


Introduction
In the first place, what are the properties of space properly
so called? . . . 1st, it is continuous; 2nd, it is infinite; 3rd,
it is of three dimensions; . . .

Henri Poincaré, 1905

So will the final theory be in 10, 11 or 12 dimensions?
Michio Kaku, 1994

As a separate branch of mathematics, topology is relatively young. It was isolated as
a collection of methods and problems by Henri Poincaré (1854–1912) in his pioneering
paper Analysis situs of 1895. The subsequent development of the subject was dramatic
and topology was deeply influential in shaping the mathematics of the twentieth century
and today.

So what is topology? In the popular understanding, objects like the Möbius band,
the Klein bottle, and knots and links are the first to be mentioned (or maybe the second
after the misunderstanding about topography is cleared up). Some folks can cite the joke
that topologists are mathematicians who cannot tell their donut from their coffee cups.
When I taught my first undergraduate courses in topology, I found I spent too much time
developing a hierarchy of definitions and too little time on the objects, tools, and intuitions
that are central to the subject. I wanted to teach a course that would follow a path more
directly to the heart of topology. I wanted to tell a story that is coherent, motivating, and
significant enough to form the basis for future study.

To get an idea of what is studied by topology, let’s examine its prehistory, that is,
the vague notions that led Poincaré to identify its foundations. Gottfried W. Leibniz
(1646–1716), in a letter to Christiaan Huygens (1629–1695) in the 1670’s, described a
concept that has become a goal of the study of topology:

I believe that we need another analysis properly geometric or linear, which treats
PLACE directly the way that algebra treats MAGNITUDE.

Leibniz envisioned a calculus of figures in which one might combine figures with the ease of
numbers, operate on them as one might with polynomials, and produce new and rigorous
geometric results. This science of PLACE was to be called Analysis situs ([Pont]).

We don’t know what Leibniz had in mind. It was Leonhard Euler (1701–1783)
who made the first contributions to the infant subject, which he preferred to call geometria
situs. His solution to the Bridges of Königsberg problem and the celebrated Euler formula,
V−E+F = 2 (Chapter 11) were results that depended on the relative positions of geometric
figures and not on their magnitudes ([Pont], [Lakatos]).

In the nineteenth century, Carl-Friedrich Gauss (1777-1855) became interested
in geometria situs when he studied knots and links as generalizations of the orbits of
planets ([Epple]). By labeling figures of knots and links Gauss developed a rudimentary
calculus that distinguished certain knots from each other by combinatorial means. Students
who studied with Gauss and went on to develope some of the threads associated with
geometria situs were Johann Listing (1808–1882), Augustus Möbius (1790–1868), and
Bernhard Riemann (1826–1866). Listing extended Gauss’s informal census of knots and
links and he coined the term topology (from the Greek τoπoυ λoγoς, which in Latin is
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analysis situs). Möbius extended Euler’s formula to surfaces and polyhedra in three-space.
Riemann identified the methods of the infant analysis situs as fundamental in the study
of complex functions.

During the nineteenth century analysis was developed into a deep and subtle science.
The notions of continuity of functions and the convergence of sequences were studied in
increasingly general situations, beginning with the work of Georg Cantor (1845–1918)
and finalized in the twentieth century by Felix Hausdorff (1869–1942) who proposed
the general notion of a topological space in 1914 ([Hausdorff]).

The central concept in topology is continuity, defined for functions between sets
equipped with a notion of nearness (topological spaces) which is preserved by a continuous
function. Topology is a kind of geometry in which the important properties of a figure are
those that are preserved under continuous motions (homeomorphisms, Chapter 2). The
popular image of topology as rubber sheet geometry is captured in this characterization.
Topology provides a language of continuity that is general enough to include a vast array
of phenomena while being precise enough to be developed in new ways.

A motivating problem from the earliest struggles with the notion of continuity is the
problem of dimension. In modern physics, higher dimensional manifolds play a funda-
mental role in describing theories with properties that combine the large and the small.
Already in Poincaré’s time the question of the physicality of dimension was on philosophers’
minds, including Poincaré. Cantor had noticed in 1877 that as sets finite dimensional Eu-
clidean spaces were indistinguishable (Chapter 1). If these identifications were possible in
a continuous manner, a requirement of physical phenomena, then the role of dimension
would need a critical reappraisal. The problem of dimension was important to the develop-
ment of certain topological notions, including a strictly topological definition of dimension
introduced by Henri Lebesgue (1875-1941) [Lebesgue]. The solution to the problem of
dimension was found by L. E. J. Brouwer (1881–1966) and published in 1912 [Brouwer].
The methods introduced by Brouwer reshaped the subject.

The story I want to tell in this book is based on the problem of dimension. This funda-
mental question from the early years of the subject organizes the exposition and provides
the motivation for the choices of mathematical tools to develop. I have not chosen to follow
the path of Lebesgue into dimension theory (see the classic text [Hurewicz-Wallman]) but
the further ranging path of Poincaré and Brouwer. The fundamental group (Chapters 7
and 8) and simplicial methods (Chapters 10 and 11) provide tools that establish an ap-
proach to topological questions that has proven to be deep and is still developing. It is
this approach that best fits Leibniz’s wish.

In what follows, we will cut a swath through the varied and beautiful landscape that
is the field of topology with the goal of solving the problem of invariance of dimension.
Along the way we will acquire the necessary vocabulary to make our way easily from one
landmark to the next (without staying too long anywhere to pick up an accent). The
first chapter reviews the set theory with which the problem of dimension can be posed.
The next five chapters treat the basic point-set notions of topology; these ideas are closest
to analysis, including connectedness and compactness. The next two chapters treat the
fundamental group of a space, an idea introduced by Poincaré to associate a group to a
space in such a way that equivalent spaces lead to isomorphic groups. The next chapter
treats the Jordan Curve theorem, first stated by Jordan in 1882, and given a complete proof
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in 1905 by Oswald Veblen (1880–1960). The method of proof here mixes the point-set
and the combinatorial to develop approximations and comparisons. The last two chapters
take up the combinatorial theme and focus on simplicial complexes. To these conveniently
constructed spaces we associate their homology, a sequence of vector spaces, which turn out
to be isomorphic for equivalent complexes. We finish a proof of the topological invariance
of dimension using homology.

Though the motivation for this book is historical, I have not followed the history in the
choice of methods or proofs. First proofs of significant results can be difficult. However, I
have tried to imitate the mix of point-set and combinatorial ideas that was topology before
1935, what I call classical topology. Some beautiful results of this time are included, such
as the Borsuk-Ulam theorem (see [Borsuk] and [Matoušek]).

How to use this book

I have tried to keep the prerequisites for this book at a minimum. Most students
meeting topology for the first time are old hands at linear algebra, multivariable calculus,
and real analysis. Although I introduce the fundamental group in chapters 7 and 8, the
assumptions I make about experience with groups are few and may be provided by the
instructor or picked up easily from any book on modern algebra. Ideally, a familiarity with
groups makes the reading easier, but it is not a hard and fast prerequisite.

A one-semester course in topology with the goal of proving Invariance of Dimension,
can be built on chapters 1–8, 10, and 11. A stiff pace is needed will be needed for most
undergraduate classes to get to the end. A short cut is possible by skipping chapters 7 and
8 and focusing the end of the semester on chapters 10 and 11. Alternatively, one could
cover chapters 1–8 and simply explain the argument of chapter 11 by analogy with the
case discussed in chapter 8. Another short cut suggestion is to make chapter 1 a reading
assignment for advanced students with a lot of experience with basic set theory. Chapter
9 is a classical result whose proof offers a bridge between the methods of chapters 1–8 and
the combinatorial emphasis of chapters 10 and 11. This can be made into another nice
reading assignment without altering the flow of the exposition.

For the undergraduate reader with the right background, this book offers a glimpse
into the standard topics of a first course in topology, motivated by historically important
results. It might make a good read in those summer months before graduate school.

Finally, for any gentle reader, I have tried to make this course both efficient in ex-
position and motivated throughout. Though some of the arguments require developing
many interesting propositions, keep on the trail and I promise a rich introduction to the
landscape of topology.
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1. A Little Set Theory

I see it, but I don’t believe it.
Cantor to Dedekind 29 June 1877

Functions are the single most important idea pervading modern mathematics. We will
assume the informal definition of a function—a well-defined rule assigning to each element
of the set A a unique element in the set B. We denote these data by f :A → B and the
rule by f : a ∈ A #→ f(a) ∈ B. The set A is the domain of f and the receiving set B is its
codomain (or range). We make an important distinction between the codomain and the
image of a function, f(A) = {f(a) ∈ B | a ∈ A} which is a subset contained in B.

When the codomain of one function and the domain of another coincide, we can
compose them: f :A → B, g:B → C gives g ◦ f :A → C by the rule g ◦ f(a) = g(f(a)). If
X ⊂ A, then we write f |X :X → B for the restriction of the rule of f to the elements of
X. This changes the domain and so it is a different function. Another way to express f |X
is to define the inclusion function

i:X → A, i(x) = x.

We can then write f |X = f ◦ i:X → B.
Certain properties of functions determine the notion of equivalence of sets.

Definition 1.1. A function f :A → B is one-one (or injective), if whenever f(a1) =
f(a2), then a1 = a2. A function f :A → B is onto (or surjective) if for any b ∈ B, there
is an a ∈ A with f(a) = b. The function f is a one-one correspondence (or bijective,
or an equivalence of sets) if f is both one-one and onto. Two sets are equivalent or have
the same cardinality if there is a one-one correspondence f :A → B.
If f :A → B is a one-one correspondence, then f has an inverse function f−1:B → A. The
inverse function is determined by the fact that if b ∈ B, then there is an element a ∈ A
with f(a) = b. Furthermore, a is uniquely determined by b because f(a) = f(a′) = b
implies that a = a′. So we define f−1(b) = a. It follows that f ◦f−1:B → B is the identity
mapping idB(b) = b, and likewise for f−1 ◦ f :A → A is the identity idA on A.

For example, if we restrict the tangent function of trigonometry to (−π/2,π/2), then
we get a one-one correspondence tan: (−π/2,π/2) → R. The inverse function is the arctan
function. Furthermore, any open interval (a, b) is equivalent to any other (c, d) via the one-
one correspondence t #→ c + [d(t− a)/(b− a)]. Thus the set of real numbers is equivalent
as sets to any open interval of real numbers.

Given a function f :A → B, we can define new functions on the collections of subsets
of A and B. For any set S, let P(S) = {X | X ⊂ S} denote the power set of S. We
define the image of a subset X ⊂ A by

f(X) = {f(x) ∈ B | x ∈ X},

and this determines a function f :P(A) → P(B). Define the preimage of a subset U ⊂ B
by

f−1(U) = {x ∈ A | f(x) ∈ U}.
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The preimage determines a function f−1:P(B) → P(A). This is a splendid abuse of
notation; however, don’t confuse the preimage with an inverse function. Inverse functions
only exist when f is one-one and onto. Furthermore, the domain of the preimage is the set
of subsets of B. We list some properties of the image and preimage functions. The proofs
are left to the reader.
Proposition 1.2. Let f :A −→ B be a function and U , V subsets of B. Then
1) If U ⊂ V , then f−1(U) ⊂ f−1(V ).
2) f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).
3) f−1(U ∩ V ) = f−1(U) ∩ f−1(V ).
4) f(f−1(U)) ⊂ U
5) For X ⊂ A, X ⊂ f−1(f(X)).
6) If, for any U ⊂ B, f(f−1(U)) = U, then f is onto.
7) If, for any X ⊂ A, f−1(f(X)) = X, then f is one-one.

Equivalence relations

A significant notion in set theory is the equivalence relation. A relation, R, is
formally a subset of the set of pairs A×A, of a set A. We write x ∼ y whenever (x, y) ∈ R.
Definition 1.3. A relation ∼ is an equivalence relation if
1) For all x in A, x ∼ x. (Reflexive)
2) If x ∼ y, then y ∼ x. (Symmetric)
3) If x ∼ y and y ∼ z. (Transitive)

Examples: (1) For any set A, the relation of equality = is an equivalence relation: No
element is related to any other element except itself.
(2) Let A = Z, the set of integers with the usual sense of divisibility. Given a nonzero
integer m, write k ≡ l whenever m divides l−k, denoted m | l−k. Notice that m | 0 = k−k
so k ≡ k for any k and ≡ is reflexive. If m | l − k, then m | −(l − k) = k − l so that
k ≡ l implies l ≡ k and ≡ is symmetric. Finally, suppose for some integers d and e that
l− k = md and j− l = me. Then j− k = j− l + l− k = me + md = m(e + d). This shows
that k ≡ l and l ≡ j imply k ≡ j and ≡ is transitive. Thus ≡ is an equivalence relation.
It is usual to write k ≡ l (mod m) to keep track of the dependence on m.
(3) Let P(A) = {U | U ⊂ A} denote the power set of A. Then we can define a
relation U ↔ V whenever there is a one-one correspondence U −→ V . The identity
function idU :U → U establishes that ↔ is reflexive. The fact that the inverse of a one-
one correspondence is also a one-one correspondence proves ↔ is symmetric. Finally, the
composition of one-one correspondences is a one-one correspondence and so↔ is transitive.
Thus ↔ is an equivalence relation.
(4) Suppose B ⊂ A. Then we can define a relation by x ∼ y if x and y are both in B;
otherwise, x ∼ y only if x = y. This relation comes in handy later.

Given an equivalence relation on a set A, say ∼, we define the equivalence class of
an element a in A by

[a] = {b ∈ A | a ∼ b} ⊂ A.

We denote the set of equivalence classes by [A] = {[a] | a ∈ A}. Finally, let p denote the
mapping, p:A → [A] given by p(a) = [a].
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Proposition 1.4. If a, b ∈ A, then as subsets of A, either [a] = [b], when a ∼ b, or
[a] ∩ [b] = ∅.
Proof: If c ∈ [a] ∩ [b], then a ∼ c and b ∼ c. By symmetry we have c ∼ b and so, by
transitivity, a ∼ b. Suppose x ∈ [a], then x ∼ a, and with a ∼ b we have x ∼ b and x ∈ [b].
Thus [a] ⊂ [b]. Reversing the roles of a and b in this argument we get [b] ⊂ [a] and so
[a] = [b]. ♦

This proposition shows that the equivalence classes of an equivalence relation on a set
A partition the set into disjoint subsets. The canonical function p:A → [A] has special
properties.
Proposition 1.5. The function p:A → [A] is a surjection. If f :A → Y is any other
function for which, whenever x ∼ y in A we have f(x) = f(y), then there is a function
f : [A] → Y for which f = f ◦ p.
Proof: The surjectivity of p is immediate. To construct f : [A] → Y let [a] ∈ [A] and define
f([a]) = f(a). We need to check that this rule is well-defined. Suppose [a] = [b]. Then we
require f(a) = f(b). But this follows from the condition that a ∼ b implies f(a) = f(b).
To complete the proof, f([a]) = f(p(a)) = f(a) and so f = f ◦ p. ♦

Of course, p−1([a]) = {b ∈ A | b ∼ a} = [a] as a subset of A, not as an element of the
set [A]. We have already observed that the equivalence classes partition A into disjoint
pieces. Equivalently suppose P = {Cα,α ∈ I} is a collection of subsets that partitions A,
that is, ⋃

α∈I
Cα = A and Cα ∩ Cβ = ∅ if α /= β.

We can define a relation on A from the partition by

x ∼P y if there is an α ∈ I with x, y ∈ Cα.

Proposition 1.6. The relation ∼P is an equivalence relation. Furthermore there is a
one-one correspondence between [A] and P .
Proof: x ∼P x follows from

⋃
α∈I Cα = A. Symmetry and transitivity follow easily. The

one-one correspondence required for the isomorphism is given by

f :A −→ P where a #→ Cα, if a ∈ Cα.

By Proposition 1.5 this factors as a mapping f : [A] → P , which is onto. We check that
f is one-one: if f([a]) = f([b]) then a, b ∈ Cα for the same α and so a∼P b which implies
[a] = [b]. ♦

This discussion leads to the following equivalence of sets:

{Partitions of a set A}⇐⇒ {Equivalence relations on A}.

Sets like the integers Z or a vector space V enjoy extra structure—you can add and
subtract elements. You also can multiply elements in Z, or multiply by scalars in V . When
there is an equivalence relation on sets with the extra structure of a binary operation one

3



can ask if the relation respects the operation. We consider two important examples and
then deduce general conditions for this special property.
Example 1: For the equivalence relation ≡ (mod m) on Z with m /= 0 it is customary to
write

[Z] =: Z/mZ

Given two equivalence classes in Z/mZ, can we add them to get another? The most obvious
idea to try is the following formula:

[i] + [j] = [i + j].

To be sure this makes sense, remember [i] = [i′] whenever i ≡ i′( mod m) so we have to be
sure any changes of representative of an equivalence class do not alter the sum equivalence
classes. Suppose [i] = [i′] and [j] = [j′], then we require [i + j] = [i′ + j′] if we want a
definition of + on Z/mZ. Let i′ − i = rm and j′ − j = sm, then

i′ + j′ − (i + j) = (i′ − i) + (j′ − j) = rm + sm = (r + s)m

or m | (i′ + j′) − (i + j), and so [i + j] = [i′ + j′]. Subtraction is also well-defined on
Z/mZ and the element 0 = [0] acts as an additive identity in Z/mZ. Thus Z/mZ has the
structure of a group. It is a finite group given as the set

Z/mZ = {[0], [1], [2], . . . , [m− 1]}.

Example 2: Suppose W is a linear subspace of V a finite-dimensional vector space. Define
a relation on V by u ≡ v(mod W ) whenever v − u ∈ W . We check that we have an
equivalence relation:
reflexive: If v ∈ V , then v − v = 0 ∈ W , since W is a subspace.
symmetric: If u ≡ v(mod W ), then v − u ∈ W and so (−1)(v − u) = u− v ∈ W since W
is closed under multiplication by scalars. Thus v ≡ u(mod W ).
transitive: If u ≡ v(mod W ) and v ≡ x(mod W ), then x − v and v − u are in W . Then
x− v + v − u = x− u is in W since W is a subspace. So u ≡ x(mod W ).

We denote [V ] as V/W . We next show that V/W is also a vector space. Given [u], [v]
in V/W , define [u] + [v] = [u + v] and c[u] = [cu]. To see that this is well-defined, suppose
[u] = [u′] and [v] = [v′]. We compare (u′+ v′)− (u+ v). Since u′−u ∈ W and v′− v ∈ W ,
we have (u′ + v′) − (u + v) = (u′ − u) + (v′ − v) is in W . Similarly, if [u] = [u′], then
u′ − u ∈ W so c(u′ − u) = cu′ − cu is in W and [cu] = [cu′]. The other axioms for a vector
space hold in V/W by heredity and so V/W is a vector space. The canonical mapping
p:V −→ V/W is a linear mapping:

p(cu + c′v) = [cu + c′v] = [cu] + [c′v]
= c[u] + c′[v] = cp(u) + c′p(v).

The kernel of the mapping is p−1([0]) = W . Thus the dimension of V/W is given by

dimV/W = dimV − dimW.
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This construction is very useful and appears again in Chapter 11.
A general result applies to a set A with a binary operation µ:A × A → A and an

equivalence relation on A.
Defintion 1.7. An equivalence relation ∼ on a set A with binary operation µ:A×A → A
is a congruence relation if the mapping µ: [A]× [A] → [A] given by

µ([a], [b]) = [µ(a, b)]

induces a well-defined binary operation on [A].
The operation of + on Z is a congruence relation with respect to the equivalence

relation ≡ (mod m). The operation of + is a congruence relation on a vector space V
with respect to the equivalence relation induced by a subspace W . More generally, well-
definedness is the important issue in identifying a congruence relation.
Proposition 1.8. An equivalence relation ∼ on A with µ:A × A → A is a congruence
relation if for any a, a′, b, b′ ∈ A, whenever [a] = [a′] and [b] = [b′], we have [µ(a, b)] =
[µ(a′, b′)].

The Schröder-Bernstein Theorem

There is a marvelous criterion for the existence of a one-one correspondence between
two sets.
The Schröder-Bernstein Theorem. If there are one-one mappings

f :A → B and g:B → A,

then there is a one-one correspondence between A and B.
Proof: In order to prove this theorem, we first prove the following preliminary result.
Lemma 1.9. If B ⊂ A and f :A → B is one-one, then there exists a function h:A → B,
which is a one-one correspondence.
Proof [Cox]: Take B ⊂ A and suppose B /= A. Recall that A − B = {a ∈ A | a /∈ B}.
Define

C =
⋃

n≥0
fn(A−B),

where f0 = idA and fk(x) = f
(
fk−1(x)

)
. Define the function h:A → B by

h(z) =
{

f(z), if z ∈ C
z, if z ∈ A− C.

By definition, A−B ⊂ C and f(C) ⊂ C. Suppose n > m ≥ 0. Observe that

fm(A−B) ∩ fn(A−B) = ∅.

To see this suppose fm(x) = fn(x′), then fn−m(x′) = x ∈ A−B. But fn−m(x′) ∈ B and
so x ∈ (A−B)∩B = ∅, a contradiction. This implies that h is one-one, since f is one-one.
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We next show that h is onto:

h(A) = f(C) ∪ (A− C)

= f
(⋃

n≥0
fn(A−B)

)
∪

(
A−

⋃
n≥0

fn(A−B)
)

=
⋃

n≥1
fn(A−B) ∪

(
A−

⋃
n≥0

fn(A−B)
)

= A− (A−B) = B.

So h is a one-one correspondence. ♦

Proof of the Schröder-Bernstein Theorem: Let A0 = g(B) ⊂ A and B0 = f(A) ⊂ B.
Then g0:B → A0 and f0:A → B0 are one-one correspondences, each induced by g and
f , respectively. Let F = f0 ◦ g0:B −→ B0 denote the one-one function. Lemma 1.9
applies to (B,B0, F ), so there is a one-one correspondence h:B0 → B. The composition
h ◦ f0:A → B0 → B is the desired equivalence of sets. ♦

The Problem of Invariance of Dimension

The development of set theory brought new insights about infinity. In particular, a
set and its power set have different cardinalities. When a set is infinite, the cardinality
of the power set is greater, and so there is a hierarchy of infinities. The discovery of this
hierarchy prompted Cantor, in his correspondence with Richard Dedekind (1831–1916),
to ask whether higher-dimensional sets might be distiguished by cardinality. On 5 January
1874 Cantor wrote Dedekind and posed the question:

Can a surface (perhaps a square including its boundary) be put into one-one corre-
spondence with a line (perhaps a straight line segment including its endpoints) . . . ?

He was soon able to prove the following positive result.
Theorem 1.10. There is a one-one correspondence R −→ R× R.
Proof: We apply the Schröder-Bernstein Theorem. Since the mapping f : R → (0, 1) given

by f(r) =
1
π

(
arctan(r) +

π

2

)
, is a one-one correspondence, it suffices to show that there is

a one-one correspondence between (0, 1) and (0, 1)×(0, 1). We obtain one assumption of the
Schröder-Bernstein theorem because there is a one-one mapping f : (0, 1) −→ (0, 1)× (0, 1)
given by the diagonal mapping, f : t #→ (t, t).

To apply the Schröder-Berstein theorem we construct an injection (0, 1) × (0, 1) −→
(0, 1). Recall that every real number can be expressed as a continued fraction ([Hardy-
Wright]): suppose r ∈ R. The least integer function (or floor function) is defined
by

3r4 = max{j ∈ Z | j ≤ r}.

Since 0 < r < 1, it follows that 1/r > 1. Let a1 = 31/r4 and r1 = (1/r) − 31/r4. Then
0 ≤ r1 < 1. We can write

r =
1
1
r

=
1

1
r
−

⌊
1
r

⌋
+

⌊
1
r

⌋ =
1

a1 + r1
.
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If r1 = 0 we can stop. If r1 > 0, then repeat the process to r1 to obtain a2 and r2 for
which

r =
1

a1 +
1

a2 + r2

.

Continuing in this manner, we can express r as a continued fraction

r =
1

a1 +
1

a2 +
1

a3 + · · ·

= [0; a1, a2, a3, . . .].

For example,
31
127

=
1

4 +
3
31

=
1

4 +
1

10 +
1
3

= [0; 4, 10, 3].

We can recognize a rational number by the fact that its continued fraction terminates after
finitely many steps. Irrationals have infinite continued fractions, for example, 1/

√
2 =

[0; 1, 2, 2, 2, . . .].
To prove Cantor’s theorem, we first introduce an injection I: (0, 1) → (0, 1) defined on

continued fractions by

I(r) =
{

[0; a1 + 2, a2 + 2, . . . , an + 2, 2, 2, . . .], if r = [0; a1, a2, . . . , an],
[0; a1 + 2, a2 + 2, a3 + 2, . . .], if r = [0; a1, a2, a3, . . .].

Thus I maps all of the real numbers in (0, 1) to the set J = (0, 1) ∩ (R−Q) of irrational
numbers in (0, 1). We can define another one-one function, t:J × J → (0, 1) given by

t([0; a1, a2, . . .], [0; b1, b2, . . .]) = [0; a1, b1, a2, b2, . . .].

The uniqueness of the continued fraction representation of a real number implies that t is
one-one.

We finish the proof of the theorem by observing that the composition of one-one
functions is one-one, and so the composition

t ◦ (I × I): (0, 1)× (0, 1) → J × J → (0, 1)

is one-one. The Schöder-Bernstein theorem applies to give a one-one correspondence be-
tween (0, 1) and (0, 1) × (0, 1). Thus there is a one-one correspondence between R and
R× R. ♦

Corollary 1.11. There is a one-one correspondence between Rm and Rn for all positive
integers m and n.

The corollary follows by replacing R2 by R until n = m. A one-one correspondence is a
relabelling of sets, and so as collections of labels we cannot distinguish between Rn and Rm.
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It follows that a function Rm → R could be replaced by a function R → R by composing
with the one-one correspondence R → Rm. A function expressing the dependence of a
physical quantity on two variables could be replaced by a function that depends on only
one variable. This observation calls into question the dependence on a certain number
of variables as a physically meaningful notion—perhaps such a dependence can always be
reduced to fewer variables by this mathematical slight-of-hand. In the epigraph, Cantor
expressed his surprise in his proof of Theorem 1.10, not in the result.

If we introduce more structure into the discussion, the notion of dimension emerges.
For example, from the point of view of linear algebra where we use the linear structure
on Rm and Rn as vector spaces, we can distinguish between these sets by their linear
dimension, the number of vectors in a basis.

If we apply the calculus to compare Rn and Rm, we can ask if there exists a differen-
tiable function f : Rn → Rm with an inverse that is also differentiable. At a given point of
the domain, the derivative of such a differentiable mapping is a linear mapping, and the
existence of a differentiable inverse implies that this linear mapping is invertible. Thus, by
linear algebra, we deduce that n = m.

Between the realm of sets and the realm of the calculus lies the realm of topology—in
particular, the study of continuous functions. The main problem addressed in this book
is the following:

If there exists a continuous function f : Rn → Rm with a continuous inverse,
then does n = m?

This problem is called the question of the topological Invariance of Dimension, and it was
one of the principal problems faced by the mathematicians who first developed topology.
The problem was important because the use of dimension in the description of the physical
space we dwell in was called into question by Cantor’s discovery. The first proof of the
topological invariance of dimension used new methods of a combinatorial nature (Chapters
9, 10, 11).

The combinatorial aspects of topology play a similar role that approximation does in
analysis: by approximating with manageable objects, we can manipulate the approxima-
tions fruitfully, sometimes identifying properties that are associated to the combinatorics,
but which depend only on the topology of the limiting object. This approach was initi-
ated by Poincaré and refined to a subtle tool by L. E. J. Brouwer (1881–1966). It was
Brouwer who gave the first complete proof of the theorem of the topological invariance of
dimension and his proof established the centrality of combinatorial approximation in the
study of continuity.

Toward our goal of a proof of invariance of dimension, we begin by expanding the
familiar definition of continuity to more general settings.

Exercises

1. Let f :A → B be any function and U, V subsets of B,X a subset of A. Prove the
following about the preimage operation:

a) U ⊂ V implies f−1(U) ⊂ f−1(V ).
b) f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).
c) f−1(U ∩ V ) = f−1(U) ∩ f−1(V ).
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d) f(f−1(U)) ⊂ U .
e) f−1(f(X)) ⊃ X.
f) If for any U ⊂ B, f(f−1(U)) = U, then f is onto.
g) If for any X ⊂ A, f−1(f(X)) = X, then f is one-one.

2. Show that a set S and its power set, P(S) cannot have the same cardinality. (Hints to
a difficult proof: Suppose there is an onto function j:S −→ P(S). Define the subset
of S

T = {s ∈ S | s /∈ j(s)} ∈ P(S).

If j is surjective, then there is an element t ∈ S with j(t) = T . Is t ∈ T?) Show that
P(S) can be put in one-to-one correspondence with the set map(S, {0, 1}) of functions
from the set S to {0, 1}.

3. On the power set of a set X, P(X) = { subsets of X}, we have the equivalence
relation, U ∼= V whenever there is a one-one correspondence between U and V . There
is also a binary operation on P(X) given by taking unions:

∪:P(X)× P(X) → P(X), ∪(U, V ) = U ∪ V,

where U∪V is the union of the subsets U and V . Show by example that the equivalence
relation ∼= is not a congruence relation.

4. An equivalence relation, called the equivalence kernel, can be constructed from a
function f :A → B. The relation is on A and is defined by

x ∼ y ⇐⇒ f(x) = f(y).

Show that this is an equivalence relation. Determine the relation that arises on R
from the mapping f(r) = cos 2πr. What equivalence kernel results from taking the
canonical mapping A → [A]′ where ∼′ is some equivalence relation on A?

9



2. Metric and Topological Spaces
Topology begins where sets are implemented with some cohesive
properties enabling one to define continuity.

Solomon Lefschetz

In order to forge a language of continuity, we begin with familiar examples. Recall
from single-variable calculus that a function f : R → R, is continuous at a point x0 ∈ R if
for every ε > 0, there is a δ > 0 so that, whenever |x−x0| < δ, we have |f(x)− f(x0)| < ε.
The route to generalization begins with the distance notion on the real line: the distance
between the real numbers x and y is given by |x− y|. The general properties of a distance
are abstracted in the the notion of a metric space, first introduced by Maurice Fréchet
(1878–1973) and named by Hausdorff.
Definition 2.1. A metric space is a set X together with a distance function d:X×X →
R satisfying

i) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y.
ii) d(x, y) = d(y, x) for all x, y ∈ X.
iii) The Triangle Inequality: d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.
The open ball of radius ε > 0 centered at a point x in a metric space (X, d) is given by

B(x, ε) = {y ∈ X | d(x, y) < ε},

that is, the points in X within ε in distance from x.
The intuitive notion of ‘near’ can be made precise in a metric space: a point y is ‘near’
the point x if it is in B(x, ε) for ε suitably small.
Examples: 1) The most familiar example is Rn. If x = (x1, . . . , xn) and y = (y1, . . . , yn),
then the Euclidean metric is given by

d(x,y) = ‖x− y‖ =
√

(x1 − y1)2 + · · · + (xn − yn)2.

In fact, one can endow Rn with other metrics, for example,

d1(x,y) = max{| x1 − y1 |, . . . , | xn − yn |}

The nonnegative, nondegenerate, and symmetric conditions are clear for d1. The triangle
inequality follows in the same way as the proof in the next example.

x

}

.

ε

B(  ,  )x ε

Notice that an open ball with this metric is an ‘open box’ as pictured here in R2.
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2) Let X = Bdd([0, 1], R) denote the set of bounded functions f : [0, 1] → R, that is,
functions f for which there is a real number M(f) such that |f(t)| < M(f) for all t ∈ [0, 1].
Define the distance between two such functions to be

d(f, g) = lub t∈[0,1]{|f(t)− g(t)|}.

Certainly d(f, g) ≥ 0, and d(f, g) = 0 if and only if f = g. Furthermore, d(f, g) = d(g, f).
The triangle inequality is more subtle:

d(f, h) = lub t∈[0,1]{|f(t)− h(t)|} ≤ lub t∈[0,1]{|f(t)− g(t)| + |g(t)− h(t)|}
≤ lub t∈[0,1]{|f(t)− g(t)|} + lub t∈[0,1]{|g(t)− h(t)|}
= d(f, g) + d(g, h).

An open ball in this metric space, B(f, ε), consists of all functions defined on [0, 1] with
graph in the stripe pictured:

0 1

f
f+ε

f-ε

3) Let X be any set and define

d(x, y) =
{

0, if x = y,
1, if x (= y.

This is a perfectly good distance function—open balls are funny, however—either they
consist of one point or the whole space depending on whether ε ≤ 1 or ε > 1. The
resulting metric space is called the discrete metric space.

Using open balls, we can rewrite the definition of a continuous real-valued function
f : R → R to say (see the appendix for the definition and properties of f−1(A), the preimage
of a function):

A function f : R → R is continuous at x0 ∈ R if for any ε > 0, there is a δ > 0 so that
B(x0, δ) ⊂ f−1(B(f(x0), ε).

The step from this definition of continuity to a general definition of continuous mappings
of metric spaces is clear.
Definition 2.2. Suppose (X, dX) and (Y, dY ) are two metric spaces and f :X → Y is a
function. Then f is continuous at x0 ∈ X if, for any ε > 0, there is a δ > 0 so that
B(x0, δ) ⊂ f−1(B(f(x0), ε). The function f is continuous if it is continuous at x0 for all
x0 ∈ X.
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For example, if X = Y = Rn with the usual Euclidean metric d(x,y) = ‖x − y‖,
then f : Rn → Rn is continuous at x0 if for any ε > 0, there is δ > 0 so that when-
ever x ∈ B(x0, δ), that is, ‖x − x0‖ < δ, then x ∈ f−1(B(f(x0), ε), which is to say,
f(x) ∈ B(f(x0), ε), or ‖f(x)− f(x0)‖ < ε. Thus we recover the ε–δ definition of continu-
ity. We develop the generalization further.

Definition 2.3. A subset U of a metric space (X, d) is open if for any u ∈ U there is
an ε > 0 so that B(u, ε) ⊂ U .

We note the following properties of open subsets of metric spaces.
1) An open ball B(x, ε) is an open set in (X, d).
2) An arbitrary union of open subsets in a metric space is open.
3) The finite intersection of open subsets in a metric space is open.

Suppose y ∈ B(x, ε). Let δ = ε − d(x, y) > 0. Consider the open ball B(y, δ). If
z ∈ B(y, δ), then d(z, y) < δ = ε − d(x, y), or d(z, y) + d(y, x) < ε. By the triangle
inequality d(z, x) ≤ d(z, y)+d(y, x) and so d(z, x) < ε and B(y, δ) ⊂ B(x, ε). Thus B(x, ε)
is open.

xy. .

ε

δ

Suppose {Uα, α ∈ I} is a collection of open subsets of X. If x ∈
⋃

α∈I Uα, then
x ∈ Uβ for some β ∈ I. But Uβ is open so there is an ε > 0 with B(x, ε) ⊂ Uβ ⊂

⋃
α∈I Uα.

Therefore, the union
⋃

α∈I Uα is open.
Suppose U1, U2, . . . , Un are open in X, and suppose x ∈ U1 ∩ U2 ∩ . . . ∩ Un. Then

x ∈ Ui for i = 1, 2, . . . , n and since each Ui is open there are ε1, ε2, . . . , εn > 0 with
B(x, εi) ⊂ Ui. Let ε = min{ε1, ε2, . . . , εn}. Then ε > 0 and B(x, ε) ⊂ B(x, εi) ⊂ Ui for all
i, so B(x, ε) ⊂ U1 ∩ . . . ∩ Un and the intersection is open.

We can use the language of open sets to rephrase the definition of continuity for metric
spaces.

Theorem 2.4. A function f :X → Y between metric spaces (X, d) and (Y, d) is continuous
if and only if for any open subset V of Y , the subset f−1(V ) is open in X.

Proof: Suppose x0 ∈ X and ε > 0. Then B(f(x0), ε) is an open set in Y . By assumption,
f−1(B(f(x0), ε)) is an open subset of X. Since x0 ∈ f−1(B(f(x0), ε)), there is δ > 0 with
B(x0, δ) ⊂ f−1(B(f(x0), ε) and so f is continuous at x0.

Suppose that V is an open set in Y , and that x ∈ f−1(V ). Then f(x) ∈ V and
there is an ε > 0 with B(f(x), ε) ⊂ V . Since f is continuous at x, there is a δ > 0 with
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B(x, δ) ⊂ f−1(B(f(x), ε)) ⊂ f−1(V ). Thus, for each x ∈ f−1(V ), there is a δ > 0 with
B(x, δ) ⊂ f−1(V ), that is, f−1(V ) is open in X. ♦

It follows from this theorem that, for metric spaces, continuity may be described
entirely in terms of open sets. To study continuity in general we take the next step and
focus on the collection of open sets. The key features of the structure of open sets in
metric spaces may be abstracted to the following definition, first given by Hausdorff in
1914 [Hausdorff].
Definition 2.5. Let X be a set and T a collection of subsets of X called open sets. The
collection T is called a topology on X if
(1) We have that ∅ ∈ T and X ∈ T .
(2) The union of an arbitrary collection of members of T is in T .
(3) The finite intersection of members of T is in T .
The pair (X, T ) is called a topological space.
It is important to note that open sets are basic and determine the topology. Open set does
not always refer to the ‘open’ sets we are used to in Rn. Let’s consider some examples.
Examples: 1) If (X, d) is a metric space, we defined a subset U of X to be open if for any
x ∈ U , there is an ε > 0 with B(x, ε) ⊂ U , as above. This collection of open sets defines a
topology on X called the metric topology.
2) For any set X, let T1 = {X, ∅}. This collection trivially satisfies the criteria for being a
topology and is called the indiscrete topology on X. Let T2 = P(X) be the set of all
subsets of X. This collection trivially satisfies the conditions to be a topology and is called
the discrete topology on X. It has the same open sets as the metric topology in X with
the discrete metric. It is the largest topology possible on a set (the most open sets), while
the indiscrete topology is the smallest topology.
3) For the set with only two elements X = {0, 1} consider the collection of open sets
given by TS = {∅, {0}, {0, 1}}. The reader can quickly check that TS is a topology. This
topological space is called the Sierpinski 2-point space.

. .

4) Let X be an infinite set. Define TFC = {U ⊆ X | U = ∅ or X − U is finite}. We show
that TFC is a topology:
(1) The empty set is already in TFC ; X is open since X −X = ∅, which is finite.
(2) If {Uα,α ∈ J} is an arbitrary collection of open sets, then

X −
⋃

α∈J
Uα =

⋂
α∈J

(X − Uα)

by DeMorgan’s Law. Each X − Uα is finite or all of X so we have X −
⋃

α∈J Uα is
finite or all of X and so

⋃
α∈J Uα is open.

(3) If U1, U2, . . . , Un are open, then X− (U1∩ . . .∩Un) = (X−U1)∪ . . .∪ (X−Un), again
by DeMorgan’s Law. Either one gets all of X or a finite union of finite sets and so an
open set.
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The collection TFC is called the finite-complement topology on the infinite set X. The finite-
complement topology will offer an example later of how strange convergence properties can
become in some topological spaces.
5) On a three-point set there are nine distinct topologies, where by distinct we mean up
to renaming the points. The distinct topologies are shown in the following diagram.

. . .
...

......

... .... . .

. . .

.
.

.

Given two topologies T , T ′ on a given set X we say T is finer than T ′ if T ′ ⊂
T . Equivalently we say T ′ is coarser than T . For example, on any set the indiscrete
topology is coarser and the discrete topology is finer than any other topology. The finite-
complement topology on R is strictly coarser than the metric topology. I have added a line
joining comparable topologies in the diagram of the distinct topologies on a three-point
set. Coarser is lower in this case, and the relation is transitive. As we will see later, the
ordering of topologies plays a role in the continuity of functions.

On a given set X it would be nice to have a way of generating topologies. One way is
to use a basis for the topology:
Defintion 2.6. A collection of subsets, B, of a set X is a basis for a topology on X
if (1) for all x ∈ X, there is a B ∈ B with x ∈ B, and
(2) if x ∈ B1 ∈ B and x ∈ B2 ∈ B, then there is some B3 ∈ B with x ∈ B3 ⊂ B1 ∩B2.

Proposition 2.7. If B is a basis for a topology on a set X, then the collection of subsets

TB = {
⋃

α∈A
Bα | A is any index set and Bα ∈ B for all α ∈ A}

is a topology on X called the topology generated by the basis B.
Proof: We show that TB satisfies the axioms for a topology. By the definition of a basis,
we can write X =

⋃
B∈B B and ∅ =

⋃
i∈∅ Ui; so X and ∅ are in TB. If Uj is in TB for all
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j ∈ J , then write each Uj =
⋃

α∈Aj
Bα. It follows that

⋃
j∈J

Uj =
⋃

j∈J

(⋃
α∈Aj

Bα

)
=

⋃
α∈

⋃
j∈J

Aj

Bα

and so TB is closed under arbitrary unions.
For finite intersections we prove the case of two sets and apply induction. As above

U ∩ V =
(⋃

α∈A
Bα

)
∩

(⋃
γ∈C

Bγ

)
.

If x ∈ U ∩ V , then x ∈ Bα1 ∩ Bγ1 for some α1 ∈ A and γ1 ∈ C and so there is a Bx
3 in B

with x ∈ Bx
3 ⊂ Bα1 ∩ Bγ1 ⊂ U ∩ V . We obtain such a set Bx

3 for each x in U ∩ V and so
we deduce

U ∩ V ⊂
⋃

x∈U∩V
Bx

3 ⊂ U ∩ V.

Since we have written U ∩ V as a union of basis sets, U ∩ V is in TB. ♦

Examples: 1) The basis B = {X} generates the indiscrete topology, while B = {{x} | x ∈
X} generates the discrete topology.
2) On R, we can take the family of subsets B = {(a, b) | a < b}. This is a basis since
(a, b)∩ (c, d) is one of (a, b), (a, d), (c, b), or (c, d). This leads to the metric topology on R.
In fact, we can take a smaller set

Bu = {(a, b) | a < b and a, b rational numbers}.

For any (r, s) with r, s ∈ R and r < s, we can write (r, s) =
⋃

(a, b) for r < a < b < s
and a, b ∈ Q. Thus Bu also generates the usual metric topology, but Bu is a countable
set. We say that a space is second countable when it has a basis for its topology that is
countable as a set.
3) More generally, if (X, d) is a metric space, then the collection

Bd = {B(x, ε) | x ∈ X, ε > 0}

is a basis for the metric topology in X. We check the intersection condition: Suppose
z ∈ B(x, ε), z ∈ B(y, ε′), then let 0 < δ < min{ε − d(x, z), ε′ − d(y, z)}. Consider B(z, δ)
and suppose w ∈ B(z, δ). Then

d(x, w) ≤ d(x, z) + d(z, w)
< d(x, z) + δ ≤ d(x, z) + ε− d(x, z) = ε.

Likewise, d(y, w) < ε′ and so B(z, δ) ⊂ B(x, ε) ∩B(y, ε′) as required.
4) A nonstandard basis for a topology on R is given by Bho = {[a, b) | a < b}. This basis
generates the half-open topology on R. Notice that the half-open topology is strictly finer
than the metric topology since

(a, b) =
∞⋃

n=k
[a + (1/n), b)
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for k large enough that a+(1/k) < b. However, no subset [a, b) is a union of open intervals.
Proposition 2.8. If B1 and B2 are bases for topologies in a set X, and for all x ∈ X and
x ∈ B1 ∈ B1, there is a B2 with x ∈ B2 ⊆ B1 and B2 ∈ B2, then TB2 is finer than TB1 .
The proof is left as an exercise. The proposition applies to metric spaces. Given two metrics
on a space, when do they give the same topology? Let d1 and d2 denote the metrics and
B1(x, ε), B2(x, ε) the open balls of radius ε at x given by each metric, respectively. The
proposition is satisfied if, for i = 2, j = 1 and again for i = 1, j = 2, for any y ∈ Bi(x, ε),
there is an ε′ > 0 with Bj(y, ε′) ⊂ Bi(x, ε). Then the topologies are equivalent. For
example, the two metrics defined on Rm,

d1(x,y) =
√

(x1 − y1)2 + · · · + (xm − ym)2, d2(x,y) = max{|xi − yi| | i = 1, . . . ,m},

give the same topology.

Continuity

Having identified the places where continuity can happen, namely, topological spaces,
we define what it means to be a continuous function between spaces.
Definition 2.9. Let (X, T ) and (Y, T ′) be topological spaces and f :X −→ Y a function.
We say that f is continuous if whenever V is open in Y , f−1(V ) is open in X.
This simple definition generalizes the definition of continuous function between metric
spaces, and hence recovers the classical definition from the calculus.

The identity mapping, id: (X, T ) −→ (X, T ) is always continuous. However, if we
change the topology on the domain or codomain, this may not be true. For example,
id: (R, usual) −→ (R, half-open) is not continuous since id−1([0, 1)) = [0, 1), which is not
open in the usual topology. The following proposition is an easy observation.
Proposition 2.10. If T and T ′ are topologies on a set X, then the identity mapping
id: (X, T ) −→ (X, T ′) is continuous if and only if T is finer than T ′.

