D -+ D M.y D M, D Mgy = {0},

for which each subquotient M; /M4 is a trivial 7 (X, zo)-module and an
R-module. A space is nilpotent when it is Z-nilpotent.

Proposition 8"%39. For an arbitrary connected, pointed space (X, ), the
spaces Rs X = Tots(R*X) are R-nilpotent for all s > 0. Furthermore, the
natural maps fs: X — RsX induce, for alli > 1, a pro-isomorphism of towers
of homology groups f.: {H;(X;R)} — {H;(R;X;R)}.

SKETCH OF A PROOF: The space RX is R-nilpotent since it is an H-space
and an R-module. According to [Bousfield-Kan72, II1.5.5], if p: £ — B is
a principal fibration with connected fibre F' and any two of E, B, and F' are
R-nilpotent, then so is the third. Their Proposition I11.2.5 asserts that R X —
R,_1X is a principal fibration with fibre a connected simplicial R-module.
Thus the spaces R; X are R-nilpotent for all s > 0.

To establish that we have a homology pro-isomorphism, we observe that
H;.(X; R) 2 m,(RX, xp) and so we can compare the tower of homotopy groups
{m(RX, x0)} with {mp(RR,X, zo)}. When comparing the spaces RX and
RR.X, we have a triple structure available and hence mappings

¢: RX - RR,X: ¢ with ¢ =1id.

[Dror73] interpolates a condition that implies that a pro-isomorphism on ho-
motopy is induced by {RX} — {RR;X}, namely, that the map of towers
{Rn,X} — {RsR,X} induce a pro-isomorphism. He then uses the conver-
gence of the homotopy spectral sequence associated to the tower { R, X} to
obtain the pro-isomorphism {Hy(X; R)} — {Hip(RsX;R)} fork >1. O

It follows from the proposition that every connected, pointed homotopy
type may represented by a tower of R-nilpotent spaces, up to homology equiv-
alence. This approximation is analogous to the Stone-Weierstrass theorem:
Every homotopy type (continuous function) may be represented by a tower
of R-nilpotent spaces (a sequence of polynomials) such that fI*(X s R) =
l}_nsl H.(R,X; R) (limits agree). To study whether a space is R-good, we can

focus on the relation between lim H, (R, X; R) and H.(Roo X; R).
—s
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Exercises

8%15.1. Show that 7r; (IR P2™) acts nonnilpotently on g, (RP2M).

8%18.2. Show that the action vZ:F: 71 (E, €) X mp(F,€) — mn(F,e) is well-
defined and that i, : 7, (F, €) — 7, (E, €) is a m1 (E, €)-module homomorphism.
ghis 3. Suppose that M is a module over a group 7. Show that the coinvariants M
is the largest quotient of M on which 7 acts trivially. Show directly that the functor
M — M, isright exact.

8Y18 4. Let 7 denote the cyclic group of order m, with generator ¢ € 7. Show that
the complex

N T =
oWy = oW — W, - Wy —Z—0

is a resolution of Z over Zm, where W, the free Zsm-module on a single generator
wy, and boundary homomorphisms 1": Wap41 — Way, given by T'(wapy1) =
twon — Wan and N : Wa, — Wap_1 given by N(wap) = won—1 + twan—1 +
et tm_len—1~

ghis 5. Suppose that 7 is a finitely generated group. Show that H; (7, M) is finitely
generated whenever M is finitely generated over Zm and ¢ > 0.

8Y18 6. Prove directly that Hy (7) & «/[r, 7].
818 7. Prove Theorem 8PS 11.

ghis g, Suppose that 1 — H — 7 — @ — 1 is an extension of groups. Complete
the proof of Theorem gbis 14 by showing that the (Q-coinvariants of the conjugation
action on H/[H, H] are given by H/[r, H].

ghis g, Suppose that 1 — R — F' — 7 — 1 is a presentation of the fundamental
group 7 = 71 (X) of aspace X, where F and R are free groups. Prove the classic
resultof Hopf that Hy (X')/h.(m2(X)) = RN[F, F]/[F, R]where h: ma(X) —

H,(X) denotes the Hurewicz homomorphism.

8bis 10. Suppose that 1 — H — m — () — 1 is a central extension, that is, H
maps to a subgroup of the center of . Show that there is an exact sequence:

Hy(m) — H2(Q) — H — Hi(w) —» Hi1(Q) — 0.

8%18 11. Prove Corollary gbis 19,

: P
8bis 12, Suppose that F' < E— B is a fibration of connected spaces. Suppose that
E is nilpotent. Show that 7r1 (F’) acts nilpotently on itself by conjugation.

815,13, Suppose 7 acts nilpotently on M and Ho(w, M) = {0}. Conclude that
M = {0}.
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8918 14. The functor I" associates to a 7-module the submodule I'M generated by
the union of the family of all perfect submodules of M, that is, submodules N with
N = I'2N. Show that I'M is also perfect and that it is the maximal 7-perfect
submodule of M. Show that 'M C I'? M for all n.

81515, Show that I M = I+ M implies that I M = I %M forall k > 0.
Thus the lower central series is a sequence of proper inclusions until it stablilizes.

8%18 16. Show that all nilpotent spaces are 7w-complete.

8%18 17, Show that the maximal augmentation of a cosimplicial space Y'* is given
by aY'®* = CoSimp(x, Y*).

8Y18 1t R C @ is a subring of (), then show that there is a set of primes P
(possibly empty) for which R = Zp.

8Y18 19, Show that a homomorphism of towers of groups, £: {Gs} — {H,}, is
a pro-isomorphism if and only if, for each ¢ > 0, there is a value t' > t and a
homomorphism u;: Hy — Gy such that the following diagram commutes:

Gt/ ft/ Ht/
PS,tJ / pr{,t
Gy e H;.

Show further that a pro-isomorphism induces an isomorphism of limits:

£: lim Gy 2 lim H, and € : lim' G, = lim' H,.
—8 —8 —8 «—S8




9
The Adams Spectral Sequence

“In (various papers) itis shown that homological algebra
can be applied in stable homotopy-theory.”
J. E. Adams

One of the principal unsolved problems in modern mathematics is the
determination of the homotopy groups, 7.(X), of any nontrivial finite CW-
complex X. These groups play a key role in the solution of certain geometric
problems and in the classification of CW-complexes up to homotopy. The
computation of . (X), however, remains difficult if not intractable. (For a
discussion of the computability of 7..(X) ® Q, see the paper of [Anick85]; for
some interesting progress for X = S™, see the work of [Wu, J]).

A first approximation to 7. (X)) is provided by the Freudenthal suspension
theorem (Theorem 4.10). The limit groups, limy_, oo [S"+%, S¥X] = 75 (X),
are called the stable homotopy groups of X and they enjoy some regularity
and further structure. Knowledge of these groups may also be sufficient for the
solution of geometric problems (§9.4). A classical example is the celebrated
theorem of [Adams60] on the nonexistence of elements of Hopf invariant one
(Theorem 9.38). As this theorem was part of the motivation for the construction
of the Adams spectral sequence, we discuss some of the details.

The question settled by Adams arose with W. R. Hamilton (see [Ebbing-
haus90]): For which n, does R™ have a division algebra structure? That is, for
which n is there a bilinear mapping, o R™ x R™ — R"™, so that u(%,7) = 0
implies that either @ = 0 or ¥ = 0. Forn = 1, 2, 4 or 8§, there are the real,
complex, quaternionic, and Cayley multiplications, respectively, that were clas-
sically known. If one requires further that ||u(Z,7)| = ||Z ||||F]| (a normed
algebra), then [Radon22] and [Hurwitz23] showed that these classical multipli-
cations are the only examples. [Hopf31, 35] used the classical multiplications
to construct mappings, n: S — S2,v: 87 — S% and o: S'® — S8, which
are not homotopic to the constant map. These are the first examples of nontriv-
ial elements in the homotopy groups of spheres (other than the degree maps in
7, (S™)). Hopf’s proof is geometric and proceeds, in the modern parlance, by
introducing a homomorphism H : ma,_1(S™) — Z, constructed by counting
linking numbers of the inverse images of points in S™. Hopf showed that the
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linking numbers are a homotopy invariant and then applied the division algebra
structure to deduce that the maps derived from the classical multiplications have
H-invariant equal to one.

One can also compute linking numbers with the cup-product in coho-
mology. [Steenrod49] studied the Hopf invariant, H : m3,_1(S") — Z, us-
ing functional cup products: Given ~v: S?»~1 — 8™ form the mapping
cone, K = S™ U, e?™. The Hopf invariant can be defined as follows: Let
Tn, € HY(K) and y2, € H*™(K) be generators for the free abelian group in
each dimension. Then x,, — , = £H(7)yon.

When we reduce to mod 2 coefficients, we can make the transition to stable
homotopy. If H(y) = 1, then &, — ®n, = yan. By the unstable axioms for
the action of the Steenrod algebra (Theorem 4.45), Sq"x, = y2,. We can
suspend the map ~: $2"~! — S™, and form the mapping cone. Then TK ~
S™+ Ug, e?"*1. The suspension isomorphism determines H*(XK;Fa) as
a module over the Steenrod algebra. In particular, S¢"x,+1 = Y2n+1, Where
Tni1 € H'W(ZK;Fo) and yon41 € H™ (T K;F) are generators. This
implies immediately that 3+ is not homotopic to the constant map. By iterating
this procedure we see that if H () = 1, then -y determines a nontrivial element
in7S_, = 75_1(S%) = the (n — 1) stem of the stable homotopy groups of
spheres. The existence of a division algebra structure on R™, then, implies a
nonzero element [y] exists in 75_, with the mapping cone exhibiting a nonzero
Sq™ operation in mod 2 cohomology.

This reduction is already useful. According to the Adem relations (Theo-
rem 4.45), Sq™ factors into sums of products of lower degree Steenrod opera-

tions, unless n = 2¥, for some k. For example, the relation

1 [4-1—3 L
Sq3Sq4:Zj_0< .y )Sq7 iSqd

implies g7 = S¢>Sq*. 1t follows that S¢” cannot act nontrivially on the coho-
mology of the mapping cone, H*(S™ Uy e"*7; Fy), because Sq' through Sg°
act trivially for dimensional reasons. We conclude, then, that X7 cannot carry
a division algebra structure. In fact, R™ is a candidate for a division algebra
structure only if n = 2%,

To settle the division algebra problem, we are led to an analysis of quk and
the possible factorizations that might arise through secondary or higher order
operations associated to the Steenrod algebra. [Adams60] completed this analy-
sis to prove that the classical examples of IR, ]RQ, ]R4, and R® provide a complete
list of real vector spaces with a division algebra structure. In the course of this
work, [Adams60] also introduced his eponymous spectral sequence that has be-
come one of the fundamental tools in the study of stable homotopy theory. The
aim of this chapter is the construction and elaboration of this spectral sequence.
The first section contains some motivation, a statement of the main theorem,
and a discussion of secondary and higher order cohomology operations. Based
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on the motivating discussion, we take a brief detour into homological algebra to
introduce another important tool in the study of categories of modules over an
algebra, the Ext functor. During this digression we introduce a change-of-rings
spectral sequence.

In §9.3 we construct the spectral sequence and derive its basic properties. In
keeping with the spirit of previous chapters, we do not utilize the technology of
spectra and the stable homotopy category ([Elmendorf-Kriz-Mandell-May97]).
The reasons for this choice are as follows: The approach using spaces is con-
tained in the original papers of [Adams58] and, though cumbersome, it can be
understood by the novice. Also, there are now several careful and complete ex-
positions of the spectrum approach, [Adams69], [Switzer75], [Ravenel86] and
[Kochman96], on which this author could not improve. The reader may safely
skip to §9.4 if he or she accepts the main results and wishes to go quickly to the
computations. The references, especially Adams’s papers, may also substitute
for this material.

In §9.4 we explore some of the geometric consequences of the existence and
explicit form of the spectral sequence. We focus on the role played by the Adams
spectral sequence in computing cobordism rings (the work of [Thom54], [Mil-
nor60], [Liulevicius62], and [Wall60]). This section is written backwards—we
take as basic the spectral sequence and search for applications. This emphasizes
technique over the deeper geometric insight of [Thom54] and others. However,
it gives a smooth transition into this set of remarkable results and offers a natural
motivation for the study of spectra and stable objects.

In §9.5 some of the simpler, low-dimensional calculations are made and the
geometric consequences explored. In particular, the first nonzero differential
in the spectral sequence at the prime 2 settles one case of the division algebra
problem. The low-dimensional stable homotopy groups of spheres at the primes
2 and 3 are also deduced.

In the final section of the chapter, we consider further structure in the
spectral sequence. A product structure allows one to define Massey products and
these are seen to converge to the secondary composition products of [Toda62].
The structure of the Steenrod algebra as a Hopf algebra imposes homological
conditions on the spectral sequence including a large region of the first quadrant
where all of the input at E is trivial. There is also a periodicity operator that
acts across part of the spectral sequence. The formidable task of determining
the E>-term of the Adams spectral sequence is developed in §9.6. The tool
of choice is the May spectral sequence, introduced by [May64] in his doctoral
thesis. We describe this spectral sequence in §9.6. We close the chapter with
some tables and a discussion of further applications.

9.1 Motivation: What cohomology sees

The computation of .. (X) or 72 (X) is a special case of the more general

problem of determining [V, X] or {Y, X}, = Lm[S"*FY, S"X]. Here we
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assume that our mappings are basepoint preserving, X and Y are connected
and of the type of CW-complexes and, finally, that Y is finite-dimensional. A
naive “picture” of [Y, X] may be obtained by considering the image of the mod p
cohomology functor,

H*(;Fp): [V, X] — Hom(H*(X;F,), H*(Y; Fp))

([Greenlees88] develops this idea for other cohomology theories). Because
the mod p cohomology of a space carries a rich structure, this Hom may be
taken to be a set of mappings in various categories. Of course, H*(f;IF,) is a
homomorphism of graded vector spaces. It is also a graded algebra mapping.
This can be used, for example, to distinguish CP(2) from S? v S*—the mod p
cohomology of these spaces are isomorphic as graded vector spaces but not as
graded algebras. Finally, H*( f;TF,,) is a mapping of unstable modules over the
Steenrod algebra—with this structure we distinguish ©CP(2) and 2 Vv S°.

In the rest of this section, we fix a prime p and let H*(X') denote H* (X ;TF,, ).
Let A, denote the mod p Steenrod algebra and M and N graded left A,-
modules.

Let Homf% (M, N) denote the set of Ay-linear mappings of M to N
that have degree —t, that is, for all ¢, f(M9) C N9t The iterated suspen-
sion functor on graded modules over A, is defined as follows: For k € Z,
s¥: Mod 4, — Mod 4, is given on objects by (s*M),, = M,,_; and on mor-
phisms ¢: M — N by (s*¢),, = (—1)* ¢, _k. This generalizes the topological
suspension isomorphism s: H'(X) = H*1(SX).

We construct a mapping {Y, X}, — Hom®, (H*(X),H*(Y)) as fol-
lows: A mapping, f: S™*'Y — S™X, determines a morphism H*(f) of
modules over the Steenrod algebra. However, as modules over A,, H*(S™X)
=~ " H*(X), H*(S"HY) = s"tH*(Y) and H*(f) determines a mapping
in Hom’y (H*(X),H*(Y)). Furthermore, Sf: S"H1Y — S"+1X deter-
mines the same mapping as in the diagram

ﬁ*(SnX) s f{*+1(Sn+1X)

~

- J "

ﬁ* (S'n+ty) ;}ﬁ*+1(sn+t+ly)'
Thus H*( ): {Y, X}; — Homi‘p (H*(X),H*(Y)) is a well-defined mapping
(the choice of pointed maps and connected spaces determines the mappings
on HY). The image of this mapping may be taken as an approximation to
{Y, X}+. It is, however, only a coarse approximation. A worst case is given
by H*( ): mf — Hom!y (F,,F,). The only classes in 7} that are mapped
nontrivially are generated by 2: S™ — S™, the identity map in 7. The best
case, however, suggests a course of action. Consider a free, left .A,-module
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on one generator of degree n. This can be constructed as an extended module
A, ® s"F, where s"IF',, is the graded IF,,-vector space with one copy of IF,,
in degree n and {0} in every other degree. We introduce the notation =2 for
a homomorphism of graded modules that is an isomorphism in degrees less
than ¢. A consequence of the Cartan-Serre theorem on H*(K (Z/pZ,n); Fp)
(Theorem 6.20) is the bounded isomorphism

A, ® s"F, =9, H*(K(Z/pZ, n);Fp).

This isomorphism leads to an isomorphism in the limit over the system of
homomorphisms induced by the loop suspension mapping (Theorem 6.11)

HAYK(Z/pZyn + t + 1);F,) — HY(K(Z/pZ,n + t);Fp), for n +t <
I<2n+2t-1:

Ap ® " Fp = lim s~ H*(K(Z/pZ,n +t);TFp).

ForY afinite dimensional CW-complex and n < 2 dim Y, the fundamental
correspondence [Y, K (Z/pZ,n)] = H™(Y;F,) implies

{Y, K(Z/pZ,n)}; = Homy (Ap @ s"Fp, H*(Y';Fp)).

Thus our approximation is on the mark when we consider spaces that carry a
free A,-module structure, that is, Eilenberg-Mac Lane spaces. To increase the
accuracy of the approximation, we could include the information that measures
how far a module M over A, differs from being a free module. To do this, we
introduce the functors Ext? (M, —), the derived functors of Hom’ (M, —),
to be discussed in §9.2. The reader should compare this discussion with §7.1
where the derived functors of the tensor product, M ®r — are considered. The
role of these derived functors is seen in the main theorem of this chapter, due
to [Adams58].
For an abelian group G, ()G denotes the quotient

G = G/ {elements of finite order prime to p}-

Tt is elementary to show that the set {elements of finite order prime to p} forms
a subgroup of G. Since {Y, X }; is an abelian group, (,){Y, X }+ makes sense.

Theorem 9.1. For X and 'Y spaces of finite type, with 'Y a finite dimensional
CW-complex, there is a spectral sequence, converging to (1Y, X }., with Es-
term given by

By = Exty (H*(X;Fp), H*(Y;Fp)),

and differentials d, of bidegree (r,r — 1).
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Before beginning our discussion of Ext and the construction of the spectral
sequence, let us consider how one might show that a mapping f: S™+t — S™
is not homotopic to a constant map. Suppose ¢t > 0 and we form the mapping
cone, C(f) = S™ Uy e+l Then there is a cofibration sequence:

” include bottom cell smash bottom cell gnttH

The exact sequence in cohomology,
0 — H*(S™*Y) — H*(C(f)) — H*(S™) — 0,

determines an extension of [F, by [F,, over the algebra A, and so a class in
ext 4, (IFp,FFp), here of degree t + 1. This ext 4, (IFp,, IF},) is the classical Ext or
Ext! group that figures in the Universal Coefficient theorem for cohomology
([Massey91, p. 314]). When one provides an abelian group structure on Ext,
the correspondence between a representative of a stable mapping S™+t — S
and the extension it determines gives a homomorphism (an e-invariant),

e: Mgt (S™) — exta, (Fp,TFp).

In the case of the classical Hopf maps, e(Hopf map) # 0.

Whenever e([f]) # 0, H*(C(f)) is a nontrivial module over A,. In
general, the Steenrod operations on H*(C(f)) are trivial on two-cell complexes.
It may be the case, however, that a secondary or higher order operation, coming
from relations in .A,, is nontrivial on H*(C(f)). This also implies that f % *.
With this in mind, we next discuss higher order cohomology operations.

Higher order cohomology operations

Suppose W is aspace and 6: K(Z/pZ,n) — K(Z/pZ,n + t) represents
an element in the Steenrod algebra. Suppose € H™(W; F,) is a cohomology
class and that #(x) = 0. Under these conditions, a secondary operation can
be defined. Let E denote the total space of the pullback of the path-loop
fibration over K(Z/pZ,n + t) with respect to the mapping 6. Let o: E —
K(Z/pZ,m) represent a class in H™(E;F,). Since 0(z) = 0, z lifts (not
necessarily uniquely) to a mapping Z: W — E. The set of all composites,
ool € H™(W;TF,), varied over all liftings &, defines the secondary operation,
@, 0(x) C H™(W;F)p).

K(Z/pZ,n+t—1) ——FE —2 . K(Z/pZ,m)

w z K(Z/pZ,n) - K(Z/pZ,n + 1).

‘We make several observations about this construction:
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D Ift < n, then [§] € H**(K(Z/pZ,n);Fp) is primitive and hence a loop
map (6 = Q6’; Corollary 8.25). It follows that E is a loop space, that is,
there is a space Z with E = QZ. Thus [W, E] is a group and we can identify
@, 0(x) as acosetof H™ (W F,). In particular, two liftings Zand &: W — E,
differ by a mapping of W to K(Z/pZ,n +t — 1). (Recall the exactness of
[W,F] — [W,E] — [W,B] for a fibration F — E — B.) It follows that
®,, ¢(x) determines elements {0 £} in

H™(W; Fp)/ ao (i, H"=1(W;Fp))

where i..: (W, K(Z/pZ,n+t—1)] — [W, E]is (pre-)composition. As always,
indeterminacies can be difficult to make explicit. In the best cases, dimensions
conspire to make ®,, ¢: ker§ — H™(W;F,) a well-defined function.

2) This definition can be made for different coefficient groups and more gen-
eral cohomology operations ([Maunder64]). We will not need this level of
generality.

3) If V is a finite dimensional graded vector space over IFy,, then we can write
s

V= @ 13"J Fp,, where the n; correspond to the dimensions of basis ele-
J= s

ments for V. Let K(V) = [] K(Z/pZ,n;). Then, as graded vector spaces,

j=1
m(K(V)) 2 V. Aclassin [W, K (V)] is representable as a vector (z1, . .. , &)

8
in [] H™ (W;F,). Furthermore, the (abelian) addition on Z/pZ determines
j=1

a mapping,
+: K(Z/pZ ® Z/pZ,n) — K(Z/pZ,n),

which induces the vector addition on such spaces.

We generalize the definition of secondary operations to vectors of classes.
Let A: K(Vh) — K (V1) represent an n-tuple of cohomology classes (z1, .. . ,
zn) € D, H'(K(Vy); Fp). Then we have the analogous diagram defining a
secondary operation associated to A:

K(s7'W) ;;E —— K(Z/pZ,m)

e
-
e
-
-

W K (Vo) —A— K (V).

For example, consider the Adem relation S¢2Sq> + S¢°Sq" = 0. Let A denote
the mapping

S, 1
A= <SZ2> : K(Vo) = K(Z)27,n) —

K(Z/2Z,n + 1) x K(Z/2Z,n+ 2) = K(V4).
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By the naturality of the Leray-Serre spectral sequence we get a mapping of
spectral sequences whose source is associated to the path-loop fibration over
K (V1) with target associated to the pullback of the path-loop fibration with
respect to the mapping A. The class in the cohomology of the fibre

Sq37,n + Sq22n+1 c H*(K(s_lvl);]Fg)

goes to zero under the transgression in the target spectral sequence because the
Adem relation holds.

1 qui” + Sq%’Z i1

Sq33q1+ A

1+Sq2t

/z+ 742

The class [Sq>tn, + Sq%1n11] € B30 represents a class o € H™3(E;TFy),
where E is the total space of the pullback over A. This gives a secondary
operation as in the diagram:

E—2 K(7Z/2Z,n+3)
f///
7/
//

W = K(Vp)

K(W).

If z € HYW;Fs) and S¢*z = 0 and S¢°z = 0, then lifis & to E of =
exist and @, 4(z) is defined. Furthermore, the indeterminacy is the subgroup
S H™(W;F2) + S H™ L (W; F2) of HF3(W;TFy).

This example was employed by [Adem57] to show the nontriviality of
n? = non: S™? — S™ where 5 denotes a suspension of the Hopf map
n: §% — 52 On H*(C(n?);F2), the operation ®,,_4 carries the generator
in degree n to the generator in degree n + 3. We say that n° is detected by
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the secondary cohomology operation ®, 4. More generally, any mapping
f: 8™ — 8™ for which a secondary cohomology operation acts nontrivially
on H*(C(f);F,) is said to be detected by this operation and, in particular, f is
not homotopic to the constant map.

4) The Adem relation Sg3Sq* + Sg*Sq* = 0 holds universally on the cohomol-
ogy of any space. Any such quadratic relation between primary operations can

3
be expressed as a composite, K (V1) — K(Va) X K(V3), withy o€ ~ *. For
example, in the case of the given Adem relation we have
Sqt

3
to(gla)

S 2
K (s"Fa) —— K(s"*'Fa @ s™2F5) —— K (s""4Fy).

Generally, we can construct a diagram of spaces on which to define the associ-
ated secondary operation:

K(s™'WV)) ——E —— K(s7'V3)
/7
7 P

~
-

%4 K(VO)T’K(W)T)K(‘/Q).

Here E is the pullback of the path-loop fibration over K (V7) with respect to
&. The mapping x, as a cohomology operation, produces classes in H*(E; Fp)
because classes that transgress from the fibre of the fibration p are annihilated
by x. If z: W — K(Vp) represents a vector of classes in H*(W;TF,) with
£ oz ~ %, then we obtain the secondary cohomology operation due to the
relation y o £ ~ x as a subset of [W, K (s~'V3)].

5) In order to capture all of the relations between primary operations we turn to
a homological description. Let

x

€ dy d2
0«— H*(X;Fp) «— Co«— C1 «— Co
be an exact sequence of A,-modules, with Cy, C and C; free A,-modules; Cy
can be taken as the free module on a set of A,-generators of H*(X;F,). We
can think of C; as the free module on the A, relations among the generators
of H*(X;Fp), and C5 as the free module on the secondary relations, that is,
relations among the relations. If X is (n — 1)-connected and C; = A, ®
Vi Zon_1 H*(K(V;);TF,) for V;, a graded vector space, then we associate a
diagram of spaces, where we have written the name of the A,-module map for
a continuous map that induces it. (The identification of algebraic mappings
d;i: C; — Ci—q with d;: K(V;_1) — K(V;) follows from the representability
of mod p cohomology.)
K(s¥'V) —— E——K(s7'Vy)
~
-7 P

e
-
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Applying the mod p cohomology functor to the bottom row gives the sequence
of A,-modules, exact in dimensions less than 2n — 1,

€ dy d2
0«— H*(X;Fp) — Oy — Cy «— Cs.

The secondary operation arising from this diagram lies in [X, K (s71V2)]. We
say that this operation is the second order operation associated to Cy «—

Cy — Cs. h
do

6) Paragraph 5) can be generalized to mM order cohomology operations. Con-
tinue the exact sequence of free A,-modules:
0— H*"(X;Fp) «— Cy«—Cq - Chpy.

This gives rise (o a tower of fibrations:

K(s~m Yy, ) E,_, — K(s~™ Yy,

K(s™ V) ——F» K(s72V3) — K(s72V))
s 4
K(s7'V)) ——E, K(s71Vs) — K(s71V3)
S 3
X _ K (Vo) —— K(V) —5— K(Va).

In degrees less than 2n — r, the map in cohomology, induced by the composite
K(s=r=DV,_)) = E,_; — K(s~"=DV,),is s~ ("=1d,.. This follows from
the Serre exact sequence (Example 5.D), applied inductively to each fibration.

In order to getalifting of e: X — K(Vp)toé: X — E,,_; and so define
an m™ order cohomology operation on [X, K (s=(™=DV,,)], it is necessary
that the r™ order operations defined by this tower, for » < m, all contain the
zero class. Only thenis alift to the next stage possible. When f: S?*t — S™is
amapping and X = S™ U e 1 if the lifts of the class in H™(X) determine
only nonzero classes in H"+*+1(X), then we say that £ is detected by an !
order operation and f is not homotopic to the constant map.

7) The dependence on the connectivity of X can be removed by considering only
stable m™ order operations. Such an operation ¢ determines a commutative
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diagram
sH™(X;Fp) —2  H™H(X; [Fp)

o o

H" Y (SX;TFy) —— H"HHH(SXTF,)

The details of the construction of these operations and their properties can be
found in the work of [Maunder63]. The connection between higher order stable
cohomology operations and the spectral sequence of Theorem 9.1 lies in the
interpretation of the filtration on ()72 and (,){Y, X }. to which the spectral
sequence data converge.

Proposition 9.2. If an element u € (p)wf can be detected by an nt order stable

cohomology operation, then, for some m < n, u € Fm((p)ﬂ'f ), the mih stage
of the filtration of (p)wf associated to the Adams spectral sequence.

A proof of this proposition will emerge with the construction of the spectral
sequence. The role of higher order operations in homotopy theory is fundamen-
tal and the Adams spectral sequence helps to codify and suggest their further
use. The interested reader can consult the papers of [Cohen, R81] and [Lin76]
for other possible applications.

9.2 More Homological Algebra; the Functor Ext

Before we construct the spectral sequence, a digression into homological
algebra is necessary to secure the algebraic tools. In this section we also con-
struct a spectral sequence associated to an extension of Hopf algebras based on
the change-of-rings spectral sequence of [Cartan-Eilenberg56] and elaborated
by [Adams58].

In Chapters 3 and 7, we studied the categories of modules and differential
modules over rings and over differential algebras. The tool of choice was the
functor Tor that measures the deviation from (left) exactness of the functor
M ®p —; Torf (M, —) is the i left derived functor of M Qg —.

One of the fundamental relations in homological algebrais the Hom-tensor
interchange: When A is a left A-module, B is a right A-module and B and C
are left I'-modules

Homp (A, Homr (B, C')) = Homr (B ®a A, C).

This isomorphism plays a key role in the Universal Coefficient theorems in
topology. The functors Homr (M, —) and Homp(—, N) are half exact. We
next study their derived functors.

We begin by identifying the category of interest. Let (I, ) denote a graded
algebra, over a field &, with product . We generally assume that I' has a unit,




9.2. More Homological Algebra; the Functor Ext 377

e: k — I, as well as an augmentation, n: I' — k (we assume 7 o € = idg).
The category of graded left I'-modules is denoted by rMod, and we take the
morphisms in this category to be of degree zero. Denote the I'-linear maps
between two left I'-modules, M and N by rMod (M, N).

The suspension functor on rMod is defined as follows: If M € rMod,
then sM is the graded vector space, (sM), = M,_1, with I'-action given
by v (sz) = (—1)%87s(y - ), where € M,, and sz is the corresponding
element in (sM),41. Define the iterated suspension by s™ = s o s"~! and
s = 5. The graded version of the Hom-functor is given by

Hom( (M, N) = rMod(M, s"N).

Equivalently, a I'-module homomorphism in Homp (M, N) can be thought of
as a homomorphism f: M — N that lowers degree by n.

To study the derived functors of Homp. (M, —), we resolve a left I'-module
M by projective I'-modules. That is, construct a long exact sequence inrMod;

€ d d d d
O—M—PFPy+— P+ — P, «— -

where each F; is a projective module over I'. (The reader should contrast this
with the accounts in §2.4 and §7.1 where the presence of a differential is part of
the construction.) Let N € rMod and apply Homp.(—, N) to this sequence

d d d d
Homy (Py, N) — Homp (P, N) — -+ — Homp(P,, N) — -+ .

The homology of this sequence defines Ext" (M, N). We leave it to the reader
to verify the usual properties of this derived functor:

(1) The definition is independent of the choice of projective resolution.

(2) Ext®*(M, N) = Homj:(M, N).

(3) Given a short exact sequence of left I'-modules, 0 - A — B —C — 0,
there are long exact sequences,

)
— Ext}*(C, N) — Ext}™*(B,N) — Extp*(4, N) — Ext}™*(C,N) —
and s
—Ext " (M, A) —Extp™ (M, B) —Ext" (M, C) —>Ext?+1’* (M,A) — .

(4) Ext is functorial in each of its three variables.
(5) Extp* (P, M) = {0}ifn > 0, Pis aprojective ['-module, and M is any left
I'-module. Furthermore, Extio* (M, J) = {0}, if n > 0 and J is an injective
I'-module and M is any left I'-module.

The notion of an injective module over I' is the formal dual (mono re-

placing epi and arrows reversed) of the notion of a projective module. The key
property of an injective module J is the exactness of the functor Homy (—, J).
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We could have defined Ext* (M, N) by forming an injective resolution of the
module N and applying the functor Homp (M, —).

The Ext groups are bigraded. If we write Ext® = Ext®”, the single
grading refers to homological degree and forgets the internal degree of the
mapping.

In the applications to follow, we focus on the computation of 75 (X) =
{59, X}... Theorem9.1 introduces a spectral sequence, converging to (72 (X),
with the E-term given by Ext’y” (H*(X;Fy), [Fp). Anticipating these com-
putations, we consider the computation of Ext* (M, k) and some convenient
resolutions for computation. In the particular case M = k, we write

Ext™* (k, k) = H**(D),

and H**(T) is called the cohomology of the algebra I'. The dual situation,
given by Tor , (k, k) = H, .(T"), defines the homology of the algebra I.

Henceforth, we assume that the algebra I' is of finite type over & (that
is, in each degree n, I'™ is finite-dimensional over k). For graded vector
spaces of finite type, the definition of the dual is straightforward: (Fd“"l)" =
Homy (', k). Furthermore, if M’ and M" are both of finite type, then so is
M’ @ M and (M’ @, M")™ = pr® g, A3 1 follows that an
algebra (I', ) and a left [-module M, of finite type, with module structure
map : I'® M — M, yield by duality a coalgebra (1'% »*) and a comodule
Mdual over the coalgebra, rdual with structure map

77[’*: Mdual - qual R Mdual‘

Recall from §7.1 the definition of the bar resolution:
0—M—TOM—TIIM —TID)QKIT)QM — -,
where B,(I',M) = '@ I1)®* @ M and I(I') = ker(n: ' — k). The
differential and the contracting homotopy are given in Proposition 7.8. To
compute Extr (M, k), we apply Homy.(—, k) to the bar resolution. Since &, as

aI'-module, is the I(I')-trivial module concentrated in degree 0, it follows via
the Hom-tensor interchange that

Homi(N, k) = Homl (k ®r N, k) = ((k @p N)™)t,
The bar resolution becomes the sequence
7, d»: d*
dual 11’_) I(F)dual & Mdual £, I(F)dual ® I(F)dual ® Mvd —, .,

where 9* is the composite

- I
Jydual 11]_) dual ® 7 dual ve I(F)dual ® g dual
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(7* is the dual of I(I") < I') and d* is given by

d*(fen [+ [om]A) = Zi:lzjz:l[al |l | ag; [og; | [on]A
m
+Zz:1 [Ga |-+ [ Gne [ GYAY

(recall that & = (—1)1+9%€%q for o, an element in a graded module) where
n; _ m
©* () = ijla;’j ® o ; and P*(A) = Zz:1al ® A. Thus

Exty(M, k) = HBIO)™ @ M, 4,

where B(I')™ = I(I')®", )
To compute the cohomology of the algebra I' then, we can use B(T")
which consists of elements [ory | - -+ | ] with o; € I(T)™, and differential

dual

n N4
d(lon | anl) =32 S @ | (G | @ | oy || anl.

We point out that such a construction can be made with any augmented coal-
gebra, (C, A, n), where A is the coproduct, J(C) = coker(n: k — C) is the
cokernel of the augmentation, which is the dual of I(C9*), This functor on
coalgebras is sometimes denoted F, (C') and called the cobar construction on
(C, A, n). Tt was first introduced by [Adams56] to compute H..(Q2X) as a func-
tor of the chains on X, C,(X), as a coalgebra. We can express the cohomology
of I in terms of the cobar construction by H**(I') = H (F,(I'%a) q*).

Another application of the Hom-tensor interchange shows the duality be-
tween the cohomology and homology of an algebra. Since we are over a field,
the Universal Coefficient theorem allows us to interchange the homology oper-
ator with Homy, and obtain the equation, when I' is of finite type,

Extr(k, k) = H (Homp(B(I), k) = H(Homy (k @r B(I), k)

— Homy(H (k @r B(D)), k) = Tor" (k, k)™

In the next section, the natural coalgebra structure on Tor" (k, k) provides a
natural product on Extr(k, k). Some calculations are eased by working in the
dual.

Finally, when speaking of the computation of Ext, we mention another
computationally convenient type of resolution.

Definition 9.3. A homomorphism, f: M — N of left I'-modules is said to be
minimal if f(M) C I(T') - N. A projective resolution of a module M is said
to be a minimal resolution if every mapping in the resolution is minimal.
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e d d d d
Proposition 9.4. Let 0 «— M «— Py «— P «— P, «+ Py «— -+ be a minimal
resolution of M by projective I'-modules. Then Ext{.(M, k) = Homr (P, k).

PRrooF: We assume everything in sight is of finite type. We exploit the duality
between Ext and Tor for a proof. The duality in this case is between Extr (M, k)
and Tor" (k, M), and the dual statement of the proposition is that Tor?, (k, M) =
k ®r Ps. However, for any I'-module X, k@r X = X/I(T")- X, which follows
from the definition of £ @1 X as

FOX/t yes—18 >y a)p

where 1.y = Owhen~yisinI(T"). Since d(Ps) C I(T')-Ps_1,1®d: kQr P, —
k ®r P,_; is the zero homomorphism for every s > 1 and so Torf(k, M) =

k ®r Ps. Passing to the dual, we get a complex with all differentials zero and
so Exti.(M, k) = Homp (P, k). a

Minimal resolutions come in handy for doing low-dimensional calculations
or to begin an induction. As an exercise, the reader should compute H**(A(x))
where A(z) is the exterior algebra on one generator z, here taken to have odd
degree. A minimal resolution or the bar construction can be applied to obtain
H**(A(z)) = k[y] as vector spaces, where y has bidegree (1,degz). In the
next section, the multiplicative properties of Ext are developed and we find that
this isomorphism is true at the algebra level.

Multiplicative structure on Ext
The bigraded IF,-vector space Exti{: (H*(X;TFy,), H*(Y;Fp)) enjoys some
further structure. There is a product when X = Y, and more generally, pair-
ings of Ext groups. We give two constructions of the same operation. We will
present the first construction in detail and sketch the second. The first identified
by [Yoneda54]. Suppose that I is an algebra over a field k.

Theorem 9.5. Let L, M, and N be left I'-modules. Then there is a bilinear,
associative pairing, called the composition product, defined for all p, t, q,

>0, o: Ext®(L, M) ® Ext®! (M, N) — Ext2*t*+ (L N).

PrOOF: Let0Q «— L «— P, be aprojective resolutionof L, and 0 «— M «— Qe a
projective resolution of M. If [f] lies in Ext®*(L, M) and [g] in Ext%’t, (M,N),
then [f] may be represented by f: P, — s*M and [g] by g: Q, — s' N. The
following elementary facts about the suspension functor are left to the reader to
prove:
(1) If X is projective, then sX is projective. (Hint: s(T ® V) 2 I'® sV
for a graded vector space V.)
(2) rMod(sW,sX) = rMod (W, X).
(3) If0 — X «— W, is a projective resolution of X, then 0 — sX «— sW,
is a projective resolution of s.X.
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We define [f] o [g] as follows: Using the defining property of projec-
tive modules, lift f: P, — s*M up the resolution to fy: Py, — s'Q, for
g > 0. Suspend g to stg: s'Q, — s*** N and let [f] o [g] = [stg o f,] in
Ext2F o+ (L) N). The following diagram depicts this construction:

0<—L<—PO<—~~-<—PP<—PP+1<—--~<— prq

Z T

0+ "M+« 5'Qp«— s'Q1 «+— - —— s'Qq ——

‘[’Stg

SN

Because we canlift f, to fy41 and godps = 0, it follows from the equation
stgo fyodr = stgostda o for1 = Othat s*g o f, is a cycle. To show that all
of the choices made in the construction are irrelevant, observe that two choices
differ by a chain homotopy and so the difference vanishes on homology. The
bilinearity and associativity are elementary to establish.

We remark that speaking of the suspension is the same as speaking of
maps that change degree and so, by introducing the appropriate signs, this
entire discussion can be carried out without the suspension. We do this later. O

Yoneda’s original construction of the composition pairing is useful both
conceptually and computationally. The construction depends on the identifica-
tion of Ext{t(L, M) with equivalence classes of exact sequences of I'-modules
of the form

O-M-—-E, 1—>E,2—--—E—>L—-0 (n>0).

Two exact sequences of this form are said be equivalent if there are homomor-
phisms ¢;: E; — E! that commute with the morphisms in the sequences and
the identity maps on L and M.

Given classes in Ext}.(L, M) and Ext{ (M, N') we can take representative
exact sequences,

0—-M—-E, 1 —-E, o—--—FE —FE—L—=0
and 0= N—-F,_1—F, 2— - —-F —F—-M-=0.

To represent the product splice these two sequences together at M:

M
SN

0—=N—F,_ 41— —F E, 1 — - —FEy—L—0

[Yoneda54] showed that this pairing coincides with the composition product.
An immediate consequence of this identification is the following result.
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Proposition 9.6. If0 — A — B — C — 0 is a short exact sequence of
I'-modules representing a class « in Ext% (C, A), then the coboundary maps in
the long exact sequences derived from the sequence,

§: Extp(4,N) — Extfj'l(C',N) and §: Exti(N,C) — Extii"'l(N,A),

are given by left and right multiplication by o, respectively.

The internal degree of such an n-fold extension is given by the total change
in degree from left to right. That the internal degree of a product is the sum of
the internal degrees follows immediately.

Corollary 9.7. Exty™ (M, M) is a bigraded algebra over k with the compo-
sition product as multiplication. Furthermore, Exty™ (L, M) is a right, and
Ext™ (M, L) a left, Extp™ (M, M)-module.

With a concrete resolution like the cobar construction on hand, it is rea-
sonable to attempt to represent the composition product on Ext* (k, k) at the
level of elements in the cobar resolution. Let [o | - - - | o] be in F, (T4 and
[Br |-+ | By] bein F, (19, Notice that the internal degree of a:: I(I') — k
is the degree on which « is nonzero, that is, deg o = ¢ if @ # 0 as a mapping
I(I')* — k. We define a product on F, (T'%!) by juxtaposition

[a [ Tap]@[Br |- | Bl = loa |-+~ [ap | Br |-+ | Byl-

This mapping is clearly bilinear and associative. To see that it induces a product
on Extp*(k, k), we show that the differential is a derivation. Let U = [ay |

o |apland V = [opi1 | -+ | opil, then
FOV)=d*(on | | i)
p+q _ _ _
= Zi:l Zj (@1 |- @y | a;,j | O‘;/,j |+ | ctptq]
P _ _ _
=3 Sl | e &y Lol | agllopen | | ol
)
q _ _ _ _ _
+ Zr:l Z[al | e ap] [Oép+1 | e | Qptr—1 | a;+r,u | a;l+r,u | e | ap+q]
u

= d"(U)V + (=1)PHUd (V),

where ¢ is the internal degree of U, thatis, t = Y7 | deg cv;. Thus, this juxta-
position product induces a product on Exty™(k, k) with the correct bidegree.
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Theorem 9.8. The composition product and juxtaposition product coincide on
Ext;*(k, k).

Proor: We show how to lift a given mapping through the bar construction.
Suppose [f] € Ext(k, k) and [g] € Exth(k, k). Consider the diagram where
fiba | T vsa) = A0 |- DAl (v |- [ vigs])-

=TI~ ~T QI =TI ~T@I(I)* !~

I

.—>F®I(F)t—>-~.—>F®I(F) r k 0.

:

This lifting satisfies d o f; = fi_1 o d and so we have a mapping of part of
the one resolution to the other. By the definition of the composition product
[f]1o[g] = [g o ft]- The value of g o f; on a typical class y[y1 | -+« | Yete I8

g¥A |- wDf([ves1 |-+ | ye4s]). When we represent [f] and [g] in the
cobar complex as tensor products of elements of I'44 we get exactly the value

obtained by applying the juxtaposed dual elements to a typical argument and
adjusting signs for the suspensions. Thus the products coincide. a

The simplicity of the product induced by juxtaposition allows one to do
computations at the level of the cobar construction. This is especially useful
for determining such secondary phenomena as Massey products (see §8.2) and
~—1-products.

Suppose I is a Hopf algebra with cocommutative coproducty: I' — I'®I
and counit 7: I' — k. We assume further that I is of finite type over k. With
these data, there is yet another way to induce a multiplication on Extp* (k, k).
Suppose we are given a projective resolution of k, X, — k — 0 with the
homomorphisme: Xg = I' — k& — 0, the counit of I'. Let X, ® X, be the
complex with (X, ® X,), = @M—SX" ® X; and differential dg (z ® y) =

diz) @y + (=12 ® d(y) (z € (X,)"), then X, ® X, can be given a
I' ® I' action via the twist map and we obtain a projective I' ® I resolution of
k=k®k.

Using properties of the coproduct, counit and projective modules, we can
constructamap, A: X, — X, ® X,, making the following diagram commute:

0 k < r X

N

O—k®rk rer Xe ® X,

Qe
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Applying the functor Homg.( , k) induces a product
Homr(X., k) ® Homr (X., k) — Homr(X,, k)
that reduces to a product
p: ExtSt(k, k) @ Ext2 ! (k, k) — Extt ™+ (k, k).

One can construct an explicit A on the cobar resolution from which it is easily
seen that y is the same product as the one induced by juxtaposition.
We introduce this construction to prove the following result.

Theorem 9.9. If the coproduct on I is cocommutative, then the multiplication
on Exty*(k, k) is graded commutative with signs given by

a-B= (—1)83/+tt/ﬁ o
for o € Ext&t (k, k) and B € Ext® " (k, k).