With this formulation of continuity it is straightforward to give proofs of some of the
properties of continuous functions.
Theorem 2.11. Given two continuous functions f :X → Y and g:Y → Z, the composite
function g ◦ f :X → Z is continuous.
Proof: If V is open in Z, then g−1(V ) = U is open in Y and so f−1(U) is open in X.
But (g ◦ f)−1(V ) = f−1(g−1(V )) = f−1(U), so (g ◦ f)−1(V ) is open in X and g ◦ f is
continuous. ♦

We next give a key definition for topology—the means of comparison of spaces.
Definition 2.12. A function f : (X, TX) −→ (Y, TY ) is a homeomorphism if f is
continuous, one-one, onto and has a continuous inverse. We say (X, TX) and (Y, TY )
are homeomorphic topological spaces if there is a homeomorphism f : (X, TX) −→
(Y, TY ). A property of a space (X, TX) is said to be a topological property if, whenever
(Y, TY ) is homeomorphic to (X, TX), then the space (Y, TY ) also has the property.
Examples: 1) We may take all functions known from the calculus to be continuous functions
as having been proved continuous in our language. For example, the mapping arctan:R →
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(−π/2,π/2) is a homeomorphism. Notice that the metric idea of a subset being of infinite
extent is not a topological notion.
2) By the definition of the indiscrete and discrete topologies, any function f : (X, discrete)→
(Y, T ) is continuous as is any function g: (X, T ) → (Y, indiscrete). A partial order is
obtained on topologies on a set X by T ≤ T ′ if the identity mapping id: (X, T ) → (X, T ′)
is continuous. This order is the relation of fineness.

The definition of homeomorphism makes topology the geometry of topological prop-
erties in the sense of Klein’s Erlangen Program [Klein]. We treat a figure as a subset of
a space (X, T ) and the homeomorphisms f :X → X are the transformations carrying a
figure to a “congruent” figure.

The simplest topological property is the cardinality of the space, because a homeo-
morphism is a one-one correspondence. A more topological example is the notion of second
countability.
Proposition 2.13. The property of being second countable is a topological property.
Proof: Suppose (X, T ) has a countable basis {Ui, i = 1, 2, . . .}. Suppose that f : (X, TX) →
(Y, TY ) is a homeomorphism. Write g = f−1: (Y, TY ) → (X, TX) for the inverse homeomor-
phism. Let Vi = g−1(Ui). Then the proposition follows from a proof that {Vi : i = 1, 2, . . .}
is a countable basis for Y . To prove this we take any open set W ⊂ Y and show for all
w ∈ W there is some j with w ∈ Vj ⊂ W . Let O = f−1(W ) and u = f−1(w) = g(w)
so that u ∈ O ⊂ X. Then there is some j with u ∈ Uj ⊂ O. Apply g−1 to get
w ∈ Vj = g−1(Uj) ⊂ g−1(O). But g−1(O) = W so w ∈ Vj ⊂ W as desired, and (Y, TY ) is
second countable. ♦

Later chapters will be devoted to some of the most important topological properties.

Exercises

1. Prove Proposition 2.8.

2. Another way to generate a topology on a set X is from a subbasis, which is a set S
of subsets of X such that, for any x ∈ X, there is an element S ∈ S with x ∈ S. Show
that the collection BS = {S1 ∩ · · · ∩ Sn | Si ∈ S, n > 0} is a basis for a topology on
X. Show that the set {(−∞, a), (b,∞) | −∞ < a, b < ∞} is a subbasis for the usual
topology on R.

3. Suppose that X is an uncountable set and that x0 is some given point in X. Let TF

be the collection of subsets TF = {U ⊂ X | X −U is finite or x0 /∈ U}. Show that TF

is a topology on X, called the Fort topology.

4. Suppose X = Bdd([0, 1], R) is the metric space of bounded real-valued functions on
[0, 1]. Let F :X → R be defined by F (f) = f(1). Show that this is a continuous
function when R has the usual topology.
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5. A space (X, T ) is said to have the fixed point property (FPP) if any continuous
function f : (X, T ) → (X, T ) has a fixed point, that is, there is some x ∈ X with
f(x) = x. Show that the FPP is a topological property.

6. The taxicab metric on Rn is given by

d(x,y) = |x1 − y1| + · · · + |xn − yn|.

Prove that this is indeed a metric on Rn. Describe the open balls in the taxicab metric
on R2. How do the usual topology and the taxicab metric topology compare on Rn?

7. A space (X, T ) is said to be a T1-space if for any x ∈ X, the complement of {x} is
open in X. Show that a metric space is T1. Which of the topologies on the three-point
set are T1? Show that being T1 is a topological property.

8. We displayed the nine distinct topologies on a three element set in this chapter. The
sequence of integers

tn = number of distinct topologies on a set of n elements

may be found in Neil Sloane’s On-Line Encyclopedia of Integer Seqeunces with ID
Number A001930. The first few values of tn, beginning with t0, are given by

1, 1, 3, 9, 33, 139, 718, 4535, 35979, 363083, 4717687, 79501654, 1744252509

See how far you can get with the 33 distinct topologies on a set of four elements.
URL: http://www.research.att.com/projects/OEIS?Anum=A001930
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3. Geometric Notions
At the basis of the distance concept lies, for example, the
concept of convergent point sequence and their defined limits,
and one can, by choosing these ideas as those fundamental to
point set theory, eliminate the notions of distance.

Felix Hausdorff

By choosing open sets as the basic notion we can generalize familiar analytic and
geometric notions from Euclidean space to the new setting of topology. Two fundamental
notions were introduced by Cantor in his work [Cantor] on analysis. In the language of
topology, these ideas have simple definitions.
Definition 3.1. Let (X, T ) be a topological space. A subset K of X is closed if its
complement in X is open. If A ⊆ X, a topological space and x ∈ X, then x is a limit
point of A, if, whenever U ⊂ X is open and x ∈ U , then there is some y ∈ U ∩ A, with
y %= x.

Closed sets are the natural generalization of closed sets in Rn. Notice that an arbitrary
subset of a topological space can be neither open nor closed, for example, [a, b) ⊂ R in the
usual topology. A slogan to remember is that “a subset is not a door.”

In a metric space the notion of a limit point w of a subset A is given by a sequence
{xi, i = 1, 2, . . .} with xi ∈ A for all i and limi→∞ xi = w. The limit is defined as usual:
for any ε > 0, there is an integer N for which whenever n ≥ N , we have d(xn, w) < ε. We
distinguish two cases: If w ∈ A, then we can choose a constant sequence to converge to w.
For w to be a limit point we want, for each ε > 0, that there be some other point aε ∈ A
with aε %= w and aε ∈ B(w, ε). When w is a limit point of A, such points aε always exist.
If we form the sequence {xi = a1/i}, then limi→∞ xi = w follows. Conversely, if there is a
sequence of infinitely many distinct points xi ∈ A with limi→∞ xi = w, then w is a limit
point of A.

The limit points of a subset of a metric space are “near” the subset. In the most
general topological spaces, the situation can be quite different. Consider R with the finite-
complement topology and let A = Z, the set of integers in R. Choose any real number r
and suppose U is an open set containing r. Then U = R−{s1, s2, . . . , sk} for some choices
of real numbers s1, . . . , sk. Since this set leaves out only finitely many points and Z is
infinite, there are infinitely many integers in U and certainly one not equal to r. Thus r is
a limit point of Z. This is an extreme case—every point in the space is a limit point of a
proper subset.

Closed sets and limit points are related.
Proposition 3.2. A subset K of a topological space (X, T ) is closed if and only if it
contains all of its limit points.
Proof: Suppose K is closed, x ∈ X is some point, and x /∈ K. Then x ∈ X−K and X−K
is open. So x is contained in an open set that does not intersect K, and therefore, x is not
a limit point of K. Thus all limit points of K must be in K.

Suppose K contains all of its limit points. Let x ∈ X −K, then x is not a limit point
and so there exists an open set Ux with x ∈ Ux and Ux ∩K = ∅, that is, Ux ⊂ X −K.
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Since we can find such an open set Ux for all x ∈ X −K, we have

X −K ⊂
⋃

x∈X−K
Ux ⊂ X −K.

We have written X −K a a union of open sets. Hence X −K is open and K is closed.♦
Let (X, T ) be a topological space and A an arbitrary subset of X. We associate to A

subsets definable with the open sets in the topology as follows:
Definition 3.3. The interior of A is the largest open set contained in A, that is,

intA =
⋃

U⊆A, open
U.

The closure of A is the smallest closed set in X containing A, that is,

cls A =
⋂

K⊇A, closed
K.

These operations tell us something geometric about subsets, for example, the subset
Q ⊂ (R, usual) has empty interior and closure all of R. To see this suppose U ⊂ R is open.
Then there is an interval (a, b) ⊂ U for some a < b. Since (a, b) contains an irrational
number, (a, b)∩R−Q %= ∅, U %⊂ Q and so int Q = ∅. If Q ⊂ K is a closed subset of R, then
R − K is open and contains no rationals. It follows that it contains no interval because
every nonempty interval of real numbers contains a rational number. Thus R−K = ∅ and
cls Q = R.

The operation of closure ought to be a kind of ‘closing’ up of the set by putting in all
the ‘ragged edges.’ We make this precise as follows:
Proposition 3.4. If A ⊂ X, a topological space, then cls A = A ∪A′ where

A′ = { limit points of A }.

A′ is called the derived set of A.
Proof: By definition, clsA is closed and contains A so A ⊂ cls A. It follows that if x /∈ cls A,
then there exists an open set U containing x with U ∩ A = ∅ and so x /∈ A and x /∈ A′.
This shows A∪A′ ⊂ cls A. To show the other containment, suppose y ∈ cls A and V is an
open set containing y. If V ∩A = ∅, then A ⊂ (X−V ) a closed set and so clsA ⊂ (X−V ).
But then y /∈ cls A, a contradiction. If y ∈ cls A and y /∈ A, then, for any open set V with
y ∈ V , we have V ∩A %= ∅ and so y is a limit point of A. Thus clsA ⊂ A ∪A′. ♦

For any subset A ⊂ X, we have the following sequence of subsets:

intA ⊂ A ⊂ cls A = A ∪A′.

We add another more refined distinction between points in the closure.
Definition 3.5. Let A be a subset of X, a topological space. A point x ∈ X is in
the boundary of A, if for any open set U ⊂ X with x ∈ U , we have U ∩ A %= ∅ and
U ∩ (X −A) %= ∅. The set of points in the boundary of A is denoted bdyA.
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A boundary point of a subset is “on the edge” of the set. For example, suppose
A = (0, 1]∪{2} in R with the usual topology. The point 0 is a boundary point and a point
in the derived set, but not in A; 1 is a boundary point, a point in the derived set, and a
point in A; and 2 is boundary point, not in the derived set, but in A.

The boundary points lie outside the interior of A. We next see how the boundary
relates to the closure.

Proposition 3.6. cls A = intA ∪ bdyA.

Proof: Suppose x ∈ bdyA and K ⊂ X is closed with A ⊂ K. If x /∈ K, then the open set
V = X −K contains x. Since x ∈ bdyA, we have V ∩A %= ∅ %= V ∩ (X −A). But A ⊂ K
implies V ∩A = ∅, a contradiction. Thus bdyA ⊂ cls A, and so bdyA ∪ intA ⊂ cls A.

We have already shown that A ∪ A′ = cls A. If x ∈ A − intA, then for any open set
U containing x, U ∩ (X −A) %= ∅, otherwise x would be in the interior of A. By virtue of
x ∈ A, U ∩A %= ∅, so x ∈ bdyA. Thus intA ∪ bdyA ⊃ A. Consider y ∈ A′ ∩ (X −A) and
any open set V containing y. Since y ∈ A′, V ∩A %= ∅. Also V ∩ (X −A) %= ∅ since y /∈ A.
Thus A′ is a subset of bdyA and clsA ⊂ intA ∪ bdyA. ♦

In a metric space, the notion of limit point agrees with the natural idea of the limit
of a sequence of points from the subset. We next generalize convergence to topological
spaces.

Definition 3.7. A sequence {xn} of points in a topological space (X, T ) is said to con-
verge to a point x ∈ X, if for any open set U containing x, there is a positive integer
N = N(U) so that xn ∈ U whenever n ≥ N .

This definition includes the notion of convergence in a metric space. However, in a
general topological space, convergence of a sequence can be very strange. For example,
consider the following topology on a nonempty set X: Let x0 ∈ X be chosen once and for
all. Define TIP = {∅ or U ⊂ X with x0 ∈ U}. This set of subsets determines a topology
on X called the included point topology. (Check for yourself that TIP is a topology.)
Suppose {xn} is the constant sequence of points, xn = x0 for all n. The sequence converges
to y ∈ X, for any y: Any open set containing y, being nonempty, contains x0. Thus a
constant sequence converges to every other point in the space (X, TIP ).

This example is extreme and it shows how wild an example a generalization can
produce. Some further conditions keep such pathology in check. For example, to guarantee
that a constant sequence converges only to the given point (and not other points as well),
one needs at least one open set away from the point. The condition, X is a T1-space,
introduced in the previous exercises, requires that singleton sets be closed. A constant
sequence can converge only to itself because there is an open set separating other points
from it. We next introduce another formulation of the T1 condition, placing it in a family
of such conditions.

Definition 3.8. A topological space X is said to satisfy the T1 axiom (Trennungsaxiom)
if given two points x, y ∈ X, there are open sets U , V with x ∈ U , y /∈ U and y ∈ V ,
x /∈ V . A topological space is said to satisfy the Hausdorff condition if given two points
x, y ∈ X there are open sets U , V with x ∈ U , y ∈ V and U ∩ V = ∅. The Hausdorff
condition is also called the T2 axiom.
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Proposition 3.9. A space X satisfies the T1 axiom if and only if a finite subset of points
in X is closed.
Proof: Since a finite union of closed sets is closed, it suffices to check only a singleton
subset. Suppose x ∈ X and X is T1; we show that {x} is closed. Let y be in X, y %= x.
Then, by the T1 axiom, there is an open set with y ∈ U , x /∈ U . Denote this set by Uy.
We have Uy ⊂ X − {x}. This can be done for each point y ∈ X − {x} and we get

X − {x} ⊂
⋃

y∈X−{x}
Uy ⊂ X − {x}.

Thus X − {x} is a union of open sets, and {x} is closed.
Conversely, suppose every singleton subset is closed in X. If x, y ∈ X with x %= y,

then x ∈ X − {y}, y /∈ X − {y} and X − {y} is open in X. Similarly, y ∈ X − {x} and
x /∈ X − {x}, an open set in X. ♦

The T1 axiom excludes some strange convergence behavior, but it is not enough
to guarantee the uniqueness of limits. For example, if (X, T ) = (R, TFC), the finite-
complement topology on R, then the T1 axiom holds but the sequence of positive integers,
{1, 2, 3, . . .} converges to every real number. The Hausdorff condition remedies this pathol-
ogy.
Theorem 3.10. In a Hausdorff space, the limit of a sequence is unique.
Proof: Suppose {xn} converges to x and to y with x %= y. By the Hausdorff condition
there are open sets U , V with x ∈ U , y ∈ V such that U ∩ V = ∅. But the definition
of convergence gives integers N = N(U) and M = M(V ) with xn ∈ U for n ≥ N and
xm ∈ V for m ≥ M . Take L = max{N,M}; then x" ∈ U ∩ V for " ≥ L. But this cannot
be, because U ∩ V = ∅, so our assumption x %= y fails. ♦

An infinite set with the finite-complement topology is not Hausdorff.
A nice feature of the space (R, usual) is its countable basis: thus open sets are

expressible in a nice way. Another remarkable feature of R is the manner in which Q
sits in R. In particular, cls Q = R. We identify these features in the general setting of
topological spaces.
Definition 3.11. A subset A of a topological space X is dense if cls A = X. A topological
space is separable (or Fréchet), if it has a countable dense subset.
Theorem 3.12. A separable metric space is second countable.
Proof: Suppose A is a countable dense subset of (X, d). Consider the collection of open
balls

{B(a, p/q) | a ∈ A, p/q > 0, p/q ∈ Q}.

If U is an open set in X and x ∈ U , then there is an ε > 0 with B(x, ε) ⊂ U . Since
cls A = X, there is a point a ∈ A ∩ B(x, ε/2). Consider B(a, p/q) where p/q is rational
and d(a, x) < p/q < ε/2. Then x ∈ B(a, p/q) ⊂ B(x, ε) ⊂ U . Repeat this procedure for
each x ∈ U to show U ⊂

⋃
a B(a, p/q) ⊂ U and this collection of open balls is a basis for

the topology on X. The collection is countable since a countable union of countable sets
is countable. ♦
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The theorem applies to (R,usual) and Q ⊂ R. Let C∞([0, 1], R) denote the set of
all smooth functions [0, 1] → R, that is, functions possessing continuous derivatives of
every order. From real analysis we know that any smooth function on [0, 1] is bounded
(a proof of this appears in Chapter 6) and so we can equip C∞([0, 1], R) with the metric
d(f, g) = maxt∈[0,1]{|f(t)− g(t)|}. The Stone-Weierstrass theorem ([Royden]) implies that
the countable set of polynomials with rational coefficients is dense in the metric space
(C∞([0, 1], R), d). The proof follows by taking Taylor polynomials and approximating the
coefficients by rationals. Thus C∞([0, 1], R) is second countable.

When we defined continuity of a function in the calculus, we first define what it means
to be continuous at a point. This is a local notion that requires only information about the
behavior of the function close to the point. To be continuous in the calculus, a function
must be continuous at every point of its domain, and this is a global condition. The
topological formulation of continuous is global, though it can be made local to a point.
Many properties of spaces have a local variant that expresses dependence on a chosen
point. For example, we give a local version of second countability.
Definition 3.13. A topological space is first countable if for each x ∈ X there is a
collection of open sets {Ux

i | i = 1, 2, 3, . . .} such that, for any V open in X with x ∈ V ,
there is one of these open sets Ux

j with x ∈ Ux
j ⊂ V .

A metric space is first countable taking the open balls centered at a point with rational
radius for the collection Ux

i . The corresponding global condition is a countable basis for
the entire space, that is, second countability.

The condition of first countability allows us to formulate the notion of limit point
sequentially.
Proposition. 3.14. If A ⊂ X, a first countable space, then x is in cls A if and only if
some sequence of points in A converges to x.
Proof: If {xn} is a sequence of points in A converging to x, then any open set V containing
x meets the sequence and we see either x ∈ intA or x ∈ bdyA, so x ∈ cls A.

Conversely, if x ∈ cls A, consider the collection {Ux
i | 1 = 1, 2, . . .} given by the

condition of first countability. Then A ∩ Ux
1 ∩ Ux

2 ∩ . . . ∩ Ux
n %= ∅ for all n. Choose some

xn ∈ A ∩ Ux
1 ∩ · · · ∩ Ux

n . The sequence {xn} converges to x: If V is open in X and x ∈ V ,
then there is Ux

j with x ∈ Ux
j ⊂ V . But then A ∩ Ux

1 ∩ . . . ∩ Ux
m ⊂ Ux

j ⊂ V for all m ≥ j,
and so xm ∈ V for m ≥ j. ♦

Corollary 3.15. In a first countable space X, a subset A ⊂ X is closed if and only if
each point of X for which x = limn→∞ an for a sequence of points an ∈ A satisfies x ∈ A.

These ideas allow us to generalize the notion of sequential convergence as a criterion
for continuity of functions as we will see below. In analysis it is useful to have various
formulations of continuity, and so too in topology.
Theorem 3.16. Let X, Y be topological spaces and f :X → Y a function. Then the
following are equivalent:
(1) f is continuous.
(2) If K is closed in Y , then f−1(K) is closed in X.
(3) If A ⊂ X, then f(cls A) ⊂ cls f(A).
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Proof: We first note that for any subset S of Y ,

f−1(Y − S) = {x ∈ X | f(x) ∈ Y − S}
= {x ∈ X | f(x) /∈ S} = {x ∈ X|x /∈ f−1(S)}
= X − f−1(S).

(1)⇐⇒ (2): If K is closed in Y , then Y −K is open and, because f is continuous, we have
f−1(Y −K) = X − f−1(K) is open in X. Thus f−1(K) is closed.

If V is open in Y , then f−1(V ) = X − f−1(Y − V ) and Y − V is closed. So f−1(V )
is open in X and f is continuous.
(2) ⇒ (3): For A ⊂ X, cls f(A) is closed in Y and so f−1(cls (f(A))) is closed in X. It
follows from A ⊂ f−1(f(A)) ⊂ f−1(cls f(A)), when f−1(cls f(A)) is closed, that

cls A ⊂ f−1(cls f(A))

and so f(cls A) ⊂ cls f(A).
(3)⇒ (2): If K is closed in Y , then K = cls K. Let L = f−1(K). We show clsL ⊂ L.

f(cls L) = f(cls f−1(K)) ⊂ cls f(f−1(K)) = cls K = K.

Taking inverse images, clsL ⊂ f−1(f(cls L)) ⊂ f−1(K) = L. ♦
Part (3) of the theorem says that continuous functions send limit points to limit points.

Corollary 3.17. If f :X → Y is a continuous function, and {xn} a sequence in X
converging to x, then the sequence {f(xn)} converges to f(x). Furthermore, if X is first
countable, then the converse holds.
Proof: Suppose {xn} is a sequence of points in X with limn→∞ xn = x ∈ X. If U ⊂ Y is
open and f(x) ∈ U , then x ∈ f−1(U) which is open in X since f is continuous. Because
limn→∞ xn = x, there is an index NU with xm ∈ f−1(U) for all m ≥ NU . This implies
that f(xm) ∈ U for all m ≥ NU and so limn→∞ f(xn) = f(x).

To prove the converse, we assume that f :X → Y is not continuous. Then there is a
closed subset of Y , K ⊂ Y for which f−1(K) is not closed in X. Since the empty set is
closed, we know that f−1(K) and also K are not empty. Furthermore, since f−1(K) is not
closed, there is a point x ∈ cls f−1(K) for which x /∈ f−1(K). Because X is first countable,
there is a sequence of points {xn} with xn ∈ f−1(K) for all n and limn→∞ xn = x. Then
f(xn) ∈ K for all n and since K is closed, limn→∞ f(xn) ∈ K if it exists. However,
limn→∞ f(xn) %= f(x) since x /∈ f−1(K). ♦

With our general formulation of continuity, we can get a sense of the extent to which
the problem of dimension is disconcerting by the following example of a continuous function
due to Guiseppe Peano (1858–1932).

Given a real number r with 0 ≤ r ≤ 1, we can represent it by its ternary expansion,
that is,

r = 0.t1t2t3 · · · =
∞∑

i=1

ti
3i

where ti ∈ {0, 1, 2}.
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Such a representation is unique except in the special cases:

r = 0.t1t2 · · · tn222 · · · = 0.t1t2 · · · tn−1(tn + 1)000 · · · , where tn %= 2.

In an 1890 paper [Peano], Peano introduced a function defined on [0, 1] using the ternary
expansion. Let σ denote the permutation of {0, 1, 2} which exchanges 0 and 2 and leaves
1 fixed. We can think of σ as acting on the ternary digits of a number. The way in which
this permutation acts can be understood by observing that when we write r = 0.t1t2t3 · · ·,
in its ternary expansion, then

1− r = 0.222 · · ·− 0.t1t2t3 · · · = 0.(σt1)(σt2)(σt3) · · · .

Let σt = σ ◦ σ ◦ · · · ◦ σ (t times). We define Pe(r) = (0.a1a2a3 · · · , 0.b1b2b3 · · ·) by

a1 = t1

a2 = σt2t3
...

an = σt2+t4+···t2(n−1)t2n−1

...

b1 = σt1t2

b2 = σt1+t3t4
...

bn = σt1+t3+···t2n−1t2n

...

From the definition of σ and Pe, the value of Pe(r) is the ternary expansions of a pair
of real numbers 0 ≤ x, y ≤ 1. The properties of the function Pe prompted Hausdorff to
write [Hausdorff] of it: “This is one of the most remarkable facts of set theory.”
Theorem 3.18. The function Pe: [0, 1] −→ [0, 1]× [0, 1] is well-defined, continuous, and
onto.
Because this function is onto a square in R2, it is called a space-filling curve. By
changing the definition of the curve slightly, it can be made to be onto [0, 1]×n = [0, 1] ×
[0, 1] × · · · × [0, 1] (n times) for n ≥ 2. We note that the function is not one-one and so
fails to be a bijection. However, the fact that it is continuous indicates the subtlety of the
problem of dimension.
Proof: We first put the Peano curve into a form that is convenient for our discussion. The
definition given by Peano is recursive and so we use this feature to give another expression
for the function.

Pe(0.t1t2t3 · · ·) = (0.t1,σ
t1t2) + (σt2 ,σt1) ◦ Pe(0.t3t4t5 · · ·)

3
.

Here, by (σt2 ,σt1), I mean the operation defined

(σt2 ,σt1)(0.a1a2a3 · · · , 0.b1b2b3)
= (0.(σt2a1)(σt2a2)(σt2a3) · · · , 0.(σt1b1)(σt1b2)(σt1b3) · · ·).
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We can now prove Pe is well-defined. Using the recursive definition, we reduce the
question of well-definedness to comparing the values Pe(0.0222 · · ·) and Pe(0.1000 · · ·) and
the values Pe(0.1222 · · ·) and Pe(0.2000 · · ·). Applying the definition we find

Pe(0.0222 · · ·) = (0.0222 · · · , 0.222 · · ·) and Pe(0.1000 · · ·) = (0.1000 · · · , 0.222 · · ·).

The ambiguity in ternary expansions implies Pe(0.0222 · · ·) = Pe(0.1000 · · ·).
Similarly we have

Pe(0.1222 · · ·) = (0.1222 · · · , 0.000 · · ·) and Pe(0.2000 · · ·) = (0.2000 · · · , 0.000 · · ·),

and so Pe(0.1222 · · ·) = Pe(0.2000 · · ·).
We next prove that the mapping Pe is onto. Suppose (u, v) ∈ [0, 1]× [0, 1]. We write

(u, v) = (0.a1a2a3 · · · , 0.b1b2b3 · · ·).

Let t1 = a1. Then t2 = σt1b1. Since σ ◦ σ = id, we have σt1t2 = σt1 ◦ σt1b1 = b1. Next let
t3 = σt2a2. Continue in this manner to define

t2n−1 = σt2+t4+···t2(n−1)an, t2n = σt1+t3+···+t2n−1bn.

Then Pe(0.t1t2t3 · · ·) = (0.a1a2a3 · · · , 0.b1b2b3 · · ·) = (u, v) and Pe is onto.
Finally, we prove that Pe is continuous. We use the fact that [0, 1] is a first countable

space and show that for all r ∈ [0, 1], whenever {rn} is a sequence of points in [0, 1] with
limn→∞ rn = r, then limn→∞Pe(rn) = Pe(r).

Suppose r = 0.t1t2t3 · · · has a unique ternary representation. For any ε > 0, we can
choose N > 0 with ε > 1/3N > 0. Then the value of Pe(r) is determined up to the first
N ternary digits in each coordinate by the first 2N digits of the ternary expansion of r.
For any sequence {rn} converging to r, there is an index M = M(2N) with the property
that for m > M , the first 2N ternary digits of rm agree with those of r. It follows that
the first N ternary digits of each coordinate of Pe(rm) agree with those of Pe(r) and so
limn→∞Pe(rn) = Pe(r).

In the case that r has two ternary representations,

r = 0.t1t2t3 · · · tN000 · · · = 0.t1t2t3 · · · (tN − 1)222 · · · ,

with tN %= 0, we can apply the familiar trick of the calculus of considering conver-
gence from above or below the value r. Suppose that {rn} is a sequence in [0, 1] with
limn→∞ rn = r and r ≤ rn for all n. Then for some index M , when m > M we have
rm = 0.t1t2t3 · · · tN t′N+1t

′
N+2 · · ·. We can now argue as above that limn→∞Pe(rn) =

Pe(r). On the other side, for a sequence {sn} with limn→∞ sn = r and sn ≤ r for all n,
we compare sn with r = 0.t1t2t3 · · · (tN − 1)222 · · ·. Once again, we eventually have that
sm = 0.t1t2t3 · · · (tN − 1)t′′N+1t

′′
N+2 · · ·. Convergence of the series {sn} implies that more

of the ternary expansion agrees with r as n grows larger, and so limn→∞Pe(sn) = Pe(r).
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Since convergence from each side implies general convergence, we have proved that Pe is
continuous. ♦

To get a useful picture of the Peano mapping consider the recursive expression.

Pe(0.t1t2t3 · · ·) = (0.t1,σ
t1t2) + (σt2 ,σt1) ◦ Pe(0.t3t4t5 · · ·)

3
.

When r is in the first ninth of the unit interval, we can write r = 0.00t3t4 · · · and so
Pe(r) = Pe(0.t3t4t5 · · ·)/3. Since 0.t3t4 · · · varies over the entire line segment [0, 1], there
is a copy of the image of the interval, shrunk to fit into the lower left corner of the 3× 3
subdivided square, ending at the point (1/3, 1/3). The second ninth of [0, 1] consists of r
with r = 0.01t3t4 · · · and so we find Pe(r) = (0, 0.1) + (σ, id) ◦ (Pe(0.t3t4t5 · · ·)/3). Thus
the copy of the image of the interval is shrunk by a factor of 3, flipped by the mapping
(x, y) 2→ (1−x, y), a reflection across the vertical midline of the square, and then translated
up by adding (0, 0.1). This places the image of the origin at the point (0.1, 0.1) and ties
the end of the image of the first ninth to the beginning of the image of the second ninth.
The well-definedness of Pe is at work here.

00

01

02 10

11

12 20

21

22

If we put the first two digits of the ternary expansion of r into the appropriate subsquare,
we get the pattern above and the image of the interval, shrunk to fit each subsquare, fills
each subsquare oriented by the action of σ where

(σ, id)↔ (1− x, y); (id,σ)↔ (x, 1− y); and (σ,σ)↔ (1− x, 1− y).

For example, the center subsquare, labeled 11, has a copy of the shrunken image of the
interval upside down.

There are many approaches to space-filling curves. We have followed [Peano] in this
exposition. Later, we will see that the failure of the Peano curve to be both onto and
one-one is a feature of the topology of the unit interval and the unit square. For further
discussion of the remarkable phenomenon of space-filling curves, see the book [Sagan].

Exercises
1. Some statements about the closure operation: (1) Suppose that A is dense in X and

U is open in X. Show that U ⊂ cls (A ∩ U). (2) If A, B and Aα are subsets of a
topological space X, show that cls (A ∪ B) = cls (A) ∪ cls (B). However, show that⋃

α cls (Aα) ⊂ cls (
⋃

α Aα). Give an example where the inclusion is proper. (3) Show
that bdy(A) = cls (A) ∩ cls (X −A).
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2. A subset A ⊂ X, a topological space, is called perfect if A = A′, that is, A is identical
with its derived set. Show that the Cantor set obtained by removing middle thirds
from [0, 1] is a perfect subset of R.

3. Define what it would mean for a function between topological spaces to be continuous
at a point x in the domain.

4. A topological space X is called a metrizable space if the topology on X can be
induced by a metric space structure on X. Not every topology on a set comes about
in this fashion. Show that a metric space is always Hausdorff and first countable.

5. Suppose that X is an uncountable set and that x0 is a given point in X. Let TF

denote the Fort topology on X, {U | X − U is finite or x0 /∈ U}.
i) Show that (X, TF ) is a Hausdorff space.
ii) Show that (X, TF ) is not first countable (and hence not metrizable).

6. Suppose that (X, d) is a metric space and A ⊂ X. Define the distance from A to a
point x, d(x, A) to be the infimum of the set of real numbers {d(x, a) | a ∈ A}.

i) Show that d(−, A):X → R is a continuous function.
ii) Show that a point x ∈ X is in the closure of A if and only if d(x,A) = 0.
iii) What is the preimage of the closed subset {0} of R under the mapping d(−, A)?

7. Prove that the following are topological properties: (1) X is a separable space. (2) X
satisfies the Hausdorff condition. (3) X has the discrete topology.

8. An interesting problem set by Kuratowski in 1922 is called the closure-complement
problem. Let X be a topological space and A a subset of X. We can apply the
operations of closure A 2→ cls A, and complement A 2→ X − A. By composing these
operations we may obtain new subsets of X, such as the X − cls A. Show that there
are only 14 distinct such composites and that there is a subset of R2 for which all 14
composites are in fact distinct.
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4. Building New Spaces From Old
The use of figures is, above all, then, for the purpose of making
known certain relations between the objects that we study, and
these relations are those which occupy the branch of geometry
that we have called Analysis Situs, . . .

J. Henri Poincaré, 1895

Having introduced topologies on sets and continuous functions, we next apply set-
theoretic constructions to form new topological spaces. The principal examples are:
1) the formation of subsets,
2) the formation of products, and
3) the formation of quotients by equivalence relations.

In later chapters, we will also introduce function spaces. In all cases we are guided by the
need to construct natural continuous functions.

Subspaces

Many interesting mathematical objects are subsets of Euclidean space, which is a
topological space—how are these subsets topological spaces? By restricting the metric to
a subset, it becomes a metric space and so has a topology. However, this procedure does
not generalize to all topological spaces. We need a more flexible approach.

For any subset A of a set X, we associate the function i:A → X given by i(a) = a
(the inclusion). Restriction of a function f :X → Y to the subset A becomes a composite
f |A = f ◦ i:A → Y . To topologize a subset A of X, a topological space, we want that
restriction to A of a continuous function on X be continuous. This is accomplished by
giving A a topology for which i:A → X is continuous.
Definition 4.1. Let X be a topological space with topology T and A, a subset of X. The
subspace topology on A is given by TA = {U ∩ A | U ∈ T }, also called the relative
topology on A.
Proposition 4.2. The collection TA is a topology on A and with this topology the inclusion
i:A → X is continuous.
Proof: If U is open in X, then i−1(U) = U ∩ A, which is open in A. The fact that TA

is a topology on A is easy to prove and, in fact, it is the smallest topology on A making
i:A → X continuous. We leave it to the reader to prove these assertions. ♦

z

Example 1: Some interesting spaces are the spheres in Rn, for n ≥ 1. They are given by
Sn−1 = {x ∈ Rn | ‖x‖ = 1}.

1



Thus S0 = {−1, 1} ⊂ R, and S1 ⊂ R2, etc. Open sets in S1 are easily to picture: the
intersection of an open ball in R2 with S1 gives a sort of ‘interval’ in S1. To be precise,
take any point z ∈ S1 with z = (cos θ0, sin θ0), and let w: (−ε, ε) −→ S1 be the mapping
r *→ (cos(θ0 + r), sin(θ0 + r)). Then let ρ = d(z, (cos(θ0 + ε), sin(θ0 + ε))). For small ε,
we get w−1(B(z, ρ)) = (−ε, ε) and the mapping w is a homeomorphism. Thus each point
of S1 has a neighborhood around it homeomorphic to an open set in R. This condition is
special and characterizes S1 as a 1-dimensional manifold. More on this later.
Example 2: Some interesting subspaces of R3 are pictured here: they are the cylinder and
the Möbius band. (Are they homeomorphic?)

If a space X has a topological property, does a subset A of X as a subspace share it?
Such a property is called hereditary.
Proposition 4.3. Metrizability is a hereditary property. The Hausdorff condition is also
hereditary.
Proof: That metrizability is hereditary is left to the reader to prove. To see how the
Hausdorff condition is hereditary, suppose a, b ∈ A. Then a, b are also in X, which is
Hausdorff. So there are open sets U , V in X with a ∈ U , b ∈ V , and U ∩ V = ∅. Consider
U ∩A and V ∩A. Since these are non-empty, disjoint, open sets in A with a ∈ U ∩A and
b ∈ V ∩A, we have that A is Hausdorff. ♦

Reversing the notion of a hereditary property, we consider properties that, when they
hold on a subspace, can be seen to hold on the whole space. For example, one can build
continuous mappings this way:
Theorem 4.4. Suppose X = A ∪B is a space, A, B, open subsets of X, and f :A → Y ,
g:B → Y are continuous functions (where A and B have the subspace topologies). If
f(x) = g(x) for all x ∈ A ∩B, then F = f ∪ g:X → Y is a continuous functions where F
is defined by

F (x) =
{

f(x), if x ∈ A,
g(x), if x ∈ B.

Proof: The condition that f and g agree on A∩B implies that F is well-defined. Let U be
open in Y and consider F−1(U) = (f−1(U) ∩A) ∪ (g−1(U) ∩B). The subset f−1(U) ∩A
is open in A so it equals V ∩A where V is open in X. But since A is open, V ∩A is open
in X, so f−1(U) ∩ A is open in X. Similarly g−1(U) ∩ B is open in X and their union is
F−1(U). Thus F is continuous. ♦

If a space breaks up into disjoint open pieces, then continuity of a function defined on
the whole space is determined by continuity on each piece.

There is a similar characterization for A, B closed in X. A subset K ⊂ A is closed in
A if there is an L ⊂ X closed in X with K = L∩A. To see this write A−K = A∩(X−L).
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More generally, when A is a subspace of X and f :A → Y is a continuous function,
is there an extension of f to all of X, f̂ :X → Y , that is continuous, for which f = f̂ ◦ i?
This problem is called the extension problem and it is a common formulation of many
problems in topology. An example where it is known to fail is the inclusion

i:Sn−1 → en = cls B(0, 1) = {x ∈ Rn | ‖x‖ ≤ 1} ⊂ Rn,

with respect to the mapping id:Sn−1 → Sn−1 (Brouwer Fixed Point Theorem in Chap-
ter 11). The corollaries of this failure are numerous.

An extension problem with a positive solution is the following result.
Tietze Extension Theorem. Any continuous function f :A → R from a closed subspace
A of a metric space (X, d) has an extension g:X → R that is also continuous.
We first prove a couple of lemmas:
Lemma 4.5. For A a closed subset of (X, d), a metric space, let d(x, A) = inf{d(x, a) |
a ∈ A}. Then the function x *→ d(x,A) is continuous on X.
This is left to the reader to prove.
Lemma 4.6. If A and B are disjoint closed subsets of (X, d), there is a real-valued contin-
uous function in X with value 1 on A, −1 on B and values in (−1, 1) ⊂ R on X− (A∪B).
Proof: Consider the function

g(x) =
d(x,B)− d(x,A)
d(x,A) + d(x,B)

.

Because A and B are disjoint and closed, d(x,A) + d(x, B) > 0 and g(x) is well-defined.
By Lemma 4.5 and the usual theorems of real analysis, g(x) is continuous, and it is rigged
to satisfy the statement of the lemma. ♦
Proof of Tietze’s Theorem: ([Munkres, p. 212]) We first suppose |f(x)| ≤ M for all x ∈ A.
Define

A1 = {x ∈ A | f(x) ≥ M/3}, B1 = {x ∈ A | f(x) ≤ −M/3};

A1 and B1 are closed in A and hence in X. By Lemma 4.6, there is a continuous mapping,
g1:X → [−M/3,M/3] with g1(a) = M/3 for a ∈ A1, g1(b) = −M/3 for b ∈ B1 and taking
values in (−M/3,M/3) on X − (A1 ∪ B1). Since |f(x)| ≤ M , |f(x) − g1(x)| ≤ 2M/3 for
x ∈ A.

Next consider f(x)− g1(x) on A and define

A2 = {x ∈ A | f(x)− g1(x) ≥ 2M/9}, B2 = {x ∈ A | f(x)− g1(x) ≤ −2M/9}.

As above A2, B2 are closed and disjoint and so there is a continuous function g2:X →
[−2M/9, 2M/9] with g2(a) = 2M/9 for a ∈ A2, g2(b) = −2M/9 for b ∈ B2 and taking
values in (−2M/9, 2M/9) on x ∈ X−(A2∪B2). Notice, for x ∈ A, |f(x)−g1(x)−g2(x)| ≤
4M/9.

Iterate this process to get gn:X → [−2n−1M/3n, 2n−1M/3n] such that
i) |f(x)− g1(x)− g2(x)− · · ·− gn(x)| ≤ 2nM/3n on A
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ii) |gn(x)| < 2n−1M/3n on X −A.
For all x ∈ X −A, the infinite series satisfies

∣∣∣
∑∞

n=1
gn(x)

∣∣∣ ≤
∑∞

n=1
|gn(x)| ≤ M

∑∞

n=1
2n−1/3n = M,

and so g(x) =
∑∞

n=1
gn(x) converges absolutely and hence converges, defining g on X−A.

Furthermore, g(x) = f(x) for x ∈ A, and so g(x) is defined for all x ∈ X; also, |g(x)| < M
on X and g is bounded.

To show that g is continuous, let x0 ∈ X. We show that for any ε > 0 there is a δ > 0
such that whenever d(x0, x) < δ, then |g(x0)− g(x)| < ε. Define sn(x) =

∑n

k=1
gk(x), the

nth partial sum of g(x). Since, for all x ∈ X −A,

|g(x)− sn(x)| =
∣∣∣
∑∞

k=n+1
gk(x)

∣∣∣ ≤
∑∞

k=n+1
|gk(x)| ≤

∑∞

k=n+1
2k−1M/3k = M(2/3)n,

then there is an N for which |g(x) − sn(x)| < ε/3 for n ≥ N . On A, |g(a) − sn(a)| =
|f(a)− sn(a)| < 2nM/3n, and so there is an N ′ with |f(a)− sn(a)| < ε/3 for n ≥ N ′. Let
N1 = max{N,N ′}.

Since sn(x) is a finite sum of continuous functions, for each n, there is a δn > 0 for
which |sn(x0)− sn(y)| < ε/3 whenever d(x0, y) < δn. Suppose that L > N1. Then, for all
y ∈ X with d(x0, y) < δL, we have

|g(x0)− g(y)| = |g(x0)− sL(x0) + sL(x0)− sL(y) + sL(y)− g(y)|
≤ |g(x0)− sL(x0)| + |sL(x0)− sL(y)| + |g(y)− sL(y)| < ε.

Thus, for any x0 ∈ X, g is continuous at x0, and so g is continuous.
For an unbounded mapping f :A → R, apply the invertible mapping h: R → (−1, 1)

given by h(r) = (2/π) arctan(r). Let F = h ◦ f . Then F is bounded and we can carry out
the argument for F as in the bounded case to get G on X, with codomain (−1, 1). Let
g = h−1 ◦G. On A,

g = h−1 ◦G = h−1 ◦ F = h−1 ◦ h ◦ f = f,

so g extends f to all of X. ♦
The manner in which a subspace sits inside a larger space determines new things about

the space. For example, one can make a circle a subspace of R3 in many ways:
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The study of such embeddings is another important part of topology called knot theory
(see [Adams], [Burde-Zieschang]).

One way to focus on a subspace within a space is through the continuous functions.
Definition 4.7. A topological pair is a space X together with a subspace A, written
(X, A). A mapping of pairs (a continuous function of pairs), f : (X, A) → (Y,B), is a
continuous function f :X → Y satisfying the additional property f(A) ⊂ B.

A composite of mappings of pairs gives a mapping of pairs and the identity mapping
on a pair is a mapping of pairs. Two pairs are homeomorphic if there is a mapping of pairs
f : (X, A) → (Y, B) with f :X → Y a homeomorphism and f |A:A → B another homeomor-
phism. The notion of equivalence of knots reduces to whether there is a homeomorphism
of pairs (R3,K) → (R3,K ′) where K and K ′ are knots, the images of homeomorphisms of
S1 with subspaces of R3.

A particular example of a topological pair is a pointed space.
Definition 4.8. Given a space X, a basepoint for X is a choice of point x0 in X. We
denote the pair (X, {x0}) = (X, x0), and call (X, x0) a pointed space. The mappings
f : (X, x0) → (Y, y0) of such pairs, are called pointed maps.
Example: Let [0, 1] ⊂ R with the usual topology denote the unit interval. A path in a
space X is a continuous function f : [0, 1] → X. Choose 0 ∈ [0, 1] as basepoint and define
the set

PX = Hom(([0, 1], 0), (X, x0)) = {f : [0, 1] → X | f(0) = x0, f continuous},

the set of all paths in X beginning at x0. We can also consider the set of mappings of pairs
Ω(X, x0) = Hom(([0, 1], {0, 1}), (X, x0)), the set of all paths in X beginning and ending at
x0, also called the loops on X based at x0. The loops could be described equally well as
Hom((S1, 1), (X, x0)) where S1 is the circle in R2 = C and 1 = ei·0 = 1 + 0i is chosen as
basepoint for S1. More on this set in Chapter 7.

Products

Take a pair of topological spaces, X, Y , and form their cartesian product

X × Y = {(x, y) | x ∈ X, y ∈ Y }.

How can this set be topologized to get a new space? Such a topology should make the
associated projection functions continuous, namely,

pr1:X × Y −→ X, pr2:X × Y −→ Y.

If U is open in X then pr−1
1 (U) = U×Y . Similarly, if V is open in Y , then pr−1

2 (V ) = X×V .
At the very least, we need the collection

S = {U × Y, X × V | U open in X, V open in Y }

to lie in our topology on X × Y . In the exercises to Chapter 2, we identified collections
like S called subbases for which the collection

B = {S1 ∩ . . . ∩ Sn | n ≥ 1, Si ∈ S}
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forms a basis for a topology on X × Y .
Definition 4.9. The product topology on X×Y is the topology generated by the basis
B = {U × V | U open in X, V open in Y }.
To see that we have the same basis as generated by the subbasis S observe that (U ×Y )∩
(X × V ) = U × V . Thus the projections are continuous with the product topology on
X × Y . More can be said:
Proposition 4.10. Given three topological spaces X, Y , and Z, and a function f :Z →
X×Y , then f is continuous if and only if pr1◦f :Z → X and pr2◦f :Z → Y are continuous.
Proof: Certainly f being continuous implies pr1 ◦ f and pr2 ◦ f are continuous. To prove
the converse, suppose W is an open set in X ×Y . Then W is a union of Ui×Vi with each
Ui open in X, Vi open in Y . Since f−1(

⋃
(Ui × Vi)) =

⋃
f−1(Ui × Vi), we can restrict our

attention to a basis open set. The subsets (pr1 ◦ f)−1(Ui) and (pr2 ◦ f)−1(Vi) are both
open in Z by the hypotheses. The proof reduces to proving

f−1(Ui × Vi) = (pr1 ◦ f)−1(Ui) ∩ (pr2 ◦ f)−1(Vi) :

If z is in f−1(Ui × Vi), then f(z) ∈ Ui × Vi and pr1 ◦ f(z) ∈ Ui, pr2 ◦ f(z) ∈ Vi. Thus
f−1(Ui × Vi) ⊂ (pr1 ◦ f)−1(Ui) ∩ (pr2 ◦ f)−1(Vi). If z ∈ (pr1 ◦ f)−1(Ui) ∩ (pr2 ◦ f)−1(Vi),
then f(z) ∈ pr−1

1 (Ui) ∩ pr−1
2 (Vi) = Ui × Vi. ♦

By induction, we can endow a finite product X1 ×X2 × · · ·×Xn with a topology for
which the projections pri:X1 ×X2 × · · ·×Xn → Xi, pri(x1, . . . , xn) = xi, are continuous.
Proposition 4.10 generalizes for functions f :Z → X1 ×X2 × · · ·×Xn that are continuous
if and only if all the compositions pri ◦ f are continuous. This generalizes the fact from
classical analysis that a function f :Z → Rn is continuous if and only if the coordinate
functions expressing f are continuous.

We had hereditary properties for subspaces, are there topological properties that go
over to products when they hold for each factor? We give an example:
Proposition 4.11. If X and Y are separable spaces, so is X × Y .
Proof: Let A ⊂ X and B ⊂ Y be countable dense subsets. Then A × B ⊂ X × Y is also
countable. To see that it is dense, suppose (x, y) ∈ X × Y and (x, y) /∈ A × B, and W
is an open set in X × Y with (x, y) ∈ W . Then there is a basis open set U × V with
(x, y) ∈ U × V ⊂ W . Since A is dense in X, there is an a ∈ A with a /= x and a ∈ U .
Similarly there is a b ∈ B, b ∈ V and b /= y. Thus (a, b) ∈ W with (a, b) /= (x, y). Hence
(x, y) is a limit point of A×B, and cls (A×B) = X × Y . ♦

Many other properties act analogously, for example, the Hausdorff condition, or second
countability, and others.

We can extend the notion of product to infinite products and then extend the product
topology to them; this requires care.
Definition 4.12. Let {Xα | α ∈ J} be any collection of nonempty sets. The product
of the sets

∏
α∈J

Xα is the set of all functions c:J →
⋃

α∈J
Xα with c(α) ∈ Xα for all

α ∈ J . For any β ∈ J , the projection prβ :
∏

α∈J
Xα → Xβ is given by evaluation of

such a function c on β, c *→ c(β).
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This structure describes products for any collection and generalizes finite products for
which the indexing set is {1, 2, . . . , n}. Why do we need such notions? Consider Rω =
{(r1, r2, r3, . . .) such that ri ∈ R}, the countable product of R with itself. A nice example
of a subspace of Rω is an important space in analysis that generalizes Rn

l2 = { square summable sequences of R } = {(r1, r2, r3, . . .) |
∑∞

i=1
r2
i < ∞}.

The norm ‖(r1, r2, r3, . . .)‖ =
√∑

i r2
i provides a distance function and hence a metric

space structure on l2.
What is the infinite analogue of the product topology on X × Y ? Two alternatives

are possible: let
∏

α∈J Xα be a product of spaces {Xα | α ∈ J},
i) Tbox = the topology generated by the basis B = {

∏
α∈J Uα | Uα ⊂ Xα for all α, each

Uα open in Xα}.
ii) Tprod = the topology generated by the basis B = {S1 ∩ S2 ∩ · · · ∩ Sn | n ≥ 1, Si ∈ S},

where S is the subbasis of subsets S =
∏

α∈J
Vα, where for each β ∈ J , Vβ is open in

Xβ and Vγ = Xγ for all but finitely many γ ∈ J .

Definition 4.13. The topology Tbox is called the box topology on
∏

α∈J
Xα. The

topology Tprod is called the product topology.
In both cases it is easy to prove we have topologies. (Check this!) Furthermore,

all of the projections prα′ :
∏

α∈J
Xα → Xα′ are continuous in both topologies. To see

the difference we observe the following: A subset W of
∏

α∈J
Xα is open in the product

topology if it is a union of subsets of the form
∏

α∈J
Vα where Vα = Xα for all but finitely

many α ∈ J . If J is infinite and only finitely many of the Xα are indiscrete spaces, then
Tbox is strictly finer than Tprod.

An decisive difference appears when we form the product of a fixed space with itself
over an index set.
Proposition 4.14. Let X be a space and for all α ∈ J , let Xα = X. Define the function

∆: X →
∏

α∈J
Xα

by ∆(x):α *→ x ∈ Xα = X. This function is continuous when
∏

α∈J
Xα has the product

topology.

Proof: If
∏

α∈J
Vα is a basic open set, then Vβ = X for all but finitely many β ∈ J , say

α1, α2, . . . , αn. Then ∆−1(
∏

α∈J
Vα) =

⋂
α∈J

Vα = Vα1 ∩ . . .∩Vαn , which is open in X.♦

Compare ∆: (R,usual) → (Rω, Tbox). The open set

(−1, 1)× (−1/2, 1/2)× (−1/3, 1/3)× . . . = W

has ∆−1(W ) = {0} which is not open. Since the composites pri ◦ ∆ = id, a desirable
property of continuous functions on products fails. This example recommends the product
topology over the box topology as the product topology.
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Another nice property of the product topology is the preservation of certain properties:
for example, a product of Hausdorff spaces is Hausdorff. However, an uncountable product
of second countable spaces or separable spaces need not be second countable or separable.

When spaces are pointed, (Xα, xα0), we can construct some continuous functions of
interest. The product

∏
α∈J

Xα is pointed with basepoint (α *→ xα0)α∈J . Define the
injections

iα: (Xα, xα0) −→
(∏

β∈J
Xβ , (β *→ xβ)β∈J

)

given by x *→ c, where c:J →
⋃

j∈J
Xj is defined

c(j) =
{

x, if j = α,
xα′0, if j /= α, j = α′.

The pre-image under iα of an open set is determined only by the open set in the coodinate
α so each iα is continuous. Notice, without the chosen basepoints, there is no obvious way
to choose the other coordinates to define the inclusions iα.

Next, notice prα ◦ iα = id:Xα → Xα. Thus we can factor the identity through the
pointed product space.

Finally, we mention an interesting subspace of (X × Y, (x0, y0)).
Definition 4.15. The one-point union of the pointed spaces (X, x0) and (Y, y0),
denoted X ∨ Y is given by X × {y0} ∪{ x0}× Y ⊂ X × Y .
One can think of X ∨ Y as the pair of axes in the product X × Y joined at the origin
(x0, y0). A homeomorphic image of S2 ∨ S1 can be pictured as a sphere with a circle
touching it at a point.

X v Y

X x Y

1S  v S2

There are canonical mappings X → X ∨ Y → X given by x *→ (x, y0) *→ x. When
X = Y , the extension problem posed by taking X ∨ X ⊂ X × X and the fold map
fold:X ∨ X → X given by fold(x, x0) = x = fold(x0, x) is solved by a continuous binary
operation µ:X ×X → X for which x0 is an identity element. Spaces like this are called
H-spaces (or Hopf spaces). They are generalizations of groups and they play an important
role in topology.

Quotients

Another method for building new spaces starts with a space X and an equivalence
relation ∼ on X. The space X maps to the set of equivalence classes [X] via the canonical
surjection pr:X → [X], x *→ [x], the equivalence class of x. We want to introduce a
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topology on [X] which makes the canonical surjection continuous. We take the most direct
course.
Definition 4.16. A subset V ⊂ [X] is open in the quotient topology on [X] if pr−1(V )
is open in X. The space [X] with this topology is called a quotient space of X.
Notice that the quotient topology is the finest topology making pr:X → [X] continuous:
anything larger would have open sets whose pre-image would not be open. We characterize
the relation between the quotient topology and the canonical surjection.
Definition 4.17. An onto map f :X → Y is called a quotient map when V is open in
Y if and only if f−1(V ) is open in X.
Observation. Some continuous functions f :X → Y enjoy a more unlikely property; f(U) ⊂
Y is open when U is open in X. Such continuous mappings are called open mappings;
there is also the analogous notion of a closed mapping. A homeomorphism is open as is a
canonical projection.
Theorem 4.18. (1) If f :X → Y is an onto, continuous mapping, then f is a quotient
map if it is an open mapping. (2) If f :X → Y is a quotient map, then a function
g:Y → Z is continuous if and only if the composite g ◦ f :X → Z is continuous. (3)
Suppose f :X → Y is a quotient map. Suppose ∼ is the equivalence relation defined on X
by x ∼ x′ if f(x) = f(x′). Then the quotient space [X] is homeomorphic to Y .
Proof: (1) We need to show that f an open mapping implies f is a quotient map. Suppose
V is any subset in Y . Then, if f−1(V ) is open in X, f(f−1(V )) = V is open in Y since f
is an onto, open mapping. Hence f is a quotient map.
(2) We need to show that g ◦ f being continuous implies g is continuous. Suppose W is
open in Z. Then (g ◦ f)−1(W ) = f−1(g−1(W )) is open in X. Since f is a quotient map,
g−1(W ) is open in Y . Hence, g is continuous.
(3) By the definition of the equivalence relation, we have the diagram.

X
f−→ Y.pr ‖

[X] −→̂
f

Y

The lift f̂ : [X] → Y is given by f̂([x]) = f(x) and it is well-defined by the conditions of
(3). Notice that f̂ ◦pr = f . Both f and pr are quotient maps so f̂ is continuous. We show
that f̂ is one-one, onto and f̂−1 is continuous, which implies that f̂ is a homeomorphism.
If f̂([x]) = f̂([x′]), then f(x) = f(x′) and so x ∼ x′, that is, [x] = [x′], and f̂ is one-one.
If y ∈ Y , then y = f(x) since f is onto and f̂([x]) = y so f̂ is onto. To see that f̂−1 is
continuous, observe that since f is a quotient map and pr is a quotient map, this shows
pr = f̂−1 ◦ f and (2) implies that f̂−1 is continuous. ♦

Part (3) of Theorem 4.18 allows useful comparisons. Let’s consider an example:
Example: Let ∼ be the equivalence relation on R given by r ∼ s if s− r is an integer. Give
R the usual topology and consider [R]. Intuitively we have identified two real numbers
whenever they differ by an integer and so only [0, 1] would be in [R] with 0 ∼ 1. That
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is, form the space from [0, 1] by joining 0 to 1. This ought to be a circle! Consider the
mapping

f : R −→ S1, f(r) = (cos(2πr), sin(2πr)).

If r ∼ s, then f(r) = f(s) so we get a function f̂ : [R] → S1, such that the following diagram
commutes:

R f−→ S1.pr ‖

[R] −→̂
f

S1

From calculus we know f is continuous and f = f̂ ◦ pr so by Theorem 4.18 (2) f̂ is
continuous. Furthermore f̂ is one-one and onto, so we only need to know if f̂ is open to
see that it is a homeomorphism. We could apply (3) above more easily if f were open, so
we check: let (a, b) ⊂ R, a < b, be a basic open set. The image f((a, b)) = those points on
S1 of angle between 2πa and 2πb, which is open in S1. Thus f is open and [R] ∼= S1.

Quotient spaces let us make precise a construction called glueing. Suppose one has
two subsets A,B ⊂ X and a homeomorphism h:A → B. We can define the equivalence
relation ∼h on X by x ∼h x′ if x = x′, h(x) = x′ or h−1(x) = x′. This identifies points
a ∈ A with their counterpart h(a) ∈ B and vice versa. This process ‘glues’ A to B
according to h. Let’s consider some specific examples.

(1) Let I2 = [0, 1]× [0, 1] and define A = {0}× [0, 1] ∪ [0, 1]× {0} and B = {1}× [0, 1] ∪
[0, 1] × {1}; then take the mapping h:A → B by h((0, t)) = (1, t) and h((t, 0)) = (t, 1).
This glues the bottom of the box to the top and the sides to the sides. We get a torus in
this fashion given as in the diagram:

.

. .

(t,1).

(t,0)

(1,t')(0,t')

Alternatively, the torus can be described as a circle rotated around a line outside it. Taking
the coordinates of a point on the torus from the given circle and the rotation shows the
torus T 2 = S1 × S1. This description leads to a function f : I2 → T 2 given by f(u, v)
= (e2πiu, e2πiv) ∈ S1 × S1. Since e2πi0 = e2πi1 we get f(u, v) = f(ū, v̄) if and only if
(u, v) ∼ (ū, v̄). Thus we get f̂ : [I2]h → T 2 which is a homeomorphism in the same way as
in the argument for the circle.

(2) The following famous quotient of a square was constructed in 1858 independently
by Johann Listing, who introduced the word ‘topology’ for such studies, and Möbius for
whom it is named. Let X = [0, 1]× [0, 1] and let A = {0}× [0, 1], B = {1}× [0, 1] with the
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homeomorphism h(0, t) = (1, 1 − t). Then [X]h represents the Möbius band, M . From a
convenient representation of M in R3, the quotient map is evident.

.
.

(0,t)

(1,1-t)

.

Notice how an open set around a point on the line segment where it is glued has pre-image
an open set (in two pieces) in X.
(3) One of the most important spaces in topology is the projective plane. Its formal
definition is given as a set by

RP 2 = { lines through the origin in R3 }.

To ‘tame’ this description a bit, we introduce coordinates for a point in RP 2. Sup-
pose (x, y, z) ∈ R3 and (x, y, z) /= (0, 0, 0). Introduce the equivalence relation (x, y, z) ∼
(λx,λy,λz) for λ ∈ R− {0}. Then RP 2 = [R3 − {0}] topologized as a quotient space.

The projective plane is the home for algebraic curves, defined as zero sets of homo-
geneous polynomials in two variables. The fact that such an algebraic curve lies in RP 2

provides further geometry with which to study the curve. Also, projective geometry is
modelled by the projective plane.

We construct a more easily described topological model for RP 2: To each line in
R3 through the origin, we can associate two points {±(x, y, z)} in S2 by taking the two
points of intersection of the line with the sphere. The inclusion S2 ↪→ R3 − {0} composed
with the canonical surjection pr: R3 − {0} → [R3 − {0}] gives a mapping S2 → RP 2

and we get the associated equivalence relation on S2 as (x, y, z) ∼ (x′, y′, z′) whenever
(x′, y′, z′) = ±(x, y, z). Thus RP 2 ∼= [S2], where we identify antipodal points together. A
projective line is the image of the intersection of a plane through the origin with S2 (a
great circle) in RP 2. Two points on RP 2 determine a unique projective line by taking the
plane spanned by the points and the origin in R3, and two projective lines meet in the line
given by the intersection of the planes that determine them.

S2 RP2
..

The hemisphere in the picture tells us how to represent RP 2 as a quotient of a disk: On
the rim of the hemisphere antipodal points are identified—this is the line at infinity in the
projective plane. So let

e2 = {(x, y) | x2 + y2 ≤ 1} ⊂ R2
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be the 2-disk. Let A = {(x, y) | x2 + y2 = 1 and x ≥ 0}, B = {(x, y) | x2 + y2 = 1 and x ≤
0} and define h:A → B by h(x, y) = (−x,−y). The quotient space, [e2]h is, once again,
RP 2.

All of this discussion generalizes to define RPn, the n-dimensional projective
space, which is [Sn] with equivalence relation x ∼ ±x. These spaces are the object
of intense study in modern topology.

Here are some standard constructions that apply to any space X.

X x I CX ΣX

(4) The cone on X is given by [X × I] where (x, t) ∼ (x′, t′) if (x, t) = (x′, t′) or x, x′ ∈ X
and t = t′ = 0. We write CX = [X × I] for the cone on X.
(5) The suspension of X, denoted ΣX, is the quotient of X × I where we identify the
subsets X × {0} and X × {1} each to a point (two points here). Suspension gives a
convenient construction of the spheres:
Theorem 4.19. The (n + 1)-sphere Sn+1 is homeomorphic to ΣSn.
Proof: Consider the function σ:Sn × [0, 1] −→ Sn+1 given by

σ(x0, . . . , xn, t) = (
√

1− (1− 2t)2x0, . . . ,
√

1− (1− 2t)2xn, 1− 2t).

This function is continuous as the calculus tells us. Notice that

σ(x0, . . . , xn, 0) = (0, 0, . . . , 0, 1), σ(x0, . . . xn, 1) = (0, 0, . . . , 0,−1).

Thus σ factors through [Sn × [0, 1]] = ΣSn.

Sn × [0, 1] σ−→ Sn+1
.pr ‖

[Sn × [0, 1]] σ̂−→ Sn+1.

The function σ̂ is one-one, onto away from the ‘poles’ (0, . . . , 0,±1). The classes remaining,
[Sn× {0}] and [Sn× {1}] each go to the respective poles. To finish the proof we only need
to show that σ is a quotient map. Let Sn× [0, 1] get its topology as a subspace of Rn+2. A
basic open set in Sn× [0, 1] takes the form W = (Sn× [0, 1])∩ [(a1, b1)× . . .×(an+2, bn+2)].
Restricting (or extending) σ to W takes it to an open set and the image is easily determined
to be the intersection of σ(W ) with Sn+1. Thus σ is open.

There are pointed versions of CX and ΣX: Given (X, x0) a pointed space, then
(C̃X,Cx0) is [CX] = [X × [0, 1]]≈ where (x, t) ≈ (x′, t′) if (x, t) = (x′, t′), or t = 0, x,
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x′ ∈ X or x = x′ = x0 and t ∈ [0, 1]. The single class Cx0 in [X × [0, 1]]≈ is given by the
subset {(x, 0), x ∈ X, (x0, t), t ∈ [0, 1]}.

The pointed suspension (SX, sx0) has [sx0] = X × {0} ∪ X × {1} ∪ x0 × [0, 1], and
the rest of the equivalence classes the same as for ΣX. An extraordinary property of SX
is the following
Proposition 4.20. There is a one-one correspondence of sets

Hom((SX, sx0), (Y, y0)) ∼= Hom((X, x0),Hom((S1, 1), (Y, y0))).

Proof: Let f : (SX, sx0) → (Y, y0). Untangling the suspension coordinate we can write f
in the composite

X × I
pr−→SX

f−→Y

and for each x ∈ X associate the mapping x *−→ f̃(t) = f ◦ pr(x, t). It follows that
f̃(0) = f̃(1) = f(sx0) = y0 by the definition of the canonical projection for the equivalence
relation. The inverse is as follows: given F : (X, x0) → Hom((S1, 1), (Y, y0)), then define
F̂ : (SX, sx0) → (Y, y0) by F̃ (x, t) = F (x)(e2πit). An explicit calculation shows these
processes to be inverses and the proposition is proved. ♦

Are certain topological properties respected by quotient maps? One must be careful.
For example, we can partition (R,usual) into three parts A = (−∞, 0), B = {0}, C =
(0,∞). The associated quotient is a three-point set X = {a, b, c} for the equivalence
classes and topology {∅, X, {a, b}, {a}, {b}}, where a = [A], b = [B], and c = [C]. However,
this topology is not Hausdorff! More can be said however.
Theorem 4.21. Let ∼ be an equivalence relation in a space X that is Hausdorff. Then
[X] is Hausdorff if and only if the graph of ∼, {(x, y) | x ∼ y, x, y ∈ X} is closed in
X ×X.
Proof: Let [x], [y] ∈ [X] and [x] /= [y]. Then the point (x, y) ∈ X × X lies outside the
graph of ∼ which is closed. Choose a basic open set U × V ⊂ X ×X with x ∈ U , y ∈ V
and U × V ⊂ X ×X − graph(∼). Consider pr(U) ⊂ [X]. Then [x] ∈ pr(U) and similarly
[y] ∈ pr(V ). We claim that pr(U) and pr(V ) are open and disjoint. Openess follows from
the fact that pr is an open mapping. Suppose [w] ∈ pr(U) ∩ pr(V ). Then there is a point
v, with v ∼ w and a point v′ ∼ w with v ∈ U , v′ ∈ V . But then (v, v′) ∈ U × V and so
U × V ∩ graph(∼) /= ∅; a contradiction. This shows [X] is Hausdorff. The converse is left
to the reader. ♦

Exercises

1. Show that a space X is Hausdorff if and only if the subset ∆(X) = {(x, x) | x ∈ X} is
a closed subset of the product space X ×X. Suppose X and Y are Hausdorff spaces.
Show that X × Y is also Hausdorff. Finish the proof of Theorem 4.12.

2. Suppose X = A1 ∪A2 ∪ · · · where An is open in X for all n. If f :X → Y is a function
such that, for each n, f |An :An → Y is continuous with respect to the subspace
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topology on An, show that f is itself continuous. What is the analogous statement
when X is a union of closed sets?

3. Suppose that we have two pointed spaces (X, x0) and (Y, y0). Show that the mappings,
X → X × Y , given by x *→ (x, y0) and Y → X × Y , y *→ (x0, y) are each continuous,
and have continuous sections (a function f :U → V has a section, g, if the function
g:V → U is such that g ◦ f :U → U is the identity mapping. This need not be a strict
inverse as in the case above. Notice that f will be one-one, but not necessarily onto.)

4. Consider the subspace of R2 given by

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.

This is the unit circle. The mapping

w: [0, 1) → S1 given by w(r) = (cos(2πr), sin(2πr))

is one-one and onto. Show that it is continuous if you give S1 the subspace topology
from R2, but that the inverse function is not continuous.

5. A topological group is a group that is a Hausdorff topological space and the binary
operation µ:G×G → G , and the mapping x *→ x−1 are continuous.

i) Prove that a group G is a topological group if and only if it is a Hausdorff
topological space and the mapping G × G → G given by (x, y) *→ x−1 · y is
continuous.

ii) Let g0 be an element of a topological group G. Show that the mappings Rg0 :G →
G and Lg0 :G → G given by Rg0(h) = µ(h, g0) and Lg0(h) = µ(g0, h) are homeo-
morphisms of G with itself.

iii) Prove that the reals with addition is a topological group, and the nonzero reals
with multiplication form a topological group. This amounts to showing that +
and × are continuous on (R,usual). Do this in detail.

6. Recall that the projective plane is defined to be the set of lines in R3 through the origin.
There is also a representation of RP 2 as a quotient of the 2-sphere by identifying
antipodal points:

i) Let S2 ∼= D+ ∪ C ∪ D− where D+ is the part above and on the plane z = 1
2 ;

where D− is the part on and below the plane given by z = − 1
2 and C is the part

in between. Let p:S2 → RP 2 be the quotient map. Verify that D+ ∼= e2 = {x ∈
R2 | ‖x‖ ≤ 1}. Verify that C ∼= S1 × [0, 1]. And verify by cutting and glueing
that p(C) is homeomorphic to a Möbius band embedded in RP 2.

ii) Verify that p(D+) ∪ p(C) = RP 2 and that p(C) ∩ p(D+) ∼= S1. This shows that
the projective plane can be obtained from attaching a disk to the Möbius band
along its edge.
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7. Suppose that A ⊂ X is a nonempty closed subset of a space X that is Hausdorff, and
further X satisfies the property that if x ∈ X and x /∈ A, then there are open sets U
and V with x ∈ U , A ⊂ V and U ∩ V = ∅. Define the relation x ∼ y if x = y or x
and y ∈ A. Show that this relation is an equivalence relation. The quotient topology
on [X] is denoted by the space X/A. Show that the quotient space X/A is Hausdorff.
A space that has this separation property for every closed proper subset A is said to
satisfy the T3 axiom. Show that being T3 is a topological property.
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5. Connectedness
We begin our introduction to topology with the study
of connectedness—traditionally the only topic studied in both
analytic and algebraic topology.

C. T. C. Wall, 1972

The property at the heart of certain key results in analysis is connectedness. The
definition, however, applies to any topological space.
Definition 5.1. A space X is disconnected by a separation {U, V } if U and V are
open, non-empty, and disjoint (U ∩V = ∅) subsets of X with X = U ∪V . If no separation
of the space X exists, then X is connected.
Notice that V = X −U is closed and likewise U is closed. A subset that is both open and
closed is sometimes called clopen. Closure leads to an equivalent condition.
Theorem 5.2. A space X is connected if and only if whenever X = A ∪ B with A, B,
non-empty, then A ∩ (cls B) %= ∅ or (cls A) ∩B %= ∅.
Proof: If A ∩ (cls B) = ∅ and (cls A) ∩ B = ∅, then, since A ∪ B = X, it will follow that
{X−cls A,X−cls B} is a separation of X. To see this, consider x ∈ (X−cls A)∩(X−cls B);
then x /∈ cls A and x /∈ cls B. But then x /∈ cls A ∪ cls B = X, a contradiction. Therefore
(X − cls A) ∩ (X − cls B) = ∅. Thus we have a separation.

Conversely, if {U, V } is a separation of X, let A = X − V = U and B = X − U = V .
Since U and V are open, A and B are closed. Then X = U ∪ V = A ∪ B. However,
A ∩ cls B = A ∩B = U ∩ V = ∅. ♦

Example: The canonical connected space is the unit interval [0, 1] ⊂ (R,usual). To see
this, suppose {U, V } is a separation of [0, 1]. Suppose that 0 ∈ U . Let c = sup{0 ≤ t ≤
1 | [0, t] ⊂ U}. If c = 1, then V = ∅, so suppose c < 1. Since c ∈ [0, 1], c ∈ U or c ∈ V .
If c ∈ U , then there exists an ε > 0, such that (c − ε, c + ε) ⊂ U and there is a natural
number N > 1 such that c < c + (ε/N) < 1. But this contradicts c being a supremum
since c + (ε/N) ∈ [0, 1]. If c ∈ V , then there exists a δ > 0, such that (c − δ, c + δ) ⊂ V .
For some N ′ > 1, c + (δ/N ′) < 1 and so (c − (δ/N ′), c + (δ/N ′)) does not meet U so c
could not be a supremum. Since the set {0 ≤ t ≤ 1 | [0, t] ⊂ U} is nonempty and bounded,
it has a supremum. It follows that c = 1 and so [0, 1] is connected. ♦

Is connectedness a topological property? In fact more is true:
Theorem 5.3. If f :X → Y is continuous and X is connected, then f(X), the image of
X in Y , is connected.
Proof: Suppose f(X) has a separation. It would be of the form {U ∩ f(X), V ∩ f(X)}
with U and V open in Y . Consider the open sets {f−1(U), f−1(V )}. Since U ∩ f(X) %= ∅,
we have f−1(U) %= ∅ and similarly f−1(V ) %= ∅. Since U ∩ f(X) ∪ V ∩ f(X) = f(X), we
have f−1(U) ∪ f−1(V ) = X. Finally, if x ∈ f−1(U) ∩ f−1(V ), then f(x) ∈ U ∩ f(X) and
f(x) ∈ V ∩ f(X). But (U ∩ f(X)) ∩ (V ∩ f(X)) = ∅. Thus f−1(U) ∩ f−1(V ) = ∅ and X
is disconnected. ♦

Corollary 5.4. Connectedness is a topological property.
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Example: Suppose a < b, then there is a homeomorphism h: [0, 1] → [a, b] given by h(t) =
a + (b− a)t. Thus, every [a, b] is connected.

A subspace A of a space X is disconnected when there are open sets U and V in X
for which A∩U %= ∅ %= A∩ V , and A ⊂ U ∪ V , and A∩U ∩ V = ∅. Notice that U ∩ V can
be nonempty in X, but A ∩ U ∩ V = ∅.
Lemma 5.5. If {Ai | i ∈ J} is a collection of connected subspaces of a space X with⋂

i∈J
Ai %= ∅, then

⋃
i∈J

Ai is connected.

Proof: Suppose U and V are open subsets of X with
⋃

i∈J
Ai ⊂ U∪V and

⋃
i∈J

Ai∩U∩V =

∅. Let p ∈
⋂

j∈J
Aj , then p ∈ Aj for all j ∈ J . Suppose that p ∈ U . Since U and V are

open, {U ∩ Aj , V ∩ Aj} would separate Aj if they were both non-empty. Since Aj is a
connected subspace, this cannot happen, and so Aj ⊂ U . Since j ∈ J was arbitrary, we
can argue in this way to show

⋃
Ai ⊂ U and hence, {U, V } is not a separation. ♦

Example: Given an open interval (a, b) ⊂ R, let N > 2/(b − a). Then we can write
(a, b) =

⋃
n≥N

[a + 1
n , b − 1

n ], a union with nonempty intersection. It follows from the

lemma that (a, b) is connected. Also R =
⋃

n>0
[−n, n] and so R is connected.

Let us review our constructions to see how they respect connectedness. A subset
A of a space X is connected if it is connected in the subspace topology. Subspaces do
not generally inherit connectedness; for example, R is connected but [0, 1] ∪ (2, 3) ⊂ R
is disconnected. A quotient of a connected space, however, is connected since it is the
continuous image of the connected space. How about products?
Proposition 5.6. If X and Y are connected spaces, then X × Y is connected.
Proof: Let x0 and y0 be points in X and Y , respectively. In the exercises of Chapter 4 we
can prove that the inclusions jx0 :Y → X×Y , given by jx0(y) = (x0, y) and iy0 :X → X×Y ,
given by iy0(x) = (x, y0) are continuous; hence jx0(Y ) and iy0(X) are connected in X×Y .
Furthermore, jx0(Y )∩iy0(X) = (x0, y0) so iy0(X)∪jx0(Y ) is connected. We express X×Y
as a union of similar connected subsets:

X × Y =
⋃

x∈X
iy0(X) ∪ jx(Y ),

a union with intersection given by
⋂

x∈X
iy0(X)∪ jx(Y ) = iy0(X), which is connected. By

Lemma 5.5, X × Y is connected. ♦

Example: By induction, Rn is connected for all n. Wrapping R onto S1 by w: R → S1,
given by w(γ) = (cos(2πγ), sin(2πγ)), shows that S1 is connected and so is the torus
S1×S1. We can also prove this by arguing that [0, 1]× [0, 1] is connected and the torus is
a quotient of [0, 1] × [0, 1]. It also follows that S2 is connected—S2 ∼= ΣS1, a quotient of
S1 × [0, 1]. By induction and Theorem 4.19, Sn is connected for all n ≥ 1.

A characterization of the connected subspaces of R has some interesting corollaries.
Proposition 5.7. If W ⊂ (R,usual) is connected, then W = (a, b), [a, b), (a, b], or [a, b]
for −∞ ≤ a ≤ b ≤ ∞.
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Proof: Suppose c, d ∈ W with c < d. We show [c, d] ⊂ W , that is, that W is convex. (In
other words, if c, d are both in W , then (1−t)c+td ∈ W for all 0 ≤ t ≤ 1.) Otherwise there
exists a value r0, with c < r0 < d and r0 /∈ W . Then U = (−∞, r) ∩W , V = W ∩ (r,∞)
is a separation of W . We leave it to the reader to show that a convex subset of R must be
an open, closed, or half-open interval. ♦

Intermediate Value Theorem. If f : [a, b] → R is a continuous function and f(a) <
c < f(b) or f(a) > c > f(b), then there is a value x0 ∈ [a, b] with f(x0) = c.
Proof: Since f is continuous, f([a, b]) is a connected subset of R. Furthermore, this subset
contains f(a) and f(b). By Proposition 5.7, the interval between f(a) and f(b), which
includes c, lies in the image of [a, b], and so there is a value x0 ∈ [a, b] with f(x0) = c. ♦

Corollary 5.8. Suppose g:S1 → R is continuous. Then there is a point x0 ∈ S1 with
g(x0) = g(−x0).
Proof: Define g̃ : S1 → R by g̃(x) = g(x) − g(−x). Wrap [0, 1] onto S1 by w(t) =
(cos(2πt), sin(2πt)). Then w(0) = −w(1/2).

Let F = g̃ ◦ w. It follows that

F (0) = g̃(w(0)) = g(w(0))− g(−w(0))
= −[g(−w(0))− g(w(0))]
= −[g(w(1/2))− g(−w(1/2))]
= −F (1/2).

If F (0) > 0, then F (1/2) < 0 and since F is continuous, it must take the value 0 for
some t between 0 and 1/2. Similarly for F (0) < 0. If F (t) = 0, then let x0 = w(t) and
g(x0) = g(−x0). ♦

Here is a whimsical interpretation of this result: There are two antipodal points on
the equator at which the temperatures are exactly the same. in later chapters we will
generalize this result to continuous functions Sn → Rn.

It is the connectedness of the domain of a continuous real-valued function that leads
to the Intermediate Value Theorem (IVT). Furthermore, the IVT can be used to prove
that an odd-degree real polynomial has a real root (see the Exercises). Toward a proof of
the Fundamental Theorem of Algebra, that every polynomial with complex coefficients has
a complex root (see [Uspensky] and [Fine-Rosenberger]), we present an argument given by
Gauss, in which connectedness plays a key role. Sadly, Gauss’s argument is incomplete and
another deep result is needed to complete the proof (see [Ostrowski]). Connectedness plays
a prominent role in the argument, which illuminates the subtleness of Gauss’s thinking. A
complete proof of the Fundamental Theorem of Algebra, using the fundamental group, is
presented in Chapter 8.

Let p(z) = zn +an−1zn−1 + · · ·+a1z +a0 be a complex monic polynomial of degree n.
We begin with some estimates. We can write the complex numbers in polar form, z = reiθ

and aj = sjeiψj and make the substitution

p(z) = rneniθ + rn−1sn−1e
(n−1)iθ+iψn−1 + · · · + rs1e

iθ+iψ1 + s0e
iψ0 .
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Writing eiβ = cos(β) + i sin(β) and p(z) = T (z) + iU(z), we have

T (z) = rn cos(nθ) + rn−1sn−1 cos((n− 1)θ + ψn−1) + · · ·
+ rs1 cos(θ + ψ1) + s0 cos(ψ0),

U(z) = rn sin(nθ) + rn−1sn−1 sin((n− 1)θ + ψn−1) + · · ·
+ rs1 sin(θ + ψ1) + s0 sin(ψ0).

Thus a root of p(z) is a complex number z0 = reiθ0 with T (z0) = 0 = U(z0).
Suppose S = max{sn−1, sn−2, . . . , s0} and R = 1+

√
2S. Then if r > R, we can write

0 < 1−
√

2S

r − 1
= 1−

√
2S

(
1
r

+
1
r2

+
1
r3

+ · · ·
)

< 1−
√

2S

(
1
r

+
1
r2

+ · · · + 1
rn

)
.

Multiplying through by rn we deduce

0 < rn−
√

2S(rn−1 + rn−2 + · · ·+ r +1) ≤ rn−
√

2(sn−1r
n−1 + sn−2r

n−2 + · · ·+ s1r + s0).

The
√

2 factor is related to the trigonometric form of T (z) and U(z).
Fix a circle in the complex plane given by z = reiθ for r > R. Denote points Pk on

this circle with special values

Pk = r

(
cos

(
(2k + 1)π

4n

)
+ i sin

(
(2k + 1)π

4n

))
.

When we evaluate T (P2k), the leading term is rn cos(n((4k + 1)π/4n)) = (−1)krn(
√

2/2).
Thus we can write (−1)kT (P2k) as

rn

√
2

+ (−1)ksn−1r
n−1 cos((n− 1)

(
(4k + 1)π

4n

)
+ ψn−1) + · · · + (−1)ks0 cos(ψ0).

Since (−1)k cos α ≥ −1 for all α and r > R, we find that

(−1)kT (P2k) ≥ rn

√
2
− (sn−1r

n−1 + · · · + s1r + s0) > 0.

Similarly, in T (P2k+1), the leading term is (−1)k+1rn
√

2/2 and the same estimate gives
(−1)k+1T (P2k+1) > 0.

The estimates imply that the value of T (z) alternates in sign at P0, P1, . . . , P4n−1.
Since T (reiθ) varies continuously in θ, T (z) has a zero between P2k and P2k+1 for k = 0,
1, 2, . . . , 2n − 1. We note that these are all of the zeroes of T (z) on this circle. To see
this, write

cos θ + i sin θ =
1− ζ2

1 + ζ2
+ i

2ζ

1 + ζ2
, where ζ = tan(θ/2).
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Thus T (z) can be written in the form

rn

(
1− ζ2

1 + ζ2

)n

+sn−1 cos(ψn−1)rn−1

(
1− ζ2

1 + ζ2

)n−1

+· · ·+s1 cos(ψ1)r
(

1− ζ2

1 + ζ2

)
+s0 cos(ψ0),

that is, T (z) = f(ζ)/(1 + ζ2)n, where f(ζ) is a polynomial of degree less than or equal to
2n. Since T (z) has 2n zeroes, f(ζ) has degree 2n and has exactly 2n roots. Thus we can
name the zeroes of T (z) on the circle of radius r by Q0, Q1, . . . , Q2n−1 with Qk between
P2k and P2k+1.

Let Qk = reiφk . Then nφk lies between
π

4
+kπ and

3π

4
+kπ. It follows from properties

of the sine function that (−1)k sin(nφk) ≥
√

2/2. From this estimate we find that

(−1)kU(Qk) ≥ (−1)krn sin(nφk)− sn−1r
n−1 − · · ·− s0 ≥

rn

√
2
− sn−1r

n−1 − · · ·− s0 > 0.

Then U(z) is positive at Q2k and negative at Q2k+1 for 0 ≤ k ≤ n− 1, and by continuity,
U(z) is zero between consecutive pairs of Qj . This gives us points qi, for i = 0, 1, . . . , 2n−1
with qi between Qi and Qi+1 and U(qi) = 0.

The game is clear now—a zero of p(z) is a value z0 with T (z0) = 0 = U(z0). Gauss
argued that, as the radius of the circle varied, the distinguished points Qj and qk would
form curves. As the radius grew smaller, these curves determine regions whose boundary
is where T (z) = 0. The curve of qj , where U(z) = 0, must cross some curve of Qj ’s, and
so give us a root of p(z). The geometric properties of curves of the type given by T (z) = 0
and U(z) = 0 are needed to complete this part of the argument, and require more analysis
than is appropriate here. The identification of the curves and reducing the existence of a
root to the necessary intersection of curves are served up by connectedness.

Q

Q

Q

Q Q

Q

QQ

Q

Q
0

1

2

34
5

6
7

8

9

Connectedness is related to the intuitive geometric ideas of Chapter 3 by the following
result.
Proposition 5.9. If A is a connected subspace of a space X, and A ⊂ B ⊂ cls A, then
B is connected.
Proof: Suppose B has a separation {U ∩B, V ∩B} with U , V open subsets of X. Since A
is connected, either A ⊂ U or A ⊂ V . Suppose A ⊂ U and x ∈ V . Since V is open, and
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x ∈ V , because x ∈ B ⊂ cls A, we have that x is a limit point of A. Hence there is a point
of A in U ∩V and so x ∈ B ∩U ∩V . This contradicts the assumption that {U ∩B, V ∩B}
is a separation. Thus B is connected. ♦

Some wild connected spaces can be constructed from this proposition.
.Pω

Let Pω = (0, 1) ∈ R2 and let X be the subspace of R2 given by

X = {Pω} ∪
(

(0, 1]× {0}
)
∪

(⋃∞

n=1

{
1
n

}
× [0, 1]

)
.

We call X the deleted comb space [Munkres]. The spokes together with the base form a
connected subspace of X. The stray point Pω is the limit point of the sequence given by
the tops of the spokes, {(1/n, 1)}. So X lies between the connected space of the spokes
and base and its closure. Hence X is connected.

Connectedness determines an equivalence relation on a space X: x ∼ y if there is
a connected subset A of X with x, y ∈ A. (Can you prove that this is an equivalence
relations?) An equivalence class [x] under this relation is called a connected component
of X. The equivalence classes satisfy the property that if x ∈ [x], then [x] is the union of
all connected subsets of X containing x and so it follows from Lemma 5.5 that [x] is the
largest connected subset containing x. Since [x] ⊆ cls [x], it follows from Proposition 5.9
that cls [x] is also connected and hence [x] = cls [x] and connected components are closed.

Because the connected components partition a space, and each is closed, then each is
also open if there are only finitely many connected components. By way of contrast with
the case of finitely many components, the connected components of Q ⊂ R are the points
themselves—closed but not open.
Proposition 5.10. The cardinality of the set of connected components of a space X is a
topological invariant.
Proof: We show that if [x] is a component of X, and h:X → Y a homeomorphism, then
h([x]) is a component of Y . By Theorem 5.3, h([x]) is connected and h([x]) ⊂ [h(x)]. By
a symmetric argument, h−1([h(x)]) ⊂ [x]. Thus [h(x)] ⊂ h([x]) and so h([x]) = [h(x)].
Since h maps components to components, h induces a one-one correspondence between
connected components. ♦

We have developed enough topology to handle a case of our main goal. Connectedness
allows us to distinguish between R and Rn for n > 2.

6



Invariance of dimension for (1, n): R is not homeomorphic to Rn, for n > 1.
We first make a useful observation.
Lemma 5.11. If f :X → Y is a homeomorphism and x ∈ X, then f induces a homeomor-
phism between X − {x} and Y − {f(x)}.
Proof: The restriction f |:X−{x}→ Y −{f(x)} of f to X−{x} is a one-one correspondence
between X − {x} and Y − {f(x)}. Each subset is endowed with the subspace topology
and f | is continuous because an open set in Y − {f(x)} is the intersection of an open set
V in Y with the complement of {f(x)}. The inverse image is the intersection of f−1(V )
and the complement of {x}, an open set in X − {x}. The inverse of f | is similarly seen to
be continuous. ♦

rS

Sn - 1

n - 1

x  > 01

Proof of this case of Invariance of Dimension: Suppose we had a homeomorphism h: R →
Rn. By composing with a translation we arrange that h(0) = 0 = (0, 0, . . . , 0) ∈ Rn. By
Lemma 5.11, we consider the homeomorphism h|: R− {0} → Rn − {0}. But R− {0} has
two connected components. To demonstrate invariance of dimension in this case we show
for n > 1 that Rn − {0} has only one component. Fix the connected subset of Rn − {0}
given by

Y = {(x1, 0, . . . , 0) | x1 > 0}.

This is an open ray, which we know to be connected. We can express Rn− {0} as a union:

Rn − {0} =
⋃

r>0
rSn−1 ∪ Y,

where rSn−1 = {(a1, . . . , an) ∈ Rn | a2
1 + · · · + a2

n = r2}. Each subset in the union
is connected being the union of a homeomorphic copy of Sn−1 and Y with nonempty
intersection. The intersection of all of the sets in the union is Y and so, by Lemma 5.5,
Rn − {0} is connected and thus has only one component. ♦

Path-connectedness

A more natural formulation of connection is given by the following notion.
Definition 5.12. A space X is path-connected if, for any x, y ∈ X, there is a contin-
uous function λ: [0, 1] −→ X with λ(0) = x, λ(1) = y. Such a function λ is called a path
joining x to y in X.
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The connectedness of [0, 1] plays a role in relating connectedness with path-connectedness.
Proposition 5.13. If X is path-connected, then it is connected.
Proof: Suppose X is disconnected and {U, V } is a separation. Since U %= ∅ %= V , there
are points x ∈ U and y ∈ V . If X is path-connected, there is a path λ: [0, 1] → X with
λ(0) = x, λ(1) = y, and λ continuous. But then {λ−1(U),λ−1(V )} would separate [0, 1],
a connected space. This contradiction implies that X is connected. ♦

Connectedness and path-connectedness are not equivalent. We saw that the deleted
comb space is connected but it is not path-connected. Suppose there is a path λ: [0, 1] → X
with λ(0) = (1, 0) and λ(1) = (0, 1) = Pω. The subset λ−1({Pω}) is closed in [0, 1]
because X is Hausdorff and λ is continuous. We will show that it is also open. Consider
V = B(Pω, ε) ∩ X for ε = 1/k > 0 and k > 1. Then λ−1(V ) is nonempty and open in
[0, 1], so for x0 ∈ λ−1(V ), there exists δ > 0 with (x0 − δ, x0 + δ) ∩ [0, 1] ⊂ λ−1(V ). I
claim that (x0 − δ, x0 + δ) ⊂ λ−1({Pω}). Suppose not and T is such that λ(T ) = ( 1

n , s)
for some n > k. Let W1 = (−∞, r)× R, W2 = (r,∞)× R, for 1/(n + 1) < r < 1/n. Then
{W1 ∩ λ((x0 − δ, x0 + δ)),W2 ∩ λ((x0 − δ, x,+δ))} separates the image λ((x0 − δ, x0 + δ))
of a connected space under a continuous mapping, and this is a contradiction. It follows
that no such value of T exists. Since λ−1(B(Pω, ε) ∩ X) is both open and closed, λ is a
constant path with image Pω.

By analogy with the property of connectedness, we have the following results.
Theorem 5.14. If X is path-connected and f :X → Y continuous, then f(X) ⊂ Y is path
connected.
Proof: Let f(x), f(y) ∈ f(X). There is a path λ: [0, 1] → X joining x, and y. Then f ◦ λ
is a path joining f(x) and f(y). ♦

Corollary 5.15. Path-connectedness is a topological property.
Lemma 5.16. If {Ai | i ∈ J} is a collection of path-connected subsets of a space X and⋂

i∈J
Ai %= ∅, then

⋃
i∈J

Ai is path-connected.

Proof: Suppose x, y ∈
⋃

i∈J
Ai and z ∈

⋂
i∈J

Ai. Then, for some i1 and i2 ∈ J , we have
x ∈ Ai1 , y ∈ Ai2 , both subsets path-connected. There are paths then λ1: [0, 1] → Ai1 with
λ1(0) = x, λ1(1) = z, and λ2: [0, 1] → Ai2 with λ2(0) = z, λ2(1) = y. Define the path
λ1 ∗ λ2 by

λ1 ∗ λ2(t) =
{

λ1(2t), 0 ≤ t ≤ 1
2 ,

λ2(2t− 1), 1
2 ≤ t ≤ 1.