Proor: We extend the diagram in the construction to another row:

0 k . X,
| A

00— k@pk—2 Tl X2 X,
|1 7|

00— k@ k2Tl X, ® X,

Since I' is cocommutative, ¥ = T and A is chain homotopic to T'A. This
proves the theorem. a

On the cobar resolution with its juxtaposition product it is apparent that
A and T'A are not the same mapping. An explicit chain homotopy can be
constructed. If we restrict our attention to k = IFy, this chain homotopy allows
us to define —;-products and hence Steenrod operations on H**(T'). For
k = F,, a similar construction over the (p — 1)* iterate of the coproduct,
YP:I' - I'®--- @I (p times), allows one to define the mod p Steenrod
operations on H**(I"). We refer the reader to [Adams58] and [Liulevicius62]
for details of these constructions. The elementary properties of these operations
are listed next for later applications.
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Theorem 9.10. Let (I',, A, €,m) be a cocommutative Hopf algebra over IF,.
(a) p = 2. There are operations Sq* on Ext;’*(]Fz, o) that satisfy the following
properties:

(1) Sq*: Ext!(Fa,Fy) — Extito (g, Fy),
(2) S¢'(ab) = me:iSqm(a)Sq"(b),

[s/2] (s —t—1
T Q8 r+s—t g, t
(3) S4"Sq _Zt0<7’—2t )Sq 54

)
(4) Sg°({lon |-+ [ om]}) = {lod | -+~ [ oq]},
(5) Sq z=12% ifx € Ext{(Fa,Fa).

(0) p, an odd prime. There are operations P* and 3P* on Ext™ (IF,,,IF,,) that
satisfy the following properties:

(1) P': Exty!(Fp, Fp) — Bxty 002 (5 5 )
BPi: Extd(Fp,Fp) — ExtitG0@-DFhetp gy
(@) Pi(ab) =3 P (@P ()
BPiab) =} . PP (Q)PI() + (—1) P (a) 3P (b),

(3) PP — Z[ /p]( 1yt <( —D(s—1t)— 1) pres—tpt

r—pt
Prﬁps — Ziz/:](_l)',u,-t <(p _r]-z(;t_ t)) (ﬁpr+s—t)Pt
[r—1/p] (p_l)(s_t) -1 r+s—t t
+Zt+0 < r—pt—1 )P+ (BF)
(4) Pof[on |-+~ [an]}) = {loF | - [ of]}.

(5) Pra=aP ifa € ExtR!(Fy,Fp) and 2r = s + t.

These operations differ from the usual Steenrod operations because Sg°
and PP are not the identity mappings and Sg* and /3 are not Bockstein operators.
The explicit expression for Sg° on a class in the cobar construction will be useful
later.

We consider a simple example over & = [Fo: Suppose the Hopf algebra,
I, is the divided power algebra on a single generator I'(z). Recall that I'(x) is
generated as an algebra by generators v;(z) fori = 0,1,... with y(z) = 1,
71 (z) = x and deg y;(x) = i deg . The product is determined by the relations

i+J
1

i@ = (17 o

and the coproduct is given on generators by

Plua) =

(@) © %s(0):
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We choose this Hopf algebra to study because its dual is given by 1“(ac)dual =
Fa[y], where y is dual to . The reader can easily read the Hopf algebra structure
on k[y] from the product and coproduct on I'(z) and it agrees with the usual
polynomial multiplication and coproduct

v =YL, (D ev,

To compute H**(I'(x)), we can apply the cobar construction to the coal-
gebra (F2[y], ¢). The following lemma holds generally.

Lemma 9.11. Let I" be a Hopf algebra of finite type over a field k. Then
HY () = Extp*(k, k) = Prim* (0% = Q*(I).

PROOF: We recall that Prim™( ) is the functor that associates to a Hopf alge-
bra its graded vector subspace (in fact, sub-Lie algebra) of primitive elements
(see §4.4). Also the functor Q*( ) associates to a Hopf algebra its quotient
vector space of indecomposable elements. When I' is of finite type over k,
Prim*(I'4%al) = Q*(I"), so it suffices to compute Prim*(I'44!), This may be
defined as the kernel of the reduced coproduct

(P* . I(qual) N I(l-\dual) ® I(qual).
From the cobar construction, this kernel is exactly Exty*(k, k). a

To obtain H*(I'(z)) then, we find the primitives in F5[y]. The arithmetic
of binomial coefficients (Lucas’s Lemma, see §7.3) determines the primitive
classes I; = [y2] c Extllq’(*x)(k,k), fori = 0, 1, ... . The products of these
classes can be identified in the cobar construction, where they are cycles; l;1;,
for example, corresponds to [yQi | yzj]. Coboundary formulas, such as

8] = 1yl + v | v°] = lilo + lola,

show that the product on the sub algebra determined by the generators {I;} is
commutative.

To complete the computation, one must show that the products of the I;’s
are not boundaries and furthermore, that no other class can be a cycle. Again

the arithmetic of (q) mod 2 can be applied and one deduces that
1

H*(D(2)) 2 Fa[l; | i=0,1,...],

as bigraded algebras where each [; has bidegree (1, 2¢ deg x). A corollary of this
computation is the fact that S¢°(1;) = l;41 and Sg* (I;) = I in Ext;’(’;) (IF2, Fa).
The reader should provide any further details needed to feel comfortable with
this computation. We will use the results in computing the cohomology of As,

the Steenrod algebra.
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A change-of-rings spectral sequence

We next introduce an analogue of the Lyndon-Hochschild-Serre spectral
sequence (Theorem 8his 12) 10 compute H**(I'), when I is an extension of
Hopf algebras .

0—-A— F—)F//A — 0.

HereI'//A =T /I(A)-I'and AisnormalinT, thatis, I(A) - I' = I" - I(A). This
spectral sequence can be derived additively by methods of [Cartan-Eilenberg56];
its multiplicative properties were proved by [Adams60].

Theorem 9.12, Let A be a sub-Hopf algebra of a Hopf algebra I. Suppose A
is central in I, that is, ab = (—1)4°8298%hq for g € A, b € I. Then there is
a spectral sequence, converging to H*(I"), with

Ep? = H(A) @ HP(T//A),

and differentials d,. of bidegree (r,1 —r). Furthermore, this spectral sequence
converges to H*(T') as an algebra with the product structure on the Es-term
given in the isomorphism by

(2®y) - (@ @y) = (1P (a2') © (yy)
wheny € HPY T //A) and ' € HOY (A).

ProOF: Before beginning the proof, we observe that this spectral sequence is
actually trigraded—the third grading is given by the internal grading ¢t in H**( ).
All of the differentials preserve this grading and so it is carried through to E%2*,
where it corresponds to the internal grading on H**(I"). This hidden grading
plays a key role in computations (§9.6).

The proof exploits duality and so we begin with B(T'), the reduced bar
construction on I'. Filter B(I") by

FPB() = {[v1 |- | ) for which at least s — p of the ~y; lie in I(A)}.
This is an increasing filtration with FOB(I') = B(A) and F*B*(I') = B*(I).
Since A is a sub-Hopf algebra, d(F?B(I")) C FPB(I"). Thus we have a spectral
sequence, converging to Tor" (k, k) with E'-term given by

E;yq = p+q(FpB(F)/Fp_1B(F)de)~
To prove the theorem we first establish a chain equivalence between the E°-
term, (FPB(I')/FP~'B(I),d°), and (B(A) ® I(I'//A)??,d @ 1).
Consider the mapping, v?: FPB(I') — B(A) @ I(I'//A)%P

Vp([71 |- 78]) = [71 [« |"Ys—p] R TYs—p+1 Q-+ @ s,
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where 7: I' — I'//A is the projection. Since 7A = 0 for A\ € I(A) and [y, |
<+ | 5] isin FPB(T) if atleast s—p of the y; liein I(A), vP([y1 | -+ | ¥s]) = 0
unless exactly y; through v,_,, lie in I(A). Hence v? is well-defined.

We show that the following diagram commutes

FPB(I) —£— B(A) @ I(T'//A)®?
d d®1
FPB(I') —5— B(A) @ I(L//A)®P.

Since v* is zero except on elements of the form [Ay | -+ | As_p | Yompt1 |
-+« | 5], we check that v¥ o d = (d ® 1) o v on such an expression. We write

d([M |- [ Asmp [ Ysmptr |- [ 7s]) =
s—p—1 _ -
Zi:l [>\1 ||>‘1>\z+1 |"'|)\s—p |73—p+1 ||7s]

+ [5‘1 | | Xs—p—l | Xs—st—p+1 | e | '73]

p—1 - N _ _

+ ijlp\l |- I Xsmp [ Vs—pt1 |- | VsmptgYomptgar |- [ 76
Observe that v ([A1 | -+ | Ae—p—1 | As—pYo—pt1 | -+ | 7s]) = 0 because
T(As—pYs—p+1) = 0 and that

(]| )_\8_—10 | '_)’s—pfl |- ’78—_p+j78—p+j+1 |- 1))
= [>\1 | c | >\s—p—1] ® 7T)\s—p Q@ TYsept1 Q- Q@ TYs = 0

by the definition of v? on B(D)*~1*.

Finally, observe that v* takes FP~1B(T") to {0} and so we get an induced
mapping of complexes

7P: (FPB(I)/FP7'B(I),d’) — (B(A) @ I(T//A)®P,d & 1).
We can rewrite F?B(T)/FP~'B(I) as
k®a A® FPB(T)/FP~'B(D)

and so we plot a circuitous route to showing 7P is a chain equivalence by showing

F=107": A® FFB(I')/FP'B(I') — A ® B(A) ® I(I'//A)?P

is a homology equivalence.

We introduce some associated complexes: Let C'(p) = AQFP+TQFP~ 1
where we write F? = FPB(T"). Then the bar construction differential d, defined
on B(T', T, k), takes C(p) to itself, as does the chain homotopy s. (You’ll find
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the formulas in Proposition 7.8). It follows that C(p) is acyclic. There is
a surjection C(p) — A ® FP/FP~! that is induced by 1 @ pr where pr is
projection. The kernel of this surjection is I' ® FP~!. Increase p to p + 1
and the surjection C(p + 1) —~ A ® FPT1/FP takes C(p) as a subspace of
C(p+ 1) to 0. This leads to a short exact sequence, which defines another
complex K (p) as kernel,

0— K(p) — Clp+1)/C(p) — A® FP*/F? — 0.
The associated long exact sequence on homology implies
Hy(K(p)) = Hyp1 (A ® FPH/FP),

because C'(p + 1)/C(p) is acyclic. We next analyze the complex K (p) that
leads to the desired result via induction.

Up to this point we have been using only part of our hypotheses—that A
is a normal subalgebra of the algebra I'. In the case of Hopf algebras we can
apply the following remarkable consequence of the Hopf algebra structure due
to [Milnor-Moore65] (Exercise 6.12):

Fact. Suppose A is a sub-Hopf algebra of T and A is normal in T. Then T
has a basis as a A-module, consisting of 1 and certain homogeneous elements
in I(I); T is free as a right A-module on this basis. Furthermore, the basis
projects to a vector space basis for T' //A.

We denote such a basis for I" by {~;} and its image in I'//A by {w; = (%)}
It follows that we can write I" as a right A-module by

r=T/A@A=A+IT//A)®A.
Since the kernel of C(p + 1) —= A @ FPT1/F?P is T @ FP, K(p) may be
written as the image of the inclusion followed by a quotient:
K(p) =im('® F* — C(p+1)/C(p)).
Replacing our expression for I' as a right A-module, we get
K(p) =im(I'® F* — C(p+1)/C(p))
=imA® FP+I(//A) @ A® FP —

(A@F”“+I(F//A)®A®FP/A®FP+I(F//A)®A®Fp_1>)

~ [(I'//A) @ A ® FP/FP~L,
We proceed by induction to prove the following assertion:

I(r//A)®P, ifq=p,

9.13 Hy(A® FP/FP~1) =
( ) (L@ F7/ ) {0, elsewhere.
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Consider the composite, denoted by f?,

Piae /et 220 A g B @ I /A)2 2L 1(r/a)er

For p = 0, f° is simply the mapping A ® B(A) — k given by the augmen-
tation. But this is an equivalence by the properties of the bar construction.
Assume (9.13) for p, that is, H(f?): H(A ® FP/FP~1) — I(I'//A)®? is an
isomorphism. By the properties of the complex K (p), we have

H(K(p)) = HI(L//A) @ A@ F?[FP71),
where the differential on I(I'//A) is zero. Thus we have
H(K(p) = I(L//A) @ H(A @ FP/FP~1) = I(L//A)®P+.

Since Hy41(A ® FPH/FP) = H, (K (p)), we have shown that the assertion
(9.13) holds in case of p + 1, and hence for all p by induction.

When we apply & @ — to ¢, we obtain the desired chain equivalence
between FPB(I')/FP~1B(I') and B(A) ® I(I'//A)®P. The E'-term of the
spectral sequence is given by

El, = H.(B(A) ® I(L//A)®P,d © 1) = Tor™(k, k) @ I(T//A)®P .

To compute the E2-term of this spectral sequence, we introduce a chain
mapping ii*: B(A)® I(I'//A)?? — FP/FP~! thatacts as an inverse to 7P and
induces a chain equivalence on B(T'//A). First, use the basis for I'//A, {w;}, to
split the projection 7 and obtain amap o: I'//A — I of graded vector spaces.
Next, introduce a version of shuffle map, u?: B(A) ® I(I)®? — FPB(I),
given by

pP(lar |- lar)®laren |- L arap) = 3 (=17 Paga) |-+ | toprip)-
(r,p)-shuffles &

Recall that an (r, p)-shuffle is an (r 4 p)-permutation that preserves order on 1

through r and on 7+ 1 through +p. The sign £(o) is the sign of the permutation

(see the proof of Lemma 7.11). The key property of the shuffle product in this

setting is the formula d(p? (e ® b)) = pP(d(a) @ b)) £ P~ (a ® d(b)), where

a € B(A) and b € B(T"). This equation depends on the centrality of A in T".
Let @? denote the composite

772 B(A) ® I(T//A)°7 — B(A) © [(1)”
° - FPB(D) — FPB(D)/FPB(T).

I_,;P
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We leave it to the reader to verify that P o i = id. Next consider the diagram
H,y(B(A) © I(I//A)®) —12%— H,(B(A) @ I(I//A)®#~Y)
14 vt

1 1
Ep,q 4t Ep—lyq'

For a € B(A) with d(a) = 0and b € I(T'//A)®?,

A EE(a®b) = 2 dpE(1® o”)(a © b)
— 5P (@ © doh)
= (1® 7P~ (a ® doPb)
=a ® dnPoPb
=a®db.

Thus the diagram commutes and E72 | = H,(A) ® Hp(B(T'//A)).

The last step in proving Theorem 9.12 is the construction of a coproduct
structure on the spectral sequence (we are still in the dual spectral sequence
for H.(T')). Recall that B(I') has a natural coproduct given by 1: B(I') —
B(I') ® B(I),

vl -l =Yl lvd @ b | ]

This coproduct is dual to the juxtaposition product on the cobar construction.
We filter B(I") ® B(I") with the tensor product filtration,

FPB) @B) = FB() @ FrB(I),

One can check that

(1) 1 is filtration-preserving and commutes with the differentials;

(2) 7P and 7P commute with 1) if we equip B(A) and B(I'//A) with the
same coproduct. (This requires that the shuffie product commute with
1), which it does.)

With these facts the isomorphisms yield that the coproduct on the E2-term is

isomorphic to the tensor product of the coproducts on H.(A) and H.(I'//A).
Finally, to obtain Theorem 9.12, it suffices to dualize this proof. We have

proved the dual of Theorem 9.12 for the homology of Hopf algebras. a

A consequence of the proof of the multiplicative properties of the spectral
sequence is the analogue of Corollary 6.9 that the Steenrod operations on H*(A)
and H*(I'//A) commute with the transgression, d,: E&"™=1 — E70. These




392 9. The Adams Spectral Sequence

operations, for k = Fo, act classically on the homological degree but double the
hidden, internal degree. To prove the analogue of Corollary 6.9, one must work
directly with the cobar complex and the explicit chain homotopies that give
rise to the Steenrod operations. The interested reader can consult the papers of
[Adams60] and [Liulevicius62].

With the necessary algebra all in place, we return to the problem of con-
structing the spectral sequence of Theorem 9.1.

9.3 The spectral sequence

The goal of the chapter is the computation of the groups, {Y, X }., where
X and Y are spaces of finite type and Y is a finite dimensional CW-complex.
The tools of choice, in this exposition, are elementary;

(1) the properties of fibrations, in particular, the construction of towers
of principal fibrations and the exact sequences that result from these
constructions,

(2) the properties of the suspension, including Freudenthal’s Theorem (The-
orem 4.10) and

(3) exact couples and their subsequent spectral sequences.

We first construct certain towers of fibrations, known as Adams resolu-
tions that realize geometrically an algebraic resolution of the mod p cohomology
ofaspace. The reader can compare these constructions with the Postnikov tower
of a space (§4.3 and §6.1) and the towers built in §9.1 to describe higher order
cohomology operations. By building such a resolution for a space X, then
SX, then S2X, and so forth, the mod p cohomology of the Adams resolutions
assembles into better and better approximations of a free A,-module resolu-
tion of H*(X;T,). The application of the functor [S™Y, —] to the system of
fibrations results in an exact couple and a spectral sequence. Our analysis of
the construction allows us to identify the Es-term.

We remark that the bigrading on the spectral sequence that results from
the exact couple is not standard and, in fact, does not conform to the definitions
in Chapter 2. This could be avoided by an unnatural regrading of everything in
sight, but this would complicate matters further. The nonstandard grading does
not affect the arguments that follow but might seem odd on first exposure.

Next the properties of Adams resolutions are developed to demonstrate the
convergence of the spectral sequence. Then a geometric pairing is defined at
the E;-level that provides us with a spectral sequence of algebras. The pairing
is so defined as to yield the Yoneda multiplication at the Eo-term.

For the reader who has little interest in the geometric origins of the Adams
spectral sequence, but interest in the computations, we suggest you skip on
to §9.5 where the homological algebra of §9.2, the Steenrod algebra and the
spectral sequence are used to compute some of the stable homotopy groups of
spheres.
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The construction: Adams resolutions

Let X be a space (of the homotopy type of a CW-complex) that is of
finite type over IF,, and suppose X is (n — 1)-connected. The basic goal of an
Adams resolution is the geometric realization of a free A,-module resolution
of H*(X;F,) through dimensions n < ¢t < 2n (the stable range). The first
step is to choose a graded vector space ¢ Vp such that

oVo San_1 H*(X;F,)/1(Ay) - H*(X;TF,).

By the representability of the mod p cohomology functor we can choose a map-
ping oFp: X — K(OVO) such that (OFO)* : H* (K(O‘/O), ]Fp) — H* (X, ]Fp)
is an epimorphism in degrees less than 2n realizing the isomorphism when
composed with the quotient.

Having chosen the mapping ¢ Fp, form the pullback of the path-loop fibra-
tion over it:

0X1 PK(oVo)

——

X —— K (Vo).

Consider the long exact sequence on cohomology (Example 5.D), fort < 2n—1,
where we write H*( ) for the cohomology H*( ;F,):

—— H'"Y(X) — H" (o X1) — H Y QK (o)) — HY(X) —

K(oVo))

The epimorphism, oFp: H*(K(oVp)) — H'(X), is the transgression asso-
ciated to the fibration o X; — X. Thus, for t < 2n — 1, H*(oX1) maps
isomorphically onto the kernel of (oFp)*. Observe, also, that ¢X is at least
(n — 1)-connected, and the map H*(X) — H¥(pX7) is null for ¢t < 2n — 1.

Tterate this procedure for ¢X7; that is, choose ¢ V7 isomorphic in degrees
less than 2n — 1 to H*(oX,)/I(A,) - H*(oX:) and a mapping o F} : 0 X; —
K (oV1) realizing an epimorphism on mod p cohomology. Pullback the path-
loop fibration over K (o V1) with respect to oF} to get a fibration ¢ X2 — ¢X7.

Continuing, we get a tower of fibrations, - - - — ¢ X314 — 0X; — -+ —
0X1 — X, with each ¢X; at least (n — 1)-connected, and the mappings
H'(oX;) — H%(0X;4+1) null in degrees t < 2n — 1;
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Fia
0Xit1 —— K (oVi41)

|

oX; —& K(oV;)

|
i

o X, —5 K((oW1)

|

X OFO K(O‘/O)

oFit1

The mappings QK (oV;) 4 0Xiy1 —— K(oViy1) have additional
properties. On cohomology we have

(0Fiq1)”

H*(K(0Vinn) H*(0Xi1) — H*(QK(o17))

where the first map is onto in degrees less than 2n and the second map can be
taken to be a degree 1 map that is one-one, onto the kernel of H+1(K (oV;)) —
H**1(pX;) in degrees less than 2n — 1. If we compose and desuspend, the
homomorphisms H*(K (oVit1)) — s™ H*(K(oV;)) can be assembled into a
complex:

0 — H*(X) « H*(K(oVo)) « s H"(K(oV1)) « s *H*(K (oV2)) «,

which, in degrees less than 2n, is a free Aj,-module resolution of H*(X).

The next step in this process is to repeat the previous construction based
on X for SX, the suspension of X. Recall that H*(SX) = sH*(X) as
modules over A,. Since SX is n-connected, the stable range extends to degree
2n + 1. We can relate the data from the Adams resolution of X to that of SX
by choosing the graded vector spaces 1V; to be s(oV;) @ W;, where W is the
additional term needed to obtain an epimorphism up to degree 2n + 1.

With these details of construction, the long exact sequences of cohomology
vector spaces can be examined to show that 1 X; and S(oX;) have the same
mod p cohomology in degrees less than 2n — 3.

This establishes the inductive step. We continue by building Adams reso-
lutions over S2X, S2X, and so on. Over S™X, we have a tower of principal
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fibrations:

mX1 =B K (V1)

|

Smx =B K (Vo).
The properties of the construction can be summarized:

(1) each ,, X;4+1 — mX; is a fibration with fibre QK (,,V;),

(2) each ,,X; is at least (n 4+ m)-connected,

(3) H*(mX:;Fp) = H*(S(m-1X;);Fp) in degrees less than n +m — ¢,
(4) H* (X3 Fp) = H* (1 Xi41;Fp) is null in degrees less than 2(n +m).

Finally, desuspending the appropriate number of times leads to the com-
plex, a free A,-module resolution in degrees less than 2(n + m):

04 sTMH(S™X) = s H* (K(m Vo)) = s H* (K (mV1)) -+ .

We next prove an important property holds for Adams resolutions that is
analogous to the universal property enjoyed by projective resolution.

Lemma 9.14. Suppose { W1 — Y, W41 — W, i > 1 }isa tower of principal
Jibrations and there is an integer N > 0 so that, if QK (M;) is the fibre of
Wir1 — W, then M; is a graded vector space, trivial in degrees greater than
N. If X is (n — 1)-connected, 2n — 1 > N, and f: X — Y is a continuous
mapping, then there is a sequence of mappings, 0 X; — W, for each i, such
that the following diagram commutes,

0X; 0X1 X
| |k
W, W,y v

PRrooF: We construct the mapping from ¢X; to Wi and leave the inductive
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step (essentially the same argument) to the reader. Consider the diagram
0X1 PK (M)
\\\ /

441

X — Y —— K (M)
Since HY(X) — H'(pX4) is null in degrees less than 2n — 1, the composite
0X1 — K (Mjy) is null-homotopic and so there is a lift of the composite to
PK(M,). By the universal property of the pullback, W; — Y, we get a
mapping X1 — Wi, making the diagram commute. O

Corollary 9.15. Given two Adams resolutions of a space X, there are maps
between them covering the identity.

We finally derive the spectral sequence. First, form all of the Adams
resolutions over X, SX, S2X, .... From the observation that each tower
yields a certain part of an A,-free resolution of H*(X), let

0 H*(X;F,) < Py« Py «— Py -+
denote the limit of these approximations, which can be realized as
P, = lim s ™ "H*(K(,V;)).
m—00

For a given m, the Adams resolution of S™X yields the system of fibrations:

i i
— K (V1) — QU X2) — QK (mV2) — m Xz — K(nV3)
| |

I Q2K(ml/0) - Q(le) - QK(m‘/l) — m X2 — K(m‘/Z)
! |
QX)) = QK (V) — mX1 — K(nW1)

S™X — K (mVa).

To this system of spaces and maps, apply the functor [S™Y, —], where Y is a
finite dimensional CW-complex. This yields an exact couple:

[Smﬂoy’ qu] : [Sm+pY7 qu—l]

[S™PY L X J
(\k

[S™HPY, K (m V1))
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i is induced by QP (,, Xy) — QP(1»,X4—1), the p-fold loops on the fibration;
Jj is induced by Q7 (,, X,_1) — QPK(,,Vg—_1), the p-fold loops on the clas-
sifying map of the fibration, ,,, Fy_1; and k is induced by QP K (,,V,—1) —
QP~1(,,X,), the (p — 1)-fold loops on the inclusion of the fibre. We have
identified [T, Q"U] with [S"T, U].

To fix the bigrading, let the first degree denote the level in the Adams
resolution where the map is found, and the second degree denotes the codegree
for the number of suspensions. This yields

[Sm‘f'PY’qu] — DQ:P‘HI [S’m"l‘PY" K(qu)] — EQ:P""Q'

The bidegrees of ¢, j and k are (—1,—1), (0,0) and (1, —1), respectively. When
we display the unrolled exact couple, we get

_ Ds,t [ Ds—l,t—l i i Dl,t—s+1 i DO,t—s
Es—l,t—l El,t—s-l—l EO,t—S

Let X be (n — 1)-connected, Y of dimension N and suppose that N + m +
p < 2(n + m). By the Freudenthal suspension theorem, [S™PY, S™X] =
{Y, X},. Furthermore, [S™PH7Y,,, X;] & [S™HPHrHlY L X, if 6 < 1.
So, we may write the groups, D*? and E*? as independent of m when we chose
m large enough for a given s and ¢. In particular, when m is large enough,

D=8 — [§mHt=5Y S X] = {V, X }¢_s .

We really have a spectral sequence for each m, but we think of the spectral
sequences approaching a limiting value as m grows larger.

We next apply the properties of Adams resolutions to identify the Eo-term
that arises from this construction. In the system of fibrations, the mappings
7 and k arise from the inclusion of the fibre and the classifying map for the
fibration Q'K (,,Vs) — 71( Xs11) — Q1K (,Vey1). If we apply the
functor, [S™Y, —], then the first differential is given by

k‘Oj — d1: Es’t+s=[Sm+tK K(mvs)] N [Sm+t_1K K(m‘/;;+l)]:Es+17t+s-

However, for m large enough,

[S™HY, K (1 Vs)] = Homly (H* (K (mV5)), H*(S™4Y)
— Horly, (H*(K(mV2)), H*(S™Y))
= Homitp (s Ps, s"H*(Y))
= Hom®y (P;, H*(Y))
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Also, the mapping d; is simply

Homy (H*(K (V). s HH* (Y))

Hom@1), HomY (sH*(K(mVig1)),s™ T H*(Y
A, mVs+1)), 8 (¥))

where 0 is induced by QK (,,Vs) — mXs41 — K(mVst1), which in turn
induces 8: P, 1 — P;. Thus the following diagram commutes (up to the sign
introduced by the suspensions):

Fst+s d' Estltts

; %

% Hom(92, "
Hom'y (P,, H*(Y)) 22220 Hom?, (Pysr, H*(Y)).

This proves E5* 2 Ext’;’ (H*(X), H*(Y)) in the spectral sequence resulting
from the exact couple and the first part of Theorem 9.1.
Convergence

The exact couple that gives rise to the spectral sequence has the “rightmost
column” of groups, obtained by applying [S™Y, —] to the system of fibrations,
givenby D%=% = [V, X'};_,. Unrolling the exact couple, we have a sequence
of maps:

i

Sy DSt ps—Lttl 2, 0 Doit-s {Y, X}s.

We now apply the methods of Chapter 3 to determine the convergence of the
associated spectral sequence.

Lemma 9.16. d,: E5t — EsTri+r—1

PRrROOF: We can factor d,. by

k™ e
dy: Eﬁ,t AN Di“’t — () pstrttr—1 J Eﬁ+r,t+r—1' O

Filter {Y, X }. by F*{Y, X}, = imi*: D%+ — D% = {Y, X },.
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Lemma 9.17. The filtration of {Y, X }. arising from a system of Adams resolu-
tions does not depend on the choice of Adams resolutions.

Proor: Apply Corollary 9.15 to cover the identity map S™X — S™X
between Adams resolutions. This system of mappings shows that each filtration
is contained in the other. a

We can relate this filtration to the spectral sequence by using Corollary 2.10,
which yields a short exact sequence, for each r,

% J *
00— Ds? /ker(iT: Ds* _ Ds—r,*) +iDstlx — Eii}-l
k
— im(i": DTTHL* o DSTL*) A ker(i: DSTY* — D%*) — 0.

Letr goto infinity and observe that the left hand term of the short exact sequence
stabilizes when r = s, since i%: D®* — DY%*,

Lemma 9.18. There are monomorphisms
0— Fs{YvX}q/Fs+1{Y’ X}, E5ats,
Proor: It suffices to show that
s 8%
F {Y’X}Q/FSH{Y, X}, = D /ker(is: D** — DO*) 4 {Ds+Lx.

Notice F*{Y, X }, = i* D%9*+¢ and F*+1{Y, X}, = i(* D*+10+s+1), There
are short exact sequences

0 —— keri® + iD*T1 D¥* D*" reris 4 iDs+1x ——0
N
0 is+1D3+1’* i3 D%* Fs/Fs+1 0

These maps are onto by the Five-lemma. We show that 7° is also a monomor-
phism. Let [a], [b] licin D** / ker i* 4+ D*T1* 1f7°[a] = 7°[b], then7®*[a—b] =
[°(a — b)] = 0. This implies either i°(a — b) = 0, and so @ = b (keri®), or
i*(a — b) lies in ¢* T D*+1* which implies (a — b) lies in ¢D*+1*, In both of
these cases [a] = [b]. o

From Lemma 9.18, we have the exact sequence;
0— FS{KX}*/F3+1{KX}* — Egé*
— ﬂ im(i": DS¥tr+b* — DstL*ynker(i: D*TLH* — D*) — 0.

To complete our proof of Theorem 9.1, we must show that the right term of this
short exact sequence is trivial. We first develop some properties of the filtration.
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Lemma 9.19. If o is in {Y, X}, and « is divisible by p", then « is in
F{Y, X},

Proor: The term ‘divisible by p™’ makes sense in an abelian group, that is,
thereis a 5 in {Y, X'}, so that &« = p™ /3. We proceed by induction on 7 for all
spaces. The result for n = 0 is trivial.

The case of n = 1 follows by observing that if f: S™*TIY — S™X is
such that pf ~ x, then the composite S™TY — S™X — K(,,V) is null-
homotopic since it represents classes in mod p cohomology. Therefore f lifts
0 X1 and is in FH{Y, X},.

Assume the result for n— 1. Since o = p" 3 = p™~ ' (pf3), we have that p3
liesin F1{Y, X },, thatis, p3 = iu where i: ,, X1 — S™X andu: S™HY —
mX1. However, o = p"~1(pB) = p"~(in) = i(p"~'u), and so p"~lu lies
in F*~1{S™Y,,, X },. Thus there is a map, w: S™*9Y — ,, X, such that
i"lw = p"lu. Thus @ = i(i" " w) = "w and o lies in F*{Y, X},. O

Lemma 9.20. If « is in {Y, X}, and o is not divisible by p", then v is not in
Fe{Y, X}, for some s.

Proor: We introduce an auxiliary space constructed as follows: In {X, X},
consider the element given by p™ times the identity. Let A: S™X — S™X
represent this map. Pullback the path-loop fibration over S(h) to obtain the
space U

QST X — Q™Y

[ [

U—PS™tx
Sm+1X S(h) Sm+1X

By construction, if X is n-connected, then U is (n + m + 1)-connected. If W
is a CW-complex of dimension less than 2(n + m + 1), then by the Freudenthal
suspension theorem (Theorem 4.10) [W, QS™H1X] = [W, S™X]. We also
have the exact sequence

n n

(W, S™X] p—> W,5™"X] — [W,U] — W, Sm+1X] p_} [VV,Sm-HXL

which follows from the long exact sequence for the fibration. This traps [W, U]
between the coker p™ and ker p™ in the short exact sequence:

0 — coker p™ — [W,U] — kerp" — 0.

Since p™ annihilates both ends of this extension, [W, U] is a Z/p**Z-module.
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Let j be the first nonzero dimension with 7;(U) # {0} (j > n+m+ 1).
If j < 2(n+m+ 1), then 7;(U) is a Z/p?"Z-module by the argument above.
Consider the quotient map, 7;(U) — 7;(U) /pr;(U) = 7;(U) @ Z/pZ. Since
7;(U) ® Z/pZ is a vector space over IF,,, we can realize this quotient map by
U — K(n;(U)®Z/pZ, 7). Let Uy be the total space of the principal fibration
induced by this map:

Uy —— PK(m;(U) ® Z/pZ, j)

J |

U——K(m;(U)®Z/pZ,3).

The short exact sequence, 0 — 7;(Uq) — 7;(U) — m;(U) @ Z/pZ — 0,
implies that 7;(Uy) is pm;(U). But 7,;(U) is a Z/p**Z-module, so if we
repeat this procedure enough times, we get U;, with 7;(U;,) = {0}. Starting
on 7,41(U;, ), we can iterate the procedure until we eventually get to U’ with
7 (U") = {0} for0 < k < 2(n+m+1). The tower of fibrations {U; — U;_1},
satisfies the conditions of Lemma 9.14 and so we have a mapping over the
inclusion S™X — QS™HX «— U:

mXy —— U’

mX1 S Ul

smtay S™X U.

@ inc

Recall ¢ is not divisible by p™ and suppose o € F*{Y, X}, forall s < r.
Then o = i"v for v: S™HY — ,,, X,.. This factors through [S™HY, U] =
{0} for S™*4Y in the stable range and so « is in ker(inc) = p™[S™ 1Y, S™ X].
But then o = p" 3, contradicting our assumption. Therefore, o € F*{Y, X},
for some s < r. O

Corollary 9.21. F<{Y, X}, =, F™{Y, X}, = {elements of finite order
primeto pin{Y, X},}.

Notice that the assumptions that X is of finite type and Y of finite dimension
play a role in the corollary. By Proposition 5.17 and induction over skeleta,
we know that {Y, X'}, is finitely generated and so there are no elements in the
group of infinite divisibility by p.
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Corollary 9.21 points out, however, that our filtration of {Y, X'}, is not
Hausdorff (§3.1) and so the spectral sequence cannot be expected to have
{Y, X}. as its target—after all, all our constructions were done mod p. We
determine the actual target as follows: For an abelian group G let ()G be the
p-component of G, that is, the quotient of G by the subgroup of elements of
finite order prime to p. Then (,){Y, X }. = {Y, X }./F*°{Y, X }.. We induce
a filtration on the p-component, (){Y, X }. by

s 2
1
c FHY &b/ pooty x3. € Y X
This filtration is exhaustive and convergent (Hausdorff), that is,
S oo s oo

U, pe/p= = p{v. X}, [ Fo/F>={0}.

Furthermore we still have monomorphisms
00— FS/FOO/F3+1/FOO —>E§c’>*

To complete our discussion of convergence, we prove the following lemma.
Lemma 9.22. E* = FopiY, X}*/Fs+1(p){}/; X}

PRrOOF: It suffices to show that

ﬂ(imiT: pstrls Ds+1,*):| O [ker(i: DSt Ds,*)] _ {0}

T

Consider the relevant piece of one of the towers;

QK (m V)

[

> me+'n+1 — ? mX3+1 —’me

| |

n

For a finite complex Z we have the exact sequence
- [Z’ QK(mVs)] - [vaXs+1] - [Z’ mXS] - [Z’K(mVS)] -

2

for which ker i = im[Z, QK (,,V;)] and p annihilates ,,, V,. Therefore, ker ¢ is
p-torsion.

Apply [Z, —] again to the tower, and we can filter [Z, ,, X5 11] by the images
of the ¢™. But(), imi"™ = F*[Z, ,,X,41] and the argument of Lemma 9.20
carries over to show that "),, im ™ contains only elements of finite order prime
to p. Therefore, (),, im¢™ N ker s = {0} since an element in a finitely generated
abelian group cannot be p-torsion and have finite order prime to p unless it is
Zero. O
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Corollary 9.23. There is a spectral sequence, converging to (p)wf, the p-
components of the stable homotopy groups of spheres, with Eo-term given by
E3' = Ho'(Ap) = Ext}’ (Fy, Fyp).

In §9.5 we explore the consequences of Corollary 9.23 and compute some
of the groups (72 for p =2 andp = 3.

Multiplicative structure on the spectral sequence

The multiplicative structure on a spectral sequence is often pivotal in
the computations. We next introduce the composition pairing, o: {Y,Z}, ®
{X, Y} — {X, Z}s4+, that is reflected in a pairing of the spectral sequences
converging to these groups. We sketch how the pairing at each level arises.
Complete proofs of the existence and properties of the pairing are given in detail
by [Douady58] or [Moss68] where different tools are to hand. We identify this
pairing at the Es-term as the Yoneda composition pairing. When X =Y = Z,
the pairing becomes a product and so we have a product structure on the relevant
spectral sequence.

Definition 9.24. Suppose « € {X,Y}s and B € {Y, Z}; and suppose that
f:S™FsX — S™Y and g: S™TY — S™Z represent o and 3, respectively.
Define the composition product of o and 3, Bo a to be the class in { X, Z} o4+
given by

Sn+tf S™g
S’n+m+s+tX Sm+n+tY Sn+m Z

Proposition 9.25. The composition product is bilinear, associative and functo-
rial. The composition product induces the structure of a ring on {X, X }.. and
furthermore, {Y, X}, is a left {X, X }.-module and a right {Y,Y }.-module.
In fact, {Y, X} has the structure of a { X, X }{Y, Y }.-bimodule.

Proor: These properties follow directly from the analogous properties of the
unstable composition product, o: [V, W] x [U, V]—[U, W]. In particular, the
pairings
[V, W] x [SU, V] [SU, W]
[SV,W] x [U,V] — [SV,W] x [SU, SV]l[SU, W]

are additive in the second and first factors, respectively. (For the reader who is
unfamiliar with these properties, we suggest Chapter 3 of the classic book of
[Whitehead, GW78].) O

In the particular case of X = S, the ring structure on {S°, 5}, = 7%

has better properties—a? is graded commutative. This follows by comparing
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the composition product with the smash product:
(_1)(Q+l)kEQ+la
_—

Sp+k A Sq+l SP A Sq+l
EP+’°,@J N JEPB

srkop g1 CUTES gp nga,
We have (—1)9*EPtE3o Elq = (—1)@+tDk Eatla 0 E943. This result was first
proved by [Barratt-Hilton53]. The relationship between this smash product and
the Es-term, Ext, is through the external tensor product on Ext as defined by
[Cartan-Eilenberg56]. We refer the reader to the blue book of [Adams74] for a
thorough treatment of products.

Let X be a space and construct a system of Adams resolutions for X. We
construct ‘pairings’ on D** and E** of the resultant exact couple, that agree
with the composition pairing on {X, X }... Suppose [f] is a class in

s,t m+t—s+t' —s’
D" = [S X7m+t/—s/Xs]

and [g] is a class in D*"* = [S™+t'~¢'X . X,/]. By Lemma 9.14 we can lift
g through the Adams resolution:

g

’ ’
gmitostt-s x ;’ mat/—s' Xs ———— mXg/4s

gs—1
m+t'—3’Xs—1 — me'+s—1

g1
m+t'—s/X1 ’me’+1

’ !
Sm—i—t -5 X g me/

We define [g] o [f] = {[gs o f] for all choices of g,} € Ds+s"#+t" Notice that
if s = ¢’ = 0, then this is the composition product on {X, X }...
Similarly we define such a ‘pairing’ on E**; let
[f] € B = [S™HH X K (v —or Vi)
and [g] € EY = [~ X, K(,nVar)].

Because the K (V')’s are generalized Eilenberg-Mac Lane spaces and because
SMAE =8 X' — K (m+t—s Vo) induces an epimorphism on mod p cohomology,
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we can define a mapping ko : K (4t —s Vo) — K (m Vs) so that the following
diagram commutes:

’ ’
ST 1 X,

k
K(m+t’—s' %) —0> K(mVS’)'
The mapping ¢, exists since the composite

’ ’ k
mAt —s' X1 — SMHE X — K(mit—s Vo) = K(nVs)

is null homotopic.
Inductively, if g; 11 and k; exist, then we can find g; 1 2 and k; 1.1 by choosing
k;+1 so that the following diagram commutes

Q

QK (it —o Vi) — 2 QK (1 Vi 1)

| |

(9.26) m+t/—s/Xi+1 gitt me/+i+1

| |

ki
K (mttr—s'Vig1) ——— K(m Ve tit1)

and choosing an appropriate lifting of ¢; 1. We can define the/ corr/lposition of
[g] and [f] as [g] o [f] = {[ks o f] | all choices of k,} C E*+¢ t+t We make
some observations.

1. The choices made in all of the constructions differ by elements in the groups,
[S1X, F], of homotopy classes of mappings to the fibres of the fibrations in the
towers. If [f] and [g] are in E5* and E** and they are cycles under dy, then

their product [g] o [ f] is also made up of cycles in E5+5 ¢+ and the differences

’ ’
vanish as an element in E5T* ™" Thus the defined ‘pairing’ is an actual

pairing on E3".

1. When we apply mod p cohomology to the diagrams (9.26), and compute the
effect of the maps &3, then the construction is seen to be a geometric realiza-
tion of the Yoneda composition product and, in the isomorphism of E5* with
Ext;’: (H*(X), H*(Y)), the products go over isomorphically.
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TII. The composition product is filtration-preserving on {X, X }... To see this,
examine the commutative diagram:

’
SN-‘rt—H X

| T

SN+ x X X
T N4#' A1 ' N4t'Ap

/ _— o

SNX e NXqpe— -t

NXg—— NXgp1— - NXpyqg

This shows that o: Fp{X,X}t/ ®FQ{X,X}t — Fp-i-q{X’ X}t+t’-

IV. With some change in notation, we could have defined the ‘pairings’ for
0: {Y, Z}, @ {X,Y}. — {X, Z}. just as easily.

We now state the full theorem on products in the Adams spectral sequence, due
to [Adams58] and [Moss68].

Theorem 9.27. There exist associative, bilinear pairings, functorial in the
spaces X, Y, Z, all finite dimensional CW-complexes, and, for r > 2,

Eﬁ,t()/’ Z) ® E:/’t/(X, Y) _ Ef,+s/’t+t/ (X, Z)

such that

(1) forr = 2, the pairing agrees with the Yoneda composition pairing

Ext (H*(2), H*(Y)) ® Ext" (H*(Y), H*(X))
— Exty Y (H*(2), H (X)),

(2) The differentials, d,. are derivations with respect to these pairings, that
is, in E}*(X, Z), dp(w) = (dru)v + (=1)"%u(d,v), if bidegu =
(s, ).

(3) The pairings commute with the isomorphisms E,1 = H(E,,d,).

(4) The pairings converge to the composition pairing

o: {Y, Z} @ {X, Y} — {X,Z}.,
that is, this pairing is filtration-preserving and the induced pairing on

the associated bigraded modules is isomorphic to the pairing on the
E-terms of the spectral sequences.
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Of course, these pairings not only allow us to compute more easily but
they also allow us to define Massey products in the spectral sequence. We take
up this notion in §9.5.

The simplest computation reveals the role of the composition pairing. For
any prime, p, the beginning of a minimal resolution of IF,, over A, may be
presented as in the diagram:

|
o

| Bu

p——mn
0+——Z/pZli——1L[pL
0+—Z/pZ+ Ay < Py

We identify an element ag in Exti{i (IF,, F,,) generated by the dual of the Bock-
stein, and occurring in this resolution as the element 2;. Because the Bockstein
has degree 1, we show that it detects the mapping p: S™ — S, the degree
p map. Consider the complex S™ U,, e"*1, the mod p Moore space, and the
sequence

inch
S, g Up en+1 & Sn—l—l.

On cohomology, we have the extension
0 — H*(S™Y) — H*(S"Upe™tt) — H*(S) — 0.

Since H*(S™ Up e*t) = Fp{an,Sz,} is a nontrivial module over A,

this sequence identifies the only possible extension that can represent ag in
1,1

Ext); (Fp, Fp).

Suppose [ € Extiii (Fp,T,) is a nonzero permanent cycle in the Adams
spectral sequence, that 1s, [ lives to E.,. Also suppose agl is nonzero. If [
represents A in (p)th_s, then, by Theorem 9.27, agl represents the composition
of | with the element that detects the degree p mapping. We conclude that
p)x 7& 0in (p)ﬂig_s.

Much more is known about the product structure on 7. In a classic paper
[Nishida73] studied the global properties of the composition product. Using
the extended power construction on a space and work of [Kahn-Priddy78], he
proved a conjecture of Barratt that any element in 7rf for ¢ > 0 is nilpotent.