By Theorem 4.4, the path λ1 ∗ λ2 is continuous. Furthermore, λ1 ∗ λ2 joins x to y and so⋃
i∈J

Ai is path-connected. ♦

By Proposition 5.7, the connected subsets of R are intervals. If r, s ∈ (a, b), then
the path t 3→ (1 − t)r + ts joins r to s in (a, b). Thus, the connected subspaces of R are
path-connected.

As is the case for connectedness, path-connectedness of subspaces of a path-connected
space is unpredictable. However, by Theorem 5.14 quotients of path-connected spaces are
connected. We consider products.
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Proposition 5.17. If X and Y are path-connected, then so is X × Y .
Proof: Let (x, y) and (x′, y′) be points in X × Y . Since X and Y are path-connected
there are paths λ: [0, 1] → X and λ′: [0, 1] → Y with λ(0) = x, λ(1) = x′, λ′(0) = y, and
λ′(1) = y′. Consider λ× λ′: [0, 1] → X × Y given by

(λ× λ′)(t) = (λ(t),λ′(t)).

By Proposition 4.10, λ × λ′ is continuous with λ × λ′(0) = (x, y) and λ × λ′(1) = (x′, y′)
as required. So X × Y is path-connected. ♦

This shows, by induction, that Rn is path-connected for all n. Together with the
remark about quotients, spaces such as Sn−1, S1 × S1 and RP 2 are all path-connected.

Paths lead to another relation on a space X: we write x ≈ y if there is a path
λ: [0, 1] → X with λ(0) = x and λ(1) = y. The constant path cx0 : [0, 1] → X, given by
cx0(t) = x0 is continuous and so, for all x0 ∈ X, x0 ≈ x0. If x ≈ y, then there is a path
λ joining x to y. Consider the mapping λ−1(t) = λ(1 − t). Then λ−1 is continuous and
determines a path joining y to x. Thus y ≈ x. Finally, if x ≈ y and y ≈ z, then if λ1 joins
x to y and λ2 joins y to z, then λ1 ∗λ2 joins x to z, and so the relation ≈ is an equivalence
relation.

We define a path component to be an equivalence class under the relation≈. A space
is path-connected if and only if it has only one path component. Since each path component
[x] is path-connected we know that for f :X → Y a continuous function, f([x]) ⊂ [f(x)],
since the image of a path-connected subspace is path-connected. We extend this fact a
little further as follows.
Definition 5.18. The set of path components π0(X) is the set of equivalence classes
under the relation ≈. If f :X → Y is a continuous function, then f induces a well-defined
mapping π0(f):π0(X) → π0(Y ), given by π0(f)([x]) = [f(x)].
We note that the association X 3→ π0(X) and f 3→ π0(f) satisfies the following basic
properties: (1) If id:X → X is the identity mapping, then π0(id):π0(X) → π0(X) is
the identity mapping; (2) If f :X → Y and g:Y → Z are continuous mappings, then
π0(g ◦ f) = π0(g) ◦ π0(f):π0(X) → π0(Z). These properties are shared with several
constructions to come and they came to be identified as the functoriality of π0 [Eilenberg-
Mac Lane]. The alert reader will recognize functoriality at work in later chapters.

As with connected components, we ask when path components are open or closed.
The deleted comb space, however, indicates that we cannot expect much of closure.
Definition 5.19. A space Xis locally path-connected if, for every x ∈ X, and x ∈ U
an open set in X, there is an open set V ⊂ X with x ∈ V ⊂ U and V path-connected.
Proposition 5.20. If X is locally path-connected, then path components of X are open.
Proof: Let y ∈ [x], a path component of X. Take any open set containing y and there is a
path-connected open set Vy with y ∈ Vy. Since every point in Vy is related to y and y is
related to x, we get that Vy ⊂ [x]. Thus [x] =

⋃
y∈[x]

Vy and [x] is open. ♦

We see how this can work together with connectedness to obtain path-connectedness.
Corollary 5.21. If X is connected and locally path-connected, then it is path-connected.
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Proof: Suppose X has more than one path component. Choose one component [x] = U ,
which is open in X. The union of the rest of the components we denote by V , which is also
open in X. Then U ∪ V = X, and U ∩ V = ∅ and so X is disconnected, a contradiction.
Hence X has only one path component. ♦

It follows that deleted comb space is not even locally path-connected. (This can also
be proved directly.)

Exercises

1. Prove that any infinite set X with the finite-complement topology is connected. Is
the space (R,half-open) connected?

2. A subset K ⊂ R is convex if for any c, d ∈ K, the set [c, d] = {c(1− t)+dt | 0 ≤ t ≤ 1}
is contained in K. Show that a convex subset of R is an open, closed, or half-open
interval.

3. . . . , the hip bone’s connected to the thigh bone, and the thigh bone’s connected to the
knee bone, and the . . . . Let’s prove a proposition that shows that the skeleton should
be connected as in the song. Suppose we have a sequence of connected subspaces
{Xi | i = 1, 2, 3, . . .} of a given space X. Suppose further that Xi ∩Xi+1 %= ∅ for all i.
Show that the union

⋃∞
i=1 Xi is connected. (Hint: consider the sequence of subspaces

Yj = X1 ∪X2 ∪ · · · ∪Xj for j ≥ 1. Are these connected? What is their intersection?
What is their union?)

4. Suppose we have a collection of non-empty connected spaces, {Xj | j ∈ J}. Does it
follow that the product

∏

j∈J

Xj is connected?

5. One of the easier parts of the Fundamental Theorem of Algebra is the fact that an
odd degree polynomial p(x) has at least one real root. Notice that such a polynomial
is a continuous function p: R → R. The theorem follows by showing that there is a real
number b with p(b) > 0 and p(−b) < 0, and using the Intermediate Value Theorem.

Let p(x) = xn + an−1xn−1 + · · · + a1x + a0 with n odd. Write p(x) = xnq(x) for the
function q(x) that will be the sum of the coefficients of p(x) over powers of x. Estimate
|q(x)−1| and show that it is less than or equal to A/|x| where A = |an−1|+· · · |a1|+|a0|
for |x| ≥ 1. Letting |b| > max{1, 2A} we get |q(b)− 1| < 1

2 or q(b) > 0 and q(−b) > 0.
Show that this implies that there is a zero of p(x) between −|b| and |b|.

6. Suppose that the space X can be written as a product X = Y1 × Y2. Determine the
relationship between π0(X) and π0(Y1) and π0(Y2). Suppose that G is a topological
group. Show that π0(G) is also a group.
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6. Compactness

. . . compact sets play the same role in the theory of abstract
sets as the notion of limit sets do in the theory of point sets.

Maurice Frechet, 1906

Compactness is one of the most useful topological properties in analysis, although, at
first meeting its definition seems somewhat strange. To motivate the notion of a compact
space, consider the properties of a finite subset S ⊂ X of a topological space X. Among
the consequences of finiteness are the following:

i) Any continuous function f :X → R, when restricted to S, has a maximum and a
minimum.

ii) Any collection of open subsets of X whose union contains S has a finite subcollection
whose union contains S.

iii) Any sequence of points {xi} satisfying xi ∈ S for all i, has a convergent subsequence.
Compactness extends these properties to other subsets of a space X, using the topology to
achieve what finiteness guarantees. The development in this chapter runs parallel to that
of Chapter 5 on connectedness.
Definition 6.1. Given a topological space X and a subset K ⊂ X, a collection of subsets
{Ci ⊂ X | i ∈ J} is a cover of K if K ⊂

⋃
i∈J

Ci. A cover is an open cover if every Ci

is open in X. The cover {Ci | i ∈ J} of K has a finite subcover if there are members of
the collection Ci1 , . . . , Cin with K ⊂ Ci1 ∪ . . . ∪ Cin . A subset K ⊂ X is compact if any
open cover of K has a finite subcover.
Examples: Any finite subset of a topological space is compact. The space (R,usual) is not
compact since the open cover {(−n, n) | n = 1, 2, . . .} has no finite subcover. Notice that
if K is a subset of Rn and K is compact, it is bounded, that is, K ⊂ B(!0,M) for some
M > 0. This follows since {B(!0, N) | N = 1, 2, . . .} is an open cover of Rn and hence, of
K. Since B(!0, N1) ⊂ B(!0, N2) for N1 ≤ N2, a finite subcover is contained in a single open
ball and so K is bounded. The canonical example of a compact space is the unit interval
[0, 1] ⊂ R.
The Heine-Borel Theorem. The closed interval [0, 1] is a compact subspace of (R,
usual).
Proof: Suppose {Ui | i ∈ J} is an open cover of [0, 1]. Define T = {x ∈ [0, 1] | [0, x] has
a finite subcover from {Ui}}. Certainly 0 ∈ T since 0 ∈

⋃
Ui and so in some Uj . We

show 1 ∈ T . Since every element of T is less than or equal to 1, T has a least upper
bound s. Since {Ui} is a cover of [0, 1], for some j ∈ J , s ∈ Uj . Since Uj is open, for
some ε > 0, (s − ε, s + ε) ⊂ Uj . Since s is a least upper bound, s − δ ∈ T for some
0 < δ < ε and so [0, s− δ] has a finite subcover. It follows that [0, s] has a finite subcover
by simply adding Uj to the finite subcover of [0, s − δ]. If s < 1, then there is an η > 0
with s + η ∈ (s− ε, s + ε) ∩ [0, 1], and so s + η ∈ T , which contradicts the fact that s is a
least upper bound. Hence s = 1. ♦

Is compactness a topological property? We prove a result analogous to Theorem 5.2
for connectedness.
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Proposition 6.2. If f :X → Y is a continuous function and X is compact, then f(X) ⊂
Y is compact.
Proof: Suppose {Ui | i ∈ J} is an open cover of f(X) in Y . Then {f−1(Ui) | i ∈ J} is an
open cover of X. Since X is compact, there is a finite subcover, {f−1(Ui1), . . . , f−1(Uin)}.
Then X = f−1(Ui1) ∪ · · · ∪ f−1(Uin) and so f(X) ⊂ Ui1 ∪ · · · ∪ Uin . ♦

It follows immediately that compactness is a topological property. The closed interval
[a, b] ⊂ (R,usual) is compact for a < b. Since S1 is the continuous image of [0, 1], S1 is
compact. Notice that compactness distinguishes the open and closed intervals in R. Since
(0, 1) is homeomorphic to R and R is not compact, (0, 1) )∼= [0, 1]. Since (0, 1) ⊂ [0, 1],
arbitrary subspaces of compact spaces need not be compact. However, compactness is
inherited by closed subsets.
Proposition 6.3. If X is a compact space and K ⊂ X is a closed subset, then K is
compact.
Proof: If {Ui | i ∈ J} is an open cover of K, we can take the collection {X−K}∪{Ui | i ∈ J}
as an open cover of X. Since X is compact, the collection has a finite subcover, namely
{X −K, Ui1 , . . . , Uin}. Leaving out X −K, we get {Ui1 , . . . , Uin}, a finite subcover of K.
♦

A partial converse holds for Hausdorff spaces.
Proposition 6.4. If X is Hausdorff and K ⊂ X is compact, then K is closed in X.
Proof: We show X −K is open. Take x ∈ X −K. By the Hausdorff condition, for each
y ∈ K there are open sets Uy, Vy with x ∈ Uy, y ∈ Vy and Uy∩Vy = ∅. Then {Vy | y ∈ K} is
an open cover of K. Since K is compact, there is a finite subcover {Vy1 , Vy2 , . . . , Vyn}. Take
the associated open sets Uy1 , . . . , Uyn and define Ux = Uy1 ∩ · · ·∩Uyn . Since Uyi ∩Vyi = ∅,
Ux doesn’t meet Vy1 ∪ . . . ∪ Vyn ⊃ K. So Ux ⊂ X −K. Furthermore, x ∈ Ux and Ux is
open. Construct Ux for every point x in X −K, and the union of these open sets Ux is
X −K and K is closed. ♦

Corollary 6.5. If K ⊂ Rn is compact, K is closed and bounded.
Quotient spaces of compact spaces are seen to be compact by Theorem 6.2. The

converse of Corollary 6.5 will follow from a consideration of finite products.
Proposition 6.6. If X and Y are compact spaces, then X × Y is compact.

X

Y

x

Proof: Suppose {Ui | i ∈ J} is an open cover of X ×Y . From the definition of the product
topology, each Ui =

⋃
j∈Ai

Vij ×Wij where Vij is open in X, Wij is open in Y and Ai is
an indexing set. Consider the associated open cover {Vij ×Wij | i ∈ J, j ∈ Ai} by basic
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open sets. If we can manufacture a finite subcover from this collection, we can just take
the Ui in which each basic open set sits to get a finite subcover of X × Y .

To each x ∈ X consider the subspace {x}×Y ⊂ X×Y . This subspace is homeomorphic
to Y and hence is compact. Furthermore {Vij ×Wij | i ∈ J, j ∈ Ai} covers {x} × Y and
so there is a finite subcover V x

1 ×W x
1 , . . . , V x

e ×W x
e of {x}× Y . Let V x = V x

1 ∩ · · · ∩ V x
e .

Since x ∈ V x, it is a nonempty open set. Construct V x for each x ∈ X and the collection
{V x | x ∈ X} is an open cover of X. Since X is compact, there is a finite subcover,
V x1 , . . . , V xn . Hence each x ∈ X appears in some V xi . If y ∈ Y , then (x, y) ∈ V xi

j ×W xi
j

for some W xi
j since x ∈ V xi

1 ∩. . .∩V xi
ei

and V xi
1 ×W xi

1 , . . . , V xi
ei
×W xi

ei
covers {x}×Y . Hence

{V xi
j ×W xi

j | i = 1, . . . , n, j = 1, . . . , ei} is a finite subcover of X × Y . The associated
choices of Ui’s give the finite subcover we seek. ♦

By induction, any finite product of compact spaces is compact. Since [0, 1]× [0, 1] is
compact, so are the quotients given by the torus, Möbius band and projective plane. We
can now prove the converse of Corollary 6.5.
Corollary 6.7. If K ⊂ Rn, then K is compact if and only if K is closed and bounded.
Proof: A bounded subset of Rn is contained in some product of closed intervals [a1, b1]×
· · ·× [an, bn]. The product is compact, and K is a closed subset of [a1, b1]× · · ·× [an, bn].
By Proposition 6.3, K is compact. ♦

We can add the spheres Sn−1 ⊂ Rn to the list of compact spaces—each is bounded
by definition and closed because Sn−1 = f−1({1}) where f : Rn → R is the continuous
function f(x1, . . . , xn) = x2

1 + · · ·+x2
n. The characterization of compact subsets of R leads

to the following familiar result.
The Extreme Value Theorem. If f :X → R is a continuous function and X is com-
pact, then there are points xm, xM ∈ X with f(xm) ≤ f(x) ≤ f(xM ) for all x ∈ X.
Proof: By Proposition 6.2, f(X) is a compact subset of R and so f(X) is closed and
bounded. The boundedness implies that the greatest lower bound of f(X) and the least
upper bound of f(X) exist. Since f(X) closed, the values glb f(X) and lub f(X) are in
f(X) (Can you prove this?) and so glb f(X) = f(xm) for some xm ∈ X; also lub f(X) =
f(xM ) for some xM ∈ X. It follows that f(xm) ≤ f(x) ≤ f(xM ) for all x ∈ X. ♦
The reader might enjoy deriving the whole of the single variable calculus armed with the
Intermediate Value Theorem and the Extreme Value Theorem.

Infinite products of compact spaces are covered by the following powerful theorem
which turns out to be equivalent to the Axiom of Choice in set theory [Kelley]. We refer
the reader to [Munkres] for a proof.
Tychonoff’s Theorem. If {Xi | i ∈ J} is a collection of nonempty compact spaces,
then, with the product topology,

∏
i∈J

Xi is compact.

Infinite products give a different structure in which to consider families of functions
with certain properties as subspaces of a product. General products also provide spaces in
which there is a lot of room for embedding classes of spaces as subspaces of a product.

Compact spaces enjoy some other interesting properties:
Proposition 6.8. If R = {xα | α ∈ J} is an infinite subset of a compact space X, then
R has a limit point.
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Proof: Suppose R has no limit points. The absence of limit points implies that, for every
x ∈ X, there is an open set Ux with x ∈ Ux for which, if x ∈ R, then Ux ∩ R = {x} and
if x /∈ R, then Ux ∩ R = ∅. The collection {Ux | x ∈ X} is an open cover of X, which is
compact, and so it has a finite subcover, Ux1 , . . . , Uxn . Since each Uxi contains at most
one element in {xα | α ∈ J}, the set R is finite. ♦

The property that an infinite subset must have a limit point is sometimes called
the Bolzano-Weierstrass property [Munkres-red]. The proposition gives a sufficient test
for noncompactness: Find a sequence without a limit point. For example, if we give∏∞

i=1
[0, 1], the countable product of [0, 1] with itself, the box topology, then the set

{(xn,i) ∈
∏∞

i=1
| n = 1, 2, . . .} given by xn,i = 1 when n )= i and xn,i = 1/n if n = i, has

no limit point. (Can you prove it?)
Compactness provides a simple condition for a mapping to be a homeomorphism.

Proposition 6.9. If f :X → Y is continuous, one-one, and onto, X is compact, and Y
is Hausdorff, then f is a homeomorphism.
Proof: We show that f−1 is a continuous by showing that f is closed (that is, f(K) is
closed whenever K is closed). If K ⊂ X is closed, then it is compact. It follows that f(K)
is compact in Y and so f(K) is closed because Y is Hausdorff. ♦

Proposition 6.9 can make the comparison of quotient spaces and other spaces easier.
For example, suppose X is a compact space with an equivalence relation ∼ on it, and
π:X → [X] is a quotient mapping. Given a mapping f :X → Y for which x ∼ x′ implies
f(x) = f(x′), we get an induced mapping f̂ : [X] → Y that may be one-one, onto, and
continuous. If Y is Hausdorff, we obtain that [X] is homeomorphic to Y .

What about compact metric spaces? The diameter of a subset A of a metric space
X is defined by diam A = sup{d(x, y) | x, y ∈ A}.
Lebesgue’s Lemma. Let X be a compact metric space and {Ui | i ∈ J} an open cover.
Then there is a real number δ > 0 (the Lebesgue number) such that any subset of X
of diameter less than δ is contained in some Ui.
Proof: In the exercises to Chapter 3 we defined the continuous function d(−, A):X → R by
d(x, A) = inf{d(x, a) | x ∈ A}. In addition, if A is closed, then d(x,A) > 0 for x /∈ A. Given
an open cover {Ui | i ∈ J} of the compact space X, there is a finite subcover {Ui1 , . . . , Uin}.
Define ϕj(x) = d(x, X − Uij ) for j = 1, 2, . . . , n and let ϕ(x) = max{ϕ1(x), . . . ,ϕn(x)}.
Since each x ∈ X lies in some Uij ,ϕ(x) ≥ ϕj(x) > 0. Furthermore, ϕ is continuous so
ϕ(X) ⊂ R is compact, and 0 /∈ ϕ(X). Let δ = min{ϕ(x) | x ∈ X} > 0. For any x ∈ X,
consider B(x, δ) ⊂ X. We know ϕ(x) = ϕj(x) for some j. For that j, d(x,X − Uij ) ≥ δ,
which implies B(x, δ) ⊂ Uij . ♦

The Lebesgue Lemma is also known as the Pflastersatz [Alexandroff-Hopf] (imagine
plasters covering a space) and it will play a key role in later chapters.

By analogy with connectedness and path-connectedness we introduce the local version
of compactness.
Definition 6.10. A space X is locally compact if for any x ∈ U ⊂ X where U is an
open set, there is an open set V satisfying x ∈ V ⊂ cls V ⊂ U with cls V compact.
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Examples: For all n, the space Rn is locally compact since each cls B(!x, ε) is compact
(being closed and bounded). The countable product of copies of R,

∏∞

i=1
R, in the product

topology, however, is not locally compact. To see this consider any open set of the form

U = (a1, b1)× (a2, b2)× · · ·× (an, bn)× R× R× . . .

whose closure is [a1, b1] × [a2, b2] × · · · × [an, bn] × R × R × · · ·. This set is not compact
because there is plenty of room for infinite sets to float off without limit points. Thus
local compactness distinguishes finite and infinite products of R, a partial result toward
the topological invariance of dimension.

In the presence of local compactness and a little more, we can make a noncompact
space into a compact one.
Definition 6.11. Let X be a locally compact, Hausdorff space. Adjoin a point not in
X, denoted by ∞, to form Y = X ∪ {∞}. Topologize Y by two kinds of open sets: (1)
U ⊂ X ⊂ Y and U is open in X. (2) Y −K where K is compact in X. The space Y with
this topology is called the one-point compactification of X.
The one-point compactification was introduced by Alexandroff [Alexandroff] and is also
called the Alexandroff compactification. We verify that we have a topology on Y as follows:
For finite intersections there are the three cases: We only need to consider the case of two
open sets. (1) If V1 and V2 are both open subsets of X, then V1∩V2 is also an open subset
of X and hence of Y . (2) If both V1 and V2 have the form Y −K1 and Y −K2 where K1

and K2 are compact in X, then (Y −K1) ∩ (Y −K2) = Y − (K1 ∪K2) and K1 ∪K2 is
compact in X, so V1 ∩ V2 is open in Y . (3) If V1 is an open subset of X and V2 = Y −K2

for K2 compact in X, then V1 ∩ V2 = V1 ∩ (Y −K2) = V1 ∩ (X −K2) since V1 ⊂ X. Since
X −K2 is open in X, the intersection V1 ∩ V2 is open in Y .

For arbitrary unions there are three similar cases. If {Vβ | β ∈ I} is a collection of
open sets, then

⋃
Vβ is certainly open when Vβ ⊂ X for all β. If Vβ = Y −Kβ for all β,

then DeMorgan’s law gives
⋃

β
(Y −Kβ) = Y −

⋂
β
Kβ

and
⋂

β Kβ is compact. Finally, if the Vβ are of different types, the set-theoretic fact
U ∪ (Y −K) = Y − (K−U) together with the fact that if K is compact, then, since K−U
is a closed subset of K, so K − U is compact. Thus the union of the Vβ is open in Y .
Theorem 6.12. If X is locally compact and Hausdorff, X is not compact, and Y =
X ∪ {∞} is the one-point compactification, then Y is a compact Hausdorff space, X is a
subspace of Y , and cls X = Y .
Proof: We first show Y is compact. If {Vi | i ∈ J} is an open cover of Y , then ∞ ∈ Vj0 for
some j0 ∈ J and Vj0 = Y −Kj0 for Kj0 compact in X. Since any open set in Y satisfies the
property that Vi ∩X is open in X, the collection {Vi ∩X | i ∈ J, i )= j0} is an open cover
of Kj0 and so there is a finite subcover V1 ∩X, . . . , Vn ∩X of X. Then {Vj0 , V1, . . . , Vn} is
a finite subcover of Y .

Next we show Y is Hausdorff. The important case to check is a separation of x ∈ X
and ∞. Since X is locally compact and X is open in X, there is an open set V ⊂ X with
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x ∈ V and cls V compact. Take V to contain x and Y − cls V to contain ∞. Since X is
not compact, cls V )= X.

Notice that the inclusion i:X → Y is continuous since i−1(Y −K) = X −K and K
is closed in the Hausdorff space X. Furthermore, i is an open map so X is homeomorphic
to Y − {∞}. To prove that cls X = Y , check that ∞ is a limit point of X: if ∞ ∈ Y −K,
since X is not compact, K )= X so there is a point of X in Y −K not equal to ∞. ♦

Example: Stereographic projection of the sphere S2 minus the North Pole onto R2, shows
that the one-point compactification of R2 is homeomorphic to S2. Recall that stereographic
projection is defined as the mapping from S2 minus the North Pole to the plane tangent to
the South Pole by joining a point on the sphere to the North Pole and then extending this
line to meet the tangent plane. This mapping has wonderful properties ([McCleary]) and
gives the homeomorphism between R2 ∪ {∞} and S2. More generally, Rn ∪ {∞} ∼= Sn.

Compactness may be used to define a topology on Hom(X, Y ) = {f :X → Y such that
f is continuous}. There are many possible choices, some dependent on the topologies of
X and Y (for example, for metric spaces), some appropriate to the analytic applications
for which a topology is needed [Day]. We present one particular choice that is useful for
topological applications.
Definition 6.13. Suppose K ⊂ X and U ⊂ Y . Let S(K, U) = {f :X → Y , continuous
with f(K) ⊂ U}. The collection S = {S(K, U) | K ⊂ X compact, U ⊂ Y open} is a
subbasis for topology TS on Hom(X, Y ) called the compact-open topology. We denote
the space (Hom(X, Y ), TS) as map(X, Y ).
Theorem 6.14. (1) If X is locally compact and Hausdorff, then the evaluation mapping

e:X ×map(X, Y ) → Y, e(x, f) = f(x),

is continuous. (2) If X is locally compact and Hausdorff and Z is another space, then a
function F :X × Z → Y is continuous if and only if its adjoint map F̂ :Z → map(X, Y ),
defined by F̂ (z)(x) = F (x, z) is continuous.
Proof: Given (x, f) ∈ X × map(X, Y ) suppose f(x) ∈ V an open set in Y . Since x ∈
f−1(V ), use the fact that X is locally compact to find U open in X such that x ∈ U ⊂
cls U ⊂ f−1(V ) with cls U compact. Then (x, f) ∈ U × S(cls U, V ), an open set of
X ×map(X, Y ). If (x1, f1) ∈ U × S(cls U, V ), then f1(x1) ∈ V so e(U × S(cls U, V )) ⊂ V
as needed.

Suppose F̂ is continuous. Then F is the composite

e ◦ (id× F̂ ):X × Z → X ×map(X, Y ) → Y,

which is continuous.
Suppose F is continuous and consider F̂ :Z → map(X, Y ). Let z ∈ Z and S(K, U) a

subbasis open set containing F̂ (z). We show there is an open set W ⊂ Z, with z ∈ W and
F̂ (W ) ⊂ S(K, U). Since F̂ (z) ∈ S(K, U), we have F (K×{z}) ⊂ U . Since F is continuous,
it follows that K×{z} ⊂ F−1(U) and F−1(U) is an open set in X×Z. The subset K×{z}
is compact and so the collection of basic open sets contained in F−1(U) ⊂ X ×Z gives an
open cover of K×{z}. This cover has a finite subcover, U1×W1, U2×W2, . . . , Un×Wn. Let
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W = W1 ∩W2 ∩ · · ·∩Wn, a nonempty open set in Z since z ∈ Wi for each i. Furthermore,
K ×W ⊂ F−1(U). If z′ ∈ W and x ∈ K then F (x, z′) ∈ U , and so F̂ (W ) ⊂ S(K, U) as
desired. ♦

The description of topology as “rubber-sheet geometry” can be made precise by pic-
turing map(X, Y ). We want to describe a deformation of one mapping into another.
If f and g are in map(X, Y ), then a path in map(X, Y ) joining f and g is a mapping
λ: [0, 1] → map(X, Y ) with λ(0) = f and λ(1) = g. This path encodes the deforming of
f(X) to g(X) where at time t the shape is λ(t)(X). We can rewrite this path using the
adjoint to define an important notion to be developed in later chapters.
Definition 6.15. A homotopy between functions f, g:X → Y is a continuous function
H:X × [0, 1] → Y with H(x, 0) = f(x), H(x, 1) = g(x). We say that f is homotopic to
g if there is a homotopy between them.

Notice that Ĥ = λ, a path between f and g in map(X, Y ). A homotopy may be
thought of as a continuous, one-parameter family of functions deforming f into g.

We record some other important properties of the compact-open topology. The proofs
are left to the reader:
Proposition 6.16. Suppose that X is a locally compact and Hausdorff space. (1) If
(Hom(X, Y ), T ) is another topology on Hom(X, Y ) and the evaluation map,

e:X × (Hom(X, Y ), T ) → Y

is continuous, then T contains the compact-open topology. (2) If X and Y are locally
compact and Hausdorff, then the composition of functions

◦:map(X, Y )×map(Y,Z) −→ map(X, Z)

is continuous. (3) If Y is Hausdorff, then the space map(X, Y ) is Hausdorff.
Conditions on continuous mappings from X to Y lead to subsets of map(X, Y ) that

may be endowed with the subspace topology. For example, let map((X, x0), (Y, y0)) denote
the subspace of functions f :X → Y for which f(x0) = y0. This is the space of pointed
maps. More generally, if A ⊂ X and B ⊂ Y , we can define the space of maps of pairs,
map((X, A), (Y,B)), requiring that f(A) ⊂ B.

Exercises

1. A second countable space is “almost” compact. Prove that when X is second count-
able, every open cover of X has a countable subcover (Lindelöf’s theorem).

2. Show that a compact Hausdorff space is normal (also labelled T4), that is, given two
disjoint closed subsets of X, say A and B, then there are open sets U and V with
A ⊂ U , B ⊂ V and U ∩ V = ∅.

3. A useful property of compact spaces is the finite intersection property. Suppose
that F = {Fj | j ∈ J} is a collection of closed subsets of X with the following property:
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F1 ∩ · · · ∩ Fk )= ∅ for every finite subcollection {F1, . . . , Fk} of F , then
⋂

F∈F
F )= ∅.

Show that this condition is equivalent to a space being compact. (Hint: Consider the
complements of the Fi and the consequence of the intersection being empty.)

4. Suppose X is a compact space and {x1, x2, x3, . . .} is a sequence of points in X. Show
that there is a subsequence of {xi} that converges to a point in X.

5. Show the easy direction of Tychonoff’s theorem, that is, if {Xi | i ∈ J} is a collection
of nonempty spaces, and the product

∏
i∈J

Xi is compact, then each Xi is compact.

6. Although the compact subsets of R are easily determined (closed and bounded), things
are very different in Q ⊂ R with the subspace topology. Determine the compact
subsets of Q. We can mimic the one-point compactification of R using Q: Let Q̂ =
Q∪{∞} topologized by T = {U ⊂ Q, U open, or Q̂−K, where K is a compact subset
of Q}. Show that (Q̂, T ) is not Hausdorff. Deduce that Q is not locally compact.

7. Proposition 6.9 states that if f :X → Y is one-one, onto, and continuous, if X is
compact, and Y is Hausdorff, then f is a homeomorphism. Show that the condition
of Y Hausdorff cannot be relaxed.

8. Prove Proposition 6.16.
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7. Homotopy and the Fundamental Group
The group G will be called the fundamental group of the
manifold V .

J. Henri Poincaré, 1895

The properties of a topological space that we have developed so far have depended on
the choice of topology, the collection of open sets. Taking a different tack, we introduce
a different structure, algebraic in nature, associated to a space together with a choice of
base point (X, x0). This structure will allow us to bring to bear the power of algebraic
arguments. The fundamental group was introduced by Poincaré in his investigations of
the action of a group on a manifold [64].

The first step in defining the fundamental group is to study more deeply the relation
of homotopy between continuous functions f0:X → Y and f1:X → Y . Recall that f0 is
homotopic to f1, denoted f0 " f1, if there is a continuous function (a homotopy )

H:X × [0, 1] → Y with H(x, 0) = f0(x) and H(x, 1) = f1(x).

The choice of notation anticipates an interpretation of the homotopy—if we write H(x, t) =
ft(x), then a homotopy is a deformation of the mapping f0 into the mapping f1 through
the family of mappings ft.
Theorem 7.1. The relation f " g is an equivalence relation on the set, Hom(X, Y ), of
continuous mappings from X to Y .
Proof: Let f :X → Y be a given mapping. The homotopy H(x, t) = f(x) is a continuous
mapping H:X × [0, 1] → Y and so f " f .

If f0 " f1 and H:X × [0, 1] → Y is a homotopy between f0 and f1, then the mapping
H ′:X × [0, 1] → Y given by H ′(x, t) = H(x, 1− t) is continuous and a homotopy between
f1 and f0, that is, f1 " f0.

Finally, for f0 " f1 and f1 " f2, suppose that H1:X × [0, 1] → Y is a homotopy
between f0 and f1, and H2:X × [0, 1] → Y is a homotopy between f1 and f2. Define the
homotopy H:X × [0, 1] → Y by

H(x, t) =
{

H1(x, 2t), if 0 ≤ t ≤ 1/2,
H2(x, 2t− 1), if 1/2 ≤ t ≤ 1.

Since H1(x, 1) = f1(x) = H2(x, 0), the piecewise definition of H gives a continuous function
(Theorem 4.4). By definition, H(x, 0) = f0(x) and H(x, 1) = f2(x) and so f0 " f2. ♦

We denote the equivalence class under homotopy of a mapping f :X → Y by [f ] and
the set of homotopy classes of maps between X and Y by [X, Y ]. If F :W → X and
G:Y → Z are continuous mappings, then the sets [X, Y ], [W,X] and [Y, Z] are related.
Proposition 7.2. Continuous mappings F :W → X and G:Y → Z induce well-defined
functions F ∗: [X, Y ] → [W,Y ] and G∗: [X, Y ] → [X, Z] by F ∗([h]) = [h ◦ F ] and G∗([h]) =
[G ◦ h] for [h] ∈ [X, Y ].
Proof: We need to show that if h " h′, then h ◦ F " h′ ◦ F and G ◦ h " G ◦ h′. Fixing a
homotopy H:X × [0, 1] → Y with H(x, 0) = h(x) and H(x, 1) = h′(x), then the desired
homotopies are HF (w, t) = H(F (w), t) and HG(x, t) = G(H(x, t)). ♦
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To a space X we associate a space particularly rich in structure, the mapping space
of paths in X, map([0, 1], X). Recall that map([0, 1], X) is the set of continuous mappings
Hom([0, 1], X) with the compact-open topology. The space map([0, 1], X) has the following
properties:
(1) X embeds into map([0, 1], X) by associating to each point x ∈ X to the constant path,
cx(t) = x for all t ∈ [0, 1].
(2) Given a path λ: [0, 1] → X, we can reverse the path by composing with t )→ 1− t. Let
λ−1(t) = λ(1− t).
(3) Given a pair of paths λ, µ: [0, 1] → X for which λ(1) = µ(0), we can compose paths by

λ ∗ µ(t) =
{

λ(2t), if 0 ≤ t ≤ 1/2,
µ(2t− 1), if 1/2 ≤ t ≤ 1.

Thus, for certain pairs of paths λ and µ, we obtain a new path λ ∗ µ ∈ map([0, 1], X).
Composition of paths is always defined when we restrict to a certain subspace of

map([0, 1], X).
Definition 7.3. Suppose X is a space and x0 ∈ X is a choice of base point in X. The
space of based loops in X, denoted Ω(X, x0), is the subspace of map([0, 1], X),

Ω(X, x0) = {λ ∈ map([0, 1], X) | λ(0) = λ(1) = x0}.

Composition of loops determines a binary operation ∗:Ω(X, x0)× Ω(X, x0) → Ω(X, x0).
We restrict the notion of homotopy when applied to the space of based loops in X in

order to stay in that space during the deformation.
Definition 7.4. Given two based loops λ and µ, a loop homotopy between them is a
homotopy of paths H: [0, 1]× [0, 1] → X with H(t, 0) = λ(t), H(t, 1) = µ(t) and H(0, s) =
H(1, s) = x0. That is, for each s ∈ [0, 1], the path t )→ H(t, s) is a loop at x0.

The relation of loop homotopy on Ω(X, x0) is an equivalence relation; the proof follows
the proof of Theorem 7.1. We denote the set of equivalence classes under loop homotopy
by π1(X, x0) = [Ω(X, x0)], a notation for the first of a family of such sets, to be explained
later. As it turns out, π1(X, x0) enjoys some remarkable properties:
Theorem 7.5. Composition of loops induces a group structure on π1(X, x0) with identity
element [cx0(t)] and inverses given by [λ]−1 = [λ−1].

H(t,s) H'(t,s) H(2t,s) H'(2t-1,s)

λ

λ'

µ

µ '

λ

λ'

µ

µ '

Proof: We begin by showing that composition of loops induces a well-defined binary op-
eration on the homotopy classes of loops. Given [λ] and [µ], then we define [λ] ∗ [µ] =
[λ ∗ µ]. Suppose that [λ] = [λ′] and [µ] = [µ′]. We must show that λ ∗ µ " λ′ ∗ µ′. If
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H: [0, 1] × [0, 1] → X is a loop homotopy between λ and λ′ and H ′: [0, 1] × [0, 1] → X a
loop homotopy between µ and µ′, then form H ′′: [0, 1]× [0, 1] → X defined by

H ′′(t, s) =
{

H(2t, s), if 0 ≤ t ≤ 1/2,
H ′(2t− 1, s), if 1/2 ≤ t ≤ 1.

Since H ′′(0, s) = H(0, s) = x0 and H ′′(1, s) = H ′(1, s) = x0, H ′′ is a loop homotopy. Also
H ′′(t, 0) = λ ∗ µ(t) and H ′′(t, 1) = λ′ ∗ µ′(t), and the binary operation is well-defined on
equivalence classes of loops.

We next show that ∗ is associative. Notice that (λ ∗ µ) ∗ ν += λ ∗ (µ ∗ ν); we only get
1/4 of the interval for λ in the first product and 1/2 of the interval in the second product.
We define the explicit homotopy after its picture, which makes the point more clearly:

λ µ ν

λ µ ν

H(t, s) =






λ(4t/(1 + s)), if 0 ≤ t ≤ (s + 1)/4,
µ(4t− 1− s), if (s + 1)/4 ≤ t ≤ (s + 2)/4,

ν

(
1− 4(1− t)

(2− s)

)
, if (s + 2)/4 ≤ t ≤ 1.

The class of the constant map, e(t) = cx0(t) = x0 gives the identity for π1(X, x0). To
see this, we show, for all λ ∈ Ω(X, x0), that λ ∗ e " λ " e ∗ λ via loop homotopies. This is
accomplished in the case λ " e ∗ λ by the homotopy:

λ

λ

e

x0

λλ

e

-1

F (t, s) =
{

x0, if 0 ≤ t ≤ s/2,
λ((2t− s)/(2− s)), if s/2 ≤ t ≤ 1. .

The case λ " λ ∗ e is similar. Finally, inverses are constructed by using the reverse loop
λ−1(t) = λ(1− t). To show that λ ∗ λ−1 " e consider the homotopy:

G(t, s) =






λ(2t), if 0 ≤ t ≤ s/2,
λ(s), if s/2 ≤ t ≤ 1− (s/2)
λ(2− 2t), if 1− (s/2) ≤ t ≤ 1.

The homotopy resembles the loop, moving out for a while, waiting a little, and then
shrinking back along itself. The proof that λ−1 ∗ λ " e is similar. ♦
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Definition 7.6. The group π1(X, x0) is called the fundamental group of X at the base
point x0.

Suppose x1 is another choice of basepoint for X. If X is path-connected, there is
a path γ: [0, 1] → X with γ(0) = x0 and γ(1) = x1. This path induces a mapping
uγ :π1(X, x0) → π1(X, x1) by [λ] )→ [γ−1 ∗ λ ∗ γ], that is, follow γ−1 from x1 to x0, then
follow λ around and back to x0, then follow γ back to x1, all giving a loop based at x1.
Notice

uγ([λ] ∗ [µ]) = uγ([λ ∗ µ])

= [γ−1 ∗ λ ∗ µ ∗ γ]

= [γ−1 ∗ λ ∗ γ ∗ γ−1 ∗ µ ∗ γ]

= [γ−1 ∗ λ ∗ γ] ∗ [γ−1 ∗ µ ∗ γ] = uγ([λ]) ∗ uγ([µ]).

Thus uγ is a homomorphism. The mapping uγ−1 :π1(X, x1) → π1(X, x0) is an inverse,
since [γ ∗ (γ−1 ∗λ ∗ γ) ∗ γ−1] = [λ]. Thus π1(X, x0) is isomorphic to π1(X,x1) whenever x0

is joined to x1 by a path. Though it is a bit of a lie, we write π1(X) for a space X that
is path-connected since any choice of basepoint gives an isomorphic group. In this case,
π1(X) denotes an isomorphism class of groups.

Following Proposition 7.2, a continuous function f :X → Y induces a mapping

f∗:π1(X, x0) → π1(Y, f(x0)), given by f∗([λ]) = [f ◦ λ].

In fact, f∗ is a homomorphism of groups:

f∗([λ] ∗ [µ]) = f∗([λ ∗ µ]) = [f ◦ (λ ∗ µ)]
= [(f ◦ λ) ∗ (f ◦ µ)] = [f ◦ λ] ∗ [f ◦ µ]
= f∗([λ]) ∗ f∗([µ]).

Furthermore, when we have continuous mappings f :X → Y and g:Y → Z, we obtain
f∗:π1(X, x0) → π1(Y, f(x0)) and g∗:π1(Y, f(x0)) → π1(Z, g ◦ f(x0)). Observe that

g∗ ◦ f∗([λ]) = g∗([f ◦ λ]) = [g ◦ f ◦ λ] = (g ◦ f)∗([λ]),

so we have (g ◦ f)∗ = g∗ ◦ f∗. It is evident that the identity mapping id:X → X induces
the identity homomorphism of groups π1(X, x0) → π1(X, x0). We can summarize these
observations by the (post-1945) remark that π1 is a functor from pointed spaces and pointed
maps to groups and group homomorphisms. Since we are focusing on classical notions in
topology (pre-1935) and category theory was christened later, we will not use this language
in what follows. For an introduction to this framework see [51].

The behavior of the induced homomorphisms under composition has the following
consequence:
Corollary 7.7. The fundamental group is a topological invariant of a space. That is, if
f :X → Y is a homeomorphism, then the groups π1(X, x0) and π1(Y, f(x0)) are isomorphic.
Proof: Suppose f :X → Y has continuous inverse g:Y → X. Then g ◦ f = idX and
f ◦ g = idY . It follows that g∗ ◦ f∗ = id and f∗ ◦ g∗ = id on π1(X, x0) and π1(Y, f(x0)),
respectively. Thus f∗ and g∗ are group isomorphisms. ♦
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Before we do some calculations we derive a few more formal properties of the fun-
damental group. In particular, what conditions imply π1(X) = {e}, and how does the
fundamental group behave under the formation of subspaces, products, and quotients?
Definition 7.8. A subspace A ⊂ X is a retract of X if there is a continuous function,
the retraction, r:X → A for which r(a) = a for all a ∈ A. The subset A ⊂ X is a
deformation retraction if A is a retract of X and the composition i ◦ r:X → A ↪→ X is
homotopic to the identity on X via a homotopy that fixes A, that is, there is a homotopy
H:X × [0, 1] → X with

H(x, 0) = x, H(x, 1) = r(x) and H(a, t) = a for all a ∈ A, and all t ∈ [0, 1].

Proposition 7.9. If A ⊂ X is a retract with retraction r:X → A, then the inclusion
i:A → X induces an injective homomorphism i∗:π1(A, a) → π1(X, a) and the retraction
induces a surjective homomorphism r∗:π1(X, a) → π1(A, a).
Proof: The composite r◦i:A → X → A is the identity mapping on A and so the composite
r∗ ◦ i∗:π1(A, a) → π1(X, a) → π1(A, a) is the identity on π1(A, a). If i∗([λ]) = i∗([λ′]),
then [λ] = r∗i∗([λ]) = r∗i∗([λ′]) = [λ′], and so the homomorphism i∗ is injective. If
[λ] ∈ π1(A, a), then r∗(i∗([λ])) = [λ] and so r∗ is onto. ♦

Examples: Represent the Möbius band M by glueing the left and right edges of [0, 1]×[0, 1]
with a twist (Chapter 4). Let A = {[(t, 1

2 )] | 0 ≤ t ≤ 1} ⊂ M , be the circle in the
middle of the band. After the identification, A is homeomorphic to S1. Define the map
r:M → A by projecting straight down or up to this line, that is, [(t, s)] )→ [(t, 1

2 )]. It is
easy to see that r is continuous and r|A = idA so we have a retract. Thus the composite
r∗ ◦ i∗:π1(S1) → π1(M) → π1(S1) is the identity on π(S1).

A

For any space X, the inclusion followed by projection

X ∼= X × {0} ↪→ X × [0, 1] → X,

is the identity and so X is a retract of X × [0, 1]. In fact, X is a deformation retraction
via the deformation H:X × [0, 1] × [0, 1] → X × [0, 1] given by H(x, t, s) = (x, ts): when
s = 1, H(x, t, 1) = (x, t) and for s = 0 we have H(x, t, 0) = (x, 0).

Recall that a subset K of Rn is convex if whenever x and y are in K, then for all
t ∈ [0, 1], tx + (1 − t)y ∈ K. If K ⊂ Rn is convex, let x0 ∈ K, then K is a deformation
retraction of the one-point subset {x0} by the homotopy H(x, t) = tx0 + (1− t)x. When
t = 0 we have H(x, 0) = x and when t = 1, H(x, 1) = x0. The retraction K → {x0} is

5



thus a deformation of the identity on K. Examples of convex subsets of Rn include Rn

itself, any open ball B(x, ε) and the boxes [a1, b1]× · · ·× [an, bn].
More generally, there is always the retract {x0} ↪→ X → {x0}, which leads to the

trivial homomorphisms of groups {e} → π1(X, x0) → {e}. This retract is not always a
deformation retract. We call a space contractible when it is a deformation retract of one
of its points.

Deformation retracts give isomorphic fundamental groups.
Theorem 7.10. If A is a deformation retract of X, then the inclusion i:A → X induces
an isomorphism i∗:π1(A, a) → π1(X, a).
Proof: From the definition of a deformation retract, the composite i ◦ r:X → A ↪→ X
is homotopic to idX via a homotopy fixing the points in A, that is, there is a homotopy
H:X × [0, 1] → X with H(x, 0) = i ◦ r(x), H(x, 1) = x, and H(a, t) = a for all t ∈ [0, 1].
We show that i∗ ◦ r∗([λ]) = [λ]. In fact we show a little more:
Lemma 7.11. If f, g: (X, x0) → (Y, y0) are continuous functions, homotopic through base-
point preserving maps, then f∗ = g∗:π1(X, x0) → π1(Y, y0).
Proof: Suppose there is a homotopy G:X× [0, 1] → Y with G(x, 0) = f(x), G(x, 1) = g(x)
and G(x0, t) = y0 for all t ∈ [0, 1]. Consider a loop based at x0, λ: [0, 1] → X, and the
compositions f ◦ λ, g ◦ λ and G ◦ (λ× id): [0, 1]× [0, 1] → Y :

G(λ(s), 0) = f ◦ λ(s)
G(λ(s), 1) = g ◦ λ(s)
G(λ(0), t) = G(λ(1), t) = y0 for all t ∈ [0, 1].

Thus f∗[λ] = [f ◦ λ] = [g ◦ λ] = g∗[λ]. Hence f∗ = g∗:π1(X, x0) → π1(Y, y0). ♦

A deformation retract gives a basepoint preserving homotopy between i ◦ r and idX , so we
have id = i∗ ◦ r∗:π1(X, a) → π1(X, a). By Proposition 7.9, we already know i∗ is injective;
i∗ is surjective because for [λ] any class in π1(X, a), one has [λ] = i∗(r∗([λ])). ♦

Examples: A convex subset of Rn is a deformation retract of any point x0 in the set. It
follows from π1({x0}) = {e}, that for any convex subset K ⊂ Rn, π1(K,x0) = {e}. Of
course, this includes π1(Rn,0) = {e}. Next consider Rn−{0}. The (n−1)-sphere Sn−1 ⊂
Rn is a deformation retract of Rn − {0} as follows: Let F : (Rn − {0})× [0, 1] → Rn − {0}
be given by

F (x, t) = (1− t)x + t
x
‖x‖ .

Here F (x, 0) = x and F (x, 1) = x/‖x‖ ∈ Sn−1. By the Theorem 7.10,

π1(Rn − {0},x0) ∼= π1(Sn−1,x0/‖x0‖).

A space X is said to be simply-connected (or 1-connected) if it is path-connected
and π1(X) = {e}. Any convex subset of Rn, or more generally, any contractible space is
simply-connected. Furthermore, simple connectivity is a topological property.
Theorem 7.12. Suppose X = U∪V where U and V are open, simply-connected subspaces
and U ∩ V is path-connected; then X is simply-connected.
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Proof: Choose a point x0 ∈ U ∩ V as basepoint. Let λ: [0, 1] → X be a loop based at x0.
Since λ is continuous, {λ−1(U),λ−1(V )} is an open cover of the compact space [0, 1]. The
Lebesgue Lemma gives points 0 = t0 < t1 < t2 < · · · < tn = 1 with λ([ti−1, ti]) ⊂ U or V .
We can join x0 to λ(ti) by a path γi. Define for i ≥ 1,

λi(s) = λ((ti − ti−1)s + ti−1), 0 ≤ s ≤ 1,

for the path along λ joining λ(ti−1) to λ(ti).

.U
V

λ

γ

λ(t )1

1

x0

Then λ " λ1 ∗ λ2 ∗ · · · ∗ λn and furthermore,

λ " (λ1 ∗ γ−1
1 ) ∗ (γ1 ∗ λ2 ∗ γ−1

2 ) ∗ (γ2 ∗ λ3 ∗ γ−1
3 ) ∗ · · · ∗ (γn−1 ∗ λn).

Each γi ∗ λi+1 ∗ γ−1
i+1 lies in U or V . Since U and V are simply-connected, each of these

loops is homotopic to the constant map. Thus λ " cx0 . It follows that π1(X, x0) ∼= {e}.♦

Corollary 7.13. π1(Sn) ∼= {e} for n ≥ 2.
Proof: We can decompose Sn as a union of U = {(r0, r1, . . . , rn) ∈ Sn | rn > −1/4} and
V = {(r0, r1, . . . , rn) ∈ Sn | rn < 1/4}. By stereographic projection from the each pole,
we can establish that U and V are homeomorphic to an open disk in Rn, which is convex.
The intersection U ∩ V is homeomorphic to Sn−1 × (−1/4, 1/4), which is path-connected
when n ≥ 2. ♦

Since Sn−1 ⊂ Rn − {0} is a deformation retract, we have proven:
Corollary 7.14. π1(Rn − {0}) ∼= {e}, for n ≥ 3.
In Chapter 8 we will consider the case π1(S1) in detail.

We next consider the fundamental group of a product X × Y .
Theorem 7.15. Let (X, x0) and (Y, y0) be pointed spaces. Then π1(X × Y, (x0, y0)) is
isomorphic to π1(X, x0)× π1(Y, y0), the direct product of these two groups.
Recall that if G and H are groups, the direct product G × H has underlying set the
cartesian product of G and H and binary operation (g1, h1) · (g2, h2) = (g1g2, h1h2).
Proof: Recall from Chapter 4 that a mapping λ: [0, 1] → X × Y is continuous if and only
if pr1 ◦ λ: [0, 1] → X and pr2 ◦ λ: [0, 1] → Y are continuous. If λ is a loop at (x0, y0), then
pr1 ◦ λ is a loop at x0 and pr2 ◦ λ is a loop at y0. We leave it to the reader to prove that
1) If λ " λ′: [0, 1] → X × Y , then pri ◦ λ " pri ◦ λ′ for i = 1, 2.
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2) If we take λ ∗ λ′: [0, 1] → X × Y , then pri ◦ (λ ∗ λ′) = (pri ◦ λ) ∗ (pri ◦ λ′).

These facts allow us to define a homomorphism:

pr1∗ × pr2∗:π1(X × Y, (x0, y0)) → π1(X, x0)× π1(Y, y0)

by pr1∗×pr2∗([λ]) = ([pr1◦λ], [pr2◦λ]). The inverse homomorphism is given by ([λ], [µ]) )→
[(λ, µ)(t)] where (λ, µ)(t) = (λ(t), µ(t)). Thus we have an isomorphism. ♦

We can use such results to show that certain subspaces of a space are not deformation
retracts. For example, if π1(X, x0) is a nontrivial group, then π1(X × X, (x0, x0)) is not
isomorphic to π1(X × {x0}, (x0, x0)). Although X × {x0} is a retract of X ×X via

X × {x0} ↪→ X ×X → X × {x0},

it is not a deformation retract of X ×X.
Extra structure on a space can lead to more structure on the fundamental group.

Recall (exercises of Chapter 4) that a topological group, (G, e), is a Hausdorff topological
space with basepoint e ∈ G together with a continuous function (the group operation)
m:G×G → G, satisfying m(g, e) = m(e, g) = g for all g ∈ G, as well as another continuous
function (the inverse) inv:G → G with m(g, inv(g)) = e = m(inv(g), g) for all g ∈ G.

Theorem 7.15 allows us to define a new binary operation on π1(G, e), the composite
of the isomorphism of the theorem with the homomorphism induced by m:

µ∗:π1(G, e)× π1(G, e) → π1(G×G, (e, e)) → π1(G, e).

We denote the binary operation by µ∗([λ], [ν]) = [λ ' ν]. On the level of loops, this mapping
is given explicitly by (λ, µ) )→ λ ' µ where (λ ' µ)(t) = m(λ(t), µ(t)). We next compare this
binary operation with the usual multiplication of loops for the fundamental group.

Theorem 7.16. If G is a topological group, then π1(G, e) is an abelian group.

Proof: We first show that ' and the usual multiplication ∗ on π1(G, e) are actually the
same binary operation! We argue as follows: Represent λ ∗ µ(t) by λ′ ' µ′(t) where

λ′(t) =
{

λ(2t), 0 ≤ t ≤ 1
2

e, 1
2 ≤ t ≤ 1 µ′(t) =

{
e, 0 ≤ t ≤ 1

2
µ(2t− 1), 1

2 ≤ t ≤ 1.

Since λ(1) = e = µ(0) and m(e, µ′(t)) = µ′(t), m(λ′(t), e) = λ′(t), we see λ ∗ µ(t) =
m(λ′(t), µ′(t)). We next show that λ ∗ µ is loop homotopic to λ ' µ. Define two functions
h1, h2: [0, 1]× [0, 1] → [0, 1] by

h1(t, s) =
{

2t/(2− s), 0 ≤ t ≤ 1− (s/2)
1, 1− s/2 ≤ t ≤ 1

h2(t, s) =
{

0, 0 ≤ t ≤ s/2
(2t− s)/(2− s), s/2 ≤ t ≤ 1.
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ts ts

1 0

Let F (t, s) = m(λ(h1(t, s)), µ(h2(t, s))). Since it is a composition of continuous functions,
F is continuous. Notice

F (t, 0) = m(λ(h1(t, 0)), µ(h2(t, 0))) = m(λ(t), µ(t)) = λ ' µ(t)

and F (t, 1) = m(λ(h1(t, 1)), µ(h2(t, 1))) = m(λ′(t), µ′(t)) = λ ∗ µ(t). Thus λ ∗ µ is loop
homotopic to λ 'µ and we get the same binary operation.

e e

µ

λ

λ

µ

µ

λ

λ

µ

λ#µ

λ

λ µ

µ
µ

µλ

λ

λ#µG

Given two loops λ and µ, consider the function

G: [0, 1]× [0, 1] → G G(t, s) = m(λ(t), µ(s)).

The four corners are mapped to e and the diagonal from the lower left to the upper right
is given by λ ' µ. We will take some liberties and argue with diagrams to construct a loop
homotopy from λ ∗ µ to µ ∗ λ.

Slice the square filled in by G along the diagonal and paste in a rectangle that is simply
a product of λ ' µ with an interval. Put the resulting hexagon into a square and fill in the
remaining regions as the constant map at e, the identity element of G, in the trapezoidal
regions and as λ or µ in the triangles where the path lies along the lines joining a vertex
to the opposite side.

The diagram gives a homotopy from λ∗µ to µ∗λ. It follows then that [λ]∗[µ] = [µ]∗[λ]
and so π1(G, e) is abelian. ♦

Since S1 is the topological group of unit length complex numbers, we have proved:
Corollary 7.17. π1(S1, 1) is abelian.

Exercises

1. The unit sphere in R is the set S0 = {−1, 1}. Show that the set of homotopy classes
of basepoint preserving mappings [(S0,−1), (X, x0)], is the same set as π0(X), the set
of path components of X.
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2. Suppose that f :X → S2 is a continuous mapping that is not onto. Show that f is
homotopic to a constant mapping.

3. If X is a space, recall that the cone on X is the quotient space CX = X×[0, 1]/X×{1}.
Suppose f :X → Y is a continuous function and f is homotopic to a constant mapping
cy:X → Y for some y ∈ Y . Show that there is an extension of f , f̂ :CX → Y so that
f = f̂ ◦ i where i:X → CX is the inclusion, i(x) = [(x, 0)].

4. Suppose that X is a path-connected space. When is it true that for any pair of points,
p, q ∈ X, all paths from p to q induce the same isomorphism between π1(X, p) and
π1(X, q)?

5. Prove that a disk minus two points is a deformation retract of a figure 8 (that is,
S1 ∨ S1).

6. A starlike space is a slightly weaker notion than a convex space—in a starlike space
X ⊂ Rn, there is a point x0 ∈ X so that for any other point y ∈ X and any t ∈ [0, 1]
the point tx0 +(1− t)y is in X. Give an example of a starlike space that is not convex.
Show that a starlike space is a deformation retract of a point.

7. If K = α(S1) ⊂ R3 is a knot, that is, a homeomorphic image of a circle in R3, then
the complement of the knot, R3 − K has fundamental group π1(R3 − K). In fact,
this group is an invariant of the knot in a sense that can be made precise. Give a
plausibility argument that π1(R2 − K) += {0}. See [66] for a thorough treatment of
this important invariant of knots.
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8. Computations and covering spaces
. . . it is necessary, in order to affirm that a manifold
is simply-connected, to study its fundamental group, . . .

J. Henri Poincaré, 1904

We have defined the fundamental group and showed that it is a topological invariant,
that is, homeomorphic spaces have isomorphic fundamental groups. But we have yet to
consider a space whose fundamental group is nontrivial. Two familiar spaces, S1 and RP2,
will provide examples.

The method of computation focuses on the properties of the mappings,

w: R → S1

w(r) = cos(2πr) + i sin(2πr) = e2πir and p:S2 → RP2

p(x) = [±x].

These mappings share certain important properties.
Definition 8.1. Let X be a space. A covering space of X is a path-connected space
X̃ and a mapping p: X̃ → X such that, for every x ∈ X, there is an open, path-connected
subset U with x ∈ U for which each path component of p−1(U) is homeomorphic to U by
restriction of the mapping p. Such open sets are called elementary neighborhoods.

Up   (U)-1 p

(     ) (     ) (     )

(  
   

) U

w  (U)-1

w

For example, if eiθ ∈ S1, then for 0 < ε < π, the open set U = {eiα | θ−ε < α < θ+ε}
in S1 has inverse image under w given by

w−1(U) =
⋃

k∈Z

(
θ

2π
− ε

2π
+ k,

θ

2π
+

ε

2π
+ k

)
.

Since ε/2π < 1/2, the intervals in the union are all disjoint. Furthermore, w restricted to
any one of these intervals has an inverse given by a branch of the logarithm. In the case of
the quotient map p:S2 → RP2, for a connected open set V ⊂ S2 satisfying V ∩ −V = ∅,
we have p(V ) open in RP2 and p−1(p(V )) = V ∪−V . Since the components of p−1(p(V ))
are V and −V , it is an elementary neighborhood. For any [±x] ∈ RP2, there is such an
elementary neighborhood containing [±x] and so p:S2 → RP2 is a covering space.
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Henceforth we will assume that all spaces are path-connected and locally path-conn-
ected to avoid pathological cases. The most useful property of covering spaces is the ability
to lift paths in X to paths in X̃ while preserving the homotopy relation.
Lemma 8.2. Let p: X̃ → X be a covering space and x̃0 ∈ X̃ with p(x̃0) = x0 ∈ X. If
λ: [0, 1] → X is any path with λ(0) = x0, then there exists a unique path λ̂: [0, 1] → X̃ with
λ̂(0) = x̃0 and p ◦ λ̂ = λ.
Proof: Cover X by elementary neighborhoods. If λ([0, 1]) ⊂ U for some elementary neigh-
borhood, then x0 ∈ U and x̃0 ∈ p−1(U). It follows that x̃0 lies in some component C0 of
p−1(U) that is homeomorphic to U via p|C0 :C0 → U . Let (p|C0)−1:U → C0 denote the
inverse of this homeomorphism and let λ̂ = (p|C0)−1 ◦ λ. Then λ̂(0) = (p|C0)−1(x0) = x̃0,
since x̃0 is the only point in X̃ corresponding to x0 in this component. Finally, p ◦ λ̂ =
p ◦ (p|C0)−1 ◦ λ = λ.

If λ([0, 1]) )⊂ U , consider the collection {λ−1(U ′) ⊂ [0, 1] | U ′, an elementary neighbor-
hood}. This is a cover of [0, 1], which is a compact metric space, and so by Lebesgue’s
Lemma we can choose 0 = t0 < t1 < · · · < tn−1 < tn = 1 with each λ([ti−1, ti]) a subset
of some elementary neighborhood (take ti − ti−1 < δ, the Lebesgue number). Using the
argument above, lift λ on [0, t1]. Then take λ(t1) as x0 and λ̂(t1) as x̃0 and lift λ to [t1, t2].
Continuing in this manner, we construct λ̂ on [0, 1] with λ̂(0) = x̃0 and p ◦ λ̂ = λ.

To show that λ̂ constructed in this manner is unique, we prove a more general result
that implies uniqueness.
Lemma 8.3. Let p: X̃ −→ X be a covering space and Y , a connected, locally connected
space. Given two mappings f1, f2:Y → X̃ with p ◦ f1 = p ◦ f2, then the set {y ∈ Y |
f1(y) = f2(y)} is either empty or all of Y .
Proof: Consider the subset of Y given by B = {y ∈ Y | f1(y) = f2(y)}. We show that
B is both open and closed. If y ∈ cls B, consider x = p ◦ f1(y) = p ◦ f2(y) and U
an elementary neighborhood containing x. Consider (p ◦ f1)−1(U) ∩ (p ◦ f2)−1(U) which
contains y. Because Y is locally connected, there is an open set W for which y ∈ W ⊂
(p ◦ f1)−1(U) ∩ (p ◦ f2)−1(U) with W connected. Then f1(W ) and f2(W ) are connected
subsets of p−1(U) ⊂ X̃. Since W is open and y ∈ cls B, there is a point z ∈ W with
z ∈ B. Thus f1(z) = f2(z) and f1(W ) ∩ f2(W ) )= ∅; therefore, f1(W ) and f2(W ) must
lie in the same component of p−1(U). Since p ◦ f1(y) = p ◦ f2(y) and the component in
which we find both f1(y) and f2(y) is homeomorphic to U by the restriction of p, we have
f1(y) = f2(y). Thus y ∈ B and B is closed.

If we let y ∈ B, the argument above shows that the sets f1(W ) and f2(W ) lie in the
same component C0 of p−1(U). It follows that, for all w ∈ W ,

f1(w) = (p|C0)
−1 ◦ p ◦ f1(w) = (p|C0)

−1 ◦ p ◦ f2(w) = f2(w)

and so W is contained in B. Thus B is open.
The only subsets of Y that are both open and closed are Y itself and ∅ and so we

have proved the lemma. ♦
Using Lemma 8.3, two lifts of a path λ: [0, 1] → X which begin at the same point in

X̃ must be the same lift. This is the uniqueness part of Lemma 8.2. ♦
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Having lifted paths in X to paths in X̃, we next lift certain homotopies between paths.
Lemma 8.4. Let p: X̃ → X be a covering space and η0, η1: [0, 1] → X̃ be two paths in X̃
with η0(0) = η1(0) = x̃0. If p◦η0(1) = x1 = p◦η1(1) and p◦η0 + p◦η1 via a homotopy that
fixes the endpoints of the paths in X, then η1 + η2 in X̃ and, in particular, η0(1) = η1(1).
Proof: Let H: [0, 1]× [0, 1] → X be a homotopy between p ◦ η0 and p ◦ η1. In this case, we
have, for all s, t ∈ [0, 1],

H(s, 0) = p ◦ η0(s)
H(s, 1) = p ◦ η1(s)

and H(0, t) = p(x̃0)
H(1, t) = p ◦ η0(1) = p ◦ η1(1).

Since [0, 1]× [0, 1] is a compact metric space, when we cover it by the collection {H−1(U) |
U , an elementary neighborhood of X}, we can apply Lebesgue’s Lemma to get δ > 0 for
which any subset of [0, 1]× [0, 1] of diameter < δ lies in some H−1(U). If we subdivide the
interval [0, 1],

0 = s0 < s1 < · · · < sm−1 < sm = 1 and 0 = t0 < t1 < · · · < tn−1 < tn = 1

so that si − si−1 < δ/2 and tj − tj−1 < δ/2, then H maps each subrectangle [si−1, si] ×
[tj−1, tj ] into an elementary neighborhood for all i and j.

To construct the lifting Ĥ: [0, 1]× [0, 1] → X̃, and show it is a homotopy between η0

and η1, begin by lifting H on [0, s1]× [0, t1] to X̃ by using Ĥ = (p|C11)−1 ◦H, where C11 is
the component of p−1(U11) containing η0(0) and H([0, s1] × [0, t1]) ⊂ U11, an elementary
neighborhood. Having done this, extend Ĥ next to [s1, s2] × [0, t1]. Notice that Ĥ has
been defined on the line segment {s1}× [0, t1] which is connected and this determines the
component of p−1(U21) for the elementary neighborhood U21 which contains H([s1, s2] ×
[0, t1]). Once the component, say C21, is determined, extend Ĥ by Ĥ = (p|C21)−1 ◦ H.
Continue in this manner until Ĥ is defined on [0, 1]× [0, t1]. Next, extend to [0, 1]× [t1, t2]
using the fact that the value of Ĥ has been determined on each succesive subrectangle
along the left and bottom edges, as a connected subset. Continue along each row until Ĥ
is defined on [0, 1] × [0, 1]. By Lemma 8.3, Ĥ is unique fulfilling the condition Ĥ(0, 0) =
η(0). Since η0(s) is also a lift of H(s, 0), we have that Ĥ(s, 0) = η0(s). The condition
H(0, t) = p ◦ η0(0) implies that Ĥ(0, t) = η0(0), that is, the homotopy Ĥ is constant
on the subset {0} × [0, 1]. Thus, the lift Ĥ(s, 1) of the path p ◦ η1(s) in X begins at
η0(0) = η1(0), and η1(s) is also such a lift. By uniqueness, Ĥ(s, 1) = η1(s). Finally,
H(1, t) = p ◦ η0(1) = p ◦ η1(1) for all t ∈ [0, 1], Ĥ(1, t) = η0(1) and we conclude that
η0(1) = η1(1) since Ĥ(1, t) is constant. ♦

Uniqueness of liftings of homotopies provides considerable control over the fundamen-
tal group through a covering space, giving us a toehold for computation.
Corollary 8.5. Suppose p: X̂ → X is a covering space: (1) If η: [0, 1] → X̃ is a loop
at x̃0 and p ◦ η is homotopic to the constant loop cx0 for x0 = p(x̃0), then η + cx̃0 . (2)
The induced homomorphism p∗:π1(X̃, x̃0) → π1(X, x0) is injective. (3) For all x ∈ X, the
subsets p−1({x}) of X̃ have the same cardinality.
Proof: (1) One lift of cx0 is simply the constant path cx̃0 . By Lemma 8.4 p◦η + p◦cx̃0 = cx0

implies η + cx̃0 .
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(2) If p∗([λ]) = p∗([µ]), then, because p∗ is a homomorphism, p∗([λ] ∗ [µ−1]) = [cx0 ], that
is, p ◦ (λ ∗ µ−1) + cx0 . By (1) λ ∗ µ−1 + cx̃0 or λ + µ, that is, [λ] = [µ].

(3) Suppose x0 and x1 are in X and λ: [0, 1] → X is a path joining x0 to x1. Suppose
y ∈ p−1({x0}). We define a mapping Λ: p−1({x0}) → p−1({x1}) by lifting λ to λy: [0, 1] →
X̃ with λy(0) = y. Define Λ(y) = λy(1). Since λy is uniquely determined by being a lift
of p ◦ λy = λ with λy(0) = y, the function Λ is well-defined. By Lemma 8.3, lifts of λ
beginning at different elements in p−1({x0}) must end at different points in p−1({x1}) and
so Λ is injective. Using lifts of λ−1 we deduce that Λ is surjective.(Notice that a different
choice of λ might give a different one-one correspondence Λ.) ♦

For w: R → S1, w(r) = e2πir, we find that w−1(1 + 0i) = Z ⊂ R and so w−1({z}) is
countably infinite for each z ∈ S1. For p:S2 → RP2, p−1({[±x0]}) contains two elements,
x0 and −x0. In general, if we lift a loop ω: [0, 1] → X at x0 in X, the proof of (3) of
Corollary 8.5 obtains a mapping Ω: p−1({x0}) → p−1({x0}) by lifting the loop. By remark
(1) of the corollary, if Ω is nontrivial, then the loop ω is not homotopic to the constant
map. This observation is enough to prove the following.

Theorem 8.6. A. π1(S1) ∼= Z. B. π1(RP2) ∼= Z/2Z.

Proof of A: If β: [0, 1] → S1 is any loop at 1 ∈ S1, then the lift of β to β̂: [0, 1] → R
satisfies β̂(1) ∈ Z. The properties of liftings determine a function Ξ:π1(S1) → Z given by
[β] /→ β̂(1).

Let α: [0, 1] → S1 given by α(t) = (cos(2πt), sin(2πt)). Since α = w|[0,1], we see that
one lift of α to R is just the identity and α̂(1) = 1. It follows that α is not homotopic to the
constant map at 1, c1. Next consider αn for n ∈ Z, given by αn(t) = (cos(2πnt), sin(2πnt)).
By the same argument for α, α̂n(1) = n and so the mapping Ξ:π1(S1) → Z is surjective.
Since each αn )+ c1 for n )= 0, the subgroup generated by [α], isomorphic to Z, is a subgroup
of π1(S1).

To finish the proof of A, we show that if β is any loop based at 1 in S1, then β + αn

for some n ∈ Z. Let U1 = {(x, y) ∈ S1 | y > −1/10}, and U2 = {(x, y) ∈ S1 | y < 1/10}.
The pair β−1(U1), β−1(U2) is an open cover of [0, 1] and by Lebesgue’s Lemma we can
subdivide [0, 1] as 0 = t0 < t1 < . . . < tm−1 < tm = 1 so that

i) β([ti, ti+1]) ⊂ U1 or β([ti, ti+1]) ⊂ U2 for 0 ≤ i < m.
Form the union of consecutive subintervals when both are mapped to the same Uj j = 1
or 2. In detail, let s0 = 0 and s1 = ti1 where β([0, ti1 ] ⊂ Uj1 for j1 is one of 1 or 2 and
β([ti1 , ti1+1]) )⊂ Uj1 . Let Uj2 )= Uj1 and β([ti1 , ti1+1]) ⊂ Uj2 . Then let s2 = ti2 where
β([ti1 , ti2 ]) ⊂ Uj2 but β([ti2 , ti2+1]) )⊂ Uj2 . Continue in this manner to get

0 = s0 < s1 < · · · < sk−1 < sk = 1

so that
ii) β([sj−1, sj ]) and β([sj , sj+1]) are not both contained in the same Uk, for k = 1, 2.

Let βj : [0, 1] → S1 denote the reparametrization of β|[sj ,sj+1] so that β + β0∗β1∗ . . .∗βk−1,
and each βj is a path in exactly one of U1 or U2. Furthermore, β(sj) ∈ U1∩U2, a subspace
of two components, one of which contains 1 = e2πi0 and the other −1 = eπi. For 0 < j < m
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choose a path λj : [0, 1] → U1 ∩ U2 with λj(0) = β(sj) = βj−1(sj) and λj(1) = 1 or −1,
depending on the component. Define

γ1 = β0 ∗ λ1

γj = λ−1
j−1 ∗ βj−1 ∗ λj for 1 < j < k

γk = λ−1
k−1 ∗ βk−1.

By canceling λj ∗ λ−1
j , β + γ1 ∗ γ2 ∗ . . . ∗ γk. Consider the paths γk. If γk is a closed

path, it lies in U1 or U2 which are simply-connected and so γk + c1 or γk + c−1. If
γk is not closed, then it crosses between the components of U1 ∩ U2. It follows that
γk + η±1

1 or γk + η±1
2 where η1(t) = (cos(πt), sin(πt)), the path joining 1 to −1 in U1, and

η2(t) = (cos(πt+π), sin(πt+π)), the path joining −1 to 1 in U2. Making the cancellations
of the type η1η

−1
1 + c1 or η2η

−1
2 + c−1, we are left with three possibilities:

β + c1, β + η1 ∗ η2 ∗ η1 ∗ η2 ∗ . . . ∗ η1 ∗ η2, or β + η−1
2 ∗ η−1

1 ∗ η−1
2 ∗ . . . ∗ η−1

2 ∗ η−1
1 ,

after cancelling out c±1. The ordering is determined by the fact that β begins and ends at
1, and each γk either joins 1 to −1, joins −1 to 1, or it simply stays put. After cancellation
of the paths that stay put or products of paths that are homotopic to the constant path,
we are left with such a product in that order. Finally, w|[0,1] = α + η1 ∗ η2 and so β + αn

for some n ∈ Z. ♦

. .x x

a

a

0 0

Proof of B: Consider the model of the projective plane given by the di-gon, a disk with
a point on the boundary identified with the point symmetric with respect to the origin.
Let x0 ∈ RP2 be the point x0 = [±(1, 0, 0)]. Let p:S2 → RP2 denote the covering space
p(x) = [±x]. Let the loop a in RP2 denote half of the equator, and lift a to S2. We get a
path â from (1, 0, 0) to (−1, 0, 0) along the equator of S2. By Corollary 8.5, a )+ cx0 . In the
di-gon representation of RP2, a ∗ a = a2 surrounds the disk, and so a2 can be contracted
to cx0 by shrinking to the center of the disk and translating over to x0. It follows that
π1(RP2) contains Z/2Z. To finish, we need show that any loop at x0 is homotopic to an

for some n ∈ Z. Using the di-gon we see that away from the image of the path a2 a path
lies in the contractible interior of a disk. The disk can be used to push any loop onto a
as often as it crosses between the copies of x0. Thus we see that any loop based at x0 is
homotopic to an for some n ∈ Z and so homotopic to a or cx0 . This implies that

π1(RP2) = 〈[a]〉/([a]2 = [cx0 ]) ∼= Z/2Z.

This completes the proof of Theorem 8.6. ♦
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Covering spaces can be developed much further. We refer the reader to [Massey] or
[Lima] for thorough treatments. Let’s turn now to applications. We first return to the
central question of the text:
Invariance of Dimension for (2, n): For n )= 2, Rn and R2 are not homeomorphic.
Proof: We assume that n ≥ 2 since the case of n = 1 is covered in Chapter 5. If Rn ∼=
R2, then, by composing with a translation if needed, we can choose a homeomorphism
f : Rn → R2 for which f(0) = (0, 0). Such a mapping induces a homeomorphism Rn −
{0} ∼= R2 − {(0, 0)}. Since Sn−1 is a deformation retract of Rn − {0}, by Theorem 7.10,
π1(Rn − {0}) ∼= π1(Sn−1). For n > 2, Corollary 7.13 states that π1(Sn−1) ∼= {e}, while,
for n = 2, π1(S1) ∼= Z. Since the fundamental group is a topological invariant, it must be
the case that n = 2. ♦

This argument is characteristic of the power of introducing algebraic structures as
topological invariants of spaces. Our goal in later chapters is to generalize these ideas.

Recall the somewhat unexpected topological property introduced in the exercises of
Chapter 2: A space X has the fixed point property (FPP) if any continuous mapping
f :X → X has a fixed point, that is, there exists a point x0 ∈ X with f(x0) = x0. By
the Intermediate Value Theorem we can prove that the interval [0, 1] has the FPP: if
f : [0, 1] → [0, 1] is continuous, then define g(x) = f(x) − x: [0, 1] → R. If f(0) )= 0 and
f(1) )= 1, then g(0) > 0 and g(1) < 0 and so g must take the value 0 somewhere. If
g(x) = 0, then f(x) = x.

What is the generalization of the space [0, 1] to higher dimensions? Candidates include
[0, 1]× [0, 1] in dimension 2 or maybe the two-disk e2 = {x ∈ R2 | ‖x‖ ≤ 1} = cls B(0, 1).
The choice between these two candidates is irrelevant since the fixed point property is a
topological property and they are homeomorphic. (Can you prove it?) We generalize the
fixed point property for the interval [0, 1] to the two-disk.
Theorem 8.7. (Brouwer’s Theorem in dimension 2). The two-disk e2 = {x ∈ R2 |
‖x‖ ≤ 1} ⊂ R2 has the fixed point property.
Proof: Suppose f : e2 → e2 is a continuous function without a fixed point. Then for each
x ∈ e2, f(x) )= x. Define g: e2 → S1 by

g(x) = intersection of the ray from f(x) to x with S1.

f(x)

x

g(x)

O

X

To see that g(x) is continuous on e2, we apply some vector geometry: write Q = f(x),
Z = g(x). Let O = (0, 0) and define X = (x−Q)/‖x−Q‖. Then, g(x) = Z = Q + tX for
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some t ≥ 0 for which Q + tX ∈ S1, that is, (Q + tX) · (Q + tX) = 1. This condition can
be rewritten to solve for t, namely,

(Q + tX) · (Q + tX) = t2(X · X) + 2t(Q · X) + Q · Q = 1.

The quadratic formula gives

tx = −Q · X +
√

(Q · X)2 + 1−Q · Q

= −f(x) · x− f(x)
‖x− f(x)‖ +

√(
f(x) · x− f(x)

‖x− f(x)‖

)2

+ 1− f(x) · f(x).

Note that this choice of signs gives tx ≥ 0 and tx = 0 implies f(x) = x. Since we have
assumed that this doesn’t happen, tx > 0. Furthermore, tx is a continuous function of x.
We can write g(x) explicitly as

g(x) = f(x) + tx
x− f(x)
‖x− f(x)‖ .

and so g(x) is continuous.
By the definition of the mapping g, if x ∈ S1 ⊂ e2, then g(x) = x. We have

constructed a continuous mapping g: e2 → S1 for which g ◦ i = idS1 , that is, the identity
mapping on S1 can be factored:

idS1 :S1 i−→ e2 g−→S1.

This composite leads to a composite of group homomorphisms and fundamental groups:

id:π1(S1) i∗−→π1(e2) g∗−→π1(S1).

However, π1(e2) = {[c1]} and so g∗ ◦ i∗([α]) = [c1] )= [α] and g∗ ◦ i∗ )= id, a contradiction.
Therefore, a continuous function f : e2 → e2 without fixed points is not possible. ♦

Corollary 8.8. S1 is not a retract of e2.
More powerful tools will be developed in later chapters to prove a generalization of

Theorem 8.7 and its corollary. Brouwer proved this general result around 1911 [11].

We next apply the fact that π1(RP2) ∼= Z/2Z. Recall that RP2 is the space of lines
through the origin in R3. The lower dimensional analogue is the space RP1 consisting of
lines through the origin in R2. We can identify a line with the angle it makes with the
x-axis. To obtain every line through the origin, we only need angles 0 ≤ θ ≤ π where
the x-axis is identified with the angles 0 and π. Hence RP1 ∼= [0,π]/(0 ∼ π) ∼= S1. Thus
π1(RP1) ∼= Z. The analogue of the covering map p:S2 → RP2 in this case is p:S1 → RP1

given by e2πiθ /→ [±e2πiθ]. In fact, p∗:π1(S1) → π1(RP1) is described as a homomorphism
Z → Z given by multiplication by two, because the generator [α] wraps around RP1 twice.
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In Chapter 5 we proved that a continuous mapping f :S1 → R must send some point
and its negative to the same value, that is, there is always a point x0 ∈ S1 with f(x0) =
f(−x0). We can generalize that result to S2.
Theorem 8.9. If f :S2 → R2 is a continuous function, then there exists a point x ∈ S2

with f(x) = f(−x).
We proceed by proving an associated result.
Proposition 8.10. (The Borsuk-Ulam theorem for n = 2.) There does not exist a
continuous function f :S2 → S1 that satisfies f(−x) = −f(x) for all x ∈ S2.
Proof of the Borsuk-Ulam theorem: Assume such a function exists. The condition satisfied
by f can be written f(±x) = ±f(x). It follows that f induces f̂ : RP2 → RP1 and f̂ fits
into a diagram:

S2 f−→ S1'p

'p

RP2 −→̂
f

RP1.

for which p ◦ f = f̂ ◦ p.

Consider the induced homomorphism f̂∗:π1(RP2) → π1(RP1). By Theorem 8.6, f̂∗ is
a homomorphism Z/2Z → Z. However, any such homomorphism must be the trivial
homomorphism. (Do you know why?) Let λ: [0, 1] → S2 denote a path from the north
pole to the south pole along a meridian of constant longitude. It follows that [p ◦ λ] = [α],
a generator for Z/2Z ∼= π1(RP2). Since the north and south pole are antipodal, these
points are identified in RP1 after passage through f and p̄. Hence [p̄ ◦ f ◦ λ] is nontrivial
in π1(RP1). But [p̄ ◦ f ◦ λ] = [f̂ ◦ p ◦ λ] = f̂∗([p ◦ λ]) = 0, a contradiction. ♦

Corollary 8.11. If f :S2 → R2 is a continuous function such that f(−x) = −f(x) for
all x ∈ S2, then f(x) = (0, 0) for some x ∈ S2.
Proof: If not, then g(x) = f(x)/‖f(x)‖ would be a continuous function g:S2 → S1 with
g(−x) = −g(x) for all x ∈ S2. ♦

Proof of Theorem 8.9: Suppose for every x ∈ S2, that f(x) )= f(−x). Then define
g(x) = f(x) − f(−x). Notice that g is continuous, g(−x) = −g(x), and g(x) )= 0 for all
x ∈ S2, a contradiction. ♦

Corollary 8.12. No subset of R2 is homeomorphic to S2.
The corollary tells us that there is no cartographic map homeomorphic to the entire sphere.

Finally, we derive an unexpected corollary of our analysis of the fundamental group
of the circle, namely, the Fundamental Theorem of Algebra. This topological proof gives
a complete proof avoiding the difficulties in the approach of Gauss in Chapter 5 based on
connectedness.
The Fundamental Theorem of Algebra. If p(z) = zn +an−1zn−1 + · · ·+a1z +a0 is
a polynomial with complex coefficients, then there is a complex number z0 with p(z0) = 0.
Proof: Recall that C ∼= R2 and the nth power mapping h: z /→ zn induces a mapping
h:S1 → S1 which can be written as eiθ /→ einθ. Lifting this mapping to the covering space
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w: R → S1, it represents n ∈ Z ∼= π1(S1) via the identification of π1(S1) with Z given by
[β] /→ β̂(1).

Viewed as a mapping, h:S1 → S1, h induces the homomorphism h∗:π1(S1) → π1(S1).
The law of exponents implies that h∗(θ /→ eπimθ) = (θ /→ (eπimθ)n = eπinmθ), that is, h∗
is multiplication by n.

We first consider a special case of the theorem—suppose

|an−1| + |an−2| + · · · + |a0| < 1.

Suppose p(z) has no root in e2 = {z ∈ C | |z| ≤ 1}. Define the mapping p̂: e2 → R2 − {0}
by p̂(z) = p(z). Restricting to S1 = ∂e2 we get p̂|:S1 → R2−{0}. Since p̂| can be extended
to e2, it follows (exercise) that p̂| is homotopic to a constant map. However, consider the
mapping

F (z, t) = zn + t(an−1z
n−1 + · · · + a0),

which gives a homotopy between F (z, 0) = zn and F (z, 1) = p(z). If F (z, t) never vanishes
on S1, the homotopy implies p̂| + zn. To establish this condition, we estimate for |z| = 1,

|F (z, t)| ≥ |zn|−| t(an−1z
n−1 + · · · + a0)|

≥ 1− t(|an−1z
n−1| + · · · + |a0|)

= 1− t(|an−1| + · · · + |a0|) > 0.

As a class in π1(S1), [(z /→ zn)] is not homotopic to the constant map while p̂| is, so we
get a contradiction.

To reduce the general case to this special case, let t ∈ R, t )= 0, and let u = tz. So

p(u) = un + an−1u
n−1 + · · · + a1u + a0

= (tz)n + an−1(tz)n−1 + · · · + a1tz + a0.

If p(u) = 0, then
zn +

an−1

t
zn−1 + · · · + a1

tn−1
z +

a0

tn
= 0.

So given a zero for p(u) we get a zero for p̃t(z) with p̃t(z) = zn +
an−1

t
zn−1 + · · ·+ a0

tn
and

vice versa. Taking t large enough we can guarantee
∣∣∣
an−1

t

∣∣∣ + · · · +
∣∣∣

a1

tn−1

∣∣∣ +
∣∣∣
a0

tn

∣∣∣ < 1

and we can apply the special case. ♦

In Chapter 7 we proved that a subspace A of a space X, which is a deformation retract
of X, shares the same fundamental group as X . Furthermore, if X and Y are homeo-
morphic spaces, they share the same fundamental group. We generalize these conditions
to identify an important relation between spaces.
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Definition 8.13. Two spaces are homotopy equivalent, denoted X + Y , if there are
mappings f : X → Y and g : Y → X with g ◦ f + idY and f ◦ g + idX .

If A ⊂ X is a deformation retract, then there is a mapping r:X → A for which idA =
r ◦ i:A → A and idX + i ◦ r:X → X. Thus A is homotopy equivalent to X and homotopy
equivalence generalizes the relation of deformation retraction. Contractible spaces are
homotopy equivalent to a one-point space so homotopy equivalence is a weaker notion
than homeomorphism.

Proposition 8.14. In a set of topological spaces, homotopy equivalence is an equivalence
relation.

Proof: It suffices to check transitivity since the other properties are clear. Suppose X + Y
and Y + Z via mappings f :X → Y , g:Y → X; t:Y → Z and u:Z → Y . Consider
t ◦ f :X → Z and g ◦ u:Z → X. Then

(g ◦ u) ◦ (t ◦ f) + g ◦ (u ◦ t) ◦ f

+ g ◦ idY ◦ f = g ◦ f + idX

and (t ◦ f) ◦ (g ◦ u) + t ◦ (f ◦ g) ◦ u

+ t ◦ idX ◦ u = t ◦ u + idZ .

Fixing a universe, that is, a set in which all relevant spaces are elements, the equiva-
lence class of a space X is called its homotopy type. The effectiveness of the fundamental
group to distinguish spaces is limited by homotopy equivalence.

Proposition 8.15. If X and Y are homotopy-equivalent spaces via mappings f :X → Y
and g:Y → X, then the induced mappings f∗:π1(X, x0) → π1(Y, f(x0)) and g∗:π1(Y, y0) →
π1(X, g(y0)) are isomorphisms.

Proof: Let H:X × [0, 1] → X be a homotopy between g ◦ f and idX . Let γ: [0, 1] → X
be the path γ(t) = H(x0, t), so that γ(0) = g ◦ f(x0) and γ(1) = x0. We can write the
induced homomorphisms:

π1(X, x0)
f∗−→π1(Y, f(x0))

g∗−→π1(X, g ◦ f(x0))
uγ−→π1(X, x0).

We claim that this composite is the identity homomorphism. Consider [λ] ∈ π1(X, x0).
The result of the composite on this element is the following

[λ] /→ [f ◦ λ] /→ [g ◦ f ◦ λ] /→ [γ−1 ∗ (g ◦ f ◦ λ) ∗ γ].

Apply the homotopy H to get a homotopy from g ◦ f ◦ λ to λ by H(λ(t), s). We use this
homotopy to construct one from γ−1 ∗ (g ◦ f ◦ λ) ∗ γ to λ by reparametrizising according
to the diagram:

10



gfλγ

λ

γ

H(λ(t),s)
γγ

In the triangles, we have taken γ and opened it into a triangle with the pictured curves
given by isobars (constant paths). It follows from the homotopy that [γ−1 ∗(g◦f ◦λ)∗γ] =
[λ]. This implies that f∗ is injective and g∗ surjective. To finish the proof consider the
composite

π1(Y, f(x0))
g∗−→π1(X, g ◦ f(x0))

f∗−→π1(Y, f ◦ g ◦ f(x0))
uη−→π1(Y, f(x0)),

where η: [0, 1] → Y is the path η(t) = H̄(f(x0), t) in the homotopy H̄ between f ◦ g and
idY . The same argument applies mutatis mutandis to show that f∗ is surjective and g∗ is
injective and hence both homomorphisms are isomorphisms. ♦

Homotopy equivalence is cruder than homeomorphism but includes it as a special case.
To give an idea of how crude homotopy equivalence is, notice, for all n, Rn is homotopy
equivalent to a point. The letters of the alphabet as subspaces of R2 show other failures
to distinguish between different topological spaces.

A + D + S1, B + S1 ∨ S1, C + E + F + ∗, . . .

Proposition 8.15 shows that the fundamental group is a homotopy invariant, that
is, if X + Y , then π1(X) ∼= π1(Y ). Thinking of the fundamental group as a filter that
distinguishes spaces, it can only hope to catch homotopy inequivalent spaces. In later chap-
ters we will consider other homotopy invariants. Poincaré [64] introduced the fundamental
group to distinguish certain manifolds that were indistinguishable via other combinatorial
invariants.

Exercises

1. Suppose that f :S1 → S1 has an extension f̂ : e2 → S1, that is, the mapping f̂ satisfies
f̂ ◦ i = f where i:S1 → e2 is the inclusion. Show that f is null-homotopic, that is,
f is homotopic to the constant mapping.

2. Though we will not prove it, one of the useful theorems for computing the fundamental
groups of spaces is the Seifert-van Kampen Theorem [53]. A special case of
this theorem is the following: If a path-connected space X is a union X = U ∪ V
with V simply-connected and x0 ∈ U ∩ V , then the inclusion i:U → X induces a
surjection i∗:π1(U, x0) → π1(X, x0) with kernel given by the smallest subgroup of
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π1(U, x0) containing j∗(π1(U ∩ V, x0)), where j:U ∩ V ↪→ U denotes the inclusion.
Use the descriptions of RP2 of previous chapters and this theorem to make another
computation of π1(RP2).

3. Suppose that X is simply-connected and p: X̃ → X is a covering space of X. Show
that p is a homeomorphism.

4. Let Ω(X, x0) denote the based loop space of X given by

Ω(X, x0) = {λ: [0, 1] → X | λ is continuous and λ(0) = λ(1) = x0}.

This subspace of map(I, X) is topologized with the compact-open topology. Show
that

i) π0(Ω(X, x0)), the collection of path-components of Ω(X, x0) is in one-to-one corre-
spondence with π1(X, x0).

ii) Show that the loop multiplication m:Ω(X, x0)×Ω(X, x0) → Ω(X, x0) given by m(λ, µ)
= λ ∗ µ is a continuous multiplication on Ω(X, x0).

5. We know from Theorem 7.15 and Theorem 8.6 that the fundamental group of the
torus, S1 × S1 is Z × Z. Use the argument for the computation of π1(RP2) ∼= Z/2Z
to prove π1(S1 × S1) ∼= Z× Z by viewing the torus as a quotient of [0, 1]× [0, 1].

6. Let’s make a space—take two distinct 2-spheres, S2, and join them by a line segment—
kinda like dumbbells, but with a very thin connector. Denote this space by X and
show that it is simply-connected.
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9. The Jordan Curve Theorem
It is established then that every continuous (closed)
curve divides the plane into two regions, one exterior,
one interior, . . .