9.4 Other geometric applications

The workhorse pulling the Adams spectral sequence along is the notion
of an Adams resolutions together with convergence of the associated spectral
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sequence. The construction is applied to a sequence of spaces X, SX, S2X,
... . The resolution for S™ X is obtained through a range of dimensions depen-
dent on the connectivity of X . Taking these ideas as basic, we can enlarge the
compass of application of the Adams spectral sequence to sequences of spaces
with similar properties for which we can carry out the construction of an Adams
resolution and identify the E»-term of the associated spectral sequence.

Definition 9.28. A sequence of spaces X = {X1, Xo,... , Xy, ...} constitutes
a spectrum if;, for all n, there is a mapping fn: SXn — Xpy1. A spectrum
X = {X,,} is called a stable object ([Adams64]) if, for each n, X, is (n — 1)-
connected and the mapping frn: SX,, — Xpni1 18 a (2n — 1)-equivalence.

Spectra were introduced by [LimaS9] and [Whitehead, GW62] to study
Spanier-Whitehead duality and generalized homology theories. For our pur-
poses, a full discussion of spectra and stable homotopy theory is not needed.
The student of homotopy theory needs some exposure to these ideas. The books
of [Adams74], [Switzer75], and [Ravenel86, 92] are excellent introductions.

If X = {X,,} is a spectrum, then the cohomology and homotopy of X are
defined as the limits:

HYX;k) = lim H"(X,;k), and 7y(X) = lim 7y (X))

When the spectrum is a stable object, these limits are achieved at some finite
stage (dependent on ¢). Furthermore, , (X) is the ¢*! stable homotopy group of
Xn, for some N = N(q) and HY(X; k) = s "H¥"(X,; k) for some 7 > ¢.
The construction of Adams resolutions may be applied without change in the
case of a stable object.

Proposition 9.29. Let X be a stable object. Then there is a spectral sequence
with 3" = Exti{i (H*(X;Tp),Tp) converging strongly to (p)ms—s(X) under
mild conditions.

Though this appears to be a machine in search of a problem, in fact, these
remarks apply broadly to the computation of cobordism groups as found im-
plicitly in the work of [Thom54] and explicitly in the work of [Milnor60], [Li-
ulevicius62], and others. Recall that two compact differentiable n-dimensional
manifolds M;, M are (unoriented) cobordant if there is a compact differen-
tiable (n + 1)-dimensional manifold W with 0W = M; I1 M, (disjoint union).
Being cobordant is an equivalence relation and the set of equivalence classes
of n-manifolds is denoted by 91,,. Disjoint union provides 91,, with the struc-
ture of an abelian group. The cartesian product provides the direct sum of the
cobordism groups 1. with a ring structure.
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Lemma 9.30. N is a vector space over Fa.

ProoOF: Given an n-dimensional manifold M, consider the (n+1)-dimensional
manifold with boundary M x I. Since the boundary of M x I'is M II M, we
have that twice the cobordism class of M is zero in 9,,. a

Cobordism was introduced in 1895 by [Poincaré1895]. The homotopy-
theoretic study of cobordism was begun by [Pontrjagin55] who showed that the
study of cobordism classes of framed manifolds is related to the study of 7.
By a theorem of [Whitney36] an n-dimensional manifold can be embedded
in R"* for k large enough, and so a manifold is equipped with a normal
bundle to the embedding. A manifold M™ ¢ R™ " is said to be framed if the
normal bundle to the embedding is trivial. If we restrict our attention to framed
manifolds only, then cobordism remains an equivalence relation and we denote
the framed cobordism ring by Q.

A sufficiently small tubular neighborhood of M in is homeomor-
phic to M x R*. Projection off the second factor gives a mapping to R*,
Taking the one-point compactifications of R™** and IR*, we construct a map-
ping far: S*t* — S* by sending the complement of the tubular neighborhood
of M in S™** to oo and going by the composite of the homeomorphism and sec-
ond projection on the tubular neighborhood. This construction is well-defined
up to homotopy and determines a class in 7,11 (S*). When we embed the
manifold into R™**+1 via the canonical inclusion M C R™F ¢ prthtt
the construction yields X fps. Continuing in this way, we determine a class in
757, [Pontrjagin55] proved that all the choices made in this construction re-
main within the homotopy class and so the mapping Qff — 72 is well-defined.
Furthermore, it is easy to see that it is a homomorphism.

An inverse mapping may be constructed by using some facts of differential
topology. If g: S™+*¥ — S* represents a class in 77, then we can choose ¢
to be smooth. Let p € S* be a regular value of g, that is, the differential
dgs: TSF* — T'SF is of maximal rank for all z € g~*({p}). Regular points
exist in abundance by the theorem of [Sard42]. The Implicit Function theorem
implies that M(g) = g~ '(p) is an n-dimensional manifold whose normal
bundle is trivial by comparing it with 7'S%, a single vector space. To show
that QfF = 75 it remains to show that the construction from framed manifold
to homotopy class provides the same element in wf , thatis, far(g) ~ g. For
complete details, see the classic book of [Stong68].

This construction was significantly generalized by [Thom54] in his thesis.
The normal bundle va; over an n-dimensional manifold M embedded in R +*
is classified by a homotopy class of a mapping F': M — BO(k). From the
embedding, we can talk of a unit disk subbundle D<1 (v ) of the normal bundle,
as well as its boundary, the unit sphere bundle S(vys) in va;. The key to the
generalization is the Thom space associated to the normal bundle,

Th(l/M) = Dgl(VM)/S(VM).

Rn+k
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When M is compact, Th(vys) is homeomorphic to the one-point compactifi-
cation of v, and so this construction may be carried out for any vector bundle
over a compact space. When a vector bundle 7 is given by a Whitney sum,
1 = & @ &2, then Th(n) = Th(&) A Th(&e).

By taking alimit over Grassman manifolds, there is auniversal Thom space,
MO(k) = Th(~), associated to the universal dimension k vector bundle -
over BO(k). The Thom space construction is functorial and so the classifying
map provides a mapping Th(F): Th(vy) — MO(k). The canonical inclu-
sion O(k) C O(k + 1) corresponds to the addition of a trivial bundle to 7, and
this provides a mapping fi: XMO(k) = Th(y, ® R) — MO(k + 1). Thus
the sequence

MO = {MO(1), MO(2), MO(3),...}

constitutes a spectrum called the Thom spectrum. ([Rudyak98] has written an
excellent book on the properties of such spectra.)

The passage from cobordism groups 91,, to the homotopy groups of the
spectrum MO is made by taking a sufficiently small tubular neighborhood of M
in R™*¥ that we denote by N. This space is homeomorphic to the open unit disk
bundle D (var) with boundary S(vas). Suppose N € R™* ¢ R"F oo =
S™+k: we define a mapping fas: S™t* — Th(vy,) as follows: Send N to
D 1 (var) via the homeomorphism N = D_q(vys). Send the complement of
N in S™** 10 the basepoint of Th(va) = D<1(var)/S(var). Composition
with Th(F) determines a mapping ¢ : S"t% — MO(k). When we embed M
into R™T*+1 by the canonical inclusion M ¢ R™*  R"T*+1 the inclusion
adds a trivial bundle to the normal bundle and the construction results in the
suspension :tp,. Thus we can pass from an embedded n-manifold M to a
homotopy class in 7w, (MO).

[Thom54] proved that this procedure is well-defined and defines a ho-
momorphism, ©: N,, — 7,(MO). The differential topology developed by
[Thom54] leads to a description of the inverse homomorphism: Consider the
zero section of the universal bundle as an inclusion BO(k) — MO(k). If
f: 8™k — MO(Kk) represents a class in 7, (MO) as a smooth mapping, then
the inverse image of the zero section generically gives an n-dimensional man-
ifold in S™** and varying the representative remains in the cobordism class.
The Whitney sum operation, as the mapping

Wh: BO(r) x BO(s) — BO(r + s),
provides a mapping of Thom spaces M O(r) AMO(s) — MO(r+ s) that gives
rise to a product on 7.(MO). Since the Whitney sum of normal bundles rep-

resents the normal bundle to the product embedding, this product on homotopy
groups corresponds to the product on cobordism groups.

Theorem 9.31 (IThom54]). As rings, N« = 7. (MO).
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It follows from Lemma 9.30 that ()7 (MO) = 7.(MO) and so we can
apply the mod 2 Adams spectral sequence and hope to compute directly the
cobordism ring 91.. We turn next to the input to the spectral sequence.

Homology and cohomology of Thom spaces

In order to study the mod 2 cohomology of the spectrum MO as an alge-
bra over the Steenrod algebra, we work on the individual Thom spaces in the
spectrum. One of the main results of [Thom54] is the following computational
toehold.

Theorem 9.32 (the Thom isomorphism theorem). If ¢ — B is an oriented
k-dimensional vector bundle over a space B of the homotopy type of a finite
complex, then, for any ring R, H"**(Th(¢); R) is isomorphic to H"(B; R)
for n > 0. Furthermore, there is a class Uy, € H*(Th(£); R), corresponding
in the isomorphism to 1 € H°(B; R), such that, for all n, H"+**(Th(¢); R) =
H™(B; R) — Uy,

SKETCH OF A PROOF: Recall that Th(§) = D<1(£)/S(£). When B has the
homotopy type of a finite complex, we can write

H*(Th(); R) = H*(D<1(£), 5(§); ).

We next apply the Leray-Serre spectral sequence for pairs (Exercise 5.6) to the
fibration (e*, S¥=1) — (D<q(¢),S(£)) — B. The Es-term is concentrated
in the k™ row where we find E;"* = H™(B; H*(e*, S%~1; R)) = H"(B; R).
The orientation allows us to make this isomorphism globally. The theorem
follows from convergence of the Leray-Serre spectral sequence and the cup-
product structure on the spectral sequence. (See [Milnor-Stasheff74] for a
more geometric proof.) a

We apply this result to the universal R*-bundle, ~; over BO(k). Fol-
lowing the discussion in §6.3 we know that H*(BO(k);F3) is isomorphic
to Fa[wy,. .. ,wy] where the w; are the universal Stiefel-Whitney classes and
deg w; = i. The w; may be defined from the symmetric functions on classes y1,

.., yx of dimension one in H*((BO(1))**;F3) where O(1) x - -- x O(1) —
O(k) is the inclusion of the diagonal matrices with entries +1. (O(1) = Z/27Z.)
The Thom isomorphism theorem gives

H*(MO(k);F2) 2 H*(BO(k); F2) — Uy = Falwn, ... ,wk] — Uy.

The zero section provides a map BO(k) — MO(k) that is compatible with the
structure maps induced by the inclusions, i: O(k) — O(k + 1). It follow that
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there is a commutative diagram:

s~HDH(MO(k +1); F2) ——— s~ “H*(MO(k); F2)

o o

H*(BO(k 4 1);F9) H*(BO(k);F2)

Bi*

where the vertical maps are the inverses of the Thom isomorphism and the top
horizontal map is induced by the spectrum map XMO(k) — MO(k + 1).
It follows that we can identify H*(MO;F3) with lim., H*(BO(k);Fo) =
H*(BO;F,) as a vector space. There is a coproduct structure on H*(BO; Fq)
that is induced by the Whitney product Wh: BO(r) x BO(s) — BO(r + s)
and H*(BO;F3) is a Hopf algebra with this coproduct. As an algebra

H*(BO,]FQ) %Fg[wl,wg,... ,wk,...].

The coproduct formula is given by the Whitney sum formula (Lemma 6.42).
This yields a commutative product on the dual of H*(BO;F5) and the Hopf
algebra in this case is self-dual, that is, as algebras,

H*(BO;]FQ) = Fg[al,ag,. ce 3 Ay e ]

We turn to homology in order to avoid the noncommutative product on the
Steenrod algebra. Mod 2 homology is endowed with the structure of a comodule
over AU that is, there are homomorphisms

Vx: Ho(X;Fy) — A @ H,(X;TF,)

satisfying the dual axioms for the Steenrod algebra action. Thus the following
diagram commutes for all spaces X:

H,(X;Fy) x Al @ H, (X3 Ty)

Px J1®1/)x

A @ H, (X Fy) A @ Al @ | (X TF)

P@1
where ¢ Adval _, Adual @, gdual i the coproduct on the dual of the Steenrod
algebra.

To study H,.(MO; Fs), we notice that the Whitney sum induces a pairing
MO(r) A MO(s) — MO(r + s) that commutes with the zero sections and
the Whitney sum map on the classifying spaces. With some care in identifying
generators ([Stong68, Chapter VI]), this induces a product on H,(MO;F5) and
gives an algebra isomorphism

H,.(MO;Fq) = Falar,a2,... ,0k---]-
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Recall the theorem of [Milnor58] on the structure of Ag“al (Theorem 4.47):
At the prime 2 we have

Agual = F2[§17§27 s 7§k7 .. ']7
where deg &; = 2¢ — 1. Consider the naive splitting:
H,(MO;Fp) 2 Fafa; |1 =27-1,7=0,1,...]®Ffax | k # 27— 1,k > 2].

This decomposition suggests that H,(MO;F3) may be isomorphic to an ex-
tended comodule over .Ag“al, that is, H.(MO;TFs) = Ag“‘ﬂ ® Falax | k #
20 —1,k> 2]. An interpretation of the results of [Thom54] by [Liulevicius62]
in the setting of Hopf algebras leads to a proof of this splitting.

Theorem 9.33. H,(MO; T5) =2 AN TFyolay, | k # 27— 1,k > 2] as extended
comodules over A3,

SKETCH OF PROOF: Recall that H,(BO(1);F5) = I'(z), the divided power
algebra on a generator of dimension one. The main ingredients in the proof
are: (1) The fact that Bi.: H.(BO(1);F2) — H.(BO;Fs) is given by
~k(x1) +— ag. This follows from the dual representation of the universal Stiefel-
Whitney classes as symmetric polynomials in the one-dimensional classes in
H*(BO(1)**;TF3). (2) The determination of the A3"@!-comodule structure on
H,.(BO(1);F2) and hence, by virtue of the commutative diagram,

H,(BO(1); Fy) 2220 pdud @ f (BO(1); Fy)

Bi*J J1®Bi*

H.(BO;TFy) — 222 A3l @ 1. (BO; ),

the Ad“¥.comodule structure on H,(BO;Fy) can be determined. Since the
algebra structure on H,, (BO; F5) is compatible with the A" -comodule struc-
ture, it suffices to check on generators. The comodule structure may be written
Ypolan) = Yo, 07 @ a; where of € (AW, ;. (4) There is another com-
mutative diagram that allows us to determine the A3 -comodule structure on

H, (MO, Fz)l

H.(BO;Fy) —229 . A% @ H, (BO;Ts)

ta 1@t

H,(MO;Fy) —249 . Adual ¢ B (MO;TFy).
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Since the classes coming from M O(1) are identifiable with vy (x1) — a1, we
get amap H,.(BO(1);Fy) — H.(MO;Fs) given by v, (1) — ag—_1. This
gives the crucial step as we can compute

§T®1+Zl>051l®al 1fk:2’“—1,
Ymol(ar) = - v

1 ® ay, + decomposables if k& 3~ 27.
(5)Finally, we cancheck thatps o (asr—1) = ZZ:O §3s_s®a25_1. This follows
from the representation of the dual classes wy, as symmetric polynomials and the
pairing of the Steenrod algebra and its dual (Proposition 4 of [Liulevicius62]).
A complete exposition of all these details may be found in [Schochet71’] or
from the cohomological point of view in [Stong68]. a

It follows from the theorem that H*(MO; F2) is a free module over A2 and
s0 m«(MO) is computable immediately from Ext 4, (H*(MO;F2),Fs). But
this is the dual to the generating module for the free module.

Corollary 9.34 (IThom54]). 7.(MO) = Folar | k # 2" — 1,k > 2] as
algebras.

Thom proved that there is a weak homotopy equivalence between MO
and a product of Eilenberg-Mac Lane spectra $I5() K7/27 with the |s(w)]
given by the degrees of homogeneous polynomials s(w) in Falay | k # 27 —
1,k > 2]. The role of characteristic classes in distinguishing nontrivial classes
is crucial—one of the main theorems of [Thom54] is the sufficiency of the
mod 2 characteristic numbers in classifying cobordism classes of unoriented
manifolds.

Thom’s construction of the Thom spaces admits considerable generaliza-
tion. In particular, we can define the oriented cobordism ring Q5° by admitting
only oriented manifolds My and M- and requiring that a cobordism W be ori-
entable with boundary M, IT (—My), where — M is the manifold M, with the
opposite orientation. The normal bundles of such manifolds have a lifting of
their classifying map f,,: M — BO(n) to f,: M — BSO(n). The universal
n-dimensional vector bundle over BSO(n) has Thom space M SO(n) and the
same argument for unoriented cobordism can be made to prove that the spaces
MSO(n) form a spectrum MSO and 7., (MSO) = Q5°,

If one focuses on the lifting of the normal bundle to some classifying
space BG — BO(n), then a very general notion of cobordism is possible
([Stong68]). For almost complex manifolds, there is a lifting of the normal
bundle to BU(n) — BO(2n) and Chern classes and numbers distinguish cobor-
dism classes. In a classic paper that introduced the application of the Adams
spectral sequence to cobordism, [Milnor60] proved that QEO has torsion only
at the prime 2, and that QU is torsion-free. Furthermore, Milnor computed
7. (MU) by determining the structure of H*(MU;TF,) for all primes p, and
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then using the Adams spectral sequence. In fact, H*(MU;TF,) is free over a
quotient Hopf algebra of A, and a change-of-rings argument (Theorem 9.12)
allows the straightforward calculation of (,)7.(MU). The homological sim-
plicity of complex cobordism led [Novikov67] in his study of a generalization
of the Adams spectral sequence founded on MU. See the book of [Ravenel86]
for more details.

Similar arguments were first carried out by [Ray72] and [Kochman80] to
obtain partial results for symplectic cobordism ([Kochman96] gave a different
approach to calculating 7..(MSp)).

9.5 Computations

Our point of departure is Corollary 9.23—there is a spectral sequence
with Es-term isomorphic to the cohomology of the Steenrod algebra A, and
converging to (p)wf . Thus the problem of computing (p)wf breaks into the
problems of computing H**(A,), and then the differentials in the Adams
spectral sequence. Finally, there is the problem of determining the extensions.

We first construct a small part of a minimal resolution for A3, the mod
3 Steenrod algebra. The computation begins easily enough and you even get
some of (3)7rf , but it quickly gets complicated. We then consider the case of
p = 2 more systematically. Following [Adams60], we are able to describe
H**(Ag) in some detail for s < 3. Next we put these computations to work
and find the first nontrivial differential in the spectral sequence. A corollary
is the first case of the Hopf invariant one problem. We continue the hands-on
computations with a discussion of Massey products and their relation to Toda
brackets.

Low-dimensional calculations

We begin by constructing the beginning of a minimal resolution,

€ do dl
0«—Fg— Az «— P — P,

up to internal degree 9. For the most part, the discussion will be descriptive;
the reader should construct a chart of everything that is happening.

By Lemma 9.11 and Theorem 4.45, P, has Az-module generators ag of
degree 1 and h; of degree 4 - 3" = 2.3 - (3 —1)fori = 0,1,2.... These
generators correspond to 3 and P3l_; the homomorphism dy: P; — As is given
by do(ag) = g and do(h;) = P3. In the kernel of dy there is already Bag
since 32 = 0. We put a generator g in Py with dy(@) = Bag. The next
phenomenon to arise in the kernel of d that is not accounted for by dg(ag)
occurs in degree 9. The diligent reader making a chart will find P23, SP?,
P3P and BPP! in A3 in degree 9. The Adem relations imply that only
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two of these expressions are independent. In degree 9 in P; there are three
independent generators, P2aq, 3P hg and P'Bhg. The Adem relation

Plﬁpl :ﬁPQ—FPQﬁ

implies that the element P?aq — P! 8hg — B3Pk is in the kernel of dg. Let g1
be in P, in degree 9 with d(¢g1) = P%ag — P'Bhy — BPhy.

The chart should be getting a bit complicated by now. However, two simple
patterns emerge:

(1) Except for the element ag in Pz with da(Gg) = [ao, the first generator
to appear in Ps is in degree greater than 11. This implies that we have
computed H*¥(A3) fors < 2,¢t < 11,

(2) The recurring Bockstein that arises at each stage behaves systematically
and so, if we remove the chain of generators due to 32 = 0, the connec-
tivity of this minimal resolution implies we have computed H**(Aj3)
fort < 11 and all s.

Because the resolution is minimal, Ext%;’ (Fs, Fs) = (Fs ®4, p,)dl

and so we have computed

>

Fs, (s,t) =(0,0),(1,1),(2,2),
Bxt, (F, I's) = (3,3), (1,4), (2,9),
{0}, elsewhere fors < 3andt < 11.

Since £ is related to (3) 75, wedisplay Ext®’ with t —s running horizontally
and s vertically. The differentials d, then lower ¢t — s degree by 1 and raise s
degree by r (thatis, d,. goes left one space and up r spaces in the (t— s, s)-plane).
In the spectral sequence, we can display these data in the diagram:

3 ag
T 2 ag 5N
s 1 ag ho
0 1
0 1 2 3 4 5 6 7 8 9

With this chart, the connectivity of the resolution, and the evident lack of
differentials, we have computed the following stable homotopy groups.
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Proposition 9.35. z, ifn=0,

@Ta =14 Z/3Z, ifn=3T,
{0}, ifn=1,2,4,56,89.

The reader should compare this method with the method of killing homo-
topy groups in Chapter 6 (Corollary 6.27).

If the reader has been creating a chart to keep track of the minimal resolu-
tion, it should be clear that a systematic method of computation is desirable.

We change to the prime 2 and study H**(.A2) more systematically with
the tool of choice—the change-of-rings spectral sequence (Theorem 9.12).

Theorem 9.36. Let G denote the bigraded algebra

ZiZ%ip1 =0
2
G = Falxo, z1,x2,. .. ,] ximi+2+mf’+3=0
2
Ti%i0 =0

with bideg z; = (1,2%). There are elements h; in HV*(Ag) fori =0,1,2, ...
such that bideg h; = (1,2%) and a mapping o.: G — H**(Asg), determined on
generators by x; — h;; o is a well-defined mapping of bigraded algebras and
« restricts to isomorphisms, GV* — HV*(Ag) and G** — H>*(As), and
to a monomorphism G>* — H>*(Asg). All relations among products of the
generators h; are consequences of this mapping for H**(Az), s < 3.

PRroOF ([Adams60]): To compute H**(Az2), consider the supporting cochain
complex for this algebra, F(A3%) given by the cobar construction on A3,

Recall the coproduct for AJ"d = Fy[¢;, £, . .. ] on the generators is given
by the formula of [Milnor58]:

=), 8 & (=1

We proceed by a series of remarks:

L HY(A) = Fo{h; | i = 0,1,2,..., and deg h; = 2°}. This follows from
Lemma 9.11. To determine Prim (A3 observe that &, is primitive and so,
because we are working mod 2, ffi is also primitive for ¢ > 0. The formula for
©* shows that these are the only primitives. Let h; denote the class [{%i] in the
cobar construction.

ILIf hyho = 0, h3he + h3 = 0 and hoh3 = 0, then, forall i > 0, h;y1h; = 0,
hZhito + hE, = 0and hihZ, , = 0.

Because A" is commutative, we can apply Theorem 9.10: Sq° exists in
the Steenrod algebra that acts on H**(.A3) and the Cartan formula shows that
Sq° is multiplicative. Since S¢°h; = Sq°([¢2']) = [27'] = hip1, repeated
applications of Sg° to the initial identities obtains the identities for all > 0.
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IIL hyhg = 0, h2ha + b3 = 0, and hoh? = 0.
Consider the formulas in the cobar construction:

d*([&]) = [& | &l
I &)+ 1 a&l+ e &) =6 a1 ]+ 1€ 1),
d*([€s | €11+ 163 | L] +[E1 | &) +1€3 1 €0]) = [61 | &1 ] &l.

These formulas imply that «c: G — H**(A) is well-defined in degrees s < 3.
It remains to prove that o on G1* and on G2* gives isomorphisms and on G>*
a monomorphism.

Because we can describe A3 so explicitly, we can find sub-Hopf algebras
of A" of particularly simple form. Let B!, = Fy[¢y,... ,&,]; then B/, is a
sub-Hopf algebra of Agual. Furthermore, we have the short exact sequence for
each n,

0—>B1/7,—1—’B:7,_’A;1—>0

where A, = By //Bl_, = F3[¢,], the Hopf algebra with &, primitive. By
dualizing, we obtain the extensions of Hopf algebras

0— A, —» B, — B,_1 —0.

Notice that (B.)" = (A& for r < 27 — 1. Thus H**(B,) = H*(A,)
fort < 2™ — 1. We will use these extensions with the change-of-rings spectral
sequence to compute H**(Ag) in the desired range. To apply Theorem 9.12,
we need a further remark.
IV. A,, is central in B,,.

Because we are not giving explicit descriptions of A,, and B,,, we consider
the dual situation and ask: Does the following diagram commute?

B! @ B, — B, ® A,
B, T

B/, ® B, — Al @ Bl,

Because ¢* is multiplicative, it suffices to check the commutativity on the
algebra generators, &1, &, ..., &,. The explicit formula for the coproduct
implies that the diagram commutes.

By Theorem 9.12, for each n, there is a spectral sequence, converging to
H*(B,,), with E$"? given by H4(A,,) ® H?(B,_1). Because A, is (2" — 1)-
connected, As = lim B, and so we get better and better approximations to
H*(A2) with each H*(B,,).
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V. H*(An) = Falhn, | i1 =0,1,2,...], where h,, ; denotes the class [€2']in
the cobar construction on A/,. This follows because A/, = Fq[&,,].

With these data, we begin an induction. For n = 1,
H*(By) @ H*(A1) 2 TFolh; |1=0,1,2,...]

where the h; corresponds to [¢2'] of degree 2°.

Forn = 2, EP? = H9(Ay) ® HP(By). First examine dy: Q' — E3°;
do([&2]) = (€} | &) or da(heo) = hiho. When we apply Sq°, we obtain
da(h2,i) = hiy1hi. Thus da is monic on Eg 'L and, since H! (B2) comes from
E%! and E1° = E3° = H'(By), we have shown H'(By) = H'(B;) with
the isomorphism coming from the projection By — By. Notice further that we
have introduced the identities h;41h; = 0 into H*(Bs).

Considernextdy: Ey' — E2Y; Ey' isisomorphic to H'(A5)® H' (By)
= Fo{ho,; ® hi}. Since dy is a derivation, da(he, ; ® hi) = hjy1hjhg. This
differential is a monomorphism except when the dimensions conspire to give a
kernel. In particular,

da(ha,i ® hiva + hoiy1 ® hs) = hiy1hihive + higohiprhy = 0.

Because no other differential is defined on E%’l, these classes live to Eiél and
determine elements in H?(By) that we denote by

92,0 = {h2i ® hipo + h2 i1 ® hi .

These classes lie in ¢ degrees 3 - 28 + 2¢+2 = 7. 2¢, and so they are linearly
independent.

To finish our description of H?(Bs), we must determine E%2. The dif-
ferential dy: Eg’z — Eg’l is given by dg(hg,ihg,j) = hg,j & h¢+1hi + hgﬂ' ®
h;j41hj, and so is nonzero except when ¢ = j. Thus only the classes (ha ;)?
survive to Eg 2,

To determine ds: Ey* — E°, we consider (hg,o)2. In the cobar con-
struction, this is the name for [£2 | £2]; by 11, this element is congruent modulo
the filtration to [€2 | &2] + [€2 | €162) + [€3€2 | &1] which is carried by d* to
(€4 1 & | &+ (67 [ & | €1 Thus ds((h20)?) = h3he + hi. Repeated
application of S¢° gives

d3((ho,)?) = hZhiza + h2,,.

Therefore, E%? = {0}.
Because the spectral sequence converges to H*(Bs), we have the short
exact sequence
00— Eg&o — HZ(BQ) — Eéél — 0.
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We can describe E2° as Fo{h;h; | § # i + 1} and EL! as Fo{go; | i =
0,1,...}. Recall the t degrees of all of these elements; h;h; € E%%2+% and
g2; € ELVT?. We deduce that H?(By) is the direct sum of EZ0 and EL!.

Finally, we determine H3(Bz). In H3(B;) we have introduced the rela-
tions hiy1hihk = 0 and hZh;yo + hf’ﬂ = 0. We compute ds: E?,l’2 — Eg”l.
Again, ds i$ a derivation, 50 on elements ha ;ho ; ® hy we have

da(ha,ih2,j ® hi) = ha,j ® hixrhihy + has ® hjiihghy.

Unless i = j, do is nonzero, and so Egl,’2 = Fa{hosho; ®hi}. Asubtlety enters
here: ds(haihe; ® hi) = hihipohi + h3, hy follows from the derivation
property of ds. It is possible for a relation to produce elements in the kernel of
dg if that relation is induced by d,. Consider

d3(haiha i ® hixs + hajt1ho i1 @ hit1)
= hihipohivs + A3y hivs + R higshigr + h3ohigs.
The first and last terms are O since h; 11 h; = 0 and the middle vanishes as a pair.

Since no other differential affects E§’2, we have determined a flock of classes
in EL2, denoted by

foi = {hoihoi ® hiys + hoir1hair1 ® hip1}

g i i+3 it+1 it1
={l&31& | ; :

PR g e

Once again, the t degrees of the f, ; show that they are linearly independent.
Next consider da: EY® & H3(Ay) — H?(A2) ® H?(By) = E3°. The
formula

da(ha,ihojho k) = hojhok®hiy1hs+hoiho xk @hjp1hi+hoihe j QRrg1hy

is enough to show that dy is a monomorphism; therefore, E%® = {0}. To
finish off H3(Bs), we consider dy: E3' — E3°. A class in B3 is a sum of
classes of the form ha ; ® hjhy, and da(ho; ® hjhi) = hiy1hihihi,. Many
relations can be obtained by manigulating subscripts; however, most of these are
generated by the image of ds : E2’2 — Eg ! and 50 are known. The exceptions
are of the form

hai @ hipohi + hoit1 @ hihg,

whichis seen to be g2 ;h. These classes are missed by d2 and so give permanent
cycles. However, they are not linearly independent in the rest of H?(Bz).

VI ggﬂ-hi“ = h?+2hi in H3 (BQ)
To prove this, observe that in the cobar complex,

A ([ &)+ e | 6]+ 18] = & 16 1 al+ 6 [ & | &]+E €] €7,
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which represents A2 + g2 oh1. Since S¢°g2,; = g2.i41, this formula proves V1.
If the reader has kept track of the new elements in H' 3(32), then, because
the internal degrees of these elements all differ, we have shown that H3(Bsz)
contains Fo{h;hjhi | i # j+1,7 # k+1} modulo hZh; 42 = k2, as well as
Fo{fos |i=0,1,...} and Fo{ga,ih; | go,shi+1 = RS 5h;}. We next proceed
in our induction to H*(Bs).
Forn = 3, E5? = HY(As) ® HP(B,). First examine dy: Ey' — E3°.

da(hso) = {d*([&])} = {13 | &]+[61 | &2} = {ho,1®ho+hoo®ha} = ga.

When we apply Sq°, we obtain da(hs ;) = g2,;. Thus d is monic on EJ" and
therefore, E! = {0}. This shows H'(B3) = H'(By) = H'(B) with the
isomorphisms induced by the projections B — By — Bj.

Consider next do: E21’1 — ES’O. By the derivation property of da, we
have da(hs; ® hj) = gosh,;. If j = ¢ 4 1, this still makes sense and we
get do(hs i ® hiy1) = g2:hiv1 = hZ ' ohi, which introduces a new relation
among the 3-fold products of elements in H'(B3). Looking at sums in Ey'"'
we consider classes hz ; @ hir3 + ha i1 ® hy. Apply the differential to get

do(h3; @ hivs + h3 41 @ hy)
= g2,ihit3 + 92,5417
= {h2,i @ hit2 + hoit1 @ hithivs + {h2it1 © hiys + hoit2 ® hita Phy
=0, since hyi1h; =0.

This determines classes g3; = {ha,; @ hits + hsit1 ® h;} in EL' and so in
H?(Bs). The classes g3 ; lie in t degrees 2¢(2% — 1) + 2073 = 15 - 2¢ and so
are linearly independent.

To finish the description of H2(Bs), consider dy: Ey® — E3':

da(hsshs ;) = hs; ® goi + hai © 925,

which is nonzero unless i = j. Next consider ds : Ey> — E5"° on the remain-

ing classes (hs,;)2. In the cobar construction for B, [¢3 | &3] is identified mod-

ulo the filtration with [€5 | £3]+[€2€s | &1]+ (€165 | &2]+[€3 | &163]+[ET | £265].
The differential on this sum is [€§ | & | &) + [€5 | €2 | €%] which repre-

sents {h3, ® h3 + h2, ® b1} = fo0. By applying Sq°, we have shown
d3((hai)®) = fou
3((h3,i)”) = fou.
Thus H?(Bs) is the direct sum,

Fg{hih]' lj#i+ 1}@F2{937i |i=0,1,...}.
Next, let us consider H3(Bj). Notice that in H3(Bj) the relations

hiyihihe =0, hihgyihi =0, hZhipo + k3, = 0and h ,h; =0
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hold for 3-fold products of generators of H'(Bs). In order to show that these
are the only relations, we continue the induction and we determine more of
H3(Bs).

Consider dy: Ey* — E3'. The formula,

da(h3shs,; ® hi) = ha; ® g2:hk ® g2 bk,

shows ds is nonzero unless 7 = j, so we have E:,l,’2 = Fo{hsihs: ® hi}.
Furthermore, ds((hs:)? ® hx) = fa,ihx. This produces a kernel, however,
when we consider the representative expressions for the fs ;:

d3(hsihs; ® higa + hait1hs 41 @ hiv1)
= foihiva + foi41hit1
= {haih2: ® hixs + hoir1hoit1 ® hiy1thiga
+ {hoit1h2541 @ haya + hoirohoive ® higathip = 0.

We denote the classes {h3 ;h3 ; @ hita +h3iv1h3 iv1 ® hip1} by f3,; in EL2
The t degrees of the f3 ; are 15 - 201 and so they are linearly independent.
Next, we leave it to the reader to check that dz and d3 map E5® and EJ*
in such a way as to leave E%3 = {0}. In E2'", we find the classes g3 ;h;
left over after clearing the image of da: Eg 2 E§ ! and the classes mapped
nontrivially by ds: ES RN Eé’o. If we check t degrees, however, it is possible
for more than one g3 ;h; to inhabit the same degree. The classes that require
comparison are g3 ;h;—1 and g3 ;_1h;13. Writing them out, we see that

93.3hi—1 = {h3,i @ hixshi—1 + ha 41 ® hihi—1} = {h3s ® hipshi—1},
93,i—1hits = {h3,i—1 @ higohiys + hs i @ hi—thiys} = {hsi @ hi—1hiys},

and so we must introduce the relation g3 ;h;—1 = g3:—1hi43. Some amusing
number theory can be employed to show that the other classes occur in differing
t degrees and so we find classes g3 ;h;, for ¢ # j + 1, all linearly independent.
Thus H?(Bs) is seen to contain Fo{h;hihy | i # 7+ 1,5 # k + 1} modulo
the relations h;hiyo = h3 , and h? ,h; = 0, Fo{gs,; | i = 0,1,...} and
Fg{ggjihj | 7 75 ] + 1}

We can now summarize the inductive step in a series of formulas that
extend the pattern above:

(1) There is a spectral sequence, converging to H*(B,,) with
Eg,q = Hq(An) ® Hp(Bn—l)'
(2) HY(B,,_1) ®Fo{h; |i=0,1,...}

Hz(Bn_l) = ]Fg{h@hj | 7 7é j + 1} @FQ{gn—l,i | 1= 0, ]., .. }
H3(By,—1) contains Fa{h;h;hy} modulo the relations h;i1h;hy = 0,
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RZhiy2 + h3,; = 0 and h?, ,h; = 0 plus the direct sum Fo{fn_1; |
(3) do(hng) = gn—1,> d3((hn1)?) = fa—1,4-
(4) There are new classes in EL! and so in H2(B,,) given by

Gn,i = {hni ® Rign + hngg1 ® b}

These classes are a result of the relation g, 1 541k = gn—1,:An+s. The
relation gy, ;1R = gn,ihitn+1 1 seen to hold for the new gy, ;.
(5) There are new classes in EL? and so in H3(B,,) given by

fn,i = {hn,ihn,i ® hi+n + hn,i—i—lhn,i—H ® hi-l—l}'

These classes are aresultof the relation hy4 1 hr = 0, and the expressions
for fr—1,.

The reader can check that the ¢ degrees of the new classes grows to infinity
as n goes to infinity. What is left in the limit, H*(Ag), is the set of classes
{hi|1=10,1,...} and the two and three fold products, subject to the relations
we have derived. This proves Theorem 9.36. a

The chart on the next page summarizes the data for H*(Ag) given in
Theorem 9.36 and for a small range of ¢ — s. We follow the convention of
writing H**(A2) on the lattice point (t — s,s). We also use the convention
(due to [Tangora66]) of joining two classes together by a vertical line if one is
the product of the other with hg, and by a line of slope 1 if one is the product
of the other with A, .

The diligent reader can write out the first few stages of a minimal resolution
to see that nothing occurs above filtration degree 3 for 0 < t — s < 5, and the
tower of h{ continues to infinity (this also follows from the discussion at the
end of §9.3 and the fact that (275 = Z).

8
>

[SIN)
>

WK

s 1 ho h1 hQ h3 h4
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Corollary 9.37.
Z, ifn=20,
S o Z/27, ifn=1,2,
(2)Tn = .
ZJ8Z, ifn=3,
{0}, ifn=4,5

Proor: From the diagram we must first dispense with the possibility that
dr(h1) = h for some r. We use the fact that d,. is a derivation and compute

0 = d,(h1ho) = hody(h1) = RIT! £ 0,

a contradiction. Therefore, d,-(hq) = 0 for all » and k4 is a permanent cycle.
As for the Z /87 = ) 7r§ , the discussion at the end of §9.3 shows that the

relations he # 0, hohs # 0 and hghz # 0 describe an element in (2)7r§ with 4

times that element nonzero. This forces the composition series for (oy75 to be

0 C 7Z/27 C ZJAZ C 7/87 = (9y75 . O

In order to do further calculation of (z)wf , more of H**(Ay) is necessary
than computed in Theorem 9.36. In fact, not all of H**(Az) is given by 3-fold
products, as we see later. A more powerful technique for computing H**(Az)
is given in §9.6. In the meantime, we obtain some geometric consequences of
our computations.

The first nontrivial differentials

The problem of the existence of elements in 72 with Hopf invariant one
has been reduced to the study of the Steenrod operation Sq¢*" and whether it acts
nontrivially on a two-cell complex. Because Sg° is dual to €2 in A the
Adams spectral sequence further reduces the question to the survival of h; in
EY 10 ELY

If h; survives to Eéfi, it detects a class in () 7r25i _1- The stable homotopy
ring 72 is graded commutative and so the square of the class detected by h; has
order 2 because [h] o [h;] = (=1)% ~1[h] o [h;] and so 2[h;] o [hs] = 0. This
implies that the class hoh? that represents 2[h;] o [h;], which is nonzeroif i > 3,
cannot survive to E., by the identification of products with hg in Ext with the
doubling map on 7. The kind reader will forgive the following algebraic deus
ex machina:

Fact. Ext22+13(}F2,F2) = {0} for all s.

With our present techniques, the proof of this is a good day’s work con-
structing a minimal resolution. More elegant and streamlined techniques will
be presented later. Notice that this implies (2)7I'1S3 =0.
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Proposition 9.38 ([Toda55), [Adams58]). There is no element of Hopf invariant
one in w31 (S'8) = % and so there is no division algebra structure on R16,

PRrOOF: We consider hoh} in E3'7. Because E5*1'® = {0} for all s, no
differential on hoh3 has a nonzero image and hoh3 is an infinite cycle. Since
it cannot survive to E., it must be a boundary. There is only one possible
nonzero differential, thatis, da(hs) = hoh3. Hence hy does not survive t0 Eo.
O

We remark on the extraordinary blend of topology and algebra in this proof.
The graded commutativity of 7 and an Ext computation together imply a deep
result.

The next question to consider is whether this technique propagates through
the spectral sequence to settle completely the Hopf invariant one problem? A
quick glance forward to the charts in §9.6 shows that we cannot naively proceed
even (0 hs (in particular, H**+2%(A,) # {0} for some s). Something more is
needed. Our goal for the rest of this section is to outline how to prove:

Theorem 9.39. da(h;) = hoh?Z_,, fori > 4.

In a celebrated paper, [Adams60] gave the first proof of this theorem based
on a generalization of the factorization of Steenrod operations of [Adem52].
The equation da(hy) = hoh? is equivalent to a nontrivial factorization of Sq'°
into products of primary and secondary cohomology operations. Therefore,
Sq'® cannot act nontrivially on S'6 U,, €32 for any « in 73;(S"%). The fac-
torization is based on secondary operations, ®; ; that arise from the Adem
relation Sg* Sg¥ = Zogsqbsqus (i < j,i # j— 1). [Adams60] showed
that a decomposition, Sg*" = Z a;3,;P; 5 with a; ; € Ao and modulo some
indeterminacy, holds for all n > 4.1 ’"Jl"his settles the Hopf invariant one problem.

We note that [Bott-Milnor58] and [Kervaire58] had also settled the di-
vision algebras question shortly after Adams by using K-theory techniques.
[Maunder63, 64] developed the notion of higher order cohomology operations
and related them generally to differentials in the Adams spectral sequence. The
connections between these operations, Theorem 9.2 and the operations in §9.1
were clarified by [Maunder63, 64].

Another way to show that da(h;) = hoh?_; is to consider the Steenrod
algebra that acts on Ext;’;‘ (F2,TF2) and the fact that this action intertwines
with the differentials in the spectral sequence. A priori, there seems to be lit-
tle connection as this action is a formal feature of the cohomology of a Hopf
algebra. The missing geometric link was forged by [Kahn70] using the ge-
ometric construction called the quadratic construction on a pointed space,
(X, o) First form the space S™ o (X x X),where UoV =U x V/ % xV,
and then take the quotient I'"(X) = S" o (X x X)/(0,z,2") ~ (—0,2',z).
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The inclusion of S™ < S™+! as equator determines a natural transformation
I'"(X) — I'™*1(X) and the quadratic construction is the direct limit of the
natural transformations:

~(X)= lim I'(X).
n—oo

[Kahn70] showed that this construction carries the chain homotopy that gives
rise to the Steenrod operations on H**(A3) and so these operations can be
related to the differentials.

The theorem that applies to the question at hand is given in the formula of
[Milgram72]:

da(8* (@) = hoSq* (e,

which holds if o € Ext% (F,F») and i = ¢ (mod 2). Since h; is in

Ext’;> (F2,F2) and 2° = 0 (mod 2), d2(Sq°h:) = hoSq* (h), thatis, da(hit1)
= hy h?, which holds for ¢ > 1 by Theorem 9.10. This technique has been em-
ployed with great success to determine many of the known differentials in the
Adams spectral sequence ([Kahn70], [Milgram72], and [Bruner84]).

In §9.6 we return to the question of differentials in the Adams spectral
sequence and discuss some other methods to determine them.

Massey products

Before we leave the computations that can be done by hand, we fill in
more of our chart by considering the analogue of Massey products for a bigraded
differential algebra. Ordinary Massey products and their higher order analogues
are discussed in §8.2.

Exty*(k,k) = H**(T) is computed from a differential bigraded alge-
bra, (B**,d) = (F.(A%d), d*), the cobar construction, with its differen-
tial of bidegree (1,0). In such a bigraded algebra, suppose [u] is a class in
HY(B** d), [v] in HS* (B**,d) and [w] in H*"*"(B**,d), and further-
more, [u][v] = 0 = [v][w]. Then we can define the Massey triple product

(ol fu]) € FFoH 1 (e g

by taking elements ¢ in BS+ ~1t+ and pin Bs'+¢" ~1.t'+t" guch that da = uv
and db = vw, where v € [u], v € [v], and w € [w]. As in §8.2,

([u], [v], [w]) = {[aw £ ub] | all possible choices of a, b, u, v, w},

where we denote the homology class of an element ¢ by [¢]. The indeterminacy
for ([u], [v], [w]) is given by [u] B +5" ~Lt'+t" 4 frs+s'=Lt+t"[1] The higher
order analogues of the Massey product can be defined as in §8.2 with the extra
index kept in tow.
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Theorem 9.36 presents many trivial products that can give rise to triple
products in H**(Ay). We next record some nontrivial Massey products. In
particular, we compute in detail that co = (h3, ho, k1) and h1cg are nontrivial.
Other computations are left as exercises or given in the references. The iden-
tification of Massey products in Ext also follows by special spectral sequence
arguments first given by [Ivanovskii64] and by [May64].

We begin with an exercise for the reader. These relations were identified
by [Adams60] and follow from the formulas in the proof of Theorem 9.36:

(hiyhiv1, hi) = R2q,  (Rhigr, Biyhigr) = hivohiy,  (hiv2, Riga, ha) = g2,

These dispose of the most obvious choices for Massey products.
The next relations to try are h%ho = 0 and hghi = 0. In the cobar
construction, these products vanish because the following formulas hold:

& &l =d* (& &1 +16 | &L+ 6 168+ (6 18)
(611 &) = d*([&2 + &)

Thus, in H*'(Az), (h3, ho, h1) contains the class

(&1 181+1E 1 & 1+ | 86 | G146 1 6 | G1+(E 16 | L+8])

In fact, this class is the unique representative for (h3, ho, k1) since the indeter-
minacy of (h3, ko, hy) is h2 Ext™® + Ext® by = {0}.