Camille Jordan, 1882

In his 1882 Cours d’analyse [Jordan], Camille Jordan (1838–1922) stated a classical
theorem, topological in nature and inadequately proved by Jordan. The theorem concerns
separation and connectedness in the plane on one hand, and the topological properties of
simple, closed curves on the other.
The Jordan Curve Theorem. If C is a simple, closed curve in the plane R2, that
is, C ⊂ R2 and C is homeomorphic to S1, then R2 − C, the complement of C, has two
components, each sharing C as boundary.

The statement of the theorem borders on the obvious—few would doubt it to be true.
However, mathematicians of the nineteenth century had developed a healthy respect for
the monstrous possibilities that their new researches into analysis revealed. Furthermore,
a proof using rigorous and appropriate tools of a fact that seemed obvious meant that the
obvious was a solid point of departure for generalization.

The proof that follows is an amalgam of two celebrated proofs—the principal part is
based on work of Brouwer in which the notion of the index of a point relative to a curve
plays a key role. Brouwer’s proof was simplified by Erhard Schmidt (1876–1959) (see
[Schmidt] and [Alexandroff]). The second proof, due to J. W. Alexander (1888–1971)
is based on the combinatorial and algebraic notion of a grating (see [Newman]). Although
each proof can be developed independently, the main ideas of combinatorial approximation
and an index provide a point of departure for generalizations that will be the focus of the
final chapters.

A Jordan curve, or simple, closed curve, is a subset C of R2 that is homeomorphic
to a circle. A Jordan arc, or simple arc, is a subset of R2 homeomorphic to a closed
line segment in R. A choice of homeomorphism gives a parameterization of the Jordan
curve or arc, α: [0, 1] → R2, as the composite of the homeomorphism f :S1 → C ⊂ R2

with w: [0, 1] → S1, given by w(t) = (cos 2πt, sin 2πt). A Jordan curve will have many
choices of parameterization α and so relevant properties of the curve C must be shown
to be independent of the choice of α. Notice that the parameterization α: [0, 1] → R2 is
one-one on [0, 1) and α(0) = α(1).

Gratings and arcs

We begin by analyzing the separation properties of Jordan arcs. Choose a homeo-
morphism λ: [0, 1] → Λ ⊂ R2, which parameterizes an arc. Notice that Λ = λ([0, 1]) is
compact and closed in R2 and so R2 − Λ is open.
Separation Theorem for Jordan arcs. A Jordan arc Λ does not separate the plane,
that is, R2 − Λ is connected.
Since R2 is locally path-connected, the complement of Λ is connected if and only if it is
path-connected. An intuitive argument to establish the separation theorem begins with a
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pair of points P and Q in R2 −Λ. We can join P and Q by a path in R2, and then try to
show that the path can be modified to a path that avoids Λ. It may be the case that Λ
is very complicated, and a general proof requires great care to show that you can always
find such a path.

Toward a rigorous argument we introduce a combinatorial structure that will allow us
to make the modifications of paths in a methodical manner and so turn intuition into proof.
The combinatorial structure is interesting in its own right—it combines approximation
and algebraic manipulation, features that will be generalized to spaces in the remaining
chapters. It is the interplay between the topological and combinatorial that makes this
structure so useful. I have followed the classic text of Newman [Newman] in this section.

A square region in the plane is a subset S = [a, a + s]× [b, b + s] ⊂ R2 where a, b ∈ R
and s > 0. The region may be subdivided into rectangles by choosing values

a = a0 < a1 < a2 < · · · < an−1 < an = a+s, b = b0 < b1 < b2 < · · · < bm−1 < bm = b+s,

with subrectangles given by [ai, ai+1] × [bj , bj+1] for 0 ≤ i < n and 0 ≤ j < m. Such
a subdivision is called a grating, introduced by Alexander in [Alexander]. We denote a
grating by G = (S, {ai}, {bj}).

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .. . . . . .
E21E0E

To a grating G we associate the following combinatorial data:
i) E0(G) = {(ai, bj) ∈ R2 | 0 ≤ i ≤ n, 0 ≤ j ≤ m}, its set of vertices or 0-cells;
ii) E1(G) = {PQ | P = (ai, bj) and Q = (ai+1, bj) or (ai, bj+1)}, its set of edges or

1-cells, and
iii) E2(G) = {[ai, ai+1]× [bj , bj+1] ⊂ R2 | 0 ≤ i < n, 0 ≤ j < m} ∪ {O}, its set of faces or

2-cells, where the ‘outside face’ O is the face that is exterior to the grating, that is,
O = R2 − intS.

Including the ‘outside face’ O simplifies the statement of later results.
To emphasis the difference between the combinatorics and the topology, we introduce

the locus of an i-cell, denoted |u| for u ∈ Ei(G), defined to be the subset of R2 that
underlies u. For example, if PQ ∈ E1(G), then |PQ| = {(1 − t)P + tQ | t ∈ [0, 1]} ⊂ R2

when P = (ai, bj) and Q = (ai+1, bj) or P = (ai, bj) and Q = (ai, bj+1). Define the
following subspaces of R2,

sk0(G) =
⋃

u∈E0
|u| = E0(G); sk1(G) =

⋃
u∈E1

|u|; and sk2(G) =
⋃

u∈E2
|u| = R2.

The subspace sk0(G) is a discrete set and sk1(G) is a union of line segments. For topological
constructions with vertices or edges, such as finding boundaries or interiors, we restrict to
these subspaces of R2.
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Suppose we have two elements u, v ∈ E1(G) with u = PQ and v = QR. The
boundaries in the subspace sk1(G) of |u| and |v| are given by bdy sk1 |u| = bdy sk1PQ =
{P,Q} and bdy sk1 |v| = {Q,R}. The union |u| ∪| v| = PQ ∪ QR has boundary {P,R},
because Q has become an interior point in the subspace topology on sk1(G), as in the
picture:

P
Q

R.
We can encode this topological fact in an algebraic manner by associating a union to an
addition of cells and boundary to a linear mapping between sums.
Definition 9.1. Let F2 denote the field with two elements, that is, F2 = Z/2Z. Let the
(vector) space of i-chains on G be defined by Ci(G) = F2[Ei(G)], the vector space over F2

with basis the set Ei(G) for i = 0, 1, 2. The boundary operator on chains is the linear
transformation ∂:Ci(G) → Ci−1(G), for i = 1, 2, defined on the basis by ∂(u) =

∑
l e

i−1
l ,

where ∂(u) is the sum of the i− 1-cells in Ci−1(G) that make up the boundary of the i-cell
u, that is, the sum is over i− 1-cells that satisfy |ei−1

l | ⊂ bdy ski |u|.
For example, the boundary operator on a face ABCD ∈ E2(G) is given by

∂(ABCD) = AB + BC + CD + DA.

A B

CD

A

D CD

B

C

A B

Σ

Elements of Ci(G) take the form
∑n

k=1 ei
k where ei

k ∈ Ei(G) and n is finite. The boundary
operator is extended to sums by linearity, ∂(

∑n
k=1 ei

k) =
∑n

k=1 ∂(ei
k) ∈ Ci−1(G).

The manner in which the combinatorial structure mirrors the topological situation is
evident when we compare the formulas:

∂(PQ + QR) = P + Q + Q + R = P + 2Q + R = P + R; bdy sk1 |PQ| ∪|QR| = {P,R}.

Because 2 = 0 in F2, we can drop the term 2Q. One must be cautious in using these
parallel notions—for example,

P
Q

R.
T

∂(PQ + QR + QT ) = P + Q + R + T ; while bdy sk1 |PQ| ∪|QR| ∪|QT | = {P,R, T}.

To compare chains and their underlying sets, we extend the notion of locus to chains. If
c =

∑n
l=1 ei

l, then the locus of c is

|c| =

∣∣∣∣∣

n∑

l=1

ei
l

∣∣∣∣∣ =
n⋃

l=1

|ei
l|.
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The addition of chains is related to their locus by a straightforward topological condition.
Lemma 9.2. If c1 and c2 are i-chains, then |c1 + c2| ⊂ |c1|∪ |c2|, and |c1 + c2| = |c1|∪ |c2|
if and only if intski |c1| ∩ intski |c2| = ∅.
Proof: Since the locus of an i-cell ei is a subset of |cj | (j = 1, 2) whenever the cell occurs
in the sum cj , the union |c1| ∪| c2| contains the locus of every cell that appears in either
c1 or c2. It is possible for a cell to vanish from the algebraic sum if it occurs once in both
chains. Thus |c1 +c2| ⊂ |c1|∪|c2|. For equality, we need that no i-cell in the sum c1 appear
in c2. The topological condition on the interiors of cells is equivalent to this condition. ♦

Another relation between the combinatorial and the topological holds for 2-chains.
Proposition 9.3. If w ∈ C2(G), then bdy |w| = |∂(w)|.
Proof: Observe that every edge in E1(G) is contained in two faces (for this, you need the
outside face O counted among faces). So, if PQ is an edge in ∂(w), then PQ appears only
once among the boundaries of faces in w. If x is any point of |PQ|, then any open ball
centered at x meets the interior of the face w and the exterior of the set |w| and so x is
in bdy |w|. Conversely, if x ∈ bdy |w|, then x is an element of the locus |PQ| which is an
edge PQ in the boundary of a face e2 in the sum determined by w. Since any open ball
centered at x meets points outside |w|, the face sharing PQ with e2 is not in w and so PQ
is an edge in ∂(w). ♦

A grating can be refined by adding vertical and horizontal lines. We could also expand
the square region, adding cells that extend the given grating.

We leave it to the reader to give an expression for the partition of the square region that
determines a refinement from the data for a grating. By adding lines we can subdivide the
rectangles to have any chosen maximum diameter, no matter how small. We use such an
approximation procedure to avoid certain subsets of the plane.
Lemma 9.4. Let K1 and K2 be disjoint compact subsets of R2 and S a square region with
K1 ∪K2 ⊂ S. Then any grating G of S can be refined to a grating G∗ so that no cell of G∗
meets both K1 and K2.
Proof: Since K1 and K2 are disjoint and compact, there is a distance ε > 0 such that, for
any x ∈ K1 and y ∈ K2, d(x, y) ≥ ε. Given the grating G, subdivide the square further so
that the diameter of any rectangle is less than ε/2. If the locus of a cell contains points x
and y, then d(x, y) < ε/2 and so it cannot be that x ∈ K1 and y ∈ K2. ♦

We next consider how the combinatorial data are affected by refinement. Of course,
certain vertices will be added, edges subdivided and added, and faces subdivided. If G is
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refined to a grating G∗ and c ∈ Ci(G), then we write c∗ ∈ Ci(G∗) for the i-chain consisting
of the the i-cells involved in the subdivision of the i-cells in c. For example, if a 2-cell
ABCD is refined by adding a horizontal and a vertical line, then AB is subdivided as
AMB, BC as BNC, CD as CM ′D and DA as DN ′A, and we add the vertex P where
MM ′ meets NN ′. Then c∗ = AMPN ′ + MBNP + NCM ′P + M ′DN ′P . Refinement
does not change the locus of an i-cell, that is, |c| = |c∗|.
Lemma 9.5. If c1 and c2 are i-chains in Ci(G), then (c1+c2)∗ = c∗1+c∗2 and (∂c1)∗ = ∂(c∗1).
Proof: When we subdivide an i-cell, the number of times (once or not at all) it appears
in an i-chain is the same for the parts that constitute its subdivision. Thus the number
of times the i-cell appears in the sum will be the same as the number of times the parts
appear in the sum of the refined chains and (c1 + c2)∗ = c∗1 + c∗2.

As for the boundary operator, for 1-chains, subdivision introduces a new intermediate
vertex, shared by the 1-cells of the subdivided edge. Thus the new vertices do not appear
in ∂(c∗); since refinement does not affect the 0-cells of G, we have ∂(c∗) = ∂(c) = (∂c)∗.
For 2-chains,

|∂(c∗1)| = bdy |c∗1| = bdy |c1| = |∂(c1)| = |(∂c1)∗|.

Since ∂(c∗1) and (∂c1)∗ are 1-chains in G∗ with the same loci, they are the same 1-chains.♦

The combinatorial data provided by chains can be used to study the connectedness of
subsets of R2.
Definition 9.6. The components of an i-chain c ∈ Ci(G) are the components of its
locus, |c| ⊂ R2. We say that two vertices P and Q in a grating G can be connected if
there is a 1-chain λ ∈ C1(G) with ∂(λ) = P + Q. A subset A ⊂ R2 separates the vertices
P and Q in R2 −A if any 1-chain λ connecting P to Q meets A (that is, |λ| ∩A ,= ∅).

We investigate how these combinatorial notions of component and connectedness com-
pare with the usual topological notions.
Proposition 9.7. Suppose G is a grating. If c is an i-chain and c = c1 + · · ·+ cn where
each cj is a maximally connected chain, then the components of |c| are the loci |cj |.
Proof: If cj is a maximally connected chain in c, then its locus is connected and |cj | does
not meet the loci of the other chains cm, j ,= m, because if |cj |∩| cm| ,= ∅, then the chains
share an edge (i = 2) or a vertex (i = 1, 2). In this case, |cj |∪|cm| is connected and cj +cm

is a connected chain larger than cj or cm and hence they are not maximal, a contradiction.
Thus the components of c are the maximally connected chains in the sum determined by
the chain c. ♦

Proposition 9.8. If A ⊂ R2 is compact and P and Q are points in R2 − A, then there
is a path in R2 −A connecting P to Q if and only if there is a grating G for which P and
Q are vertices, and there is a 1-chain λ with P + Q = ∂(λ).
Proof: Suppose we are given a grating G. If ω is a 1-chain, then we first show that the
boundary ∂(ω) has an even number of vertices. We prove this by induction on the number
of 1-cells in the 1-chain. If ω has only one 1-cell, then ω = PQ and ∂(ω) = P + Q,
two vertices. Suppose ω =

∑n
i=1 e1

i . Then ∂(ω) = ∂(e1
1) +

∑n
i=2 ∂(e1

i ). By induction,∑n
i=2 ∂(e1

i ) is a sum of an even number of vertices. We add to this sum ∂(e1
1) which
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consists of two vertices. If either vertex appears in
∑n

i=2 ∂(e1
i ), then the pair cancels and

parity is preserved. Thus ∂(ω) is a sum of an even number of vertices.
Suppose that P +Q = ∂(λ) for some 1-chain λ ∈ C1(G). If λ = λ1 + · · ·+λn with each

λi a maximally connected 1-chain in λ, then ∂(λ) = ∂(λ1)+· · · ∂(λn) = P +Q. Since P and
Q must be part of the sum, we can assume that P +stuff1 = ∂(λ1) and Q+stuff2 = ∂(λn).
Since all the extra stuff must cancel to give ∂(λ) = P + Q, any vertex appearing in stuff1

joins λ1 to another component and so such components were not maximal. Arguing in
this manner, we can join P to Q by a connected 1-chain. One can then parameterize the
locus of that 1-chain giving a path joining P to Q.

Finally, suppose P and Q are in R2 − A, an open set. If we can join P to Q by
a continuous mapping in R2 − A, then the image of that path is compact and so some
distance ε > 0 away from A. Working in the open balls of radius ε/2 around points along
the curve joining P to Q, we can substitute the path with a path made up of vertical
and horizontal line segments. After finding such a path, we extend the line segments to a
grating in which the polygonal path is the locus of a 1-chain λ with ∂(λ) = P + Q. ♦

Since a grating G = (S, {ai}, {bj}) is described by finite sets, we can develop some of
the purely combinatorial properties of these sets. In particular, the sets Ei(G) are finite,
and so we can form the sum of all i-cells into a special i-chain, the total i-chain, denoted

Θi =
∑

ei∈Ei(G)
ei.

Notice that ∂Θ2 = 0. This follows from the fact that every edge is contained in exactly
two cells.

The classes Θi give an algebraic expression for the complement of an i-chain c, which
is denoted by Cc, and defined to be Cc =

∑
l e

i
l, where the sum is over all i-cells ei

l that
do not appear in the sum c. This sum is easily recovered by observing

Cc = c + Θi.

Any i-cell appearing in the sum c is cancelled by itself in Θi, leaving only the i-cells that
did not appear in c.

It is an immediate consequence of the formulas Cc = c + Θi and ∂Θ2 = 0 that if a
1-chain λ is the boundary of a 2-chain, then λ = ∂(w) = ∂(Cw), and so it is the boundary
of two complementary 2-chains. This follows from the algebraic version of the complement

∂(Cw) = ∂(w + Θ2) = ∂(w) + ∂(Θ2) = λ.

The complement operation leads to a combinatorial version of the Jordan Curve Theorem.
Definition 9.9. An i-chain c ∈ Ci(G) is an i-cycle if ∂(c) = 0.
Theorem 9.10. Every 1-cycle on a grating G is the boundary of exactly two 2-chains.
Proof: First observe that the only 2-cycles are 0 and Θ2. This follows from Proposition 9.3
that |∂(c)| = bdy |c| for 2-chains. Any nonzero 2-chain c, with c ,= Θ2, has a nonempty
boundary and so is not a 2-cycle.
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We prove the theorem by induction on the number of lines involved in the grating.
The minimal grating has only the boundary lines of the square region S as edges. The
only 2-cells are ABCD and O both of which satisfy

∂(O) = ∂(ABCD) = AB + BC + CD + DA.

Furthermore, the only nonzero 1-cycle for this grating is AB + BC + CD + DA = Θ1, so
the theorem holds.

Suppose that the theorem holds for a grating G and we refine G to G∗ by adding
a single vertical line '. (The argument for adding a single horizontal line is analogous.)
Suppose that z is a 1-cycle in C1(G∗). Define c! to be the 2-chain which is the sum of all
2-cells with right edges that are on ' and in the sum z.

z

cl

By cancellation, z + ∂(c!) has no edges on ' and so we can consider z + ∂(c!) as a 1-chain
on G. Furthermore, ∂(z + ∂(c!)) = ∂(z) + ∂∂(c!) = 0, so z + ∂(c!) is a 1-cycle. Since the
theorem holds for G, z + ∂(c!) = ∂(c) for some c ∈ C2(G). The 2-chain c∗ + c! ∈ C2(G)
has boundary given by

∂(c∗ + c!) = (z + ∂(c!))∗ + ∂(c!) = (z + ∂(c!)) + ∂(c!) = z.

Thus z is the boundary of c∗+c!. It is also the boundary of the complement of this 2-chain,
C(c∗ + c!) = c∗ + c! + Θ2 ∈ C2(G∗). This follows from ∂Θ2 = 0.

Finally, we check that no other 2-cell has z as boundary. Suppose b, b′ ∈ C2(G). If
∂(b) = ∂(b′), then ∂(b + b′) = 0 and so b + b′ = 0 or b + b′ = Θ2. Then b = b′ or b = Cb′.
Thus, at most two 2-cells can have z as boundary. ♦

On a grating, a 1-cycle that is simple (connected without crossings) is a Jordan curve.
Theorem 9.10 is a combinatorial version of the Jordan Curve Theorem. The next theorem
uses what we have developed so far to establish a general result about separation. It is the
key lemma in the proof of the Separation Theorem for Jordan arcs.
The Alexander Theorem. Suppose K and L are compact subsets of R2 and G a grating
of a square S with K ∪L ⊂ S. If P +Q = ∂(λ1) in R2−K and P +Q = ∂(λ2) in R2−L,
and λ1 + λ2 = ∂(w) with |w| ∩K ∩ L = ∅, then P is connected to Q by a path that does
not meet K ∪ L.
Proof: Since |w| ∩ K ∩ L = ∅, the compact sets |w| ∩ K and |w| ∩ L are disjoint. By
Lemma 9.3 there is a refinement G∗ of the grating for which no 2-cell meets both |w| ∩K
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and |w|∩L. Let wK =
∑

i e2
i ∈ C2(G∗) where the sum is over the set {e2

i | e2
i is a 2-cell in

w∗ and |e2
i | ∩K ,= ∅}. Define the 1-chain λ0 = λ∗2 + ∂(wK). It follows immediately that

∂(λ0) = ∂(λ∗2 + ∂(wK)) = ∂(λ∗2) = P + Q.

We know that λ∗2 does not meet L. Since none of the faces of G∗ meet both |w| ∩K and
|w| ∩ L, wK does not meet L.

To prove the theorem we show that λ0 does not meet K. Consider the loci:

|λ0| = |λ∗2 +∂(wK)| = |λ∗1 +(λ∗1 +λ∗2 +∂(wK))| = |λ∗1 +∂(w∗+wK)| ⊂ |λ1|∪bdy |w∗+wK |.

By assumption, λ1 does not meet K and so λ∗1 does not meet K. In the sum w∗ + wK ,
any 2-cells of w∗ that meet K are cancelled by wK and so w∗ + wK does not meet K.
Therefore, |λ0|∩K = ∅. Since λ0 joins P and Q and does not meet K ∪L, the theorem is
proved. ♦

Corollary 9.11. Suppose Λ is a Jordan arc and λ: [0, 1] → Λ ⊂ R2 is a parameterization.
Let L1 = λ([0, 1/2]) and L2 = λ([1/2, 1]). If P is connected to Q in R2−L1 and in R2−L2,
then P is connected to Q in R2 − Λ.
To prove the corollary, simply choose paths that avoid λ(1/2) = L1 ∩ L2.

We deduce immediately that if Λ separates P from Q, then one of L1 or L2 separates
P from Q. From this observation we can give a proof of the Separation Theorem for
Jordan arcs. Suppose a Jordan arc Λ separates P from Q, then one of the subsets L1 or
L2 separates P from Q. Say it is L1. Then L1 = λ([0, 1/4]) ∪ λ([1/4, 1/2]) and one of
these subsets must separate P from Q by Corollary 9.11. We write L1i2 for a choice of
subset that separates P from Q. Halving the relevant subset of [0, 1/2] again we can write
L1i2 = L1i21 ∪L1i22 and one of these subsets must separate P from Q. Continuing in this
manner we get a sequence of nested compact subsets:

· · · ⊂ L1i2···in−1in ⊂ L1i2···in−1 ⊂ · · ·L1i2 ⊂ L1

with the property that each subset separates P from Q. By the intersection property of
nested compact sets (Exercise 6.3),

⋂
n
L1i2···in = R, a point on Λ. Since the endpoints

of the L1i2···in constitute a series that converges to R, given an ε > 0, there is a natural
number N for which L1i2···in ⊂ B(R, ε) for n ≥ N . By choosing a grating G to contain P
and Q as vertices and for which the subset B(R, ε) ⊂ int|w| for some w ∈ E2(G), we can
join P to Q without meeting L1i2···iN , a contradiction. It follows that Λ does not separate
P from Q and the theorem is proved. ♦

From this point it is possible to give a proof of the Jordan curve theorem using the
methods developed so far. Such a proof is outlined in the exercises (or see [Newman]). We
instead use the fundamental group to introduce an integer-valued index whose properties
lead to a proof of the Jordan Curve Theorem.
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The Index of a point not on a Jordan curve

Suppose that Ω ∈ R2 − C is a point in R2 not on a Jordan curve C. To the choice of
Ω and a parametrization of C, α: [0, 1] → C ⊂ R2, we associate

indΩ(α) = [α] ∈ π1(R2 − {Ω},α(0)),

that is, indΩ(α) is the homotopy class of the closed curve α in the fundamental group of
R2−{Ω} based at α(0). Since the plane with a point removed has the homotopy type of a
circle, indΩ(α) determines an integer via a choice of an isomorphism π1(R2− {Ω},α(0)) ∼=
Z. The integer is determined up to a choice of sign and so we write indΩ(α) = ±k ∈ Z
when convenient. We call the choice of integer indΩ(α) the index of Ω with respect to α.
Example: Suppose .ABC is a triangle in the plane and Ω is an interior point. Since
.ABC / S1 and Ω may be chosen as a center of S1, indΩ(.ABC) = ±1.

We develop the properties of the index from the basic properties of the fundamental
group (Chapters 7 and 8).
Lemma 9.12. If ' is a line in the plane that does not meet C, and Ω and C lie on opposite
sides of ', then indΩ(α) = 0 for any parameterization of C.

Ω

l

C

Z

Proof: Let Z be a small circle centered at Ω entirely in the half-plane determined by ' and
Ω. We can take Z as the copy of S1 which generates π1(R2 − {Ω}). Since C is compact
and lies on the side of ' opposite Ω, all of C lies in an angle with vertex Ω that is less
than two right angles. In the deformation retraction of R2 − {Ω} to Z, C will be taken
to a part of Z where it can be deformed to a point. Thus indΩ(α) = 0 for any choice of
parameterization of C. ♦

The next result takes its name from the shape of the Greek letter θ. Suppose that C
is parameterized in two parts as α ∗ γ: [0, 1] → C ⊂ R2, where α(t) parameterizes part of
the curve, and then γ(t) takes over to end at γ(1) = α(0). Recall that

α ∗ γ(t) =
{

α(2t), 0 ≤ t ≤ 1/2,
γ(2t− 1), 1/2 ≤ t ≤ 1.
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Suppose that there is a Jordan arc, parameterized by β: [0, 1] → R2, joining α(1) = β(0)
to α(0) = β(1), for which β(t) /∈ C for 0 < t < 1. Then we have three loops beginning at
α(0), namely,

ω0 = α ∗ γ, ω1 = α ∗ β, and ω2 = β−1 ∗ γ,

where β−1(t) = β(1 − t). The index of a point Ω that does not lie on C or on β can be
computed for ω0, ω1 and ω2. The next result relates these values.
The Theta Lemma. In π1(R2 − {Ω},α(0)), we have indΩ(ω0) = indΩ(ω1) + indΩ(ω2) .

α(1) = γ(0)

α(0) = γ(1)

β

γ
α

Proof: The binary operation on π1(R2− {Ω},α(0)) is path composition, ∗, which we write
as + since π1(R2 − {Ω},α(0)) ∼= Z. The lemma follows from the fact that β ∗ β−1 / cα(0),
the constant loop at α(0), which is the identity element in the fundamental group:

indΩ(ω0) = indΩ(α∗γ) = [α∗γ] = [α∗β∗β−1∗γ] = [α∗β]+[β−1∗γ] = indΩ(ω1)+indΩ(ω2).♦

The next property of the index is crucial to the proof of the Jordan curve theorem.
Lemma 9.13. If Ω and Ω′ lie in the same path component of R2 − C, then indΩ(α) =
indΩ′(α) for any parameterization of C.
Proof: Suppose λ: [0, 1] → R2−C is a piecewise linear curve joining Ω = λ(0) to Ω′ = λ(1).
Because R2 is locally path-connected, and R2 − C is an open set, if Ω and Ω′ are in the
same path component, then it is possible to join them by a piecewise linear curve. We
first assume that λ is, in fact, the line segment ΩΩ′. In the general case, λ will be a finite
sequence of line segments connected at endpoints. An induction on the number of such
segments completes the argument.

Since the line segment determined by ΩΩ′ and C are compact, there is some distance
ε > 0 between the sets and using this distance we can find a closed rectangle around ΩΩ′

with the line segment in the center and which is homeomorphic to [ε, 1+ε]× [−ε, ε]. We use
this closed rectangle, contained in R2 − C, to construct a homeomorphism F : R2 − {Ω}→
R2 − {Ω′} that leaves C fixed and so induces an isomorphism

F∗:π1(R2 − {Ω},α(0)) −→ π1(R2 − {Ω′},α(0)),

that sends [α] 1→ [α]. We construct the homeomorphism on the rectangle by first fixing a
nice orientation preserving homeomorphism of [ε, 1+ ε]× [−ε, ε] to the rectangle that takes
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[0, 1] × {0} to ΩΩ′. Then make the desired homeomorphism on [ε, 1 + ε] × [−ε, ε]. It is
easier to picture the stretching map that will take 0 to 1.

[-ε, 1+ε] x [-ε,ε] [-ε, 1+ε] x [-ε,ε]

0
1

0
1

The second parameter, r ∈ [−ε, ε], is a scaling factor and along each horizontal line segment

[−ε, 1+ ε]×{r}, we stretch toward the right, pushing [−ε, 0] onto [−ε, 1− |r|
ε

] and [0, 1+ ε]

onto [1− |r|
ε

, 1 + ε]. The stretch is the identity along the boundary of the rectangle. The
graph of the stretch for various r is shown here:

1+ε
−ε

1

1− ε
|r|

1+εr=0

r=1

r

Pasting this change, suitably scaled and rotated, into R2−C is possible because the stretch
is the identity at the boundary. So we can cut out the first closed rectangle and sew in the
stretched one to get the desired homeomorphism.

Finally, orienting the boundary of the closed rectangle, we can take its homotopy class
as the loop that generates the fundamental group of both spaces R2− {Ω} and R2− {Ω′}.
Thus, the induced isomorphism F∗ takes [α] to [α] and so indΩ(α) = indΩ′(α) via the
isomorphism. ♦

The constancy of index along a path and the Theta Lemma have the following im-
portant consequence. Suppose that ' is a line not passing through C, and Ω a point in
the half-plane determined by ' opposite C. Choose points P and Q on the curve such
that the line segments PΩ and QΩ do not meet C except at the endpoints. Parameter-
ize C by α: [0, 1] → C ⊂ R2 with α(0) = P and α(t0) = Q. Let γ1 = α ◦ f1 where
f1: [0, 1] → [0, t0] is given by f1(s) = t0s. Let γ2 = α ◦ f2 where f2: [0, 1] → [t0, 1] is given
by f2(s) = (1− t0)s + t0. Then α / γ1 ∗ γ2. Finally, let l1: [0, 1] → R2 and l2: [0, 1] → R2

be the line segments, l1(t) = (1− t)α(t0) + tΩ, and l2(t) = (1− t)Ω + tα(0), for t ∈ [0, 1].
These data give the hypotheses for the Theta Lemma with ω0 = γ1 ∗ γ2, ω1 = γ1 ∗ (l1 ∗ l2)
and ω2 = (l1 ∗ l2)−1 ∗ γ2.
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Ω

α(0)

α(t  )0

γ1

γ2

x
y.

.

l

Ω

α(0)

x.

y.

Q=

=P

γ1

γ2
α(t  )0

Suppose x that lies on γ1 and y lies on γ2. Then we can compute the integers ±k1 =
indy(ω1) and ±k2 = indx(ω2).
Lemma 9.14. Suppose that R is a point in R2−(C∪PΩ∪QΩ) and suppose that indR(ω1) ,=
indy(ω1) or indR(ω2) ,= indx(ω2). Then R can be joined to Ω by a path in R2 − C.
Proof: Suppose that indR(ω1) ,= ±k1. Since γ1 does not separate the plane, there is a
path joining R to Ω that does not meet γ1. Suppose ζ: [0, 1] → R2 is such a path with
ζ(0) = R and ζ(1) = Ω, and im ζ ∩ im γ1 = ∅. Suppose t1 is the first value in [0, 1] with
ζ(t1) on l1 ∗ l2, that is, on either line segment PΩ or ΩQ. Then for 0 ≤ t < t1, indζ(t)(ω1)
is constant. If ζ(t) meets γ2 for some 0 ≤ t < t1, then

k1 ,= indR(ω1) = indζ(t)(ω1) = indy(ω1) = k1,

a contradiction. Thus ζ on [0, t1) does not meet γ1 or γ2 and so joining ζ restricted to
[0, t1] to the line segment ζ(t1)Ω gives a path from R to Ω. ♦

A proof of the Jordan Curve Theorem

To complete a proof of the Jordan Curve Theorem, consider the following subsets of
R2 − C:

U = {Ω ∈ R2 − C | indΩ(α) = 0}, V = {R ∈ R2 − C | indR(α) ,= 0}.

For a pair of points, Ω ∈ U and R ∈ V , there is no path joining them because their indices
do not agree. It is clear that U ,= ∅ because C is compact and there are lines in the plane
that separate the curve from points of index zero. We first prove that V ,= ∅ and then
show that U and V are path-connected.

Let ' be a line that does not pass through C. Let Ω lie on the side of ' opposite C.
Introduce the lines ΩP and ΩQ meeting C at points P = α(0) and Q = α(t0), respectively,
for some parameterization α: [0, 1] → C ⊂ R2. Introduce the curves γ1 = α ◦ f1: [0, 1] → R2

with f1(s) = t0s, and γ2 = α◦f2: [0, 1] → R2 with f2(s) = (1−t0)s+t0. Thus α / γ1∗γ2 =
ω0. As in the proof of Lemma 9.14, let l1(t) = (1− t)Q + tΩ and l2(t) = (1− t)Ω + tP for
t ∈ [0, 1]. Form the curve ω1 = γ1 ∗ (l1 ∗ l2), which travels from α(0) along C to α(t0) = Q,
follows QΩ to Ω, then ΩP to P = α(0), and ω2 = (l1 ∗ l2)−1 ∗ γ2, which first travels from
P along PΩQ, then follows γ2 around back to P .

We introduce some other curves in this situation. Let ' meet ΩP at R and ΩQ at S.
If l3(t) = (1 − t)S + tR, l4(t) = (1 − t)Q + tS and l5(t) = (1 − t)R + tP , then the curve
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ω3 = l5 ∗ γ1 ∗ l4 ∗ l3 together with the triangle .RSΩ satisfy the conditions for the Theta
Lemma. Parametrize the triangle as l−1

3 ∗ l′1 ∗ l′2 = ., l′1 and l′2 being l1 and l2 from S
and to R, respectively. The full curve in the Theta Lemma is ω′

1 / . ∗ ω3 where ω′
1 is

ω1 reparameterized to begin and end at R. Suppose that q is a point in the interior of
the triangle .RSΩ. Then we know that indq(.) = ±1. We apply the Theta Lemma to
compute

indq(ω1) = indq(ω′
1) = indq(.) + indq(ω3) = ±1 + 0 = ±1.

We know that indq(ω3) = 0 since we can separate q from ω3 by a line parallel to ' but
close to '.

l

Ω

α(0)

α(t )0

q

S

R

x
y

γ 2

γ 1
q'

w zT

Since indq(ω0) = 0, we find indq(ω2) = ∓1 because indq(ω0) = indq(ω1) + indq(ω2).
Extend the ray −→Ωq to meet γ1 first at x, to meet γ2 last at y. We can compute the indices
±k1 = indy(ω1) and ±k2 = indx(ω2) from these points. If T lies on −→Ωq far from C, then
indT (ω1) = 0. Since −→Ωq meets γ2 last, by Lemma 9.13, indT (ω1) = indy(ω1) = 0 = k1.
Since −→Ωq meets γ1 first at x, indx(ω2) = indq(ω2) = ∓1 = ±k2.

Suppose −→Ωq meets γ1 last at q′ and the next meeting with C is at w. Let z lie on −→Ωq
between q′ and w. Then indz(ω1) = indw(ω1) = indy(ω1) = 0. We also have indz(ω2) =
indq′(ω2) = indx(ω2) = ∓1. Since indz(α) = indz(ω0) = indz(ω1)+indz(ω2) = 0+∓1 ,= 0,
we have found z ∈ V and so V ,= ∅. Thus R2 − C has at least two components.

We next show that U and V are path-connected. The main tool is Lemma 9.14.
Suppose Ω′ ∈ U , that is, Ω′ ∈ R2 − C and indΩ′(α) = 0. Since indΩ′(α) = indΩ′(ω1) +
indΩ′(ω2), and indΩ′(α) = 0, either both indΩ′(ωi) are zero or both nonzero. In both cases,
the values do not agree with k1 = 0 and k2 = ∓1. By Lemma 9.14, there is a path joining
Ω′ to Ω and so U is path-connected.

Ωq
x

y

η 2

η1

q'
w zT

y'

x'
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Suppose that M is a point in V . We have shown that the point z constructed from
the intersection of the ray −→Ωq with C is also in V . It suffices to show that there is a path
joining M to z. We apply Lemma 9.14 again. Reparameterize C, β: [0, 1] → C ⊂ R2, with
q′ = β(0) and w = β(t0). Let η1 = β ◦ f1 and η2 = β ◦ f2 with f1 and f2 as before.
The curve C is now parameterized with β / η1 ∗ η2. Also indM (β) = indM (α) ,= 0. Let
L1(t) = (1− t)w + tz, L2(t) = (1− t)z + tq′. Then

η1 ∗ η2 / (η1 ∗ L1 ∗ L2) ∗ (L−1
2 ∗ L−1

1 ∗ η2).

Let η1 ∗ L1 ∗ L2 = ω1 and L−1
2 ∗ L−1

1 ∗ η2 = ω2, Take x′ on η1, y′ on η2, not lying on
the line ΩT . Since Ω and T are far from the curves, indΩ(ωi) = 0 = indT (ωi). Recall
that x and q′ were on γ1, the same parameter range of C, and so x ∈ η1. It follows that
±k2 = indx′(ω2) = indx(ω2) = indΩ(ω2) = 0. Similarly, ±k1 = indy′(ω1) = indT (ω1) = 0.

We can now apply Lemma 9.14, this time with k1 = k2 = 0. Since indM (α) ,= 0, there
is a path joining M to z. Thus V is path-connected and we have proved the Jordan Curve
Theorem. ♦

Although we have developed some sophisticated notions to prove so intuitively simple
an assertion, the proof has the virtues of being rigorous and that it features some ideas
that we can develop, namely, the combinatorial and algebraic object given by a grating
and the association of an integer or group-valued index to topological objects with nice
properties. In the following chapters these ideas take center stage.

Exercises

1. Suppose that X and Y are points in R2 and G is a grating with X and Y lying in
the interior of two faces in G. A 1-cycle λ is non-bounding if any 2-chain w with
∂(w) = λ must contain one of the faces containing X or Y . Show that the sum of two
non-bounding 1-cycles is not non-bounding.

2. Using the previous exercise, prove that a Jordan curve separates the plane into at
most two components. (Hint: Suppose x, y and z are vertices of a grating G that
contains C. Split the curve into two parts, C = α([0, 1/2]) ∪ α([1/2, 1]), that do not
separate the points and join them by 1-chains. The subsequent sums are 1-cycles that
are non-bounding in the complement of {α(0),α(1/2)}.)

3. Prove that R2 − C has at least two components using exercise 1.

4. Give an alternate proof of the Separation Theorem for Jordan arcs along the following
lines: If Λ is parameterized by λ: [0, 1] → Λ ⊂ R2, then consider the subset R = {r ∈
[0, 1] | [0, r] does not separate the plane}. Show that R is nonempty, open and closed.

14



5. Suppose that α: [0, 1] → C ⊂ R2 and β: [0, 1] → C ⊂ R2 are parameterizations of a
Jordan curve C and Ω is a point in R2 − C. Show that indΩ(α) = ±indΩ(β). Show by
example that the sign can change with the parameterization.

6. Suppose K is a subset of R2 that is homeomorphic to a figure eight (the one-point
union of two circles). Generalize the Jordan Curve Theorem to prove that R2 − K
has three components.

15



10. Simplicial Complexes

The upshot was that he (Poincaré) introduced an entirely new
approach to algebraic topology: the concept of complex and the
highly elastic algebra going so naturally with it.

Solomon Lefschetz, 1970

The gratings of the previous chapter have two nice features—they provide approxi-
mations to compact spaces that can be refined to any degree of necessity, and they enjoy
a combinatorial and algebraic calculus. These aspects are greatly extended in this chapter
and the next. We replace a grating of a square in the plane with a simplicial complex, a
particular sort of topological space defined by combinatorial data. Continuous mappings
between simplicial complexes can be defined using the combinatorial data. By refining
simplicial complexes, we can approximate arbitrary continuous mappings by these combi-
natorial ones. Approximations are related by homotopies between mappings, giving the
homotopy relation further importance. In the next chapter, we will introduce the algebraic
structures associated to the combinatorial data. We begin with the basic building blocks.
Definition 10.1. A set of vectors S = {v0, . . . ,vn} in RN for N large is in general
position if the set {v0 − vn,v1 − vn, . . . ,vn−1 − vn} is linearly independent. A set
S = {v0, . . . ,vn} in general position is called an n-simplex or a simplex of dimension
n and it determines a subset of RN defined by

∆n[S] = {t0v0 + t1v1 + · · · + tnvn ∈ RN | ti ≥ 0, t0 + · · · + tn = 1}
= convex hull({v0, . . . ,vn}).

If the set S = {v0, . . . ,vn} is not in general position, then we say that the n-simplex
determined by S is degenerate.

}][{D1 v0 v1, [{ }]v3v0 v1 v2D3 , , ,v0 v1 v2}][{D2 , ,

For example, a triple {v0,v1,v2} is in general position if the points are not collinear. A 0-
simplex ∆0[{v0}] is simply the point v0 ∈ RN . A 1-simplex {v0,v1} determines a line seg-
ment ∆1[{v0,v1}]; ∆2[{v0,v1,v2}] is a triangle (with its interior) and ∆3[{v0,v1,v2,v3}]
is a solid tetrahedron. In general we write ∆n = ∆n[S] when there is no need to be specific
about vertices. When a vertex is repeated, the simplex is degenerate. Degenerate simplices
will be important when discussing mappings between simplicial complexes.

In what follows, the combinatorics of sets of vertices play the principal role. We
will assume that the vertices determining a simplex are ordered. This assumption is for
convenience; in fact, coherent orderings around a simplicial complex determine a useful
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topological property, orientability (see [Croom], [Giblin]), an extra bit of structure to be
developed another day.

A point p ∈ ∆n may be specified uniquely by the coefficients (t0, t1, . . . , tn). To see
this suppose

t0v0 + t1v1 + · · · + tnvn = t′0v0 + t′1v1 + · · · + t′nvn.

Then (t0 − t′0)v0 + · · · + (tn − t′n)vn = 0. Since
∑n

i=0 ti =
∑n

i=0 t′i = 1, it follows that∑n
i=0(ti − t′i) = 0, and so tn − t′n =

∑n−1
i=0 −(ti − t′i). In particular,

(t0 − t′0)v0 + · · · + (tn − t′n)vn = (t0 − t′0)(v0 − vn) + · · · + (tn−1 − t′n−1)(vn−1 − vn) = 0.

Because the set {v0−vn,v1−vn, . . . ,vn−1−vn} is linearly independent, we deduce that
ti = t′i for all i and so the coefficients are uniquely determined by p. The list of coefficients
(t0, t1, . . . , tn) is called the barycentric coordinates of p ∈ ∆n.

Although ∆n[{v0, . . . ,vn}] is a subspace of RN , as a topological space, it is determined
by the barycentric coordinates.
Proposition 10.2. Let ∆n denote the subspace of Rn+1 given by ∆n = {(t0, . . . , tn) ∈
Rn+1 | t0 + · · ·+ tn = 1, ti ≥ 0}. If S = {v0, . . . ,vn} is a set of vectors in general position
in RN , then ∆n[S] is homeomorphic to ∆n.
Proof: The mapping φ:∆n → ∆n[S] given by φ(t0, . . . , tn) = t0v0 + · · · + tnvn is a
bijection by the uniqueness of barycentric coordinates. The mapping φ is given by matrix
multiplication and so is continuous. The inverse of φ is given by projections on a subspace,
and so it too is continuous. ♦

The topological properties of ∆n are shared with ∆n[S] for any other n-simplex. For
example, as a subspace of RN , ∆n[S] is compact because ∆n is closed and bounded in
Rn+1.
Proposition 10.3. The points p ∈ ∆n[S] with barycentric coordinates that satisfy ti > 0
for all i form an open subset of ∆n[S] (as a subspace of RN ); p is in the boundary of
∆n[S] if and only if ti = 0 for some i.
Proof: In ∆n ⊂ Rn+1, the subset of points with barycentric coordinates ti > 0 is the
intersection of the open subsets Ui = {(t0, . . . , tn) ∈ Rn+1 | ti > 0} with ∆n and so it is
an open subset of ∆n. Its homeomorphic image in ∆n[S] is also open in ∆n[S].

We can extend the mapping φ:∆n → ∆n[S] to the subspace Π of Rn+1, where

Π = {(t0, . . . , tn) ∈ Rn+1 | t0 + · · · + tn = 1},

the hyperplane containing ∆n in Rn+1. The mapping φ̂:Π → RN , given by φ̂(t0, . . . , tn) =
t0v0 + · · ·+ tnvn, takes points on the boundary of ∆n to points on the boundary of ∆n[S].
The points on the boundary have some ti = 0 because open sets in Rn+1 containing such
points must contain points with ti < 0 which map by φ̂ to points outside ∆n[S]. Conversely,
if a point p is on the boundary of ∆n[S], any open set containing p meets the complement
of ∆n[S] and, by a distance argument, points in the image of Π under φ̂ with negative
coordinates. This implies some tj = 0. ♦
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Notice that a 0-simplex is also its own interior—the topology is discrete on a one-
point space. Interesting subsets of a simplex, like the boundary or interior, have nice
combinatorial expressions. Define the face opposite a vertex vi as the subset

∂i{v0, . . . ,vn} = {v0, . . . , v̂i, . . . ,vn} = {v0, . . . ,vi−1,vi+1, . . . ,vn},
where the hat over a vertex means that it is omitted. Any subset of S = {v0, . . . ,vn}
determines a subsimplex of S, and so a subspace of ∆n[S]; for example, the subset T =
{vj0 , . . . ,vjk} determines ∆k[T ] = ∆k[{vj0 , . . . ,vjk}] ⊂ ∆n[S]. The inclusion is based on
the fact that

∑
i tjivji =

∑n
l=0 tlvl where tl = 0 if l '= ji.

When S = {v0, . . . ,vn} and T ⊂ S, we denote the inclusion of the subsimplex by
T ≺ S. If j0 < j1 < · · · < jk, then each such face can be obtained by iterating the
operation of taking the face opposite some vertex. The combinatorics of the face opposite
operators encodes the lower dimensional subsimplices (or faces) of ∆n[S]. By Proposition
10.3, the geometric boundary of ∆n[S] can be expressed combinatorially:

bdy∆n[S] = ∆n−1[∂0S] ∪ · · · ∪∆n−1[∂nS] ⊂ ∆n[S].