To show (h3, ho, k1) is nonzero, it suffices to show that it is nonzero in
H3(By)since 11 < 24 —1. We firstidentify itin H3(Bs). Observe that the class
canbe identified with [£3 | €3 | £€2] modulo the filtration in the cobar construction
for Bs and so it names the class hz o ® hihy in B3 = H'(A3) ® H?(By) in
the spectral sequence converging to H*(B3).

da(h30 ® hih1) = gaoh1hi = h3hohy = 0

and s0 h3 o ® hihy gives a class in Eg’l that persists to E2!. Checking the
degrees of the other nonzero classes in H3(Bs3), we find {h3,0 @ h1h1}, of
t degree 11, is not accounted for by classes hzhjhy, f3; or g3 ih;.

To see that {h3,0 ® hihy} determines a nonzero class in H*(By), we
consider the next spectral sequence and

dy: HY(A4) ® HY(Bs) = Ey' — E2° = H3(Bs).

Since Ey" is 15-connected in this case, (h2, ko, h1) lives to H(By) and hence
to a nonzero class in H>11(Ay).
A similar dimension counting argument can be given for the class

<h‘%7 h07 h1>h1 = {h3,0 & hlhlhl}.
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Thus we have identified two new elements in Ext®>'! and Ext®'3, denoted by
co and hqcy by [May64].

The cobar construction is a very large complex to use for computing Massey
products. [Ivanovskii64] and [May64] worked in more manageable complexes
from which to compute H**(A4z). We summarize some of their computations
in low degrees. We picture only the Massey product elements.

11

10 T
0 P2hy P?hy
8 /Q
7 Plco
6 /IA' °
[ 5 Plhl P1h2 + +
s 4 / do €0
3 Co
2
7 8 9 10 11 12 13 14 15 16 17 18 19

Theorem 9.40. Fort— s < 19, the following Massey products are nonzero and
their products with ho and hy are given in the chart. (The operators P! and
P2 are periodicity operators that will be defined in §9.6.)

(1) Cy = <h%, ho, h1> in EXt3’11,

(2) P'hy = (hi, h§, h3) in Ext>'*,

(3) P'hg = (hg, h§, h3) in Ext>S,

(4) do = (ho,h3,h3, ho) in Ext®'8,

(5) eg = (ha,co,h2,h1)in EXt4’21,

(6) fo = (hZ,h3, hy) modulo h2hyhy in Ext™?2,

(7) Ccl1 = <h2, hl, h%) in EXt3’22,

(8) Py = (co, hi, h3) in Ext™?3,

(9) P2hy = (h1,h, ha) = ((ha,h$, k1), h3, hs) in Ext®5,
(10) P2hy = (ho, h3, hs) = ((h3, hi, ho), h§, ha) in Ext®?,

For a more extensive and complete description of Massey products in the coho-
mology of the Steenrod algebra, the reader can consult the paper of [Tangora94].
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If the reader adds this chart to the results of Theorem 9.36, then the de-
scription of Ext®* for ¢t — s < 19 is almost complete. The missing data are
given by a theorem of [Novikov59] that adds the relations

h3hy = hihahy # 0 and hEh,, # 0 for k < 2™~ 1,

[Novikov59] showed that hg’" hm+1 = 0 for m > 2. [Maunder65] showed the
nontriviality of the products hh.,, 11 forl < 2™ by comparing the Adams spec-
tral sequence converging to (2)7rf with the Adams spectral sequence converging
to (g)wf (BU(2g, ... ,0)), the stable homotopy groups of the 2¢-coconnected
cover of BU. With these facts, the description in these limited degrees is com-
plete. We discuss some of the differentials in §9.6.

Massey products are a formal consequence of the structure of a differential
graded algebra. In cohomology they capture higher order linking phenomena.
We can ask if there is a topological interpretation of the Massey products in the
Adams spectral sequence. The product structure on stable homotopy groups of
spheres is identified with the composition product that shows up as the Yoneda
product on the Es-term. We need the notion of secondary products for the
composition product, introduced by [Toda59].

Definition 9.41. Lety € [X,Y], B € [Y, Z]and o € |Z, W]. Suppose So~yand
aof3 are null-homotopicin [ X, W]. Let ¢, b, a be mappings representing -y, [3 and
«, respectively. There are extensions of bocandaocbtoCX — ZandCY — W,
which we denote by B and C, respectively. Write SX = Ct*X UC~X and
consider the mapping SX — W givenon CTX as ao B and on C~ X as
C o c. The set of all such mappings is denoted {(«, 3,7v) C [SX,W], called
the Toda bracket of «, 3 and . It has indeterminacy given by the subset
ay[SW, Y] + (Sy)#[SX, Z).

The definition, like the definition for Massey products, can be generalized
to n-fold Toda brackets and matric Toda brackets. Furthermore, if we apply
the definition to representatives of mappings in 72, by careful suspension, we
can define Toda brackets of stable maps for which the Toda brackets represent
cosets in 75 . [Toda62] gave extensive computations of 7y, (S™) for k < 19,
using this secondary bracket product to determine and name many elements.
[Cohen, J68] proved that all of ©° can be represented by higher order Toda
brackets applied to integer multiples of the classes « € 75, n € 75, v € 75,
o €7f and oy € 7§, for each odd prime p.

Massey products of all orders may be defined in Ext = Es. Their rela-
tionship to differentials can lead to a connection with Toda brackets. [Moss70]
provided a description in some cases. Broadly stated, he proved that Massey
products of permanent cycles, under certain conditions, converge to Toda brack-
ets in 2 (in fact, the main result of [Moss70] applies more generally to the
composition product o: {Y, W}, x {X, Y}, — {X,W}.
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Theorem 9.42 ([Moss70]). Let (E5*,d,) denote the E.-term of the Adams
spectral sequence converging to (p)wf .

(1) Supposea € ESt, b e B andc e ES " satisfy ab = 0 and be = 0.
Then

b 0 c
dr(<a, b,C>) C <dr(l, a, (—1)zd7«b b’ (_1)i+i/drc> B
the matric Massey product, where i =t — 35,7’ =t — ¢/,
(2) Ifad,b =0andbd,.c =0, then

dT<a7 b7 C> - —<dT(Z, bv C> - (_1)i<a7d7"b’ C> - (_1)i+i,<a’7 by dTC>'

(3) If a, b and c are permanent cycles representing « in 7ri5, Bin 7rf; and
v in wis;/ with o 8 = 0 and B o~ = 0, then, under certain technical
assumptions on the filtrations of a, b and ¢, the Massey product {a,b, ¢)
contains a permanent cycle that is realized by an element of the Toda
bracket («, 3,7).

The simplest example of this is given by the element ¢ in H> (Ay).
Looking ahead to the more complete table, cg is a permanent cycle and hZ, hg and
hy satisfy the unspoken filtration conditions of the theorem. Thus (h2, ko, h1)
represents a Toda bracket that is given in Toda’s notation as (v2, 22, 7).

9.6 Further structure

The element-by-element arguments of §9.5 led to many useful results; in
this section we take a different point of view and discuss the spectral sequence for
() 72 in more global terms. We begin with two deep theorems of [Adams66].
The first determines conditions on s and ¢ for which Exti{’; (F2,TFo) = {0}.

The second reveals portions of Exti{i (IF9, o) that are isomorphic via periodic-
ity operators; this periodic phenomenon determines infinitely many nontrivial
values of the E»-term of the spectral sequence.

We then return to the computation of H**(A,) to exploit the fact that
the Steenrod algebra is a graded Hopf algebra. The method of computation is
called the May spectral sequence and was introduced by [May64]. Tables for
H**(Az) and H**(A3) in a range are given. We then discuss some of the
techniques to determine differentials in the Adams spectral sequence. We close
the chapter with some remarks on further developments involving the Adams
spectral sequence.

The vanishing line

The main theorem of this section gives a description of the cohomology of
the Steenrod algebra in the large. The proof is due to [Adams61, 66] for p = 2,
and to [Liulevicius63] for p, an odd prime.
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Theorem 9.43. Let U(n) denote the function on natural numbers given by
Uds) =12s— 1L, U(4s+1) =125 +2,U(4s+2) =12s +4, U(4s + 3) =
125+ 6. Then Exti{i (Fa,Fa) = {0}, for 0 < s < t < U(s).

For p, an odd prime, Exti{z (Fp,Fp) ={0}, for 0 <s <t < (2p—1)s -2

The vanishing condition in terms of n = ¢ — s, the stem dimension, is
given by 0 < t —s < U(s) — s. By definition, U(s) — s < 2s and so the
condition n < U(s) — s is satisfied when s > n/2. In other words, above the
line of slope 1/2 in the (¢ — s, s) plane, Exti{i (Fq,F3) = {0}. This line is
called the vanishing line.

Recall that the exponent of a group G is the least natural number, m,
such that all m™ powers of elements in G are zero. The vanishing line of
Theorem 9.43 puts an upper bound on the length of a composition series for the
stable homotopy groups of spheres.

Corollary 9.44. Forn > 1, the exponent of (oym5 is less than 27 where f(n)
is the minimum of {s | n < U(s) — s — 1}. The exponent of (s is less than
P9 where g(n) is the minimum of {s | n < (2p — 1)s — s — 3}.

We give a proof of Theorem 9.43 in the case p = 2. We proceed by a
series of lemmas to prove a slightly weaker result that is strengthened later by
the periodicity isomorphisms.

Consider another numerical function, T'(n), given by
T(4s) = 12s, T(4s+1) = 12542, T(4s5+2) = 12s+4, T(4s+3) = 125+7.
Let A(r) denote the subalgebra of A, generated by {Sq*,Sq>, ... ,S¢* }.
Lemma 9.45. Ext%’ (A(0),T2) = {0} when s <4and 0 < s < t < T|(s).
PRroOF: Observe first that the suspension isomorphism on graded modules
over a graded algebra satisfies the relation for ¢ > r: Homh(s"M,N) =
rMod(s" M, s* N) = rMod(M, s™"N) = Hom% " (M, N). Tt follows that

Ext*(s"M, N) = Ext2"™" (M, N).

Following [Adams66], we consider the extension over Asz:

0 — sFy — A(0) — Fy — 0.

This extension determines a class in Exti{i(s[?z, Fy) = Extiig (IF3,F5), which
is given by hg and corresponds to Sq'. The short exact sequence leads to a




432 9. The Adams Spectral Sequence

long exact sequence of Ext groups, here abbreviated as Extfii(ng,]Fg) =
Ext®*(sF), Ext% (F2,F2) = H¢, and Ext’}! (4(0), F2) = Ext**(A(0)):

1% 0
— Ext®™M(slfy) — H®' — Ext®*(A(0)) — Ext®’(slfy) — H*HF —

The reader can consult the charts in §9.5 to prove the lemma in the bide-
grees stated (there are 11 cases). Whenever the boundary homomorphism &
is nonzero, it is given by multiplication by hg, and the result follows. a

We next restrict our attention to a particular class of As-modules. An
Ag-module L is an A(r)-module for any r because A(r) is a subalgebra of
Ag. Therefore we can speak of L being a free A(r)-module. The relation
Sq'Sq' = 0 provides a neat criterion for a module to be free over A(0): Take
Sq': L — L as a differential and compute the homology H (L, Sq"); an Ax-
module L is free over A(0) if and only if H(L,Sq") = {0}. This follows
because Sg'a = 0if and only if z = Sg'y. (For generalizations of this idea see
the work of [Adams-Margolis71], [Margolis83], and [Palmieri92].)

Lemma 9.46. Suppose L is an Ag-module, free over A(0), and L is (n — 1)-
connected (that is, Lt = {0} for t < n). Then Ext% (L,F2) = {0} for s < 4
and0 < s <t<n+T(s)

Proor: Let {b1,bs,...,b;,...} C L be an A(0) basis for L and let L(m)
be the submodule over A(0) generated by the b; of degree > m. Notice that
L(n) = L, that L(m) is an Az-submodule of L and that L(m)/L(m + 1) is a
free A(0)-module on basis elements of degree m. Therefore, we can write

L(m)/L(m + 1) = €D s™A(0).
We proceed by induction on m. Consider the short exact sequence
0— L(m)/L(m+1) — L/L(m+1) — L/L(m) — 0.

Lemma 9.45 applies, with a dimension shift, to L(m)/L(m + 1) and so we
have
Ext%’ (L(m)/L(m + 1),F2) = {0}

fors <4,0< s <t<T(s)+m. If m =mn,then L/L(m) = {0} and the
lemma holds trivially. If the lemma holds for values up to m, then the long
exact sequence,

— Ext%’ (L/L(m),F2) — Ext%! (L/L(m + 1), F2)
— Ext%! (L(m)/L(m +1),F2) —,

provides the inductive step. Finally, for a given s and ¢ one can find m large
enough that Ext®%! (L, F2) & Ext%’ (L/L(m), F2). This proves the lemma. O
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Lemma 9.47. Suppose L is an As-module, free over A(0), and (n — 1)-
connected. Then, for 0 < s <t <n+T(s), Exti{i (L,Fy) = {0}.

PRrROOF: Suppose we are given a short exact sequence of Az -modules
0—Ly —-Ly — L3 —0,

and suppose two of the three modules is A(0)-free. When we apply the functor
H( ,8q") to the short exact sequence we getalong exact sequence on homology.
It follows immediately that the third module is A(0)-free since its Sg* -homology
must vanish. We use this observation in what follows.

Lemma 9.46 gives us the lemma for s < 4, thatis, fork = Oand s = 4k+1,
fori =1, ..., 4. Suppose the lemma holds for all modules and for values of s
less than 4k + 5. Let

£ d() d1 dz d3
00— L—Cyp«—C1+—Cy—(C3+—Cy4

be an Ay-free resolution of L. Since the C; are Ax-free, they are A(0)-free.
It follows that the modules ker d; are A(0)-free, for i = O to 4. Let M =
kerda = imds. For a minimal resolution, Lemma 9.46 implies that M is
(n 4 11)-connected. Therefore

Ext’’ (M,Fs) = {0},
fors <4k +4,0 < s <t <n+ 12+ T(s). However, because M = im d3,
b 47
Ext! (M, Fy) = Ext’" (L, Fy)
and so the lemma holds for s less than 4(k + 1) + 5. a

Corollary 9.48. Ext’}! (F2,Fs) = {0} for0 < s < t < V/(s) where V (s) is the
Sunction givenby V (4s) = 125—3, V(4s+1) = 125+ 2, V(4s+2) = 12s5+4,
V(4s+3) =12s+6.

Proor: Consider the short exact sequence

0 — I(A2)/I(A2) - Sq* — Az/I(Az) - Sq' — Ty — 0.

The minimal resolution for As/I(Az) - Sq* is particularly simple and implies
that, for s > 0, t +# s,

s,t 1 —
EXtA2 (AQ/I(AZ) . Sq ,FQ) = {0}
It follows from the long exact sequence associated to the extension that

Ext® (Fa,F2) = Ext’;, "' (I(A2)/I(A2) - Sq*, Fa)
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fort > s > 0. The module I(Az)/I(Asz) - Sq" is 1-connected and free over
A(0)—this follows from the formula S¢'Sq” = Sq” when I = (iy,... ,i,) #
(0), and 4, is even, while Sq'Sq’ = 0 when 4; is odd. The corollary follows
from Lemma 9.47 and the appropriate expression for V'(n). a

Notice that V((n) = U(n) for n # 0 (mod4); to prove Theorem 9.43
we only need to settle one further case. We do this next. The proof for odd
primes is similar and the appropriate homological algebra was developed by
[Liulevicius62].

Periodicity
The use of subalgebras of As in proving structure theorems about Ext was
very fruitful in §9.5. We continue to study the family of subalgebras A(n) =
(Sq',Sq%, ... ,Sq°" ), the subalgebra of A, generated by the indecomposables
Sq' to Sq*" . The first such subalgebra, A(0) is isomorphic to an exterior algebra
on a single generator of degree one. We can picture A(1) as in the diagram,
where 1 is the bottom element, and each circle is a basis element. The straight

line connections are given by multiplying (on the left) by Sq', and all curved
line connections are given by multiplying by Sqg?.

We construct a minimal resolution of A(0) as an A(1)-module, from the
following short exact sequence:

d d
0 — A(0) — A(1) <~ A(L)a® A(1)b ;d
Au® A(L)v — A(1)t — s'24(0) — 0,
where di(a) = Sq%, di(b) = Sq°Sq', d3(u) = Sqa + Sq'b, d3(v) = Sq°b,
and dy(t) = Sq*Sq'u + Sq*v (The reader is encouraged to make a chart of this
resolution using pictures of A(1)). We can extend this sequence to a complete

minimal resolution of A(0) over A(1) that is periodic of order 4 and degree 12.
This implies the following result.
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Lemma 9.49. Ext3(, (A(0),Fs) = Ext’i i 1*(A(0),Fy), for s > 0.

The quibble at s = 0 has to do with the units in A(0) and A(1). Animmediate
corollary of the lemma is the isomorphism for A(1)-modules, free over A(0):
(L, T2) = Exti 5™ 2(L, Ty).

The proof follows the same lines as the proof of Lemma 9.46.

Ext groups have an interpretation in terms of equivalence classes of finite
exact sequences; the piece of a minimal resolution we constructed gives a class
in Extj(lf) (A(0), A(0)) and the isomorphism in Lemma9.49 can be obtained by
splicing (Yoneda multiplication) with this class. There is also the composition
pairing that determines a right action:

)t
Exti(l)

Ext”;

Gy (s F2) @ HE (A1) — Bxtsry ™ (L, ).

A1)

Our first goal is to describe the isomorphism between Ext A(l)(L, F3) and

Ex tf:{f)tﬂz(L, [F5) as multiplication on the right with a class in H412(A(1)).

From this viewpoint we will see how to generalize.

Lemma 9.50.  Ext’; ] (F2, F) = Extly ;) (A(0 ),Fa) = Fa. Furthermore,
right multiplication by the unique class {US[’ € Ext* ’( 1) IF'g, IFo) gives the iso-
(0), FF2).

~ 4,t4+12 4
morphzsmExtA(l)(A(O),]Fz) Ex tf:('l)t-‘r (A

Proor: Consider the short exact sequence of A(1)-modules:
0 — sFy — A(0) — Fy — 0.
This induces a long exact sequence of Ext groups:
— B¥(A) S HY2(AQ)) — Extbl2 (A©0), Fo) — B (A1) — .
The six-term exact sequence that starts a minimal resolution of A(0) over

A(1) determines a class in Ext A(1)(A(O) Fa). By constructing a minimal

resolution of Fy over A(1), the reader will find that H311(A(1)) = {0} =
H*1(A(1)), and that the isomorphism at bidegree (4,12) is induced by the
quotient 77: A(0) — Fo.

If 0 « Fy « @, is 2 minimal resolution of Fy over A(1), then there is a
morphism of exact sequences:

0 A(0) A1) P P, Py s12A(0) ——0
(A A R N
0 Fy A1) Q1 Q2 Q3 Q4

|

812]F2
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Let u: Q4 — s'2Fy denote the map representing the unique class {u} €
H*%12(A(1)). To complete the proof of the lemma, we show that right multi-
plication by the cohomology class of u determines the isomorphism given by
left multiplication by the class of the six term short exact sequence given by the
minimal resolution of A(0) over A(1).

A minimal resolution of A(0) can be constructed from the six-term exact
sequence,

0« A(0) < A(1) < Pj « Py« Py s2A(1) « s"2P; «— ---

Given a class in Ext:fl)(A(O),]Fg), it may be represented by a cohomology

class of a homomorphism f: P, — s*Fo. Lift this mapping through the mini-
mal resolution 0 < Fo < @Q,, suspended ¢ times.
The commutativity of the diagram

12
Ps+4 s s Ps
f4l lsuf
12
5'Q4 —n s*H12T,,

where v, is the isomorphism that carries the periodicity of the resolution of A(0)
over A(1), follows by the properties of the resolutions and liftings. The different
composites imply that multiplication on the right by {u} € Exti(llz) (Fq,IFo) is
isomorphic to left multiplication by the element determined by the periodicity
of the resolution. g

We next generalize the isomorphism of Lemma 9.49 to the other subalge-
bras A(n) of Az. Our point of departure is the observation that H%12(A3) =
{0} = H>1%(Ay), while H412(A(1)) = Fo. More generally, we observe
that, for » > 3, we have hT+1h§r = 0 in H**(A3): Consider the composite
of Steenrod operations acting on H**(Az): S¢2 S¢2 - - - S¢2Sq* (h1 ko). By
Theorems 9.10 and 9.36, one finds that, for » > 2,

Sg%" - 8¢28q" (h1ho) = hyi1hd .

Since hsh} = 0, it follows that h,,1hZ = 0 for r > 3.
These relations suggest the following construction: The dual of the inclu-
sion i: A(r) — Ao, annihilates {fr“, the class dual to Sq2¢+l. Let ¢, be a
class in F, (A3"2!) such that
or+1

der)=1& ] 1& & ],
~——

27 times
which represents h2 h,y1. The class i*c, in Fi (A(r)dual) is a cycle. We
let w, = {i*c,} denote the cohomology class of i*c, in H? 2" (A(r)).
[Adams66] described explicit representatives for the classes w,. using the —1 -
product on the cobar construction. We need the following facts from this explicit

construction:
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Fact 1. wo in HY'2(A(2)) maps nontrivially to the class {u} in H*12(A(1))
that induces the isomorphism in Lemma 9.49.

To see this, consider the short exact sequence of finite Hopf algebras,
0— A(l) — A(2) — A(2)//A(1) = 0:

A(2)//A(1) is an exterior algebra that is 3-connected, and so the associated
long exact sequence provides an isomorphism H*12(A(2)) — HH2(A(1)).
[Adams66] gives a nonzero class for wy and so it must go over to the unique
generator for H412(A(1)).

Fact 2. Under the inclusion A(r) — A(r + 1), the class wy41 maps to (wy)
in cohomology, H*(A(r + 1)) — H*(A(r)).

This also follows from the explicit representative given by [Adams66].
The cobar classes ¢, may be used to define Massey products; let ker(h3")
denote the subset of Extfiz (L,F3) of elements whose product (on the right)
with h2" vanishes. In the cobar construction, L & F, (A3¥), let ¢ represent
aclass @ = {a} € Extj{i (L,TFy) satisfying ah?” = 0; let y be such that
d*y=alé1 | -+ - | &]. Define the homomorphism

2

EXti{‘;2r’t+3.2r(L, ]FZ)

P™': ker(hY) — AT
0 EXt;—Z2 1,t+2 (L,Fz)hr+1

by Pr=1(a) = {ac, + y[¢2"']}. Notice that Pr= is well-defined because
the choices are absorbed into the quotient. Since ¢, is a specific choice of

element with d*(c,) = [¢& | & | --- | €2°7'], this class P™"1() can be
further projected to Exti‘tQ #3271, F5) modulo indeterminacy where the

indeterminacy is given by
+1 7 _ r
Ext " (L, Fo)Rhd + Ext®” ~V (L, Fa)hy.

Thus P™~' () represents the Massey product (v, h3, By y1).
Consider the mapping

— o wy: Exti"’(:r)(L,}Fz) — ExtsA'l('f) 1432 (L, Fs),

given by the composition product on the right with w,..

Lemma 9.51. The following diagram commutes:

+27,¢43-27
pr-1 Eth42 (L, Fz)

ExtS % (L, Fa)hya

.

, 2" $4+3-2"
Exctiyly (L, F2) ——— Exti ) % (L, F2)

—ow

ker(h2")
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PROOF: i*(ac, + y[€2"']) = (i*a)(i*e,) = (i*a) o wr. O

This shows that the mapping — o w,- is computable in terms of Massey
products. This identification will be sharpened as we proceed.

Theorem 9.52. If L is an (n — 1)-connected module over A(r) that is free over
A(0), then — o w,: EthET)(L,]Fg) — Extf:gf) 2L W) is an isomor-
phism for s > 0andt < n + 4s.

PROOF: For s = 0, the result follows because the Ext groups vanish in these
degrees. We proceed by induction on s and ¢ — n. Consider the short exact
sequence

0—>K—>A(T)®A(1)L—>L—>O.

‘We make some useful observations:

Fact 3 (A change-of-rings theorem). If H is a sub-Hopf algebra of a cocom-
mutative Hopf algebra I over a field k, then I is free as an algebra over H,
and furthermore, for all I'-modules L,

Ext?f (L, k) = Ext2* (T @y L, k).

Fact 4. If L is an A(r)-module that is free over A(0), then, for r < p < 0,
A(p) @ a(ry L is free over A(0).

Fact 3 follows from a theorem of [Milnor-Moore65]. Fact 4 is proved
by [Adams66, p. 368] from an explicit choice of representatives for the dual
comodules.

Since L is free over A(0) and, by Fact4, A(r) ® 41y L is free over A(0), we
have that K is free over A(0). Notice also that K is (n+3)-connected. Consider
the commutative diagram, where we have written H** (M) for Exti"fr) (M, Ts):

H*7VHA(r) ®4y L) H*7Y(E) H*(L) ——
er er er
Hs+2r—1,t+3~2T (A(’I’) ®A(1) L) —>HS+2T_1’t+3'2r (K) _ Hs+2’,t+3~2T (L) .
Hs’t(A('I') ®A(1) L) Hs’t (K) _
% w,l

H3 2 (A(r) @ 40y L) — H T2 32 (K) —

By induction, we assume the results hold up to s — 1 and for all (N — 1)-
connected modules and ¢ — N < 4(s — 1). The first and fourth vertical arrows
are isomorphisms by applying the change-of-rings to get H** (A(r)® 41y L) =
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Ext’(, (L, F2). This isomorphism takes w, to (w2)?"™*, which is an isomor-
phism for ¢t — (n+4) < 4(s—1) by Lemma9.49. Since K is (n+3)-connected,
the second and last w, are isomorphisms for ¢t — (n + 4) < 4(s — 1), that is,
t —n < 4s. The Five-lemma implies that the third w, is an isomorphism and
the theorem is proved. a

In order to extend this result about subalgebras of As to the entire Hopf
algebra, we need the following approximation result.

Theorem 9.53. Supposer < p < ccandi: A(r) — A(p) denotes the inclusion
of Hopf algebras. Then, if L is an As-module that is free over A(0) and (n—1)-
connected, then the induced homomorphism

i*: Ext®?

i) (LsT2) — Extiy(

A(r)(L’ Y,

is an isomorphism for 0 < s <t <n+2""1 4+ T(s—1).

ProOF: We consider once more the short exact sequence of A(p)-modules,
each free over A(0):

0—K— A(p) ®aq) L —= L —0.

By definition, K is (n+27! —1)-connected. By Lemma 9.47, Extfq’z o (K, [F2)

vanishes when ¢ < n+ 27! 4+ T'(s — 1) and theorem follows from the change-
of-rings isomorphism. a

We combine theorems 9.52 and 9.53 with the results on vanishing to prove
the main result of this section.

Theorem 9.54. Suppose L is an Aa-module that is free over A(0) and (n — 1)-
connected. Forr > 2 and s > 0, the mapping P™1 induces an isomorphism

prt. EXtiiZ (L,Fy) — Ext;tzr’ﬁg"?'r (L,Fq)
whenever t < n + min(4s,2"1 + T(s — 1)).
PrOOF: If t < n+ 2" + T(s — 1), then
t+2" <n4+ 2" 12" L T(s— 1)

<n+412-2 4+ T(s—1)
=n+T(s+2"—-1).
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By Lemma 9.47, Ext’y "+ (L, ;) = {0} and so Ext’}’ (L, F2)hd" = {0}.

Similarly Ext®y >~ "% (L, Fy)h, 1 = {0}. Thus we have the following

diagram from Lemma 9.51:

EXtiitz (L,TF5) Pt Ext;—zz’",t+3.2r (L.F)

i |

ExtS (L,Fp) —— ExtSt 3% (L, Fy).

By Theorem 9.53, 7* is an isomorphism in both cases. Since ¢t < n + 4s, it is
also the case that — o w,. is an isomorphism. Thus P"~! is an isomorphism. O

Corollary 9.55. For r > 2, the mapping P"~" induces an isomorphism
Pt Exty (Fa, Fa) — Ext 82 1y, )
forl<s<t<min(4s—2,24 2" + T(s — 2)).

The proof of this follows as in the proof of Corollary 9.48. Notice that the
isomorphism,

Ext®)’ (F2,F2) = Ext®, " (I(A2)/I(A2) - Sq*, F2)
is induced by multiplication on the left by the equivalence class of the extension
0 — I(A2)/I(Az) - Sq*" — A2/I(A2) - Sq" — Fa — 0

lying in Ext;2 (Fa, I(A2)/I(Az) - Sq*).

We have showed already that H*'2(A;) = {0}. Applying the operator
— o wy repeatedly, we get H*%12%(A5) = {0} for all k. This completes
the proof of Theorem 9.43. It also shows that H**+2"" (A)hE" = {0} for
s > 0. This group appears in the indeterminacy of the Massey product of
Pr—1, By carefully tracking through the isomorphisms one concludes that, for
1<s<t<min(4s— 2,242 + T(s—2)) and @ € H*¥(Ay),

P Y(a) = (o, hE", hyy1) modulo {0}.

We leave it as an exercise in the definition of Massey products to show P™~! o
pr—1 = pr,

The reader should look ahead to the tables to see how the periodicity
interacts with the vanishing line to determine that the vanishing is best possible.
We note further that the results of [Moss70] show how the periodicity operator
interacts with the differentials in the spectral sequence.
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The May spectral sequence

In spite of our understanding of some of the global features of H**(A,,)
and our ability to compute in low dimensions, we still need an effective technique
to compute large parts of the Es-term of the Adams spectral sequence. The
Princeton thesis of [May64] provided such a method. The point of departure
for this work is the observation of [Milnor-Moore65] that Hopf algebras are
endowed with certain natural filtrations. In this space we cannot present all
of the details of May’s work. We can give the thread of the argument. For
the relevant definitions and further details, we refer the reader to the papers of
[Milnor-Moore65] and [May64, 66].

Let (T, ¢, 1, €, n) denote a graded Hopf algebra over a field k with product
, coproduct v, augmentation € and counit 7. Following [Milnor-Moore65], I'
is filtered: Let I(I") denote the augmentation ideal, then we filter I' by letting
F,I =T,ifn > 0,and F_,I' = im(¢": I(I')®"* — I(T)), where ¢ is the
iterated product. Denote the associated bigraded object by

(Eor)q,r = (FqF/Fq—lr)q—l-T-
Fact: E°T is a primitively generated Hopf algebra, that is, the natural mapping
Prim(E°T) — Q(E°T) is an isomorphism.
We assume henceforth that k& = IF,, for p, a prime, the case of interest for A,,.
Let Prim(I") denote the space of primitives in the Hopf algebra I.
Fact: Prim(T) is a restricted Lie algebra.

A restricted Lie algebra is a graded Lie algebra over IF,, say L, together with
amap, 3: L, — L,,, defined for n, even, if p is an odd prime, and for all n, if
p = 2, such that, for some graded algebra A, there is a monomorphism of Lie
algebras, f: L — A, such that the diagram for each n

L, L’ Lpn
A, 7 Apn

commutes, where £ is the Frobenius map £(x) = «?. The Lie bracket product
on Prim(T) is the canonical graded commutator.

To each Lie algebra L, one can associate an algebra U(L) called the
universal enveloping algebra. If L is restricted, an algebra V(L) can be
defined that has a compatible Frobenius map. Both U(L) and V(L) are Hopf
algebras.

Fact: 1t 1 is a primitively generated Hopf algebra over IF,, then I' is isomorphic
to V(Prim(I")) as a Hopf algebra.

A corollary of this fact is that E°T is isomorphic to V (Prim(E°T)) for any
Hopf algebra I' over [F,,. With these definitions and facts, we can now state the
main theorem of [May66].
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Theorem 9.56. Given a filtered, augmented algebra I over a field k, there is a
spectral sequence, converging strongly to Exty ™ (k, k), with differentials d,. of
bidegree (r,1 —r), and E3™ = Extgon(k, k).

For a graded Hopf algebra I over IFp,, E°T = V(Prim(E°T")) and so we
can turn to the theory of restricted Lie algebras for tools to determine the Es-
term of this spectral sequence. In particular, the cohomology of a Lie algebra is
defined to be the cohomology of its universal enveloping algebra. In this context,
[May66] introduced small resolutions, resembling Cartan’s constructions and
Koszul resolutions, to compute H**(V (Prim(E°T))).

By determining E°.A,, and applying these methods, [May66] proved the
following computational result.

Theorem 9.57. For p = 2, Extys 4 (Fa,Fa) = H*(R,d), where R is the
bigraded polynomial algebra Fo[R;; | i > 0,7 > 1] on generators R; j of
bidegree (1,2°(27 — 1)) and the differential d is given on generators by

j—1
d(Rij) =), BirBRivk k-

The product on Extgg 4 (Fa,F2) is induced by the polynomial product.
(Fp,Fp) = H*(S,d), where S is the bi-

*7

For p, an odd prime, Ext7; A

graded commutative algebra
®i20,j21A(Ri:j ) @ Fp[Si] @ Fp[ R ]

on generators R; ;, ]:2” and S, of bidegree (1, or' (P —1)), (2,2p" 1 (p — 1))
and (1,2p* — 1), respectively, and the differential is given on generators by

- j—1 i—1

d(R; ;) =0, d(R;;) = Ri xRtk ik, d(S;) = Rk xSk

k=1 k=0

The product on Ext g A, (Fp,TFy) is induced by the product on this algebra.

Though the Es-terms of these spectral sequences appear simple, there are many
differentials and the product structure on E° Ext’y (Fp,Ip) is not the one in-
duced by the spectral sequence. These obstacles can be overcome and [May64]
computed H**(A,) fort — s < 2(p — 1)(2p* + p + 2) — 4, when p is an odd
prime, and for t — s < 42, when p = 2. [Tangora70] extended these techniques
to compute H**(A,) for t — s < 70. Other filtrations of the initial datum, A,
are possible leading to other versions of the May spectral sequence with com-
putational aspects better suited to a given problem. For a thorough discussion
of these ideas, see Appendix A.1 of the book of [Ravenel86].
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Machine calculations of H**(A,) have been made since 1964 ([Liule-
vicius66]). [Bruner93] used minimal resolutions and considerable computing
expertise to push the tables of known Ext groups for H5*(A2) tot — s < 88,
with ¢t < 116 and s < 38.

We have given the tables for H**(Ay) and H**(Aj3) fort — s < 35. The
reader is referred to [May64] and [Tangora70] for the origins and naming of the
elements in the May spectral sequence and the relations between them. Other
tables of Ext have been prepared by [Shick93], [Bruner93], by [Nassau] (an
internet page that features ho connections), and by [Hatcher] (another internet
page that features different axes for which hs connections are horizontal lines).
These charts are the raw data from which we will compute some of 7.

Extensions and differentials

Having computed a portion of the Es-term of the Adams spectral sequence
we next determine the differentials in this range. As you have come to expect,
this can be a difficult task. Furthermore, once we have determined even part of
the Eo-term, we only have a composition series for each ()77 _,. There can be
extension problems. In this section, we discuss techniques that help determine
differentials. Having done this, we settle some extension problems in order to
give the reader an idea of how one can approach them.

The most successful methods for constructing differentials are those that
arise from geometric properties. The first example of this is the graded com-
mutativity of 7rf (Theorem 9.38). This forced classes hoh?, fori > 3, to be in
the image of a differential. The difference between the ring structure on (g)wf
and the ring structure on Ey”((2y72) = EZ* induced through the spectral
sequence from Es must be accounted for by differentials.

Another geometric idea is the nontriviality of secondary and higher order
cohomology operations.[Maunder64] showed how higher order operations can
be related to differentials, the primary examples being the decompositions of
Sq*" by [Adams60] and the decomposition of PP” by [Liulevicius62]. These
decompositions correspond o da(hit1) = hoh?, for p = 2 and i > 3, and
da(h;) = agb;—1, for p an odd prime.

Theorem 9.58. Let X andY be CW-complexes of finite type over IF, with Y
finite dimensional and let

O<—H*(X;]Fp)<—00<—cl<—c’2<—---

be an Ay-free resolution of H*(X;T,,). Then there is a family of higher order
cohomology operations, {®"°}, associated to Cy «— Cy «— Cy «— --- such
that, in the Adams spectral sequence converging to (,){Y, X }., the differential
dy: ESY — ES0UT=1 s given by &7 acting on H*(Y'; F).
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That is, if u € E2*, then it has a representative
ae Bt = Homi{i(C*,H*(Y; Fp))

on which dy, do, . .. , d,—_1 vanish, on which &7 is defined, and &+ (1)
is a coset of ST~ identified with d,.(u).

Another source of differentials are the known stable groups themselves. If
the E»-term of the Adams spectral sequence lies before us and a known group
(g)w,f does not agree with the initial data, a differential must be nontrivial to
correct the discrepancy. The computations of [Toda62] provide a geometric
‘priming’ for the Adams spectral sequence with explicit groups (p)ws for 0 <
n < 19. For convenience, we list these data for the prime 2 (we write (Z/nZ)®*
for Z/nZ ® Z/nZ @ - - - Z/nZ, k times):

TODA’S TABLES
n (2) 7['7‘5;v generators comments
0 Z ?
1 /27 0 {h1}
2 Z/2 n2 {h3}
3 787 v {ho},dv =73
4 {0}
5 {0}
6 727 v? {h3}
7 7/167Z o {h3}
8 (Z.)27)®? v,e no=v+e
9 (7.)27,)®3 Vi umoe {h3 = h3hs},nv = 13
10 ZJ27. nou
11 7,87 ¢ {P'hy}
12 {0}
13 {0}
14 (Z.)27,)®2 0%k {h3}
15 Z/32Z & Z/27Z P, NOK
16 (2/22)%? n*,mop np=op
17 (Z)22)% non*,voknop Qi n°p = ep
18 Z/8Z@® /27 v*,mofi n’n* = ¥ i = p?

19 Z/8Z$LJ2L (2,3 PN




9.6. Further structure 447

Theorem 9.59 (IMay641). There is only one pattern of differentials consistent
with Toda’s data on Ej * for t — s < 19. This pattern is given by

da(hs) = hoh3

ds(hohs) = hodo, da(hihs) = hido
dz(eo) = h?do
da(fo) = hohado, da(hofo) = hihado.

The reader will find proving this theorem quite straightforward and instruc-
tive. Notice that a relation in the E»-term has been made part of the statement
of the theorem, that is, hpeg = hadg. This can be shown using identities with
Massey products.

These differentials immediately imply later ones by virtue of the product
structure and the relations between differentials and the periodicity operators.
This allows us to compute stable stems.

Corollary 9.60. The following differentials are implied by the previous ones.
Forti > 0,

d.(P'dy) =0, forallr,  d.(P'g") =0, forallr,
dy(Pieg) = Phdo, da(Pij) = P+ hado, da(Pk) = P hog.

Proor: We show the case for P¢5. First of all, do P* = P%d can be shown to
follow from a homotopy computation or Theorem 9.42. Among the relations
that hold in Ext (see [Tangora70]), we find hoj = hoi = Pl fy. Also, from
the structure of the May spectral sequence, Plzy = zPly = yPlz, where
it applies. Thus h3j = P'hofy = P'hieg = egP'hy and so d2(hdj) =
da(eoP hy) = h3doPhy = P hd3dg = P h2hody = h2P hody. 1t follows
that dg(j) = Plhgdo.

The other relations that enter this proof include hoeg = hog, P hihs =
Pih2dy, P'hy = hag, P'g = d2, dog = €2. We add thati = P'h2hs. O

This corollary allows one to compute (o) mf_, for20 < ¢ — s < 28.
MAY’S TABLES

S

n (2)Tn generators

20 7./87. {g}

21 (z/22)%* {h3}, {hg}

22 (7,/27)®? {hac1}, {Pdo}

23 (2/272)®% © 7/8Z.® Z.J16Z  {haco}, {P h1do}, {hag}, {P%h3}
24 (Z)27)®2 {h1hgco}, {P%co}

25 (Z.)27)®? {P?hyco}, {P3hy}
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26 (z/22)®* {h3g}, {P°hi}
27 Z/8Z {P°ha}
28 7.)27. {P'g}

In order to extend these computations further, we employ the naturality of
the Adams spectral sequence. [Maunder65] considered the mapping f: S —
F where F is the homotopy fibre of the mapping p: BU(2q,...,00) —
K(Z,2q + 2™), BU(2gq,... ,00) is the 2g-coconnected space associated to
the classifying space of the infinite unitary group BU (that is, the homotopy
groups m;(BU(2q,... ,00)) = {0} for ¢ > 2¢) and p represents the Chern
character chg 9m-1. The mapping f: 524 — F is induced by the generator of
maq(BU), which is given by the ¢ iterate of the Bott map. The mapping f
induces a homomorphism of spectral sequences:

Ext’y: (H*(S°%Fy), Fo) — Exty, (H*(F; Fa),Fa),

and by naturality we have, forall r > 2, d,.(f*(z)) = f*(d.(x)). [Maunder65]
computed H* (F'; Fo) as amodule over A, from which he computed the relevant
parts of Ext’;” (H*(F;Fy), F2). The main result of this paper is that the classes
hg b, for n < 2™, in H**(Ag) are never in the image of any differential in
the Adams spectral sequence converging to (2)7!'5 .

The papers of [Mahowald67], [Mahowald-Tangora67], and [Barratt-Maho-
wald-Tangora70] use stable cofibration sequences of small complexes, SO —
X — X’ to determine differentials. Such cofibrations induce a short exact
sequence on cohomology,

00— H*(X/;]Fg) — H*(X;Fy) - Fo — 0
and so long exact sequences of Ext groups.
L Ext¥]! (F2, Fa) — Ext® (H*(X;F2), F2) & Ext® (H*(X';Fa), F2) —

If the complexes are chosen carefully, the coboundary operator in this sequence
has a nice form and computation of the stable homotopy of X and X’ in low
dimensions is possible.

Examples of such sequences are

4 p L p
S0 50U, en — 8% or 8% 80U, et U, e® 5 Sty B

The following proposition (Lemma 3.4.1 of [Mahowald-Tangora67]) gives a
general method for applying such sequences.
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Proposition 9.61. Consider a sequence S° 4x 2 X' such that p.i, = 0
on stable homotopy. Suppose o € Ext for SO is such that i*« in Ext for X
survives and, for any & € {i*a}, the class represented by i* o, p.é is essential,
then « is not a permanent cycle.

PrOOF: Let f: S? — SO represent {a}. Then [if] is in {i*a} and so [pif] is
essential. But p.i. = 0, therefore o cannot be a surviving cycle. Suppose « is
in the image of some differential, o = d,./3. By naturality, i*« = d,.7* 3, which
is impossible since *« is a surviving cycle. Therefore, some differential must
originate on c. a

This lemma can be applied to the element ey with the sequence given by
SY — S Uy, €2 — S2. [Mahowald-Tangora67] showed that i*eg survives and
p«{i*eg} = nk # 0. Thus a differential arises on eq.

The last source of differentials to be considered here is the interaction of
differentials with the Steenrod algebra action on Ext (Theorem 9.10). Devel-
oped first by [Kahn70], it has been extended by [Milgram72], [Maakinen73]
and [Bruner84] to a powerful tool in this enterprise. The reader is encouraged to
read the contributions of Bruner in [Bruner-May-McClure-Steinberger86] for
an overview of this method.

Let us now consider the E-term of the spectral sequence.

11

10 :
9 P2hy P?hy
8 L ]
7 Plco/
6 |
I 5 PRy Plhs . hoeo
s 4 I’ do h8h4

3 Co C1
2 / % hahi haha

We suppose that Toda’s tables are to be deduced from this table with as little
input as possible. The interpretation of multiplication by hg settles the 7, 10,
11, 15, 16, 18 and 19 stems. Consider the 8-stem. The element hqh3 satisfies
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hohihs = 0 and furthermore, hohi hs is in filtration 3 where ¢g lies. Thus we
cannot have ¢g as an element representing 2{h;h3} because in this filtration it
would be hoh1hs. Also no further classes lie in the 8-stem in higher filtrations.
Thus (2)78 = 7Z/27 ® Z/2Z. An easier argument follows from the relations
2{h1} = 0and {h1}{hs} = {h1hs}. However, such relations are only true up
to filtration and indeed, [Toda62] has shown nv = 7 + €, where o = {h1h3}
and e = {¢o}. One needs to be careful.

The same argument works for {h3h3} and {hyP'co}. By filtration 4
we can see that 2{h1 Plcy} = 2{h1}{P'co} = {hoh1}{P'co} = 0. Thus
)75 =2 (Z/22)®3. Similarly, oy7{; = (Z/22)%4

We finally turn to the determination of the composition product structure
on (z)wf from the spectral sequence. It is here that some geometric input is
needed. A ‘hidden extension’ can be found when we consider the ideal 7o 2.
Let p be the generator in the 15-stem of the factor Z/327Z. From the data in
E, n o p appears to be zero. However, we know the following (deep) facts:
p generates the image of the J-homomorphism m5(SO) — 755 and nim J
is nonzero (see [Switzer75, p. 488]). Because 1 o p must appear in a higher
filtration than hq hg hy, it happens that o p = {Plco}, the only other choice.

[Mahowald-Tangora67] and [Tangora70’] consider more difficult exten-
sion problems. The interplay between geometric and algebraic data is compli-
cated and extended by numerous identities in Ext and in 7. Knowledge of
(2)™5 can be derived, as far as anyone has tried using these methods, for n < 45
(see [Bruner84]).

Other approaches to computing stable homotopy groups of spheres have
been developed that have features similar to the Adams spectral sequence. One
attractive way is via a kind of reverse Adams spectral sequence that was in-
troduced by [Cohen, J70] and applied with great success (and computer aid)
by [Kochman90]. Using these methods, information on stable stems out to
dimension 64 were obtained (and corrected in [Kochman-Mahowald95]).

Epilogue

Where do we go from here with the Adams spectral sequence?

Work on the classical Adams spectral sequence continues. The stem-by-
stem calculations have given way to the determination of regular phenomena
such as infinite families of elements in 7rf (for example, [Mahowald81], [Co-
hen, R81], and [Lin, WHS85]), global structures in Ext ([Singer81]), and the
identification of geometric phenomena like the EHP-sequence or the image of
the J-homomorphism at the level of the spectral sequence ([Mahowald82]).
Recent surveys of this work can be found in the book of [Kochman96] and the
paper of [Miller-Ravenel93].

The notion of spectrum discussed in §9.4 was introduced in order to study
Spanier-Whitehead duality and generalized (co)homology theories. All gen-
eralized theories are represented by spectra ([Brown, E62]) and among the




9.6. Further structure 451

most important have been the bordism theories represented by Thom spectra
([Rudyak98]). [Novikov67] carried out a program initiated by [Adams64] to
construct and compute the stable homotopy of spheres using complex cobor-
dism theory. The development of this line of ideas now forms a major part of
homotopy theory. The excellent books of [Switzer75] and [Ravenel86] offer a
basic introduction. The viewpoint of complex cobordism has led to many new
algebraic tools (for example, formal group laws [Quillen69”]) and deep global
results ([Devinatz-Hopkins-Smith88]). The book of [Ravenel92] gives a sketch
of this work and its place in the emerging global picture of homotopy theory.

As a tool the Adams spectral sequence has been applied with consider-
able success to various geometric problems. Beyond the solution to the Hopf
invariant one problem we discuss two further spectacular examples.

The Kervaire invariant of an almost framed manifold was introduced
by [Kervaire60]. It is based on the Arf invariant of a quadratic form. In a
classic paper, [Browder69] identified the Kervaire invariant with the value of
a cohomology operation defined for Poincaré duality spaces M2 with extra
structure. That extra structure is a lifting of the classifying map of the normal
bundle to a fibration with vanishing Wu class vg11. This gives a cobordism
theory based on the vanishing of the Wu class (for a discussion of the Wu
class see [Milnor-Stasheff74]). By analyzing orientations with respect to this
cobordism theory one can show that there is a structure on .S9x S? withvg41 = 0
and Arf invariant one. To complete the analysis one has to know if this structure
comes from a framed manifold. The identification of framed cobordism with
72 and the Adams spectral sequence allow one to ask this question at the level
of the Eq-term of the spectral sequence. [Browder69] proved that the only
dimensions in which a Kervaire invariant one manifold may exist are of the
form 2¢ — 2 and that there is a manifold of Kervaire invariant one if and only if
the class h?_l in Exti{zl (Fo,IF5) represents a nontrivial element in 7r‘29i_2. At
this time, calculations of [Barratt-Jones-Mahowald84] and [Kochman90] have
shown that there are manifolds of Kervaire invariant one of dimensions 2, 6, 14,
30, and 62. It is still open whether there are Kervaire invariant one manifolds
in dimensions 2¢ — 2 for i > 7.

A differential geometric question one can ask of a manifold is whether
it admits a Riemannian metric of positive scalar curvature. Using methods of
surgery this question can be reduced to a cobordism problem for which the
property of being a Spin manifold or not breaks the problem into two parts.
The nonSpin case for simply-connected manifolds was studied by [Gromov-
Lawson80]. There all obstructions to admitting a positive scalar metric vanish
and examples in each cobordism class are given. There are obstructions in
the Spin case studied first by [Lichnerowicz63] and extended by [Hitchin74].
[Stolz92] showed that the vanishing of Hitchin’s obstruction was sufficient for
the existence of a positive scalar metric. The argument requires the identifi-
cation of the image in the Spin cobordism ring of the Spin bordism groups of
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a classifying space of a certain group. Since the Spin bordism groups are the
stable homotopy groups of a particular spectrum, then one can compute these
groups explicitly via the Adams spectral sequence.

Exercises

9.1.If f: S™ — Y isamapping and My = Y Uy €™ is the mapping cone, show
that
E(Mf) = E(Y Us e”“) ~ Y Usy ent? — sz.

9.2. Use the Cartan-Serre theorem (Theorem 6.20) to prove

Ap ® s"Fp 29,y H*(K(Z/pZ,n); Fp).
9.3. For an abelian group G, show that the set {elements of finite order prime to p}
forms a subgroup of G. This shows that (,,)G is well-defined.

9.4. Carry out the construction in §9.1 to construct a secondary operation associated
to the Adem relation Sg%Sq° + Sq:)’Sq1 = 0. Use this to prove Adem’s theorem

that 77 o 1 2 .

9.5. Prove that the functors defined on graded left I'-modules satisfy: Homp (M, —)
is left exact, and Homp (—, V) is right exact when M and N are fixed I'-modules.

9.6. Let I'(x) denote the divided power Hopf algebra over IF3 on a single generator

x. Prove that F(x)dual, as a Hopf algebra, is isomorphic to Fa[y] where y is the
dual of the generator 7y («). Finish the proof, begun in §9.2, that

H>*(I'(2)) 2 Fa[l; |1 =0,1,...],
where the bidegree of [; is (1, 2* deg ).
9.7. On Extr(M, N).

(1) Verify that the definition of Extr (M, N) given in §9.2 does not depend on
the choice of projective resolution of M.

(2) Verify that Ext%* (M, N) = Hom®%*(M, N).

(3) Verify that, if given a short exact sequence in rMod,

0—A—B—C—0,
then there is a long exact sequence
— Extp™ (M, A) — Extp™ (M, B) —
Ext™* (M, C) — Ext™t (M, A) — |
(4) Verify that, for a projective module over I', P,
Ext* (P, M) = {0},

forn > 0 and M any left I'-module.
(5) Verify that Extr (M, N) is a functor in each variable separately.
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9.8. Show that the composition product on Ext is bilinear and associative. Show
further that Yoneda’s product induced by splicing agrees with the composition
product defined via resolutions.

9.9. In categories of modules, the dual of the notion of a projective module is that of
an injective module. Give the definition by formally inverting the definition of a
projective module (remember epi becomes mono). Prove thata module J is injective
if and only if to each monomorphism, : A — B, the mapping Hom(B, J) —
Hom(A, J) is anisomorphism. If given a module, N, then an injective resolution
of N is an exact sequence

0N gt g2

with each J? injective. Show that any two injective resolutions of the module N
can be compared by a lift of the identity mapping between the resolutions. Show
that one can define Extr (M, N) by constructing an injective resolution of N and
applying the functor Hom (M, —) to form a complex and then taking the homology.

9.10. Prove the assertion that H**(A(z)) = k[y] as algebras, where A(z) denotes
an exterior algebra over k on a single generator z and y has bidegree (1, deg ).

9.11. Prove the following facts about the suspension functor on graded I'-modules
and projective modules:

(1) If X is projective, then sX is projective. (Hint: s(T ® V) = T' @ sV for
a graded vector space V')

(2) rMod(sW, sX) = rMod(W, X).

(3) If0 — X «— W, is a projective resolution of X, then 0 «— sX «— sW,
is a projective resolution of s.X.

9.12. Suppose that I is a cocommutative Hopf algebra. Show that the cobar con-
struction F, (T34 supports a - 1-product defined by

[ea foz | lapl =1 [Bi|Bal | B =

S farlasl - lar1af By laf Bl ol Byl o,

where the elements aq(ﬂj ) are determined by the iterated coproduct
¥ o) =Y oV @al @ gal?

Show that this - -product satisfies a Hirsch formula:

d* (@ —1y) =d"(x) =1y + 21 d°(y) + 2y + yz.
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9.13. Prove the theorem of [Milnor-Moore65]: Given A a normal sub-Hopf algebra
of a Hopf algebra I, then I" has a basis as a A-module consisting of 1 and certain
homogeneous elements in I(I") and I is free as a right A-module on this basis.
Furthermore, this basis projects to a vector space basis for I"//A.

9.14. Prove the Fact from §9.5 that, for all s,
L5413
EXtitz (FQ,FQ) = {0}
9.15. Prove the following relations in the cohomology of As:
(hiyhiy1, hi) = R2pr, (Rigi, hiyhigr) = hipahy  cohy # 0.

9.16. For the periodicity operator of §9.6, prove that

P o PT =Pt

9.17. Consider the following Toda bracket construction suggested by the Adem
relation Sg3Sq* + Sq*Sq* = 0:

Sq",8q*

X 5 K(7)22,n) =2 K(Z)2Z,n + 1) x K(Z/2Z,n + 2)

+0(5¢°,5¢%)
T K(Z)2Z,n + 4).

Such a Toda bracket is defined when Sg'z = 0 and Sg°z = 0. Show that the
elements in the Toda bracket comprise a secondary cohomology operation based on
the Adem relation. Thus Toda brackets may be used to express such operations.

9.18. Compute Extiiz (Ax/I(As - Sq*),Fs).

9.19. Suppose that L is a graded Lie algebra over a field k. Let (U(L),%.: L —
U(L)) denote the universal enveloping algebra of L, defined by the universal
property that if f: I — A is any morphism of Lie algebras where A is an algebra
endowed with the bracket product [a, b] = ab — (—1)9%8*4e8bpq, then there is a
unique morphism of algebras  : U(L) — Asuchthat foir, = f. Show that U(L)
may be defined as the quotient of the tensor algebra on L by the ideal generated by
elements of the form z @ y — (—1)4%€2de8vy @ 4 — [z, y] for z, y € L. The
product of two graded Lie algebras is given by (L x L'),, = L,, X L!,. Using these
facts show that U (L) is a graded Hopf algebra with the coproduct induced by the
diagonal mapping.

9.20. Prove Theorem 9.59.




10
The Bockstein Spectral Sequence

“Unlike the previous proofs which made strong use of
the infinitesimal structure of Lie groups, the proof given
here depends only on the homological structure and can
be applied to H-spaces . .. ”

W. Browder

In the early days of combinatorial topology, a topological space of fi-
nite type (a polyhedron) had its integral homology determined by sequences
of integers—the Betti numbers and torsion coefficients. That this numerical
data ought to be interpreted algebraically is attributed to Emmy Noether (see
[Alexandroff-Hopf35]).

The torsion coefficients are determined by the the Universal Coefficient
theorem; there is a short exact sequence

0 — Ho(X) ® Z/r72 Ho(X; 7/r7) — Torg(Ha_1(X), Z/rZ) — 0.

To unravel the integral homology from the mod » homology there is also the
Bockstein homomorphism: Consider the short exact sequence of coefficient
rings where red,. is reduction mod 7:

—Xr red,.
0>Z—Z—Z/rZ—0.

The singular chain complex of a space X is a complex, C,(X), of free abelian
groups. Hence we obtain another short exact sequence of chain complexes

0— C.(X) =5 (X)) =2 cux) 0 Z/rZ — 0,

and this gives a long exact sequence of homology groups,

—X7r red,.

L Ho(X) =D Ho(X) 2 B (X3 2/rZ) 2 Hat(X) — -+

When an element v € H,,_1(X) satisfies ru = 0, then, by exactness, there is
anelement @ € Hy,1(X;Z/rZ) with (%) = u. To unpack what is happening
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here, we write & = {c ® 1} € Hn(X;Z/rZ). Since d(c ® 1) = 0 and
d(c) # 0, we see that 9(c) = rv and the boundary homomorphism takes @ to
{v} € H,—1(X). The Bockstein homomorphism is defined by

B: Hy (X Z)rZ) — Hy 1 (X5 Z/7Z), 6= {c®1l} — {v®l} = {%60@1}.

This mapping was introduced by [Bockstein43]. The Bockstein spectral se-
quence is derived from the long exact sequence when we treat it as an exact
couple (§10.1).

One of the motivating problems for the development of the Bockstein
spectral sequence comes from the study of Lie groups. Recall that a space X is
torsion-free when all its torsion coefficients vanish, that is, when H;(X) is a
free abelian group for each 7. A remarkable result due to [Bott54, 56] identifies
a particular class of torsion-free spaces.

Theorem 10.1. If (G, e, i) denotes a connected, simply-connected, compact
Lie group, then QG is torsion-free.

Bott’s proof of this theorem is a tour-de-force in the use of the analytic
structure of a Lie group. The transition to topological consequences is via Morse
theory. The essential ingredient is the study of the diagram D associated to
G—asystem of subspaces of the tangent space to amaximal torus 7" C G which
may be described in terms of “root forms” on GG. The fundamental chambers in
D carry indices that determine the Poincaré series of the based loop space QG.
In fact, the Poincaré series has nonzero entries only in even degrees. From this
condition for all coefficient fields, it follows that QG is torsion-free.

By way of contrast, we recall a celebrated result of [Hopf41]. H-spaces
and Hopf algebras made their first appearance in this landmark paper where
results about the algebraic topology of Lie groups were shown to depend only
on the more fundamental notion of an H-space structure.

Suppose (X, zg, 1) is an H-space. The commutativity of the diagram

XxX 28 ¥y XxXxX 2L x v X x X xX

uJ wxp

X = X x X.

implies that the coproduct on homology,
Ay Ho (X k) — H (X3 k) @ Ho (X5 k),

is an algebra map with respect to the product .. Thus (H.(X; k), ps, Ax)
satisfies the defining property of a Hopf algebra. This algebraic observation
implies the following structure result.
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Theorem 10.2 ([Hopf41]). If (X, zo, p) is an H-space of the homotopy type of
a finite CW-complex and k is a field of characteristic zero, then H*(X; k) is an
exterior algebra on generators of odd degree.

Proor: Consider the graded vector space of indecomposable elements in
H*(X;k):

Q(H*(X;k)) = H*(X;k)/H* (X; k) — H*(X;k).

Let Q(H*(X;k)) = k{x1,xa, ... , x4} with the generators ordered by degree,
degzy < degxy < --- < degxz,. Let x = x; denote first even-dimensional
generator, of degree 2m, and A, denote the sub-Hopf algebra generated by the
odd-dimensional classes a1 through x;_;.

Recall thatif C' C B is anormal sub-Hopf algebra of C, thatis, I(C)-B =
B-I(C),then C//B = B/I(C)- B is the quotient Hopf algebra and I(C) and
I(B) denote the kernels of the augmentation.

Consider the short exact sequence of Hopf algebras:

0—- A, — H(X; k) — H*(X;k)//A, — 0.

Since H*(X; k) is commutative, A, is normal in H*(X; k). The class = goes
to a primitive class Z in H*(X; k) //A,, thatis, u*(Z) =2 ® 1+ 1 ® Z. Since
H*(X;k)//A, 1s also a Hopf algebra, we have that * is a homomorphism of
algebras and so p*((Z)") = (u*(Z))" = (1®Z+Z®1)™. Itfollows, as in the
proof of the binomial theorem, that, for all n > 0,

*OO=\TY n n =\ =\n—1 =10
w (@)™ = Zizo(i)(a;) ® (%) where (z)° = 1.

Since X has the homotopy type of a finite CW-complex, for some N,
H*(X;k) = {0} for s > N. It follows that (Z)* = 0 whenever 2mi > N.
However, for the first such ¢,

(@) =3 (t) (@) © (@) 40

7

t . .
because (z) # 0in k and (%) @ (Z)*~* # 0 when ¢ > 1. Thus, the ap-

pearance of Z # 0, a primitive of even degree in H*(X; k)//A,, implies that
()t # O0forall t > 1, and H*(X;k)//A, is of infinite dimension over k.
Since H*(X; k) // A, is a quotient of H*(X; k), this contradicts the finiteness
assumption on X. It follows that H*(X; k) has only odd degree algebra gener-
ators. The theorem follows from Theorem 6.36—a graded commutative Hopf
algebra on odd generators is an exterior algebra on those generators. a
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The interplay between the homotopy-theoretic properties of H-spaces and
the analytic properties of Lie groups has deepened our understanding of such
spaces considerably. At first it was believed that H-spaces with nice enough
properties need be Lie groups ([Curtis, M71] reviewed this program), but
the powerful methods of localization at a prime soon revealed a much richer
field of examples including the so-called “Hilton-Roitberg criminal” ([Hilton-
Roitberg69]), a manifold and H-space of non-Lie type. The generalization of
properties of Lie groups to H-spaces of the homotopy type of a finite complex
fueled considerable efforts that include the development of the Bockstein spec-
tral sequence ([Browder61]), the introduction of A, -structures ([Stasheff63]),
new applications of localization ([Zabrodsky70], [Hilton-Mislin-Roitberg75]),
and the solution of the torsion conjecture ([Lin82], [Kane86]), which states
that QX is torsion-free for X a finite, simply-connected H-space. [Dwyer-
Wilkerson94] have applied the methods of homotopy fixed point sets developed
by [Miller84] and [Lannes92] to recover the algebraic topology of Lie groups
from a completely homotopy-theoretical viewpoint ([Dwyer98]).

In this chapter we develop the properties of the Bockstein spectral se-
quence, especially for applications to H-spaces. We introduce the remarkable
notion of oco-implications due to [Browder61] and apply it to derive certain
finiteness results. We then consider some unexpected applications of the Bock-
stein spectral sequence to differential geometry and to the Adams spectral se-
quence. The short exact sequence of coefficients that characterizes the Bock-
stein spectral sequence can also be generalized to other homology theories and
to homotopy groups with coefficients (introduced by [Peterson56]). This leads
to other Bockstein spectral sequences—for mod » homotopy groups, and for
Morava K-theory—whose properties have played a key role in some of the
major developments in homotopy theory. These ideas are discussed in §10.2.

10.1 The Bockstein spectral sequence

Although it has a modest form, the Bockstein spectral sequence has led to
some remarkable insights, particularly in the study of H-spaces. We recall the
construction of the Bockstein spectral sequence here (§2.2). Fix a prime p and
carry out the construction of the long exact sequence associated to the exact
sequence of coefficients, 0 — Z — Z — I, — 0. Following a suggestion
of John Moore, [Browder61] interpreted the long exact sequence as an exact

couple:
H.(X) a4 H.(X)
H.(X;Fp)

We denote the E'-term by BL = H,,(X;F,). The first differential is given by
d' = d oredp. = 3, the Bockstein homomorphism. The spectral sequence is
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singly-graded and the results of Chapter 2 apply to give the following theorem.

Theorem 10.3. Let X be a connected space of finite type. Then there is
a singly-graded spectral sequence {B%,d"}, natural with respect to spaces
and continuous mappings, with B}, = H,(X;F,), d' = 3, the Bockstein
homomorphism, and converging strongly to (H,(X)/torsion) ® F,.

PRrROOF: Suppose G is a finitely generated abelian group. Then we can write

G GB@-Z ® @jZ/pajZ ® @tZ/q[fz,

where the ¢; are primes not equal to p. The fimes p homomorphism is an

isomorphism on @tZ/q{ t7 and a monomorphism on @ 7. Recall the p-
T

component of G is the quotient group

(»G = G /{elements of torsion order prime to p} = @_Z @ @ Z[p®Z.
i g

An nonzero element v in G is p-divisible if v = pv for some v in G. The ele-
ments in @tZ/ q; 7 are infinitely p-divisible since — x p is an isomorphism on
this summand. No elements in the rest of G can be infinitely p-divisible without
violating the condition that G is finitely generated. With these observations we
prove the convergence assertion of the theorem.

By Corollary 2.10 we have the short exact sequence

0= )/ (X) 4 kerpr) = Bit' = " Haea (X) Nkerp — 0.

Notice that Bi ™! = {0} implies H,,(X) = pH,(X) + kerp”. If u € H,(X)
generates a copy of Z, the u ¢ kerp”. Butif u € pH,(X), then u is p-
divisible. Writing u = puvy, it follows that vy is also p-divisible. Continuing in
this manner, we conclude that « is infinitely p-divisible, a contradiction to finite
generation. It follows that () H,, (X) = ker p" and s0 (,) H, (X) has exponent
less than or equal to p”.

Let r go to infinity to obtain the short exact sequence

0— Hn(X)/(pHn(X) + p-torsion) — By — V;’f_”{ — 0,

where V% is the subgroup of Hy,,_1 (X)) of infinitely p-divisible elements that

n—1
vanish when multiplied by p. Because H,,_1(X) is finitely generated, V4 is
trivial and so
B = Ho(X)/

n

(pHp(X) + p-torsion) = (Hn(X)/torsion) @ F, O
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Some immediate consequences of the existence and convergence of the
Bockstein spectral sequence are the following inequalities. Suppose that X is
a space of finite type. Then, in each dimension ¢, we have

dimy, Hy(X;F,) > free rank H;(X)
= dim g H;(X;Q)
— dimy, ((Hi(X),torsion) & ).

This follows from the Universal Coefficient theorem and the fact that H; (X)) is
finitely generated. Thus the Bockstein spectral sequence for X collapses at B"
if and only if dimy, B} (X) = dim ¢ H;(X; Q) for all <.

There is an alternate description of the differential that identifies the Bock-
stein homomorphism directly. Consider the short exact sequence of coefficients

0 — Z/pZ — T|p°7 — ZJpZ — 0

where we have written Z/pZ = pZ/ p?Z as the kernel. The associated long
exact sequence on homology for a space X is given by

- Ho(X; Z/p7) — Ho(X;7/p%7)
— Hn(X;Z/pZ) — n_l(X;Z/pZ) — e

and has d' = f3, the connecting homomorphism. This can be seen by comparing
the short exact sequences of coefficients

0 z—22 .7 Z/pZ 0
redp‘ Jredp2 H
0 ZpL —— Z/p*Z. Z/pZ. 0.

The associated homomorphism of long exact sequences carries 3 to red,, o0.
When we consider the short exact sequence of coefficients

0— Z/p"7 — LJp*" 7 — L[p"Z — 0,

we obtain the " order Bockstein operator as connecting homomorphism.
Taking all of the short exact sequences of coefficients for all » > 1, the following
more refined picture of the Bockstein spectral sequence emerges.
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Proposition 10.4. B], can be identified with the subgroup of Hp(X;7Z/p"Z)

_xpr—1

given by the image of H,,(X; Z/p"Z) - H,(X;Z/p"Z)and d": Bl, —
B} _, can be identified with the connecting homomorphism, the ™ order Bock-
stein homomorphism.

PROOF: Write GT, = im(— x p"~': H,(X;7Z/p"Z) — Hn(X;7Z/p"Z)) and
consider the sequence of homomorphisms

r—1 —xp r—1 - & is ¢ r—1 r—1
D Hn(X) —D Hn()‘) _’Gn —PD Hn—l(X)_’p Hn—l(X)

defined by « ({E _p’“"lu,-}> = { g u®(prt +p’“Z)} € G7,. This
1 k2

homomorphism is well-defined and has im(— x p) as its kernel. If a homology

class { E v @ (p ! +p’“Z)} € H,(X;Z/p"Z) is in GT,, then define

(X wewt+rn)) = { %Zia(v@)} :

where 0 is the chain boundary operator. Since 8 (Zv@ ® (pr~1 + p’“Z)) =0,
it follows that » Jv; = ( r—1 T ) and so dividing by p determines a
> PP gbyp

classinp™ 1 H,,_1(X). Itis easy to see thatker { = im o and we have exactness
at G;,. We compare this sequence with the i derived couple

— P T H oy (X) 2 g Hy (X) = G, — " Hy 1 (X) 2 T Hy (X)) —

|
|
I
'
v

_)p'r 1H rlH B;,_)

pr_lHn_l(X) ? T_lHn_l(X) —,

The Five-lemma implies By, = G7,.
To identify the differential d” with the higher Bockstein

Br: Ho(X5Z/p"Z) — Hp1(X5Z/p"Z)

it suffices to compare the connecting homomorphism that defines 3, with the
definition of the homomorphism ¢. a

This representation of the terms in the Bockstein spectral sequence can be
completed by embedding the data for all » > 1 into a Cartan-Eilenberg system,
a general technique to construct a spectral sequence (also known as a spectral
system in [Neisendorfer80] or a coherent system of coalgebra/algebras/Lie
algebras in [Anick93]). The definition and relation between a Cartan-Eilenberg
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system and its associated spectral sequence are explored in Exercises 2.2 and
2.3. For a prime p and a pair (s,t) with —co < s < t < oo we define

H(s,t) = H(X;Z/p"™ 7).

Ifs< s andt <, let H(s,t) — H(s,t") be the homomorphism induced
by the map of coefficients, Z/p'~*Z — Z/p* =< Z, that is determined by
1 pt' =t Ho(X;Z/p57) — Ho(X;Z/p" 7). ifr < s < t, then
let 9: H(r,s) — H(s,t) be the connecting homomorphism associated to the
coefficient sequence

0— Z/p*™ 7 — Z|p*™ "7 — Z)p* "7 — 0,

a homomorphism H,(X;Z/p*~"Z) — H,._1(X;Z/p**Z). In this context
the limit terms of the Cartan-Eilenberg system are given by H(q) = H(q,q) =
Hy(X)and H(q,00) = Hy(X;lim, . Z/p"Z). The exact couple determined
by the long exact sequence

> Hlg—1) ~ H(g) — H(g — 1,a) 2 H(g 1) — H(g) —

gives the Bockstein spectral sequence.

With this added structure the (co)multiplicative properties of the spectral
sequence may be studied. We refer the reader to the work of [Neisendorfer80]
and [Anick93] for more details.

Though we developed the Bockstein spectral sequence for homology, it is
just as easy to make the same constructions and observations for cohomology.
The Bockstein homomorphism for cohomology has degree 1,

B: HY(X;Fp) — H"+1(X;]Fp),

and is identified with the stable cohomology operation /3 in the Steenrod algebra
Ap, when pis odd, and Sq' in Ay, when p = 2. This leads to a spectral sequence
of algebras since 3 is a derivation with respect to the cup product.

When X is an H-space

The naturality of the Bockstein spectral sequence applies to the diagonal
mapping to give a morphism of spectral sequences B (X) — BL(X x X).
When (X, zo, 1) is an H-space, the multiplication mapping induces B (p):
BI(X x X) — BI(X). Our goal in this section is to identify B} (X x X)
with B (X) ® BZ(X) and so obtain a spectral sequence of coalgebras for the
homology Bockstein spectral sequence. Dually, we obtain a spectral sequence
of algebras for the cohomology Bockstein spectral sequence; and for H-spaces,
a spectral sequence of Hopf algebras.
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Following [Browder61], we introduce small models of chain complexes
whose structure makes explicit the key features of the Bockstein spectral se-
quence. Suppose n and s are nonnegative integers. Define the chain complex
(A(n, s),d), free over Z, where

{0}, m#n,n+1,
An,8)m = Z=(u), m=mn,
Z= (W), m=n+1(={0}ifs=0).

The differential is given on generators by d(v) = su, and so H,(A(n, s),d) =
Z/sZand H,(A(n, s),d) = {0} forr # n. This chain complex can be realized
cellularly by the mod s Moore space P"+1(s) = S™ U, e™+1 where s here
denotes the degree s map on S™. The reduced integral homology of P™*1(s)
is H.(A(n, s),d).

The times p map, denoted — X p, on A(n,s) fits into the short exact
sequence

0= (A(n, ), d) —5 (A(n, ), d) s (A(n, ) ® F,,d) — 0,

where red,, denotes reduction mod p. The long exact sequence in homology
is the Bockstein exact couple. We consider the Bockstein spectral sequence
associated to this exact couple.

Proposition 10.5. If ged(s,p) = 1, then H,(A(n, s) ®F,,d) = {0}. Ifs =0,
then B' = B> = 7,/pZ.in degreen. If s = ap® withk > 0 and ged(a,p) = 1,
then B! = B? = ... = Bk gnd B**+! = B> = {0}.

Proor: The first assertion follows from the Universal Coefficient theorem
and the fact that Z/sZ ® F, = {0}. When s = 0, A(n,0) ® IF, is simply F,
concentrated in degree n and the spectral sequence collapses.

By the fundamental theorem for finitely generated abelian groups, we can
split Z/ap*7Z as 7./aZ @ 7,/ p* 7. Since the contribution by 7 /aZ, vanishes, we
only need to consider the case s = p* with k > 0. Since A(n,p*) ® F, =
A(n, p*)/pA(n, p¥), we have that d = 0 and so

- F whenr =norn+1,
H.(A(n,p*) ®TF,,d g{ P
(A(n,p") © T, d) {0}, otherwise.
(
0: Hyy1(A(n , ® Fp,d) — Hy(A(n,p*),d) in the exact couple is given
by d((v ) )= u for reasons of exactness. We can peel away powers of p

from pF~1y unt11 it becomes the generator of p*~1(Z/p*Z) = 7 /pZ, and so
d'=d?=---=d*1' = 0. At B* we have

We write (u), and (v), for the mod p reductions of u and v. The mapping
)
-1
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Thus B*¥+1 =2 B> = {0}. o

In fact, more can be deduced from the small complexes.

Lemma 10.6. If s = ap® with k > 0 and ged(a,p) = 1, then there is an
isomorphism of exact couples (q, q):

H(A(n,ap"),d) —2~ H(A(n, ap*),d) =2 H(A(n, ap*) @ F,, d) —2-

o

redp.

pH(A(n, ap**"), d) ZEpH (A(n, ap**"), d) =22 B*(A(n, ap*+1)) —L—

PROOF: Write A = A(n, ap**1) with generators u and v and A’ = A(n, ap*)
with generators U and V. Consider the mapping q: A" — A and its reduction
g: A ®@F, - A®T, given by

Q(U) = pu, q
q(V) =1, q
By the linearity of the differentials, ¢ is a chain map. By the definition of ¢,
¢.H(A(n,ap*)) = pH(A(n, ap**+1)). If k > 0, then g, is an isomorphism at
B(A) = B%(A).

It is left to show that the mapping pair (gx, «) is @ morphism of exact
couples. Since ¢ is a chain map, it commutes with — x p. The class {U}
generates H,(A"). The mapping j on H(A’) is given by {U} — (U),, the
reduction mod p of {U}. Therefore, G, o 5({U}) = (u),. By the definition
of a derived couple and the fact that j({u}) = (u),, we have j' 0 ¢, ({U}) =
3'(p{u}) = j({u}). Thus j' o g. = Zu 0 5.

For dimensional reasons, 9((U),) = 0 = 0'((u)p). Fork >0, (V), # 0
and, by exactness, ((V),) = {ap*~U} and &'((v),) = {ap*u}. Since
g+({U}) = {pu}, we have that ¢, 0 @ = 9’ o ¢, and s0 (¢, g) is a morphism
of exact couples. a

With this lemma, we prove a structure result.

Proposition 10.7. Consider the Bockstein spectral sequence for Cy @ Co where
Cy = (A(n,ap*),d) and Cy = (A(m,bp'),d), k > 1 > 0 and ged(a,p) =
1 = ged(b, p). Then B*(Cy ® Ca) may be taken to be B*(Cy) ® B%(Cy).

PROOF: By Lemma 10.6 we can take B*(Cy) = H(A(n,ap*~') @ Fp,d)
and B2(Cs) = H(A(m,bp'™t) ® Fp,d). We write B2(C;) = C!; denote
the generators of C; by u;,v;, and the generators of C; by u;, v} for i = 1,2.
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Assume that k£ > [ and let

v =lem(a, b) = ag = bh,

6 = ged(ap® =, b) = Nap*~t + Mb,

z = g(v1 ® ug) — (—1) 4B hp*Hug @ 12),
y = N(v1 ® ug) + (—1)98% M (u; @ va).

It follows that {z,y} is a basis for (C1 ® C2)ntm+1. Putting primes on z, y,
u; and v;, we get a basis {z’,y'} for (C] ® C§)ntm+1. By the definitions,
dr = 0 = do', dy = 6p*(u1 ® u2), and dy’ = 6p'~1 (v} ® uh). Define the
morphism of exact couples by letting ¢: C ® C% — C1 ® Cs be given by

q(uy ® uy) = p(ur @ u2), q(z') = pz,
Q(y/) =Y, q('Ull & '0,2) = & Vsg.

Then q is a chain map and ¢. H(C] ® C4) = pH(Cy ® C2). On the reductions
mod p, define the map §;: C, ® F, — C; ® Fp by @:((v)p) = (u;)p and
G ((v))p) = (v3)p. Let§ = 1 ® G2. Then

Gu: H(C, ® Ch @ Fp) — H(Cy ® Ca @ Fp) = BX(Ch © Cs).

The morphism (g., g«) is @ morphism of exact couples and, as in the proof of
Lemma 10.6, an isomorphism. O

‘We put the small models to work after we state two results of [Browder61]
that follow from the properties of free and torsion-free chain complexes. We
leave the proofs to the reader.

Proposition 10.8. Let (A, d) be a chain complex, free over Z; let (A’,d') be
a torsion-free chain complex, and p, a prime. If (¢, ) is a morphism of the
associated Bockstein exact couples,

redp.

H,(A) — H,(A) Hn(A®Fp)L’ n-1(4) ——

(R N

——— Hp(A") —— Hy(A') —— H,(A' @ Fp) — n—1(A) ——

—Xp redy.

Then there is a chain map f: (A,d) — (A',d’) such that H(f) = ¢ and

H(f®F;n):¢~
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Lemma 10.9. Let (A,d) and (4, d’) be torsion-free chain complexes. Then,
forallr, B"(A@ A’',d+ d') = B"(A,d) @ B"(A',d).

Assume that (A4’,d’) is a torsion-free chain complex whose homology
groups are finitely generated in each dimension. Using Proposition 10.8 and
Lemma 10.9 we can replace (A’, d') with another complex (A, d) which is free
and of the form @i(Ai’ d;) with each (4;,d;) of the form (A(n;,a;p%),d).
By Lemma 10.9, B"(A’,d') = @_BT(Ai, d;).

Suppose X is a space of finite type. The homology Bockstein spectral
sequence for X is the Bockstein spectral sequence for (C(X),d) and this
spectral sequence is functorial in X. The diagonal mapping on X gives a
morphism of spectral sequences

B(A): B"(X) — B(X x X).

Replacing the chains on X with a direct sum of small models, we can apply
Proposition 10.7 to the Alexander-Whitney map to prove the following result.

Theorem 10.10. For (X,xo) a pointed space of finite type, the homology
Bockstein spectral sequence is a spectral sequence of coalgebras.

When X is an H-space of finite type, the same argument applied to the mul-
tiplication, along with the compatibility of the multiplication with the diagonal,
gives the following key result.

Theorem 10.11. For X, an H-space of finite type, the homology Bockstein
spectral sequence for X is a spectral sequence of Hopf algebras.

The cohomology Bockstein spectral sequence admits a dual analysis using
the small complexes Hom(A(n, ap*), Z). In fact, Hom(A(n, ap*),Z) is sim-
ply A(n, s) with the differential upside down. Its single nontrivial homology
group is H™ 1 (A(n, ap*), 4@, Using these complexes and carrying out the
same kinds of arguments as for the homology Bockstein spectral sequence we
obtain the theorem:

Theorem 10.12. For (X, x) a pointed space of finite type, the cohomol-
ogy Bockstein spectral sequence is a spectral sequence of algebras. Sup-
pose (As,d) is a chain complex with homology of finite type. Let {B} =
B (Hom(A.,Z)),d,} denote the cohomology spectral sequence for the dual
of (As,d). Then B} = Hom(B%(A.),Fp) and d, is the differential adjoint
to d”. If X is an H-space of finite type, then the cohomology Bockstein spec-
tral sequence for X, Bf(X) = B:(C*(X),9), is a spectral sequence of Hopf
algebras dual to the homology Hopf algebras B (X).
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Having established these structural results, we turn to some examples.
The universal examples for cohomology are the Eilenberg-Mac Lane spaces for
which we have complete descriptions of the mod p cohomology according to
the theorems of Cartan and Serre (Theorem 6.16). We reinterpret these known
data to give a complete description of the Bockstein spectral sequence in a range
of dimensions.

We note that the limit of the Bockstein spectral sequences for K (Z,/p*7Z,n)
has B> = {0}. To see this, suppose H.(K(Z/p*Z,n)) contained a torsion-
free summand. Then H,, (K (Z/p*Z, n); Q) would have anonzero lowest degree
generator. By the Hurewicz-Serre theorem over (@ (Theorem 6.25), this would
imply a torsion-free summand in the homotopy of K (Z/p*Z,n) which does
not happen. Hence B> = {0}.

Suppose p is an odd prime. The cohomology of K(Z/pZ,n) with co-
efficients in the field IF,, is a free graded commutative algebra (exterior on
odd-dimensional classes, tensor polynomial on even-dimensional classes) gen-
erated by classes St's,, where I = (g9, 81,€1,.-- ,5m,Em) is an admissible
sequence (g; = 0 or 1, s; > ps;41 + €4, for m > ¢ > 1; Definition 6.17) of
excess less than or equal to n. Notice that the excess, e(I) = 2ps1 + 2e9 — |,
is such that, if I = (1, s1,€1,... ,8m,em) and e(I) < n, then e(I") < n for
I'=(0,81,€1,-.. ,8m,Em). Thus, the generators pair off. Since this pairing is
given by 38t/'1,, = St!2,, andd; = 3, we are looking at two sorts of differential
graded algebras:

A(Stl'zn) ® Fp[St's,), du (Stl/zn) = St's,,, degSt’1, odd,
FplSt" 0] @ A(St' 1), di (St 1) = St'2r,,  deg St' 1, even.

When $t''2,, has odd degree, the complex A(St''2,,) & T, [St'2,,] has the same
form as the Koszul complex for A(x,qq) and so its homology is trivial. When
St""1,, has even degree, the complex has homology H (F, [St” 1, @ A(St'2,,), d1)
= A{(St 2,)P 1 @ 8t 1, }) @, [{(St! 2,,)P}], where {U} denotes the homol-
ogy class of U with respect to the the differential d;. This follows because d;
is a derivation and so ds (St 2,)P) = p(St’ 1,)P~* = 0. Notice how the class
{(81" 1,)P~2 ®St'1,, } encodes the transpotence element that figures in Cartan’s
constructions and Kudo’s transgression theorem (§6.2).

Suppose n = 2m. Recall that P™12,, = (22,)?. In dimensions less than
2mp = deg1,,, we find classes coming from the paired algebras:

(Fpltam) ® A(Bram)) @ (Fp[Plam] ® A(BPY1g,,)) & - - -
& (Fp[P™ M12m] @ A(BP™ 12,m)).

Computing the homology of this product as a differential graded algebra with
differential 3, we are left with the first nonzero classes, {5, ® Biam} €
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B2™ ' and {s5,,} € B3™. Thenextindecomposable class in By corresponds
10 {(Pl1gm)P} € BEE™H20=D) Thus | for ¢ < p(2m + 2(p — 1)),

B} (K(Z/pZ,2m)) = (A({Bram — (t2m)"")}) @ Fp[{e5,,}])".

The case of K (Z/p*Z,n) for k > 1 yields to a similar analysis of admis-
sible sequences except in the lowest degrees. Here the contributing classes are
1n, and By, the Bockstein of k™ order associated to the short exact sequence
of coefficients 0 — Z/pZ — Z/p*7Z — Z/p*~'Z — 0. In dimensions
g < p(n+2(p — 1)) we have that B} (K (Z/p*Z,n)) =

BY, il <k,
{0}, if 1 > k and n is odd,
(A({Brin — (1P} @ F,[{£}])?, ifl=k+ 1andniseven.

We complete the analysis for the lower dimensions of the Bockstein spec-
tral sequence when n is even. The input is part of the computation of [Cartan54]
of the integral cohomology of the Eilenberg-Mac Lane spaces.

Proposition 10.13. If p is any prime and k > 1, then Hop,, (K(Z/pF7Z,2m))
contains a subgroup isomorphic to 7./p*+'7 as summand. Furthermore, there
are no summands isomorphic to 7. or Z./p* I 7 with j > 1.

Corollary 10.14. Suppose that p is an odd prime. Let 12, denote the funda-
mental class in Bi™(K (Z,/p*Z,2m)). Then, for some c € T,

di1({15,,}) = {Brrzm ~ (12m)P 7'} # 0.

The proof of Proposition 10.13 is a direct computation using the method
of constructions ([Cartan54]). This method applies integrally and so one can
compute the desired homology group by hand and discover the p-torsion height.

The corollary follows from the convergence of the Bockstein spectral se-
quence. Since there are no other classes in the degree involved, the formula for
dik+1({24,, }) follows without choice. [Browder62, Theorem 5.11] gave a more
general chain level computation that obtains the formula directly.

For the prime 2, a new phenomenon occurs in the Bockstein spectral se-
quence for K (Z /27, n). [Serre53] showed that H* (K (Z/2Z, n);Fy) isapoly-
nomial algebra on generators St!1,, where I is an admissible sequence (mod 2)
of excess less than or equal to n (Theorem 6.20). However, when & = St!1,,
has odd degree 2m + 1, then

22 = Sg*™ 1y = ¢ S¢* e = SqlSt(Qm’[)zn,

that is, the squares of certain classes are the image under the Bockstein of other
generators. The pairing of classes that occurs in the case of odd primes does not
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occur here and new cycles are produced. We write Sq'22m = 7om+1. Because
Sq' = 3 is a derivation, we have

n§m+1 = Sq2m+122m = SqISqun2m+1 = Sql (22m772m+1)'

Thus S¢% ™ Nam+1 + 22m ~— Nema1 is a cycle under d;. By the same analysis of
the low degrees of H*(K (Z/2Z,2m);F5) and Cartan’s integral computation
we have the following result.

Corollary 10.15. Suppose that p = 2. Let 12, € Bi™(K(Z/2Z,2m)) and
Noma1 = 59 22m. Then

dQ({ng}) = {Sq2m772m+1 + 22m ~ Mom41}-

We leave the remaining case of K (Z/2%Z, n) for k > 1 to the reader. In
this case, Corollary 10.14 for odd primes goes over analogously.
We next explore some of the consequences of these calculations.

Infinite implications and their consequences

The proof of Theorem 10.2 for fields of characteristic zero shows that the
presence of a primitive element z of even degree implies the condition 2™ # 0
for all n. For fields of characteristic p > 0, it can happen that a primitive
element « of even degree can satisfy 22" = 0 for some 7, and so the finiteness
of the H-space need not be violated. For example, the exceptional Lie group
F has mod 3 cohomology given by

H*(Fy;F3) = Fslws)/(23) ® Alzs, 7,211, 215),

where zg is clearly primitive ([Borel54]). The rational cohomology is given by
H*(Fy;Q) = A(X3, X11, X15, Xo3). The Bockstein spectral sequence mod 3
requires 3(z7) = xg; subsequently the class X»3 is represented by the product
7 — 23].

The E.-term of the Bockstein spectral sequence of a finite H-space is fixed
by Hopf’s theorem. The appearance of even-dimensional primitive elements
in H*(X;TF,) forces some nontrivial differentials in the Bockstein spectral
sequence in order to realize this target. The consequences of such differentials
are organized by the phenomenon of implications due to [Browder61].

Definition 10.16. Let A, denote a Hopf algebra of finite type over the finite field
Iy, and denote its dual by A*. Anelementx € Ay, issaid to have r-implications
if there are elements x; € Apy, fori = 0,1,2,... v, withxo = o, 33 # 0
for all i, and either x;41 = atf or there exists an element T; € A™P" such
that T;(x;) # 0 and T (x;41) # 0. An element has co-implications if it has
r-implications for all r.
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Lemma 10.17. If A is a Hopf algebra over IF,, that contains an element which
has oco-implications, then A, is infinite dimensional as a vector space over I,

The Hopf algebras that we want to study are the terms of the Bockstein
spectral sequence for an H-space which are, in fact, differential Hopf algebras.
Before stating Browder’s theorem on co-implications we collect a few basic
lemmas about Hopf algebras and differential Hopf algebras.

Lemma 10.18. Suppose (A.,p,A) is a Hopf algebra and x € Az, is a
primitive element. Then

Alz™) = Z;O (7) " @t

This follows like the binomial theorem for the algebra A, ® A, using the
fact that the comultiplication A is an algebra map. (We do not need to assume
associativity of y if we define 2™ inductively by 2 = 1 and z® = z™ ' - 1,
and pay careful attention to parentheses.)

Lemma 10.19. Suppose A, is a Hopf algebra over a field k and A* is its dual.
If & € Aoy, is a primitive element and T € A*, then " (™) = n!(Z(x))™.

PRrROOF: We compute

7 (a™) = A*(F 7 @ 7)(a" z)(A(e™))

(5 e

(wn 1® )( n— :17

Thus Z*(z™) = n(z"~1(z"~1) - Z(z)) and so, by induction, we get Z*(z™)

Lemma 10.20. Suppose that (A, i, A, d) is a connected, differential graded
Hopf algebra over the field ¥, © € Ag,y, is primitive, ¢ = d(y) for some
Y € Aomy1, and T € A*™ satisfies T(x) # 0. Set §j = d*(Z) where d* is the
dual differential on A*. Then (ZP~' - §)(zP~1 - y) # 0.