Given any point p ∈ ∆n[S], writing p = t0v0 + · · · + tnvn, we can eliminate the
summands with ti = 0 to write p = ti0vi0 + · · · + timvim with

∑
tij = 1 and tij > 0 for

all j. Thus p is in the interior of ∆m[{vi0 , . . . ,vim}]. Because barycentric coordinates
are unique, every point in ∆n[S] is contained in the interior of a unique subsimplex,
∆m[{vi0 , . . . ,vim}] ⊂ ∆n[S].

The simplices ∆n[S] form the building blocks of an important class of spaces.
Definition 10.4. A (geometric) simplicial complex is a finite collection K of simplices
in RN satisfying 1) if S = {v0, . . . ,vn} is in K and T ≺ S (T is a subset of S), then T is
also in K; 2) for S and T in K, if ∆n[S] ∩∆m[T ] '= ∅, then ∆n[S] ∩∆m[T ] = ∆k[U ] for
some U in K, that is, if simplices of K intersect, then they do so along a common face.
The dimension of a geometric simplicial complex, dimK, is the largest n for which there
is an n-simplex in K.

Two collections of triangles in R3 are shown in the picture. The one on the left
represents a simplicial complex, while on the right we have just a union of triangles—this
is because the intersections fail to satisfy condition 2) in the definition.

Since n-simplices are homeomorphic to one another for fixed n, it is the collection K of
simplices that determines a simplicial complex. We distinguish between the combinatorial
data K, collections of sets of vertices, and the topological space determined by the union
of the simplices ∆n[S] as a subspsace of RN ,

|K| =
⋃

S∈K
∆n[S].
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The space |K| is called the realization of K; |K| is also referred to as the underlying
space of K [Giblin], the geometric carrier of K [Croom], or the polyhedron determined by
K [Hilton-Wylie].

By separating the combinatorial data from the topological data for a simplicial com-
plex, this definition frees us to introduce an abstraction of geometric simplicial complexes.
Definition 10.5. A finite collection of sets L = {Sα | Sα = {vα0, . . . , vαnα}, 1 ≤ α ≤ N}
is an abstract simplicial complex if whenever T = {vj0 , . . . , vjk} is a subset of S and
S is in L, then T is also in L.
In its simplicity there is a gain in flexibility with the notion of an abstract simplicial
complex. We can define all sorts of combinatorial objects in this manner (see, for example,
[Björner]). To maintain the connection to topology, we ask if it is possible to associate to
every vertex v in an abstract simplicial complex L a point v in RN in such a way that L
determines a geometric simplicial complex. The answer is yes, and the proof is an exercise
in linear algebra (sketched in the exercises) in which we associate a list of vectors in RN

in general position to each set S in L. In fact, if the abstract simplicial complex contains
a set of cardinality at most m + 1, then there is a geometric simplicial complex L′ with
corresponding sets consisting of vectors in R2m+1 in general position.

Another way to connect with topology is to use the combinatorial data given by an
abstract simplicial complex and construct a topological space by gluing simplices together:
If L = {S | S = {v0, . . . , vn}}, then the set of equivalence classes, |L| =

[⋃
S∈L

∆n
S

]
,

associated to the equivalence relation given by p ∼ q for p ∈ ∆n
S and q ∈ ∆m

T if there is
a shared face U ≺ S, U ≺ T and p = q in ∆k

U ⊂ ∆n
S and ∆k

U ⊂ ∆m
T , that is, we glue

the simplices S and T along their shared subsimplex U . We give this space the quotient
topology as a quotient of the disjoint union of the simplices ∆n

S . The reader should check
that this quotient construction determines a space homeomorphic to the realization of a
geometric simplicial complex built out of vertices in RN .

The general class of topological spaces modeled by simplicial complexes is the class of
the triangulable spaces.
Definition 10.6. A topological space X is said to be triangulable if there is an abstract
simplicial complex K and a homeomorphism f :X → |K|.

a

a

b

b c

c

d d

e e

a

a

a a

b

b

c

c

u

v

w

x y

z
w

Examples: 1) We can describe triangulable spaces by giving the triangulation explicitly,
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not as a collection of sets of vectors, but as a collection of simplices with clear gluing data.
For example, the diagrams above show how RP (2) and the torus S1 × S1 are triangulable
spaces. Notice how the simplices abu and abw in RP (2) and the simplices abx and abe in
the torus share the side ab, encoding the gluing data by the identification of the simplices
as shown.
2) The sphere Sn ⊂ Rn+1 is triangulable in a particularly nice way. Consider the n-simplex
∆n ⊂ Rn+1 for which the vertices are e0, e1, . . . , en with ei = (0, 0, . . . , 0, 1, 0, . . . , 0) where
the one is in the (i + 1)-st place. Consider the point

βn =
∑n

i=0

1
n + 1

ei = (1/(n + 1), 1/(n + 1), . . . , 1/(n + 1)).

This point is the barycenter of ∆n, and it can be defined for any simplex as the center of
gravity of the vertices. We use the barycenter to move the hyperplane in which ∆n lies to
pass through the origin. Since ∆n lies in the hyperplane Π = {(t0, . . . , tn) | t0 + · · ·+ tn =
1}, the translated hyperplane through the origin is Π−βn = {(s0, . . . , sn) | s0 + · · ·+ sn =
0}. We identify a copy of Sn−1 with the intersection of Sn and Π− βn, that is, elements
of x ∈ Rn+1 satisfying x2

0 + x2
1 + · · · + x2

n = 1 and x0 + x1 + · · · + xn = 0.
Define the following mapping

Ψ: bdy∆n → Sn−1, Ψ(x) =
x− βn

‖x− βn‖
.

Since the sum of the coordinates of x is 1, x − βn lies in Π − βn and hence Ψ(x) is in
Sn−1. Furthermore, Ψ is defined by translation followed by normalization and so Ψ is
continuous. Since bdy∆n is given by ∂0∆n ∪ · · ·∪∂n∆n, bdy∆n is compact. To see that
Ψ is a homeomorphism, it suffices, by Proposition 6.9, to show that Ψ has an inverse.

Suppose s = (s0, . . . , sn) is an element of Sn−1 = Sn∩ (Π−βn), then there is an entry
sk for which sk ≤ si for all 0 ≤ i ≤ n. Furthermore, since

∑
i si = 0 and

∑
i s2

i = 1, we
must have sk < 0. Define

Φ: Sn−1 = Sn ∩ (Π− βn) → bdy∆n, Φ(s) =
−1

sk(n + 1)
s + βn.

To see that Φ◦Ψ is the identity, let x ∈ bdy∆n. Then for some 0 ≤ k ≤ n, there is an

entry xk = 0 in x. It follows that s = Ψ(x) has entry sk =
−1

(n + 1)‖x− βn‖
. Furthermore,

since xi ≥ 0 for all i, sk is the least entry in s and so the composite Φ ◦Ψ gives

Φ ◦Ψ(x) = Φ
(

x− βn

‖x− βn‖

)
=

−1
(n + 1)(−1/((n + 1)‖x− βn‖))

(
x− βn

‖x− βn‖

)
+ βn = x.

The opposite composite Ψ ◦ Φ gives the identity on Sn−1: because ‖s‖ = 1 and sk < 0,

Ψ ◦ Φ(s) = Ψ
(

−1
(n + 1)sk

s + βn

)
=

(−1/(n + 1)sk) s + βn − βn

‖(−1/(n + 1)sk) s + βn − βn‖
= s.
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It follows that bdy∆n is homeomorphic to Sn−1. Since the boundary of ∆n is given as a
simplicial complex by the union ∂0∆n ∪ · · ·∪ ∂n∆n, the sphere Sn−1 is triangulable. This
fact will prove useful in Chapter 11.

As with spaces we can apply set-theoretic constructions to simplicial complexes to
produce new ones.
Definition 10.7. If K is an abstract simplicial complex and L is a subset of simplices in
K, then L is a subcomplex of K if whenever S ≺ T and T ∈ L, then S ∈ L.

In example 2) above we have shown that
⋃n

i=0
∂i∆n = bdy∆n is a subcomplex of ∆n.

In the torus triangulation, notice that the set of simplices {dex, xez, xzw, xyw, dyw, dew}
together with all the associated subsimplices forms a subcomplex of the torus, whose
realization is a cylinder. In the projective plane the subcomplex generated by the collection
of 2-simplices {abu, auv, uvw, vbw, abw} determines a triangulation of the Möbius band.

Simplicial mappings and barycentric subdivision

How do we compare simplicial complexes? Mappings between simplicial complexes
are based on their combinatorial structure.
Definition 10.8. Let K and L be two simplicial complexes. A simplicial mapping is
function φ:K → L satisfying, for all n ≥ 0, if S = {v0, . . . , vn} is an n-simplex in K, then
{φ(v0), . . . ,φ(vn)} is a (possibly degenerate) simplex in L. Two simplicial complexes are
isomorphic if there are simplicial mappings φ:K → L and γ:L → K with φ ◦ γ = idL

and γ ◦ φ = idK . A simplicial mapping φ:K → L determines a continuous mapping
of the associated realizations |φ|: |K| → |L|: If φ:K → L is a simplicial mapping, then
p =

∑n
i=0 tivi ∈ |K| maps to |φ|(p) =

∑n
i=0 tiφ(vi) ∈ |L|.

Given a subcomplex L ⊂ K of a simplicial complex, then the inclusion map, i:L → K

is a simplicial mapping. Also, a composite of simplicial mappings K
φ−→L

γ−→M is a
simplicial mapping.

Since the mapping |φ|: |K|→ |L| associated to a simplicial mapping is linear on each
simplex, it is continuous. Notice that there are only finitely many continuous mappings
|K|→ |L| that are realized in this manner. Because there are only finitely many 0-simplices
in K and L, there are only finitely many vertex mappings, of which the simplicial mappings
are a subset. In what follows, we construct more simplicial mappings between |K| and |L|.
To do so, we refine a simplicial complex in order to make approximations. A refinement of
a grating in Chapter 9 was accomplished by the addition of line segments, subdividing the
rectangles into smaller cells. To refine a simplicial complex, we subdivide the simplices.
Definition 10.9. Let K be a simplicial complex. The barycentric subdivision of K,
denoted sd K, is the simplicial complex whose simplices are given by

{β(S0),β(S1), . . . ,β(Sr)}, where Si ∈ K, and S0 ≺ S1 ≺ · · · ≺ Sr.

Here β(S) = β({v0, . . . ,vn}) =
∑n

i=0

1
n+1vi is the barycenter of ∆n[S] for S in K. If

φ:K → L is a simplicial mapping, then the barycentric subdivision of φ is the simplicial
mapping sd φ: sdK → sd L given on vertices by sd φ(β(S)) = β(φ(S)).
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The operation K 1→ sd K may be summarized: First find the barycenters of every
simplex in K, then subdivide the simplices of K into new simplices organized by the subset
ordering of simplices, S ≺ T . For example, a one-simplex {a, b} is realized by the line
segment ab. The barycenter is the midpoint of ab and the barycentric subdivision sd {a, b}
has two one-simplices {a,β1} and {β1, b} corresponding to {a} ≺ {a, b} and {b} ≺ {a, b}.
The barycentric subdivision of a two-simplex, ∆2[{a, b, c}] has six two-simplices as in the
picture:

a b

c

a b

c

c < {ac} < {abc} c < {bc} < {abc}

a < {ac} < {abc}

a < {ab} < {abc} b < {ab} < {abc}

b < {bc} < {abc}

The effect of barycentric subdivision on a simplicial mapping is to send the new barycenters
of simplices in K to the corresponding barycenters of the image simplices in L.

To understand the kind of approximation the barycentric subdivision provides, we
introduce the diameter of a simplex: Let K be a simplicial complex, realized in RN . Then

diamS = max{‖vi − vj‖ | i '= j, S = {v0, . . . ,vq}}.

The diameter depends on the embedding of |K| in RN , but this dependence will not affect
the combinatorial use of subdivision.
Proposition 10.10. If S is a q-simplex in K, a geometric simplicial complex, then for
any simplex T ∈ sd K with ∆p[T ] ⊂ ∆q[S], we have diamT ≤ q

q+1diamS.

Proof: We proceed by induction on q. If q = 1, then ∆1[S] is a line segment and the
simplices of the barycentric subdivision are halves of the segment with diameter equal to
1/2 the length of the segment. Assume the result for simplices of dimension less than
q ≥ 2.

A p-simplex T ∈ sd K can be written as

T =
{
vσ(0),

vσ(0) + vσ(1)

2
,
vσ(0) + vσ(1) + vσ(2)

3
, . . . ,

vσ(0) + vσ(1) + · · · + vσ(p)

p + 1

}
,

where σ is some permutation of (0, 1, . . . , q). If p < q, then we are done because T is a
simplex in the barycentric subdivision of a face of S. When p = q, write the vertices of T
as T = {w0,w1, . . . ,wq}. The diameter of T is given by ‖wi0 −wj0‖ = max{‖wi −wj‖ |
wi,wj ∈ T}. If i0 and j0 are less than q, then the diameter of T is achieved on the face
∂qT and we deduce

‖wi0 −wj0‖ ≤
q − 1

q
diam ∂qS ≤

q

q + 1
diamS.
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If one of i0 or j0 is q, then we first observe the following estimate:
∥∥∥∥vi −

vσ(0) + vσ(1) + · · · + vσ(q)

q + 1

∥∥∥∥ =
∥∥∥∥
∑q

j=0

1
q + 1

(vi − vj)
∥∥∥∥

≤
∑q

j=0

1
q + 1

‖vi − vj‖ ≤
q

q + 1
max{‖vi − vj‖} =

q

q + 1
diamS.

This proves the proposition. ♦

We define a measure of the refinement of a simplicial complex by taking the maximum
of the diameters of the constituent simplices, the mesh of K,

mesh (K) = max{diamS | S ∈ K}.

Corollary 10.11. If K has dimension q, then mesh (sdK) ≤ q

q + 1
mesh (K).

By iterating barycentric subdivision, we can make the simplices in sdNK as small as

we like: For any ε > 0, there is an N with mesh (sdNK) ≤
(

q

q + 1

)N

mesh (K) < ε.

How does barycentric subdivision affect the topological space |K|?
Theorem 10.12. If K is a geometric simplicial complex, then |sd K| = |K|.
Proof: Suppose that p ∈ |K|. Then we can write p =

∑q
i=0 tivi ∈ ∆q[S] with S =

{v0, . . . ,vq}. Permute the values {ti} to bring them into descending order

tσ(0) ≥ tσ(1) ≥ · · · ≥ tσ(q) ≥ 0.

Next solve the matrix equation:




1 1
2

1
3 · · · 1

q+1

0 1
2

1
3 · · · 1

q+1

0 0 1
3 · · · 1

q+1

...
...

... · · ·
...

0 0 0 · · · 1
q+1









s0

s1

s2
...
sq




=





tσ(0)

tσ(1)

tσ(2)

...
tσ(q)




.

The solution exists and is unique. Furthermore, by solving from the bottom up, the
solution satisfies sq = (q + 1)tσ(q) and sj−1 = j(tσ(j−1) − tσ(j)) ≥ 0. Summing the values
of sj we get

q∑

j=0

sj = s0 + 2((1/2)s1) + 3((1/3)s2) + · · · + (q + 1)((1/(q + 1))sq)

= (s0 + (1/2)s1 + (1/3)s2 + · · · + (1/(q + 1))sq)
+ ((1/2)s1 + (1/3)s2 + · · · + (1/(q + 1))sq) + · · · + (1/(q + 1))sq

= tσ(0) + tσ(1) + · · · + tσ(q) = t0 + · · · + tq = 1.

8



Thus (s0, . . . , sq) are the barycentric coordinates of p in the simplex with

p = s0vσ(0) + s1

(
vσ(0) + vσ(1)

2

)
+ s2

(
vσ(0) + vσ(1) + vσ(2)

3

)

+ · · · + sq

(
vσ(0) + vσ(1) + · · · + vσ(q)

q + 1

)
.

Thus p lies in the q-simplex ∆q[T ] where T ∈ sd K is given by

T = {β({vσ(0)}),β({vσ(0),vσ(1)}),β({vσ(0),vσ(1),vσ(2)}), . . . ,β({vσ(0),vσ(1), . . . ,vσ(q)}}.

This proves that |K| ⊂ |sd K|. The inclusion |sd K| ⊂ |K| follows by rewriting the expres-
sion for a point in the barycentric coordinates of sdK in terms of the contributing vertices
of K by rearranging terms. ♦

Barycentric subdivision leads to a notion of approximation. Given a continuous map-
ping f : |K| → |L|, we seek a simplicial mapping φ:K → L that approximates f in some
sense. Since we can replace |K| with |sdnK| where sdnK denotes the iterated barycentric
subdivision of K, sd0K = K, and sdnK = sd(sdn−1K), then we can approximate f by us-
ing simplicial mappings between subdivisions of the complexes involved. To make precise
what we mean by an approximation, we introduce a point-set notion.
Definition 10.13. If v is a vertex in a simplicial complex K, then the star of v, starK(v),
is the collection of all simplices in K for which v is a vertex. The open star of v, OK(v),
is the union of the interiors of simplices in K with v as a vertex,

starK(v) =
⋃

{v}≺S
∆n[S], OK(v) =

⋃
{v}≺S

int ∆n[S].

The stars of vertices can be used to recognize simplices in a simplicial complex.
Lemma 10.14. Suppose v0, v1, . . . , vn are vertices in a simplicial complex K. Then
{v0, . . . , vq} is a simplex in K if and only if

⋂q

i=0
OK(vi) '= ∅. If p ∈ |K|, then p ∈ OK(v)

if and only if p =
∑q

i=0
tivi with v = vj for some 0 ≤ j ≤ q and tj '= 0.

Proof: If S = {v0, . . . , vq} is a q-simplex in K, then int ∆q[S] ⊂ OK(vi) for i = 0, . . . , q.
Hence

⋂q

i=0
OK(vi) '= ∅.

Suppose p ∈
⋂q

i=0
OK(vi) '= ∅. then p =

∑
tjwj ∈ ∆r[S] with {v0, . . . , vq} ⊂

{w0, . . . , wr}. Furthermore, if wmi = vi, then tmi > 0. Thus all of the vi appear in the
barycentric coordinates of p and so the subset of S, {v0, . . . , vq}, is a simplex in K. ♦

To approximate a continuous mapping f : |K|→ |L| by a simplicial mapping φ:K → L,
we expect that points in f(∆q[S]) are ‘close’ to points in |φ|(∆q[S]).
Definition 10.15. If K and L are simplicial complexes and f : |K| → |L| a continuous
function, then a simplicial mapping φ:K → L is a simplicial approximation to f if
whenever p ∈ |K|, then f(p) ∈ ∆q[T ] for T ∈ L implies |φ|(p) ∈ ∆q[T ].
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This definition can be difficult to establish, but there is a more convenient condition for
our purposes that works in a manner analogous to the way open sets simplify continuity
arguments when compared with the classical ε-δ arguments.
Proposition 10.16. A simplicial mapping φ:K → L is a simplicial approximation to a
continuous mapping f : |K|→ |L| if and only if, for any vertex v of K, we have

f(OK(v)) ⊂ OL(φ(v)),

that is, the image of the open star of v under f is contained in the open star of φ(v), a
vertex of L.
Proof: Suppose p ∈ OK(v) for some vertex v ∈ K. Then p ∈ int ∆q[S] for some unique
S ∈ K with v ∈ S. Because φ is a simplicial mapping, φ(S) = T for some simplex in L, and
|φ|(p) ∈ int ∆q′

[T ′] ⊂ OL(φ(v)) for some T ′ ≺ T . Since φ is a simplicial approximation to
f , if p ∈ ∆r[S′] for S ≺ S′ and f(p) ∈ int ∆s[T ′′] for some T ′′ ∈ L, then |φ|(p) ∈ ∆s[T ′′].
Since points lie in unique interiors of simpices, |φ|(p) ∈ int ∆q′

[T ′] implies that T ′ ≺ T ′′

and so φ(v) ∈ T ′′. Therefore, f(p) ∈ OL(φ(v)).
We introduce a weaker notion than a simplicial mapping. Let K0 = {v ∈ K | {v}, a

0-simplex in K}. A vertex map φ:K0 → L0 satisfies if v ∈ K is a vertex, then φ(v) ∈ L is
also a vertex. Suppose also, for every vertex v ∈ K0, that f(OK(v)) ⊂ OL(φ(v)). Suppose
that S ∈ K is a simplex and S = {v0, . . . , vq}. Then

f
(⋂

i
OK(vi)

)
⊂

⋂
i
f(OK(vi)) ⊂

⋂
i
OL(φ(vi)).

Since int ∆q[S] ⊂
⋂

i
OK(vi), this intersection is nonempty, and φ(S) = {φ(v0), . . . ,φ(vq)}

is a simplex in L. This establishes that a vertex mapping φ with f(OK(v)) ⊂ OL(φ(v)),
for all v, is a simplicial mapping. Furthermore, if p ∈ int ∆q[S] and f(p) ∈ int ∆r[T ]
for some T ∈ L, then for each vertex vi of S, f(p) ∈ f(OK(vi)) ⊂ OL(φ(vi)), and so
φ(vi) ∈ T . It follows that φ(S) ≺ T and so |φ|(p) ∈ ∆r[T ]. Therefore, φ is a simplicial
approximation to f . ♦

Example: In Theorem 10.12 we proved that |sd K| = |K|. Is there a simplicial approx-
imation to the identity mapping? Consider the vertex mapping λ: sdK → K, defined
by

λ:β(S) = β({v0, . . . , vq}) 1→ vq.

To see that we have a simplicial approximation, we check that Osd K(β(S)) ⊂ OK(vq). A
simplex with β(S) as a vertex takes the form T = {β(S0),β(S1), . . . ,β(Sn)} with S1 ≺
S2 ≺ · · · ≺ Sn in K and S = Sj for some j. If p ∈ int ∆q[T ], then p =

∑
i
tiβ(Si)

with ti > 0. We can rewrite the barycenters as the averages of the vertices in Si for i = 0
to q, and we get p =

∑
k
ukwk with uk > 0 and wk ∈ K for all k. Since vq is among

the vertices and its barycentric coordinate is positive, p ∈ OK(vq). Thus λ is a simplicial
approximation to id: |sd K| → |K|. In fact, we did not need to choose the last vertex vq

to define λ. As the argument shows, any choice of vertex from S for each S ∈ K will do.
This added flexibility will come in handy later.
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The topology of a triangulable space may be used to show that simplicial approxima-
tions are plentiful.
Simplicial Approximation Theorem. Given two simplicial complexes K and L and a
continuous mapping f : |K| →| L|, then there is a nonnegative integer r and a simplicial
mapping φ: sdrK → L with φ a simplicial approximation to f .
Proof: We use the fact that |K| and |L| are compact metric spaces. Suppose dimK = n.
The collection {f−1(OL(w)) | w a vertex in L} is an open cover of |K|. By Lebesgue’s
Lemma (Chapter 6) the cover has a Lebesgue number δK > 0. Iterating barycentric
subdivision, we can subdivide K until

mesh (sdrK) ≤
(

n

n + 1

)r

mesh (K) < δK/2.

This is possible because ( n
n+1 )r goes to zero as r goes to infinity. It follows that sdrK has

all simplices of diameter less than δK/2 and so, for each v ∈ sdrK, the diameter of OK(v)
is less than δK . Thus each OK(v) is contained in some f−1(OL(w)). This determines a
vertex map φ: v 1→ w, which satisfies f(OK(v)) ⊂ OL(φ(v)), a simplicial approximation.♦

Simplicial approximations exist in abundance. How are these combinatorial mappings
related to their approximated topological mappings? What relation is there between two
simplicial approximations of the same continuous mapping? We can answer these questions
with the homotopy relation between continuous mappings. This relationship formed the
basis for the combinatorial nature of some of the earliest developments in topology (see,
for example, [Brouwer1]).
Proposition 10.17. If a simplicial mapping φ:K → L is a simplicial approximation to
a continuous mapping f : |K|→ |L|, then |φ| is homotopic to f .
Proof: Suppose that p ∈ int ∆q[S] for S ∈ K and S = {v0, . . . , vq}. By Lemma 10.14,
p ∈

⋂
vi∈S

OK(vi). It follows that

f(p) ∈
⋂

vi∈S
f(OK(vi)) ⊂

⋂
vi∈S

OL(φ(vi)).

Therefore, {φ(v0), . . . ,φ(vq)} is a simplex in L and the convex set ∆q[φ(S)] contains both
|φ|(p) and f(p). We define a homotopy on int ∆q[S] by

H(p, t) = tf(p) + (1− t)|φ|(p).

The homotopy extends to all of |K| by Theorem 4.4 and so f 2 |φ|. ♦

It follows from the proposition that two, possibly different, simplicial approximations
to a given continuous function have homotopic realizations. The simplicial mappings also
enjoy a further combinatorial property.
Definition 10.18. Two simplicial mappings φ and ψ:K → L are said to be contiguous
if, for all simplices S ∈ K, the set φ(S) ∪ ψ(S) is a simplex in L.
Lemma 10.19. Suppose f : |K|→ |L| is a continuous function for which φ and ψ:K → L
are simplicial approximations to f . Then φ and ψ are contiguous.
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Proof: Suppose S is a simplex in K with S = {v0, . . . , vq}. Then for p ∈ int ∆q[S], we
have

f(p) ∈ f
(⋂

i
OK(vi)

)
⊂

⋂
i
f(OK(vi)) ⊂

⋂
i
OL(φ(vi)) ∩OL(ψ(vi)).

Since this intersection is not empty, the collection φ(S) ∪ ψ(S) is a simplex in L. ♦
The condition of being contiguous is combinatorial—we are only checking that unions

of images of sets of vertices in K appear among the sets of vertices of L. The following
results show that contiguity encodes the relation of homotopy very well.
Proposition 10.20. Contiguous simplicial mappings have homotopic realizations.
Proof: If p ∈ int ∆q[S] ⊂ |K|, then the points |φ|(p) and |ψ|(p) lie in the simplex of L
given by φ(S) ∪ ψ(S). The homotopy H(p, t) = (1 − t)|φ|(p) + t|ψ|(p) is well-defined,
continuous, and establishes |φ| 2 |ψ|. ♦

A partial converse to Proposition 10.20 is the following theorem.
Theorem 10.21. Suppose that f and g are continuous mappings |K| → |L| and f is
homotopic to g. Then there exists simplicial mappings φ and ψ: sdNK → L with φ a
simplicial approximation to f , ψ a simplicial approximation to g, and there is a sequence
of simplicial mappings φ = φ0, φ1, . . . , φn−1,φn = ψ with φi contiguous to φi+1 for
0 ≤ i ≤ n− 1.
Proof: Let H: |K|× [0, 1] → |L| be a homotopy with H(p, 0) = f(p) and H(p, 1) = g(p).
Cover |K|× [0, 1] with the open cover {H−1(OL(w)) | w is a vertex of L}. Since |K|× [0, 1]
is compact, by a careful use of Lebegue’s Lemma, we can find a partition of [0, 1], 0 = t0 <
t1 < · · · < tn−1 < tn = 1 such that, for any p ∈ |K|, H(p, ti−1) and H(p, ti) lie in OL(w)
for some vertex w ∈ L. Define the functions hi: |K|→| L| by hi(p) = H(p, ti). Construct
another open cover of |K| defined as U = U1 ∪ · · · ∪ Un where

Ui = {h−1
i (OL(w)) ∪ h−1

i−1(OL(w)) | w a vertex in L}.

Subdivide K enough times so that the simplices in sdNK are finer than the cover U . Let
φi: sdNK → L be the vertex mapping which satisfies hi(OK(v))∪hi−1(OK(v)) ⊂ OL(φi(v))
for each vertex v ∈ sdNK. By construction, φi is a simplicial approximation to hi and
hi−1. Regrouping these data, we find that φi and φi+1 are both simplicial approximations
to hi and hence φi and φi+1 are contiguous by Proposition 10.19. Since h0 = f and hn = g,
φ = φ0 is a simplicial approximation of f , and ψ = φn is a simplicial approximation to g.
This proves the theorem. ♦

We close with a consequence of these ideas. Suppose X and Y are triangulable spaces.
Then the set of homotopy classes of mappings from X to Y , is denoted by [X, Y ], as in-
troduced in Chapter 7. We can replace this set by [|K|, |L|] where |K| is homeomorphic
to X and |L| homeomorphic to Y . By the Simplicial Approximation Theorem, for each
homotopy class [f ] ∈ [|K|, |L|], there is a simplicial mapping φ: sdrK → L with [|φ|] = [f ].
Furthermore, by Proposition 10.20 and Theorem 10.21, different choices of representa-
tive for [f ] always stay in the same homotopy class of the realization of the simplicial
approximation.
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Let S(K, L) denote the set of simplicial mappings from K to L. Because K and
L involve only finitely many simplices, S(K, L) is a finite set. With this notation, the
Simplicial Approximation Theorem implies that the mapping

Θ:
⋃

N≥0
S(sdNK, L) −→ [|K|, |L|], Θ(φ) = [|φ|],

is onto. The union of countably many finite sets is countable and so we have proved that
[X, Y ] is countable whenever X and Y are triangulable. This implies, for example, since
π1(X, x0) ⊂ [S1, X], the fundamental group of a triangulable space is countable.

Exercises

1. Suppose that K is an abstract simplicial complex of dimension n. To find a geometric
realization of K, we want to identify vertices of K with points in some RN in such a way
that, whenever {v0, . . . , vq} is a simplex in K, then the associated points {v0, . . . ,vq}
are in general position in RN . In R2n+1 consider the curve

C = {(r, r2, . . . , r2n+1) | r ∈ R}.

Using the Vandermonde determinant, any 2n + 2 distinct points on C are in general
position ([35]). Assign to each vertex in K, a distinct point on C. Since dimK =
n, a simplex in K determines at most n points on C and hence a set in general
position. We next worry about intersections of these geometric simplices. Suppose
{v0, . . . ,vi, . . . ,vi+k} and {vi, . . . ,vi+k, . . . ,vm} are simplices with a shared face.
Then m < 2n + 2 because dimK = n and so the union of these sets is in general
position. Show that this guarantees that the intersection between these simplices is
along a common face alone. Thus we can take an abstract simplicial complex as a
geometric simplicial complex without hesitation.

2. Draw a picture (or better yet, make a model) of the first and second barycentric
subdivisions of ∆.

3. If K and L are simplicial complexes, their join, K ∗ L is the set consisting of the
simplices of K, the simplices of L, and the set of 1-simplices {{a, b} | a a vertex in
K, b a vertex in L}. Show that K ∗ L is a simplicial complex. When L = {v0} and
v0 /∈ K, show that K ∗ {v0} has CK, the cone on K, as realization.

4. Suppose that φ:K → L is a simplicial mapping. Suppose that ψ:K → L is a simplicial
approximation to |φ|: |K| → |L|. Show that ψ = φ. Thus a simplicial mapping is its
own simplicial approximation.

5. Suppose that f : |K| → |L| has a simplicial approximation φ:K → L. Show that
sd φ: sdK → sd L is also a simplicial approximation of f .
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6. Prove that composites of contiguous simplicial mappings are contiguous.

7. Suppose K has dimension m and φ:K → bdy∆n is a simplicial mapping. If m < n,
show that |φ| is null homotopic by showing that the image of |φ| is not all of |bdy∆n|.
This implies that [Sm, Sn] has cardinality one for m < n.

14



11. Homology

A complex is a particular type of partially ordered set with
complementary properties designed to carry an algebraic
superstructure, its homology theory. Complexes thus appear as
the tool par excellence for the application of algebraic methods
to topology.

Solomon Lefschetz, 1942

Simplicial complexes enjoy good topological properties. Their combinatorial structure
is sufficiently rich via subdivision to capture the continuous mappings between realizations
of complexes up to homotopy. In Chapter 10 we developed these connections between the
combinatorial and the continuous. In this chapter we develop the combinatorial structure
further by defining algebraic structures associated to a complex that will be found to give
topological invariants. These invariants lead to a proof of the topological Invariance of
Dimension which is a generalization of the argument in Chapter 8 in which the fundamental
group played the key role for the case (2, n).

The algebraic structures will be finite dimensional vector spaces over the field with
two elements, F2

∼= Z/2Z. Let’s set some notation: If S is any finite set, then F2[S] denotes
the vector space over F2 with S as basis, that is, the set of all formal sums

∑
s∈S ass where

as ∈ F2. The sum of two such formal sums is given by
∑

s∈S
ass +

∑
s∈S

bss =
∑

s∈S
(as + bs)s.

Multiplication by a scalar c ∈ F2 is given by c
∑

s∈S ass =
∑

s∈S cass. The reader can
check that these operations make F2[S] a vector space. If S and T are finite sets, and
f :S → F2[T ] is a function, then f induces a linear mapping f∗: F2[S] → F2[T ], given by

f∗
(∑

s∈S
ass

)
=

∑
s∈S

asf(s).

Since a linear mapping is determined by its values on a basis of the domain, this construc-
tion gives every linear mapping between F2[S] and F2[T ].

The quotient construction of a vector space by a linear subspace (Chapter 1) will
come up later, and we recall it here. Suppose W is a linear subspace of a vector space
V . The quotient vector space V/W is the set of equivalence classes of vectors in V
under the equivalence relation v ∼ v′ if v′ − v ∈ W . We denote the equivalence class of
v ∈ V by [v] or v + W . The addition and multiplication by a scalar on V/W are given by
(v +W )+ (v′+W ) = (v + v′)+W and c(v +W ) = cv +W . When V is finite-dimensional,
dimV/W = dimV − dimW .

In Chapter 9 we associated to a grating G the vector space of i-chains, Ci(G) =
F2[Ei(G)]. We can generalize that construction to a simplicial complex: Suppose K is a
simplicial complex (geometric or abstract). Partition K into disjoint subsets that contain
only nondegenerate simplices of a fixed dimension:

Kp = {S ∈ K | dimS = p and S is nondegenerate}.
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The index p varies from zero to the dimension of K. Each Kp is a finite set which forms
the basis for the p-chains on K,

Cp(K; F2) = F2[Kp], the vector space over F2 with basis Kp.

A typical element of Cp(K; F2) is a sum S1+S2+ · · ·+Sl, where each Si is a nondegenerate
p-simplex in K. When working over F2, recall that S + S = 2 ·S = 0 ·S = 0 in Cp(K; F2).

A simplicial mapping φ:K → L induces a linear mapping φ∗:Cp(K; F2) → Cp(L; F2)
defined on a p-simplex S = {v0, . . . , vp} by

φ∗({v0, . . . , vp}) =
{

{φ(v0), . . . ,φ(vp)} if {φ(v0), . . . ,φ(vp)} is nondegenerate in L,
0 if {φ(v0), . . . ,φ(vp)} is degenerate in L,

and defined on a chain c = S1 + · · · + Sl by

φ∗(c) = φ∗(S1 + · · · + Sl) = φ∗(S1) + · · · + φ∗(Sl).

If we have two simplicial mappings φ:K → L and ψ:L → M , then the composite
ψ ◦ φ:K → M induces a mapping (ψ ◦ φ)∗:Cp(K; F2) → Cp(M ; F2) which satisfies the
equation (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

In Chapter 10 we introduced the face of a p-simplex S = {v0, . . . , vp} opposite a
vertex vi, given by the subset ∂i(S) = {v0, . . . , v̂i, . . . , vp} ⊂ S (the vertex under the
hat is omitted). Notice that if S is nondegenerate, then so is ∂iS. Define a mapping
∂:Kp → Cp−1(K; F2) by summing all of the (p−1)-faces of a p-simplex. The extension of ∂
to a linear mapping Cp(K; F2) → Cp−1(K; F2) is called the boundary homomorphism:

∂:Cp(K; F2) → Cp−1(K; F2) given by ∂(S) =
∑p

i=0
∂i(S), for S ∈ Kp.

Recall from Chapter 10 that bdy∆n[S] =
⋃p

i=0
∆n−1[∂i(S)]. The boundary homomor-

phism ∂ is an algebraic version of bdy, the topological boundary operation.
The main algebraic properties of the boundary homomorphism are the following:

Proposition 11.1. If φ:K → L is a simplicial mapping, then

∂ ◦ φ∗ = φ∗ ◦ ∂ : Cp(K; F2) → Cp−1(L; F2).

Furthermore, the composite ∂ ◦ ∂ : Cp(K; F2) → Cp−2(K; F2) is the zero mapping.
Proof: It suffices to check these equations for elements in a basis. Suppose that S =
{v0, . . . , vp} is a nondegenerate p-simplex in K. Then

∂ ◦ φ∗(S) = ∂({φ(v0), . . . ,φ(vp)}) =
∑p

i=0
{φ(v0), . . . , φ̂(vi), . . . ,φ(vp)}

=
∑p

i=0
φ∗({v0, . . . , v̂i, . . . , vp}) = φ∗

(∑p

i=0
{v0, . . . , v̂i, . . . , vp}

)

= φ∗ ◦ ∂(S).
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Next, we compute ∂ ◦ ∂(S).

∂(∂(S)) = ∂
(∑p

i=0
{v0, . . . , v̂i, . . . , vp}

)

=
∑

j<i

∑p

i=0
{v0, . . . , v̂j , . . . , v̂i, . . . , vp} +

∑
j>i

∑p

i=0
{v0, . . . , v̂i, . . . , v̂j , . . . , vp}.

Notice, for each pair k < l, the (p − 2)-simplex {v0, . . . , v̂k, . . . , v̂l, . . . , vp} appears twice,
once in each sum, and so ∂(∂(S)) = 0. ♦

The boundary homomorphism determines certain linear subspaces of Cp(K; F2): the
space of p-cycles,

Zp(K) = ker(∂:Cp(K; F2) → Cp−1(K; F2)) = {c ∈ Cp(K; F2) | ∂(c) = 0},

and the space of p-boundaries,

Bp(K) = ∂(Cp+1(K; F2)) = im (∂:Cp+1(K; F2) → Cp(K; F2))
= {b ∈ Cp(K; F2) | b = ∂(c), for some c ∈ Cp+1(K; F2)}.

The relation ∂ ◦ ∂ = 0 implies the inclusion Bp(K) ⊂ Zp(K).
For a p-simplex S, the boundary ∂(S) is a cycle that is the sum of the faces ∂i(S)

and together these make up the boundary of ∆p[S]. When faces come together like this,
but the simplex whose boundary they form is absent, we get a ‘p-dimensional hole’ in the
realization of the simplicial complex. The vector space of the essential cycles—holes not
filled in as the boundary of a higher dimensional simplex—is algebraically expressed as the
quotient vector space Zp(K)/Bp(K). This is the homology in dimension p of a simplicial
complex.
Definition 11.2. The pth homology (mod 2) of a simplicial complex K is the quotient
vector space for p > 0 given by

Hp(K; F2) = Zp(K)/Bp(K).

When p = 0, define H0(K; F2) = C0(K; F2)/B0(K).
To illustrate the definition, we compute the homology of the one-point complex, ∆0 =

{v}. In this case, the 0-chains have a single vertex {v} for a basis, and the boundary
homomorphism is zero. Since there are no other simplices, H0(∆0; F2) = F2[{v}], and
Hp(∆0; F2) = {0} for p > 0.

A slightly more complicated computation is the homology of a 1-simplex, ∆1 ∼= ∆1[S]
where S = {e0, e1}: the chains and boundary homomorphisms may be assembled into a
sequence of vector spaces and linear mappings:

{0}→ C1(∆1; F2)
∂−→C0(∆1; F2) → {0} ⇐⇒ {0}→ F2[{S}] ∂−→F2[{e0, e1}] → {0}.

Since ∂(S) = e0 +e1 *= 0, there is no kernel in dimension one, and the zero boundaries are
given by B0(∆1) = F2[{e0 + e1}]. Thus H0(∆1; F2) ∼= F2[{[e0]}] where the equivalence
class [e0] = e0 + F2[{e0 + e1}] is the coset of e0 in the quotient F2[{e0, e1}]/F2[{e0 + e1}].
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To generalize this computation to Hp(∆n; F2) for all n and p, we introduce a linear
mapping fashioned from the combinatorics of a simplex. Let S = {v0, . . . , vn} denote a non-
degenerate n-simplex. Consider the linear mapping ivn :Cp(∆n[S]; F2) → Cp+1(∆n[S]; F2)
given on the basis by

ivn({vi0 , . . . , vip}) =
{ {vi0 , . . . , vip , vn} if {vi0 , . . . , vip , vn} is nondegenerate,

0 otherwise.

If {vi0 , . . . , vip} is a nondegenerate p-simplex in ∆n[S], p > 0, and vn *= vik for all k, we
can compute

(∂ ◦ ivn + ivn ◦ ∂)({vi0 , . . . , vip})

= ∂({vi0 , . . . , vip , vn}) + ivn

(
p∑

r=0

{vi0 , . . . , v̂ir , . . . , vip}
)

= {vi0 , . . . , vip} +
p∑

r=0

{vi0 , . . . , v̂ir , . . . , vip , vn} +
p∑

r=0

{vi0 , . . . , v̂ir , . . . , vip , vn}

= {vi0 , . . . , vip}.

When S = {vi0 , . . . , vip−1 , vn}, then (∂ ◦ ivn + ivn ◦ ∂)(S) = S + U , where U is a sum
of degenerate (p + 1)-simplices which we take to be 0 ∈ Cp+1(K; F2). It follows that
∂ ◦ ivn + ivn ◦ ∂ = id, and if z is a p-cycle, then

z = (∂ ◦ ivn + ivn ◦ ∂)(z) = ∂(ivn(z)) ∈ Bp(K).

Hence, for p > 0, Zp(K) ⊂ Bp(K) ⊂ Zp(K) and so Hp(∆n[S]; F2) = {0}.
To compute H0(∆n[S]; F2), notice that ∂(ivn(v)) = v + vn while ivn(∂(v)) = 0. The

equation ∂ ◦ ivn + ivn ◦ ∂ = id does not hold, but we can deduce that vn + B0(∆n[S]) =
vi + B0(∆n[S]) for all i. Since Z0(∆n[S]) = C0(∆n[S]; F2) = F2[{v0, . . . , vq}], we have

H0(∆n[S]; F2) ∼= C0(∆n[S]; F2)/F2[{v + v′ | v *= v′, v, v′ ∈ S}] ∼= F2[{vn + B0(∆n[S])}].

Notice that the homology of an n-simplex is isomorphic to the homology of a 0-simplex
for all n.

We collect the vector spaces of p-chains on ∆n for all p, together with the boundary
homomorphisms, to get a sequence of linear mappings

{0}→ Cn(∆n; F2)
∂−→Cn−1(∆n; F2)

∂−→ · · · ∂−→C1(∆n; F2)
∂−→C0(∆n; F2) → {0}.

From the formula ∂ ◦ ivn + ivn ◦ ∂ = id, we found that, for p > 0, Zp(∆n) = Bp(∆n).
In general, we say that a sequence of linear mappings V

a−→W
b−→U is exact at W if

ker b = im a. In the case of the sequence of chains on ∆n, it is exact at Ci(∆n; F2) for
1 ≤ i ≤ n. In fact, the pth homology of a simplicial complex, Hp(K; F2) = Zp(K)/Bp(K),
measures the failure of the sequence of boundary homomorphisms to be exact at Cp(K; F2).
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The exactness of the sequence of chains on ∆n gives a method for the computation of
Hp(bdy∆n; F2). The set of simplices of bdy∆n contains all of the simplices of ∆n except
the n-simplex {e0, . . . , en}. We can present the sequence of vector spaces of chains and
boundary homomorphisms for bdy∆n as

{0}→ Cn−1(∆n; F2)
∂−→Cn−2(∆n; F2)

∂−→ · · · ∂−→C1(∆n; F2)
∂−→C0(∆n; F2) → {0}.

We know that the sequence is exact at Ci(∆n; F2) for 1 ≤ i ≤ n − 2, that the sequence
used to be exact at Cn−1(∆n; F2) and that Cn(∆n; F2) = F2[{e0, . . . , en}]. In the sequence
for bdy∆n, the vector space of (n − 1)-cycles Zn−1(bdy∆n) has dimension one. Since
Bn−1(bdy∆n) = {0}, we deduce that

Hp(bdy∆n; F2) ∼=
{

F2, if p = 0 or p = n− 1,
{0}, otherwise.

As we showed in Chapter 10, the realization |bdy∆n| is homeomorphic to Sn−1. Later we
will show how the homology of bdy∆n can be associated to the topological space Sn−1.

To a simplicial complex K we can associate a number based on the combinatorial
data of the simplices: Recall the subsets Kp ⊂ K given by the nondegenerate p-simplices
of K. Since K is a finite set, Kp is finite. Let np = #Kp, the cardinality of Kp. The
Euler-Poincaré characteristic of K is the alternating sum

χ(K) =
∑d

p=0
(−1)pnp,

where d denotes the dimension of K. This number was introduced by Euler in 1750 in a
letter to Christian Goldbach (1690-1764). Euler’s formula, v − e + f = 2, applies to
two-dimensional polyhedra that are homeomorphic to the sphere, but we are getting a little
ahead of the story. Here v = # vertices = n0, e = # edges = n1 and f = # faces = n2.
For example, for the tetrahedron, bdy∆3, we have v = 4, e = 6 and f = 4.

An extraordinary property of χ(K) is that it is calculable from the homology.

Theorem 11.3. If K is a simplicial complex with χ(K) =
∑d

p=0(−1)pnp, then χ(K) =
∑d

p=0(−1)php, where hp = dimF2 Hp(K; F2).

Proof: By definition np = #Kp = dimF2 Cp(K; F2). There are other numbers associated
to the chains via the boundary operator. Let

zp = dimF2 ker(∂:Cp(K; F2) → Cp−1(K; F2)),
bp = dimF2 im (∂:Cp+1(K; F2) → Cp(K; F2)).