PRroor: First notice that §(y) = (d*(z))(y) = z(d(y)) = &(z) # 0 and so
7 # 0. We next compute

@1 g y) = M@ @) y) = (@ o) (ATHAW)
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By Lemma 10.18, we can write

A@)A) =

p—1
1 ) )
0 Eaat T | FEIERENES S
i J

7=

= ey+ Y - Do @ ay) + s ]
dim /=1

where the “stuff” is a sum of tensor products of classes u ® v where deg u #
(p—1)degZ or degv # deg 3. Since (ZP~ ! @ ) (2P~ @ y) = P~ 1 (2P~ 1) -
7(y) # 0, it suffices to show that y(zy}) = 0 for y; € A;. Consider

glay)) = (d°(2))(ay)) = (d(z)y] + zd(y})).

Since z = d(y), d(z) = 0. Thus d(zy}) = zd(y}). If d(y;) # O, then there
is an element w; € A° with d*(w;) # 0. Since A, is taken to be connected,
w; = oy-1forsomea; # 0 € Fp. Butd*(1) = d*(1-1) = d*(1)-1+1-d*(1) =
2d*(1) and so d*(1) = 0. Thus d*(w;) = d*(¢ey - 1) = a;d*(1) = 0. This
implies that j(zy;) = 0 for all 5. a

Lemma 10.21. If A, is a differential graded Hopf algebra and x € H(A.)
satisfies xF # 0, then for any y € A, with {y} = x, we have y? # 0. If « has
r-implications in H(A.) for some r < oo, then y has r-implications in A..

Proor: Since 2 = {y}? = {y?} # 0, then y* # 0. We can apply this
argument at each power of p. Thus, if & has co-implications in H(A,), then y
has oo-implications in A.. a

Lemma 10.22. Suppose that A, is a differential graded Hopf algebra over IF,.
Suppose further that x© € Asy, is primitive, that x? = 0, and there is an element
ywith d(y) = x. If {zP~ Yy} # 0 in H(A,), then it is primitive.

ProOF: By definition, H(A)({z?~'y}) = {A(zP~'y)}. By assumption we
have d(A(y)) = A(d(y)) = A(z) = L@z +2®1. This implies that d(A(y) —

-1 -1
y®1—1®y) = 0. Furthermore, A(zP~1) = Zp 0 P ;
i=

2Pt @ gt

-1 .
From elementary number theory we know that <p ) ) = (-1)* mod p, and
7
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SO We can write
A(zPy) = AP A(y)

= (Zf__ol SO ®$") ol+loy+ Ay —loy-yol)

_ pp-1 p—1 P2 i p—1—i g i
Py 1+10x y+§i:0( 1)z ® z'y
—1 ) ) )
+3 ()i iy @ ot + AP (A) - 1@y -y 1)

=1
p—1 . . X
= .’Ep_ly ®R1+1® xp—ly +d <Zi:1 (_1)z+1($p—1—zy ® xz—ly))

+d(A@@P ) (Ay) 1@y -y ® 1))

It follows that {A(zP~1y)} = {aP "1y} @ 1 + 1 ® {aP "1y}, g

The last lemma we need before we state and prove the main theorem of
[Browder61] is a technical fact about the mod 2 Steenrod algebra and H-spaces.
While the previous lemmas followed for purely algebraic reasons, this lemma
requires that we are working with the mod 2 cohomology of an H-space.

Lemma 10.23. If (X,xzq, 1) is an H-space, x € Ha,,,(X;IF3) is a primitive
element, y € Homy1(X;F2), andz € H*™+1(X; Fy), then (Sg°™2)(zy) = 0.

Proor: In terms of the induced operations we can write

(Sg*™2)(zy) = (W*(Sg°™2)(x © y) = (S¢*™(1*2))(z ® y).

We write 1*(Z) = ), Z; ® Z;’ and the Cartan formula gives
SPmEeH) =Y, SaE) ST,

By the unstable axiom for the action of the Steenrod algebra, if ¢ > dim Z,
then Sq¢?(%;) = 0, and similarly if » > dim z;’. Letc = degZz;, d = deg Z;'.
Then ¢+ d = 2m + 1 and it follows by examining the solutions to ¢ +r = 2m
that

S¢*™(z, ® z}) = Sq°z, @ Sq 'z + Sq° 7z, @ Sqz.

Since S¢°z; = (2/)? and x is primitive, (z])%(z) = 0. It follows that
(Sq°z, ® Sq*'z/)(xz ® y) = 0. Similarly, Sg?z/ = (2/)2, a class of even
degree. Since y has odd degree, (2)%(y) = 0 and so the lemma follows from

(Sq°'2, ® Sq?z)) (z ® y) = 0. O
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Theorem 10.24. Suppose (X, xo, ) is a connected, path-connected H-space
of finite type and {BL(X)} is its homology Bockstein spectral sequence. If
x € BE,, is a nonzero primitive element and, for some y # 0, z = d"(y), then
x has oco-implications.

Proor: We may assume that P = 0, for otherwise we can take 1 = P,
also a primitive, with d”(2P~'y) = aP. Thus z; satisfies the hypotheses of
the theorem, and if this process never stops, we have obtained the sequence of
oo-implications of z. Assuming z¥ = 0, we will produce z; € Bg,,, , such that
ZP(x,) # 0forany Z € B2™(X) for which Z(x) # 0. The z; produced will be
neither primitive nor a boundary, but its homology class {1} € Bj! will be
both primitive and a boundary. By Lemma 10.21 it suffices to check that there
is the 1-implication 21 at the next stage of the Bockstein spectral sequence and
then take a representative in BT,

In the cohomology Bockstein spectral sequence suppose that € B2™
satisfies Z(x) # 0. Set § = d,-(Z). Then

y(y) = (dr(2))(y) = 2(d"(y)) = Z(z) # 0.

It follows that ¥ # 0 and, by Lemma 10.20, that (zP~1%)(z?~'y) # 0. Fur-
thermore, if p # 2, d,(ZP719) = (p— 1)ZP2? = 0. Ifp=2and r > 1,

7* = {S¢*" 2} = {Sq'Sq* ™z} = {d1(S¢°™ =)} = 0

in By where z € H*™+1(X;IFy) is such that {z} = 7. That is, squares of odd
degree classes vanish in By, If p = 2 and r = 1, then

(S +zY) =7+ 5 =0

and, by Lemmas 10.20 and 10.23, (S¢°™5 + z7)(xy) # 0.
We check that the class {ZP '3} (or {S¢*™§+Z7} whenr = Land p = 2)
is nontrivial in B, 1. Suppose that Z =15 = d,.(z). Then

0# @9 'y) = dr(2)(@" ") = 2(d" (@)

a contradiction. Thus 2P~y # d,.(Z). Similarly, (S¢*™5 + Zy) # d1(2).

To complete the proof we show that the class {zP~1y} € B, satisfies
dry1({ZP}) = c{zP7 'y} # Owhenp # 20orp = 2and r > 1. In the
case p = 2 and r = 1, we show that the class {qumg + Zy} € Bs satisfies
d2({z%}) = {S¢*™g + y}. Recall d.(Z) = 7. Then there is a class % €
H*™(X;7/p"Z) such that {red; @} = Z € B, where red,: Z/p"Z — Z/pZ
isreductionmodp. Let f: X — K(Z/p"Z, 2m) represent @, thatis, f*(12m) =
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@ where 12, € H*™(K(Z/p"Z,2m);Z/p"Z) is the fundamental class. Let
7 = red;(22m ). It follows that

)= f*(red;:7 tom) = I’ed;(f*(lzm)) = red;‘,('a) =Z.

Let f}: B.(K(Z/p"Z,2m)) — B,(X) denote the homomorphism induced
by f on the cohomology Bockstein spectral sequences. If 77 = d,.(7), then we
have

fr(@) = f7(d: (@) = do(f7 (7)) = dr(Z) = §

and so f(#~'7) = ZP~'g. Since {z77'g} # 0in By, f ({#7'7}) =
{ZP~'y}. By naturality and the calculation of the cohomology Bockstein spec-
tral sequence for K(Z/p"Z,2m), f} 1 (dr41({#*})) # 0 and f} ,({**}) =
{zP} # 0. Thus

1 ({37}) = drn (F7 (1) = i ({717} = {a" '3}

The analogous argument mod 2 gives dz({Z%}) = {S¢*™7 + z7}.

In order to continue the argument, we show that there is an element v €
Byt that is primitive with {z#}(v) # 0 and v = d"+!(w) for some w.
Consider the element w = {z?~'y}. We compute:

{FHd ({2 y}) = {277 aH({2" T }) £ 0.

By Lemma 10.22, w is primitive. Also, v = d"*'(w) is primitive. In the
sequence of elements making up the co-implications of = we take x; to be a
choice of representative of v in B”. Then, ZP(z1) = {ZP}(v) # 0, and, since
Z(x) # 0, x1 is the next element in the sequence making up the co-implications
for z. To obtain s, either take 4 if nonzero, or repeat the argument using the

primitive v € B} with v = d™+ (w). o

Notice that if ¥ = 0, then the choice of Z with Z(x) # 0 was arbitrary in
the construction. It follows from Z? (1) # 0 that, if  is a primitive in Bj,,
with 0 # d"(y) = x and 2P = 0, then ZP # 0 for all Z € B>™ with Z(x) # 0.

We turn to applications of Theorem 10.24. A space X is said to be a
mod p finite H-space if it is a connected, path-connected H-space of finite
type for which the mod p homology ring is finite-dimensional over IF,,. By
Theorem 10.2, for a mod p finite H-space X, B, (X)) is an exterior algebra on
finitely many odd-dimensional generators.

A shorthand statement of Theorem 10.24 is the expression for X, amod p
finite H-space,

Im d" N Prim(Heven (X;Fp)) = {0}.

A dual formulation of Theorem 10.24 depends on a fundamental theorem due
to [Milnor-Moore65]:




10.1. The Bockstein spectral sequence 475

Theorem 10.25. If (A, i, A) is an associative, commutative, connected Hopf
algebra over the field I, then there is an exact sequence

0 — Prim(¢A4) — Prim(4) — Q(A4)
where £: A — A is the Frobenius homomorphism £(a) = a?.
SKETCH OF A PROOF: The reader can check that the theorem holds for A a
monogenic Hopf algebra. For a finitely generated Hopf algebra A and A’, a
normal sub-Hopf algebra, there are short exact sequences:
0 —— Prim(A") —— Prim(A) —— Prim(A4//A")

] |

QA" Q(A) Q(A//A").

We leave it to the reader to show that, if A’ = £(A), then the mapping
Prim(A//A") — Q(A//A’) is injective. The theorem follows from the dia-
gram of short exact sequences. a

Suppose X is a mod p finite H-space, Z € B2™ is a primitive element and
d.(z) =y # 0. Since H*(X;T,) is an associative, commutative connected
Hopf algebra, Theorem 10.25 implies that g, a primitive of odd degree, is not a
p™ power (7% = 0) and hence 7 is indecomposable. Thus there is an element y
in Bop41 with§(y) # 0andy primitive. Theng(y) = d-(Z)(y) = Z(d"(y)) =
Z(z) # 0, and s0 « € Bay, is a primitive in the image of d”. Since H*(X; )
is a finite vector space, there cannot be co-implications, and so the assumption
that there is an Z € B2™ with d,.(Z) # 0 must fail. Thus, the dual version of
Theorem 10.24 for mod p finite H-spaces may be written

Im d,. N Prim(B2™*1) = {0}, for all m.

From the structure of an exact couple, an element in the image of the
descending homomorphism is always a cycle (Proposition 2.9). In the case of
the Bockstein spectral sequence, the descending homomorphism is reduction
mod p. Thus, for a mod p finite H-space, the image of red,.: H.(X) —
H.(X;F,) cannot contain an even-dimensional primitive element. If x €
Imredy, NPrim(Heven (X;Fp)), then d"(z) = 0 for all » and since = cannot
persist to B>, then z = d*(y) for some s and y. But then « has co-implications
and H,(X;T,) has infinite dimension over IF,,.

A consequence of this discussion is the theorem of [Browder61] generaliz-
ing the classical result of [Cartan, E36] that 72 (G) = {0} for simply-connected
Lie groups.
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Theorem 10.26. If X is a mod p finite H-space, then the least m > 1 for which
Tm(X) ®TF, # {0} is odd.

ProoOF: Consider the mod p Hurewicz homomorphism AQTF,, : 7,,,(X)®F, —
H,(X) ®F, — Hp,(X;F,). This factors through red,,. and takes its image
in the primitive elements. It follows that this mapping is trivial when m is even.

When X is simply-connected, the Hurewicz-Serre theorem for mod p
coefficients (Theorem 6.25) implies that the first nonvanishing homology group
H,,(X;[Fp) is isomorphic via h ® I, to the first nonvanishing homotopy F,,-
module 7, (X) ®Fp. Since this must happen in an odd dimension, the theorem
holds.

_ When X is not simply-connected we can argue using the universal cover
X. [Browder59] showed that the universal cover of a mod p finite H-space is
again a mod p finite H-space. Since ., (X) = 7, (X) for m > 1, we reduce
to the simply-connected case. a

In developments that grew out of the study of torsion in H-spaces, [Jean-
neret92] and [Lin93] have shown that the first nonvanishing homotopy group
of a mod 2 finite H-space, whose mod 2 homology ring is associative, must be
in degree 1, 3, or 7.

An H-space with the homotopy type of a finite CW-complex is called a
finite H-space. The compact Lie groups offer a large class of examples of finite
H-spaces. A guiding principle in the study of such spaces is that the topological
properties of compact Lie groups have their origin at the homotopical level of
structure. That is to say, what is true homotopically of a compact Lie group
G ought to be true because G is a finite H-space. Hopf’s theorem (10.2) and
Browder’s theorem (10.26) lend considerable support to this principle. That
the class of finite H-spaces is larger than the examples of compact Lie groups
is a result of the development of localization and the mixing of homotopy types
due to [Zabrodsky72]. [Hilton-Roitberg71] used mixing to exhibit examples of
finite H-spaces not of the homotopy type of any compact Lie group.

A major theme in the development of finite H-spaces is the application
of the guiding principle to Bott’s theorem (10.1)—if X is a simply-connected
finite H-space, then H, (X)) has no torsion.

Under the assumption that X is a simply-connected finite H-space and
H.(22X) has no torsion [Browder63] showed that H.(QX) = Heyen(QX),
strengthening Bott’s theorem considerably. This paper introduces a family
of spectral sequences based on the natural filtrations on a Hopf algebra that
interpolate between the terms in the Bockstein spectral sequence and enjoy a
particularly nice algebraic expression.

[Kane77] applied work of [Browder63] and [Zabrodsky71] to obtain a
necessary and sufficient condition that H., (2X') have no p-torsion when X is a
simply-connected finite H-space. The condition is given in terms of the action
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of the Steenrod algebra on the cohomology of the finite H-space:
even . _ m 2m+1 .
QHT™(X;IFp)) = Zm21ﬁP QH™T(X;Fp)).

Notice, in the case that p = 2, this condition holds only when H*(X;F2)
has no even-dimensional indecomposables. When p = 2, P™ = S¢*™ and
BSg*™ = Sq'Sg*™ = S¢*™*1, which is the squaring map on H>"+1_ [Lin76,
78] established that Q(H®¥*") = Y, | BP™Q(H°) holds for odd primes
by extending work of [Zabrodsky71] on secondary operations.

Building on work of [Thomas63] on the action of the Steenrod algebra on
the cohomology of an H-space, [Lin82] established the absence of 2-torsion
in H,(Q2X) when X is a mod 2 finite H-space and H,(X;T3) is an associa-
tive Hopf algebra. [Kane86] studied the presence of 2-torsion in H,.(2X) by
using a version of the Bockstein spectral sequence for the extraordinary coho-
mology theory k(n)* introduced by [Morava85]. Putting together all of these
developments, the goal of generalizing Bott’s theorem was realized.

Theorem 10.27. If X is a simply-connected finite H-space, then H,.(QX) has
no torsion.

The proof of Theorem 10.27 generated a number of powerful methods in
algebraic topology. Accounts of these developments and much more can be
found in [Kane88] and [Lin95].

Other applications of the Bockstein spectral sequence @

Away from the study of H-spaces, the results of [Browder61] may be ap-
plied to obtain some general results about H*(Q2.X; IF,,). In particular, using co-
implications, [McCleary87] proved a generalization of the results of [Serre51]
(Proposition 5.16) and [Sullivan73] on the nontriviality of H.(QX; k) for k a
field.

Theorem 10.28. Suppose M is a simply-connected compact finite-dimensional
manifold and dimy, Q(H*(M;k)) > 1, then the set {dimy H (QM;k) | i =
1,2,...} is unbounded.

The assumption that dim,, Q(H*(X;TF,)) > 1 together with the results
over Q of [Sullivan73] force the existence of co-implications on two elements.
The intertwining of the co-implications of these elements in a Hopf algebra
gives a subspace of H*(2M;[F,) that is isomorphic as a vector space to a
polynomial algebra on two generators. The vector space [F,, [z, y] has subspaces
Fp{atm, gl=tmyn gl=timyin - gmy(=bn yn} where mdegz =
ndegy = lem(deg x, deg y). This subspace has dimension [ + 1 and so grows
unbounded with [.
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This theorem, like Proposition 5.16, implies geometric results about the
geodesics on the manifold M. Under the assumptions of the theorem, the
number of geodesics on M joining two nonconjugate points of length less than
A grows at least quadratically in \.

Another place where p-torsion makes a key appearance is in the Adams
spectral sequence. Following the discussion in §9.3, the times p map is de-
tected in the Adams spectral sequence by multiplication by a class ag €
EXt}ii (Fp,Fp). For an Ap-module M, [May-Milgram81] say that an element
@ € Ext 4, (M,TF,) generates a spike if z # aoz’ and afx # 0 for all ¢. There
is a single spike in Ext 4,(IF2,Fo) as the charts (pp. 443-444) in Chapter 9
show—the picture explains the terminology.

[Adams69] wrote of the Adams spectral sequence, “Whenever a chance
has arisen to show that a differential d,. is non-zero, the experts have fallen on it
with shouts of joy— ‘Here is an interesting phenomenon! Here is a chance to do
some nice, clean research!’—and they have solved the problem in short order.”
The Bockstein spectral sequence interacts with the Adams spectral sequence to
produce differentials that form a coherent pattern. The function T'(s) used in
the statement of the following theorem refers to Lemma 9.45: When p is odd,
then T'(s) = (2p—1)s —1; when p = 2, then T'(s) is defined by T'(45) = 12s,
T(4s+1) =125 +2,T(4s+2) =12s+ 4, and T'(4s + 3) = 125 4 7.

Theorem 10.29. Suppose X is an (n — 1)-connected space of finite type. For
r > 1, suppose that C,. is a basis for Bt (X), the homology Bockstein spectral
sequence. Assume that C,. is chosen so that C. = D, U 3,D, U Cyr11 where
D,., 3, D., and Cy41 are disjoint, linearly independent subsets of BL(X) such
that 3. D, = {Byw | w € D,} and C.,41 is a set of cycles with respect to (3,
that projects onto the chosen basis for BTY1(X). Then

(1) Thesetofspikesin E.(X), 2 < r < oo, isinone-to-one correspondence
with Cy. If ¢ € C, has degree q and v € E2¥(X) generates the
corresponding spike, then T(s) —s+n < qg=1t— s.

(2) Ifd € D, andé € ES*(X) and e € EXY(X), withv —u=t—s—1,
generate spikes corresponding to d and 3,d, then

dr(ab6) = aftr s ve

providedn + T (i +s) > t.

PRrOOF: Since X is taken to be of finite type, H,(X) is a direct sum of torsion
prime to p, summands of the form Z/p*Z, and summands 7Z whose generators
reduce mod p to the elements of Co,. We may use this decomposition to
construct mappings

¢ X — K(H(X),1)
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that induce isomorphisms on integral homology in degree 7. Let Y denote the
space \/zK (Hi(X),4) and ¢ = \/, ¢;: X — Y denote the wedge product
of all of these mappings. On homology with coefficients in IFj,, ¢, induces a
monomorphism from H;(X) for all ¢. This gives rise to a short exact sequence

0— H.(X;F,) — H.(Y;F,) - M, -0,

where M, is seen to be D510 Hq (K (Hi(X),1);Fp).

Ignoring the contribution to torsion at primes not equal to p, we know from
theorems of Cartan and Serre that the dual of M, is A(0)-free (§9.6), that is,
the Bockstein homomorphism on Mf“al, as a differential, is exact. We next
examine the long exact sequence of Ext groups associated to the short exact
sequence:

— Ext3 V(MM T, — EYY(X) — EYN(Y) — Bxty! (MM, Fy) — .

8
P

Lemma 9.47 implies that Ext%’ (M&, ;) = {0} when 0 < s < t <

n 4 T(s). It follows that E5*(X) — E$'(Y) is onto in this range and an
isomorphism when s > 2and 0 < s < t < n + T'(s — 1). By the naturality of
the Adams spectral sequence, that it suffices to examine the case of Eilenberg-
Mac Lane spaces to prove the theorem. We leave it to the reader to show that
a factor of K(Z/pZ,1) introduces a single copy of T, that persists to E.; a
factor of K (Z/p*Z,1) introduces a pair of spikes at E» on generators z and y
with dy,(a}z) = a***y, leaving a basis of {ady | 0 < i < k} at E.; finally, a
factor of K (7Z, 1) introduces a permanent spike at Es. O

This argument requires that spikes have the right Adams filtration to work.
Spikes in F5(X) could be generated by elements lying in lower filtration degree
than in the range of the isomorphism. Such generators might have nontrivial
differentials earlier than predicted by the theorem. Such differentials could
occur on the bottoms of spikes whose top parts survive to Eoo (X).

Plugging this argument into a dual setting via Spanier-Whitehead duality,
[Meyer98] has used the resulting differentials to compute certain cohomotopy
groups and these groups force Euler classes associated to geometric bundles to
vanish. These data imply an estimate of certain numerical invariants of lens
spaces. Let

vp.2(m) = min{n | there is a Z/pZ-equivariant f: L*™~1(p) — S~}

Here the action of Z/pZ on L>*™~1(p) is induced by the multiplication by a
primitive root of unity of order p? on C™ and on S?"~" by the standard action.
The estimates of [Meyer, D98] generalize work of [Stolz89] at the prime 2.
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10.2 Other Bockstein spectral sequences

Consider the cofibration sequence

Sn—l L Sn—l i Pn(r) l Sn L) Sn

where P7(r) = S™~1 U, e™ is a mod r Moore space and r denotes the degree 7
map on S~ !, Following [Peterson56], these spaces may be used to define the
mod r homotopy groups,

(X5 Z/1Z) = [P™(r), X].

The properties of cofibration sequences lead to an exact couple

7w (X) T (X)
X /
)

(X Z/rZ
and hence a Bockstein spectral sequence, denoted by . BZ (X)), with . BL(X) =
m.(X;Z/rZ). When r = p, a prime, the spectral sequence converges to
(7. (X)/torsion) ® IF, for X of finite type. (Some care has to be taken when
p = 2 because m3(X; Z/2Z) need not be abelian.) This spectral sequence was
studied by [Araki-Toda65] for applications to generalized cohomology theories,
by [Browder78] for applications to algebraic K-theory, and by [Neisendorfer72]
for its relations to unstable homotopy theory.
Among the properties of the Moore spaces is the following result of
[Neisendorfer72]. The proof requires careful bookkeeping in low dimensions
(for details see the memoir of [Neisendorfer801).

r

Proposition 10.30. If m, n > 2 and r, s are positive integers for which
d = ged(r, s) is odd, then there is a homotopy equivalence:

Gt PPH(d) v PPHL(d) — PT(r) A PR(s).

When r = s = p, an odd prime, this homotopy equivalence may be used to
define pairings on mod p homotopy groups. In particular, given f: P™(r) —
X and g: P*(s) — Y, we can use the canonical injection, z — (z,*),
Pmtn(d) — P™tn(d) v P™+—1(d) to obtain a mapping P (d) — XAY
as the composite

PR (d) — PR (d) v PP (d) T Py A PR(s) AL X A Y
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A mapping o: X AY — Zinduces a pairing 7, (X; Z/rZ) Qmn (Y Z/sZ) —
Tman(Z;Z/dZ) and this pairing for X =Y = Z = BGI(A)* was developed
by [Browder78] to study the algebraic K-theory with coefficients of a ring A
via the homotopy Bockstein spectral sequence.

When (G, u, €) is a grouplike space, that is, G is a homotopy associative
H-space with a homotopy inverse (for example, a based loop space 2X), then
the commutator mapping [, |: G x G — G, givenby (z,y) — (zy)(z" 'y~ 1),
determines amapping [ , |: GAG — G, since, up to homotopy, the commutator
mapping restricted to GV G is homotopic to the constant mapping to e. This
mapping may be applied to the homotopy groups of G with coefficients to define
a pairing for d = ged(r, s):

[, ]: " (G5 Z/7Z) @ (G Z)SL) — T (G5 Z)dZ).

The pairing is given by the composite

Pm+n(d) N Pm+n(d)vpm+n—1(d) N Pm(?’)/\P"(s) fAg GAG i}G

The pairing induced on homotopy groups by the commutator mapping is the
Samelson product. The properties of the generalized Samelson product for ho-
motopy groups with coefficients are extensively developed by [Neisendorfer80].
In particular, we have the following result.

Proposition 10.31. If r = s = d, ged(r,6) = 1, and G is a 2-connected,
grouplike space, then 7.(G; Z/rZ) is a graded Lie algebra.

When G is grouplike, H.(G;Z/rZ) is an associative algebra and hence
enjoys a Lie algebra structure given by [z,w] = zw — (—1)1?I1®lywz, The
Hurewicz map, h.: m.(X;Z/rZ) — H.(X;7Z/rZ), is induced by h.([f]) =
f«(y), where y € H,,(P™(r);Z/rZ) is the canonical generator. This map-
ping for r = p, an odd prime, induces a mapping B1(X) — BL(X),
where { B2(X), d°} denotes the mod p homology Bockstein spectral sequence.
[Neisendorfer72] showed that both the homotopy and homology Bockstein
spectral sequences are spectral sequences of Lie algebras for p > 3, and that the
Hurewicz homomorphism induces a Lie algebra homomorphism on B®-terms
for all s.

It is possible to develop the properties of differential Lie algebras by anal-
ogy with the development of differential Hopf algebras for the Bockstein spectral
sequence. This development makes up the first few sections of [Cohen-Moore-
Neisendorfer79], especially applied to the case of free Lie algebras. These
results may be used to study the spaces QP™(p") and QF™(p"), where F™(p")
is the homotopy fibre of the pinch map P™(p") — S™, defined by collapsing the
bottom cell. The main results of [Cohen-Moore-Neisendorfer79] are homotopy
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equivalences between the space QP"(p") (suitably localized) and products of
countable wedges of known spaces whose structure may be read off the behav-
ior of Bockstein spectral sequence. A similar result holds for QF™(p"). The
comparison of the homotopy and homology Bockstein spectral sequences via
the Hurewicz homomorphism allows one to obtain representative mappings that
go into the construction of the homotopy equivalences. Finally, the decomposi-
tions are used to establish the inductive argument that goes from the theorem of
[Selick78], that p annihilates the p-component (), (S3) for k # 3and p > 3,
to prove the following result.

Theorem 10.32. If p > 3, and n > 0, then p™*' annihilates (p)wk(SZ"H), for
allk > 2n + 1.

The final generalization of the Bockstein spectral sequence that we present
is best framed in the language of spectra and generalized cohomology theories.
If X is a spectrum and f: X — X is a selfmap of degree k, then we can form
the cofibre of f in the category of spectra and obtain an exact couple:

- (W, X]

N /

[W, cofibre( f

The mapping f may be thought of as a cohomology operation and [W, X] =
X*(W) as the value of the associated generalized cohomology theory on W.
If X = HZ, the Eilenberg-Mac Lane spectrum for integer coefficients, and f
represents the times p map, then the cofibre represents the Eilenberg-Mac Lane
spectrum H,, and we obtain the usual Bockstein speciral sequence.

Let k(n)*( ) denote the generalized cohomology functor known as con-
nective Morava K-theory (see the work of [Wiirgler77] for the definition and
properties). This theory has certain remarkable properties:

(1) k(n)*(point) = Fplvy,] where v, has degree —2p™ + 2.
(2) k(n)*(W) has a direct sum decomposition into summands Fy,[v,,] and
Fylvnl/(v3)-

Property (2) is analogous to the result for a finitely generated abelian group
modulo torsion away from a prime p where the summands are 7Z and Z/p*Z.
We choose the mapping of the representing spectrum for Morava K-theory that
induces the times v, map. The cofibre is represented by HIF,, and the exact
couple for a finite H-space X may be presented as

k(n)*(X) —= k(n)"(X)

H*(X;TF,)
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where p,, is mod v,, reduction. The Bockstein spectral sequence in this case
has Bf = H*(X;IF,) and the first differential d* is identifiable with Q,,, the
Milnor primitive in .Ag“al (Milnor58], [Kane86]). The limit term, B, is given
by (k*(n)(X)/vp-torsion) &, [,] Fp. The v,-torsion subgroup of k(n)*(X)
consists of elements annihilated by some power of v,,. [Johnson, D73] identi-
fied this spectral sequence with an Atiyah-Hirzebruch spectral sequence (Theo-
rem 11.16). It follows from this observation that the spectral sequence supports
a commutative and associative multiplication. [Kane86] developed many prop-
erties of this spectral sequence for the prime 2 including a notion of infinite
implications that played a key role in a proof of Theorem 10.27. [Kane86]
conjectured that, for a mod 2 finite H-space (X, i, €), the Bockstein spectral
sequence for Morava K-theory should satisfy the following two properties:

(1) The even degree algebra generators of H*(X; F2) can be chosen to be
permanent cycles in B,.

(2) Indegrees greater than or equal to 2°*1, the even degree generators can
be chosen to be boundaries in B,..

If these conjectures were to hold, a simple proof of the absence of 2-torsion in
H.(QX) for a mod 2 finite H-space (X, p1, ¢) would be possible (as outlined
by [Kane86]).

Exercises

10.1. Show that the condition, H°44(QG; k) = {0} for all fields k, implies that
H*(Q2G) is torsion-free.

10.2. Prove thata commutative, associative Hopf algebra over a field of characteristic
zero that is generated by odd-dimensional generators is an exterior algebra.

10.3. From the structure of H*(RP™;F3) as a module over the Steenrod algebra,
determine completely the mod 2 Bockstein spectral sequence for RP™.

10.4. The mod 2 cohomology of the exceptional Lie group Gy is given by
H*(Go; o) = Faxs, z5]/ (x5, x2).

The rational cohomology of G is given by H*(G2; Q) = A(Xs5, X11). From

these data determine the mod 2 Bockstein spectral sequence for Ga.

10.5. Prove Proposition 10.8 and Lemma 10.9.

10.6. Prove the analogue of Corollary 10.14 for K (Z/2%Z,n).

10.7. Suppose X is an H-space and 7: X — X a covering space of X. Then
X isan H-space and 7 a multiplicative mapping. Use the Cartan-Leray spectral
sequence (Theorem 8b13.9) which is a spectral sequence of Hopf algebras in this
case to prove that if X is a mod p finite H-space, then X is a mod p finite H-space
([Browder591).
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10.8. Show that if A’ is a normal sub-Hopf algebra of the Hopf algebra A, then
there is a diagram of short exact sequences:

0 —— Prim(A") —— Prim(A4) —— Prim(A4//4")

] |

Q(4) Q(4) Q(A//AY).
Use this fact to give a complete proof of Theorem 10.25.

10.9. Show that the universal examples of K (Z/p*Z,n), for k > 0, and K (Z,n)
lead to the spikes and differentials in the Adams spectral sequence as predicted by
Theorem 10.29.

10.10. Suppose that M is compact, closed manifold (or more generally a Poincaré
duality space). If M has dimension 4m + 1, then prove the following result due
to [Browder62’]: either (1) Hop(M) = F @ T @ T, where F is a free abelian
group and T is a torsion group, or (2) Hep (M) 2 F® T & T @ Z/27 and in
this case, Sg>™ : H2m+(M;Fy) — H*™+1(M;TFy) is nonzero.
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11
More Spectral Sequences in Topology

“Topologists commonly refer to this apparatus as
‘machinery’.”
J. E Adams

The examples developed in Chapters 5 through 10 by no means exhaust
the significant appearances of spectral sequences in mathematics. A recent
search on the keyword spectral sequence in the database MATHSCINET
delivered more than 2800 reviews in which the words are mentioned. In this
chapter and the next, we present a kind of catalogue, by no means complete
or self-contained, meant to offer the reader a glimpse of the scope of the ap-
plications of spectral sequences. (Similar catalogues are found in the books
of [Griffiths-Harris78], [Benson91], [Weibel94], and the fundamental paper of
[Boardman99].) I hope that the reader will find a useful example in this collec-
tion or at least the sense in which spectral sequences can be applied in his or
her field of interest. The algebraic foundations supplied in Chapters 1, 2, and 3
are sufficient to understand the constructions found in the cited references.

In this chapter we concentrate on diverse applications of spectral sequences
in algebraic and differential topology. The examples are organized loosely
under the rubricks of spectral sequences associated to a mapping or space of
mappings (§11.1), spectral sequences derived for the computation of generalized
homology and cohomology theories (§11.2), other Adams spectral sequences
(§11.3), spectral sequences that play a role in equivariant homotopy theory
(§11.4), and finally, miscellaneous examples (§11.5).

11.1 Spectral sequences for mappings and spaces of mappings

The Leray-Serre spectral sequence is associated to a fibration, 7: £ — B.
Its success owes much to the right definition of fibration, due to [Serre51]. In
this section we discuss some spectral sequences also associated to particular
types of mappings or to spaces of mappings.

We first consider the dual of a fibration and present two spectral sequences
related to cofibrations. The first is due to [Quillen69] and appears in his foun-
dational paper on rational homotopy theory. The key piece of structure in the
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following theorem is the fact that the rational homotopy groups 7.(2X) ® Q
form a graded Lie algebra with the product induced by the Samelson product.
The following is a kind of dual to the rational Leray-Serre spectral sequence.

Theorem 11.1. Suppose A — X — X/Ais a cofibration sequence. Then there
is a spectral sequence of graded Lie algebras with

E? = (mp(Q4) ® Q) V (1y(UX/A) ® Q),

and converging to m.(QX) ® Q. Here £\ £’ is the direct sum of the graded Lie
algebras £ and (.

[Neumann99] has given a parallel derivation of an analogous spectral sequence
for loops on a cofibre sequence by filtering the cobar construction.

The next spectral sequence is roughly dual to the homology Eilenberg-
Moore spectral sequence of §7.4. The derivation is due to [Barratt62] and the
spectral sequence generalizes the suspension phenomena that occur in the EH P
sequence of [Whitehead, GWS53].

Theorem 11.2 (the Barratt spectral sequence). Given a cofibration sequence
A — X — X/A, there is a spectral sequence with

WQ(X)7 ifp=0,
BPr e mpa(X/A), ifp=1,
Fopig(X/AVSAV---V SA), ifp>1,

p—1 times

where 7 (X/AVSAV---VSA) C m(X/AVSAV---VSA)is the subgroup
of cross terms. The spectral sequence converges to m.(A).

[Barratt62] studied d; and showed that the Es-term of this spectral sequence
can be expressed in terms of the cohomology of an analyzer as defined by
[Lazard55]. Generalizations of and computations using this spectral sequence
are found in work of [Goerss93].

Just as the Kiinneth spectral sequence generalizes the Kiinneth theorem,
other classical constructions in homotopy theory admit a generalization by a
spectral sequence. A tool in deriving these generalizations is a result due to
[Quillen66].

Theorem 11.3. Let Aqe denote a bisimplicial group. There is a natural first

quadrant spectral sequence of homological type with Ef,,q = ﬂgw};(A..) and

converging 10 Tpyq(AAas), Where A Aq, is the diagonal simplicial group with
(AAoo)n = Ann
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The vertical homotopy groups 7} (Aes ) denote the homotopy groups of the
simplicial groups A,,, and the resulting groups form another simplicial group
whose homotopy groups are the horizontal groups wgwg (Aee)-

When the bisimplicial group A.e = (GX)e * (GY),, for spaces X and
Y, G the loop group functor of [Kan58], and * the free product of groups, then
[Hirschhorn87] has analyzed the resulting spectral sequence:

Theorem 11.4. For spaces X and 'Y, there is a natural first quadrant spectral
sequence of homological type, converging to m.(X VY). WhenY is (n — 1)-
connected, E2 o = mpy1(X) and E} | = Hp(QX;7011(Y)) for 1 < g <
2n — 3. If X is (k — 1)-connected, then E3 , = 7441 (Y), and E2,, = {0} for
1<p<k-2

More can be said in this case by adding the subtleties that are organized
by the notion of a II-algebra, introduced by Kan and developed by [Stover88].
The homotopy groups of a space X, as a graded set, enjoy the action by the
primary homotopy operations, namely,

(1) Composition: & € m,(X) +— @ o € mp(X) where ¢ € m,(S") and
E>r>1

(2) Whitehead products: [, 5] € mpyq—1(X) for any o € 7p(X), 8 €
74(X); elements of the form Mo — o € I'2(7,.(X)) where [\] €
7 = m(X) and @ € 7,(X) (see Chapter 8%); and commutators
[, 8] = afa1B7t € m(X), for o, B € m1(X).

The free objects in the category of 1I-algebras correspond to wedge prod-
ucts of spheres. A simplicial resolution of a space X, V, X may be constructed
whose homotopy groups constitute a free I1-algebra resolution of the homotopy
of a space. Forming the wedge product V, X Vv V.Y, [Stover90] proved the
following generalization of the van Kampen theorem.

Theorem 11.5. There is a natural first quadrant spectral sequence of homolog-
ical type, converging strongly to m. (X VY'), with Eg’* = Dp(me(X), m(Y)),
where Dy denotes the coproduct of m.(X) and 7.(Y) in the category of I1-
algebras, and D, is the p™ derived functor of the coproduct functor:

The van Kampen theorem follows from the lower left corner of the spectral
sequence where 7 (X VY) = Eg3 = Ef | = my(X) x i (Y), as expected.

If we view the resolution of [Stover90] as a bisimplicial set, then, for a
commutative ring with unit R, the functor X — RX of [Bousfield-Kan72]
may be applied to V, X to obtain a bisimplicial R-module RV, X. The spectral
sequence of [Quillen66] leads to the Hurewicz spectral sequence introduced by
[Blanc90]:
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Theorem 11.6. Given a pointed, connected space X and a ring R, there
is a spectral sequence that converges strongly to ﬁ*(X ; R), with EZ,k =
L. (Qk(—) ® R)(7«(X)). Here L,, denotes the derived functors of the functor
Qr(—) ® R onl-algebras that associates to the I1-algebra 7. (X) the quotient
7. (X)/P(7(X)) for P(m.(X)) the subgroup generated by the image of the

primary homotopy operations.

The edge homomorphism Egj* — Ef, C H, (X; R) is given by the
R-Hurewicz homomorphism Q(7.(X)) ® R — H.(X;R). By developing
the homological algebra of the category of II-algebras, [Blanc90] showed that
the E2-term has a vanishing line of slope 1/2. [Blanc94] enriched this spectral
sequence by considering operations on resolutions in abelian categories. He
computed the case of X = K(Z/2Z,n) and was able to relate the differen-
tial d2 to Toda brackets. An interesting corollary of the new operations is a
nonrealization result: There is no space X with m.(X) = 7. (S") @ Z/2Z as
II-algebras for r > 6.

The next examples of spectral sequences apply to the problem of computing
the homotopy groups of spaces of mappings. Given spaces X and Y, endow
the set of continuous functions from X to Y, denoted map(X,Y’), with the
compact-open topology. Suppose f: X — Y is a choice of mapping as a
basepoint in map(X,Y"). The following theorem is due to [Federer56].

Theorem 11.7 (the Federer spectral sequence). Suppose X is a finite dimen-
sional CW-complex and Y is a space on which the fundamental group acts
trivially on the higher homotopy groups. Then there is a spectral sequence with

E5? = HP(X;mp44(Y)),
converging to . (map(X,Y), f).

Federer applied the spectral sequence to the cases Y = K (m, m) and Y = S™.
[Smith, S98] investigated the Federer spectral sequence in rational homotopy
theory where models for spaces can be taken to be algebraic objects, such as the
Quillen model given by a free Lie algebra. In this context [Smith, S98] made
some explicit computations with surprising corollaries about the inequality of
homotopy types of components of a mapping space in the general case.

When X and Y have the homotopy type of CW-complexes, there is a
natural mapping in the category of 1I-algebras

b: m.(map(X,Y)) = hom] 4 (m.(X), 7. (Y)),

which is an isomorphism when X has the homotopy type of a wedge of spheres.
In the general case, there is a spectral sequence that relates 7. (map;(X,Y))

and hom} () (m(X), 7(Y)) due to [Dwyer-Kan-Smith, J-Stover94].
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Theorem 11.8. Let X andY have the homotopy type of CW-complexes. There is
a second quadrant spectral sequence with EY? = homff(p;) (m(X), m(Y))g,
for g > p > 1, converging conditionally to m.(map;(X,Y)). The edge homo-
morphism for this spectral sequence is the natural homomorphism b.

II (0
Here hom]! () (7.(X), 7. (Y)) = hom( (4 (mu(X), m(Y)), the hom-

set functor in the category of II-algebras, and the functor hom™ ) is the ph
derived functor of hom"™ (—, 7, (Y)). When Y has only finitely many non-
trivial homotopy groups, or m.(X) has finite cohomological dimension as a
II-algebra, then the authors show that the spectral sequence converges strongly
to 7. (map;(X,Y)).

Another source of examples of spectral sequences is the problem of com-
puting the homology or cohomology of mapping spaces. The particular case
of pointed maps of spheres, Q"X = map((S™,&1), (X, zo)), was solved by
[Adams56] for the functor X — QX with the introduction of the cobar construc-
tion and its associated spectral sequence. [Baues98] has developed the structure
of the cobar construction further so that it may be iterated (compare the work
of [Drachman67] and [Smith, Ju94]). The homology Eilenberg-Moore spectral
sequence (Chapter 7) provides a generalization of the cobar construction. Using
cosimplicial methods, [Anderson72] constructed a spectral sequence that may
be used to compute H, (map(X,Y)):

Theorem 11.9. Given a Kan complex Y and a finite CW-complex X for
which the connectivity of Y is greater than or equal to the dimension of X,

there is a spectral sequence, converging to H.(map(X,Y)), with E2 =
HY(X; Hp(Y)).

A complete proof of this theorem and some considerable generalizations are
given by [Bendersky-Gitler91], who show how configuration spaces appear in
the computation of the £ -terms of the associated spectral sequences and relate
these results to the computation of the Gelfand-Fuks cohomology of manifolds.
[Bousfield87] greatly generalized the construction of [Anderson72] by deriving
a dual version of the Bousfield-Kan spectral sequence (Theorem 8b15.37) for
homology.

Unstable Adams spectral sequences

The existence of the Adams spectral sequence to compute the stable ho-
motopy groups of a space leads one to wonder if similar machinery can be
constructed to compute [X, Y] or 7. (X)), the unstable sets of mappings. In this
section we present several variants of the unstable Adams spectral sequence
that converge to these unstable homotopy groups.

In the next theorem, the information that determines all of the homotopy of
a simply-connected space, its Postnikov system, is used to obtain the homology
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of the space. Introduced by [Kahn, DW66], the spectral sequence provides a
kind of dual to the Adams spectral sequence.

Theorem 11.10. Let X be a space of the homotopy type of a 1-connected,
countable CW-complex. There is a spectral sequence, converging to H,.(X),
with E"-term partially given by E} = Hy, (K (mp(X),p)) for 0 < q < p.

Though practically incalculable, this spectral sequence enjoys many ge-
ometric features that make it a useful tool. For example, the first differential,
dy, can be interpreted in terms of the k-invariants of the space. Also the edge
homomorphism is the Hurewicz homomorphism. [Kahn, DW66] developed
this spectral sequence in order to study composition products in 7 and it was
used in this context by [Cohen, J68] to prove his celebrated theorem on the de-
composition of the stable homotopy groups of spheres in terms of Toda brackets
of Hopf maps.

The first spectral sequence to generalize the Adams spectral sequence
to unstable computations is due to [Massey-Peterson67]. The construction is
based upon their study of the cohomology of spaces satisfying a certain algebraic
condition. The action of the mod 2 Steenrod algebra, Ag, on H* (X; o) satisfies
the unstable axioms; (U1) Sg"x = 2, if degz = n, and (U2) Sg"z = 0
if n > degx. Suppose M is a module over A, such that (U2) holds for
M. We define an algebra U (M), satisfying the unstable axioms, by letting
U(M) be the quotient of the tensor algebra on M modulo the relations of
graded commutativity and S¢g™z = x2 for degz = n. If X is a space and
H*(X;F2) = U(M) for some unstable Az-module M, then we say that X is
very nice (following [Bousfield-Curtis70]).

Theorem 11.11. Suppose Y is a simply-connected, very nice space with
H*(X;Fo) = U(M). If K is afinite complex, then there is spectral sequence,
converging to (2)[S™K, Y] for m > 1, with

ED? = Unext™ (M, H*(K;F3)),

the extension functor derived from Hom(M, —) in the category of unstable
modules over the Steenrod algebra.

For K = x and Y = S$?7*1 this spectral sequence can be applied to
compute (z)m(SQ"“). However, the calculation of the unstable Ext groups
remains difficult, if not intractable. This spectral sequence was developed for
odd primes by [Barcus68] and further properties, like a vanishing line, have
been proved by [Bousfield70].

For more general spaces, we turn to simplicial methods to compute 7. (X).
If X is a simplicial set, then there is a simplicial free group, G X, that is
a model for the loop space on the realization of X, Q|X|. It follows that
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m:(X) & m;—1(GX). For any simplicial group, W, there is a filtration of W,
given by the lower central series in W,:

We =T1We DI'sWeg DI'sWe D ---

where oW, = [W,, W, and I, W, = [[',,_1 W,, W,].

[Curtis65] introduced a spectral sequence based on this filtration of GX
and converging to 7.(X); [Rector66] generalized this with the mod p lower
central series and he obtained a spectral sequence converging to (,)m.(X).
Finally, [Bousfield et al.66] (a group of six authors; A.K. Bousfield, E.B. Curtis,
D.M. Kan, D.G. Quillen, D.L. Rector, and J.W. Schlesinger, then at MIT)
analyzed Rector’s spectral sequence to prove the following result.

Theorem 11.12 (the A-algebra). Let (A, d) denote the associative differential
graded algebra with unit given by

(1) Aisgeneratedby { \; |1 =0,1,... } withdegA; = 1.
(2) Products are subject to the relations that follow from

n—j7j—1 .
Aid2it14n = § ( j )Ai+n—j>\2i+1+j 1> 0,n>0.
320

(3) The differential is given by

INESY (";J)An_jxj_l n>0.

j21

Then there is a spectral sequence with (Eq,dy) = (A, d) converging to (2)7rf .
IfI = (i1,... 1), then I is said to be admissible if 2i; > is4q1 forl < s <r.
LetA\; = X;, - -+ \i,.; we say that \ is an admissible monomial if I is admissible.
Let A(n) be generated by admissible monomials withi, < n. Thereis a spectral

sequence with (Eq(n), di(n)) = (A(n), d|,,)) converging to (2ym.(S™).

The odd primary version of the A-algebra was also given by [Bousfield
et al.66] (and corrected by [Bousfield-Kan72]). Furthermore, by writing the
adjoint of the Steenrod algebra action as

Hn(X;FQ) = HOHI(H”(X; FQ),IFQ)

—>(S ot HOm(Hn_i(X;FQ),}FQ) = Hn—i(X§F2),
giydn

there is a differential on H,.(X;F2) ® A that gives the E;-term of a spectral
sequence converging to (g)wf (X) (see [Bousfield et al.66]). Extensive calcu-
lations of the unstable homotopy groups of spheres using the A-algebra were
done by [Whitehead, GW70] and [Tangora85].)
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A special case of the Bousfield-Kan spectral sequence (Theorem 8bls.37)
for a ring R gives a general spectral sequence converging to the homotopy
groups of R X, the R-completion of X under good conditions. When R = [F),
FpeoX is the mod p completion of X when X is mod p good, and 7., (Fpee X ) =

7u(X) & Zp), Where Zyy denotes the p-adic integers.

Theorem 11.13. For anIFy-good space X, there is a spectral sequence with
E3* o Unext™*(F,, Ho(X;Fp)).

and converging to 7. (X) ® Z(p).

The Es-term is expressed in terms of the ‘derived’ functors of the functor
Hom in the category of unstable coalgebras over Ay,. Since this category is
not abelian, we must take the derived functors of Hom in the extended sense of
[André67]. The spectral sequence was derived and developed by [Bousfield-
Kan72’]. Inthe case of the homotopy groups of a mapping space, [Goerss90] has
made considerable progress in identifying the E»-term of this spectral sequence
using André-Quillen cohomology.

The (co)simplicial techniques of [Bousfield-Kan72] can be generalized
to derive an unstable Adams spectral sequence associated to the spectrum BP
([Bendersky-Curtis-Miller78]).

Finally, we mention a spectral sequence that relates the unstable homotopy
groups of spheres and the stable groups. [JamesS6] identified a fibration of
spaces localized at the prime 2:

S'n N QSn—H N QSQn+17

whose long exact sequence of homotopy groups, the EHP sequence, is given
by

P
2n+1) _ (Q)Wk—l(sn) e

ny nt1y o
@y (S™) — ()T (S™T) — 2y T4 (S
[Toda62] extended the EHP sequence to odd primes by introducing p primary
fibrations

SQn—l N Qg&n N Qs2np—1’ San N Q32n+1 N QSIan-l—l7

where S27 is a modified version of the 2n-sphere that has p — 1 cells, one in
each dimension divisible by 2n up to 2n(p — 1).

The exact couple associated to the resulting long exact sequences of ho-
motopy groups gives the EHP spectral sequence:
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Theorem 11.14. There are spectral sequences for each prime p, converging to
(p)w,f, indexed so that d,: E¥™ — E¥=L"=T_ and with E'-terms given by

B} = (o)Tngk(S™7Y) forp=2,

B oms1 = o) T2ma 14k (ST, Bf o & () Tomk (S7P7Y), for p, odd.

[Toda62] was able to compute 7,45 (S™) through a range of n and & using the
EHP sequence inductively, together with the secondary composition operations
(the Toda bracket) that he introduced. The EHP spectral sequence ties together
all of the EHP sequences and codifies the ‘birth’ and ‘death’ of elements in the
homotopy groups of spheres—an element in w,f is represented in the E'-term by
the Hopf invariant of the a maximal desuspension of the element; each differen-
tial represents a Whitehead product. The EHP sequence may be approached at
an algebraic level through the A-algebra (see the work of [Whitehead, GW70],
[Singer75], [Lin, WH92], and [Mahowald-Thompson95]). A thorough discus-
sion of the EHP spectral sequence may be found in [Ravenel86, §1.5].

11.2 Spectral sequences and spectra

The focus of this book has been on the computation of the classical homo-
topy invariants of a space—ordinary homology, cohomology, and homotopy
groups. However, there are many other homotopy invariants associated to
a space—in particular, there are the generalized homology and cohomology
functors. These functors satisfy all but one of the Eilenberg-Steenrod axioms
for a homology or cohomology theory.

[Brown, E62] proved that the generalized cohomology functors, X +—
E*(X), were representable, that is, for each n, there is a space, W,,, such that
E™(X) = [X,W,]. This generalizes the fact that the ordinary cohomology
groups are represented by the Eilenberg-Mac Lane spaces. The system of
spaces, { W }, satisfies certain relations that had been identified by [LimaS58] and
[Whitehead, GW62]. In particular, they constitute a spectrum (Definition 9.28).

Definition 11.15. Given a spectrum E = {E,}, with structure mappings

{en: SE, — Eny1}, the generalized cohomology theory associated to E
of a space X, is denoted by E*(X) and defined by E™(X) = [X, E,). The
generalized homology theory associated to E is denoted E.(X) and defined
by Ex(X) = lim, ., mpir(Ex A X). The coefficients of the generalized
theories determined by E are given by the graded group E*(x) = Ex(¥) =
limy, ¢, Tnyk(En). The analogue of the Steenrod algebra for the cohomology
theory E*(—) is the algebra, E*E, (E*E), = lim,, ., [E™T", E™].

Generalized homology and cohomology theories satisfy most of the axioms
of FEilenberg-Steenrod for homology and cohomology; the exception is the
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coefficientaxiom. A further axiom, the wedge axiom may be introduced: If X is
a (possibly infinite) wedge of spaces, X = \/, Y,, then E*(X) =[] E*(Y,)
and E,(X) = @, E.(Y,). A generalized theory is said to be connective if
there is an integer N such that £y, = {0} forall k < N.

How do we compute E*(X) for a given space X? The most general
answer to this question is a spectral sequence relating the classical invariants
of the space X and the coefficients of the theory E*(—) to E*(X). The first
published versionis due to [Atiyah-Hirzebruch69], though the spectral sequence
was known to exist by G.W. Whitehead and by E.L. Lima.

11.16 (the Atiyah-Hirzebruch spectral sequence). Suppose E is a spectrum
and X is a space of the homotopy type of a CW-complex. Then there are
half-plane spectral sequences with

EP? = HP(X; Eq (%)), E;Q;,q = H,(X; Ey(*)),
converging conditionally to E*(X) and strongly to E.(X), respectively.

The construction is based on the cell decomposition and is similar to
the proof of Theorem 4.13. [Davis-Liick98] have generalized the Atiyah-
Hirzebruch spectral sequence to the framework of spectra over a category, which
allows one to use it in many contexts including equivariant homotopy theory,
and for algebraic K-theory.

The classic book of [Adams74] is a good starting place for the study of
spectra. Other good references include [Switzer75], [Margolis83], [Ravenel92],
and [Kochman96].

In the special case of X = B@G, G afinite group, and E* = KU*, complex
K-theory, the computation of KU*(BG) is aided by the interpretation of its
input ([Atiyah61]):

Theorem 11.17. For G a finite group, there is a spectral sequence with E3 =
H*(G) and converging strongly to KU*(BG).

The input of the spectral sequence is the cohomology of the group G with
coefficients in the trivial G-module 7, an algebraic invariant of the group. A
filtration of the complex representation ring of the group G leads to the same
associated graded ring for KU*(BG) related by interpreting representations as
vector bundles. The result shows that the complex K-theory of BG is given by
the completion of the representation ring of G' with respect to this filtration.

The Atiyah-Hirzebruch spectral sequence also plays a key role in compu-
tations of the homotopy groups of spheres. In this case the spectrum E is the
sphere spectrum and the space X is replaced by a spectrum X. The E2-term
is given by H*(X; %) and the spectral sequence converges to 7. (X). [Cohen,
J68] used this when X = K7, the integral Eilenberg-Mac Lane spectrum. Then
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72 (KZ) = H,(S°) determines a sparse target for the spectral sequence and
the homology of the Eilenberg-Mac Lane spaces is well-known, so computa-
tions of 72, the coefficient ring for the sphere spectrum may be made. This
becomes cumbersome quickly, however. [Kochman90] applied this technique
for X = BP, the (mod 2) Brown-Peterson spectrum for which both H,.(BP) and
7.(BP) are well-known and algebraically tractable. Furthermore, it is known
that the Hurewicz homomorphism % : 7, (BP) — H,.(BP) is a monomorphism
and so E%) = h(m,(BP)) is also known. [Kochman90] pushed the calculation
of (2)7r5 to n < 66 by automating the computation. [Ray72] used this method
with X = MSU and MSp instead of the sphere spectrum. Since MSp, (MSU)
and H,.(MSU) are known, [Ray72] was able to compute MSp,, for k < 19.

Finally, we mention work of [Arlettaz92] analyzing the differentials in
the Atiyah-Hirzebruch spectral sequence. He proved that there are integers
R, such that R,dg, = O for all 7 > 2, s and ¢ for any connected space X.
The key ingredient of the proof is the structure of the integral homology of
Eilenberg-Mac Lane spectra.

By exploiting the analogue of the Steenrod algebra for a generalized coho-
mology theory, [Novikov67] generalized the Adams spectral sequence to other
cohomology theories. We will discuss this advance separately.

A spectrum equipped with a multiplication, u: E A E — E, (here p is a
map of spectra where the smash product is appropriately defined) is called a ring
spectrum. If F is another spectrum and there is a mapping of spectra 1: E A
F — F with good properties, then we say that F is an E-module spectrum
([Elmendorf-Kriz-Mandell-May95]). The following theorem generalizes the
Universal Coefficient theorem.

Theorem 11.18 (the Universal Coefficient spectral sequence). Suppose E is
a ring spectrum, F is an E-module spectrum, and X is a space. Under certain
conditions, there are spectral sequences with

E? = Tor™ ) (B*(X), F*()), Ea = Extp.(E*(X), F*(+)),
converging to F*(X) and to F..(X), respectively.

For appropriate conditions, the reader can consult the book of [Adams69]
or the paper of [Boardman99] where there is a derivation and applications of
this spectral sequence. The unstated technical conditions are satisfied by many
of the geometric spectra (the sphere spectrum, mod p Eilenberg-Mac Lane
spectrum, the Thom spectra MO, MU, MSp, and the K-theory spectra BU and
BO) and this leads to many interesting applications.

Another approach to the computation of E., (X)) is via the Adams spectral
sequence. We can carefully define the spectrum E A X whose homotopy groups
are analyzed in the same manner as the stable homotopy groups of a space. This
approach figures in the classical computation of MU.. of [Milnor60] that has
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served as a paradigm for many computations of generalized homology (for
example, [Davis78], [Davis et al.86], [McClure-Staffeldt93]).

For a generalized homology theory E,(—) and a fibration 7: Y — B with
fibre F', there is a version of the Leray-Serre spectral sequence that at once
generalizes the classical spectral sequence for singular theory and the Atiyah-
Hirzebruch spectral sequence. (One can consult the book of [Switzer75] for a
derivation.)

Theorem 11.19. Given a generalized homology theory E.(—) that satisfies

the wedge axiom for CW-complexes and a fibration FF — Y L Bihatis
orientable with respect to the theory for which B is connected, there is a spectral
sequence, natural with respect to maps of fibrations, converging to E.(Y), and
with B2 | = Hp(B; E,(F)).

There is also a version of the Eilenberg-Moore spectral sequence for gen-
eralized theories that was set up by [Hodgkin75] and [Smith, L70] (see §8.3).
For this spectral sequence to have an identifiable E»-term and to converge, how-
ever, many conditions must be placed on the generalized theory. In their study
of the K-theory of p-compact homogeneous spaces, [Jeanerret-Osse99] gave a
tidy statement of a useful case of this tool:

Theorem 11.20. Suppose E*(—) is a generalized, multiplicative, cohomology
theory such that E*(x) is a graded field. Suppose B is connected and

X xpY X

I

Y ——8B

isa pullback diagram. Then thereis a spectral sequence of algebras, compatible
with the stable operations associated to E*(—), with

% o T * *
Ey TOTE*(B)(E (X), E*(Y))

where Tor  denotes the i™ derived Sfunctor of the completed tensor product.
When p: X — B is a fibration and E*(2B) is isomorphic to an exterior
algebra on odd degree generators, the spectral sequence converges strongly to
E*(X xpY).

The main examples considered by [Jeanneret-Osse99] are p-compact groups
and E*(—) = H*(—;k), KU*(—; Z/pZ), or K(n)*(—) for which these hy-
potheses are appropriate. [Tanabe95] has also applied a version of the Eilenberg-
Moore spectral sequence for generalized theories to compute the Morava K-
theories of Chevalley groups. [Seymour78] also studied the convergence ques-
tion for generalized theories under more general circumstances.
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We close this section with a spectral sequence that computes an invariant
of a spectrum E = {E,, }, its mod p stable homology,

HI(E;TFp) = lim Hyyn(En; Fp).

Suppose E = {E,} is an Omega-spectrum, that is, E,, ~ QFE, 1, and that
E is (—1)-connected, that is E,, is (n — 1)-connected for all n > 0. In this
case, the space E is an infinite loop space; Fq ~ QE; ~ Q?E, ~ ---, The
mod p homology of an infinite loop space is endowed with the action of the
Dyer-Lashof algebra, R ([Araki-Kudo56], [Dyer-Lashof62]).

Let Q(—) denote the functor that assigns the space of indecomposables to
an algebra.

Theorem 11.21 (the Miller spectral sequence). Given an Omega-spectrum
{En} that is (—1)-connected, there is a spectral sequence with

EZ, = Li(F, ©n Q)(H.(Eo; Fy)),
the left derived functors of T, % Q(—), and converging to HE (E;TFy).

[Miller78] analyzed the left derived functors in the theorem and expressed
them in terms of an unstable Tor functor. The spectral sequence has been
applied by [Kraines-Lada82] and [Kuhn82].

11.3 Other Adams spectral sequences

The Adams spectral sequence begins with the algebraic information en-
coding the action of the Steenrod algebra on the cohomology of the spaces
involved. The output is geometric—the groups of stable mappings between
the spaces. The construction presented in Chapter 9 is based on the proper-
ties of mod p cohomology and focuses on the Eilenberg-Mac Lane spaces for
their homological properties on cohomology. [Adams66] introduced a variant
of the Adams spectral sequence based on K-theory and posed the question of
the existence of an Adams spectral sequence for any generalized cohomology
theory. [Novikov67] introduced the appropriate generalization and applied it to
the spectrum MU representing complex cobordism.

Theorem 11.22 (the Adams-Novikov spectral sequence). Suppose E is a spec-
trum and E,(E) is flat as a right module over E, (). Suppose further that E is
a direct limit of finite spectra that satisfy good duality properties, then there is
a spectral sequence with

Byt = Exty! p (Ba(x), Ba(¥)),
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and converging to w2 . In particular, this theorem holds for the sphere spectrum,
the Thom spectra MO, MU, MSp and the connective K-theory spectra, bu and
bo.

For the full generality of the Adams spectral sequence (which converges
to a subgroup of {Y, X }.)), one needs to introduce the localization of the stable
group {Y, X'}, with respect to the generalized theory E.. The details of this
localization are due to [Bousfield75] and a complete derivation of the spectral
sequence is presented in [Ravenel86].

When we consider MU one prime at a time, then we are led to consider
the localization MU ,,) in Novikov’s variant of the Adams spectral sequence.
[Quillen69”’] showed that the mod p part of the MU spectrum splits into a wedge
of suspensions of another mod p spectrum, constructed by [Brown-Peterson66],
now denoted by BP; in particular, there is a retraction MU,y — BP and so
Theorem 11.22 may be localized mod p:

Theorem 11.23. There is a spectral sequence with
e ,t
E3" = Extgp gp) (BPx(x), BP(x)),
converging to ()ms.

The algebraic properties of this spectrum and the algebra of operations
associated to it are considerably more manageable than the analogous case of the
Steenrod algebra. In particular, BP« (%) = Z, Vi, ..., V4,. .. ], a polynomial
algebra on generators V; € BPy,:_o, and BP.(BP) = BP.(¥)[t1,... ,tn,...]
where t; € BPgpi_o(BP). The subsequent further structure that has been
developed for the E>-term of the associated Adams-Novikov spectral sequence
has led to great deal of progress in the understanding of the stable groups
(p)wf (see, for example, the papers of [Thomas-Zahler74], [Miller-Ravenel-
Wilson77], and [Devinatz-Hopkins-Smith88]). For a good introduction to this
point of view, see the books of [Ravenel86] and [Kochman96].

Another consequence of the study of formal group laws is the possibil-
ity of constructing new cohomology theories with particular rings of coeffi-
cients as F,(x). The principal theorem in such constructions is the Landwe-
ber exact functor theorem ([Landweber76]). Of particular interest is the case
of elliptic homology, Ell.(X) = Ell () ®py, MU.(X) where Ell, (%) =
Z[1/6][6,e, A7) where A = (1/1728)(6 — %), with § € Ellg, £ € Elly2
and A € Ella4. This ring is isomorphic to the ring of modular forms of level 1
and there is a genus MU, (x) — Ell.(x) giving the module structure. The ring
of cooperations has been worked out by [Clarke-Johnson92] and so the input
for the Adams-Novikov spectral sequence is known. [Hopkins95], [Laures99],
and [Baker99] have used methods from number theory to identify parts of the
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E»-term of the spectral sequence converging to the stable stems. This gives in-
formation in both directions—number theory to topology, and stable homotopy
to number theory.

11.4 Spectral sequences in equivariant homotopy theory

Suppose that G is a topological group of the homotopy type of a CW-
complex and X is a space on which G acts. The equivariant cohomology of
X is defined using the Borel construction ([Borel60]):

Hy(X; R) = H(EG x¢ X; R),

that is, the ordinary cohomology with coefficients in R of the space EG xg X
that can be thought of as first making X into a free G-space by forming the
product with the G-free contractible space EG and then taking the quotient.
There is a fibration EG xg X — EGg x * = BG, induced by the G-mapping
X — x, and so we can apply the Leray-Serre spectral sequence:

Theorem 11.24. There is a first quadrant spectral sequence converging to
H:(X; R) with ES? = HP(BG; H1(X; R)).

When G is a discrete group, the Fo-term is the cohomology of the group
G with coefficients in the G-module H*(X'; R). The coefficients of equivariant
cohomology are given by Hi (x; R) = H*(BG; R). The spectral sequence has
aninduced action of this ring on its terms, making it more tractable. Applications
of this spectral sequence abound in equivariant homotopy theory.

Another invariant of a G-space X is the Bredon homology ([Bredon67])
associated to a functor H: G-Mod — Ab, from G-modules to abelian groups,
which preserves arbitrary direct sums. When we apply H to the G-module of
n-chains on X, we obtain a chain complex CS(X;H) = H(Cn(X)). The
Bredon homology of X with coefficients in H is defined as the homology
groups HE (X;H) = H,(C%(X;H),H(d)). One can identify the category
of G-modules with the orbit category, O(G), consisting of subgroups of G
together with inclusions. A similar definition can be given for a coefficient
functor taking values in modules over a given ring.

Suppose G is a finite group and f: X — Y is a G-fibration, that is, f
is G-equivariant and has the homotopy lifting property for all G-space. Then
there a version of the Leray-Serre spectral sequence, derived by [Moerdijk-
Svensson93] using the cohomology of categories, and by [Honkasalo98] using
the locally constant cohomology of [Spanier92]. Let H, (X, M) denote the
Bredon cohomology of the G-space X with coefficients in a G-module M.
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Theorem 11.25. Given a finite group G and a G-fibration f: X — Y, then
there is a natural, first quadrant, spectral sequence converging to Hg (X, M)
with ES? = HE,(Y,HE (f, M)), where M may be taken to be a G-coefficient
system determined by a functor M : O(G)°P — Ab and HE (f, M) is another
G-coefficient system that is induced by the fibration.

Other spectral sequences useful in ordinary homotopy theory have equiv-
ariant versions as well. [Intermont97, 99] has extended the notion of II-
algebras to the equivariant case and derived versions of the spectral sequence
of [Stover90] for computing 7§, (X VY) and 7§, (X AY) where G is a
finite group and W is a finite dimensional representation of G.

There is a version of the Eilenberg-Moore spectral sequence as it resem-
bles the Universal Coefficient and Kiinneth spectral sequences for Borel ho-
mology and cohomology developed by [Greenlees92]. Equivariant versions of
the Federer spectral sequence have been derived by [Mgller90] and by [Fieux-
Solotar98] converging to w*(map?(X ,Y)) under certain conditions. Finally,
there are Adams spectral sequences for which the target is the appropriate
completion of { X, Y}, the group of homotopy classes of G-equivariant stable
mappings. This method has been developed extensively by [Greenlees88’, 92°].
A nice overview of these ideas and their relation to classical homotopy theory
is found in [Greenlees88].

Homotopy limits and colimits spectral sequences

One of the most general topological situations in which a spectral sequence
arises is when a homotopy limit or colimit is constructed. Following [Bousfield-
Kan72] and [Dwyer98], we associate to a small category D a simplicial set,
nerve(D),, given by

nerve(D),, = Homc,(n,D)
= {0(0) 5 0(1) = --- =5 o(n) | o(i) € Obj(D), a; € Mor(D)},

where Cat is the category of small categories with functors and n is the cat-
egory (0 — 1 — --- — n) with a single morphism between objects i — j
whenever ¢ < j. Thus, nerve(D),, consists of the length n strings of compos-
able morphisms in D. The face maps are given by omission or composition

inD: do(0(0) — - 2 o(n)) = o(1) — - 5 o(n), and if i > 0,
QAn Q41004

di(0(0) 25 o o) =0(0) = - — o(i— 1) ——— 5 o(i + 1) —
-- — o(n). Degeneracies are given by inserting the identity morphism on the
objects in the sequence.

If F: D — Simp is a functor, then the simplicial replacement of F is
the bisimplicial set ([T F)e given by (I1 F)n = [, cnerve(m),, £'(c(0)) (the
disjoint union) with d; determined by F'(¢(0)) — F((d;o)(0)), which is the
identity if ¢ > 0 and F(a): 0(0) — o(1) if ¢ = 0. Since F': D — Simp,
(ITF)e is a bisimplicial set.
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Definition 11.26. Given a small category D and a functor F: D — Simp,
the homotopy colimit of F is the diagonal simplicial set of the simplicial
replacement of F, that is, hocolim F' = A((]] F).) with (hocolim F),, =
(LT F)nn-

Given an abelian group A as coefficients, the spectral sequence of a bisim-
plicial group (Theorem 11.3) gives the Bousfield-Kan homology spectral se-
quence.

Theorem 11.27. Thereisa spectral sequence, converging to H, (hocolim F'; A),
with E} = colimy, Hy(F; A), where colim Ab® — Ab is the colimit functor,
colim; the i left derived functor of colim, and H, q(F'; A) is the composite
functor Hy(—; A) o F.

Dually,[Bousfield-Kan72] defined the homotopy limit of a functor F': D —
Simp. We first form the cosimplicial replacement of F', (J] F')*, which con-
sists of the product ([T #)" = [],cnerveer), £'(w(0)) and the coface and
codegeneracy mappings given by d° = F(ay): F(o(1)) — F(o(0)), d’ = id,
for j > 0; s* = id, for 0 < i < n. The homotopy limit of F is given by
holim F' = Tot((J] F')*). There is a natural mapping ii;relDF (d) — holim F,

which may not be a homotopy equivalence. This is called the homotopy limit
problem ([Thomason83]). The Bousfield-Kan spectral sequence associated to
the tower of fibrations built from Tot (Theorem 81S.37) implies the following
result.

Theorem 11.28. Suppose that F: D — Simp is such that F(d) is fibrant for
all d € Obj D. There is a spectral sequence, with E5'? = lim?r (F'), for

0 < p < q, where lim Ab®”™ — Ab is the inverse limit functor, lim? the i™
derived functor of lim, and m4(F) is the composite functor d — w4(F(d)). The
spectral sequence converges to groups related to . (holim F).

[Thomason83] showed how the homotopy limit problem included certain
deep problems in homotopy theory. In particular, we can view a group G as
a category, G, with objects the elements of G and a unique morphism g — h
for all g, h € G. The nerve of this category has the homotopy type of EG. A
space (simplicial set) on which G acts determines a functor X : G — Simp for
which hocolim X = EG x¢ X and holim X = mapg(EG, X), the space of
equivariant mappings £G — X.

The Bousfield-Kan homology spectral sequence in this case can be iden-
tified with the homology version of the spectral sequence of Theorem 11.24,
which in turn may be identified as the Leray-Serre spectral sequence associated
to the fibration X < hocolim X — hocolim x = BG.
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The homotopy limit problem for this setting is the comparison of lim X =

X and mapg(EG, X). If X has a trivial action of the group G, then the
comparison leads to a comparison of fixed point sets

X =XC= mapG(*,X)G — mapG(EG,X)G = map(BG, X).

[Sullivan70] conjectured that if G is finite and X is a finite CW-complex, then
the based mapping space map, (BG, X) = map((BG, *), (X, zo)) would be
weakly contractible. Through the use of group theory, the relevant cases to
check are G = Z/pZ for p, a prime. [Miller84] proved the Sullivan conjecture
with a remarkable argument: The target of the Bousfield-Kan spectral sequence
for this problem is 7, (map(BZ/pZ, X)) for which the E2-term has been iden-
tified as Ext?, (H.(2¢BZ/pZ;Fp), Ho(X;F,)), where the Ext is taken over
the category of unstable coalgebras over the mod p Steenrod algebra A,. The
analysis of H,(BZ/pZ;F,) as an object in the category U of unstable comod-
ules over A, reveals that Exty(H.(BZ/pZ;Fp), Hi(X;Fp)) vanishes when
H,(X;TF,) is bounded above. A version of the EHP spectral sequence for the
algebraic functors X: U — U and its adjoint 2 extend the vanishing of Exty
to Exty(H.(XBZ/pZ;TF,), H*(X;F,)). A Grothendieck spectral sequence
for composite functors (Theorem 12.9) allows the passage from the category
U to the category CA. Thus the vanishing of the initial term of the spectral
sequence converging to the initial term of the Grothendieck spectral sequence
that converges to the initial term of the Bousfield-Kan spectral sequence gives
the proof of the Sullivan conjecture.

The homotopy limit problem for spectra plays a role in the descent spectral
sequence of [Thomason82] (see Chapter 12) and in the analysis of the Segal
conjecture ([Carlsson87]).

11.5 Miscellanea

We add to our catalogue a few entries that are not in the mainstream of
homotopy theory. The first focuses on manifolds and Poincaré duality; the
second has led to considerable progress in the classification problem for knots,
and the last appears in the study of singularities of mappings.

The first example is due to [Zeeman62] from his Cambridge thesis. The
spectral sequence is derived from a double complex that is defined for a ho-
mology theory based on pairs of simplices instead of single cells. If given two
simplicial complexes, K and L, then a facing relation on K x L is a set F of
cells in K x L, such that, whenever 0 x 7 € F and ¢’ X 7 < ¢ x 7, then
o' x ' € F. Let H*(F) denote the system of local coefficients on K induced
by F.

Given a facing relation, let Ly = {0 | ¢ x 7 € F} and we say that F is
left acyclic if all o € L are acyclic.
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Theorem 11.29 (the dihomology spectral sequence). A left acyclic facing
relation F on K and L gives rise to a spectral sequence with

Ep o = Hy(K; Hg(F))
and converging to H.(L).

This spectral sequence can be used to relate various homology theories
(Cech to Vietoris, simplicial to singular, etc.) and to relate the spectral sequence
of Leray to that of Serre (Cech to singular). Also, if

D = {(o%, 1) for ¢ € K and 7, < 0P},

then the resulting dihomology spectral sequence collapses to the isomorphism
of Poincaré duality if K is a closed, orientable, combinatorial n-manifold. Thus
the spectral sequence measures the failure of Poincaré duality for an arbitrary
complex. Generalizations of this spectral sequence were derived by [Cain74]
and [Sklyarenko92].

[Arnol’d70] introduced a spectral sequence to study the space of entire
complex functions. [Vassiliev92]has applied the motivating idea of [Arnol’d70]
to many different settings including the complexity of algorithms, the cohomol-
ogy of braid groups, classical Lie groups, spaces of generalized Morse functions,
loop spaces, and most dramatically, spaces of knots and links. The key object
of study is a function space F, such as the space of monic real polynomials
of fixed degree d. This particular space contains a subspace 3, consisting of
polynomials with a multiple root. The subspace X is called a discriminant and
since F is finite-dimensional, then the space F\X consists of real polynomials
without multiple roots. The Spanier-Whitehead dual of F\X: is the one-point
compactification . Thus, the cohomology of F\X is calculable from the
homology of 3. This space admits a filtration that is well-behaved when we
resolve 3 geometrically by inserting simplices whenever higher multiplicities
of roots occur. The filtration leads to a spectral sequence of (Borel-Moore)
homology groups. By an index shift we get a spectral sequence converging to
the cohomology of the complementary space F\3.

In the various settings considered by [Vassiliev92], the Ej -term of the as-
sociated spectral sequence may be given in terms suited to the problem. For
knots, the space F consists of all smooth maps of S* into B> and the dis-
criminant consists of maps that have singularities or self-intersections. The
complement of this discriminant has path components that correspond to knot
types and so its topology is important for the classification problem for knots.
Thus the invariants of the space of knots appear as the groups E ¢ of the
spectral sequence. [Vassiliev92] identified a combinatorial procedure for the
determination of E; “*giving invariants of a knot diagram. The analysis of
the rest of the spectral sequence leads to the Vassiliev invariants of knots.
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There has been considerable development of these invariants, relating them
to classical and more recent knot invariants ([Birman-Lin, X.-S.93]), and giv-
ing a combinatorial description, independent of the spectral sequence origins
(|Bar-Natan95]).

Another spectral sequence inspired by the work of [Arnol’d70] and used
to study singularities was introduced by [Goryunov-Mond93]. The ingredients
are a continuous, proper and finite mapping f: X — Y to which we associate
the £ multiple point space

DF(f) = cs{(z1, ... ,ax) | flz1) = = flax),z; # x; fori # j}.
These spaces are equipped with natural mappings €; : D*(f) — DF1(§)
defined by ; x(x1,... ,2%) = (z1,... ,&i,... , k), and with an action of the

symmetric group X, given by permuting the entries. To any cellular 3;-space Z
for which the X, -action is cellular, we associate the alternating chain complex
and homology:

C(Z) = {c € Cell,(Z) | oc = sign(o)c forall o € 5.},

where sign: X — {£1} is the canonical sign representation. Since the action
is cellular, the differential on Cell,,(Z) determines a differential on C2t(Z)
and so we can define H2'*(Z2).

We also associate the & image multiple point space M* (f) = e(D*(f)),
where €: D*(f) — Y is given by e(x1, ... ,xx) = f(z1).

The following spectral sequence appeared in this form in the paper of
[Goryunov95]. The expository paper of [Houston99] is a very nice introduction
to its applications.

Theorem 11.30 (the image computing spectral sequence). Given a continuous,
finite, and proper mapping f: X — Y for which the k™ multiple point spaces
D¥(f) have the S-homotopy type of a Sy-cellular complex for all k > 1,
and for which each k™ image multiple point space M, (f) has the homotopy
type of a cell complex for k > 1, there is a spectral sequence, converging to

Hp1q+1(f(X)), with
By o = HYY(DPH(E)), d' = (e1p41)s: HF(DPPH(F)) — HF(DP(f)).

When the spectral sequence collapses at E' (for example, when f is a
corank-1 map-germ C* — C™*! with finite A-dimension; [Goryunov95]),
the rational homology of the image is the sum of alternating homologies of the
multiple point spaces, which is useful in the study of mixed Hodge structures on
the image ([Goryunov-Mond93]). [Houston97] applied the spectral sequence
to study the singularities of finite analytic mappings and to obtain relations
between the fundamental groups of the domain and image of such mappings.
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Spectral Sequences in Algebra,
Geometry and Analysis

“During the last decade the methods of algebraic topol-
ogy have invaded extensively the domain of pure algebra,
and initiated a number of internal revolutions.”

From [Cartan-Eilenberg56]

Spectral sequences arise from filtered differential modules, from double
complexes, and from exact couples (Chapter 2). These basic structures may
be found in almost any situation where homological methods are used—many
examples of spectral sequences have become essential tools in fields outside of
topology.

In this chapter, we continue the catalogue begun in Chapter 11. The ex-
amples here fall into three broad classes: those of homological origin (§12.1);
those based on algebraic or differential geometric structures (§12.2), and those
whose origin is chiefly topological but whose interpretation is algebraic (§12.3).
We close the chapter with a short discussion of the notion of derived categories
(§12.4), a formalism that lurks behind the ‘unreasonable effectiveness’ of spec-
tral sequences.

The reader is expected to be acquainted with the categories of discourse for
the examples presented in this chapter—-definitions can be found in the cited
references. Furthermore, this catalogue is quite far from complete (though
some might argue that inclusion of Grothendieck’s composite functor spectral
sequence excludes very few examples). The hope remains that the reader will
find a useful example in this collection or at least the sense in which spectral
sequences can be applied in his or her field of interest. A search of the review
literature in mathematics will provide a bounty of details to the curious reader.

12.1 Spectral sequences for rings and modules

Suppose R and .S are commutative rings with unit. Denote the category of
left (right) modules over R by gkMod (Modg) and similarly for the ring .S. If we
are given a homomorphism of rings, ¢: R — S, then modules over S obtain the
structure of modules over R, where r - m = ¢(r) - m. Under these conditions,
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we would like to relate the homological invariants of modules over the given
rings in terms of the homomorphism ¢. The following theorem describes these
relations in terms of spectral sequences due to [Cartan-Eilenberg56].

Theorem 12.1 (the change-of-rings spectral sequences). Suppose ¢: R — S
is @ homomorphism of commutative rings with unit, and M € Modg, N €
sMod, M’ € Modg and N’ € pMod.

(1) There is a spectral sequence with E = Torg(Torf(M, S),N), and
converging to Tor® (M, N). <
. . 2 o~ 1 R 1
- ? ? ’
(2) Thereisa spectral sequence with E; = Tor, (M', Tor (S, N")), and
converging to Torf(M', N").
; 1 EP o gt d R /
- 2 ¥ ’
(3) There is a spectral sequence with EY Ext§(Tor, (S, N'),N), and
converging to Extp(N', N).
; hy EP o Fyt? q '
- ? ? ’
(4) There is a spectral sequence with EY Ext% (N, Ext% (S, N')), and
converging to Extx (N, N').

These spectral sequences can be derived in the manner of Theorem 2.20
(the Kiinneth spectral sequence) by judicious choices of double complexes.
They are also special cases of the Grothendieck spectral sequence for derived
functors on abelian categories (Theorem 12.10).

The change-of-rings spectral sequence applies in the special case of an
extension of algebras over a field, 0 — B — A — A//B — 0, where
A//B=A/I(A)-B.

Theorem 12.2. Suppose A is an augmented algebra over a field, k. Suppose
B is a normal subalgebra of A and A is projective over B. If M € Mod 4 and
N € 4/BMod, then there is a spectral sequence with

Ef”q = Torﬁ//B(TorqB(M, k), N)

and converging to Torf(M ,N). Also, for M' € sMod, there is a spectral
sequence with
EP? = Extly (N, Extg(k, M)

and converging to Ext’y (N, M'").

The reader can compare this theorem with Theorem 9.12 for central extensions
of Hopf algebras.

The next three examples represent special cases of extra structures on rings
or algebras that lead to spectral sequences. The first bears a strong relation to
the Eilenberg-Moore spectral sequence. The second example treats some other
homological invariants of a ring, namely the Hochschild homology and the
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cyclic homology of a ring. The third example is quite general and focuses on
the consequences of a filtration on an algebra and a module over it; a special
case appears as Theorem 9.56.

In the study of local rings, various homological invariants have played a
key role. In particular, the Poincaré series for alocal ring, (R, m), is defined by

Pr(t) = ZZO (dim g/ TorF(R/m, R/m))t:.

Several spectral sequences have been useful in the study of this series (re-
viewed by [Avramov-Halperin86]). The following example was derived by
[Avramov81] to study the problem of whether a minimal free resolution can be
given the structure of an algebra.

Theorem 12.3. Given a diagram of commutative ring homomorphisms
B
A
C

and a module M over B, then Tor* (M, C) is a Tor* (B, C)-module, and D is
a Tor*(B, C)-module via the homomorphism h. Furthermore, there is a spec-

tral sequence with E7 | = Tor;‘;rA(B ©)(Tor* (M, C), D), and converging to
Tor? (M, D).

B®sC-L2-D

The spectral sequence leads to an obstruction theory for the existence
of multiplicative structures on resolutions. [Avramov81] also explicated the
relationship of this spectral sequence to the Eilenberg-Moore spectral sequence.

An invariant of associative algebras over a fixed ring R was introduced
by [Hochschild45] to study the classification of extensions of algebras. One
expression for the Hochschild homology of an algebra, taken to be projective
as amodule over R, is given by

HH,(A) = Tor2"®4(A, A),

where A°P ® A acts on A by (a ® 3)(a) = Bac. [Hochschild45] introduced
a functorial complex, resembling the bar construction, to compute HH,(A).
When A is a regular affine k-algebra over a perfect field k, [Hochschild-
Konstant-Rosenberg62] proved that HH, (A) is isomorphic to the algebraic
de Rham complex Q% , = A(J/J?), where J = keru: A® A — Ais the
kernel of the multiplication mapping on A.
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[Connes85] introduced a variant of the Hochschild homology in order to
extend the Chern character to the algebraic K-theory of a C*-algebra. For a field
k of arbitrary characteristic, the cyclic homology HC'.(A) of an algebra A over
k is defined from a double complex in which each column is the Hochschild
complex, and in each row we find the homology of a cyclic group. This leads
to two spectral sequences ([Connes85]).

Theorem 12.4. Given an algebra A over a field k, there are two spectral
sequences converging to HC.(A). In the first spectral sequence, E;}Q =
HH,_,(A) and d' = B, the Connes boundary map. In the second, E} , =
H,(Z/(q+1)Z, AP9Y), the homology of the group 7./ (q+1) Z with coefficients
in the Z/(q + 1)Z-module A%, where the generator of Z./(q + 1)Z acts on

AP by the cyclic permutation ag @ -+ - ® ag — (—1)9a, Q@ g @ - - - @ ag_1.

Cyclic homology figures in the computation of the algebraic K-theory of
rings, in noncommutative differential geometry, and in mathematical physics.
For a comprehensive and comprehensible survey of these ideas, see the excellent
book of [Loday98].

Suppose we begin with a filtered augmented algebra (A, u, F, £) over a field
k, and a filtered A-module, M, satisfying either of the following conditions:

I_{FpAzA,FpMzM, ifp >0,
L FaA=1I(A) =kere and (), F,A={0} =, F,M.
H:{FPA:{O}:FPM, ifp<o0,

FA=k and |J,FA=A, U, FL,M=M.

Theorem 12.5 (the May spectral sequence). For a filtered k-algebra, A, and
Jiltered A-module, M, satisfying I or II, there is a spectral sequence with
E? = TorEOA(k,EOM), and converging to Tor2(k, M). Dually, there is
a spectral sequence with Ez = Extgoa(k, (E°M )dual

), and converging to
Ext’ (k, MY a5 an Ext’, (k, k)-module.

When A and M are graded, the spectral sequences are trigraded, where
the first two gradings sum to the homological degree and the last two sum to
the internal degree. Applications of this spectral sequence to the case where A
is a Hopf algebra were pioneered by [May64, 66]. A natural generalization of
this spectral sequence is presented in Exercise 3.4.

The May spectral sequence may be applied in computations of group coho-
mology. [Bajer94] established a collapse result for the May spectral sequence
converging to Extyq(k, k) when A = k[G], the group algebra for a finite
p-group G and a field & of characteristic p > 0.
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Other algebraic structures

The homological algebra of other algebraic structures, such as Hopf al-
gebras, Lie algebras, and Leibniz algebras, was developed to obtain invariants
that would aid in the classification problem of such structures and, more gen-
erally, lead to a deeper understanding of the structures themselves. The notion
of an extension of Hopf algebras, Lie algebras, etc., plays the role of a fibra-
tion in topology, linking the members of the extension together. The case of a
group extension, 1 — K — G — @ — 1, is paradigmatic—the homological
invariants of the constituent groups are linked together in the behavior of the
Lyndon-Hochschild-Serre spectral sequence (Theorem gbis, 12).

The analogue of the Lyndon-Hochschild-Serre spectral sequence for Lie
algebras was introduced by [Hochschild-Serre53’].

Theorem 12.6 (the Hochschild-Serre spectral sequence). Let b be a Lie ideal
in the Lie algebra g and M, a g-module. Then there is a spectral sequence,
converging to HP*1(g, M), with EY'* = H?(g/h, Hq(h, M)).

This theorem generalized the results of [Koszul50] who worked with a relative
version of cohomology for pairs of Lie algebras and over fields of characteristic
zero, where the geometric theory of Lie groups provided motivation. Koszul
pioneered the homological algebra of Lie algebras as a tool independent of the
topology and geometry involved.

When a Lie group is present, it is possible to view it as a manifold, a group,
and its associated Lie algebra. [van Est58] introduced a spectral sequence in
which all of these structures play a role. Let G denote a Lie group and H a
compact subgroup of G. Suppose m: G — V is a representation of G into V'
a real vector space. Let g and h denote the Lie algebras of G and H respec-
tively. With these assumptions there are three cohomology algebras that can
be defined; Hj,, (G/H), the de Rham cohomology of the homogeneous space
G/H, H:lg(G, V,x), the smooth group cohomology of G with respect to the
representation 7 in V', and H{ (g, h; V), the relative Lie algebra cohomology
with coefficients in V.

The spectral sequence is based on a double complex with elements of
bidegree (r, s) given by V'-valued functions of which the first r variables are in
g and the last s are in G. These functions are alternating multilinear on the first
r variables and smooth on the last s.

Theorem 12.7 (the van Est spectral sequence). With G, H, V and 7 as above,
there is a spectral sequence with

E;’* = HE&R(G/H) & H:lg(Gv V7 7T)

and converging to H; (g, b; V).
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This spectral sequence has proved useful in the study of the cohomology of
Lie algebras. [Tillman93] has related the edge homomorphism in the van Est
spectral sequence to the boundary map between Hochschild homology of a
Banach algebra A and the cyclic homology of A.

A more general class of algebras that extends the notion of a Lie algebra
was identified by [Loday93]: A Leibniz algebra g is a k-module together with
a bilinear mapping [ , ]: g X g — g satisfying the Leibniz relation

@, [y, 2]] = ([, ], 2] — [, 2], 9.

The definition leaves out the antisymmetric relation expected of Lie algebras
and so gives a noncommutative version of a Lie algebra. A Leibniz module (or
representation) is a k-module M together with a bilinear mapping M x g — M,
written (m, g) — [m, g], satisfying [m, [z, y]] = [[m, z],y] — [[m, 9], z].