By definition hp = dimF2 Hp(K; F2) = dimF2 Zp(K)/Bp(K) = zp − bp. The fundamental
identity from linear algebra for linear mappings, that the dimension of the domain of a
mapping is equal to the dimension of its kernel plus the dimension of its image, implies
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that np = zp + bp−1. Manipulating these identities, we have

χ(K) =
∑d

p=0
(−1)pnp =

∑d

p=0
(−1)p(zp + bp−1)

= (−1)d(zd + bd−1) + (−1)d−1(zd−1 + bd−2) + · · · + (−1)(z1 + b0) + z0

= (−1)dzd + (−1)d−1(zd−1 − bd−1) + · · · + (−1)(z1 − b1) + (z0 − b0)

= (−1)dhd + (−1)d−1hd−1 + · · · + (−1)h1 + h0 =
∑d

p=0
(−1)php.

Thus, the number χ(K) is calculable from the homology of K. ♦

Poincaré generalized Euler’s formula by this argument in [Poincare] an 1895 paper
that established the importance of this circle of ideas.

Homology and simplicial mappings

Suppose φ:K → L is a simplicial mapping. Then φ induces a linear mapping of chains,
φ∗:Cp(K; F2) → Cp(L; F2), for which ∂ ◦φ∗ = φ∗ ◦ ∂. Suppose [c] = c + Bp(K) denotes an
element in Hp(K; F2). Then c ∈ Zp(K), that is, ∂(c) = 0, and ∂(φ∗(c)) = φ∗(∂(c)) = 0,
so φ∗(c) is an element of Zp(L). If c− c′ ∈ Bp(K), then φ∗(c− c′) = φ∗(∂(u)) = ∂(φ∗(u)),
for some u ∈ Cp+1(K; F2), and so φ∗(c) + Bp(L) = φ∗(c′) + Bp(L). Thus we can define

H(φ):Hp(K; F2) → Hp(L; F2) by H(φ)(c + Bp(K)) = φ∗(c) + Bp(L).

It follows from the properties of the induced mappings on chains that if ψ:L → M is
another simplicial mapping, then H(ψ ◦φ) = H(ψ) ◦H(φ). We note also that the identity
mapping id:K → K induces the identity mapping H(id) = id:Hp(K; F2) → Hp(K; F2) for
all p.

Although there are only finitely many simplicial mappings φ:K → L, there can be
other linear mappings Cp(K; F2) → Cq(L; F2), which, like ivn , are defined using the fea-
tures of simplices which make up the bases. The following notion was introduced by
Lefschetz [Lefschetz1930].
Definition 11.4. Given two simplicial mappings φ and ψ:K → L, there is a chain
homotopy between them if there is a linear mapping h:Cp(K; F2) → Cp+1(L; F2) for each
p which satisfies

∂ ◦ h + h ◦ ∂ = φ∗ + ψ∗.

Theorem 11.5. If there is a chain homotopy between φ and ψ, then H(φ) = H(ψ).
Proof: Suppose [c] = c + Bp(K) ∈ Hp(K; F2). Then

∂ ◦ h(c) + h ◦ ∂(c) = φ∗(c) + ψ∗(c).

Since ∂(c) = 0, φ∗(c) + ψ∗(c) = ∂(h(c)) ∈ Bp(L), that is, φ∗(c) + Bp(L) = ψ∗(c) + Bp(L)
and H(φ)([c]) = H(ψ)([c]). ♦

An important source of chain homotopies is the combinatorial notion of contiguous
simplicial mappings. Recall that simplicial mappings φ,ψ:K → L are contiguous if, for
any simplex S ∈ K, we have φ(S) ∪ ψ(S) is a simplex in L.
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Corollary 11.6. If φ and ψ:K → L are simplicial mappings, and φ is contiguous to ψ,
then H(φ) = H(ψ):Hp(K; F2) → Hp(L; F2) for all p.

Proof: Define the linear mapping h:Cp(K; F2) → Cp+1(L; F2) determined on the basis by

h({v0, . . . , vp}) =
∑p

i=0
{φ(v0), . . . ,φ(vi),ψ(vi), . . . ,ψ(vp)},

where we substitute the zero element whenever we have a degenerate simplex in the sum.
Since φ and ψ are contiguous, each summand of h({v0, . . . , vp}) is a simplex in L.

Then we can compute

(∂ ◦ h)(T ) = ∂(h(T )) = ∂
(∑p

i=0
{φ(v0), . . . ,φ(vi),ψ(vi), . . . ,ψ(vp)}

)

=
∑p

i=0

∑
j≤i

{φ(v0), . . . , φ̂(vj), . . . ,φ(vi),ψ(vi), . . . ,ψ(vp)}

+
∑p

i=0

∑
j≥i

{φ(v0), . . . ,φ(vi),ψ(vi), . . . , ψ̂(vj), . . . ,ψ(vp)}

(h ◦ ∂)(T ) = h(∂(T )) = h
(∑p

i=0
{v0, . . . , v̂i, . . . , vp}

)

=
∑p

i=0

∑
j<i

{φ(v0), . . . ,φ(vj),ψ(vj), . . . , ψ̂(vi), . . . ,ψ(vp)}

+
∑p

i=0

∑
j>i

{φ(v0), . . . , φ̂(vi), . . . ,φ(vj),ψ(vj), . . . ,ψ(vp)}

The differences between these expressions are the inequalities j < i and j ≤ i, and j > i
and j ≥ i. In the sum for ∂(h(T )) the summands that do not appear in h(∂(T )) are given
by the condition i = j:

∑p

i=0
{φ(v0), . . . ,φ(vi−1),ψ(vi), . . . ,ψ(vp)} + {φ(v0), . . . ,φ(vi),ψ(vi+1), . . . ,ψ(vp)}.

Each entry appears twice in the sum, except when i = 0 and i = p, leaving

{φ(v0), . . . ,φ(vp)} + {ψ(v0), . . . ,ψ(vp)} = (φ∗ + ψ∗)({v0, . . . , vp}).

All of the summands in h(∂(T )) are cancelled by the rest of the summands of ∂(h(T )) and
so we have ∂ ◦h + h ◦ ∂ = φ∗ + ψ∗, a chain homotopy between φ and ψ. By Theorem 11.5,
H(φ) = H(ψ). ♦

By Lemma 10.19, Corollary 11.6 implies the following:

Corollary 11.7. If φ and ψ:K → L are simplicial approximations of a continuous
mapping f : |K|→ |L|, then H(φ) = H(ψ):Hp(K; F2) → Hp(L; F2), for all p.

Since a single continuous mapping might have numerous simplicial approximations, when
the domain and codomain are held fixed, the induced mappings on homology by these
approximations are the same.
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Topological invariance

So far we have associated a sequence of vector spaces over F2 to a simplicial complex.
To fashion a tool for the investigation of topological questions, we need to associate ho-
mology vector spaces and linear mappings to spaces and continuous mappings. It would
be nice to do this for general topological spaces, but it is not clear that it is possible to
associate a finite simplicial complex to each space (it isn’t [Spanier]). We restrict our
attention to triangulable spaces, that is, spaces X for which there is a simplicial com-
plex K with X homeomorphic to |K|. For such spaces it would be natural to define
Hp(X; F2) = Hp(K; F2). However, a triangulable space can be homeomorphic to many
different simplicial complexes. For example, the sphere S2 is homeomorphic to the tetra-
hedron, the octohedron, and the icosahedron. It is also the case (Thoerem 10.12) that we
can subdivide a simplicial complex without changing its realization. How does homology
behave under subdivision?

We also want to associate to a continuous mapping f :X → Y , for each p ≥ 0 a linear
mapping H(f):Hp(X; F2) → Hp(Y ; F2). The natural guess is to take a simplicial approx-
imation φ: sdNK → L and define H(f) = H(φ). This definition is nearly well-defined
because two simplicial approximations to the same mapping are contiguous. However,
simplicial approximations to a single mapping can be constructed for which a different
number of barycentric subdivisions might be needed, or a different choice of representing
simplicial complexes might have been made and so it is not immediate that we have a good
definition.

To alleviate some of the problems here, we loosen some of the foundations to allow
a new precision. To allow different choices of a simplicial complex with realization home-
omorphic to X we can define Hp(X; F2) up to isomorphism, that is, do not associate a
particular vector space to X and p, but an equivalence class of vector spaces in which
a choice of simplicial complex determines a representative. The equivalence relation is
isomorphism, that is, we say that vector spaces V and V ′ are equivalent if there is a lin-
ear isomorphism α:V → V ′ between them. This relation on any set of vector spaces is
reflexive, symmetric, and transitive. We also define a relation between linear mappings
between equivalent vector spaces: if φ:V → W and φ′:V ′ → W ′ are linear mappings and
V is isomorphic to V ′, W is isomorphic to W ′, then we say that φ is equivalent to φ′ if
there is a diagram of linear mappings

V
φ−→ W.α

.α′

V ′ −→
φ′

W ′

that is commutative, that is, α′ ◦ φ = φ′ ◦ α and α and α′ are isomorphisms. Once again,
this relation is reflexive, symmetric, and transitive and so we can take linear mappings
defined up to isomorphism as equivalence classes under this relation. Although we have
loosened up how we associate vector spaces and linear mappings to spaces and continuous
mappings, certain linear algebraic invariants remain meaningful, such as the dimension of
equivalent vector spaces, and the rank of equivalent linear mappings.
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With this notion of equivalence in mind, we establish the well-definedness of the
proposed definitions. The central problem that needs resolution is the comparison of the
homology of two simplicial complexes with the homeomorphic realizations. As a start, let’s
consider the relation between the homology of a space and its barycentric subdivision; by
Theorem 10.12 we know that |sd K| = |K|.
Theorem 11.8. There is an isomorphism of vector spaces H∗(sdK; F2) ∼= H∗(K; F2).
Proof: Recall the simplicial mapping λ: sdK → K, defined on vertices by “the last vertex,”

λ(β(S)) = λ(β({v0, . . . , vq})) = vq.

This mapping is a simplicial approximation to the identity, id: |sd K|→ |K|. The simplicial
mapping λ induces a linear mapping of chains λ∗:C∗(sd K; F2) → C∗(K; F2).

To construct an inverse mapping to λ∗, we will not define another simplicial mapping,
but work explicitly with the chains. Since we have explicit bases for the vector spaces
of p-chains, it is possible to define linear mappings that do not necessarily come from a
simplicial mapping. One such combinatorial mapping is defined for a fixed choice of vertex
b ∈ sd K, and generalizes the mapping ivn that figures in the computation of Hp(∆n[S]; F2).

Let ib:Cq(sdK; F2) → Cq+1(sdK; F2) be given on the basis by

ib({b0, . . . , bq}) =
{

{b0, . . . , bq, b}, when {b0, . . . , bq, b} is nondegenerate in sdK,
0, if {b0, . . . , bq, b} is degenerate or not in sdK.

The linear mapping ib has the following properties:

∂(ib(S)) = S + ib(∂(S)), and λ∗ ◦ iβ(S) = ibq ◦ λ∗, when S = {b0, . . . , bq}.

To prove these identities, we compute (where λ(β(Si)) = bωi .)

∂(ib(S)) = ∂({b0, . . . , bq, b}) = {b0, . . . , bq} +
∑q

i=0
{b0, . . . , b̂i, . . . , bq, b}

= S + ib
(∑q

i=0
{b0, . . . , b̂i . . . , bq}

)
= S + ib(∂(S)).

λ∗ ◦ iβ(S)({β(S0), . . . ,β(Sq−1)}) = λ∗({β(S0), . . . ,β(Sq−1),β(S)})
= {λ(β(S0)), . . . ,λ(β(Sq−1)),λ(β(S))}
= {bω(0), . . . , bω(q−1), bq}
= ibq ({bω(0), . . . , bω(q−1)})
= ibq ◦ λ∗({β(S0), . . . ,β(Sq−1)}).

Using these identities, we define the mapping β∗:C∗(K; F2) → C∗(sdK; F2) by taking a
simplex S ∈ K to the sum of all the simplices in the barycentric subdivision of K that lie
in ∆q[S]. Explicitly we can write

β∗(S) =
∑

S0≺S1≺···≺Sq−1≺S
{β(S0),β(S1), . . . ,β(Sq−1),β(S)}.
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However, this expression can be obtained more compactly by the recursive formula:

β∗(v) = v, if v is a vertex in K, β∗(S) = iβ(S) ◦ β∗(∂(S)) if dimS > 0.

For example, β∗({a, b}) = iβ({a,b})(β∗(a + b)) = {a,β({a, b})} + {b, β({a, b})}, that is, the
line segment ab is sent to the sum am+ bm where m is the midpoint of ab, the barycenter.
We leave to the reader the induction argument that identifies the two descriptions of β∗.

In order that β∗ defines a mapping on homology, we check the condition that ∂ ◦β∗ =
β∗ ◦ ∂. On a 1-simplex, {a, b}, we have that

∂(β∗({a, b})) = ∂({a,β({a, b})} + {b, β({a, b})}) = a + b = β∗(a + b) = β∗(∂({a, b})).

By induction on the dimension of a simplex, we have

∂(β∗(S)) = ∂(iβ(S)(β∗(∂(S)))) = β∗(∂(S)) + iβ(S)(∂β∗(∂(S)))

= β∗(∂(S)) + iβ(S)(β∗(∂∂(S))) = β∗(∂(S)).

Any linear mapping m∗:Cp(K; F2) → Cp(L; F2), defined for all p, that also satisfies
∂ ◦m∗ = m∗ ◦ ∂, is called a chain mapping; furthermore, a chain mapping m∗ induces
a linear mapping m∗:Hp(K; F2) → Hp(L; F2) for all p given by m∗([v]) = [m∗(v)]. We
have showed that β∗ is a chain mapping and so it induces a linear mapping for all p,
β∗:Hp(K; F2) → Hp(sdK; F2).

To finish the proof of the theorem, we show that β∗ and H(λ) are inverses. In one
direction, we show that λ∗ ◦ β∗ = id on Cp(K; F2). On vertices v ∈ K, λ∗(β∗(v)) = v. By
induction on dimension, we check on a p-simplex S = {v0, . . . , vp},

λ∗(β∗(S)) = λ∗(iβ(S)(β∗(∂(S))) = ivp(λ∗(β∗(∂(S)))) = ivp(∂(S)) = S.

The last equation holds because ivp(∂(S)) = S + ∂(ivp(S)), and vp ∈ S implies that
ivp(S) = 0.

We next construct a chain homotopy h:Cp(sdK; F2) → Cp+1(sdK; F2) that satisfies

∂ ◦ h + h ◦ ∂ = β∗ ◦ λ∗ + id.

This implies that β∗ ◦ H(λ) = id on Hp(sdK; F2) and establishes that β∗ is the in-
verse of H(λ). For p = 0, define h(β(S)) = {vp,β(S)}, where S = {v0, . . . , vp}. Since
β∗(λ∗(β(S))) = β∗(vp) = vp, we have

∂(h(β(S))) + h(∂(β(S))) = ∂({vp,β(S)}) = vp + β(S) = β∗(λ∗(β(S))) + id(β(S)).

Note also that h(β(S)) = {vp,β(S)} ∈ C1(sd∆p[S]; F2) ⊂ C1(sdK; F2).
Suppose, by induction, that we have defined h:Ck(sdK; F2) → Ck+1(sdK; F2) for

k < p. If {β(S0), . . . ,β(Sk)} ∈ Ck(sdK; F2), then let dk = dim(Sk). By induction, also
assume that

h({β(S0), . . . ,β(Sk)}) ∈ Ck+1(sd∆dk [Sk]; F2) ⊂ Ck+1(sd K; F2),
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that is, the chains making up the value of h on a simplex in sdK lie in the subdivision
of a particular simplex in K. Suppose T is a p-simplex and T = {β(S0), . . . ,β(Sp)} and
dim(Si) = di. Consider the chain in Cp(sdK; F2) given by β∗(λ∗(T )) + T + h(∂(T )). By
induction, we can assume that h(∂(T )) ∈ Cp(sd ∆dp [Sp]; F2) since the image under h of
any (p− 1)-simplex ∂i(T ) in ∂(T ) lies in Cp−1(sd ∆dp [Sp]; F2)⊕ Cp(sd ∆dp−1 [Sp−1]; F2) ⊂
Cp(sd ∆dp [Sp]; F2). Since S0 ≺ S1 ≺ · · · ≺ Sp, we know that T ∈ sd ∆dp [Sp]. Finally,
consider

β∗(λ∗(T )) = β∗({vω(0), . . . , vω(p)}) ∈ Cp(sd∆p[{vω(0), . . . , vω(p)}]; F2)

Since vω(i) lies in Si ≺ Sp, we find β∗(λ∗(T )) ∈ Cp(sd∆dp [Sp]; F2).
Putting these observations together it follows that the p-chain

β∗(λ∗(T )) + T + h(∂(T )) ∈ Cp(sd∆dp [Sp]; F2).

The sequence of chains and boundary homomorphisms for sd ∆dp [Sp] is exact in dimensions
greater than zero because the operator iβ(Sp):Ck(sd ∆dp [Sp]; F2) → Ck+1(sd∆dp [Sp]; F2)
satisfies ∂ ◦ iβ(Sp) + ∂ ◦ iβ(Sp) = id (the proof is the same as for ∆dp [Sp]). Furthermore, by
induction, we can assume that β∗ ◦ λ∗ + id = h ◦ ∂ + ∂ ◦ h on (p− 1)-chains, and so

∂(β∗ ◦ λ∗ + id + h ◦ ∂) = ∂ ◦ β∗ ◦ λ∗ + ∂ + (∂ ◦ h) ◦ ∂

= β∗ ◦ λ∗ ◦ ∂ + ∂ + (β∗ ◦ λ∗ + id + h ◦ ∂) ◦ ∂

= β∗ ◦ λ∗ ◦ ∂ + ∂ + β∗ ◦ λ∗ ◦ ∂ + ∂ + h ◦ ∂ ◦ ∂ = 0.

Thus
β∗(λ∗(T )) + T + h(∂(T )) ∈ Zp(sd∆dp [Sp]) = Bp(sd ∆dp [Sp]).

Therefore, there is a (p+1)-chain cT ∈ Cp+1(sd∆dp [Sp]; F2) ⊂ Cp+1(sdK; F2) with ∂(cT ) =
β∗(λ∗(T )) + T + h(∂(T )). Define h(T ) = cT . Carry out this construction for each T ∈ Kp

and extend linearly to define h:Cp(sdK; F2) → Cp+1(sdK; F2), satisfying β∗ ◦ λ∗ + id =
∂ ◦ h + h ◦ ∂, and h(T ) ∈ Cp+1(sd∆dp [Sp]; F2).

It now follows from Theorem 11.5 that β∗ ◦ λ∗ induces the identity on Hp(sd K; F2)
and we have proved that Hp(K; F2) ∼= Hp(sdK; F2), for all p. ♦

The trick of restricting and applying the exactness of the sequence of chains and boundary
homomorphisms for a subcomplex of a simplicial complex is known generally as the method
of acyclic models, introduced generally by S. Eilenberg (1913–1998) and J. Zilber in
[Eilenberg-Zilber].

Since |sd K| = |K|, Theorem 11.8 shows that subdivision does not change the homol-
ogy up to isomorphism. The Simplicial Approximation Theorem, together with certain
properties of simplicial mappings, will imply that the collection of homology vector spaces
{Hp(K; F2) | p ≥ 0}, are topological invariants.
Topological invariance of homology. Suppose K and L are simplicial complexes
with |K| and |L| homeomorphic. Then, for all p, the vector spaces Hp(K; F2) and Hp(L; F2)
are isomorphic.

11



Proof: Suppose F : |K| →| L| is a homeomorphism with inverse given by G: |L| →| K|.
Let φ: sdNK → L be a simplicial approximation to F and γ: sdML → K a simplicial
approximation to G. Then, we can subdivide the simplicial mapping φ further to ob-
tain sdMφ: sdN+MK → sdML which is also a simplicial approximation to F (Exercise 5,
Chapter 10). The composite

sdN+MK
sdM φ−→ sdML

γ−→K

is a simplicial approximation to the identity mapping |sdN+MK|→ |K|. Another approx-
imation of the identity is given by the following composite:

sdN+MK
sdN+M−1λ−→ sdN+M−1K

sdN+M−2λ−→ · · · sd2K
sd λ−→ sd K

λ−→K.

The proof of Theorem 11.8 shows that H(λ) is an isomorphism between Hp(sdK; F2) and
Hp(K; F2) for all p. We next show that H(sdjλ) is an isomorphism for all j ≥ 0. More
generally, consider the diagram of simplicial complexes and simplicial mappings:

sd K
sd η−→ sd L.λ

.λK

K −→
η

L

Here we define λK : sdL → L as a simplicial approximation to the identity that satisfies
λK({φ(v0), . . . ,φ(vq)}) = φ(vq), that is, we complete the diagram in such a way that
η ◦ λ = λK ◦ sd η. When we apply homology to these mappings, we obtain H(η) ◦H(λ) =
H(λK) ◦H(sd η). Since λ and λK are simplicial approximations of the identity mapping,
they are contiguous and so H(λK) and H(λ) are isomorphisms. Therefore, H(η) and
H(sd η) are equivalent as linear mappings of vector spaces. From this we deduce that
H(sdjλ) is an isomorphism for all j ≥ 0.

Thus γ ◦ sdM φ: sdN+MK → K and λ ◦ (sdλ) ◦ · · · ◦ (sdN+M−1λ): sdN+MK → K are
both simplicial approximations to the identity map |sdN+MK| → |K| and so they are
contiguous by Lemma 10.19. Thus H(γ)◦H(sdMφ) = H(λ)◦H(sdλ)◦ · · ·◦H(sdN+M−1λ)
which is an isomorphism. It follows that H(sdMφ) is one-one and also that H(φ) is one-one
because it is equivalent to H(sdMφ).

By the same argument applied to G ◦ F = id|L|, we form the composite

sdN+ML
sdN γ−→ sdNK

φ−→L

which is a simplicial approximation to id: |sdN+ML| → |L| and so H(φ) ◦ H(sdNγ) is
an isomorphism and so H(φ) is onto. Thus we have proved that H(φ):Hp(sdNK; F2) →
Hp(L; F2) is an isomorphism, for all p. By Theorem 11.8 and induction, Hp(K; F2) is
isomorphic to Hp(sdNK; F2). Thus Hp(K; F2) ∼= Hp(L; F2) for all p. ♦

Corollary 11.9. The Euler-Poincaré characteristic is a topological invariant of a tri-
angulable space.

12



Proof: Since χ(K) is calculable from the homology and homology is a topological invariant,
we can write χ(K) = χ(|K|) and compute the Euler-Poincaré characteristic from any
triangulation of |K|. ♦

We can apply the corollary to prove a result known since the time of Euclid. A
Platonic solid is a polyhedron with realization S2 and for which all faces are congruent
to a regular polygon, and each vertex has the same number of edges meeting there. Familiar
examples are the tetrahedron and cube.
Theorem 11.10. There are only five Platonic solids.
Proof: A polyhedron P need not be a simplicial complex, since the faces can be polygons
not necessarily triangles (consider a soccer ball). However, if we subdivide each constituent
polygon into triangles, we get a simplicial complex. The reader can now prove that the
Euler-Poincaré characteristic χ(P ), computed as the alternating sum n0 − n1 + n2 where
P has n0 vertices, n1 edges and n2 faces, is the same for the subdivided polyhedron, a
simplicial complex. Since P has realization S2, we know that χ(P ) = 2.

Suppose each face has M edges (a regular M -gon) and, at each vertex, N faces meet.
This leads to the relation:

M n2/2 = n1,

that is, each of the n2 faces contributes M edges, but each edge is shared by two faces. It
is also the case that

Nn0/2 = n1.

Since N faces meet at each vertex, N edges come into each vertex. But each edge has two
vertices. Putting these relations into Euler’s formula we get

2 = n0 − n1 + n2

= (2n1/N)− n1 + (2n1/M)
= n1((2/N) + (2/M)− 1).

It follows that
n1

2
=

MN

2M + 2N −MN
.

If N = 1 or N = 2, there would be a boundary and so the polyhedron would fail to be
a sphere. Since a Platonic solid encloses space, N > 2. Also M ≥ 3 since each face is a
polygon. Finally, n1 must be an integer which is at least M .

These facts force M < 6. To see this, suppose M ≥ 6 and N > 2. Then 2 − N < 0
and we have

0 < 2M + 2N −MN = 2N + M(2−N) ≤ 2N + 6(2−N) = 12− 4N.

This implies that 4N < 12, or that N < 3, which is impossible for N an integer and N > 2.
Setting M = 3 we get n1 = 6N/(6 − N) which is an integer when N = 3, 4, and 5.

The case N = 3, M = 3 is realized by the tetrahedron; N = 4 and M = 3 is realized by
the octahedron, and for N = 5, M = 3 by the icosahedron.
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For M = 4 we have n1 = 8N/(8− 2N) = 4N/(4−N), and so N = 3 is the only case
of interest which is realized by the cube. Finally, for M = 5 we have n1 = 10N/(10− 3N)
and so N = 3 is the only possible case, which gives the dodecahedron. ♦

Since the homology groups of a triangulable space are defined up to isomorphism, the
invariants of vector spaces, like dimension, are topological invariants of the space. In the
next result, we compare the dimension of one of the homology groups to a topological
invariant introduced in Chapter 5.
Theorem 11.11. If K is a simplicial complex, then dimF2 H0(K; F2) = #π0(|K|) = the
number of path components of |K|.
Proof: Consider the set K0 of vertices of K. Define a relation on K0 given by v ∼ v′ if
there is a 1-chain c ∈ C1(K; F2) with ∂(c) = v + v′. This relation is reflexive, because
∂(0) = v +v; it is symmetric since v +v′ = v′+v; and it is transitive because ∂(c) = v +v′

and ∂(c′) = v′ + v′′ implies ∂(c + c′) = v + v′ + v′ + v′′ = v + v′′. Let [K0] denote the set
of equivalence classes under this relation. We show that #[K0] = dimF2 H0(K; F2) and
#[K0] = #π0(|K|).

Consider the linear mapping F2[[K0]] → H0(K; F2) determined by [v] 0→ v + B0(K).
Since the equivalence relation is defined by the image of the boundary homomorphism,
this mapping is well-defined. It is onto since every vertex in K lies in some equivalence
class in [K0]. We prove that this mapping is an isomorphism. Suppose that we make a
choice of vertex in each equivalence class so that [K0] = {[v1], . . . , [vs]}. We show that the
set of classes {vi + B0(K) | i = 1, . . . , s} is linearly independent in H0(K; F2). Suppose
vi1 + · · · + vir + B0(K) = B0(K), that is, vi1 + · · · + vir = ∂(c) for some c ∈ C1(K; F2).
We can write c = e1 + · · · + et for edges ei ∈ K1. Since vi1 + · · · + vir = ∂(e1 + · · · + et)
there is some edge, say e1 with ∂(e1) = vi1 + w1 for some vertex w1. Since vi1 ∼ w1, we
know that w1 *= vij for j = 2, . . . , s. It follows that we can replace vi1 with w1 and write

w1 + vi2 + · · · + vir = ∂(e2 + · · · + et).

By the same argument, we can choose e2 with ∂(e2) = w1 + w2. Once again, w1 ∼ w2 and
w2 *= vij for j = 2, . . . , s. Therefore, ∂(e3+· · ·+et) = w2+vi2 +· · ·+vir . Continuing in this
manner, we get down to ∂(et) = wt−1+vi2 + · · ·+vir , which is impossible since the vertices
vij and wt−1 are not equivalent under the relation. Thus #[K0] = s = dimF2 H0(K; F2).

To finish the proof, we show that #[K0] = #π0(|K|). First notice that the open star
of a vertex, OK(v) is path-connected. This follows because there is a path joining the
vertex v to every point in OK(v). Recall that the set of path components, π0(|K|) is the
set of equivalence classes of points in |K| under the relation that two points are equivalent
if there is a path in |K| joining them. Denote the equivalence classes under this relation by
〈x〉. Suppose [vi] ∈ [K0] is a class of vertices under the relation vi ∼ w if there is a 1-chain
c with ∂(c) = vi + w. Let Ui =

⋃
w∈[vi]

OK(w). We show that Ui is a path component of
|K| and that Ui ∩ Uj = ∅ when i *= j. Notice that Ui is path connected—we only need
to show that the vertices are joined by paths since each OK(w) is path connected. By
w and w′ satisfy w + w′ = ∂(c) and the 1-chain c determines a path joining w and w′.
Furthermore, if there is a path joining vi to a point x in |K|, then there is a path joining
vi to some vertex v in K, and the path joining vi to v can be deformed to pass only along
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edges of K, whose sum gives a 1-chain c with ∂(c) = vi + v, that is, v ∈ Ui and Ui = 〈vi〉.
Suppose x ∈ Ui ∩ Uj . Then there are vertices w and v with v ∼ vi and w ∼ vj and
x ∈ OK(v) ∩ OK(w). However, this implies that x ∈ ∆m[S] for some m-simplex S in K
for which v, w ∈ S. This implies that e = {v, w} ≺ S is an edge with ∂(e) = v + w and so
v ∼ w which implies vi ∼ vj , a contradiction. Thus |K| is partitioned into disjoint path
components 〈v1〉 = U1, . . . , 〈vs〉 = Us. ♦

We return to the central question of the book.

Invariance of dimension for (m,n): If Rm is homeomorphic to Rn, then n = m.

Proof: We make this a question about simplicial complexes by using the one-point com-
pactification (Definition 6.11). If Rn is homeomorphic to Rm, then their one-point com-
pactifications are homeomorphic. Since Rl ∪ {∞} is homeomorphic to Sl, it follows that
Rn ∼= Rm implies Sn ∼= Sm.

By the topological invariance of homology, and the homeomorphism Sn ∼= |bdy∆n+1|,
we have

Hp(Sn; F2) ∼= Hp(bdy∆n+1; F2) ∼=
{

F2 p = 0, n,
{0} else.

If Sn ∼= Sm, then Hp(Sn; F2) ∼= Hp(Sm; F2) for all p and, by our computation of the
homology of spheres, this is only possible if n = m. ♦

The first proofs of this theorem were due to Brouwer [Brouwer] and Lebesgue [Lebes-
gue]. Brouwer’s proof was based on simplicial approximation and used an index, defined
generically as the cardinality of the preimage of a point, to obtain a contradiction to the
existence of a homeomorphism between [0, 1]n = [0, 1] × · · · × [0, 1] (n times) and [0, 1]m
when n *= m. Lebesgue’s first proof was not rigorous, but introduced a point-set definition
of dimension that led to the modern development of the subject of dimension theory. An
account of these developments can be found in [Johnson] and [Hurewicz-Wallman].

Another famous theorem of Brouwer can be proved using homology, generalizing the
argument in Theorem 8.7 in which the fundamental group of S1 played a key role.

The Brouwer fixed point theorem. If en = {x ∈ Rn | ‖x‖ ≤ 1} denotes the n-disk
and f : en → en is a continuous mapping, then there is a point x0 ∈ en with f(x0) = x0,
that is, en has the fixed point property.

Proof: Suppose that f : en → en is a continuous mapping without fixed points. If y ∈ en,
then y *= f(y). Join f(y) to y and continue this ray until it meets Sn−1 = bdy en and
denote this point by g(y). We can characterize g(y) by g(y) = (1− t)f(y)+ ty where t > 0
and ‖g(y)‖ = 1. Because we are in a nicely behaved inner product space, the argument
for the case of n = 2 (Theorem 8.7) carries over exactly to prove that g: en → Sn−1 is
continuous. Furthermore, by the definition of g, g ◦ i:Sn−1 → Sn−1 is the identity when
i:Sn−1 → en is the inclusion of the boundary.

Apply homology to this composite idSn−1 = g◦i to obtain H(idSn−1), an isomorphism,
written as H(g) ◦ H(i). However, Hn−1(Sn−1; F2) *= {0} while Hn−1(en; F2) = {0}, be-
cause en is homeomorphic to ∆n. Thus, H(i):Hn−1(Sn−1; F2) → Hn−1(en; F2) is the zero
homomorphism [c] 0→ 0. An isomorphism H(idSn−1):Hn−1(Sn−1; F2) → Hn−1(Sn−1; F2)
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cannot be factored as H(g) ◦ ([c] 0→ 0), and so a continuous mapping f : en → en without
fixed points cannot exist. ♦

The Brouwer fixed point theorem was a significant signpost in the development of
topology. The theory of fixed points of mappings plays an important role throughout
mathematics and its applications. With more refined notions of homology, deep general-
izations of the Brouwer fixed point theorem can be proved. See [Munkres2] for examples,
like the Lefschetz-Hopf fixed point theorem.

In dimension two we proved a case of the Borsuk-Ulam theorem (Theorem 8.10)—there
does not exist a continuous function f :S2 → S1 with f(−x) = −f(x) for all x ∈ S2. The
higher dimensional version of the Borsuk-Ulam theorem treats mappings f :Sn → Sn−1

for which f(−x) = −f(x). The general setting for this discussion involves the notion of a
space with involution.
Definition 11.12. A space X has an involution ν:X → X if ν is continuous and
ν◦ν = idX . If (X, ν) and (Y, µ) are spaces with involution, then an equivariant mapping
g:X → Y is a continuous mapping satisfying g ◦ ν = µ ◦ g.
Consider the antipodal mapping on Sn and on Sn−1 given by a(x) = −x. The general
Borsuk-Ulam theorem states that a continuous mapping f :Sn → Sn−1 cannot be equiv-
ariant, that is, f(a(x)) = a(f(x)) does not hold for all x ∈ Sn.

Assuming this formulation of the Borsuk-Ulam theorem, we observe an immediate
consequence: If we let F :Sn → Rn be any continuous mapping that satisfies F (x) *= F (−x)
for all x ∈ Sn, we can define

g(x) =
F (x)− F (−x)
‖F (x)− F (−x)‖ .

Then g: (Sn, a) → (Sn−1, a) is an equivariant mapping. By the Borsuk-Ulam Theorem, no
such mapping exists, and so there must be a point x0 ∈ Sn with F (x0) = F (−x0), that is,
two antipodal points are mapped to the same point. It follows from this that no subspace
of Rn is homeomorphic to Sn.

We deduce the Borsuk-Ulam theorem as a corollary of a theorem of Walker [Walker]
which deals with the homology of equivariant mappings. Assume that (X, ν) is a space
with involution and that X is triangulable. Then there is a simplicial complex K with
|K| ∼= X and a simplicial mapping ν̄:K → K with |ν̄| 8 ν and ν̄ ◦ ν̄ = idK . An argument
for the existence of K and ν̄ can be made using simplicial approximation. For the sphere,
we can do even better. For example, one triangulation of S2 is the octahedron on which we
can write down an explicit simplicial mapping which realizes the antipodal map. Higher
dimensional models of this sort exist for every sphere. Note that the antipodal mapping
on the sphere has no fixed points. We will assume that a simplicial approximation to the
antipodal map can be chosen without fixed points as well, and so any simplex S in L
satisfies ā(S) ∩ S = ∅ where ā:L → L realizes the antipode on |L| ∼= Sn.
Theorem 11.13. If (X, ν) is a triangulable space with involution and F : (X, ν) → (Sn, a)
is an equivariant mapping, then there is a homology class [c] ∈ Hj(X; F2) with 1 ≤ j ≤ n,
[c] *= 0 and H(ν)([c]) = [c]. Furthermore, if the least dimension in which this condition
holds is j = n, then the class [c] can be chosen such that H(F )([c]) = [u] *= 0 in Hn(Sn; F2).
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Proof: Let us assume that we have triangulations for (X, ν) and (Sn, a) denoted by (K, ν̄)
and (L, ā). Let φ:K → L be a simplicial equivariant mapping with φ a simplicial approxi-
mation to F . Let θK = idK∗+ ν̄∗:Cj(K; F2) → Cj(K; F2) and θL = idL∗+ ā∗:Cj(L; F2) →
Cj(L; F2). Since ν̄ and ā are simplicial mappings, θK ◦ ∂ = ∂ ◦ θK and likewise for θL.
Also θK ◦ θK = 0, because

(idK∗ + ν̄∗) ◦ (idK∗ + ν̄∗) = idK∗ + ν̄∗ + ν̄∗ + (ν̄ ◦ ν̄)∗ = 2idK∗ + 2ν̄∗ = 0,

and similarly, θL ◦ θL = 0.
If there is a class 0 *= [c] ∈ Hj(K; F2) with H(ν̄)([c]) = [c] and 0 < j < n, then we are

done. So, let us assume that if H(ν̄)([c]) = [c], then [c] = 0. Notice that H(ν̄)([c]) = [c] if
and only if [θK(c)] = 0.

Let h0 ∈ L denote a vertex. The homology class [h0] = h0 + B0(L) ∈ H0(L; F2)
satisfies [θL(h0)] = 0, since H0(L; F2) has dimension one, and both idL and ā induce the
identity on H0(L; F2). It follows that there is a 1-chain h1 with ∂(h1) = θL(h0). Notice
that

∂(θL(h1)) = θL(∂(h1)) = θL(θL(h0)) = 0.

Since |L| ∼= Sn, B1(L) = Z1(L) and so θL(h1) = ∂(h2) for some h2 ∈ C2(L; F2). It is
also the case that θL(h1) *= 0. To see this, suppose h1 = e1 + e2 + · · · + et. Then we can
number the edges ei with ∂(e1) = h0 + v1, ∂(ei) = vi−1 + vi and ∂(et) = vt−1 + ā∗(h0). If
θL(h1) = 0, then we deduce ā∗(ei) = et−i+1 from which we find either an edge that is its
own antipode, or a pair of edges sharing antipodal vertices. By the assumption that the
antipode ā has no fixed points, we find θL(h1) *= 0.

We repeat this construction to find hj ∈ Cj(L; F2), for 1 ≤ j ≤ n, with ∂(hj) =
θL(hj−1). By the same argument showing θL(h1) *= 0, we find θL(hj) *= 0 for 1 ≤ j ≤ n.
Consider θL(hn); since θL(hn) *= 0, [θL(hn)] generates Hn(L; F2). The chains hj may be
thought of as generalized hemispheres.

We have assumed that, if 1 ≤ j < n, and [c] ∈ Hj(K; F2) satisfies H(ν̄)[c] = [c], then
[c] = 0. We use this to make an analogous construction of classes cj ∈ Cj(K; F2) with
properties like the hj . Let c0 ∈ K be a vertex. Then [θK(c0)] = 0, and so there is a 1-chain
c1 with ∂(c1) = θK(c0). The 1-chain θK(c1) satisfies

∂(θK(c1)) = θK(∂(c1)) = θK(θK(c0)) = 0.

Thus θK(c1) is a 1-cycle. However, θK(θK(c1)) = 0, so θK(c1) = ∂(c2) for some 2-chain c2.
Continuing in this manner, we find chains cj satisfying ∂(cj) = θK(cj−1) for 1 ≤ j ≤ n.

We next define another sequence of chains on L. We know that h0+φ∗(c0) is a 0-cycle,
and so there is a chain u1 with ∂(u1) = h0 + φ∗(c0). Consider h1 + φ∗(c1) + θL(u1). Then

∂(h1 + φ∗(c1) + θL(u1)) = ∂(h1) + φ∗(∂(c1)) + θL(∂(u1))
= θL(h0) + φ∗(θK(c0)) + θL(h0 + φ∗(c0))
= θL(h0) + θL(φ∗(c0)) + θL(h0) + θL(φ∗(c0)) = 0.

Here we have used θL ◦ φ∗ = φ∗ ◦ θK which holds by the assumption that φ is equiv-
ariant. It follows that there is a 2-chain u2 with ∂(u2) = h1 + φ∗(c1) + θL(u1). The
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analogous computation shows h2 +φ∗(c2)+ θL(u2) is a cycle and so there is a 3-chain with
∂(u3) = h2 +φ∗(c2)+θL(u2). Continuing in this manner, we find j-chains uj with ∂(uj) =
hj−1+φ∗(cj−1)+θL(uj−1) for 1 ≤ j ≤ n (u0 = 0). By construction, hn+φ∗(cn)+θL(un) is
an n-cycle in Cn(L; F2) and so it is homologous to either θL(hn) or to 0 since Hn(L; F2) ∼=
F2[{[θL(hn)]}]. In either case, θL(hn +φ∗(cn)+ θL(un)) = θL(hn)+φ∗(θK(cn)) is homolo-
gous to 0. Let c = θK(cn), then ∂(c) = ∂(θK(cn)) = θK(∂(cn)) = θK(θK(cn−1)) = 0,
and so [c] ∈ Hn(K; F2) satisfies H(φ)([c]) = [φ∗(c)] = [φ∗(θK(cn))] = [θL(hn)] and
[ν̄∗(c)] = [ν̄∗(θK(cn))] = [θK(cn)] = [c], so H(ν)([c]) = [c]. ♦

Corollary 11.14. There are no equivariant mappings F : (Sn, a) → (Sm, a) when n > m.
Proof: The homology of Sn has no nonzero classes in Hj(Sn; F2) for 1 ≤ j ≤ m, and so, if
there were an equivariant mapping F :Sn → Sm, the conclusion of Theorem 11.13 would
fail . ♦

The Borsuk-Ulam theorem is the case m = n − 1. There are many proofs of the
Borsuk-Ulam theorem, as well as remarkable applications in diverse parts of mathematics.
The interested reader should consult [Matoušek] for more details (and a great read).

Exercises

1. Suppose X and Y are triangulable space that are homotopy equivalent. Show that
Hp(X; F2) ∼= Hp(Y ; F2) for all p. The notion of contiguous simplicial mappings (The-
orem 10.21) plays a big role here.

2. Use the homotopy invariance of homology to compute the homology of the Möbius
band.

3. The projective plane, RP2 is modeled by an explicit simplicial complex, as shown in
Chapter 10. The combinatorial data allow one to construct the sequence of boundary
homomorphisms

C2(RP2; F2)
∂−→C1(RP2; F2)

∂−→C0(RP2; F2) → {0}.

This may be boiled down to a pair of matrices whose ranks determine the homology.
Use this formulation to compute Hj(RP2; F2) for all j.

4. If L is a subcomplex of a simplicial complex K, L ⊂ K, then we can define the
homology of the pair (K, L) by setting

Cp(K, L; F2) = Cp(K; F2)/Cp(L; F2).

Show that the boundary operator on the chains on K and L defines a boundary oper-
ator on the quotient vector space Cp(K, L; F2). Then Hp(K, L; F2) is the quotient of
the kernel of the boundary operator by the image of the boundary operator. Compute
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Hp(K, L; F2) for all p when K is a cylinder S1 × [0, 1] and L is its boundary (a pair
of circles), and when K is the Möbius band, and L its boundary.

5. A path through a simplex can be deformed to pass only through the subcomplex of
edges (1-simplices) of the simplex. Because a simplex is convex, this gives a homotopy
between the path and its deformation. Use this idea to define a mapping π1(|K|, v0) →
H1(K; F2) that sends a loop based at a vertex v0 to a 1-chain in K. Show that
the mapping so defined is a group homomorphism. What happens in the case that
|K| ∼= S1?

Where from here?

The diligent reader who has mastered the better part of this book is ready for a great
deal more. I have restricted my attention to particular spaces and particular methods
in order to focus on the question of the topological invariance of dimension. The quick
route to the proof of invariance of dimension left a lot of the landscape unexplored. In
particular, the question of dimension can be posed more generally, for which a rich theory
has been developed. The interested reader can consult [Hurewicz-Wallman] for the classic
treatment, and the articles of Johnson [Johnson], and Dauben [Dauben] for a history of its
development. For topics in the general history of topology, there is the collection of essays
edited by James [James] and the sweeping account of Dieudonné [Dieudonne].

Where to go next is best answered by recommending some texts for which the reader
is now ready.

A far broader treatment of the topics in this book can be found in the books of
Munkres, [Munkres1] and [Munkres2]. Enthusiasts of point-set topology (Chapters 1–6)
will find a rich vein there. Other treatments of point-set topics can be found in [Kahn] and
[Henle], and there is the collection of sometimes surprising counterexamples to sharpen
point-set topological intuition found in [Steen-Seebach].

The fundamental group is thoroughly presented in the classic book of Massey [Massey]
and in the lectures of Lima [Lima]. A deeper exploration of the idea of covering spaces leads
to a topological setting for a Galois correspondence, which has been a fruitful analogy.

For the purposes of ease of exposition toward our main goal, I introduced homology
with coefficients in F2. It is possible to define homology with other coefficients, H∗(X;A)
for A an abelian group, and for arbitrary topological spaces, singular homology, by de-
veloping the properties of simplices with more care. This is the usual place to start a
graduate course in algebraic topology. I recommend [Massey], [Munkres2], [Greenberg-
Harper], [Hatcher], [Spanier] and [Crossley] for these topics. With more subtle chains,
many interesting geometric results can be proved.

The most important examples of topological spaces throughout the history of topology
are manifolds. These are spaces which are locally homeomorphic to open sets in Rn for
which the methods of the Calculus play a principal role. The interface between topology
and analysis is subtle and made clear on manifolds. This is the subject of differential
topology, treated in [Milnor], [Dubrovin-Fomenko-Novikov], and [Madsen-Tornehave].
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I did not treat some of the other classical topological topics in this book about which
the reader may curious. On the subject of knots, the books of Colin Adams [Adams] and
Livingston [Livingston] are good introductions. The problem of classifying all surfaces is
presented in [Massey] and [Armstrong]. Geometric topics, like the Poincaré index theorem,
are a part of classical topology, and can be read about in [Henle].

Finally, the notation π0(X) and π1(X) hints at a sequence of groups, πn(X), known as
the higher homotopy groups of a space X. The iterative definition, introduced by Hurewicz
[Hurewicz], is

πn(X) = πn−1(Ω(X, x0)).

For example, the second homotopy group of X is the fundamental group of the based loop
space on X. The properties of these groups and their computation for particular spaces X
is a difficult problem. Some aspects of this problem are developed in [Croom], [Maunder],
[May], and [Spanier].

To the budding topologist, I wish many exciting discoveries.
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67. Poincaré, H., Science and Hypothesis, London: Walter Scott Publishing, London,

1905.
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