[Loday-Pirashvili93] defined the Leibniz cohomology, HL*(g, M), of a
Leibniz algebra g with coefficients in a Leibniz module M as the homology of
the complex

0 d d d d
R — C’l(g,M) — C’2(g,M) — e —>C’k(g,M) —
where C*(g, M) = Homg (g®*, M) and the differential d is defined

d)(g1® @ gr41) =

Z M1 ® - ©9i1©[90,95] © i1 ® @G5 © - @ grra)
1<i<j<k
k+1
+lg (g2 ® @)+ Y (D) g (1@ RG® - @ grg)].
i=2
When g is a Lie algebra, the canonical mapping g®* — g™* induces a ho-
momorphism HY, (g, M) — HL*(g, M). [Pirashvili94] and [Lodder98] have
introduced a spectral sequence that computes the relative theory defined as

wa(g) = H(s*C*(2)/"(9), d),

where s is the operator that shifts degree, and ©2*(g) is the complex that de-
fines Lie algebra cohomology. The spectral sequence measures the differ-
ence between the Lie algebra cohomology and the Leibniz cohomology when
they are applied to a Lie algebra, that is, it reveals the importance of the an-
ticommutative condition on a Lie algebra. The Es-term of the spectral se-
quence is made up of the Leibniz cohomology of the Lie algebra g and another
term defined as follows: There is a left g-module structure on g4 given by
gv(h) = v([h, g]). We can define morphisms 7;: Q**1(g) — Q7(g; gdual)
and 45: Q7(g, g4@) — C™*1(g,R) by the formulas

i1(a)(91,92,- -, 9n)(90) = (=1)"(g0, 91, - - , gn)
i2(8)(90, 91, - -, gn) = (=1)"B(g1, - ,9n)(90)
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The complex CR*(g) is defined by the short exact sequence
0—Q*(g) — Q*_l(g,gdual) — sCR*(g) — 0.

The homology of CR*(g) is denoted by HR*(g).

Theorem 12.8. Let g be a Lie algebra and M a g-module. Then there is
a spectral sequence with Ef,’q ~ HILP(g,M) ® HRY(g), and converging to
HPF(g, M).

rel

The spectral sequence was derived for Leibniz homology by [Pirashvili94] and
for cohomology by [Lodder98], who has extended the Leibniz cohomology
groups to diffeomorphism invariants of a manifold, and related them to the
Gelfand-Fuks cohomology of smooth vector fields. He has also identified the
Godbillon-Vey invariant of foliations as a Leibniz cohomology class.

The category of connected Hopf algebras over a ring R shares a great
deal with the category of groups. One of the uses of group cohomology is the
classification of extensions of groups. Suppose 1 — K — G — @Q — lisan
extension. Then @ acts on K by conjugation, giving K a Q-module structure.
There is also a twisting function (a factor set) 7: Q@ x Q@ — K. The Q-
module structure and 7 together determine the extension G up to a coboundary
condition. This identifies H?(Q, K) as the group that classifies extensions
with the given Q-module structure. [Gugenheim62] and [Singer72] carried out a
similar development of the structure of an extension of connected Hopf algebras.
The notion of a -module structure with a twisting function is replaced with
the notion of an abelian matched pair of Hopf algebras, (A, B). The definition
may be found in [Singer72, Definition 3.1]. This leads to cohomology groups
H™(B, A), definable as the derived functors of an appropriate hom functor, or
via a cotriple. [Henderson97] has studied the problem of computing the groups
H™(B, A) for which he has introduced a spectral sequence.

Theorem 12.9. If (A, B) is an abelian matched pair of graded connected
Hopf algebras over a ring R, then there is a spectral sequence for each integer
r > 0 with .Ey" = Ext" (R, Cotory” (R, R)), and converging to E}***",
the Ey-term of a spectral sequence that converges to H*(B, A).

The method of construction is to use cosimplicial objects and interpret the
various filtration quotients. [Henderson97] computed the spectral sequences in
the case of a truncated monogenic tensor algebra, from which he determined the
nature of certain extensions over IFy, that occur in the study of finite H-spaces
([Lin78]).
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Abelian categories

The structure of a spectral sequence requires a homological algebra that
includes filtrations, subquotients, and additivity of morphisms. The minimal
requirements of a category in which spectral sequences may be constructed
and studied were identified by [Grothendieck57], who introduced the notion
of an abelian category. General results about spectral sequences in abelian
categories soon followed in papers of [Dold62], [Eilenberg-Moore62], and
[Eckmann-Hilton66]. For a thorough introduction to foundations and the homo-
logical algebra of abelian categories, see the books of [Tamme94] and [Gelfand-
Manin96].

Among the most important results of [Grothendieck57] is a general spectral
sequence whose instances include many classical results. We begin with abelian
categories, AbelCat;, AbelCat,, and AbelCats, along with functors

F': AbelCat; — AbelCat- and G': AbelCat, — AbelCats.
We relate the derived functors F' and G to the derived functors of (G o F).

Theorem 12.10 (the composite functor spectral sequence). Suppose the func-
tors F and G are covariant, G is left exact and F takes injective objects in
AbelCat, to G-acyclic objects in AbelCaty (G-acyclic objects have the prop-
erty that the derived functors of G vanish on them). Then there is a spectral
sequence with

ERY = (RPG)(RIF(4)),

and converging to R*(G o F)(A) for A in AbelCat,.

The homological invariants we have considered are instances of the derived
functors of such functors as M ®r — or Homr(—, C). The interested reader
can review the spectral sequences of §12.1, §2.4, §7.1, and §9.2 and try to
derive these spectral sequences as instances of the composite functor spectral
sequence.

When the categories involved are not abelian, it is still possible to set up
a Grothendieck spectral sequence. Using simplicial methods and homotopy
theory, [Blanc-Stover92] have generalized the composite functor spectral se-
quence to categories of universal algebras (such as groups, rings, Lie algebras,
etc.) and more general functors.

An example of the Grothendieck spectral sequence is a generalization of
the change-of-rings spectral sequence. Suppose we have a family of functors,
indexed over Z,

{T,}: AbelCat; — AbelCat,

that act like the derived functors of 7y. That is, they are additive, left or right
exact, and to a short exact sequence in AbelCat,,0 — A — B — C — 0,
there is a long exact sequence in AbelCato

—TWA—T,B—T,C ->Th11A— .-
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(where £1 depends on the variance of the 17s).

Theorem 12.11 (the Universal Coefficient spectral sequence). Suppose A is
an object in AbelCaty and M € sMod. Suppose

(1) projdim M < oo or T_ n = 0 for sufficiently large N,
(2) Ais Noetherian and M is finitely generated or, for ¢ < n, T, commutes
with arbitrary direct sums.

Then there is a spectral sequence with Ef,’ ¢ = Tor;f‘ (TyA, M), and converging
to T.M. Dually, for T* = T_,, contravariant, there is a spectral sequence
with ES? = Ext?, (M, T?A), and converging to T* M.

This theorem is proved in this generality in the paper of [Dold62]. For the
abelian categories of chain and cochain complexes, the familiar Universal Co-
efficient theorem can be recovered. For T,, = Ext " (B, —), this gives another
spectral sequence relating the homological invariants of rings and modules.

Another application may be made to compute the hypercohomology of a
complex, (A*, d), of objects in AbelCat; with respect to a left exact functor
F: AbelCat; — AbelCat:. Suppose AbelCat; has enough injectives. Then
the hyperderived functors of F' can be defined: Suppose (I*,d) is a complex
of injective objects in AbelCat; with H(I*,0) = H(A*,d). The hypercoho-
mology of A* is defined by HEF*(A*) = H(FI*, F9). This definition can be
shown to be independent of the choice of injective object.

Theorem 12.12 (the hypercohomology spectral sequence). If { R? F'} denotes
the sequence of right derived functors of F, then there is a spectral sequence,
with E5? = (RPF)(HY(A*,d)), and converging to HF*(A*).

This theorem can be proved from the composite functor spectral sequence
or from the construction of a double complex of injective objects whose total
complex has homology H (A*, d) (in the manner of the proof of Lemma 2.19).
A direct proof for rings and modules appears in the classic books of [Cartan-
Eilenberg56] and [Mac Lane63].

12.2 Spectral sequences in Geometry

The basic objects that are studied in algebraic geometry, varieties and
schemes, carry many different structures. Similarly, the basic objects in dif-
ferential geometry, manifolds, are rich with structure. There is an underlying
topological space (sometimes with the nonHausdorff Zariski topology), possi-
ble analytic structure, and, for varieties, the underlying structure of polynomial
rings; the interaction between these structures and with the homological invari-
ants of such objects leads to many useful spectral sequences.

The first example is historically the first spectral sequence. [Leray46],
in a series of Comptes Rendues notes, introduced the notions of a sheaf over
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a topological space, cohomology with coefficients in a sheaf, and the Leray
spectral sequence associated to a mapping (§6.4). Suppose X and Y are spaces
with f: X — Y, a continuous mapping. Suppose ® = {U, | o € J} is an
open cover of Y. Such a covering gives rise to a left exact functor from the
category of sheaves on X to the category of sheaves on Y, which is constructed
from the presheaf of sections. For a sheaf .S on X,

I's(S) = sheaf derived from the presheaf U, +— {['(f*(U,), S) | Us € ®}.

The theorem of [Leray46] relates the sheaves .S on X and I's(S) on Y. The
category of sheaves (of abelian groups) is an abelian category and so there is a
notion of homological algebra for sheaves.

Theorem 12.13 (the Leray spectral sequence). Let R*T'g denote the right
derived functors of T'g. If H* denotes the sheaf cohomology of a space in a
given sheaf, then there is a spectral sequence with E3? = HP(Y, R1'(S)),
and converging to H*(X, 9).

An application of the Leray spectral sequence is the case of a complex
variety. Algebraically, the variety has the Zariski topology. Analytically, it
carries a topological manifold structure. The sheaves of germs of functions on
the variety (analytic and algebraic) and the cohomology of the variety in these
sheaves are related by the spectral sequence in the theorem and the continuous
function X¢ — Xy,.. This example also reveals a role played by spectral
sequences in algebraic geometry—patching local data into global data. Another
example of a spectral sequence focusing on patching is the local-to-global
spectral sequence.

Theorem 12.14. Suppose X is atopological space and S, a sheaf of rings on X.
Suppose that M and N are sheaves of left S-modules. Then there is a spectral
sequence with EY? = HP(X, Exth (M, N)), and converging to Exts (M, N),
which denotes the derived functors of

Homg(M,N) = H Homg ;) (M(z),N(x)).

xeX

We refer the reader to a classic text on sheaves and spectral sequences
by [Godement58], for a discussion of local-to-global spectral sequences and
a proof of this theorem. See the book of [Griffiths-Harris78] for applications
of the Leray spectral sequence, especially in complex algebraic geometry. A
generalization of the Leray spectral sequence has been derived by [Paranjape96]
in the context of abelian categories and filtered complexes.
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Spectral sequences and the de Rham complex

Other sources of spectral sequences in algebraic and differential geometry
are filtrations of the de Rham complex that derive from some structural feature
of the particular situation. As a first example, we mention a spectral sequence
introduced by [Grothendieck61].

If X is a nonsingular algebraic variety of dimension n over a field & of
arbitrary characteristic, then define

Q% /i = the sheaf of differential 1-forms on X over k.

We form the exterior algebra, Oy, = A(QY,). Then there is a natural
derivation d: Ox — Q% Ik and so an exterior derivative giving a complex

4 1 d ¢ an-1 % on
Ox — QX/k — e — QX/k — QX/k’
called the algebraic de Rham complex on X. The hypercohomology of this
complex is called the algebraic de Rham cohomology of X, and denoted by

ngR(X)'

Theorem 12.15 (the Hodge-de Rham spectral sequence). There is a speciral
sequence with EP = HP(X, Q% ), the cohomology of X in the sheaf °

X/k X/k
and converging to Hj ., (X).

[Grothendieck61] related the algebraic de Rham cohomology of a finite
dimensional variety X over C to its singular cohomology by using the spectral
sequence to prove

H:ikeR(X7 C) = Hs*ing(Xan; C)
where X®", is the analytic space associated to X. The filtration on Hj g (X)
derived from this spectral sequence is related to the system of weights due to the
Hodge structure on a compact complex variety. This relation has been studied
thoroughly by [Deligne71].

When X is a scheme, smooth and proper over a perfect field & of character-
istic p > 0, then there are other invariants that reflect the p-adic structure of the
scheme. In particular, there is the crystalline cohomology of X, H; (X/W),
where W denotes the ring of Witt vectors, defined by [Grothendieck68] and
[Bertholet76]. [Bloch78] studied the relations between the various cohomo-
logical invariants of a variety over a perfect field of characteristic p > 2. He
introduced a spectral sequence to compute H. (X/W) using a complex C'%
of typical curves on K-theory. The hypercohomology spectral sequence in this
case is called the slope spectral sequence and has EY'? = HY(X,C%) and
converges to H; (X/W). By analogy with the Hodge-de Rham spectral se-
quence, Deligne ([Illusie79]) introduced the de Rham-Witt complex for a scheme
X, WQ%, which agrees with C§, when the latter is defined.
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Theorem 12.16 (the slope spectral sequence). Let X be a scheme, smooth
and proper over a perfect field k of characteristic p > 0, and WQ% the
associated de Rham-Witt complex. Then there is a spectral sequence with
EY? = HI(X,WQK), and converging to HY, (X/W).

[Ekedahl86] has written a booklength account of the structure theory of the slope
spectral sequence. The applications of this spectral sequence are numerous in
algebraic geometry ([Ilusie79], [Ekedahl86]).

Suppose M is a finite dimensional complex manifold. The cotangent
bundle 7*M of M admits a decomposition, 7*M = T*' M @ T*"M, into
holomorphic forms (sums > f; dz; with f; a holomorphic function on M) and
antiholomorphic forms (sums > F; dz; with F, holomorphic). This decom-
position induces a bigrading on the de Rham complex of C-valued differential
forms on M, Q*(M, C), where QP2(M, C) = AP(T*'M) @ AY(T*"M). An
n-form with n = p + ¢ in Q»4(M,C) is called a (p,q)-form. The exte-
rior differential on Q* (M, C) takes a form w € P7(M, C) to the direct sum
QP+La(M, C) @ QP2+ (M, C). Composing with the projections we get the
expression d = 9 + 0 with 9 of bidegree (1,0) and  of bidegree (0,1). Fur-
thermore, 3o @ =0= 9o d.

It follows that the data (Q7¢(M,C),d,d) determine a double complex
whose total complex is the de Rham complex. The vertical differential, 9, leads
to the Dolbeault cohomology of M,

HEY(M) = QP(M, C) Nker §/9(™171(M, C)).

Theorem 12.17 (the Frolicher spectral sequence). Given a complex manifold
M, there is a spectral sequence, converging strongly to Hi.n (M, C), with
Ey-term given by E3* = HE(M).

[Frolicher55] introduced the spectral sequence to relate the geometric in-
variants of the Dolbeault complex to the topological invariants of the de Rham
cohomology. He observed that a complex manifold with a positive definite
Kihler metric has Ey = E.., and so the spectral sequence gives a necessary
condition for the existence of a Kihler structure. [Cordero-Fernandez-Gray91,
93] have given examples of complex manifolds for which the spectral sequence
does not collapse at Ej.

When X is a smooth projective complex variety, there is also a Hodge
filtration on the cohomology of X . Because it has an underlying Kéhler mani-
fold, the Frolicher spectral sequence collapses for X. In the more general case
of a quasi-projective complex variety V' (thatis, V = X — Y for X and Y
complex varieties), [Deligne68] has proved that there is a different filtration on
H*(X;Q), called a weight filtration. Such a filtration is increasing

O:W_1CWOCW1C"'CWQm:Hm(X;Q)
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for which the complexified associated graded group EY @ C = (W;/W;_1)®C
has a decomposition of Hodge type EY = € o 70 Such a structure
prg=

is called a mixed Hodge structure. When X is a quasiprojective algebraic
variety, [Deligne71] proved that there is a weight filtration on H™(X; Q) and
a decreasing Hodge filtration on H™(X'; C) such that the filtration induced by
the Hodge filtration on the complexified associated graded module from the
weight filtration was a mixed Hodge structure. The existence of two filtrations
of this sort can lead to the collapse of the associated spectral sequences. For
an introduction to mixed Hodge structures, see the ‘naive guide’ of [Durfee83].
The appearance and uses of spectral sequences from mixed Hodge structures is
developed in the book of [El Zein91].

If (M,g) is an n-dimensional Riemannian manifold and 7: E — M
is a flat vector bundle, then a smooth distribution of k-planes A C T'M to-
gether with its orthogonal complement B leads to a decomposition of the metric
g = ga®gp. If we vary the metricby gs = g4 +6"2gp for0 < § < 1, then we
obtain a family of Laplacians for (M, g5 ) and a corresponding exterior derivative
on Q*(M; E). There is a filtration on the L2-completion of QP (M; E) given by
w € F* when there is a j with ds(w + 6w + - - - + §7w) € 6*QPH1[§]. A spec-
tral sequence results that has been shown to be isomorphic to the Leray spectral
sequence associated to the splitting A ® B = T'M ([Mazzeo-Melrose90], [For-
man95]). This spectral sequence is related to the behavior of the spectrum of
the Laplacians involved and is called the adiabatic spectral sequence. For a
general discussion of these ideas, see the paper of [Forman94].

The bigrading of the de Rham complex in Hodge theory has a striking rela-
tive in the calculus of variations. Here one wants to study differential equations
as sections of jet bundles associated to a smooth vector bundle 7: £ — M. Let
J%(E) — M denote the infinite order jet bundle associated to 7. Let I denote
the contact ideal, the differential ideal of the de Rham complex Q*(J*°(E))
of forms that pull back to zero under any extension to infinite jets of a sec-
tion s: M — E. A bigrading results on *(J°°(E)) by counting the number
of forms from I needed to express a given form. The exterior derivative can
be decomposed into horizontal and vertical components giving a double com-
plex, known as the variational bicomplex. The associated spectral sequence
was identified by [Vinogradov78] and a clear presentation can be found in the
monograph of [Krasil’shchik-Verbotevsky98].

Theorem 12.18 (the C-spectral sequence). Let m: E — M be a smooth
vector bundle over an n-dimensional manifold M. Then the spectral sequence
associated to the variational bicomplex converges to Hy,p (J*°(E)) and has
E?’q isomorphic to the horizontal cohomology associated to w; EY"" isomorphic
to the module Lf,h(ﬂ) forp > 0, where Lglt is the homology of the complex of
alternating differential operators associated to 7, and E7° = {0}, otherwise.
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The differential dy: EY™ — E}™ can be identified with the operator that
associates to a Lagrangian its Euler-Lagrange equation.

In the case of a specific distribution on a subspace of J°°(E), the horizontal
cohomology is based on the associated Cartan submodule determined by the
equation (hence the C-spectral sequence) and the £ -term is more complicated to
describe. Applications of the variational bicomplex are presented by [Anderson-
Thompson92]; applications of the C-spectral sequence by [Krasil’shchik98].

Finally, to close this section we mention work of [Dixon91] on the compu-
tation of BRS cohomology for gauge systems ([Henneaux-Teitelboim92]). The
BRS operator determines a differential on the Fock space of integrated local
polynomial functions of a Yang-Mills field and a Fadeev-Popov ghost field.
The resulting cohomology determines invariants of a gauge system, such as
the ghost numbers, the Lorentz character, and discrete symmetries. [Dixon91]
filtered the space on which the BRS operator acts and deduced the associated
spectral sequence. The induced grading from the E.-term of the spectral se-
quence decomposes the desired complicated cohomology in simpler pieces that
are computable.

12.3 Spectral sequences in algebraic K-theory

Algebraic K-theory assigns a sequence of invariants to a ring R and these
invariants may be constructed as the homotopy groups of a certain space (or a
certain spectrum). The tools for the study of algebraic K-theory are as varied
as the appearances of rings throughout mathematics and so there are many
structures at play, interwoven and interacting in algebraic K-theory.

To a ring R we associate the scheme Spec R with the Zariski topology.
[Brown, K-Gersten73] and [Quillen73] derived a spectral sequence, defined for
cohomology groups related to simplicial sheaves, and applicable to algebraic K-
theory: Suppose X is a Noetherian space (that is, the open sets in X satisfy the
ascending chain condition) and suppose that the irreducible closed subsets of X
also satisfy the ACC (for example, if X = Spec R for R aregular, commutative
ring). A simplicial sheaf on X is a sheaf with values in SimpEns, the category
of simplicial sets. If K is a simplicial sheaf on X, then we say that K is flasque
if the mapping t: K — x satisfies the property that, for U, V open in X,

(T'(V,t),restr)
I'V,K) ———— I'(V, %) ®rw,« L'(U, K)
is a simplicial fibration.

Replace the functors I'(U, —), for U open in X, by a functor RI'(U, —)
defined on the homotopy category of sheaves over X,

RT'(U,—): HoSimpSheaves y, — HoSimpEns

such that, when K is flasque, there is natural isomorphism of RI'(U, K) with
I'(U, K). Define the generalized sheaf cohomology groups, H* (X, K) by

HY(X,K) = n_,(R[(X, K)).
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Theorem 12.19 (the Brown-Gersten-Quillen spectral sequence). Suppose X
is a Noetherian space of finite Krull dimension and K is a simplicial sheaf
with basepoint that satisfies mo(K) = {0} and 71(K) and H=1(X, K) are
abelian. Suppose HP (X, 7, (K)) = {0} for p > n. Then there is a fourth
quadrant cohomological spectral sequence with ES? =2 HP (X, 7_,(K)), and
converging to H*(X, K).

If X = Spec R for R regular and such that every coherent sheaf on X is a
quotient of a locally free sheaf, then one builds a simplicial sheaf K on X from
the classifying construction for a category with m_q(K) = K_,, the abelian
sheaf of local K-groups of R and satisfying, H*(X, K) = K..(R). In this case,

EY? = HP(Spec R,K_,)

and the spectral sequence converges to K (R). A construction and discussion
of the applications of the Brown-Gersten-Quillen spectral sequence may be
found in the book of [Srinivas96]. [Gillet81] has given an alternate derivation
of the Brown-Gersten-Quillen spectral sequence as the solution to a homotopy
limit problem (following [Thomason83]).

Another example of an invariant of a scheme (a ringed space) is its étale
cohomology ([Milne80], [Tamme94]). In this example, we relate the étale
cohomology of a scheme with coefficients in various cyclic groups, to the
localized algebraic K-theory of the scheme.

Inorder to introduce Z/mZ coefficients on homotopy groups of a spectrum,
one smashes the spectrum with the appropriate Moore spectrum for Z/mZ
([Browder78]1). The algebraic K-theory of a scheme with coefficients in Z/mZ.
can be defined analogously by taking the spectrum associated to the scheme
and smashing it with the Moore spectrum; its homotopy groups are denoted by
(K/m).(X).

Suppose b € (K/m).(X) and we consider the direct limit of the system

bx—

(K /m)u(X) = (K/m)a(X) = ..

given by left multiplication by b. This direct limit is called the localization of
(K/m).(X) with respect to b (or by inverting the element b), and it is denoted
by (K /m).(X)[b~].

In connection with the Lichtenbaum-Quillen conjecture, [Thomason85]
introduced a descent spectral sequence associated to schemes X satisfying
certain technical conditions:

Theorem 12.20 (the descent spectral sequence). Suppose lis a fixed prime and
v, a natural number. Let X be a separated, Noetherian, regular scheme of finite
Krull dimension, with sufficiently nice residue fields of characteristic different
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Sfrom l. Suppose (3 is the Bott element in (K /1")2(X), that is, the element such
that the Bockstein of 3 is an appropriate power of an 1™ root of unity in K (X).
Then there is a spectral sequence with differentials of bidegree (r,r — 1),

S ()3 if g, odd,

where 7,;(i) = Z;(1)® is the i™ Tate twist of the l-adic integers. The spectral
sequence converges to (K /1").(X)[871].

The Lichtenbaum-Quillen conjecture relates the order of the K-groups to
values of zeta functions for certain arithmetic number fields. [Thomason85]
proved it for this localized version of algebraic K-theory. The result also ap-
plies to the case of X, a variety over an algebraically closed field & of char-
acteristic # [ and so allows computation of these algebraic K-groups for such
varieties. [Mitchell97] presented a proof of Thomason’s theorem in terms of
hypercohomology spectra in which he exposes many of the details and concep-
tual underpinnings of this result, as well as the applications. [Thomason82, 83]
described a context where this theorem is a case of a homotopy limit problem,
here for diagrams of spectra (see §11.4).

The next spectral sequence has played a key role in recent developments
of Voevodsky in his proof of the the Lichtenbaum-Quillen conjecture at 2 for
fields of characteristic zero ([Friedlander97]). Animportant tool in algebraic K-
theory is the motivic cohomology of a field. Motivic cohomology is a functor on
schemes that plays the role of singular cohomology for spaces. For a topological
space X, the Atiyah-Hirzebruch spectral sequence has E5? = HP(X; K¢, )

and converges (0 K f;;q (X). Beilinson conjectured that there should be a spec-
tral sequence of Atiyah-Hirzebruch type from the motivic cohomology of a
scheme with coefficients in the algebraic K-theory of a point (Spec(k)) to the
algebraic K-theory of the scheme. Furthermore, tensored with the rational
numbers, this spectral sequence would collapse determining the algebraic K-
theory groups mod torsion. [Bloch86] has proposed that motivic cohomology of
Spec(k), H}(Spec(k),Z(s)), may be identified with the higher Chow groups
CH?#(Speck, 2s — r) and with this definition, there is a spectral sequence de-
rived by [Bloch-Lichtenbaum94].

Theorem 12.21 (the Bloch-Lichtenbaum spectral sequence). Let k denote a
field. There is a fourth quadrant spectral sequence with
EP? = HY Y (Spec(k), Z(—q)),
and converging to K_,,_,(Speck).
Voevodsky used his proof of the Milnor conjecture ([Voevodsky96], [Kahn,

B9I7], [Morel98]), together with this spectral sequence to obtain his proof of the
Lichtenbaum-Quillen conjecture.




12.4. Derived categories 523

Finally, we close this section with another analogue of the Atiyah-Hirze-
bruch spectral sequence, this time for a different K-theory and a different fil-
tration. If A is a C*-algebra, then there is a K-theory of A, defined and de-
veloped by [Brown-Douglas-Fillmore77], [Pimsner-Popa-Voiculescu79], and
[Kasparov79]. [Schochet81] introduced a spectral sequence that applies when
A is afiltered C*-algebra, that is, there is a sequence of closed ideals,

AgCAIC CAy CAppr C-CA=cls(| ] 4n).

Theorem 12.22. Suppose given afiltered C*-algebra, (A, {Ay}). Then thereis
a spectral sequence with B} | = Ky, o(Ap/Ap_1), and converging to K. (A).
The spectral sequence is natural with respect to filtration-preserving maps of

C*-algebras.

This result and other results of Schochet bring the technical tools of algebraic
topology to bear on the study of C*-algebras.

12.4 Derived categories

The functors of homological algebra such as Tor and Ext are defined as
the homology of chain complexes that are built in a noncanonical manner. In
order to obtain homological invariants, the chain complexes must be carefully
chosen. For example, a projective resolution of a right A-module,

-—>P_i+1—>P_i—>---—>P_1—>P0—>M—>(),

gives Tor2 (M, N)) by computing H(P* ® 4 N) for a left A-module N. Other
choices of projective resolution can be compared with this particular choice to
give isomorphic Tor groups, that is, groups that depend on A, M, and N only.
In the case of modules, flat modules have the property of exactness on tensoring
over A and so the axiomatic properties of Tor can be achieved by a choice of a
flat resolution. However, it may be difficult to compare two flat resolutions.

Grothendieck and [ Verdier63/97] defined the notion of the derived category
of an abelian category A in an effort to establish a framework in which to
extend the duality results of [Serre54]. Let C(A) denote the category of chain
complexes of objects and degree zero maps of complexes in A. Let C*(A)
(C™(A)) denote the subcategory of chain complexes that are bounded below
(above). A morphism of complexes P* — Q° is a quasi-isomorphism if it
induces an isomorphism H(P*) — H(Q*) of graded objects. The derived
category of A, D(A), is obtained by formally inverting the class of quasi-
isomorphisms in C(A). This formal inversion can be made concrete by using a
calculus of fractions developed by [Verdier63/97] and [Gabriel-Zisman67].

If F': A — B is an additive functor between abelian categories, then we
can ask if there is an extension of F' to0 a functor Dt (A) — D" (B). A minimal
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requirement is that F', extended levelwise to C*(A) — C*(B), preserve quasi-
isomorphisms. This is true if F' is left exact. The right derived functors of
F determine the extension of F' to RF: DT (A) — D' (B). This extension
is proved to exist by analyzing the mapping cylinder construction in abelian
categories, a construction formalized in the notion of a triangulated category.

When the abelian category A has enough injectives, then the value of
H*(RF(K*)) is called the s™ hyperderived functor of F' with respect to
the complex K. The computation of H*(RF(K*)) may be carried out by
replacing K* with a double complex of injective objects, from which there
is a spectral sequence with EY'? = (RPF)(HY(K*)), converging weakly to
H*(RF(K?*)).

The point of derived categories, however, is to argue with the objects up to
equivalence and the derived functors as functors on a particular category. An
example of this principle in action is the following basic result.

Theorem 12.23. Given three abelian categories A, B, and C, and additive left
exact functors F: A — B and G: B — C such that F takes injective objects
in A to G-acyclic objects in B, then the extensions of F, G and G o F to the
derived categories are naturally isomorphic, that is, R(GoF) = R(G)o R(F).

(Proofs of this theorem can be found in the book of [Weibel94, 10.8.2], or
[Gelfand-Manin96, I11.7.1] or in the survey paper of [Keller96].) When the
spectral sequence is applied to compute the hyperderived functors of the prod-
uct, we recover the Grothendieck spectral sequence (Theorem 12.9). The under-
lying equivalence is more revealing than the spectral sequence and the derived
category provides the framework to make such insights.

The language of derived categories is based on the basic structures of
stable homotopy theory. [May94] has given a dictionary between algebra and
topology that illuminates the analogies. The homological algebra of rings and
modules can be carried back to stable homotopy through the foundational work
of [Elmendorf-Kriz-Mandell-May97].

Derived categories have spread throughout mathematics wherever homo-
logical algebra has developed. As derived categories provide organization,
spectral sequences will provide computations.
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Index

abelian category, S144f. bounded filtration, 34

action of a graded algebra, 17 Bousfield-Kan homology spectral sequence, 503
on a spectral sequence, 18 Bousfield-Kan spectral sequence, 361

Adams resolution, 393ff. Bredon (co)homology, 501

Adams-Novikov spectral sequence, 499 Browder’s theorem, 473

Adem relations, 129, 367 Brown-Gersten-Quillen spectral sequence, 521

adiabatic spectral sequence, 519 Brown-Peterson spectra, 500

adjoint function, 110 Brunnian links, 309

admissible product, 130 bundle of groups over a space, 164

admissible sequence, 196
C*-algebra, 523

C-spectral sequence, 519

Cartan formula, 128

Cartan-Eilenberg system, 58, 461
Cartan-Leray spectral sequence, 160, 337ff.
caveat, 28, 29

cell decomposition, 93

algebraic May spectral sequence, 87

algebraic de Rham complex, 517

Alexander-Whitney map, 122, 167

analyzer, 488

approximation theorem, 439

aspherical space, 339

Arnol’d-Vassiliev spectral sequence, 505

. cell-complex, 93

associated graded module, 4, 31 Tl < ation th o4
t! tl

associated principal bundle, 209 cetwat app‘roxlma 1on fheoremm,

cellular chain complex, 100

cellular differential, 100

cellular homology, 100

Atiyah spectral sequence, 496
Atiyah-Hirzebruch spectral sequence, 496

attaching map, 92
. cellular map, 94
augmentation, 123

chain homotopy of order k, 87

BRS cohomology, 520 change-of-rings spectral sequence, 387, 508
bar construction, 242ff., 292, 335 change-of-rings theorem, 280, 438

bar spectral sequence, 268 characteristic mapping, 93

Barratt spectral sequence, 488 characteristic ring, 213

Barratt-Puppe sequence, 97 Chern classes, 220, 230

base space, 110 classifying space, 210

basic goal, 3 coalgebra, 124

bialgebra, 126 coassociativity, 123

bigraded algebra, 11 cobar construction, 379, 491
bisimplicial set, 225 cobordism, 408

Bloch-Lichtenbaum spectral sequence, 522 cocommutativity, 124

Bockstein homomorphism, 127, 455 cocomplete category, 67

Bockstein spectral sequence, 38, 455ff. coefficients of a generalized theory, 495
Borel construction, 501 coexact sequence, 278

Borromean rings, 304 cofibrant space, 114
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cofibration, 96

coherent system of algebras, 461

cohomology of an algebra, 378

cohomology operation, 126

coinvariants, 335

colimit, 67

collapse of a spectral sequence, 7, 31

collapse theorem for Eilenberg-Moore spectral se-
quence, 275

comodule over a coalgebra, 271

complementary degree, 4

complete category, 67

complete filtration, 69

complete intersection, 283

completion, 72, 343, 345

complex cobordism, 414

composite functor spectral sequence, 514

composition product, on Ext, 380

composition product, on {X, X}, 403

comultiplication, 123

conditionally convergent spectral sequence, 76

cone, 94

connective generalized theory, 496

Connes spectral sequence, 510

construction, 194

convergence as a graded algebra, 12

convergence as an algebra, 45

convergence of a spectral sequence, 5, 33

convergence to a module over a graded algebra,
18

cosimplicial object, 322

cosimplicial replacement of a functor, 503

cosimplicial resolution, 323

counit, 123

countable CW-complex, 94

cup product, 124

cupy product, 175, 288, 453

CW-complex, 93

cyclic homology, 510

deficiency of H in G, 284
deficiency of an algebra, 283
defining system, 305
degeneracy map, 103

Index

derivation, 11

derived category, 523ff.

derived couple, 38

descent spectral sequence, 521
desuspension, 259

detected by a higher order operation, 374
diagonal action of the Steenrod algebra, 326
diagonal map, 123

difference homomorphism, 298
differential Hopf algebra, 470
differential bigraded algebra, 44
differential bigraded module, 4, 28
differential graded algebra, 11, 44, 235
dihomology spectral sequence, 505
dimension, 93

direct limit, 67

divided power algebra, 27, 253, 385
division algebra, 113, 366

Doubeault cohomology, 518

double complex, 47

Dyer-Lashof algebra, 326

E-algebra, 283

effective action, 208

EHP sequence, 494

EHP spectral sequence, 495

Eilenberg-Mac Lane space, 118

Eilenberg-Mac Lane spectrum, 120

Eilenberg-Moore spectral sequence for general-
ized theories, 498

Eilenberg-Zilber map, 122, 247

Eilenberg-Zilber theorem, 122, 167

elementary spectral sequence, 86

elliptic homology, 500

equivariant Leray-Serre spectral sequence, 502

equivariant cohomology, 501

equivariant homology, 340

Euler characteristic, 14

Ext, 376ff.

exact couple, 37ff.

excess, 196

exhaustive filtration, 62

extended module, 237

extension condition, 105
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extension problem, 32
exterior algebra, 20, 124

face map, 103

Federer spectral sequence, 490
fibrant simplicial set, 357

fibration spectral sequence constructor, 229
fibration, 109

fibre bundle, 208

fibre, 110

filtered differential graded module, 33
filtration, 31

filtration degree, 4

filtration topology, 87

filtration, bounded, 3, 33

filtration, decreasing/increasing, 31
filtration-preserving action, 17

finite CW-complex, 94

finite H-space, 476

finite type, 159

finiteness of woyn 4k (52"_1), 162
first Eilenberg-Moore theorem, 241
first derived functor of lim, 69
Five-lemma, 26

five-term exact sequence, 6

flat module, 53

formal space, 310

framed manifold, 409

free and proper group action, 337
free graded commutative algebra, 258
free loop space, 178

free path space, 110

Freudenthal suspension theorem, 99, 192
Frobenius homomorphism, 215, 475
Frolicher spectral sequence, 518
functional cup product, 367
fundamental group, action of, 330ff.
fundamental groupoid, 164

generalized (co)homology theory, 495
generalized sheaf cohomology groups, 520
geometric cobar construction, 322
geometric realization of a simplicial set, 107
graded algebra, 10

graded commutativity, 20
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graded commutative bigraded algebra, 24
Grassmann manifold, 207

Grothendieck spectral sequence, 514
grouplike space, 481

Gysin sequence, 8, 143

H-space, 125

Hausdorff filtration, 64

height, 213

hidden extension, 450

higher order Bockstein operator, 460
higher order cohomology operations, 371
higher order linking invariants, 304
Hirsch formulas, 288

history, 133, 207, 222

Hochschild homology, 509
Hochschild-Serre spectral sequence, 511
Hodge-de Rham spectral sequence, 517
holes, 8

Hom-tensor interchange, 376
homogeneous spaces, 113, 212, 274ff.
homological perturbation theory, 224
homology Eilenberg-Moore spectral sequence, 268
homology of a group, 335

homology of an algebra, 378

homology suspension, 190

homology with local coefficients, 166
homotopy colimit, 503

homotopy extension property (HEP), 96
homotopy groups of a Kan complex, 106
homotopy lifting property (HLP), 109
homotopy limit, 503

Hopf algebra extension, 513

Hopf algebra, 125

Hopf fibration, 113

Hopf invariant, 366

Hopf map, 366

Hopf-Borel theorem, 213

Hurewicz fibration, 109

Hurewicz spectral sequence, 490
Hurewicz theorem, 108, 157
Hurewicz-Serre theorem, 205
hypercohomology spectral sequence, 514
hyperderived functor, 514
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image computing spectral sequence, 506
implications, 469

important observation, 6

incidence number, 100

indecomposable, 125

infinite loop space, 499

injective comodule, 271

injective module, 377

integers localized at a prime, 354

inverse limit, 67

J-homomorphism, 450
Jacobi identity, 303, 347
joke, booty boot hog, 558
juxtaposition product, 382

k-invariant, 121

Kan complex, 105

Kervaire invariant, 451

Koszul complex, 259

Koszul resolution, 260

Kudo transgression theorem, 192
Kiinneth spectral sequence, 56
Kiinneth theorem for Top/B, 315
Kiinneth theorem, 45

Lambda-algebra, 493

Leibniz algebra, 512

Leibniz cohomology, 512

lens space, 132, 198

Leray spectral sequence, 515

Leray-Hirsch theorem, 148

Leray-Serre spectral sequence for generalized the-
ories, 498

lifting function, 110

limit, 67

local ring, 310

local-to-global spectral sequence, 515

locally finite CW-complex, 94

locally finite module, 14

locally trivial fibration, 112

loop multiplication, 98

loop suspension homomorphism, 298

lower central series, 343, 345

Lucas’s Lemma, 263

Index

Lusternik-Schnirelmann category, 302, 347
Lyndon-Hochshild-Serre spectral sequence, 340ff.

mapping cone, 97

mapping cylinder, 97

Massey products in Ext, 426ff.

Massey products, n-fold, 305

Massey triple product, 302

MathSciNet, 488

matching space, 358

matric Massey products, 311ff.

maximal w-perfect submodule, 345

maximal augmentation, 356

maximal torus, 278

May spectral sequence, 441ff., 510

May’s tables, 447

method of killing homotopy groups, 203

Miller spectral sequence, 499

Milnor g invariants, 310

Milnor spectral sequence, 268

minimal resolution, 379

Mittag-Leffler condition, 79

mixed Hodge structure, 519

mod p finite H-space, 474

mod r homotopy groups, 480

module over a differential graded algebra, 225

module spectrum, 497

monogenic Hopf algebra, 213

Moore space, 463, 480

Moore spectral sequence, 268

Morava K-theory, 482

morphism of bundles of groups, 165

morphism of exact couples, 74

morphism of fibrations, 112

morphism of fibre bundles, 209

morphism of filtered differential graded modules,
66

morphism of simplicial objects, 104

morphism of spectral sequences, 65

Morse theory, 304

motivic cohomology, 522

nerve of a category, 502
nilpotent completion, 362

nilpotent group, 344
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nilpotent module, 345

nipotent space, 346

Nishida’s nilpotence theorem, 407
normed algebra, 366

Omega-spectrum, 120
operad, 297

oriented cobordism ring, 414

p-component of a group, 370
p-divisble elements in a group, 459
path-loop fibration, 112, 157
perfect field, 213

periodicity theorem, 431
perturbation theory, 297

II-algebra, 489

m-complete space, 348

w-module, 334

n-perfect, 345

Poincaré series, 14, 204, 310, 509
polynomial cohomology, 275
Pontrjagin-Thom construction, 409
Pontryagin product, 125

positive scalar curvature metric, 451
Postnikov system, 120

Postnikov tower, 182, 327, 352
presentation of an algebra, 281
primitives, 124

principal bundle, 209

principal fibration, 352

principal refinement, 352
pro-isomorphism, 362

projective line, 113

projective module, 51

projective resolution, 51

proper exact sequence, 226

proper projective resolution, 55, 237, 238
pullback of a fibration over a map, 114

quadratic construction, 425
Quillen spectral sequence, 488

R-completion, 361
R-good space, 361
R-nilpotent space, 363
rank of a Lie group, 277
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rational Hurewicz theorem, 161

real projective space, 94

reduced suspension, 98

Rees system, 88

regular CW-complex, 100

regular sequence, 283

representable functor, 495

restricted Lie algebra, 441

reverse Adams spectral sequence, 450, 496
ring spectrum, 497

Rothenberg-Steenrod spectral sequence, 268

second Eilenberg-Moore theorem, 250
secondary cohomology operation, 375
semifree resolution, 287
Serre exact sequence, 145
Serre fibration, 109
sheaf, 222, 515
sh-module, 295
she (strongly homotopy commutative) algebra, 295
shm (strongly homotopy multiplicative) map, 294
short exact sequence of Hopf, 339
shuffle, 123
simple system of generators, 154
simple system of local coefficients, 138
simplicial approximation theorem, 109
simplicial homotopy, 106
simplicial identities, 103
simplicial object in a category, 104
simplicial replacement of a functor, 502
simplicial set, 103
singular complex, 104
skeleton, 93
slide products, 311
slope spectral sequence, 518
solid ring, 361
space of based loops, 156
space of based loops, 95
space of based paths, 111
space of paths, 156
spectral datum, 88
spectral ring, 45
spectral sequence, 4

Adams-Novikov, 499
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adiabatic, 519 of a double complex, 48
algebraic May, 87 of algebras, 12
Arnol’d-Vassiliev, 505 of algebras, 45

Atiyah, 496 of cohomological type, 29
Atiyah-Hirzebruch, 496 of homological type, 28
bar, 268 Quillen, 488

Barratt, 488 reverse Adams, 450, 496
Bloch-Lichtenbaum, 522 Rothenberg-Steenrod, 268
Bockstein, 38, 455ft. slope, 518

Bousfield-Kan homology, 503
Bousfield-Kan, 361
Brown-Gersten-Quillen, 521
C-spectral sequence, 519
Cartan-Leray, 160, 337ff.
change-of-rings, 387, 508

composite functor, 514

Universal Coefficient, 497, 514
unstable Adams, 491ff.
van Est, 511
van Kampen, 489
spectral system, 461
spectrum, 408
spike, 478
stable cohomology operation, 127
stable filtration, 12

conditionally convergent, 76
Connes, 510
convergence of, 5, 33

descent, 521
dihomology, 505 stable homology, 499

EHP, 495 stable homotopy groups of spheres, 99

stable higher order cohomology operation, 375

Eilenberg-Moore, for generalized theories, 498 stable homotopy group, 366

elementary, 86 stable mappings, 99

equivariant Leray-Serre, 502 stable object, 408

Federer, 490 staircase argument, 307
Frolicher, 518 Steenrod algebra, 128
Grothendieck, 514 Steenrod operations, on Ext, 385
Hochschild-Serre, 511 Steenrod operations, 195
Hodge-de Rham, 517 Stiefel manifold, 151, 285
homology Eilenberg-Moore, 268 Stiefel-Whitney classes, 217
Hurewicz, 490 strongly convergent filtration, 69
hypercohomology, 514 structure group, 208

image computing, 506 subcomplex, 94

Kiinneth, 56 Sullivan conjecture, 504

Leray, 515 supplementation, 124

Leray-Serre, for generalized theories, 498
local-to-global, 515
Lyndon-Hochshild-Serre, 340ff.

suspension homomorphism, 98
suspension isomorphism, 128

suspension, 94

May, 441££, 510 Sylow subgroup, 342
Miller, 499 .
symplectic groups, 179
Milnor, 268 .
system of local coefficients, 164
Moore, 268

of a bisimplicial group, 488 tangent bundle, 113
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tensor product of differential (bi)graded modules,
44
Theorem
of Borel and Serre, 142
of Bott, 456
of Hopf, 456
of Morse, 158
of Cartan and Serre, 197
Thom isomorphism theorem, 411
Thom space, 409
Thom spectram, 410
Toda bracket, 429
Toda’s tables, 446
torsion-free space, 456
total complex, 24, 47
total space, 110
totally nonhomologous to zero, 148
tower of submodules, 30
transgression, 185ff.
transgressive element, 85, 192
transpotence, 194
triple, 322
trivial fibration, 112
truncated polynomial algebra, 144
twisting cochain, 223

two-stage Postnikov system, 291

ULC, 160

unit, 123

universal bundle, 210

Universal Coefficient spectral sequence, 497, 514
Universal Coefficient theorem, 50

universal enveloping algebra, 441

unnormalized bar construction, 247

unraveled exact couple, 40

unstable Adams spectral sequence, 491ff.

upside-down Postnikov system, 203

van Est spectral sequence, 511

van Kampen spectral sequence, 489
vanishing line, 431

variational bicomplex, 519

very nice space, 492

Vassiliev invariants, 505
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Wang sequence, 26, 145

weak topology, 93

weakly contractible space, 120
weakly convergent filtration, 62
wedge axiom, 496

Weyl group, 279

Whitehead product, 303
Whitehead theorem, generalized, 348ff.
‘Whitehead theorem, 96
Whitney sum, 217, 410

word of warning, 34

Yoneda product, 381

Zeeman comparison theorem, 82, 198, 359




